
Oklahoma State Univ. Library

IMPROVE DATABASE PERFORMANCE AND MAINTAIN

REFERENTIAL INTEGRITY FOR A LARGE CLIENT

SERVER APPLICATION SYSTEM

By

HUI XU

Bachelor of Science
Petroleum University

Shandong, China
1982

Master of Science
Research Institute of Petroleum Exploration

And Development
Beijing, China

1985

Doctor of Philosophy
Louisiana State University
Baton Rouge, Louisiana

1990

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

July, 1999

IMPROVE DATABASE PERFORMANCE AND MAINTAIN

REFERENTIAL INTEGRITY FOR A LARGE CLIENT

SERVER APPLICATION SYSTEM

Thesis Approved:

~-L I~-

ii

ACKNOWLEDGMENTS

I sincerely appreciate my major advisor Dr. Jacques LaFrance for his

intelligent supervision, constructive guidance, and encouragement of my thesis

work. My sincere appreciation extends to Drs. George E. Hedrick and H. K Dai,

my committee members, for their valuable suggestions and comments.

This thesis was based on a project I completed when I worked at

Transok, Inc. of Tulsa, OK. I particularly like to thank my supervisor at Transok,

Roni Taylor, manager of Application Services at Information Services

Department of Transok. My appreciation is extended to Judy Edmonson and H.

Tim Reid of Transok, Inc. and David Covich of DC System for their useful inputs.

iii

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1

Relational Database Periormance Problems 1
Referential Integrity vs. Periormance 3
Pu rpose of the Study 4
Outlook of Work 4

II. REFERENCE REVIEWS 6
Relational Database Model 6
Foreign Keys and Referential Integrity 7
Foreign Key Effects for Database Periormance 9
Database Normalization 11
Database Denormalization 12
Database Triggers 14
Referential Integrity for Large Database 14

III. COMMERCIAL DATABASES AND DATABASE TRIGGERS 16
Sybase Database 16
Oracle Database 17
Database Triggers 20

IV. IMPROVE PERFORMANCE WITH REFERENTIAL INTEGRITy 21
Foreign Key Referential Integrity Maintaining Processes 21
Client Server Application System 23
Maintain Referential Integrity during Data Deletion 24
Maintain Referential Integrity during Data Insertion and Updating 25
Maintain Referential Integrity for Denormalized Database 27

V. APPLICATION EXAMPLE OF A LARGE CLIENT SERVER SYSTEM 29
Basic Information about the Example System 29
Triggers For Maintaining Referential Integrity during Data Deletion 33
Maintaining Referential Integrity during Data Insertion and Updating 39
Triggers for Denormalized Database 40

VI. SUMMARY AND CONCLUSIONS 42

REFERENCES 43

APPENDiXES 46

iv

LIST OF TABLES

Table Page

1. List of the tables and columns names using contracCnbr as foreign keys 30

2. Child tables information used for designing "contract" table delete trigger 34

v

CHAPTER I

INTRODUCTION

Relational Database Performance Problems

Relational database performance is affected by many factors when the

database is very large [Anderson, 1997, Paulsel, 1996, Ramakrishnan, 1997, and

Roy and Sugiyama, 1996]. The factors include computer hardware, computer

system setup, database design, database query procedure designs, database

referential integrity checks, etc.

Computer hardware is one of the most important factors for the database

performance. However, the computer hardware upgrade is limited due to the

current hardware technique and also the project budget. The hardware upgrade is

one of the options for the database performance improvement, but not the total

solution.

Computer system setup is another important factor for the database

perfonnance. Since a query's execution time is mostly spent on reading data pages

from disk, the system administrator has several guidelines to avoid the bottleneck

and improve the database performance. By spreading heavily used tables or

frequently joined tables on separate disks, the query processes will reduce the

numbers of disk inpuVoutput into a disk. The improvement from the system setup

will be limited when queries need to read too many data pages and database tables

at one time.

Database design is not only important for a good and complete physical

modeling of the business, but also important for the database performance. The

database design needs to balance several, factors to get good database

performance. For example, if the database involves data manipulation like data

insertion, updating, and retrieving, the number of table indexes needs to be limited.

The table indexes will be very helpful when retrieving data, but will be very costly

when inserting or updating data.

The effect of the database query procedures could become very important

when the database is large. When the query needs to do table scans for large

database tables, the process will be very sllow. There are several procedures that

can be used to optimize the query. The procedures include setting table index,

creating temporary tables, reducing table joins, etc.

The database performance will also be affected by the database referential

integrity check (foreign key reference}. The database referential integrity check is

the procedures to ensure the data saved in the database to be correct. The

referential integrity check procedures will be involved when data are modified in one

or more tables related by the foreign key definitions. The performance effect due

to the referential integrity checks is the main research topic of this thesis.

In real world applications, hundreds of database tables could be involved in

the referential integrity checks when data are modified in one of the database

tables. These tables are usually related each other as the relationships of parent

2

and child tables defined by the foreign keys. In the other word, when one of the

parent table have hundreds of child tables, any data changes in the parent table

require referential checks in the parent table or any data changes in any of the child

tables require referential checks at the parent table. If large amount of data need

to be inputted into the database system at almost the same times, the database

performance affected by the referential checks could be the bottleneck of the

system. Another minor performance problem for this kind of database system is

that many extra table joins are required when querying data from the child tables of

the database for daily production reports. This thesis is to provide an easy and fast

solution for these two performance problems.

Referential Integrity vs. Performance

Several energy companies engaged in natural gas transmission business are

using the database models with some of the parent tables referred by too many

child tables. Due to the slow performance when performing the referential integrity

checks (foreign key references), these companies simply ignored the referential

integrity checks to trade for the database performance. Ignoring the referential

integrity checks is a very dangerous action for their data. When the database

referential integrity has some problems, wrong data could be stored in the database

and many valuable data could also be vanished in the database.

When balancing between the database performance and any other problems

(e.g. referential integrity problem), we are more favorable on the database

performance. However, the referential integrity problem is also very important for

3

our applications. We need to find out an alternative way to keep the referential

integrity checks without affecting too much on the database performance.

Purpose of the Study

The purpose of this thesis ils to study the database performance problems

during the referential checks or data querying for a database system with some

parent tables referred by too many child tables and to provide a practical solution

for these problems. The results are illustrated by an application example.

Outline of Work

This thesis work includes six chapters. Chapter I introduces the ma.in

problems for this thesis, purpose of this study, and the outlook of the thesis work.

Chapter II is concentrated on reference reviews including some fundamental

database concepts, databases triggers, referential integrity, database

denormalization, and database pe,rformance problems in large relational database.

Chapter III reviews the features of some commercial relational database models

and their triggers. Chapter IV analyzes the procedures of maintaining the referential

integrity performed by foreign keys and discusses an alternative way to maintain the

database referential integrity and to improve the database performance. This

chapter also studied the database performance improvement by database

denormalization to reduce table joins and the method to maintain referential integrity

for the denormalized database. Chapter V provides an application example of a

large client server application system to illustrate the implementations of the

4

database performance improvements. Chapter VI summarizes the results of this

thesis study and concludes this thesis.

5

CHAPTER II

REFERENCE REVIEWS

Relational Database Model

The relational database model and some of the concepts are reviewed in the

thesis. The references on the database model and concepts in this chapter are

from the following books and articles in authors' alphabetical order: Brathwaite,

1991; Codd, 1971, 1972, 1974, 1979, 1983, 1988; Date 1981, 1990, 1995; Fagin,

1977, 1979; Koch & Loney, 1997; Logic Works, 1995; Paulsell, 1997; Silberschatz,

Korth, & Sudarshan, l' 997; and Ullman & Widom, 1997.

Relational database system has been widely used in industry for storing,

reviewing and updating data. In a relational database model, data are perceived by

the user as tables. The entire information content of the relational database is

represented in one and only one way. There is always exactly one data value at

every row and column position in every table of the relation database.

Basically, the relational database model is concerned with three aspects of

data: data structure, data integrity, and data manipulation. The database structure

is defined by the tables in which the attributes are represented by columns and the

records are represented by rows. The data integrity defines the rules the relational

database must obey. For example, one of the rules defines that each row in a table

must include a unique value. The data manipulation is the operations to extract,

6

insert, or update data from specified rows and columns in one or more tables.

Structured Query language (SQl) is used for the data manipulation of the relational

database.

The uniqueness property of each table is defined by a primary key. The

primary key can include one or more columns in a table. Primary key is required to

be unique and irreducible and every table must have a primary key.

Foreign Keys and Referential Integrity

Foreign key is the non-primary key column(s), which is the primary key in

other table. Foreign key links the tables like the parent-child relationship, in which

the table of the primary key is the parent table and the table of non-primary key is

the child table.

