AUTOMATIC CAMERA CALIBRATION
USING PID AND FUZZY LOGIC

CONTROL

By
BIN WANG
Bachelor of Science
Harbin Institute of Technology
Harbin, China

1988

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the degree of
MASTER OF SCIENCE
May, 1999

OKLAHOMA STATE UNIVERSITY

AUTOMATIC CAMERA CALIBRATION
USING PID AND FUZZY LOGIC

CONTROL

Thesis Approved:

Dean of the Graduate College

1

ACKNOWLEDGMENTS

I would like to express my sincere gratitude and appreciation to Dr. Lawrence L.
Hoberock, my thesis adviser, for his dedication, guidance, encouragement, and endless hours of
editing during the course of this work. Many thanks also go to Dr. Eduardo A. Misawa and Dr.
Ronald D. Delahoussaye for serving on my graduate committee. Their suggestions and support
were very helpful throughout this study.

My deepest thanks go to my wife Hongying Cui and my son Ringmeng Wang. They were
the light in my heart that guided me in this research work. Their love and warmth sustained me
through the long process of this research.

This work is dedicated to my parents, Liuxiang Li and Zhiyi Wang for their love,

encouragement over the years. Special thanks go to my sister, Jie Wang, for all kinds of support.

11

TABLE OF CONTENTS

Chapter Page

L. INTRODUCTION iiaoeecsmmasmaneumes s 6w dos see s ove i sesie 1

Problém Backemoimid s + a6 siisse smisiiaieseiaissEnes oes e e sl 1
Machine Vision Review. . i csivswesssvnisissvsemsmasiin e iase

II. INVESTIGATION OF CAMERA PERFORMANCE DYNAMICS....... 7

Machine Vision Hardware Set-Up . ecasosssnnrsessrenssssnenaseosvess 7

Camera and Vision System Terminology. .« cvvvveeeriiiennennraiinnnns 7

Minimum and Maximum Gray Levels s cevieiiiinerierinceniianananns 9

Camera Performance DynamicCs ...cecveuneienansasssnnnananssosssnas 10

P i S e e e R N A e N o T i 10

TORE D v 010w o im0 s S o) B 15

SUDIOEY o s esivs visvsvsdesssviv i sssuyesvesyive s o wssuuve 19

HI. PESCRIPTION OF CONTROLLERS . iz cusincive savasnnnsnin e ameiass 20

Thresholtt Cantrole s seissanime i< s o us 5 ave e s v e my a5 22

Gam and OFfSE COntrol . o v.v.s o0 /o i ainisininineimaimmnie s vis s wnine wimins o o700 24

Proportional Derivative-Integral Control «....coevvvevvaveiencnsaans 24

Fuzzy Logic 1 Controller.: ssisssssssasinsinssarssanssvaonasseas 27

Fuzzy Logic 2 Conoller . ivueesersnena siescnsssmemsesaemomesss 33

Fuzzy Integral Derivative Controllercicvieiiniieniinncaranns 40

Fuzzy Integral Controller o s e.x.ss0 5.0 0ne0nsmnssssssnmsasessessnsss 47

SUMMAYY icivo o6 v viievs o bessvasie e msiasidve i 8 o besevseme 56

IV. EXPERIMENTAL RESULTS AND COMPARISONSccicveainnn. 57

Testing Methods « s e uvesaonseismsmssmesmsseeseniesss e svemssn 58

Transit Response Testing Procedures s e casssssssisnssssssossssssses 58

Steady State Response Testing Procedure e o e csoesovcscecscsseconcasse 60

Testing ResulfS s s svevinsnseivissonenosnssissnosenessssssiensansae 61

Fuzzy Logic 1. CONOLEr « ssvvvnunnwavsnsonamensvenaeanseeservs 61

Fuzzy Lopic 2 Coptrollet s s wevisnvnsasvveisivisviisnos i esaiess 67

Fuzzy Integral Controller:cosivessisnsssisssisennsnosanndnsssss 73

Fuzzy Integral Derivative Controllercoveeeniieneencennsnnees 79

Proportional Integral Derivative Controller .o vvveeeeerinaeacnnannnn 85

SUTITERTY 00 0561011000 500000 0500000 0 0 0 4 91

v

V. CONCLUSIONS AND RECOMMENDATIONS ...iiiiiirivnranannas 95

ConcliSions & v s mseasasheiasvaiiasme s s smesnesesseives vasses 95
RECOTTIENANTONE & om0 50500 im0 8 RO w0 97
REFERENCES 45000 wvwracesonseeve s mmsms s s s s e e v e e e s s aeesis 98
APPENDIRES i visnuncnsnae s sseiass vy neni sions deniss asoev e 101
APPENDIX A - COMPOSITE PLOTS 5o sinssaansnosnivnssssuoieasis 102
APPENDIX B - SOURCE CODE IN VIVE: wsvsssniessssninsssesesois 123
Fuzzy Logicl Controller s ci snivsvssmsmsmsssvavnssnesoes svmwiansae 124

Fizzy Logic 2 Coniraller « su s sn sumasvawsnmanee siomne soareaes o ses 141

Puzzy Integral Controller < e« sc vosssscsnsssssonensstonesmnnssonaesss 158

Fuzzy Integral Derivative Controller. . ..c.cccvucrusciasecsascsncansess 179
Proportional Integral Derivative Controller .+ v oo vvvveieriravanienerianns 191
APPENDIX C.- SAMPLE DATA vvco e wonismesamasssasieesiins isewssies 201
Transit Response Fest < oo iveiaanvemnesiissensimees e e caes 202

Steady State Response Test ... vaivoace sanvasmisnsossuisvsesssssassas 206

LIST OF TABLES

Table Page
2.1 Initial Value of Camera Control Parameters. .« o vcveerernnsesenransnnnes 12
22 Initial Value of Camera Control Parameters. cccvovveeeranienaarenanenen 15
3.1 Gain Values for Camera Gain Control. v s e e vvvevvencnvsnvransannrannas 27
3.2 Gain Values Tor Offset Coptrols o s v e inmis vassve svassasiaysvesiaye e 27
33 Linguistic Rules of 1* Layer of FL1 Controller . .« e veveeesesassennansas 30
34 Linguistic Rules of 2* Layer of FL1 Controller. .« cveveeverenesrnnennnss 30
3.5 (a) Linguistic Rules of 1" Layer of FL2 Controllers « e vevvvsssaseeeencsssans 36
3.5 (b) Linguistic Rules of 2™ Layer of FL2 Controller. .« « e e vvvsvsnsnsrassaanes 37
3.5 (c) Linguistic Rules of 3 Layer of FL2 Controller. .« snneansvessasseveonsis 38
3.6 Gain'Values forithe FID Controller: « o.c siv.60. 6500809 58 68 48, 510 68 0800009 w0 43
3.7 (a) Linguistic Rules of 1* Layer of Gain FID Controlleruveeeueearennans 44
3.7 (b) Linguistic Rules of 2™ Layer of Gain FID Controller.oveeeeaeransss 44
3.7 (c) Linguistic Rules of 3™ Layer of Gain FID Controllerueuesveraanassss A4
3.8 (a) Linguistic Rules of 1* Layer of Offset FID Controller...ovvvevieensinesas 45
3.8 (b) Linguistic Rules of 2™ Layer of Offset FID Controller. « v evueerseneenannss 45
3.8 (c) Linguistic Rules of g Layer of Offset FID Controller . s e v cecvcasacniaaae 45
3.9 Gain Values for the F(E+D)+I Controller . c e evvvvvvearensacriannansnsns 49
3.10 (a) Linguistic Rules of 1* Layer of Gain F(E+D)+I Controller. .. vevvvvuusvnnnn 51
3.10 (b) Linguistic Rules of 2™ Layer of Gain F(E+D)+I Controllercevevsuenass 52
3.10 (c) Linguistic Rules of % ihe Layer of Gain F(E+D)+I Controller.cccvvuvvaann 52

vi

3.11 (a) Linguistic Rules of 1* Layer of Offset F(E+D)+I Controller. e

3.11 (b)Linguistic Rules of gad Layer of Offset F(E+D)+I Controller ...ocvevvuvann.

3.11 (c) Linguistic Rules of 3" Layer of Offset F(E+D)+I Controller. .. eeveevennn.. .
4.1 I, for Transit Response Test e cacosscancossscsscssassossasasnes syssas
42 1. for Steady State Response Tesk v ooosaensasssssssvonsonencnorees v
43 Peak Control Variable Changes for Transit Response Test v vvevevivnennnans
44 Peak Control Variable Changes for Steady State Response Test Wi s @

vil

53

54

54

91

91

92

92

Figure
1.1
2.1
22
23
2.4
25
2.6
3.1
3.2
33 (a)
3.3 (b)
34
35
3.6

3.7
3.8
4.1(a)
4.1(b)
4.2(a)

4.2(b)

LIST OF FIGURES

Page
Machine Vision Systei Set-UP «.vswissosssvnsssnnononensssiiassasie 2
Gray Level Histogram of A Vision Targetveveeversesscnsnassnsas 9
Vision Target of Varying Grayscale .ooovvereeneaiinnesceasiennaransss 11
Minimum Gray Level Change Without Control . «..cvviiiieeneanienaaas 13
Maximum Gray Level Change Without Control. .« vvvvevveriravennansans 14

Minimum Gray Level Change With Ambient Lighting Disturbances, No Control 17

Maximum Gray Level Change With Ambient Lighting Disturbances, No Control 18

Block Diagram for PID Control System....cveetreeccniensansecasnnens 24
Block Diagram for Fuzzy Logic 1 Control System. «veveeeesirinnacssnsaes 28
Pozzy Set for the First LAVET v vasusnmiivsseiesviessamen aaedvee 31
Fuzzy Set forthe Secontd Layer . csvisvsiiisimsivun svivenes e vewas 32
Block Diagram for Fuzzy Logic 2 Control System. . ..ceveerirerenernnnas 34
Fuzzy Set for All Three Layers of FL2Ccaveerecscccacvasssacsnsans 39
Block Diagram for FID Control SysteM ececssssseccacssssscssssosasnsse 41
Block Diagram for the F(E+D)+] Control System ..eeeuiveieneecansnnnnas 48
Fuzzy Setfor DE ,;yand DE | | 1ccuereriiniiniiiiiienaninesannans 55
FL1C Minimum Gray Level Transit Response «vcceveiieiiaineiiniianaes 62
FL1C Maximum Gray Level Transit ReSponse. « cvevevrrieeenrransansans 62
FL1C Gain Transit Response. . .cvsoessaiinasionussisssmvnsisannessnios 63
FLIC Offset Transit Response. <« iv on s essdsnanssosionsasas s en e wam 63

viii

42(c) FLIC Threshold Transit RESPONSE. o « oicvnomonewunssmeseneonn e sy 63

4.3(a) FLIC Minimum Gray Level Steady State Response «cvveevesssssiencnaans 65
4.3(b) FLIC Maximum Gray Level Steady State ReSponse. coesveesessesrensanens 65
44(a) FLIC Gain Steady State ReSponse. ccsessescasisnsasssassnsssssasssiss 66
4.4(b) FLI1C Offset Steady State RESPONSE: vsvovnoerssrsosonnsassessenreesses 66
4.4(c) FLIC Offset Steady State ReSpONSe. s v vvaeereestrestarssssanssasasanns 66
4.5(a) FL2C Minimum Gray Level Transit ReSponse . e.veveevreeransevraseenas 68
4.5(b) FL2C Maximum Gray Level Transit Response. e o e ceviveieaertinnsnreanns 68
6 FL2C Gl TS Responit: « oswes oo avass s se i@ v syiesaiens 69
4:6(b) FL2C Offsel Transit RESPOnEEs v v s vsnsismmsvsniesuieisvisss 69
4.6(c) FL2C Threshold Transit RESPONEE. « vie cvonsnmnvanssvesaanonesssesssas 69
4.7(a) FL2C Minimum Gray Level Steady State Responsevvvverenrreranens 71
4.7(b) FL2C Maximum Gray Level Steady State Response. «cvevevieeranssasanns 71
4.8(a) FL2C Gain Steady State ReSpOnse. s csveessssssssscsnssssssssssssssses T2
4.8(b) FL2C Offset Steady State RESPONSE v v v v vvvvreseanssasscncansnassnsnes 72
4.8(c) FL2C Offset Steady State ReSpONSe. cscessvsossne ssssssrssssnssnsansss 72
49(a) F(E+D)+I Minimum Gray Level Transit ReSponse. . . cccevvvvvrinaasnanss 74
4.9(b) F(E+D)+I Maximum Gray Level Transit Response. .« v vveseenreernnanenns 74
4.10(a) F(E+D)+I Gain Transit Response. « v eecvaseasenesantiancnnsocsanananns 75
4.10(b) F(E+D)+1 Offset Transit ReSpOnse. s ccssssscsosassssessssnssessssssns 75
4.10(c) F(E+D)+I Threshold Transit Response «cvcueeevetvestanseastnnsassnsaasns 75
4.11(a) F(E+D)+I Minimum Gray Level Steady State Responsecvveuienianne. 77
4.11(b) F(E+D)+I Maximum Gray Level Steady State Response.......coceveenannsn 77
4.12(a) F(E+D)+I Gain Steady State ReSponse. c s ceveerentsanssesasssasscnsnass 78
4.12(b) F(E+D)+I Offset Steady State Response. c v eevvereecrensrasirenasssasans 78

1X

4.12(c) F(E+D)+} Offset Steady State RESPOBEe: .« sovivon s viis ceivnsinviowns sies sawis 78
4.13(a) FID Minimum Gray Level Transit ReSponse. v vvevveeesssssoesensansanns 80
4.13(b) FID Maximum Gray Level Transit Response. . c.covevevstencassenaannass 80
4.14(a) FID Gain Transit ReSPONSe. « s:sssevossinssssiansisonansssonsosnssensss 81
4.14(b) FID Offset Transit ReSPONSe. « v v veveriresrrnressescrssssssssssanansns 81
4340 FID Ehvmshold Transit ReSpONSE, « v.xwomucn s wmnmm oo sm v massam o8 81
4.15(a) FID Minimum Gray Level Steady State Response .« vcevvivereeianvananns 83
4.15(b) FID Maximum Gray Level Steady State Response. v vcevveeeeineiancnneas 83
4.16(a) FID Gain Steady State ReSpOnSe. s s cveveavererienrersansonsssscsnanans 84
4.16(b) FID Offset Steady State Response. s sueiussassivdaivvasssonsidsseeaes 84
4.16(c) FID Offset Steady State Response. «evevvseeenenresannnans e 84
4.17(a) PID Minimum Gray Level Transit RESpONSE . cvvvveenrenvasssssanananens 86
4.17(b) PID Maximum Gray Level Transit Response «...c.vuvivienriencnsanannss 86
& 180aY. PILY Grin: Transit RESPONSE: = opnvbsmsinmionssosenees inesesssssssmes s 87
4.15(b) PID Offset Transit Response: woewene v swiionesobosowse s essoee s 87
4.18(c) PID Threshold Transit RESPONse « vv e v i enimwenwewinas su s waeseeess 87
4.19(a) PID Minimum Gray Level Steady State Response. .« «.vveveenerrnanennans 89
4.19(b) PID Maximum Gray Level Steady State Response ...c.ovveviirienianianans 89
4.20(a) PID Gain: Steady State RESPONSE «.u o o0 ss vomasnsnesenonsvasnesseene s 90
4.20(b) PID Offset Steady State RESPONSEssovssscsssnsssssssnssosnoinsssnsos 90
4.20(c) PID Offset Steady State Response s csossverssssinsioscassnisvssssssss 90
A.l1 Transit Response-Minimum Gray Level (camera 1)vvvevenennnnnn. 103
A2 Transit Response-Minimum Gray Level (camera2)covvveneneanirnnans 104
A3 Transit Response-Maximum Gray Level (camera 1)cceiinienennnanns 105
A.4 Transit Response-Maximum Gray Level (camera2)......ceveevnnrnneanss 106