Referential integrity refers to the accuracy or correctness of the data in the

database. The primary and foreign keys will enforce the referential integrity of the

database. All the attributes in the primary key are implicitly declared to be not null

and must be unique. The attributes of the foreign key can be null, provided that

they have not othelWise been declared to be non-null. When non-null attributes of

the foreign key are inserted or updated in the child table, the attributes 01 the child

table will be checked for the existence in the parent table. When the attributes in

the parent table are updated or deleted, the child tables defined by the foreign key

will be checked. Unlike the database rules that simply reject any operations that

would result in iUegal state, foreign keys can be assigned with certain operations to

enforce the referential integrity of the database. These operations include

7

'RESTRICT and 'CASCADE' during the delete and update operations. The delete

RESTRICT rule will restrict the delete operation when the deleting data exist in the

foreign key referred tables. The delete CASCADE rule will cascade the delete

operation to all the referred tables by the foreign key. The update RESTRICT rule

will restrict the update operation when the updating data exist in the foreign key

referred tables. The update CASCADE rule will cascade the update operation to

all the referred tables by the foreign key. The following is an example of creating

the foreign keys:

create table CUSTOMER (

customecid CHAR(10),

address_purpose CHAR(5),

contact CHAR(40),

status CHAR(1),

beg_efCdate DATE,

PRIMARY KEY (customer),

FOREIGN KEY (customer_id, address_purpose) REFERENCE

ADDRESS(customer_id, address_purpose))

Integration rules can also be built into the database to enforce the data

integrity. When a new integration rule is created, the database system should first

check to see whether the current state of the database satisfies the specified

constraint. If it does not, the new rule should be rejected; otherwise it will be

accepted.

8

The following is an example of creating rules in the database.

create rule pubid_ru Ie

as @pub_id in ('1234', '5678', '3456')

Foreign Key Effects for Database Performance

The transactions defined by foreign keys will be performed automatically

when data in parent tables or child tables are modified. The foreign key

transactions are depended on the foreign key definitions and data transactions in

parent tables or child tables.

When data in parent table are being updated, the foreign key transactions

will be responded to the data updating depending on which part of the parent table

is updated. If non-primary key parts of the parent table are updated, no data

change in child tables is required. If primary key parts of the parent table are

updated, the child table data need to be modified based on the foreign key

definitions. If cascade update is defined by the foreign keys, all the child tables

need to be updated with the new values. If restrict update is defined by the foreign

keys, the update on the parent will be rolled back to the original values if the values

of the parent table are used in the child table.

When data in parent table are inserted, child tables will not be affected and

no actions are required for the child tables.

When deleting data in parent table with cascade deletion, the data of the

corresponding child table will be deleted or set to be null if allowed in the child

tables. When deleting data in parent tablle with restrict deletion, the deletion of the

parent table data depends on the existence of the data in child tables. If the

9

corresponding values exist, the parent table data deletion will be stopped and the

data transaction will be rolled back. Otherwise, the parent table data deletion will

be committed.

When child table data in the foreign key defined columns are being updated,

the corresponding values in parent table will be checked. If the corresponding

values exist, the child table update will be committed. Otherwise, the data being

updated are not valid data and the transaction of the child table update will be rolled

back.

When new data are being inserted into the child tables, the corresponding

values in parent table will be checked. If the corresponding values exist, the child

table insertion will be committed. Otherwise, the child table insertion will be rolled

back.

When data are being deleted from the child tables, referential integrity check

is not required in the parent table.

The transactions of the referential integrity checks defined by the foreign

keys require computing time. When a few child tables refer one parent table, these

transactions can be completed very fast without performance problem. However,

when too many child tables refer one parent table, the required times for the

referential checks could be a problem in the application system. The database

performance will be worse when many data changes are required at the same

times. Several energy companies reported this kind of problems in their large client

server application systems.

10

Database Normalization

When designing a relational database, we usually need to normalize the

database. The goal of normalization is to ensure the uniqueness property. That is,

there is only one way to know a "fact." The process of normalizing a model is one

of removing all model structures that provide multiple ways to know the same fact.

Another way to look at normalization is as a method of controlling and eliminating

redundancy in data storage. There are three basic normalization definitions for the

relational database. First normalization means that the rows and columns of the

database data must form a two-dimensional table with no nested structure inside

any cell. That is, every data value in the relational database must be atomic with

no lists, repeating elements or internal structure. Informally, we can define that a

table is in first normal form if each of its attributes has a single meaning and not

more than one value for each instance.

Second normalization means that a "fact" can only be determined by

knowing all the attributes of the primary key of the tab e. That is, a table violates

second normal form, if a "fact" can be determined by knowing only part of the key

of the table.

Third normalization means that the non-key attributes are mutually

independent and irreducibly dependent on the primary key. That is, if a fact can be

known by knowing the value of some non-key attribute of the table, then third

normal form is violated. In other word, a table is in third normal form if every non

key attribute depends on the key, the whole key and nothing but the key.

11

There are several other normalization definitions, like Boyce/Codd normal

form, Fourth normal form, Fifth normal form. In practice, third normal form is the

standard.

However, a fully normalized design may not always yield the best

performance. We may intentionally denormalize the database in order to gain

performance. It is recommended that we design the database in third normal form,

and then, as performance issues arise, denormalize the database to solve the

performance problems. Denormalized database also has some disadvantages. It

usually speeds retrieval but can slow data modification. The denormaHzation is

usually application-specific and needs to be re-evaluated if the application changes.

The size of database tables can also be increased. Data referential integrity

problem can be raised when the database is denormalized.

Database Denormalization

At the level of the physical database desiign, choices are usually made to

"denormalize" a structure in favor of performance for a certain set of transactions.

This may introduce redundancy in the structure, but is often worth it. The

advantages of the denormalization may include: minimizing the need for joins;

reducing the number of foreign keys on tables; reducing the number of indexes,

saving storage space and reducing data modification time; pre-computing aggregate

values, that is, computing them at data modification time rather than at select time.

The denormalization techniques include adding redundant columns, adding

derived columns, and collapsing tables.

12

Adding redundant columns can eliminate frequent joins since joins are very

costly in performance. For example, in a payment table, buyer, seller, and payee

may be involved. The buyer, seller, and payee names can be found from a

business associate table using a unique ba_number. If we want to get detail

information about the payment, we need to join the payment table with the business

associate table three times to get all the names and may need to join with some

other tables for other information. We may denormalize the payment table design

by adding the columns of the buyer, seller, and payee names in the payment table

to reduce the number of the table joins.

Adding derived columns is to add columns for aggregate values. It can help

eliminate joins and reduce the time to produce aggregate values. For example, in

payment and pay_detail tables, one payment transaction can involve several

payments that are described in the pay_detail table. To get the total payment for

a transaction, we need to join these two tables and calculate the sum of the

payments. To eliminate the join and the calculation time when retrieve the sum, we

can add a column in the payment table to save the total payment data for each

transaction.

Collapsing tables is to combine two tables into one in order to eliminate the

join. For example, the payment and pay_detail table can be combined into one

table to eliminate the join.

The performance improvement from the denormalization will result in the

data referential integrity problem. For example, when the business associate name

is changed in the business associate table, the old name is still shown in the

13

payment table. To ensure the data referential integrity, we can use trigger or run

batch processing to update the changes in payment table.

Database Triggers

Trigger is a special tool equipped in most of the commercial databases.

Triggers are developed by SQL and some special trigger codes and can be used

to do many kinds of data transactions. Triggers will be automatically fired when

data in the tables attached with triggers are modified. Triggers can only be

developed and owned by DBA type users. Every database table can be attached

with a trigger for every kind of data transaction. That is, every table can have an

insert trigger, an update trigger, and a delete trigger. Data manipulations on a table

with an attached trigger will not be committed until the attached trigger is

successfully completed. When the trigger execution is failed, the data transactions

on the table will be rolled back. Database triggers are usually used for enforcing the

busyness rules.

Referential Integrity for Large Database

Most of conference proceedings, magazines, and many reference books in

relational database areas were reviewed in the areas of referential integrity for large

databases. The conference proceedings [http://sunsite.informatik.rwth

aachen.de/dblp/db/conf/index.a.html) include ADBIS (Advances in Databases and

Information Systems), ADBT (Advances in Data Base Theory), 0000 (Deductive

and Object-Ori,ented Databases), EDBT (Extended Database Technology), ICDE

(International Conference on Database Engineering), ICDT (International

14

Conference on Database Theory), ICOD (International Conference on Databases),

IDEAS (International Database Engineering and Application Symposium), OOER

(Object-Oriented and Entity-Relationship Modeling), PODS (Symposium on

Principles of Database Systems), RIDS (Rules in Database Systems), SIGMOD

(International Conference on Management of Data), SSD (Symposium on Large

Spatial Databases), TODS (ACM Transactions on Database Systems), VLDB

(International Conferences on Very Large Data Bases), etc. The magazines

[http://sunsite.informatik.rwth-aachen.de/dblp/db/journals/index.html] include "The

Database & Client/Server Solutions Magazine" [http://www.dbmsmag.com].

"Database Programming & Design" [http://www.dbpd.com]. "Journal of Database

Management" [http://www.idea-group.com/jdm.htm]. and some current research

areas [http://www-db.stanford.edu/-ullman/ullman-papers.html]. These papers and

books explored many research topics including the database referential integrity

problems. However, none of them discussed the database performance problems

in larger database when too many child tables refer a parent table. Of course, no

solution was suggested for this problem.

15

CHAPTER III

COMMERCIAL DATABASES AND DATABASE TRIGGERS

Sybase Database

Sybase database [Clittor, 1997, and Garbus, Solomon, Tretter, & Rankins,

1996] is one of the most popular relational databases used in the industry due to its

reliability and high performance as a distributed database or cHent/server system.

Sybase supports standard Sal and provides many useful build-in functions.

Sybase is very famous for its simplicity and great performance. Sybase provides

many system procedures and tables that are very useful for obtaining system

information and supporting database management.

Sybase supports the three types of triggers, Le. insert, update, and delete

triggers. Sybase will create a table called "deleted" to keep the deleting data when

deleting or updating from a table and a table called "inserted" to keep the inserting

data when inserting data into a table. The "deleted" and "inserted" tables are.
structurally same as the table for which the trigger is defined. During the data

updating transaction, the old values are deleted first and the new values are added

later. Therefore, the data update transaction will first affect the "deleted" table, and

then the "inserted" table. The following is an example of delete trigger for deleting

data from a table called TITlEAUTHOR. In this example, cascade deletion is

16

defined for a TITLE table. When data are deleted from the TITLEAUTHOR table,

the data from the TITLE table will also deleted:

create trigger tD_titleauthor on TITLEAUTHOR

for delete as

begin

delete TITLE

from TITLE, deleted

where deleted.title_id = TITLE.title_id

delete TITLEAUTHOR

from TITlEAUTHOR, deleted

where deleted.title_id =TITLEAUTHOR.title id

end

If there is a delete trigger attached to the TITLE table, the delete trigger will also be

fired by the TITLEAUTHOR table data deleting transaction.

Oracle Database

Oracle database [Koch & Loney, 1997, Singh, leigh, Zafian, et ai, 1997, and

Urman, 1997] is another most widely used relational database. Oracle runs on

almost every kind of computer, from minicomputer, mainframe computer to pes,

Macintoshes. Oracle supports standard SOL and many other build-in functions.

One of the very powerful tools Oracle supports is the SOlPlUS. SQLPlUS is a

17

kind of interactive report writer. SOL can be used to get information from the Oracle

database and create polished reports with easy controls. SOL commands can also

be executed directly inside the SQLPLUS. Other Oracle features include objected

database, database security, database integrity, packages, stored procedures,

functions, triggers, etc.

Oracle supports the following twelve types of triggers:

BEFORE INSERT row

BEFORE INSERT statement

AFTER INSERT row

AFTER INSERT statement

BEFORE UPDATE row

BEFORE UPDATE statement

AFTER UPDATE row

AFTER UPDATE statement

BEFORE DELETE row

BEFORE DELETE statement

AFTER DELETE row

AFTER DELETE statement

Here, row-level triggers execute once for each row in a transaction.

Statement-level triggers execute once for each transaction. Within the trigger, "Old"

and "New" refer to the old and new values involved in the transaction. Triggers for

multiple insert, update, and delete commands on a table can be combined into a

18

single trigger, provided that they are all at the same level (row-level or statement

level). The following is an example of insert and update trigger for a table called

LEDGER [Koch &Loney, 1997]. When insert or update a row in LEDGER table, the

trigger will insert a row in a table called LEDGER_AUDIT table with "new" or "old"

data:

create trigger ledger_beCupd_ins_row

before insert or update of Amount on LEDGER

for each row

begin

IF INSERTING THEN

insert into LEDGER_AUDIT

values (:new.Action_date, :new.Action, :new.ltem, :new.Ouantity,

:new.QuantityType, :new.Rate, :new.Amount, :new.Person);

ELSE

insert into LEDGER_AUDIT

values (:old.Action_date, :old.Action, :new.ltem, :old.Quantity,

:old.OuantityType, :old.Rate, :old.Amount, :old.Person);

END IF

end

Data transactions created by the trigger of one table can ignite the trigger of

other tables. That is, if there is an insert trigger for LEDGER_AUDIT table, this

19

insert trigger will also be automatically fired when inserting data into the

lEDGER_AUDIT table.

Database Triggers

As we mentioned before, database trigger is a database procedure attached

to a database table that can be automatically fired when the delete, update, or insert

transactions in the table are completed or going to start. The trigger can be

executed before or after an insert, delete, or update transaction in the table. The

trigger action can be defined by the special trigger codes and many supported Sal

statements.

When triggers are defined for many tables in the database, one trigger

execution could started the executions of many other triggers. In this case, the

triggers should be designed very carefully to avoid a trigger loop [Silberschatz,

Korth, & Sudarshan, 1997]. That is, a trigger loop will be happened when table A

delete trigger is cascaded on table B and table B delete trigger is restricted on table

A. Deleting data from table A will trigger the data deleting from table B first.

Deleting data from table B will be depended on whether the data exist in table A.

In the other word, deleting data from table A depends on whether the data exist in

table A. In this case, the data will never be deleted from either table A or Table B.

The trigger loop could involve more than two tables.

Most of the commerdal databases support the triggers. The databases

include Sybase, Oracle, Microsoft Sal Server [Soloman, Woodbeck, Ramkins,

Garbus, & McEwand, 1996, and Wynkoop, 1997], etc.

20

CHAPTER IV

IMPROVE PERFORMANCE WITH REFERENTIAL INTEGRITY

Foreign Key Referential Integrity Maintaining Processes

The purpose of this study is to improve the database performance and

maintain the database referential integrity when many child tables defined by the

foreign keys refer to a parent table. To improve the database performance, we

need to find a more efficient way to perform the database referential integrity checks

during the data manipulations. The data manipulations include the data updating,

insertion, and deletion of both parent and child tables.

During the parent table data updating, the non-key part data updating will not

affect the referential integrity. The key part data updating requires the checks for

the existence in the child tables. The key part data updating is completed by

deleting the old data and then inserting the new data. The parent table updating

besomes the combinations of the parent table deletion and insertion. The parent

table deletion and insertion will be discussed next. In real application systems, the

key part data updating is not very often. Most of the 'key column(s) of the parent

tables Just contains a system generated number, which is physically meaningless.

We may simply restrict user from updating the parent table key part data.

The parent table data insertion will not affect the database referential

integration. No referential integrity is required for this case.

21

During the parent table data deletion, the deleting data will be checked for

the existence in the child tables. The cascade and restriction deletions will be

defined in the deleting process.

The referential integrity checks during the child table updating depend on

whether the foreign key parts are updated. If the foreign key parts are updated, the

new values must be existed in the parent table. If the new values are found in the

parent table, the child table updating transaction is committed. Otherwise, the

transaction will be roHback.

The child table data insertions also require the referential integrity checks.

The child table foreign key parts must be existed in the parent table. The referential

integrity process is completed with the help of the parent table index and is usually

very fast. However, when one parent table is referred by hundreds of child tables

and large amount of data will be inserted in these child tables, the database

performance could be the bottleneck of the system.

The child table data deletions will not affect the database referential integrity.

No database system check is required.

In summary, if we can perform the referenUal integrity checks for parent table
.

deletion and child table insertion and updating, we can replace the functionality of

the foreign keys. The next three sections of this chapter will analyze the client

server system and provide altemative methods to perfonn these referential integrity

checks in the client server system. The purpose of this thesis is to find a more

efficient way to perform these referential integrity checks.

22

Client Server Application System

Client server application system [Anderson, 1997, and Date, 1995] is a very

popular system currently used in industry. With the current Microsoft Window

technology and many other network companies' network technologies, the

application software developments become much faster and the development costs

are much lower. The functionality of the client server system is more diversified and

satisfies many application requirements. The client server system is replacing the

old and expensive main frame system in many companies.

The client server system consists of two main parts, i.e. client system and

server system. The client system consists of many users' PCs. The server system

consists of several high performance workstation computers. local Area Network

(lAN) is used to connect the client system PCs with the server system workstation

computers. Database systems and many business processing programs are loaded

in the server workstation computers and the application interlace programs are

loaded in the users' PCs. Data manipulations inside the database are completed

by the server workstation computers through the requests from the users' pes.

Many batch job programs are also stored in the server workstation computers and

the batch jobs can be scheduled to run 24 hours a day. Currently, the most popular

database systems include Oracle, Sybase, Microsoft Sal Server, Informix, etc.

The client application programs are usually the Microsoft window application

programs. The application programs are usually functioned as the interface

between the users and the database. The system users can retrieve, insert,

update, or delete data in the database resided in the server workstation computers

23

from the application program interface. Some SOL tool programs installed in the

clients' PCs could also manipulate the data in database using direct SOL codes.