AS
A6
A
A8
A9
A.10
A.ll
A.l12
A.13
A.14
A.15
A.16
A.17
A.18
A.19

A.20

Transit Response-Gai (Camers 1) « « v svssunvineans s v sewnes s sees 107
Transit Response-Gain (CAMEIN 2) o o.o:e sn s:aien wainmmnin sin v s e v se s mmms 108
Transit Response-Offset (camera 1) . ovieeeerereiasaseasiosncacesosanss 109
Transit Response-Offset (camera 2 voavsvnnasisiaeoinsdasssssesisesse 110
Transit Response-Threshold (camera 1), ..o veiinieniinnenenaniannnss 111
Transit Response-Threshold (camera 2). e v vevveeerienrnnnecnsnsrnnanss 112
Steady State Response-Minimum Gray Level (camera 1) ...ccceeiiannenanes 113
Steady State Response-Minimum Gray Level (camera2).......coveinnnnnns 114
Steady State Response-Maximum Gray Level (camera 1) .veeveevinsnanans 115
Steady State Response-Maximum Gray Level (camera2)...cceeevinnvanans 116
Steady State Response-Gain (camera 1). cccsessasssssesssssasascassancans 117
Steady State Response-Gain (Camera 2).eeeseeesssesvassanssssasssasans 118
Steady State Response-Offset (camera 1)e cveuceeinrienenirentencancanns 119
Steady State Response-Offset (Camera2)....eeeerarveranssessnnsasannns 120
Steady State Response-Threshold (camera 1)....ccveeiiiicinaniieninnans 121
Steady State Response-Threshold (camera2). ...ccveeveervesencanssasass 122
X1

CHAPTERI
INTRUCTION

Problem Background

Over the past 20 years, machine vision systems have evolved rapidly, with performance
increasing and cost decreasing. This has led to significant use of machine vision systems in the
food processing industry, automotive industry, and in numerous other manufacturing industries.
Machine vision systems have become increasingly powerful, especially when they are combined
with robotic and automation systems. With the rapidly developing uses of machine vision
systems, it becomes increasingly important to implement continuous automatic camera
calibration. Such calibration is especially important in precision measurements by vision systems.
An example of this is described by Johnson (1993) and Chen (1996) in the automatic inspection
and handling of dishes for a large scale commercial dish washing operation. In this problem,
individual dish pieces are to be automatically loaded into a “flight type” dish-belt moving into a
dishwasher. After washing, a vision system is used to identify and inspect individual dish pieces
at a rate of 2 seconds or less per dish, sending appropriate handling signals to a robot for
unloading and placement of the dishes.

Johnson (1993), Chen (1996), and Feng (1992) made use of an experimental set-up to
investigate this process, illustrated in Figure 1.1. The important elements in this figure are:

1. ADEPT ONE robot

2. Three CCD (charge coupled device) cameras

3. Three standard targets

4. Central control unit

5. Vision monitor and programming terminal

Cleaning dish e
1 . .
Stacking table /l-\ Dishracks Optical detector
\'/ Vision Calibration Target
(e
- S
* Camera3
Camera2 |
CONVEYOR BELT
T

Encoder

Central Control Unit

Conveyor tracking

Robot control

Digital /O

Vision control

System processor

Vision monitor

Figure 1.1

Machine Vision System Set-Up
(Adapted From Chen(1996))

6. Conveyor and encoder

7. Dish rack

8. Dish stacking table

9. Optical position detectors

10. Fluorescent lighting tubes
When the loaded dish rack moves into the field of view (FOV) of the cameras, the optical
position detectors near the conveyor signal the central control unit (CCU) of the presence of dish
pieces, and the cameras are then triggered upon command from the CCU. After an image of a
dish is taken and sent to CCU, the CCU analyzes the image data and stores relevant information
(such as dish type, dish cleanliness, and dish location on the moving conveyor) into a database.
Later, when the dishes enter the robot workspace, relevant information is retrieved and sent to
robot, such that the robot will perform “pick” and “place” functions on each individual dish,
accordingly.

Normally commercial dish washing machines will run 2 or 3 shifts each day and handle
thousands of different dishes. During the process, a machine vision system should maintain high
accuracy (recognize each dish correctly, inspect properly for cleanliness, and locate the position
precisely) over time. In the proposed dish handling automation system, the CCD camera should
continually maintain calibration while securing simultaneously images of numerous (up to 5) dish
pieces during shifts lasting up to 5 hours or more. This would allow different dishes to be
correctly identified, inspected, and located, such that the ADEPT ONE robot could pick up each
dish from its location on conveyor and place it in the correct stacking location. In order to do this,
the camera must maintain calibration. However, as will be seen in later chapters, due to changing
camera dynamic characteristics, ambient light changes, power supply variations and other
environment factors, the calibration of the camera changes, as measured by variations in two
quantities, called “minimum gray level” and *“‘maximum gray level”. A standard vision calibration

target in the camera FOV is used to identify these changes. Such changes, if not corrected, yield

erroneous results in dish identification and inspection. Accordingly, in the work herein, we
investigate means to eliminate or substantially reduce these variations. We will analyze the
dynamics of the CCD camera and design controllers to control the camera’s parameters of “gain”,

“offset”, and “threshold”.

Machine Vision Review

According to Freeman (1989), “Machine vision - for guidance, for inspection, for
surveillance, for collision avoidance, and for thousands of materials-handling applications — is
likely to be as commonplace eventually as the electric light bulb is today”. Jain, et al (1995)
stated, “Machine vision is concerned with achieving electronically human visual perception. It
involves image sensing, image processing, pattern recognition and image understanding. A
machine vision system recovers useful information about a scene from its two-dimensional
projections. The good machine vision system is to create a model of the real world from images”.
These are two recent comments on machine vision, research on which has been in progress for
over 40 years. There are several closely related fields that are very important in today’s machine
vision work. They are: image processing, computer graphics, pattern recognition, artificial
intelligence, neural networks and psychophysics (Jain et al, 1995). In early work, due to the high
cost of machine vision systems and relatively poor performance, applications were limited to the
laboratory. For the past 20 years, with the rapid development of the computer industry, the cost of
both hardware and software has decreased, and machine vision functionality, availability, and
quality has significantly improved. High performance machine vision systems with acceptable
price are available today in the market place and are increasingly in use in industry.

Machine vision innovation has been especially active for the past 10 years. In the
manufacturing industry, machine vision is applied to tube inspection (Mohtadi et al, 1992), lamp
filament alignment process (Joshi & Sanderson, 1996), screw socket recognition and parts

disassembly (Gergenbac et al, 1996), and parts assembly (Nelson et al, 1996). In the food process

industry, machine vision has been applied to food piece recognition for an automatic handling
system (Li & Lee, 1996). In the chemical and energy industries, machine vision systems are used
to inspect hazardous waste drums (Byler, et al 1995).

With the widespread use of machine vision systems in industries, the need for automatic,
continuous camera calibration to maintain camera stability and robustness against disturbances
over time becomes especially important. In many applications, it becomes the crucial issue, and
determines the overall performance of the vision system. Tappan, et al (1987) identified the
camera stability problem when they experimented with a digital image analysis system. Brainard,
et al (1989) realized that variation of ambient illumination will cause serious problems in vision
system, and they investigated surface reflectance functions to overcome the problem of
maintaining a constant image. In 1994, investigators at University of California Irvine developed
a model for a CCD camera, and tried to model different sources of variation in real images
obtained from video cameras (Healey, et al, 1994). Chang, et al (1996) realized that gray level
shift will cause serious problem in color imaging and developed a method using a standard color
chart to overcome the stability problem. However none of these investigations produced a robust
method to address the problem at hand. Johnson (1993) investigated machine vision for use in an
automated dish handling system for commercial dishwashing. This employed machine vision to
sort and inspect individual dishes at a rate of 2 seconds per dish. Following this work, Chen
(1996) employed neural networks with a vision system for silverware and dish recognition and
inspection. Both of these investigations identified the need for continual and automatic camera
calibration, the subject of the work herein. While Chen and Johnson each proposed feedback
controllers to stabilize camera performance for the dish handling problem, their controllers were
not sufficiently robust, non were they optimal in any sense.

In the following chapters, we investigate several new control algorithms to overcome this
camera stability problem. In chapter 2, we investigate the performance dynamics of cameras used

in the experimental set-up in figure 1.1. In chapter 3, several controllers developed for this

machine vision application are discussed thoroughly. In chapter 4, two extensive experiments are
presented. One is a short transit response experiment, which is started at prescribed initial
conditions. The other is a longer-term response experiment with 2 different levels of disturbance
of ambient lighting applied to the camera FOV. The Integral Square Error is calculated on line
during each experiment and used as a performance measure to compare controllers. In Chapter 5,

the experiment results are discussed, and conclusion drawn.

CHAPTER 11
INVESTIGATION OF CAMERA PERFORMANCE DYNAMICS
Machine Vision Hardware Set-Up
In this chapter we investigate the performance dynamics of the cameras in the
experimental set-up described in Chapter 1. The cameras are interfaced with an Adept
Technologies AGS vision system. The physical equipment includes:

e Controller equipped with special vision processor boards and a camera multiplexer.

e 2 Pulnix cameras, model TM-540, serial numbers 015207, and 014969 corresponding
to Camera 1 and 2 respectively.

e] Light box with two (number) inch long fluorescence lighting tubes on each side of
the box, oriented parallel with the dishrack, and providing indirect lighting for
objects within the camera FOV.

¢ Graphics terminal that includes: a high-resolution color monitor, standard keyboard,

and 3-button mouse.

The Adept AGS vision system controller contains the logic boards, system and vision
processor boards, I/0 boards, multiplexer, and user-ready software. This hardware system
provides an environment for Adept’s V+ Operating System and Language that allows user to
direct and monitor vision operations. This hardware and software combination is multitasking and
contains everything necessary to control up to 8 physical cameras.

Camera and Vision System Terminology
We first define fundamental vision and camera terminology, including pixel, gray level,

threshold, offset, gain, edge-strength, binary processing, and grayscale processing.

A “Pixel” is the basic unit of a vision image and is the smallest unit of information a
vision system can return to the user. The number of pixels the system can process determines the
system’s resolution and affects the computer processing time needed to analyze an image. For
each pixel there is an integer value of a shade of gray, called the “Gray Level”, ranging from 0 to
127:

“Threshold” is an integer parameter ranging from 0 to 127 that sets the gray level value at
which the vision software interprets a pixel as either black or white in binary operations. For gray
levels equal to or larger than a set threshold value, the pixel is judged white, and less than this
level it is judged black.

The parameter “Gain” is used to multiply the gray level of a pixel, and there are 256
integer values of gain used in the AGS vision system. When the gain is set for an incoming video
signal, the histogram of scale pixel intensities will be expanded or contracted in proportion to the
value of the Gain.

“Edge Strength” is a parameter used for edge recognition in grayscale processing. If the
variation in pixel intensity across a region exceeds this parameter, an edge is recognized.

Another parameter called “Offset” can be used together with the Gain to increase the
range of grayscale intensities that the system recognizes in objects. A value for Offset is added to
the actual pixel grayscale value. When the offset is set for an incoming video signal, the video
histogram will be shifted left or right. The Offset has integer values ranging from 0 to 255.

An image of a FOV (Field Of View) returned by the camera can be thought of as a large
matrix of pixels, with each pixel in the matrix having a grayscale value. When the software
processes image data in the binary mode, each value in the matrix is compared with the value of
the threshold parameter. All the pixels with a gray level value equal to or larger than the threshold
are considered white, and all pixels with a gray level below this value are considered black. When
the software processes the data in the grayscale mode, it looks at a three-by-three section of pixels

and compares the difference in gray level values found in the neighboring pixels to the value of

Edge Strength. If the difference found exceeds the value set for Edge Strength, the system
considers the three-by-three area to be part of an edge.

There are two different image processing methods, namely binary processing and
grayscale processing. Binary processing uses only two states, black and white. However,
grayscale processing uses data based on 128 states in the range 0-127 for each pixel, and also has
to calculate edges based on 3 by 3 sections of pixels. Accordingly, binary processing requires
much less computational time. On the other hand, since binary processing recognizes pixels only
as black or white, objects and background should be highly contrasted for high fidelity and best
results. In many cases, it is difficult for binary processing to recognize interior features of objects.

Minimum and Maximum Gray Levels

Minimum and maximum values of gray levels produced from a camera image are
important quantities for vision system. After an image of the FOV is returned by the camera, the
Adept AGS system processes the image data using a set of parameter settings, such as Gain,
Offset, and Threshold. Each pixel is assigned a value of gray level ranging from 0 - 127, and
sorted into a certain cell of a 128-element array, which is associated with this gray level. Figure

2.1 illustrates a histogram of pixel counts for an image.

A Frequencies of Occurrence

400
300
200
100_]|
Gray Level
>
0 127

Figure 2.1

Gray Level Histogram of A Vision Target

Observe that there is a lower and an upper bound for the values of gray level found. The lower

bound is called “The minimum gray level” designated X while the upper bound is called

min *
“The maximum gray level”, designated X, . The range between these bounds is an indication
of the brightness variation over the entire object, such that the bounds are important indications of
object brightness range. If while viewing an object over an extended period of time, the camera
exhibits performance variations, or if lighting fluctuates or drifts, the minimum and maximum
gray levels of this object will shift, such that differing conclusions regarding characteristics of the
object can be drawn. Accordingly, monitoring minimum and maximum gray level variations
while viewing a standard and constant “Target” is an effective means to check camera and

lighting stability.

Camera Performance Dynamics

CCD cameras have as their core a large array of light sensitive semiconductors called
*“Charge Coupled Devices”. Small deviations in the manufactured quality of these devices yield
somewhat different performance characteristics from camera to camera. Environmental factors
affecting camera performance include variations in electrical voltage supplying the camera and
variations in intensity of lighting of the FOV. Such variations will cause variability in camera
performance with time. More over, some CCD cameras exhibit “Drift” in performance, even with
constant power and lighting. In what follows, we examine dynamics of camera performance.