DBA version SOL tool programs can be, used to manage the database in the server

workstation computers. Currently, the popular programming tools used to develop

the client application window interface programs are PowerBuilder, Visual Basic,

Visual C++, etc. Several SOL tool programs from different vendors can be used as

either a data manipulation tool or a database management or program development

tool. Rapid SOL and DBA version Rapid SOL are the examples of the Sal tool

programs.

Maintain Referential Integrity during Data Deletion

As we discussed before, the child table data deletion will not affect the

database referential integrity. The parent table data deletion will affect the

referential integrity. A deletion process defined by the foreign keys will perform

either cascade or restrict deletions or combinations of the both for all the child

tables. When without the foreign key definitions, a carefully designed delete trigger

can perform the same functionality during the parent table data deletion. The delete
.

trigger can perform the same process for all child tables with either cascade or

restrict deletions or combinations of both. An example of the parent table delete

trigger is illustrated in Chapter V.

When deleting data from the parent table referred by hundreds of child

tables, the cascade deletions will delete lots of data from the child tables. Thus, the

deletion process could be very slow. Most of the parent table data deletions will be

24

stopped by the restriction conditions and the data cannot be deleted from the

database. In real applications, if the parent table data are referred by many child

table data, these data are very valuable and deletions of these data are very rare.

Most of the parent table deletions are happened when the data are just inserted and

are found to be useless. The data deletion in this case is not very slow.

The parent tables usually contain some important business data. These data

are not changed very often. Extra cautions may be required to protect these data.

Very limited users who understand the business well should be granted with the

rights to modify these data. This security caution in the system can reduce the

chances of the data deletions and the performance impact caused by the data

deletions.

Maintain Referential Integrity during Data Insertion and Updating

To maintain the referential integrity during child table data insertion and

updating, we need to make sure that the foreign key part values of the child tables

must be exist in the parent table. If the foreign key part values of the child tables

are guaranteed to be correct, the foreign key referential integrity checks can be

skipped. To enter correct values to the foreign key parts of the child tables, we can

simply force the system users to select correct values when performing the child

table data insertion and updating.

In our client server system, the client application programs provide the

interfaces between the system users and the server database. The client

application programs are developed using standard Microsoft windows. The system

25

users need to enter some data through the windows in the application programs to

start the child table data insertion and updating process. In these windows, all the

parent table key part data can be preloaded in a dropdown list box before the

windows are opened. When the system users need to input or change the child

table foreign key part data in the windows, they can only select correct val,ues from

the dropdown list box. The window interface will reject any manually typed data to

avoid any human mistakes. Therefore, correct values will always be entered into the

child tables and the referential integrity checking is not necessary anymore. In the

other word, the data referential integrity is already checked before the data can be

saved into the database.

The difference between this referential checking system and the delete

trigger system is the data checking time. The delete trigger will check the data after

the data transaction requests are submitted to the database. The above system will

check the data before the data transaction requests are submitted to the database.

The second case creates a chance for the system users to bypass the application

window interface system and store wrong data in the child tables. The system

users can use some Sal tool programs to insert or update data into the child tables

using Sal codes. The data changes from the direct Sal codes cannot guarantee

the data referential integrity in the child tables. This problem can be resolved by

adding one more layer of security system. Two database passwords will be set for

each system user. One of them will be given to the user. The other password is

stored in a password table that is not visible to the user. The password known by

the user can only be used to log in the application interface system. After logging

26

in the application interface program, the user's password will be converted into the

other password, which can be used to change data in the database. This will force

the user to change the database data from the system application interface

programs.

In summary, the foreign key referential integrity checks for the database

system can be replaced by a carefuUy designed system. This system includes the

parent table delete triggers, the window interface designs of the client application

programs, and a database password swapping system. The bottleneck of the

database performance problems during the foreign key referential checks is

happened when one parent table is referred by hundreds of child tables and large

amount of data will be inserted into the child tables. With this improved system, the

referential integrity check are completed before inserting data into the child tables

and the database system will not waste any time on the referential integrity checks.

Maintain Referential Integrity for Denormalized Database

Another database minor performance problem is that too many table joins

are required when querying data from the database when too many child tables

refer to the parent tables. Table joins are very costly when the number of table joins

is over certain limit.

Database denormalization technique can be used to reduce the number of

the table joins. Denormalized database usually adds some redundant columns of

the data from the parent tables to some child tables. When querying data from both

the child and parent tables, the number of the table joins will be reduced. However,

the redundant columns could create data integrity problem. When the data in the

27

parent tables are modified, the data in the redundant columns of the child tables

need to be changed to reflect the correct values. Database trigger can be used to

update the data in the child tables. The application example in next chapter

illustrated the denormalized databases and the triggers to maintain the referential

integrity for the redundant columns.

28

CHAPTER V

APPLICATION EXAMPLE OF A LARGE CLIENT SERVER SYSTEM

Basic Information about the Client Server Application System

The application example of the client server system used in this study is a

Gas Information System (GIS) developed by an Oklahoma energy company

engaged in the natural gas transportation business. GIS is used to record the real

time natural gas volumes flowed into the company's pipeline from the natural gas

producers and the natural gas volumes flowed to its customers. GIS also stores lots

of other business critical information. GIS is a client/server system developed inside

the company using PowerBuilder and Sybase. PowerBuilder is used to develop the

client side application programs and Sybase is used as the relational database

engine to manage the data on the server computers. GIS is a large application

system with about 600 database tables and about 500 PC window program

interfaces.

Four parent tables in the system are referred by large numbers of the child

tables. The four parent tables are "contract", "busassoc" (business associate),

"pipeline", and "station" tables. To enforce the database referential integrity, foreign

keys need to be defined for the parent child relationship. For example, the contract

number (contracCnbr) is the key column of "contract" table and the "contracCnbr"

needs to defined as the foreign keys of all its child tables. The "contracCnbr" is

29

referred 117 times by 95 child tables. Table 1 lists all the tables and the column

names using contract_nbr as foreign keys.

Table 1 List of the tables and columns names using contracCnbr as foreign keys

Table Name Column Name
1 accruaLtrans contracCnbr
2 accruaLtrans_detail netting_k_nbr
3 accCcontracCinfo contracCnbr
4 acctg_trans contract_nbr
5 acctg_trans_detail netting_k_nbr
6 alerts contracCnbr
7 alerts_action contract nbr
8 allocated_volume downstream_k_nbr
9 allocated_volume upstream_k_nbr

10 amendment contracCnbr
11 area_contracCba contract_nbr
12 bid contracCnbr
13 bid k_price_k_nbr
14 bid trn_k_nbr
15 bid received contracCnbr-

16 bid_received k price_k_nbr
17 bid_received trn_k_nbr
18 billing contract nbr
19 contacCpu rpose_k contract_nbr
20 contacCpurpose k_station contract nbr
21 contract contracCnbr I

22 contracCba alias_contracCnbr
23 contracCba contracCnbr
24 contracCgroups contracCnbr
25 contracCmisc contracCnbr
26 contracCqty_pu r_sis contracCnbr
27 contracCqty tm gth contracCnbr
28 contracCrate_schd contracCnbr
29 contracCrcpCdlvry_pts contracCnbr
30 contracCreservation contracCnbr
31 contracCstation_ba contracCnbr
32 contracCstation_ba_cat contract_nbr
33 contract station ba status contract nbr

30

1
34 contracCstatus contracCnbr
35 crescenCpricing contracCnbr
36 deals contract_nbr
37 deals_order contract nbr
38 deals_order downstream_k_nbr
39 deals_order upstream_k_nbrcontract
40 deals_price_prov_adjs netting_contracCnbr
41 deals_pricing k_price_k_nbr
42 deals_trans downstream_k_nbr
43 deals_trans trn_knbr
44 deals_trans upstream_k_nbr
45 discrepancy contract_nbr
46 discrepancy downstream_k_nbr
47 discrepancy upstream_k_nbr
48 gathering_contract contracCnbr
49 invoice_component contracCnbr
50 k_area_dedication contracCnbr
51 k_sta_ba_carryover contracCnbr
52 k_sta_ba_reservation contracCnbr
53 measure contracCnbr
54 monthIy_quantity_info2 contracCnbr
55 monthly_quantity info2 related_contracCnbr
56 move_notification downstream_k_nbr
57 move_notification move_k_nbr
58 move_notification upstream_k_nbr
59 move_order_rollup downstream_k_nbr
60 move_order_rollup move_k_nbr
61 move_order_rollup upstream_k_nbr
62 mqi2 contracCnbr
63 mqi2 related_contracCnbr
64 pathleg trn_k_nbr
65 payee deck contract nbr
66 pmnCcomponent contracCnbr
67 price_crediCinfo contracCnbr
68 price_prov_adjs contracCnbr
69 price_prov_adjs netting_contracCnbr
70 price_prov_fixedvar contracCnbr
71 price_provisions contracCnbr
72 process_and_delivery compression_k
73 process_and delivery contracCnbr

31

75 process_and_delivery gather_k
76 process_and delivery process_k
77 process_and_delivery transport_k
78 process_and_delivery treated_k
79 prov_sta_ba_supertype contracCnbr
80 provision_rcpt dlvry contract_nbr
81 provision_rcpCdlvry_super contract_nbr
82 provision_station ba contract nbr
83 provision_stations contract_nbr
84 provision_stations_supertyp contract_nbr
85 purchase_contract contracCnbr
86 py_assign contracCnbr
87 I quality contract_nbr
88 regulatory contracCnbr
89 related_contracts contracCnbr
90 related contracts related_contract nbr I

91 release contracCnbr
92 sales_accruaLtrans contract_nbr
93 sales_accrual_trans- detail netting_k_nbr
94 sales_acctg_trans contracCnbr
95 sales_acctg_trans_detail netting_k_nbr
96 sales_contract contracCnbr
97 scheduled_nomination downstream_k_nbr
98 scheduled_nomination upstream_k_nbr
99 seller_doi from_contracCnbr

100 seller_doi to_contract_nbr
101 seller_err contracCnbr
102 seller_processing contract_nbr
103 seller_transfe rs contracCnbr
10~ seller_rep contracCnbr
105 susp_components contracCnbr
106 taggs k xref contracCnbr
107 taggs_k_xref downstream_k_nbr
108 taggs_k_xref upstream_k_nbr
109 temp_acctg_ksp_query contracCnbr
110 temp_flow_date_contract contracCnbr
111 temp mqi contracCnbr
112 temp_mqi related_contracCnbr
113 transport_contract contracCnbr
114 usecnotes contracCnbr

32

-

116 well_commitment contract nbr
117 well_dedications contract_nbr

The other three parent tables are "busassoc", "pipeline", and 'station" tables

and they are referred as the foreign keys 146,93, and 79 times respectively. About

100 peoples use the GIS client application programs and large amount of data need

to be inserted into the child tables dai'ly. If all these foreign keys are defined, the

system performance will be significantly slowed down and is not acceptable for the

business applications. Therefore, we need a solution to improve this system.

The performance improvement method discussed in last chapter is applied

here. Delete triggers of these four parent tables were developed to maintain the

data referential integrity during the parent table deletion. The system application

interfaces and the database security system were developed with the

considerations of the data referential integrity. The delete triggers, application

interfaces, and the database security system are discussed in next two sections.

Triggers For Maintaining Referential Integrity during Data Deletion

As we discussed before, a delete trigger is needed for each of the four tables

(contract, busassoc, pipeline, and station) which are the parent tables of many other

child tables. When designing the delete trigger, we need to understand the

business rules and identify which tables should be defined for cascade delete and

which tables should be defined for restrict delete.

To illustrate the designs of the delete trigger for "contract" table, we need to

analyze the child table information and their delete triggers. Table 2 lists the foreign

33

-

key column names, deletion definition (i.e. cascade or restrict deletion), and the

delete triggers of the child tables, Some of the child tables are marked by **** in

both cascade and restrict columns. A table marked by **** means that the table is

either a history or a temporary table. The data in the history tables will always be

saved for future references and will not be deleted regardless the data existence in

the parent table. The temporary tables are used to store some temporary data in

a process and the data in these tables will always be deleted after the process.

Both the history and temporary tables will not affect the design of the delete trigger.

bl d I"IIddf. fT bl 2 Ch'ld bla e I ta es In ormation use or eSlgnlng contract ta e e ete tngger

Table Name Column Name Cascade Restrict Child Trigger Ca~eade Child Trigger Reslrict

,

1 aecru al lrans contracl_nbr •••• •••• accruaUrans_detaii

,

I 2 accrual trans detail netting_k_nbr •••• ••••

3 acet conlmcl info cOnlract_nbr YES

4 acclLtrans contracl_nbr Y acctLtrans_derail,
accllLpayee trans

5 acctll trans detai I nettin&-k_nbr •••• •••• accl&-payee_trans_detail

6 alens conrracCnbr YES alerts_action

7 alerts action contract_nbr YES

8- allocaled volume downstream_k_nbr YES

9 allocated volume upstream_k_nbr YES

10 amendment contract_n br YES

11 area_contract ba contract_nbr YES

12 bid contract_nllr YES

13 bid k_price_k_nbr YES

I 14 bid tm_k_nbr YES

15 bid recei ved contract_nbr YES
,
,

16 bid_received k_pricc_k_nbr YES

34

-

17 bid received trn_k nbr YES

18 billin2 I contract_nbr

19 contact_purpose_k contract nllr YES

20 contacl_purpo e_k_ ta contract_nbr YES
tions

21 contract contract Itbr

22 contraccba alias contract nbr •••• •••• area contract bll

23 contract ba contract nbr YES area_contmct_ba

24 contract QIQU ps contraccnbr YES

25 contraccmisc contract nbf YES

26 contract_qty_pur_sis contraccnbf YES provision_ lillion _supertyp
e.

lorov Sla ba suoertvoe

27 COnlract_qty_1m~th contract nbf YES provision rcpt_dlvry_super

28 contracl_rate schd contract_nbr YES

29 contracl_rcpcd Ivry_pr contract_nbr YES provision_rcpt_dlvry

s

30 conlract_reservation contracl_nbr •••• •••• provision_stations_ upertyp
e.

I orovision rcot_dlvfY suoer

31 contract tation_ba contracUlbr YES k_sta_buJcservation.
-

k_stu_bll_carryover.
release.
contracl_station_ba_cal,
conlract station ba sllltus

32 contracc tatioo_ba_ca cootraccobr YES
(

33 contraccstalion_ba_SI contract_nbr YES
atus

34 contract_status contracl_nbr YES

35 crescent_oricing contract_nbr YES

36 deals contracl_nbr YES deals trans. deals_order

37 deals_order contraccnbr "'. •••• deals_pricing. ppa_transfer_seller,
deals_b _order_vol_detail, acct&-trans.
accl&-trans. sales_acct&-trans
sales_accl~ trans

38 deals order downstream_k_nbr YES

39 deals order upstream_k_nbr YES

35

-

40 deals_price_prov_adjs nettin~contra T nbr ••••

41 deals__ pricin£ k_price k_nbr •••• •••• deals_price_prov_adjs

42 deals_trans down tTeam_k_nbr deal _move_order_vol_deta
il

43 deals_trans tm_knbr Y deal -m v _order_v I_deta
il

44 deals_trans upstream_k_nbr YES deal _rnove_order_vol_deta
il

45 discrepancy contract_nbr YES

46 discrepancy downstream_k_nbr YES

47 discreDaJ1C\' upstream_k nbr YES

48 Il!:alherin£_ contract contract_nbr YES

49 invoice comDonent cOlltract_nbr •••• ••••

50 k area dedication contract nbr YES area_contract ba

51 k sta ba carryover contract_nbr YES

52 k sta ba reservation contract_nbr YES

53 measure contract_nbr YES provision_stations_supertyp
e,

Iprovision rcpt dlvry_ super

54 monthly_quantity_info contract_nbr YES
2

55 monthly_quantity_info related_contract_nbr YES
2

56 move notification ,downstream_k_nbr •••• "... notices

57 move_notification move_k_nbr •••• •••• notices

58 move notification upstream.Jc_nbr •••• •••• notices.
59 move order roll UD downstrearn_k_nbr •••• ••••

60 move order roliuD move_k_nbr •••• ••••

61 move_order rollup upstream_k_nbr •••• ••••

62 rnqi2 contracl_nbr •••• ••••

63 mqi2 related_contract_nbr •••• ••••

64 pathleg trn_k_nbr YES

65 payee deck contract_nbr YES

66 Ipmnt component contract_nbr •••• ••••

36

67 price_crediunfo contracl_nhr YES
I

68 price _prov adjs conlract nhr YES
I
I

69 price _prov adjs nenin&-contract_nbr YES

70 Iprice_prov fixedvar contract nhr YES

71 price_provisions contract_nbr YES c cenl"'pricing.
price_prov_adjs.
price_ rediUnfo.
price_prov_fixOOvar.
pro i ion_ I(Llions_upertyp
e.

, prov _stn ba suoenvoe

72 process_and delivery compression_k YES

73 I process and delivery contract_nbr YES

74 Iprocess and delivery dehydration_k YES

75 Iprocess. and delivery gather_k YES

76 Iprocess ,and delivery process_k YES

:

77 I process and deliverv Iransport_k YES

78 process and delivery treated_K YES

79 Iprov sta ba suoenvoe comract_n br YES provision_slation_ba contrac! qty pur sis

80 Iprovision_rem dlvrv cOnlraccnbr YES

81 provision_rcpt_dl vry_s coolracl_nbr YES provisionJcpl_dlvry Icontra I_qty_trn-ilh.

uper regulatory. measure.
contract_reservation

82 provision ,station ba contract_nbr YES

83 provision stations contrac,-nbr YES

84 provision_stations_sup conrrac,-nbr YES provision_stations regulatory .