As a baseline for our experiments, by trial and error we set desired minimum and

maximum gray levels for a standard “target” as:
X, mio (D =10, X, (2)=10;
X jmax (1) =60, X 1max (2) =60;

where: X represents gray level; the parenthetical numbers (1) and (2) represent cameras 1 and 2,

respectively; subscripts “min” and “max” indicate minimum and maximum; and subscript “d”

10

denotes “desired”. For this application we take +/-2 as acceptable variation from desired values of
the minimum and maximum gray levels.

A full size reproduction of the standard vision target supplied by Adept Technologies,
Inc. is given in Figure 2.2. This reproduction is the actual size of the target. This target is located
at the bottom edge of the FOV of the camera, as illustrated in Figure 1.1 of the Introduction. The
remainder of the FOV of the camera contains only the black background of the conveyor belt
(Figure 1.1). This arrangement is used for all test results reported in this thesis. The target is
located at the bottom edge of the camera FOV to provide as much room as possible in the
remaining FOV to recognize objects, such as dishes and silverware pieces.

In order to demonstrate dynamic characteristics of the cameras, we present results from
two tests. Test | is a long-time test of approximately 50 minutes, with no intentional variation of
ambient lighting. Test 2 is a short-time test lasting approximately 10 minutes, with intentionally

introduced ambient lighting disturbances.

Figure 2.2

Vision Target of Varying Grayscale

11

Test 1
In order to start the test from known maximum and minimum gray level values, we first

apply one of the controllers discussed in later chapters (namely the PID controller). By selecting

desired values of X =10 and X =60 for both Cameras [and 2, the PID controller

d min d max
found the threshold, gain, and offset values given in Table 2.1 such that both camera maximum
and minimum gray levels are forced to the values of 60 and 10, respectively.

Table 2.1 Initial Values of Camera Control Parameters

Camera | Threshold Gain Offset
1 51 89 102
2 39 176 65

When these values were reached, the PID controllers for both cameras were simultaneously
turned off and the cameras allowed to “drift” or “float” while imaging the target and background
for 50 minutes. During this time, the values of threshold, gain, and offset shown in Table 2.1 were
held constant, and no intentional lighting or power variations were introduced. The minimum and
maximum gray levels were monitored and stored for later analysis.

Figure 2.3 shows plots of minimum gray level variations with time for Cameras | and 2.
Observe that X . (1) changes from 10 to 30 and X ; (2) changes from 10 to 5 in
approximately 55 minutes. Such large variations of minimum gray levels are unacceptable for
quality imaging work.

Figure 2.4 shows plots of maximum gray level variations for Cameras 1 and 2. X _, (1)

and X, (2) change from 60 to 65 and 55, respectively. Such variations in maximum gray level

are also unacceptable.

12

MINIMUM GRAY LEVEL

O 5 10 15 20 5 VD H 40 456 0D S5 &
TIVE (rinuies)

Figure 2.3

Minimum Gray Level Change Without Control

13

MAXIMUM GRAY LEVEL
LTEFTIBB32RBRE

0O 5§ 10 15 2 2 3BV H 40 4 50 5 60
TIVE (minutes)
Figure 2.4

Maximum Gray Change Without Control

14

Test 2
Test 2 was a 10-minute test with an intentional ambient disturbance applied. To initiate
the test, we first applied our PID controller as in Test 1 to force minimum and maximum gray
levels to 10 and 60, respectively. Table 2.2 lists the values of threshold, gain, and offset found by
the PID controiler to accomplish this. Note that due to drift in camera performance and/or lighting
variations, these values are different from those given in Table 2.1.

Table 2.2 Initial Values of Camera Control Parameters

Camera | Threshold Gain Offset
1 39 89 102
2 37 196 60

In order to simulate ambient lighting change, we experimented with different approaches,
settling on an easily implemented manual method. We sought a means that would produce a
repeatable “step change” in lighting intensity over the camera FOV. By quickly covering one or
two fluorescent light tubes inside the light box with an elongated cardboard tent-shaded piece
extending the entire length of the fluorescent tubes, we could repeatedly produce step decreases
in lighting intensity. Quickly removing this covering produced a repeatable step increase in
lighting intensity. We found that use of an on-off switch for the fluorescent tubes would not
produce repeatable step changes in light intensity due to transient “flicker” in the fluorescent
lights.

Our schedule for lighting changes was as follows:

0 — 2 minutes no cover over the lighting tubes;

2 — 4 minutes cover 1 lighting tube out of 2 each side;
4 — 6 minutes no cover over the lighting tubes;

6 — 8 minutes cover 2 lighting tubes out of 2 each side;
8 — 10 minutes no cover over the lighting tubes;

15

After initially setting the minimum and maximum gray levels to 10 and 60, respectively,
we shut off the camera PID controller and operated without control using the constant gain,
offset, and threshold values shown in Table 2.2. Then, according to the lighting change schedule
above, we covered and uncovered fluorescent tubes in the light box. During the test, both

minimum and maximum gray levels were monitored and stored for later analysis.
Figure 2.5 shows plots of X . (1) and X . (2) over the 10-minute test period. Observe

that with only one tube covered, minimum gray levels for both cameras fell to zero. Also note
that the “plateaus” during the uncovered portions of the test shifted upward as the test progressed.
After 10 minutes X . (1) reached 18 while X . (2) reached 13. Such variation is unacceptable.
Moreover, we note that the minimum gray level of both cameras is very sensitive to ambient
lighting changes, which can cause severe difficulties in sorting and inspecting dish pieces, as well
as in consistent imaging of objects in general.

Figure 2.6 shows plots of maximum gray level changes responding to ambient lighting
changes. Observe that during covering of one or more light tubes, the lower “plateaus” in gray
level decreased with time, but did not reach zero. Of course, the plateau from 6 to 8 minutes is
lower than that from 2 to 4 minutes because more light was blocked. As for minimum gray levels,
maximum gray levels showed upper plateaus shifting upward with time during the “uncovered”
portions of the test. At the end of 10-minute test, the maximum gray level for Camera | reached
65, and that for Camera 2 reached 64, excessive deviations from the desired value of 60. As for
minimum gray level, this test demonstrated that the maximum gray level is very sensitive to
ambient light disturbances. Of course, the introduced lighting disturbances are substantial and are
significantly larger than would be encountered during normal operation. This was intentional to

achieve large excursions in camera responses.

16

o B

§ 16
w14
g 12
o 10
;5
=
=

2

0

0 2 e 6 8 10 12
TIME (rrinuses)
Figure 2.5

Minimum Gray Level Change With Ambient Lighting Disturbances, No Control

17

MAXIMUM GRAY LEVEL
A LR LAY EEE

o
N
N
)
™

10

12

Figure 2.6

Maximum Gray Level Change With Ambient Lighting Disturbances, No Control

18

Summary

Based on the results of these tests, the following conclusions can be drawn:

¢ The minimum and maximum gray levels for both cameras shift away from the
desired initial setting (in this experiment 10 for minimum and 60 for maximum) over
time, even without disturbances. The variations are unacceptable for high quality,
repeatable imaging.

e With substantial disturbances in lighting intensity, the minimum and maximum gray
levels will change dramatically. While our tests did not cover a wide range of lighting
disturbances, the results in Figure 2.6 suggest that the larger the lighting disturbance,
the larger will be the variation in gray levels.

In general, the cameras used in this experiment show unacceptable dynamic variation
over time. Without control, the vision system will likely not function sufficiently well for object
imaging in our dish sorting and inspection system, which concurs with Johnson's (1993)
conclusions. In the next chapter we propose and investigate several camera controllers to

overcome this problem.

19

CHAPTER II1

DESCRIPTION OF CONTROLLERS

In Chapter 2, experiments on camera performance dynamics demonstrated that over time
the minimum and maximum gray levels for both cameras shift away from the desired initial
settings. With disturbances in lighting intensity introduced, the minimum and maximum gray
levels change dramatically. Such variations are unacceptable for high quality, repeatable imaging.
Without control, the vision system will likely not function sufficiently well for object imaging in
our dish sorting and inspection system. In this chapter we propose and investigate several camera
controllers to overcome this problem.

As mentioned in Chapter 2, for the Adept AGS vision system, there are two image
processing methods, binary and grayscale processing. When binary processing is adopted, the
parameter “threshold” is used to delineate black from white pixels. By choosing different
threshold values, binary pixels of the object show differing distributions. On the other hand, when
processing an image in the grayscale mode, the parameters “gain” and “offset” are used together
to maximize the range of grayscale intensities that the system recognizes in an image. When
different gain values are used for an incoming video signal, the histogram scale of pixel
intensities will be expanded or contracted, and the minimum and maximum gray level will be
changed accordingly. When different offset values are set for an incoming video signal, the
histogram will be shifted left or right, and both minimum and maximum gray levels will also
change. By choosing appropriate combinations of values for gain, offset, and threshold, the
minimum and maximum gray levels can be forced to desired values while viewing a fixed object.

In order to maintain constant minimum and maximum gray levels of an object repeatable, high-

20

quality imaging over time, the vision parameters gain, offset, and threshold can be controlled in
real time.

Since the parameter “threshold” is used in the binary processing mode, while “gain” and
“offset” are used in the grayscale processing mode, it is possible to use different algorithms to
control threshold than to control gain and offset. This gives considerable flexibility in controller
design. After experimenting with different control algorithms, we found a reliable, yet simple and
easy to use algorithm for threshold control, which is used in all controller designs discussed
herein. Using this algorithm, we then investigated a number of controllers, 5 in all, for gain and
offset. These were:

1. Proportional-Integral-Derivative (PID) controller;

2. Fuzzy Logic 1 (FL1) controller;

3. Fuzzy Logic 2 (FL2) controller;

4. Fuzzy-Integral-Derivative (FID) controller;

5. Fuzzy-Integral (F(E+D)+I) controller;

Actually, each composite camera controller consists of two portions, one for threshold, which is
the same for all 5 controllers, while the other is for gain and offset.

As we mentioned in Chapter 2, all 5 controllers use the pixel distribution histogram of a
multi-gray level target to control gain, offset and threshold to yield a desired minimum and
maximum gray level of the target. The target is shown in Figure 2.2. A histogram is a plot versus
gray level number of numbers or percentages of pixels having a particular gray level. An example
histogram for our target is shown in Figure 2.1. The desired minimum and maximum gray levels

are:
X imin () =10, X ymin (2) =10;

X, (1) =60, X, . (2)=60;

21

where: X represents gray level; the parenthetical numbers (1) and (2) represent Cameras 1 and 2,
respectively; subscripts “min” and “max” indicate minimum and maximum; and subscript “d”
denotes “desired”. For this application we take as acceptable variations of the minimum gray
level and maximum gray level, +/- 2 from the desired values.

Each control implementation cycle requires approximately 0.5 seconds. It starts with
taking a picture of standard vision target and sending the image data to the central control unit.
The central control unit then analyzes the image data and forms the histogram for this image. This
histogram is used to simultaneously update the threshold, gain, and offset in this cycle. Threshold
is updated in accordance with a desired black pixel count of the standard vision target, while gain
and offset are corrected based on desired minimum and maximum gray levels of the standard
vision target simultaneously. After the parameters are updated, this implementation cycle is
ended, and the vision system is ready for next cycle.

In the following section of this chapter, the design of the common threshold control
section used will be discussed. This will be followed by presentations for the 5 different designs
for gain and offset control.

Threshold Control

As discussed in Chapter 2, there is a certain gray level value, an integer ranging from 0 -
127, associated with each pixel of the image retumed by the camera. When a vision system works
in the binary processing mode, setting a certain threshold value determines whether a given pixel
will be seen as black (gray level value below the threshold), or as white (gray level above the
threshold value). To improve a vision system’s efficiency and flexibility on recognition and
inspection of different dishes, Chen (1996) proposed a dynamic control method to control

threshold in real time. In general, the threshold value is adjusted according to a pre-selected

desired black pixel count for a standard vision target, which is represented as P, . This number is

22

selected by trial and error with different vision objects. In this research, the P, is set to 3900,

since this setting gave better binary image in our dish inspection and recognition experiment.

For each control adjustment cycle, a new picture is taken, and the image of the standard
target is returned to the central control unit. After the histogram for this image is formed, the
controller accumulates the pixel count P, beginning with the pixels associated with gray level 0

and increasing gray level by 1 at each counting iteration, until the actual pixel count P is not less

than desired black pixel count P,. At this time the gray level value has increased from O to a
certain value 7', and all pixels with gray level smaller than 7, would be seen as black if the

threshold is equal 7', . As we discussed in the previous chapter, any pixel with gray level smaller
than the threshold value is seen as black. At the end of pixel counting process, the final gray level
value Tf is chosen as the new threshold. The basic algorithm is due to Chen (1996) and is as
follows:

At the i” control implementation cycle, let H[T] be the number of pixels in the image

histogram associated with gray level T in the histogram.

Then: P =H[T], T=0;

While (P <P, and T < 127)

T=T+1
P = P + H[T]
Tf = T:
threshold = T, ; (3.1)

This algorithm shows that threshold is updated at each control implementation cycle in
accordance with the desired black pixel count, using the histogram of the newest image. This

works together with the gain and offset control section to adjust vision parameters in each control

23

implementation cycle, forcing the minimum and maximum gray levels to desired values. We
employ this threshold control algorithm for all of the gain and offset controllers discussed in later
sections of this chapter.
Gain and Offset Control
Proportional-Integral-Derivative Controller

The PID (Proportional, Integral and Derivative) (Kuo, 1995) control technique is widely
used in industry. It is powerful, relatively simple to design, and easy to implement. This
technique can yield fast response while eliminating overshoot, and yields zero steady state error
for step inputs. For our first controller, we apply conventional PID control for gain and offset,

shown by the block diagram in Figure 3.1. Note that this constitutes a double-input, double-

output system. The two control inputs are desired minimum gray level X, . and desired

maximum gray level X while the outputs are actual minimum gray level and actual

d max *

maximum gray level, X . . and X __ respectively.

min(;1)

X 4 rin PID Cc!nlroller G, X rins
For Gain » Vision System >
(camera and
software)
PID Controller | O, _ >
For Offset —
Xri' max Xm” ;
Figure 3.1

Block Diagram for PID Control System

24

For a certain object, the minimum and maximum gray levels of the image determine the
overall characteristics of the pixel gray level distribution, and they are inter-related in an
unknown manner. By experimenting with our vision system, we found that the minimum and
maximum gray levels would change simultaneously if the parameters gain or offset were
adjusted. If we used an error signal based solely on a control input of minimum (or maximum)
gray level, conflicts would occur between minimum and maximum gray level control. We
experimented with different approaches to form the control input that could combine errors from

both minimum and maximum gray levels together. We determined that reasonable results could

be obtained using the error signals E1_, ,, and E1,,_,, given by:
Elg[i-—l) = ((Xm%n(f-l) =2 deu'n)+ (Xdrnax - Xmaxtr'—l] N2 (3.2)
and El, ;. = (X jmp + deu)_(xnun(i-l) T Xrnax(;—l)))fz; (3.3)

in which the subscripts “0” and *“g” refer to offset and gain, respectively, and the subscript (j-1)
refers to the (j —1)" control adjustment cycle.