. enype measure•
contracl_qly_pur_sls.
quality.
contracl...reservation

85 Ipurchase_conlract contract_nbr YES

86 py. assign contracl_nbr •••• ••••

87 quality contracl_nbr YES provision_stations_ upertyp
e

88 regulalory contract_nbr •••• •••• provision_stalions_supenYD
c
Drovision rcpt dlvry. super

89 re IatOO contracts :cOnlrac,-nbr YES

90 relared_conlracts related_contrac,-nbr YES

37

91. release conlract_nbr YES

92 sales. accrual_trans contract_nbr •••• •••• I sales_occruaUrans dct.ail

93 sales_accrual_tTans_de nettjn~k_nbr •••• ••••
rail

94 sales acctlt. trans Icontracl_nbr YES Isal.es. acclLtruns. dClai1

95 Isales_a ct~tran _deta nellin~k_nbr •••• ••••
il

96 sales_contract conlract_nbr YES

97 scheduled nomination doWnstreanl_k_l1 br YES

98 scheUliled nomination upslrearn_k_nbr YES

99 Iseller doi from_conlract nbr •••• ••••

100 seller doi to_contracl_nbr •••• ••••

101 seller_err contract_nbr •••• ••••

102 selle.r Drocessin!! conlract_nbr YES

103 seller transfers contract_llbr •••• ••• *

104 sellers_rep contract_nbr YES provision_ talions_ upertyp
e,

Iprov sra bl\....supertvoe

105 susp•.comooncnts contract_nbr YES

106 lal(l(S k xref contracl_nbr YES

107 tnj1;j1;S k xref downslrcarn_k_nbr YES

108 laggs k...xref upSlreanl_k_nbr YES

109 temD acct!! lesD auerv contracl_obr •••• ••••

110 temp_flow_date_conlr contracl_obr •••• ••••
act

111 temp. mqi contract_obr •••• ••••

112 lemo mai relared_cOOlraCel1hr •••• ••••

113 transoort contract contract_obr YES

114 user_ootes contract_obr YES

115 well_commiestatus contract_nbr YES well_commit_slatus_cod
e, deals_order

116 well_commitment contract_nbr YES weI130mmil_stalus. provision_slalions.
well dedications contract stalion ba

117 well dedications cootracl_nbr YES well commitment

38

When designing a delete trigger with cascade deletions, we need to

prevent the delete loop happened in the trigger. Based on the infonnation of Table

2, delete loop will not be happened for the delete trigger of the "contracf' table. The

delete trigger developed using Sybase database trigger codes is attached in

Appendix. The delete triggers for other three parent tables (Le., "busassoc",

"pipeline", "station") are also developed in GIS.

These four parent tables are. controlled by a group of users working in the

company administration section. This will add another layer of security for the data

in these four parent tables.

Maintaining Referential Integrity during Data Insertion and Updating

As we discussed before, only the child table data deletion and updating

require the referential integrity checks. These referential integrity checks are

replaced by GIS application pro9lram interfaces, which will enforce correct data to

be entered into the system. PowerBuilder's child data window technique was used

when.developing the application interfaces. PowerBuilder's child data windows will

load the data from the parent tables into the select-only dropdown list boxes. Then,

the child data window will be loaded into the application program window interfaces.

System users can only pick up the correct data from the dropdown list boxes and

use these data to start the database insert or update transactions for the child

tables. When the insertion and updating transactions performed at the database,

data integrity checks are not required anymore.

39

The GIS system has another layer of security system to stop the database

transactions started by the direct SOL codes. When using direct SOL codes to

manipulate the data in the production database, the users could enter bad data into

the system and break the system data referential integrity. The GIS system only

gives every system user the password used to enter the GIS client application

program. After logging in GIS, the user's password will be swapped into the real

database password by GIS system. The user's database password is stored in a

password table in an encrypted form and only company's DBA has right to access

this table.

With the help of the GIS application interfaces, data integrity~ of the child

tables is enforced without performing any database referential integrity checks.

Triggers For Denormalized Database

GIS database is denormalized to allow many duplicated data in some of the

child tables. The denormalized database can improve the database performance

when querying data for the company's daily reports. One of the examples is to

store. "station name" in many child tables of the "station" table. When querying gas

flow rate data and the name of a station, the station table is not required to join the

query because the redundant column of the station name is in the child tables.

However, the redundant data could create data referential problem. When the

station name is changed in the "station" table, the duplicated "station name"

columns in the child tables still have the old name. This problem can be resolved

by an update trigger attached with the "station" table. This update trigger will be

40

fired when the "station name" of the "station" table is modified and all the new

"station name" will be updated in all the redundant columns of the child tables. This

update trigger could run for a long period of time because large amounts of data in

the child tables need to be updated. It's better to run this process during off-peak

period to reduce the database performance impact on the system. Also, very

limited system users should be assigned with the update rights for the parent table

to prevent other chances of mistakes.

41

CHAPTER VI

SUMMARY AND CONCLUSIONS

Database performance in a large client server application system is affected

by many factors. One important character of the client server database system is

that some of the parent tables could be referred by hundreds of child tables through

the foreign keys. When large amounts of data need to be inserted in the child

tables, the database performance could be the system's bottleneck due to the

foreign key referential integrity checks. Another minor performance problem in this

system is that many table joins are required when querying data from the child

tables for production reports. Several energy companies reported these

performance problems in their natural gas transmission management systems.

This thesis discussed database performance improvement methods for the

large client server application system. The proposed methods provide more

efficient way of the referential integrity checks then those performed by foreign keys.

No data integrity check time is required during the child data insertions when

applying the proposed methods and data integrity can be ensured. The thesis also

discussed the applications of denormalization technique in this application system

to reduce the number of the database table joins when querying data. Table joins

are very expensive in database performance.

The database improvement methods discussed in the thesis were applied in

a Gas Information System (GIS) developed by Transok, Inc. The GIS is a large

client server application system for natural gas transmission business management

at Transok. The production results of GIS show positive responses for these

improvements in the system.

42

REFERENCES

1. Anderson, G. W., Client/Server Database Design With Sybase: A High

Performance and Fine-Tuning Guide, Osborne McGraw-Hili, Berkeley 1997

2. Brathwaite, K. S., Relation Databases - Concepts, Design, and Administration,

McGraw-Hili Companies, Inc., New York, 1991.

3. Cliffor, C., Mastering Sybase SOL Server 11, McGraw-Hili, a division of

McGraw-Hili Companies, Berkley, 1997

4. Codd, E. F., "Normalized Data Base Structure: A Brief Tutorial," ACM

SIGFIDET Workshop on Data Description. Access, and Control, San Diego,

California, November, 1971.

5. Codd. E. F., "Further Normalization of the Data Base relational Model," Data

Base Systems, Courant Computer Science Symposia Series 6, Prentice-Hall,

Englewood Cliffs, New Jersey, 1972.

6. Codd, E. F., "Recent Investigations into Relational Data Base Systems," Proc.

IFIP Congress, Stockholm, Sweden, 1974.

7. Codd, E. F., "Extending the Database Relation Model to Capture More

Meaning," ACM Transactions on Database Systems 4, No.4, December, 1979.

8. Codd, E. F., "A relational Model of Data for Large Shared Data Banks,"

Communications of the ACM 13, No.6, June 1970. Republished in

Communications of the ACM 26, No.1, January 1983.

43

9. Codd, E. F., "Domains, Keys, and Re,ferential Integrity in Relational

Databases," InfoDB3, No.1, Spring, 1988.

10. Date, C. J., "Referential Integrity,' Proc. 7th International Conference on Very

Large Databases, Cannes, France, September, 1981.

11. Date, C. J., "Refential Integrity and Foreign Keys. Part I: Basic Concepts;

Partll: Further Considerations," C. J. Dates, Relational Database Writings

1985-1989, Addison-Wesley Publishing Company, IReading, Mass, 1990.

12. Date, C. J., An Introduction to Database Systems, Sixth Edition, Addison

Wesly Publishing Compnay, Reading, MA, 1995

13. Fagin, R., "Multivalued Dependencies and a New Normal Form for Relational

Databases," ACM TOOS 2, No.3, September, 1977.

14. Fagin, R., "Normal Forms and Relational Database Operators," Proc. 1979

ACM SIGMOO International Conference on Management of Data, Boston,

Mass, May/June, 1979.

15. Garbus, J., Solomon, D., Tretter, B., and Rankins, R., Sybase SOL Server 11

DBA Survival Guide, Second Edition, Sams Publishing, Indianapolis, Indiana,

1996.

16. http://sunsite.informatik.rwth-aachen.de/dblp/db/conf/index.a.html

17 http://sunsite.informatik.rwth-aachen.de/dblp/db/journals/index.html

18. http://www-db.stanford.edu/-uilman/ullman-papers.html

19. http://www.idea-group.com/jdm.htm

20. http://www.dbmsmag.com

21. http://www.dbpd.com

44

f

22. Koch, G. and loney, K., ORACLES, the Complete Reference, Osborne

McGraw-Hili, Berkeley, 1997

23. logic Works, ErwinERX 2.5 for PowerBuilder User's manual, 1995.

24. Paulsell, K., Sybase SOL Server - Performance and Tuning Guide,

International Thomson Computer Press, Boston, MA, 1996

25. Ramakrishnan, R., Database Management Systems, McGraw-Hili Companies,

Inc., New York, 1997.

26. Roy, S. and Sugiyama, M., Sybase Performance Tuning, Prentice-Hall, Inc,

A Simon & Schuster Company, Upper Saddle River, New Jersey, 1996.

27. Silberschatz, A., Korth, H. F. and Sudarshan, S., Database System Concepts,

Third Edition, McGraw-Hili Companies, Inc., New York, 1997

28. Singh, L., leigh, K., Zafian, J., et ai, Oracle 7.3 Developer's Guide, Sams

Publishing, Indianapolis, Indiana, 1997.

29. Soloman, 0, Woodbeck, D., Ramkins, R., Garbus, J., McEwan, B., Microsoft

SQl Server 6 Unleashed, Sams Publishing, Indianapolis, Indiana, 1996.

30. Ullman, J. and Widom, J., A First Course in Database Systems, Prentice-Hall,

nc, A Simon & Schuster Company, Upper Saddle River, New Jersey, 1997.

31. Urman, S., Oracle8 PUSOL Programming, Osborne McGraw-Hili, Berkeley,

1997.

32. Wynkoop, S., Using Microsoft SQl Server 6.5, Second Edition, Que

Corporation, Indianapolis, Indiana, 1997.

45

APPENDIX

Delete Trigger on Contract table for Sybase database

create trigger tD_contract on contract for DELETE as

begin
declare @ermo int,
@errcnt int,
@errmsg varchar(255)

select @ermo =30001, @errcnt =0
select @errmsg = 'Cannot DELETE "contract" because the "contracCnbr"

data are used in the following place(s}: '

if exists (select * from deleted, acctg_trans
where acctg_trans.contracCnbr =deleted.contracCnbr)

begin
select @errcnt = @errcnt + 1
select @errmsg =@errmsg + '''acctg_trans.contract_nbr'', '

end

if exists (select * from deleted, allocated_volume
where allocated_volume.upstream_k_nbr = deleted.contracCnbr)

begin
select @errcnt = @errcnt + 1
select @errmsg = @errmsg + '"allocated_volume.upstream_k_nbr",

end

if exists (select * from deleted, allocated_volume
where allocated_volume.downstream_k_nbr =

de leted.contracCnbr)
begin

select @errcnt = @errcnt + 1
select @errmsg = @errmsg +

'"allocated_volume.downstream_k_nbr", '
end

46

.,.

if exists (select * from deleted, deals
where deals.contracCnbr =deleted.contracCnbr)

begin
select @errcnt = @errcnt + 1
select @errmsg = @errmsg + '''deals.contracCnbr'', ,

end

if exists (select * from deleted, deals_order
where deals_order.upstream_k_nbr =deleted.contracCnbr)

begin
select @errcnt =@errcnt + 1
select @errmsg =@errmsg + It'deals_order.upstream_k_nbr", '

end

if @errcnt = 5
goto error

if exists (select * from deleted, deals_order
where deals_order.downstream_k_nbr =deleted.contract_nbr)

begin
select @errcnt = @errcnt + 1
select @errmsg =@errmsg + It'deals_order.downstream_k_nbr", I

end

if @errcnt = 5
goto error

if exists (select * from deleted, deals_trans
where deals_trans.trn_knbr = deleted.contract_nbr)

begin
select @errcnt =@errcnt + 1
select @errmsg = @errmsg + '''deals_trans.trn_knbr'', I

end

if @errcnt =5
goto error

if exists (select * from deleted, deals_trans
where deals_trans.upstream_k_nbr = deleted.contracCnbr)

begin
select @errcnt = @errcnt + 1
select @errmsg = @errmsg + '"deals_trans.upstream_k_nbr", '

end

if @errcnt = 5
goto error

if exists (select * from deleted, deals_trans
where deals_trans.downstream_k_nbr = deleted.contracCnbr)

begin

47

select @errcnt = @errcnt + 1
select @errmsg = @errmsg + "'deals_trans.downstream_k_nbr", '

end

if @errcnt =5
goto error

if exists (select * from deleted, monthly_quantityjnf02
where monthly_quantity_inf02.contracCnbr = deleted.contracCnbr)

begin
select @errcnt =@errcnt + 1
select @errmsg = @errmsg +

'''monthly_quantity_inf02.contracCnbr", I

end

if @errcnt = 5
goto error

if exists (select * from deleted, monthly_quantity_inf02
where monthly_quantity_inf02.related_contract_nbr =

deleted.contracCnbr)
begin

select @errcnt =@errcnt + 1
select @errmsg = @errmsg +

"'month Iy_quantity_inf02. related_contracCnbr", '
end

if @errcnt =5
goto error

if exists (select * from deleted, pathleg
where pathleg.trn_k_nbr = deleted.contracCnbr)

begin
select @errcnt =@errcnt + 1
select @errmsg = @errmsg + '''pathleg.trn_k_nbr'', '

end

if @errcnt =5
goto error

if exists (select * from deleted, payee_deck
where payee_deck.contracCnbr =deleted.contracCnbr)

begin
select @errcnt = @errcnt + 1
select @errmsg = @errmsg + "'payee_deck.contracCnbr", '

end

if @errcnt = 5
goto error

if exists (select * from deleted, related_contracts

48

where related_contracts.related_contracCnbr =
deleted.contracCnbr)

begin
select @errcnt =@errcnt + 1
select @errmsg = @errmsg +

"'related_contracts.related_contracCnbr", I

end

if @errcnt = 5
goto error

if exists (select * from deleted, sales_acctg_trans
where sales_acctg_trans.contracCnbr = deleted.contracCnbr)

begin
select @errcnt =@errcnt + 1
select @errmsg = @errmsg + "'sales_acct9_trans.contract_nbr" I '

end

if @errcnt = 5
goto error

if exists (sellect * from deleted, scheduled_nomination
where scheduled_nomination.upstream_k_nbr =

deleted.contracCnbr)
begin

select @errcnt = @errcnt + 1
select @errmsg =@errmsg +

"'scheduled_nomination. upstream_k_nbr" I '

end

if @errcnt = 5
goto error

if exists (sel!ect * from deleted, scheduled_nomination
where scheduled_nomination.downstream_k_nbr =

delete,d.contracCnbr)
begin

select @errcnt = @errcnt + 1
select @errmsg = @errmsg +

"'scheduled_nomination.downstream_k_nbr", '
end

if @errcnt = 5
goto error

if exists (select * from deleted, seller_processing
where seller_processing.contracCnbr =deleted.contracCnbr)

begin
select @errcnt =@errcnt + 1
select @errmsg = @errmsg + "'seller_processing.contracCnbr", '

49

end

if @errent = 5
goto error

if exists (select * from deleted, susp_eomponents
where susp_components.contraeCnbr = deleted.contracCnbr)

begin
select @errent = @ errent + 1
select @errmsg = @errmsg + JIIsusp_components.contraeCnbr", '

end

if @errent =5
goto error

if exists (select * from deleted, taggs_k_xref
where taggs_k_xref.contract_nbr = deleted.contracCnbr)

begin
select @errcnt =@errent + 1
select @errmsg = @errmsg + '"taggs_k_xref.contracCnbr", '

end

jf @errcnt =5
goto error

if exists (select * from deleted, taggs_k_xref
where taggs_k_xref.upstream_k_nbr = deleted.contracCnbr)

begin
select @errcnt = @errcnt + 1
select @errmsg = @errmsg + '"taggs_k_xref.upstream_k_nbr", '

end

if @errcnt = 5
goto error

if exists (select * from deleted, taggs_k_xref
where taggs_k_xref.downstream_k_nbr =deleted.contracCnbr)

begin
select @errcnt = @errcnt + 1
select @errmsg = @errmsg + '"taggs_k_xref.downstream_k_nbr", I

end

if @errent > 0
goto error

delete acct_eontracCinfo
from accCeontracCinfo, deleted
where acct_contracCinfo.contraet nbr =deleted.contraeCnbr

delete alerts
from alerts, deleted

50

where alerts.contracCnbr = deleted.contracCnbr

delete alerts_action
from alerts_action. deleted
where alerts_action.contract_nbr = deleted.contracCnbr

delete amendment
from amendment, deleted
where amendment.contracCnbr =deleted.contracCnbr

delete area_contracCba
from area_contracCba, deleted
where area_contracCba.contract nbr =deleted.contracCnbr

delete bid
from bid, deleted
where bid.trn_k_nbr = deleted.contracCnbr

delete bid
from bid, deleted
where bid.contracCnbr =deleted.contracCnbr

delete bid
from bid, deleted
where bid.k_price_k_nbr = deleted.contracCnbr

delete bid_received
from bid_received, del'eted
where bid_received.trn k nbr = deleted.contracCnbr

delete bid_received
from bid_received, deleted
where bid_received.contract_nbr =deleted.contracCnbr

delete bid_received
from bid_received, deleted
where bid_received.k_price_k_nbr =deleted.contracCnbr

delete billing
from billing, deleted
where billing.contracCnbr =deleted.contract_nbr

delete contacCpurpose_k
from contacCpurpose_k, deleted
where contaccpurpose_k.contracCnbr =deleted.contracCnbr