Normally, we would expect to have a mathematical model of the camera dynamics before
designing a PID controller. However, for the cameras used herein, there is no such model
available. Our experiments demonstrated that camera dynamics were time-variant, such that we
felt dealing directly with the real cameras would be more productive than identifying a time-
varying linear or nonlinear model. Accordingly, we chose to use tuning by trial and error of the
PID controller gains operating with the real system, similar to practice in the process control
industry (Dorf, 1995). We first set the controller gains of integral and derivative portions in
camera gain and offset controllers to zero, and set the proportional gain to a certain value, then
run transit response test on this PID control system, which will be discussed in next chapter.
According to the transit response testing results, the proportional gains in camera gain and offset

controllers were adjusted, and transit response test was re-done, until the optimum proportional

25

gain was found. After proportional gain was set, the integral portion gain was set in the similar
way, and finally the derivative portion gain was tuned.

The outputs of the PID controller are given by:
G, =Gy, tAG, 3.4)
0, =0, +AQ, (3.5)
where: G, and O,; are the outputs of the gain and offset controllers, respectively at time step i;
Gy and O, are the corresponding outputs at cycle i-1; and AG,, and AQO,, are the change

of gain and offset respectively, at cycle i, given by:

AGI: = KgPE13[l~l) + Kgﬂ DER(J'—I) * 'KRI IER(I"‘I) (36)
A0, =K, El,; \, +K ,DE,; ,, +K,IE,, 3.7
where: K ., K, are proportional control constants for gain and offset, respectively;

K,,, K, are derivative control constants for gain and offset, respectively;
K, . K, areintegral control constants for gain and offset, respectively;

El El,,_,, are errors defined by (3.2) and (3.3), respectively, at cycle i-1.

-1

and DE

(-1, A€ approximations to time derivatives of error signals for

The quantities DE,), ,

gain and offset respectively, at cycle (i-1) using the backward derivative method (Gerald, 1994),

given by:
DE, ., =(El,., - El,;_,)/h (3.8)
and DE_ ., =(El, , -El, ,)/h (3.9)
where: E1,, , , E1,, , are error signals at cycle (i-2); and h is time interval in seconds. The
quantities /E_, ,,and [E,, , are approximations to time integrals of error signals of gain and

26

offset, respectively, at cycle (i-1) using the Simpson —;- rule (Gerald, 1994), given by:

IE,) = (ELl . +4El , + E1 ,)h/3 (3.10)

and IE,, =(El,, +4El , + El,)h/3 (3.11)

o(i-3)

o1

where: El . ., E1,, , are error signals of gain and offset respectively, at cycle (i-3); E1_, ,,,

El,_,, are error signals of gain and offset respectively, at cycle (i-2); and h is the time interval.
In (3.6) and (3.7), the proportional, derivative, and integral control constants are determined by
trial and error. The final values chosen for this PID controller are listed in Tables 3.1 and 3.2.

Table 3.1

Gain Values for Camera Gain Control

K P K oD K ol
3.8 0.05 0.1
Table 3.2

Gain Values for Offset Control

KOP KaD Ku!

1.0 0.05 0.1

Note that the derivative and integral control constaats in table 3.1 and 3.2 are relatively small. If
larger values are used, the control system outputs exhibit large overshot or undershot. If zero
values for these constants are used, the controllers would exhibit very slow control correction,
and non-zero steady state error would occur.
Fuzzy Logic 1 Controller
Since 1990, several investigators experimented with different methods to stabilize camera

dynamics. Chen (1996) first used a fuzzy logic control technique to control gain and offset. This

27

controller can adjust the vision parameters to force the minimum and maximum gray levels to
desired values, but it requires excessive time to recover from disturbances and yields large values
of integral square error. In most applications this is unacceptable. For comparison, we included
Chen'’s fuzzy logic controller in the present investigation, using different testing scenarios than he
used to compare with the other 4 controllers designed in this work. We name Chen’s controller
the FL1 controller (FL1C), described in what follows.

Figure 3.2 shows a block diagram of the FL1C system. Basically it employs a two-layer

linguistic rule base for two inputs, producing two outputs, designated the same as in Figure 3.1.

min(i-1)
+
Xd min - Ezmiu{r-l‘ G?.i Xminf >
Vision
FL1C System
Ezm(,'..n 01, (cameras and
> > software) >
Xd max + Xrna::'
erxu‘-])
Figure 3.2

Block Diagram of The Fuzzy Logic 1 Control System

The two fuzzy error variables E2 ., and E2 .., are error signals of minimum and

maximum gray levels, respectively, at cycle (i-1), given by:

E2 ini-ty = X ming-y X amin (3.12)

E2 X X (3.13)

max(i-1) = “*dmax = “* max(i-1)

28

where: X X , are the actual minimum and maximum gray levels, respectively, at

min(i-1) * max{i~1

cycle (i-1). The outputs G,, and O,, of FLI controller are new gain and offset values at cycle i,
given by:

Gy = qu—u + AG,, (3.14)
and 0, = Ozu-i) + A0, (3.15)
where: G, ;. O,,_,, are the gain and offset values, respectively, at cycle (i-1); and AG,, and

AQ,, are the two fuzzy control variables, change of gain and change of offset, respectively,

determined from a fuzzy rule base, described in what follows.

The fuzzy logic controller uses IF-THEN rules to form the two layers of the rule base.
Typically, an [F-THEN rule expresses an inference, such that if we know a fact (premise,
hypothesis, antecedent), then we can infer, or derive, another fact called a conclusion
(consequent) (Ross, 1995). The two layer rule base for two fuzzy error variables and two control

variables in our FL1 controller can be represented as:

If E2 and E2 are in layer j,

min(i—1) max(i—1)

Then, { if E2 i, = A and E2 = A}, , Then, AG,,= B/, and AO,,= B}, }

max(i-1) —

(3.16)

where: subscript k = 1, 2, ... n; n is the number of total rules; j is layer number with value 1 or 2 ;

Al‘i and A{k are linguistic values of fuzzy state variables E2 and E2 in the

min(i-1) max{i—1)

universe of discourse U1’ and U2’; B}, and Bj, are linguistic values of control variables

AG,, and AQ,, in the universe of discourse V1’ and V2’ ; Table 3.3 and Table 3.4 show the

linguistic rules of the first layer and second layer of the FL1 controller, as given by Chen (1996).

29

Table 3.3

Linguistic Rules of 1* Layer of FL1 Controller (Chen, 1996)

E2mingi-1y NL NM NS ZE PS PM PL
E zman{l'-])
NL GNL GNM GNM GNS GNS GZE GZE
OZE OZE OPS OPS OPM OPM OPL
NM GNM GNM GNS GNS GZE GZE GPS
ONS OZE OZE QOPS OPS OPM OPL
NS GNM GNS GNS GNS GZE GZE GPS
ONS ONS OZE OZE OPS OPM OPM
ZE GNS GNS GZE *k GPS GPS GPS
ONM ONS ONS OPS OPS OPM
PS GNS GZE GZE GZE GPS GPS GPM
ONM ONM ONS ONS OZE OZE OPS
PM GZE GZE GZE GPS GPS GPM GPM
ONL ONM ONS ONS OZE OZE OPS
PL GZE GZE GPS GPM GPM GPM GPL
ONL ONM ONM ONM ONS OZE OZE

Where: G = AG,,; O = AO,;; N = Negative; P = Positive; L, M, S, ZE represent Large, Medium,

Small, and Zero, respectively; and ** means pass to the second layer, Table 3.4.
Table 3.4

Linguistic Rules of 2™ Layer of FL1 Controller(Chen, 1996)

1 E2minti-1) NZ ZE PZ
%
NZ GZE GNZ GZE
OZE OPZ OPZ
ZE GNZ GZE GPZ
ONZ OZE OPZ
PZ GZE GPZ GPZ
ONZ ONZ OZE

Where: NZ denotes Negative Zero, and PZ represents Positive Zero.

As an example in interpreting table 3.3, consider the entries in the 3™ column, 6" row.

This should be read, “ IF E2_; ., is negative small (NS) and E2__ ., is positive medium

(PM), the change of gain AG,,; should be set to zero (ZE) and the change of offset AQ,, should

be set to negative small (NS).” If both E2 and E2 are ZERO in the first layer, the

min(i=1) max(i-1)

control action is passed to the second layer, Table 3.4.

30

Membership functions are used to transform “crisp” quantities into fuzzy sets in the
process of fuzzification, and fuzzy sets back into crisp quantities in the process of defuzzification.
An isosceles triangle is chosen for our membership functions, following typical practice (Ross,
1995). A 50% overlap in the membership functions of all the fuzzy sets is used so that at any
given point of the universe of discourse, two degrees of membership from 2 membership
functions are obtained. Figure 3.3 (a) illustrates this for our first layer. The universe of discourse
of inputs and outputs is partitioned into seven membership functions corresponding to seven
linguistic variables (NL, NM, NS, ZE, PS, PM, PL) in the first layer as shown in Figure 3.3 (a).
Similarly, the universe of discourse of inputs and outputs in the second layer is partitioned into

three membership functions, corresponding to three linguistic variables (NZ, ZE, PZ) as

illustrated in Figure 3.3 (b). In Figure 3.3, the term “e” denotes E2 or E2 and AG,,

min(i-1}) max(i-1)

or AO,,.

Degree of membership

NL NM NS

@

the)

Universe of discourse

-3 -2 1 €0 1 e2 e3

|Overlap

Bandwidth

+

(a) Fuzzy Sets for the First Layer (Chen, 1996)

Figure 3.3

31

Degree of membership

NZ ZE PZ

0]

P

Universe of discourse

1 el 1

A

Bandwidth

Overla

(b) fuzzy sets for the second layer (Chen, 1996)

Figure 3.3
In Figure 3.3 (a) the degree of membership ,uj (e) for the leftmost fuzzy set in the first layer of

the FL1C can be calculated by:

B (€)= {(a(pr-erin oimerwis (3.17)
p = min[7, max(0, INT((e+4B)B))] (3.18)

where: superscript L denotes leftmost; B is half of the bandwidth of the triangular membership

functions; INT denotes integer; min and max represent minimum and maximum respectively. The
degree of membership for rightmost fuzzy set in the first layer, ﬂ: (e) is the complement of that
for the leftmost, given by:

Hy(€)=1- u, (e) (3.19)
The degree of membership for the leftmost fuzzy set in the second layer of the FLC can also be

calculated by:

=l nam e (3.20)
q = min{3, max(0, INT((e+3B)/B))] (321)

The degree of membership for rightmost fuzzy set in the second layer, ,u: (e), is the complement

of that for the leftmost, given by:

32

M (e) =1- pul(e) (3.22)
Using Tables 3.3 and 3.4, the FL1C can be represented as two double-input single-output

systems. The relevant relationships are:

Hpy (E2 ity » E2 ity » AG3) = B yixal, (E2 gingicty » E2 pyicyy) = My (AG,) (3.23)

augzr" (E2 ingi-y E2 AOy) = u (E2 pingim1y s E2 ani-ty) ﬂa{n (80,) 3.24)

max(i-1) *

AfxA,
where: 4 is degree of membership; k is k" rule; and j denotes the j” layer; A/ x A, is a fuzzy
set in Ul xU2’; and — denotes a fuzzy implication. Finally center of sums (COS) method
(Hellendoorn, 1993) is used to do the defuzzification (Hellendoomn, 1993), and control variables

AG,,and AQ,, are calculated as below:

AGy= 2 y{szﬂ&ka‘%‘ 2 #Rﬁ (yl’;)’zz#‘{lwll °JUR:;‘ (}’1{;) (3.25)
s=1 k=1 s=1 k=1

AOy= X V4 X Hotas, © oy I X, X B s My (9 (3.26)
s=1 k=1 s=1 k=1

where: y/ is the discrete point of AG,, in the universe of discourse V1’; yJ is the discrete

point of AQ,, in the universe of discourse V27 ; m is the number of the discrete points; and n is

the number of the rules, here n = 4; and o denotes the Max-Min composition operator.
Fuzzy Logic 2 Controller
As we discussed in the previous section, the FL1 controller is a two layer fuzzy logic

controller. While first layer uses 7 membership functions, the second layer only uses 3 member

functions. The range of fuzzy error variables (E2 and E2 .,) and fuzzy control

mun(i-1) *
variables (AG,, and AQ,,) covered are relative small, so the controller demonstrates very slow

control correction with large integral square error, especially when ambient lighting disturbances

occur. In the second layer, there are only 3 membership functions used to implement adjustment

33

of vision parameters. Such adjustment is not sufficiently fine. In general the FLI1 controller can
adjust the vision parameters to force the minimum and maximum gray levels to desired values,
but it requires excessive time to recover from disturbances, yielding large integral square error. In
most applications, this is unacceptable. In order to overcome the disadvantage of the FLI1
controller, in this section we design a new fuzzy logic controller, namely the Fuzzy Logic 2
Controller (FL2C). Basically FL2C is a linguistic rule base, three layer, double-input, double-
output controller. It uses 3 layers to cover a much wider range of fuzzy error variables and fuzzy
control variablesthan does the FL1 controller, and 9 membership functions in each layer are
employed to implement much finer adjustment. Analytically we expect FL2C to function much

better than FL1C, which is demonstrated in the next chapter.

Figure 3.4 shows a block diagram of the FL2C system. The two inputs (X, . » X 400)

and two outputs (X . ., X) are the same as employed for the PID and FL1 controllers.

max i

Xmirl{i—l}
+
ermin 2 E3min(r‘—l} G]i er'n!
—P> P
Vision
FL2C System
E3mm-u O3r‘ (cameras and
> _ﬂ software) >
Xd max - Xmaxi
+
erx{r'-l)

Figure 3.4

Block Diagram for the Fuzzy Logic 2 Control System

The two fuzzy error variables E3 ; , and E3

- max(i-1) aT€ €rror signals of minimum and

maximum gray levels at time step (i-1), given by:

34

E3min{|—l)= Xrnin(r‘-l‘.l" Xdrnin (3.27)

E3 X X

d max (328)

max(i—1} = max(i—~1) B

The outputs G,; and O,, of FL2 controller are new gain and offset at time step i, given
by:
Gy, = Gy, + AG,, (3.29)

and Oy = Oy, + AO,, (3.30)

where: G,), O, are the gain and offset, respectively, at cycle (i-1); AG,; and AO,, are

the two fuzzy control variables, change of gain and change of offset, respectively, at cycle i,
determined from a fuzzy rule base, described in what follows.

IF-THEN rules are again used to form the three layers of the rule base, represented as:

If E3 ,;yand E3

max(i—1) &7€ in layer j,

Then, { If E3_;,,_,,= A}, and E3 = A}, , Then, AG,,= B/, and AO, = B}, }

max(i-1) =

(3.31)

where: subscript k = 1, 2, ... n; n is the number of total rules; j is the layer number with value 1, 2

or3; A} and AJ, are linguistic values of fuzzy error variables E3 ., and E3 in the

max(i-1)

universe of discourse U1’ and U2’; B,‘i and szk are linguistic values of control variables

AG,, and AO,; in the universe of discourse V1’ and V27 ;

Table 3.5 (a), (b), and (c) show the linguistic rules of the 1%, 2™, and 3" layers of the FL2

controller.

35

Table 3.5 (a)

Linguistic Rules for 1* Layer of Fuzzy Logic 2 Controller

W NL | NM | NS | NZ | ZE | PZ | PS | PM | PL
Emax(i-1)

NL GZE | GPZ GPS GPS GPS GPS GPM GPM | GPL
OPL | OPL | OPM OPM | OPM OPS OPS OPZ | OZE
NM GNZ | GZE GPZ GPS GPS GPS GPS GPM | GPM
OPM | OPM | OPS OPS OPS OPS OPZ OZE | ONZ
NS GNS | GNZ | GZE GPZ GPZ GPS GPS GPS | GPM
OPM | OPS OPS OPS OPS OPZ OZE ONZ | ONS
NZ GNS | GNS GZE GZE GZE GZE GPS GPS GPS

OPS | OPS OPZ OPZ OPZ OZE ONZ ONS | ONS

ZE GNS | GNS | GNZ GZE GZE GZE GPS GPS GPS
OPS | OPS OPZ OPZ OZE ONZ ONS ONS | ONM
PZ GNS | GNS | GNS GNZ GZE GZE GPZ GPS GPS
OPS | OPZ OPZ OZE ONZ ONZ ONZ ONS | ONM
PS GNM | GNS | GNS GNS GNZ GNZ GZE GPZ GPS
OPS | OPZ OZE ONZ ONZ ONZ ONS ONS | ONM
PM GNM | GNM | GNS GNS GNS GNS GNZ GZE | GPZ
OPZ | OZE | ONZ ONZ ONS ONS ONS | ONM | ONL
PL GNL | GNM | GNM | GNS GNS GNS GNS GNZ | GZE

OZE ONZ ONS ONS ONS ONS ONM ONM ONL
Where: G = AG;;; O = AO,;; N = Negative; P = Positive; L, M, S, and Z denote Large,

Medium, Small, Zero respectively; ZE denotes Zero.

As an example in interpreting Table 3.5 (a), consider the entries in the 2 column, 3"

row. This rule should be read, “ I[F E3 is negative medium (NM) and E3 is negative

min(i—1) max(i-1)

small (NS), the change of gain AG,, should be set to negative zero (NZ) and the change of offset
AO;; should be set to positive small (PS).”

If the variations of minimum or maximum gray levels exceed the range of the 1* layer,
then either the 2™ layer (Table 3.5 (b)) or the 3 layer (Table 3.5 (c)) will be energized, and the

appropriate linguistic rule will work in the same manner as in the 1* layer.

36

Table 3.5 (b)

Linguistic Rules for 2™ Layer of Fuzzy Logic 2 Controller

W NXL | NXM | NXS | NXZ | ZE PXZ | PXS | PXM | PXL
E3max(i-1)

NXL GZE GPXZ GPXS GPXS GPXS GPXS GPXM | GPXM | GPXL
OPXL OPXL | OPXM | OPXM | OPXM OPXS OPXS OPXZ OZE

NXM GNXZ GZE GPXZ GPXS GPXS GPXS GPXS GPXM | GPXM
OPXM | OPXM OPXS OPXS OPXS OPXS OPXZ OZE ONXZ

NXS GNXS GNXZ GZE GPXZ GPXS GPXS GPXS GPXS | GPXM
OPXM OPXS OPXS OPXS OPXS OPXZ OZE ONXZ | ONXS

NXZ GNXS GNXS GNXZ GZE GPXZ GPXZ GPXS GPXS | GPXS
OPXS OPXS OPXZ OPXZ OPXZ OZE ONXZ ONXS | ONXS

ZE GNXS GNXS GNXS GNXZ GZE GPXZ GPXS GPXS | GPXS
OPXS OPXS OPXZ OPXZ OZE ONXZ | ONXS ONXS | ONXM

PXZ GNXS GNXS GNXS GNXZ | GNXZ GZE GPXZ GPXS | GPXS
OPXS OPXZ OPXZ OZE ONXZ ONXZ | ONXZ ONXS | ONXM

PXS GNXM GNXS GNXS GNXS GNXS GNXZ GZE GPXZ GPXS
OPXS OPXZ OZE ONXZ | ONXZ ONXZ ONXS ONXS | ONXM

PXM GNXM | GNXM | GNXS GNXS GNXS GNXS GNXZ GZE GPXZ
OPXZ OZE ONXZ | ONXZ ONXS ONXS ONXS | ONXM | ONXL

PXL GNXL | GNXM | GNXM | GNXS GNXS GNXS GNXS GNXZ GZE

OZE ONXZ ONXS ONXS ONXS ONXS | ONXM | ONXM | ONXL

Where: X = larger.

37

Table 3.5 (c)

Linguistic Rules for 3 Layer of Fuzzy Logic 2 Controller

\ NXXL [NXXM | NXXS | NXXZ | ZE | PXXZ | PXXS [PXXM | PXXL
min(i-1)
E3max(i-1)

NXXL GZE GPUZ | GPUS GPUS GPUS | GPUS | GPUM | GPUM | GPUL
OPUL | OPUL | OPUM | OPUM | OPUM | OPUS | OPUS OPUZ OZE

NXXM GNUZ GZE GPUZ | GPUS GPUS | GPUS | GPUS | GPUM | GPUM
OPUM | OPUM | OPUS OPUS OPUS | OPUS | OPUZ OZE ONUZ

NXXS GNUS | GNUZ GZE GPUZ | GPUS | GPUS | GPUS GPUS | GPUM
OPUM | OPUS OPUS OPUS OPUS | OPUZ OZE ONUZ | ONUS

NXXZ GNUS | GNUS | GNUZ GZE GPUZ | GPUZ | GPUS GPUS GPUS
OPUS OPUS OPUZ | OPUZ | OPUZ OZE | ONUZ | ONUS | ONUS

ZE GNUS | GNUS | GNUS | GNUZ GZE GPUZ | GPUS GPUS GPUS
OPUS OPUS OPUZ | OPUZ OZE | ONUZ [ONUS | ONUS | ONUM

PXXZ GNUS | GNUS | GNUS | GNUZ | GNUZ | GZE GPUZ | GPUS GPUS
OPUS OPUZ OPUZ OZE ONUZ | ONUZ | ONUZ | ONUS | ONUM

PXXS GNUM | GNUS | GNUS | GNUS | GNUS | GNUZ | GZE GPUZ | GPUS
OPUS OPUZ OZE ONUZ | ONUZ | ONUZ | ONUS | ONUS | ONUM

PXXM GNUM | GNUM | GNUS | GNUS | GNUS | GNUS | GNUZ GZE GPUZ

OPUZ OZE ONUZ | ONUZ | ONUS | ONUS | ONUS | ONUM | ONUL

PXXL GNUX | GNUM | GNUM | GNUS | GNUS | GNUS | GNUS | GNUZ GZE
OZE ONUZ | ONUS | ONUS | ONUS | ONUS | ONUM | ONUM | ONUL

Where: XX represents extremely large; U = XX.

For purposes of comparison with FL1C, FL2C also uses an isosceles triangle as the
membership function with 50% overlap in all the fuzzy sets of the three layers. The universes of
discourse of inputs and outputs for all three layers are partitioned into nine membership functions.
Correspondingly, the nine linguistic variables are NL, NM, NS, NZ, ZE, PZ, PS, PM, PL in 1*
layer; NXL, NXM, NXS, NXZ, ZE, PXZ, PXS, PXM, PXL in the 2™ layer; and NXXL, NXXM,

NXXS, NXXZ, ZE, PXXZ, PXXS, PXXM, PXXL in the 3™ layer. The partitions are illustrated in

Figure 3.5, where “e” denotes E3 or E3 and AG,; or AO,,, respectively.

min(i-1) max(i-1)

38

Degree of membership

Third layer NXXL NXXM NXXS NXXZ
Second layer NXLL NXM NXS NXZ
First layer NL NM NS NZ

PXXZ PXXS PXXM PXXL
PXZ PXS PXM PXL
PZ PS PM PL

Universe of discourse

Bandwidth

Figure 3.5

Fuzzy Sets for All Three Layers

By choosing different values of bandwidth (support) for fuzzy error variables and fuzzy
control variables in the first, second and third layers, the FL2C can respond rapidly to large

variation of the error inputs. On the other hand, for small deviation, this controller can make fine
adjustments of the fuzzy outputs. In Figure 3.5 the degree of membership pi (e) for the leftmost

fuzzy set in all three layers of the FL2C can be calculated by:

L _ gl p2dors-5

ﬂp (e) = { ((p+l)B—e)! B otherwise (332)
_ (INT(elB) €20

P = \INT(e18-1) otherwise (3.33)

where: L denotes leftmost; /NT represents integer; B is half the bandwidth. The degree of
membership for rightmost fuzzy set in all three layers, ,u': (e) is the complement of that for the

leftmost, given by:

My (e)=1- p,(e) (3.34)

39

Using Table 3.5 (a), (b), and (c), the FL2C can be represented as two double-input, signal-output
systems. The relevant relationships are:

pglfl (E3 min(i-1) * E3maxu—!: ’ AG!.a)=} (E3min(i—l)’E3rmxu—l)) = -ug!f' (AG_“) (3.35)

A:'L"Az;t
ﬂ}z{‘ (E3m1nt£—l) ‘E3mnx(c-l} s AO}I) = ﬂA.,‘r‘XA{i (ESM(;'..”’ESM,(U_])) = 'uB{, (&031) (336)
where: 4 is degree of membership; k is k" rule; and j denotes j” layer. Finally weighted

average method (Ross, 1995) is used for defuzzification, which is reliable, accurate enough and

easy to implement requiring less on line computation than that of center of sum method. And

AG,,and AO,, are given by:

AGy = Zﬂq{x‘q‘ “ Yik fzﬂ&’ﬁﬁ{g (3.37)
k=) k=1

AO,; = Eﬂmx% “Yi !Zﬂ&}'qu (3.38)
k=1 k=1

where: y/, is a discrete point of AG,, in the universe of discourse V1’; yJ, is a discrete point

of AO,; in the universe of discourse V27 and n is the number of the rules, here n = 4;

Fuzzy-Integral-Derivative Controller

To this point, we have presented 3 controller designs, the PID, the FL1, and the FL2
controllers. While the PID controller takes advantages of proportional, integral, and derivative
action, yielding fast response and small steady state error, the FL1C and FL2C use fuzzy logic
techniques to implement control. With refined fuzzy sets and more layers used, the FL2C yields
finer adjustment faster response than the FLI1C, as will be shown in chapter 4. In the next two
section of this chapter, two more control algorithms are to be investigated, namely Fuzzy-
Integral-Derivative (FID) control and Fuzzy-Integral (F(E+D)+I) control. Basically, we combine

PID and Fuzzy Logic techniques to take advantage of both, hoping to design a better controller.

40

In this section we discuss the FID controller design. Figure 3.6 shows a block diagram of

the FID controller. Basically it is a double-input, double-output control system. The two inputs

are desired minimum and maximum gray levels (X, . and X), and the two outputs are

d min d max

actual minimum and maximum gray levels (X, and X __), which are the same as we used in

the other 3 control system. There are two FID portions in this control system, one for gain
control, and the other for offset control. Each FID portion consists of 3 parallel parts, fuzzy logic,
derivative, and integral. The fuzzy logic control part functions just like the proportional part in
PID controller. While proportional control gives control action only proportional to the error
signal, a linear correction, the fuzzy logic control can apply nonlinear control to the system. This

may help us to find improved control performance.

X

min(i-1)

.[KgF
1
N @_’ 5 % —» KgD
- X min {
FLC Vision
System
(cameras &
FLC software)
Xﬂ‘all
1
+>®—b) Y Koo

Figure 3.6

Block Diagram for the FID Control System

41

The FID controller uses similar control input signals to those used in the PID controller,

designated as E4 and E4,, , . The calculation is given by:

gli=1)

E4g(f-]) = ((Xrnin(i-]) - dein) +(de.ax i Xm“_”))fZ; (3.39)

3I'Id E4o(.-‘—l) = ((dejn + dex)_ (Xmin(i—l) + anu{a-—l}))"!z ; (340)
The outputs G,; and O,, of the FID controller are the gain and offset at cycle i, given

by:

G, = Gyyy + AG,, (3.41)

and O, = Oy + A0 (3.42)
where: G, ,,, O, are the gain and offset, respectively, at cycle (i-1); and AG,, and AO,,

are change of gain and change of offset, respectively, at cycle i, determined by the following

equations:

AG, = AG,,, + K ,DE, ., + K, IE (3.43)

g(i-1) gli=1)

AOM = ﬁO-m + KaDDEou-:) + Kol IEa(i-I) (3.44)
where: Derivative and integral parts calculation are similar to those used in the PID

controller, DE and DE,, , are approximations to time derivatives of error signals of gain

gli-1)?
and offset at time step (i-1) using the backward derivative method (Gerald, 1994), given by

equations similar to (3.8) and (3.9). The quantities /E and /E are approximations to

gli-1y a(i=1)

time integrals of error signals of gain and offset at time step (i-1) using the Simpson % rule

(Gerald, 1994), given by equations similar to (3.10) and (3.11). K,,, K, are the derivative

control constants for gain and offset, respectively, and K, , K, are integral control constants

el
for gain and offset, respectively. After trial and error, the constants were chosen as listed in Table

3.6.

42

Table 3.6

Gain Values for the FID Controller

K K

gD &l oD ol

0.01 0.1 0.01 0.1

AG,, and AO,; are fuzzy outputs from two fuzzy logic controllers, which in fact are fuzzy

control variables. The fuzzy logic controllers are described as follows. In general, each FID
portion employs a three-layer, single-input, single-output fuzzy logic controller. The fuzzy error

variable is E4 , , for gain, and E4 , ,, for offset. The fuzzy control variables are AG,, for

8
gain and AQ,,, for offset, determined by a fuzzy rule base, described below. IF-THEN rules are
used to form the three layers of the rule base. For gain control, the rule base for one fuzzy state
variable and one fuzzy control variable can be represented as:

if E4

gti-ny 1810 layer j,

Then, {if E4 ., = A}, Then AG,,,= B, (3.45)

gli-1) —

where k = 1, 2, ... n; n is the number of total rules; j =1, 2, 3; AI'; is the linguistic value of fuzzy

error variable E4 in the universe of discourse U1’ ; and B/, is the linguistic value of

gli-h
control variable AG,,, in the universe of discourse V1’ . For offset control, the rule base for

one fuzzy state variable and one fuzzy control variable can be represented as:

if E4,,,, isin layer j,

Then, {if E4,,,,= A}, , Then AO,,= B}, | (3.46)
where k= 1, 2, ... n; n is the number of total rules; j = 1, 2, 3; A{x is the linguistic value of fuzzy

state variable E4 in the universe of discourse U2’ ; and BJ, is linguistic value of control

o(i-1)

43

variable AQ,,, in the universe of discourse V2’ . Table 3.7 (a), (b), and (¢) show the linguistic

rules of the 1**, 2 and 3" layers of the gain fuzzy controller.