51

delete contact_purpose_k_stations
from contacCpurpose_k_stations, deleted
where contacCpurpose_k_stations.contract_nbr =

deleted.contracCnbr

delete contracCba
from contract_ba, deleted
where contracCba.contracCnbr = deleted.contracCnbr

delete contracCgroups
from contracCgroups, deleted
where contract_groups.contracCnbr = deleted.contracCnbr

delete contracCmisc
from contracCmisc, deleted
where contracCmisc.contract_nbr = deleted.contracCnbr

delete contract_qty_pu r_sis
from contracCqty_pur_sis, deleted
where contracCqty_puCsls.contracCnbr =deleted.contracCnbr

delete contracCqty_tm_gth
from contracCqty_trn_gth, deleted
where contracCqty_tm_gth.contracCnbr = deleted.contracCnbr

delete contracCrate_schd
from contracCrate_schd, deleted
where contracCrate_schd.contracCnbr = deleted.contracCnbr

delete contract_rcpCdlvry_pts
from contracCrcpCdlvry_pts, deleted
where contract_rcpCdlvry_pts.contracCnbr = deleted.contracCnbr

delete contracCstation_ba_cat
from contract_station_ba_cat, deleted
where contracCstation_ba_cat.contract_nbr =deleted.contracCnbr

delete contracCstation_ba_status
from contracCstation_ba_status, deleted
where contracCstation_ba_status.contracCnbr =

deleted.contract_nbr

delete contracCstatus
from contract_status, deleted
where contracCstatus.contracCnbr =deleted.contracCnbr

delete crescenCpricing
from crescenCpricing, deleted

52

where crescent_pricing.contracCnbr =deleted.contracCnbr

delete discrepancy
from discrepancy, deleted
where discrepancy.contracCnbr =deleted.contraccnbr

delete discrepancy
from discrepancy, deleted
where discrepancy.upstream_k_nbr =deleted.contracCnbr

delete discrepancy
from discrepancy, deleted
where discrepancy.downstream_k_nbr =deleted.contracCnbr

delete gathering_contract
from gathering_contract, deleted
where gathering_contract.contract_nbr =deleted.contracCnbr

delete k_area_dedication
from k_area_dedication, deleted
where k_area_dedication.contracCnbr =deleted.contracCnbr

delete k_sta_ba_carryover
from k_sta_ba_carryover, deleted
where k_sta_ba_carryover.contracCnbr =deleted.contracCnbr

delete k_sta_ba_reservation
from k_sta_ba_reservation, deleted
where k_sta_ba_reservation.contracCnbr = deleted.contracCnbr

delete measure
from measure, deleted
where measure.contracCnbr =deleted.contract_nbr

delet.e price_crediCinfo
from price_crediCinfo, deleted
where price_credit_info.contracCnbr = deleted.contracCnbr

delete price_prov_adjs
from price_prov_adjs, deleted
where price_prov_adjs.contracCnbr =deleted.contracCnbr

delete price_prov_adjs
from price_prov_adjs, deleted
where price_prov_adjs. neUing_contracCnbr =deleted.contract_nbr

delete price_prov_fixedvar
from price_prov_fixedvar, deleted
where price_prov_fixedvar.contracCnbr = deleted.contracCnbr

53

delete price_provisions
from price_provisions, deleted
where price_provisions.contracCnbr =deleted.contracCnbr

delete process_and_delivery
from process_and_delivery, deleted
where process_and_delivery.gather_k =deleted.contracCnbr

delete process_and_delivery
irom process_and_delivery, deleted
where process_and_delivery.process_k =deleted.contracCnbr

delete process_and_delivery
from process_and_delivery, deleted
where process_and_delivery.treated_k =deleted.contracCnbr

delete process_and_delivery
from process_and_delivery, deleted
where process_and_delivery.transporCk =deleted.contracCnbr

delete process_and_delivery
from process_and_delivery, deleted
where process_and_delivery.contracCnbr =deleted.contract_nbr

delete process_and_delivery
from process_and_delivery, deleted
where process_and_delivery.compression_k =

deleted.contracCnbr

delete process_and_delivery
from process_and_delivery, deleted
where process_and_delivery.dehydration_k =deleted.contracCnbr

delete sellers_rep
from sellers_rep, deleted
where sellers_rep.contracCnbr =deleted.contracCnbr

delete prov_sta_ba_supertype
from prov_sta_ba_supertype, deleted
where prov_sta_ba_supertype.contract_nbr =deleted.contracCnbr

delete provision_rcpCdlvry
from provision_rcpCdlvry, deleted
where provision_rcpCdlvry.contract_nbr =deleted.contracCnbr

delete provision_rcpCdlvry_super
from provision_rcpCdlvry_super, deleted

54

where provision_rcpCdlvry_super.contract_nbr =
deleted .contract_nbr

delete provision_station_ba
from provision_station_ba, deleted
where provision_station_ba.contract_nbr = deleted.contract_nbr

delete contract_station_ba
from contracCstation_ba, deleted
where contract_station_ba.contracCnbr =deleted.contract_nbr

delete provision_stations
from provision_stati.ons, deleted
where provision_stations.contracCnbr = deleted.contract_nbr

delete provision_stations_supertype
from provision_stations_supertype, deleted
where provision_stations_supertype.contract_nbr =

deleted.contracCnbr

delete purchase_contract
from purchase_contract, deleted
where purchase_contract.contracCnbr =deleted.contracCnbr

delete quality
from quality, deleted
where quality.contracCnbr = deleted.contracCnbr

delete related_contracts
from related_contracts, deleted
where related_contracts.contract_nbr =deleted.contracCnbr

delete release
from release, deleted
where release.contract_nbr = deleted.contracCnbr

delete sales_contract
from sales_contract, deleted
where sales_contract.contracCnbr = deleted.contract nbr

delete transport_contract
from transport_contract, deleted
where transport_contract.contract_nbr = deleted.contracCnbr

delete user_notes
from usecnotes, deleted

55

where user_notes.contracCnbr =deleted.contracCnbr

delete well_commitment
from well_commitment, deleted
where well_commitment.contracCnbr =deleted.contract_nbr

delete well_commiCstatus
from well_com mit_status, deleted
where weILcommit_status.contracCnbr = deleted.contracCnbr

delete well_dedications
from well_dedications, deleted
where well_dedications.contracCnbr =deleted.contract nbr

return

error:
select @errmsg =substring(@errmsg, 1, char_length(@errmsg) - 2)
if @errcnt =5

select @errmsg = @errmsg + '... '

raiserror @errno @errmsg
rollback transaction

end

56

VITA

Hui Xu

Candidate for the Degree of

Master of Science

Thesis: IMPROVE DATABASE PERFORMANCE AND MAINTAIN
REFERENTIAL INTEGRITY FOR A LARGE CLIENT SERVER
APPLICATION SYSTEM

Major Field: Computer Science

Biographical:

Education: Graduated from Petroleum University, Shandong, China in
1982; received Bachelor of Science Degree in Petroleum Engineering.
Graduated from Research Institute of Petroleum Exploration &
Development, Beijing, China in 1985; received Master of Science
Degree in Petroleum Engineering. Graduated from Louisiana State
University, Baton Rouge, Louisiana in 1990; received Doctor of
Philosophy Degree in Petroleum Engineering. Completed the
requirements for the Master of Science degree with a major in
Computer Science at Oklahoma State University in July 1999.

Experience: Petroleum Engineer, worked at Louisiana State University,
Baton Rouge, Louisiana; Amoco Production Company, Tulsa,
Oklahoma; and Dahua Energy Corporation, Beijing, China from 1990
to 1993. Program Analyst, worked at MiraTech Consulting Group,
Inc., Tulsa, Oklahoma; Transok, Inc., Tulsa, Oklahoma; and EI Paso
Energy, Houston, Texas from 1993 to 1998. Senior Engineer,
employed by Schlumberger Austin Product Center, Austin, Texas from
1998 to present.