Table 3.7 (a)

Linguistic Rules of 1* Layer of Gain Fuzzy Logic Controller

E4 NL NM NS NZ ZE PZ PS PM PL

gli-1)

AG,, | GNL | GNM | GNS | GZE | GZE | GZE | GPS | GPM | GPL

Where: G = AG,,, ; N = Negative; P = Positive; L, M, S, and Z denote Large, Medium, Small,

Zero respectively; ZE denotes Zero.
Table 3.7 (b)

Linguistic Rules of 2™ Layer of Gain Fuzzy Logic Controller

E4 NXL NXM NXS NXZ ZE PXZ | PXS PXM PXL

2=}

AG,, | GNXL | GNXM | GNXS [GNXZ | GZE | GPXZ | GPXS | GPXM | GPXL

Where: X denotes larger.
Table 3.7 (C)

Linguistic Rules of 3" Layer of Gain Fuzzy Logic Controller

E4 NUL | NUM | NUS NUZ ZE PUZ PUS | PUM | PUL

gU-0)

AG,, |GNUL|GNUM| GNUS [GNUZ| GZE | GPUZ | GPUS |GPUM | GPUL

Where: U = XX, denotes extremely large.

If the value of E4, exceeds the range of the 1* layer, then either the vie layer (Table 3.7 (b))

=1
or the 3™ layer (Table 3.7 (c)) will be energized, and the appropriate linguistic rule will work in
the same way as for the 1™ layer.

Table 3.8 (a), (b), and (c) show the linguistic rules of the 1%, 2™ and -3“1 layers of the

offset fuzzy controller.

Table 3.8 (a)

Linguistic Rules of 1* Layer of Offset Fuzzy Logic Controller

E4 NL NM NS NZ ZE PZ PS PM PL

oli-1)

AO,, | ONL [ONM | ONS | ONZ | OZE | OPZ | OPS | OPM | OPL

Where: O = AO,;, ; N = Negative; P = Positive; L, M, S, and Z denote Large, Medium, Small,

Zero respectively; ZE denotes Zero.

Table 3.8 (b)

Linguistic Rules of 2 Layer of Offset Fuzzy Logic Controller

E4,,| NXL | NXM [NXS | NXZ | ZE | PXZ | PXS | PXM | PXL

AO,, | ONXL | ONXM | ONXS | ONXZ | OZE | OPXZ | OPXS | OPXM | OPXL

Where: X denotes larger.

Table 3.8 (C)

Linguistic Rules of 3™ Layer of Offset Fuzzy Logic Controller

E4 NUL | NUM NUS NUZ ZE PUZ | PUS | PUM | PUL

o(i-1)

AO,, | ONUL | ONUM | ONUS | ONUZ | OZE | OPUZ | OPUS | OPUM | OPUL

Where: U = XX, denotes extremely large.

If the value of E4 exceeds the range of the 1* layer, then either the g™ layer (Table 3.8 (b))

ali-1)
or the 3™ layer (Table 3.8 (c)) will be energized, and appropriate linguistic rule will work in the
same way as for the 1™ layer.

As for the FL1C and FL2C, an isosceles triangle is chosen as the membership function
with 50% overlap in all the fuzzy sets. The universe of discourse of input and output in both gain

and offset fuzzy logic controllers are partitioned into nine membership functions. Corresponding

45

to the nine membership functions, there are nine linguistic variables. They are NL, NM, NS, NZ,
ZE, PZ, PS, PM, PL in the 1* layer; NXL, NXM, NXS, NXZ, ZE, PXZ, PXS, PXM, PXL in the
2™ layer; and NXXL, NXXM, NXXS, NXXZ, ZE, PXXZ, PXXS, PXXM, PXXL in the 3" layer.

This is the same strategy used in FL2C, illustrated in Figure 3.5, where “e” denotes g4, or

E4,,, and AG, or AO,. . Again, this 3 layer rule base design gives us the flexibility of

choosing different values of bandwidth (support) for fuzzy input and output variables in the 1%,

2™ and 3™ layers to achieve faster response for large variation, as well as fine adjustment for
small deviations. In Figure 3.5 the degree of membership ,upL (e) for the leftmost fuzzy set in all
three layers of the gain and offset fuzzy logic controllers is calculated similar to (3.32) and (3.33).
The degree of membership for rightmost fuzzy set in all three layers, ,uf (e) is the complement

of that for the leftmost, given by a relation similar to (3.34)
Based on Table 3.7 and 3.8, the relevant relationships for single-input, single-output

fuzzy logic controllers for gain and offset are given by:
oy (Ed iy BGup) = f, (B4,) > pyy (BGp,) (3.47)
My, (E4,, ., AO) = My (E4,;4y) = By, (AO,) (3.48)
where: 4 is the degree of membership; k is k" rule; and j denotes j" layer.

Finally the weighted average method (Ross, 1995) is used for defuzzification as for the

FL2C. AG,;, and AO,,, are given by:

AG,p= Eﬂm “ Yik IZﬂA‘J. (3.49)
k=1 k=1

AOur= Y M, Vi D 1y (3.50)
k=1 k=1

46

where: y}, is a discrete point of AG,,, in the universe of discourse V1’; yJ, is a discrete point

of AO,,; in the universe of discourse V2’ ; and n is the number of the rules, here n = 2;

Fuzzy-Integral Controller

In this section we design a final new controller, which combines fuzzy logic and
conventional PI control techniques. We name the controller as F(E+D)+I, where F denotes fuzzy
logic controller, E represents an error signal, D denotes derivative, and I denotes integral. As we
discussed before, FL1C and FL2C are double-input, double-output fuzzy logic controllers, and
the FID controller is a combination of fuzzy logic control and PID control, where the fuzzy
control part is single-input, single-output. In the F(E+D)+I controller design, a double-input,
single-output fuzzy controller is employed, while an integral part is added to this controller to
handle steady state error. This design proposes to yield a good comparison with FL1C and FL2C,
where a double-input, double-output fuzzy logic controller was used, as well as with the FID
controller, where single-input, single-output fuzzy logic controller was used together with integral

action.

Figure 3.7 shows a block diagram of F(E+D)+I control system. The inputs (X, . and

X jmay) @and outputs (X, and X _,) are similar to those used in the previous four controller

min

designs. There are two portions in this control system, one for gain control and the other for offset

control. Each portion consists of 2 parallel parts, a fuzzy logic part and an integral part.

47

+ Gy

Vision X mini
System
(cameras and
software)
1 X maxi
Oy
+

max(i—1)

Figure 3.7
Block Diagram for the F(E+D)+I Control System

The F(E+D)+I controller uses similar control input signals as used in PID and FID controllers,

designated as ES ;. and ES . The calculations are given by:

Esg(i—l) = ((Xmin(l-—l) = Xd‘min) (den = Xrnu(i—l}))lz) (3.51)

and ES iy = (X gruin + X grnax) — (X rigicty + X maxi-y N 25 (3.52)

The outputs G, and O, of the F(E+D}+I controller are the gain and offset at cycle i, given by:
Gy = Gy, + AG;; (3.53)

and Oy = Oy, + AO;, (3.54)

where: G, . Oy, are the gain and offset, respectively, at cycle (i-1); and AG; and AO;,

are the change of gain and change of offset, respectively, at cycle i, determined by the following

equations:

48

AGy = AGy, + K, IE, ., (3.55)
AOS:‘ = aosn + KoJ’IEo(i—I) (3.56)

where: integral parts are calculated using methods similar to that for the PID controller, the

quantities /E and IE are approximations to time integrals of error signals of gain and

g(i=1)» o(i-1)

offset at time step (i-1) using the Simpson % rule (Gerald, 1994), given by equations similar to

(3.10) and (3.11). X, , K, are the integral control constants for gain and offset, respectively.

gl
After trial and error, the constants were chosen as listed in Table 3.9.
Table 3.9

Gain Value for F(E+D)+I Controllers

Kg. Ko,

0.1 0.1

AG,,,; and AQ,,, are fuzzy outputs from two fuzzy logic controllers, which are fuzzy control

variables. The fuzzy logic controllers are described as follows. Basically, each F(E+D)+I portion
employs a multi-layer, double-input, single-output fuzzy logic controller. The fuzzy state

for offset. DE and

oli-1) g(i-1)

variables are ES ., and DE for gain, ES and DE

g(i-1) oli=1)

DE

o(i-1y aT€ approximations to time derivatives of error signals of gain and offset, respectively,

at cycle (i-1) using the backward derivative method (Gerald, 1994), given by equations similar to

(3.8) and (3.9). The fuzzy control variable is AG,,, for gain, and AO,,, for offset is determined
by the following fuzzy rule base. A three layer rule base is used for ES5, ;. ES,,,, AGsg,

and AO,, such that the controller can cover wide ranges of error signal and fuzzy correction

49

output. A single-layer rule base is used for derivatives of error signals DE and DE

gli-1) ali=1) *

since this was found sufficient to cover the entire range of expected variations.
As before, an IF-THEN rule form is used to form the rule base. The multi-layer rule base

for two state variables and one control variable of the gain fuzzy controller can be represented as:

if E5,,, is in layer j,

Then, {if E5 . ,,= A and DE, .= D, . Then'AG,, = B}) (3.57)

gi-1)

where k = 1, 2, ... n; n is the number of total rules; j = 1,2, 3; A}, and D,, are linguistic values

of fuzzy error variables E5,,_ and DE, , in the universe of discourse U1’, W1; B}, is the

gai-
linguistic value of control variable AG,, in the universe of discourse V1’. The multi-layer rule

base for two state variables and one control variable of the offset fuzzy controller can be

represented as:

if ESD(‘,U is in layer j,

Then, {if E5,,_, = A}, and DE,, , = D,, , Then AO;,,= B}, (3.58)
where k = 1, 2, ... n; n is the number of total rules; j = 1,2, 3; A}, and D,, are linguistic values
of fuzzy state variables E5,,_, and DE,_ in the universe of discourse U2’ and W2; and

B{k is the linguistic values of control variable AO, in the universe of discourse V2’. Table

3.10 (a), (b), and (c) show the linguistic rules of the 1* layer, 2™ layer and 3" layer of the gain

fuzzy logic controller. If the value of ES,,_, exceeds the range of the 1* layer, then either the

2" layer (Table 3.10 (b)) or the 3" layer (Table 3.10 (c)) will be energized, and appropriate

linguistic rule will work in the same way as for the 1* layer.

50

Table 3.10 (a)

Linguistic Rules of 1* Layer of Gain Fuzzy Logic Controller

W NL NM NS NZ 2, Pz PS PM PL
DEg i)

NL GNM | GNS | GNZ | GNZ | GZE GPS GPM | GPL | GPL

NM GNM | GNS | GNS | GNZ | GZE GPS GPM | GPL | GPL

NS GNM | GNM | GNS | GNZ | GZE GPS GPM | GPL | GPL

NZ GNL | GNM | GNS | GNZ | GZE GPZ GPS | GPM | GPL
ZE GNL | GNM | GNS | GNZ | GZE GPZ GPS | GPM | GPL
PZ GNL | GNM [GNS | GNZ | GZE GPZ GPS | GPM | GPL
PS GNL | GNL | GNM | GNS | GZE GPZ GPS | GPS | GPM
PM GNL | GNL | GNM | GNM | GNZ GPZ GPS | GPS | GPM
PL GNL | GNL | GNL | GNM | GNZ | GZE GPZ | GPS | GPS

Where: G = AG,,, ; N = Negative; P = Positive; L, M, S, and Z denote Large, Medium, Small,

Zero respectively; ZE denotes Zero.

51

Table 3.10 (b)

Linguistic Rules of 2™ Layer of Gain Fuzzy Logic Controller

W NXL | NXM [NXS NXZ ZE PXZ PXS PXM PXL
DEg (i)

NL GNXM | GNXS | GNXZ | GNXZ | GZE | GPXS |GPXM | GPXL |GPXL

NM GNXM | GNXS | GNXS | GNXZ | GZE | GPXS |GPXM | GPXL |GPXL

NS GNXM |GNXM | GNXS | GNXZ | GZE | GPXS |GPXM | GPXL |GPXL

NZ GNXL [GNXM | GNXS | GNXZ | GZE | GPXZ | GPXS | GPXM |GPXL

ZE GNXL [GNXM | GNXS | GNXZ | GZE | GPXZ | GPXS | GPXM |GPXL

PZ GNXL [GNXM | GNXS | GNXZ | GZE | GPXZ | GPXS | GPXM | GPXL

PS GNXL | GNXL |GNXM | GNXS | GZE | GPXZ | GPXS | GPXS |GPXM

PM GNXL | GNXL [GNXM | GNXM | GNXZ | GPXZ | GPXS | GPXS |GPXM

PL GNXL | GNXL | GNXL | GNXM | GNXZ | GZE | GPXZ | GPXS |GPXS

Where: X denotes larger.

Table 3.10 (c)
Linguistic Rules of 3" Layer of Gain Fuzzy Logic Controller

w NUL | NUM | NUS NUZ ZUE PUZ PUS PUM | PUL
DEg[r-I)

NL GNUM | GNUS | GNUZ | GNUZ | GZE | GPUS |GPUM | GPUL |GPUL

NM GNUM | GNUS | GNUS | GNUZ | GZE | GPUS [GPUM | GPUL |GPUL

NS GNUM |GNUM | GNUS | GNUZ | GZE | GPUS |GPUM | GPUL |GPUL

NZ GNUL |GNUM | GNUS | GNUZ | GZE | GPUZ | GPUS | GPUM | GPUL

ZE GNUL [GNUM | GNUS | GNUZ | GZE | GPUZ | GPUS | GPUM | GPUL

PZ GNUL [GNUM | GNUS | GNUZ | GZE | GPUZ | GPUS | GPUM | GPUL

PS GNUL | GNUL |[GNUM| GNUS | GZE | GPUZ | GPUS | GPUS |GPUM

PM GNUL | GNUL |GNUM | GNUM | GNUZ | GPUZ | GPUS | GPUS GPUM

PL GNUL | GNUL | GNUL | GNUM | GNUZ | GZE | GPUZ | GPUS | GPUS

Where: U = XX, denotes extremely large.

52

Table 3.11 (a), (b), and (c) show the linguistic rules of the 1¥, 2* and 3" layers of the
offset fuzzy logic controller.
Table 3.11 (a)

Linguistic Rules of 1* Layer of Offset Fuzzy Logic Controller

\550[,& NL NM NS NZ ZE PZ PS PM PL

DE (i1]
NL ONM | ONS | ONZ ONZ QZE | OPS | OPM | OPL | OPL
NM ONM | ONS | ONS ONZ OZE OPS | OPM | OPL OPL
NS ONL | ONM | ONS ONZ OZE OPS | OPM | OPL OPL
NZ ONL | ONM | ONS ONZ OZE | OPZ OPS | OPM | OPL
ZE ONL | ONM | ONS ONZ OZE | OPZ OPS | OPM | OPL
PZ ONL ONL | ONM ONZ OZE OPZ OPS OPM OPL
PS ONL ONL | ONM ONZ OZE OPZ OPS OPS OPM
PM ONL | ONL | ONL ONS OZE | OPZ OPZ OPS | OPM
PL ONL | ONL | ONL | ONM | ONZ | OZE OPZ OPS | OPM

Where: O = AO,,,: N = Negative; P = Positive; L, M, S, and Z denote Large, Medium, Small,

Zero respectively; ZE denotes Zero.

53

Table 3.11 (b)
Linguistic Rules of 2™ Layer of Offset Fuzzy Logic Controller

Sai-n | NXL | NXM NXS | NXZ ZE PXZ | PXS | PXM | PXL
DE (i)
NL ONXM| ONXS | ONXZ [ONXZ | OZE | OPXS | OPXM | OPXL | OPXL
NM ONXM | ONXS | ONXS [ONXZ | OZE | OPXS | OPXM | OPXL | OPXL
NS ONXL | ONXM | ONXS | ONXZ | OZE | OPXS | OPXM | OPXL | OPXL
NZ ONXL | ONXM | ONXS | ONXZ | OZE | OPXZ | OPXS | OPXM | OPXL
ZE ONXL | ONXM | ONXS | ONXZ | OZE | OPXZ | OPXS | OPXM | OPXL
PZ ONXL | ONXL | ONXM | ONXZ | OZE | OPXZ | OPXS | OPXM | OPXL
PS ONXL | ONXL | ONXM | ONXZ | OZE | OPXZ | OPXS | OPXS | OPXM
PM ONXL | ONXL | ONXL [ONXS | OZE | OPXZ | OPXZ | OPXS | OPXM
PL ONXL | ONXL | ONXL [ONXM | ONXZ | OZE | OPXZ | OPXS H OPXM
Where: X denotes larger.
Table 3.11 (¢)
Linguistic Rules of 3 Layer of Offset Fuzzy Logic Controller
ES (i) NUL | NUM | NUS NUZ | ZUE | PUZ | PUS | PUM | PUL
DEy(;—

NL ONUM | ONUS | ONUZ [ONUZ | OZE | OPUS | OPUM | OPUL | OPUL
NM ONUM | ONUS | ONUS |[ONUZ | OZE | OPUS | OPUM | OPUL | OPUL
NS ONUL [ONUM| ONUS | ONUZ | OZE | OPUS | OPUM | OPUL | OPUL
NZ ONUL [ONUM| ONUS |ONUZ| OZE | OPUZ | OPUS | OPUM| OPUL
ZE ONUL |[ONUM| ONUS |ONUZ | OZE | OPUZ | OPUS | OPUM | OPUL
PZ ONUL | ONUL | ONUM | ONUZ | OZE | OPUZ | OPUS | OPUM | OPUL
PS ONUL | ONUL | ONUM | ONUZ | OZE | OPUZ | OPUS | OPUS [OPUM
PM ONUL [ONUL | ONUL | ONUS | OZE | OPUZ | OPUZ ; OPUS | OPUM
PL ONUL | ONUL | ONUL |ONUM | ONUZ | OZE | OPUZ | OPUS | OPUM

54

Where: U = XX, denotes extremely large.

As before, an isosceles triangle is chosen as the membership function with 50% overlap

in all fuzzy sets. The universe of discourse of input (ES,,,, and ES,;_,) and outputs (AG;,

oli
and AOgg) is portioned into nine membership functions corresponding to nine linguistic

variables. They are NL, NM, NS, NZ, ZE, PZ, PS, PM, PL in the 1* layer; NXL, NXM,NXS,
NXZ, ZE, PXZ, PXS, PXM, PXL in the 2™ layer; and NXXL, NXXM, NXXS, NXXZ, ZE,
PXXZ, PXXS, PXXM, PXXL in the 3™ layer. This is the same procedure used for the FL2C and

FID controller, illustrated in Figure 3.5, where “e" denotes ES ., or ES, ., and AG,, or

gli-
&OSFI' :

The universe of discourse for inputs DE and DE is portioned into nine

gli-1) oli-1)

membership functions corresponding to nine linguistic variables (NL, NM, NS, NZ, ZE, PZ, PS,

or DE

PM, PL), as illustrated in Figure 3.8, where e denotes DE i

g(i~1)

Degree of membership

Overlap

Bandwidth

Figure 3.8
Fuzzy Sets for DES(‘._]) and DE

In Figure 3.5 and 3.8, the degree of membership p;j (e) for the leftmost fuzzy set can be

calculated using equations similar to (3.32) and (3.33). The degree of membership for rightmost

55

fuzzy set, p:(e) is the complement of that for the leftmost, given by an equation similar to

(3.34).
Using Tables 3.10 and 3.11, relevant relationships for the two double-input, single-output
fuzzy logic controllers can be written as:

Py (ES i DE 0y AGsg Y=y o (ES, s DE iy)y, (AGyp) (359)

Al %Dy,

#g;‘ (Eso(i-l] . DEo(i-l) ’ ﬁOSFJ') =# Eso(i—l) 1 DEo{i-l)) - #3{1 (AOSFE) (360)

Al %Dy, (
where: 4 is degree of membership; k is k™ rule; and j denotes the j™ layer;

Finally we use the weighted average method (Ross, 1995) as before, for the

defuzzification and calculate the fuzzy control outputs AG, and AO,,, as:

AGsy, = E.u_.")kxpu * ik /211,,1;*,(01' (3.61)
k=1 k=1

AOspi= D My p " Vi ! 2ty (3.62)
k=1 k=1

where: y,i is a discrete point AG,, in the universe of discourse VI, y{* is a discrete point

AQ;,, in the universe of discourse V27 ; n is the number of the rules, here n = 4.

Summary
In this chapter we have proposed 5 controllers to control cameras parameters gain, offset,
and threshold using conventional PID control technique as well as fuzzy logic techniques. Each
controller consists of two portions, one for threshold control, the same for all controllers, and the
other for gain and offset control. In the next chapter we present results from tests conducted on

each of these 5 controllers.

56

CHAPTER 1V
EXPERIMENTAL RESULTS AND COMPARISONS

In Chapter 2, we investigated performance dynamics of two cameras using two tests. One
was a 10 minute test with intentional ambient lighting disturbances applied, while the other was a
55 minute test without intentional disturbances. Results from both show that the minimum and
maximum gray levels of both cameras vary with time, and that both minimum and maximum gray
levels will change dramatically if lighting disturbances are encountered. Variations, even without
intentional disturbances, were unacceptable for repeatable high-quality imaging.

In order to overcome this problem, in Chapter 3 we proposed 5 different controllers to
automatically adjust camera parameters gain, offset, and threshold, such that variations of
minimum and maximum gray levels would be maintained within an acceptable range, even if
relatively large lighting or power disturbances were encountered. Conventional PID control and
fuzzy logic control techniques were used for controller design.

In this chapter, we examine camera performance under control of each of the 5
controllers by using two different tests. One test is primarily for short transit response
examination, while the other is for longer transient and steady state response evaluation. During
both tests, the integral square error (ISE) for both minimum and maximum gray level change is
calculated. Plots of minimum and maximum gray level versus time for each control system in
each test are presented, while ISE values for each case are evaluated as well. These results
provide a good indication on how well each of these 5 controllers performed and which one is the

best.

7

In the following section, the two tests and ISE calculation will be discussed first. Then
testing results will be presented and performance of each controller will be investigated. Finally
comparisons of the 5 controllers will be made.

Testing Methods

In order to investigate controller performance, two testing procedures are used in this
study. One is a transit response test to demonstrate speed of response of the control system in
transferring from a prescribed initial state to a desired final state. The other is a steady state
response test with ambient lighting disturbances intentionally applied to investigate robustness of
each controller. Such tests are widely used in industry to evaluate controller performance. While
the plots of transit response and steady state response are good indications of camera general
performance, we also employ the ISE in both tests to more carefully quantify control system
performance.

Following tests in Chapter 2, we employ the same desired minimum and maximum gray

levels, namely:

X,..1)=10; X, (2) = 10;
X, (1) = 60; X, (2)=60; @.1)

where again, X represents desired minimum gray level; X represents desired maximum

d min d max

gray level; and parenthetical numbers (1) and (2) denote Camera 1 and Camera 2, respectively.

Transit Response Testing Procedure

Our transit response test consists of 100 cycles of image acquisition and control
adjustment started at prescribed initial conditions. We use the same standard vision target (Figure
2.2) used in the tests of Chapter 2. Each testing cycle consists of taking a picture of the vision
target, analyzing the image data, calculating actual minimum and maximum gray levels, and

updating the control parameters gain, offset, and threshold. Typically, each cycle requires

58

approximately 0.5 seconds of real time for execution, such that the length of each transient
response test is approximately 50 seconds. The testing procedure is as follows:
1. Warm Up.

Due to different performances of controllers and cameras, we allow 100 cycles for each
controller-camera combination to warm up, such that each has enough time to reach the same
prescribed initial state before the transit response test begins. The parameters specified for the

prescribed initial state are:
Xl'rnin(l)=60; X.mn{2)=60,
X max (1) =90; X max (2) = 90; (4.2)

where: X, .= represents the desired initial minimum gray level; X, = represents the desired

n X

initial maximum gray level; and parenthetical numbers (1) and (2) denote Camera 1 and Camera
2, respectively.
2. Transit from Initial State to Desired Final State

After operating for 100 cycles and the control system having reached the desired initial
state, the inputs of desired minimum and maximum gray levels are adjusted as step inputs to the
desired final states of 10 and 60, respectively, and the controllers are allowed to bring the actual
minimum and maximum gray levels to a final steady state. This period of control action is run for
100 cycles, during which no intentional disturbances are introduced. During this period, the ISE

is calculated over the entire time period using the following relationships:

Ty
s = [(X yn ~ X i)l 43)
7,
s
1 2
I, = 7 !(de - X,)%di (4.4)
I:= Irrl.in+ Imax {45)

59

where: I, is the ISE for minimum gray level; I is ISE for maximum gray level; I is the

max

sum of the integral square error of both minimum and maximum gray levels; X and

d min

X 4 max Tepresent desired minimum and maximum gray levels; X . and X __ are the actual

d max
minimum and maximum gray levels of the vision image; and Tf is the testing time in minutes.
I, is used as an overall quantitative of measure of control system performance, with the smallest
value of I, being the best.

Steady State Response Testing Procedure

The Steady State Response Test is a 10-minute test with intentional ambient lighting
disturbances applied. We use actual time to measure duration of this test, because the intentional
ambient lighting disturbances can be easily controlled over time. The ISE is calculated on line
through this test as we did in transit response test. To initiate the test, we first apply the controller
to the system to force minimum and maximum gray levels to 10 and 60, respectively. After the
system reaches steady state, we begin the 10-minute test during which intentional ambient
lighting disturbances are introduced. In order to simulate ambient lighting change, we used the
same method as in Chapter 2. By quickly covering one or two fluorescent light tubes inside the
light box with an elongated cardboard tent-shaded piece extending the entire length of the
fluorescent tubes, we could repeatedly produce step decreases in lighting intensity. Quickly
removing this covering produced a repeatable step increase in lighting intensity. Our schedule for

lighting changes was as follows:

0 — 2 minutes No cover over the lighting tubes;

2 — 4 minutes Cover | lighting tube out of 2 each side;
4 — 6 minutes No cover over the lighting tubes;

6 — 8 minutes Cover 2 lighting tubes out of 2 each side;
8 — 10 minutes No cover over the lighting tubes;

60

During the Steady State Test, both minimum and maximum gray levels were monitored and
integral square error ISE was calcnla}cd according to Equations (4.3 — 4.5).
Testing Results
According to the testing procedures discussed in the previous section, each controller was
evaluated during transit and steady state response tests while the ISE value was calculated.
Results will be presented in the following order:
1. Fuzzy Logic 1 Controller (FL1C)
2. Fuzzy Logic 2 controller (FL2C)
3. Fuzzy-Integral Controller (F(E+D)+I)
4. Fuzzy-Integral-Derivative Controller (FID)
5. Proportional-Integral-Derivative Controller (PID)

Fuzzy Logic 1 Controller

As given in Chapter 3, the FL1C is a linguistic rule base, two layer, double-input, double-
output fuzzy logic controller (Chen, 1996). Figures 4.1 (a) and (b) show the transit response of
minimum and maximum gray levels for both cameras. As we can see, the minimum gray level is
forced to the desired value of 10 from the prescribed initial value of 60, while the maximum gray
level is forced to desired value of 60 from the prescribed initial state of 90. Figures 4.2 (a), (b),
and (c) show the transit response plots of control variables gain, offset, and threshold,
respectively. During the transit period for cameras 1 and 2, respectively, gain increased by 99 (64
to 163) and 135 (109 to 244), offset decreased by 72 (134 to 62) and 82 (122 to 40), and threshold
decreased by 39 (74-35) and 41 (73-32), values required to bring about these gray level changes.
Observe that due to the relatively slow change of control variables shown in Figures 4.2 (a), (b),
and (c), the minimum and maximum gray levels also change slowly during transit response
period. Approximately 55 testing cycles are required for the minimum gray level to reach 10,

while about 15 cycles are required to bring the maximum gray level to 60. Such slow transit

61

MINIMUM GRAY LEVEL

| —— Xmin(1) - Xmin(2) |

20 30 40
TIME (seconds)

MAXIMUM GRAY LEVEL

=
o

8

8 8

(a)
Minimum Gray Level Transit Response

—Xmax(1) ------. Xmax(2) |

20 30 40
TIME (seconds)

(b)
Maximum Gray Level Transit Response

Figure 4.1 FL1C

62

GAIN

250
200
150
100

50

10

20 30

40

TIME (seconds) ‘

gain-cami

()

Gain Transit Response

OFFSET

THRESHOLD

L=}

10

20 30
TIME (seconds)
(b)

Offset Transit Response

o

10

20 30

TIME_ (_seconds) [

(c)
Threshold Transit Response

Figure 4.2 FL1C

40

1h_r_-carn1

60
_lhr-cam.?

response is likely unacceptable for this application. The sum of integral square errors, I, is

23825 and 25227 for Camera 1 and 2, respectively.

Figures 4.3 (a) and (b) show the dynamic responses of minimum and maximum gray
levels during the steady state responses tests. In Figure 4.3 (a), when lighting tubes were covered
at 2 and 6 minutes, the minimum gray levels of both Camera 1 and 2 fell to 0, and then recovered
more slowly to 10. When the lighting tubes were uncovered at 4 and 8 minutes, the minimum
gray levels of Camera | and 2 reached approximately 35 and 57, respectively, and recovered
more slowly to 10. In Figure 4.3 (b), when lighting tubes were covered at 2 and 6 minutes, the
maximum gray levels of Camera 1 and 2 fell to 35 and 10, respectively, then recovered to 60
slowly. When the lighting tubes were uncovered at 4 and 8 minutes, the maximum gray levels of
both cameras reached about 88 and 112, respectively, and then recovered more slowly to 60.
Figures 4.4 (a), (b), and (c) show the dynamic responses of the control variables of gain, offset,
and threshold, respectively. We note that during the time of ambient lighting change, when the
tubes were covered and uncovered at 2, 4, 6, and 8 minutes, the control variables gain and offset
reached new steady plateaus, while threshold returned to a nominal value between 30 and 40.
When one lighting tube was covered at 2 to 4 minutes, for cameras 1 and 2, respectively, gain
decreased by 3 (173 to 170) and 33 (219 to 252), offset increased by 24 (59 to 83) and 11 (49 to
60), while threshold increased by 4 (33 to 37) and 2 (35 to 37). When two lighting tubes was
covered at 6 to 8 minutes, for cameras 1 and 2, respectively, gain increased by 12 (173 to 185)

and 22 (231 to 253), offset increased by 40 (59 to 99) and 33 (46 to 79), while threshold
decreased by 2 (34 to 32) and 0. The summed integral squared error, /_, was 4331 for Camera |
and 4003 for Camera 2.

Compare the steady state response results with those in Chapter 2 where no control was
added to the vision system. In Figure 2.5 and 2.6, when the lighting tubes were covered during 2

to 4 minutes and 6 to 8 minutes, the minimum gray levels of both cameras fell to 0 and the

| ———Xmin(1) ------. Xmin(2)

20

-l
w
>
w
wd
>
<
o
o
=
2
=
<
=
2 4 6 8 10
TIME (minutes)
(a)
Minimum Gray Level Steady State Response
[——Xmax(1) ---.... Xmax(2) |
120
|, 100
w
>
4 80
<
0
o©
=
=
= 40
=

2 4 6 8 10
TIME (minutes)

S |
(b)
Maximum Gray Level Steady State Response

Figure 4.3 FL1C

65

GAIN

4 6 8 10

o
L]

TIME (minutes) \——gain-cami - - - - - gain-cam2

(@)
Gain Steady State Response

-
w
w
[T
w
o
0 2 4 6 8 10
TIME (minutes) 1 off-cam1 ------. off-cam2
(b)
Offset Steady State Response
90
80
70
g 60
T 50
@ 40
£ 30
F 20
10
0 :
0 2 4 6 8 10
- TME(minutesy —_trecami - - thre-cam2 |
(c)

Threshold Steady State Response

Figure 4.4 FL1C

maximum gray levels fell to 45 and lower, and did not recover. It is obviously that the FL1C
offers a large improvement in maintaining actual gray levels close to desired gray levels and is
reasonably robust to disturbances.

Fuzzy Logic 2 Controller

As we discussed in Chapter 3, the Fuzzy Logic 2 Controller is a linguistic rule base, three
layer, double-input, double-output fuzzy logic controller. We designed it to cover a much wider
range of disturbances than FL1C, and to give faster response to large disturbances.

Figure 4.5 (a) and (b) show the transit response of minimum and maximum gray levels. It
can been seen that the minimum and maximum gray levels for cameras 1 and 2, respectively,
were forced to 10 and 60 from the prescribed initial states of 60 and 90, respectively. Figures 4.6
(a), (b), and (c) show the transit response plots of control variables gain, offset, and threshold.
During the transit period, for camera 1 and 2, respectively, gain increased by 107 (58 to 165) and

142 (103 to 245), offset decreased by 61 (123 to 62) and 70 (111 to 41), and threshold decreased

by 40 (75-35) and 40 (74-34). The sum of integral square error, I_, is 6994 for camera 1 and

7639 for camera 2, respectively, a factor of 3 smaller than for the FL1 controller.

Compared to the transit response of the FLI1C, the control variables gain, offset, and
threshold responded much faster, such that minimum gray level reached 10 from 60 in only 30
cycles and maximum gray level fell below 60 in only 4 cycles, much less than for FL1C. Also it
took A larger gain increase and less offset decrease for FL2C to make this happen, compared with
FLIC. Notice that due to large corrections required, the maximum gray level exhibited undershot,
and reached 60 in approximately 25 cycles.

Figures 4.7 (a) and (b) show the dynamic responses of minimum and maximum gray
levels during the steady state responses tests. In Figure 4.7 (a), when lighting tubes were covered
at 2 and 6 minutes, the minimum gray levels of both Cameras 1 and 2 fell to 0 and then recovered

to 10. When the lighting tubes were uncovered at 4 and 8 minutes, the minimum gray levels of

67

; — Xmin(1) ... Xmin(2)

-
w
>
w
-
>-
<
o«
G
=
o
=
Z
=
0 10 20 30 40 50 60
TIME (seconds)
()
Minimum Gray Level Transit Response

- [—— e — Xmax(2) |

110 -
_, 100
w
>
4 90
>
<
G 80
=
S
= 70
3

60

50 |

10

20 30 40 50 60
TIME (seconds)

_(b) [

Maximum Gray Level Transit Response

Figure 4.5 FL2C

68

GAIN

0 10 20 e i o o
TIME (seconds) I gaincam? -----.. gain-cam2 |

(a)

Gain Transit Response

140
120 -
E 100
¢S 8o
TN
© 60
40
20 | ,
0 10 20 30 40 50 60
TIME (seconds) off-cam? off-cam2
(b)
Offset Transit Response
90
80 -
g 70
% 60
E 50
W |
20
0 10 20 30 0 40 50 60
| ——thrcam1 th
: Ul S e Mt b)
(©)
Threshold Transit Response
Figure 4.6 FL2C

69

Camera 1 and 2 reached about 33 and 55, respectively, and recovered to 10. In Figure 4.7 (b),
when lighting tubes were covered at 2 and 6 minutes, the maximum gray levels of both Cameras
I and 2 fell to 40 and 25, respectively, then recovered to 60. When the lighting tubes were
uncovered at 4 and 8 minutes, the maximum gray levels of Cameras 1 and 2 reached about 88 and
110, respectively, and recovered to 60. Observe that due to the large corrections of this system,
minimum gray levels had an over shot at 6 minutes when two tubes on both sides of the FOV
were covered, and an undershoot at 8 minutes when the lighting tubes were uncovered. Figures
4.8 (a), (b), and (c) show the dynamic responses of the control variables of gain, offset, and
threshold, respectively. During the time of ambient lighting change, when the lighting tubes were
covered and uncovered at 2, 4, 6, and 8 minutes, the control variables gain, offset, and threshold
changed rapidly and reached new steady plateaus,, such that the minimum and maximum gray
levels responded faster than that for the FL1 controller. When one lighting tube was covered at 2
to 4 minutes, for cameras 1 and 2, respectively, gain increased by 7 (from 61 to 68) and 33 (from
212 to 245), offset increased by 14 (from 114 to 128) and 11 (from 49 to 60), while threshold
decreased by 10 (from 40 to 30) and 2 (from 36 to 38). When two lighting tubes were covered at
6 to 8 minutes, gain increased by 96 (from 70 to 166) and 41 (from 211 to 252), offset increased
by 23 (from 109 to 132) and 29 (from 49 to 78) for Cameras 1 and 2, respectively, while

threéhold decreased by 18 (from 40 to 22) and 2 (from 36 to 38) for Camera | and 2, respectively.

The sum of integral square error, I, is 1739 for Camera 1 and 1024 for Camera 2. These values

are smaller by a factor of 3 than those for FL1C.
Compared to FL1C, larger changes of gain and threshold, and less change of offset were required

for FL2C to force the minimum and maximum gray levels to desired values. The response speed

of FL2C was faster, with smaller / values than that for FL1C. Due to the large corrections in the

control variables, the minimum gray level had an overshoot at 6 minutes when two tubes on both

70

MINIMUM GRAY LEVEL

———Xmin(1) ... Xmin(2)

2 4 6
TIME (minutes)

MAXIMUM GRAY LEVEL

(a)
Minimum Gray Level Steady State Response

2 4 6
TIME (minutes)

(b)
Maximum Gray Level Steady State Response

Figure 4.7 FL2C

71

GAIN

300

200

150

100

50
4

TIME (minutes)

o -

6

=

gain-cam1_

()
Gain Steady State Response

OFFSET

160
140
120
100
80
60
40
20

2

o

4 6

TIME (minutes)

THRESHOLD

(b)
Offset Steady State Response

4

TIME (minutes)

(c)
Threshold Steady State Response

Figure 4.8 FL2C

offcam1

- offcam2 |

sides of the FOV were covered, and an undershoot at 8 minutes when the lighting tubes were
uncovered, which is unexpected.

In general, based on above testing results, FL2C responded much faster than FL1C and
with a smaller I, value. It is the better choice of the two for this vision system.

Fuzzy-Integral controller

F(E+D)+I is a double-input, double-output controller. It takes advantages of both fuzzy
logic and conventional PID control actions. Figures 4.9 (a) and (b) show the transit response of
minimum and maximum gray levels. As we can see, for cameras | and 2, respectively, the
minimum and maximum gray levels are forced to 10 and 60 from the prescribed initial states of
60 and 90, respectively. Figures 4.10 (a), (b), and (c) show the transit response plots of control
variables gain, offset, and threshold. During the transit period, for cameras | and 2, respectively,
gain increased by 28 (113 to 141) and 116 (84 to 200), offset decreased by 57 (128 to 71) and 64

(120 to 56), and threshold decreased by 40 (75-35) and 41 (75-34). The I, values reached 12780

for Camera 1 and 8834 for Camera 2, larger than for the FL2 controller, but much smaller than
for the FL1 controller.

Compared to the FL1C and FL2C, the F(E+D)+I controller responded even faster, such
that it only took 12 cycles for both minimum and maximum to reach desired values. Also it took

less gain increase and less offset decrease for FL2C to make this happen. But due to the large
overshoot of maximum gray level occurring during cycles 1 to 5 showed in Figure 4.9 (b), the I,

values was larger than that for FL2C, but still much smaller than that for FL1C.

Figure 4.11 (a) and (b) show the dynamic response of minimum and maximum gray levels during
the steady state responses tests. In Figure 4.11 (a), when lighting tubes were covered at 2 and 6
minutes, the minimum gray levels of both Camera 1 and 2 fell to 0, and then recovered to 10.
When the lighting tubes were uncovered at 4 and 8 minutes, the minimum gray levels of both

cameras reached about 33 and 52, respectively, and recovered to 10. In Figure 4.11 (b), when

73

MINIMUM GRAY LEVEL

|
o

=]
o

9]
(=}

F-9
[~}

w
(=]

nN
o

—
o

o

——Xmin(1) - xmin(2)

20 30 40
TIME (seconds)

MAXIMUM GRAY LEVEL

110

:

70

(a)
Minimum Gray Level Transit Response

20 30 40
TIME (seconds)

(b)
Maximum Gray Level Transit Response

Figure 4.9 F(E+D)+I Controller

74

250

200
Z 150
<
O 100
50
0- :
0 10 20 30 40 50 60
TIME (seconds) — gair{-cémq —— _gainﬁamz_
(a)

THRESHOLD

o

Gain Transit Response

20 30 40 50 60

off-cam1 ------ off-chmé |'

TIME (seconds)

(b)
Offset Transit Response

10

20 30 40 50 _@
thrcam1 -...... thrcam2

TIME (seconds)

()
Threshold Transit Response

Figure 4.10 F(E+D)+I Controller

75

lighting tubes were covered at 2 and 6 minutes, the maximum gray levels of Cameras 1 and 2 fell
to 50-40 and 30-20, respectively, then recovered to 60. When the lighting tubes were uncovered
at 4 and 8 minutes, the maximum gray levels of both cameras reached about 80-85 and 108,
respectively, and recovered to 60. Figure 4.12 (a), (b), and (c) show the dynamic responses of
control variables of gain, offset, and threshold, respectively. During the time of ambient lighting
change, when the lighting tubes were covered and uncovered at 2, 4, 6, and 8 minutes, the control
variables gain and offset changed even faster than that for FL2C, such that the minimum and
maximum gray levels responded faster than that for FL1C and FL2C. When one lighting tube was
covered at 2 to 4 minutes, for Cameras 1 and 2, respectively, gain increased by 41 (66 to 107) and
44 (188 to 232), offset increased by 15 (110 to 125) and 6 (59 to 65), while threshold decreased
by 5 (39 to 34) and 1 (36 to 37) for Camera 1 and 2. When two lighting tubes were covered at 6 to
8 minutes, gain increased by 61 (71 to 132) and 58 (194 to 252), offset increased by 23 (107 to

130) and 24 (57 to 81) for Cameras 1 and 2, respectively, while threshold decreased by 15 (40 to

25) and 2 (36 to 38) for Cameras 1 and 2, respectively. The integral square error, /_, was 887 for

camera 1 and 997 for camera 2 in this steady state response test.

Compared to results for the FL1C and FL2C, larger changes of gain and threshold were
required, together with a smaller change of offset for F(E+D)+l to overcome the lighting
disturbances. However, about same levels of control variable changes were required for the

F(E+D)+I and FL2C during the steady state response tests. The response speed of F(E+D)+I was

aster, with smaller values of I than that for FL1C and FL2C. We conclude that the F(E+D)+I

controller works better than the Fuzzy Logic 1 and 2 Controllers as far as steady state response is
concemed. It gives faster transit response, but the large overshoot of maximum gray level in

transit response testing was unexpected.

76

MINIMUM GRAY LEVEL

I

———Xmin(1) -+~ Xmin(2)

0 2 4 6
TIME (minutes)

(a)
Minimum Gray Level Steady State Response

MAXIMUM GRAY LEVEL

- [—r—

120

100 -

20
0 2 4 6
TIME (minutes)

(b)
Maximum Gray Level Steady State Response

Figure 4.11 F(E+D)+I Controller

77

GAIN

(=]
n

4 6 8 10
gain-cami - - - - - gain-cam2

TIME (minutes)

(a)
Gain Steady State Response

140
120
. 100
g 8
w 60
(o]
40 |
& |
0 1
0 2 4 6 8 10 |
off ----- offcam2 |
TIME (minutes) — L o
(b)
Offset Steady State Response
50
40
3
2 30
w
T 20 -
I
F 10
0 L
| thre-cam1 - - - - - thre-cam2 |
TIME (minutes)
(c)

Threshold Steady State Response

Figure 4.12 F(E+D)+I Controller

Fuzzy-Integral-Derivative Controller

The FID controller is another control method designed in this work, which used both
fuzzy logic control technique and PID control technique. The fuzzy part used in this design is a
SISO system. This is different from FL1, FL2, and F(E+D)+I controllers.

Figures 4.13 (a) and (b) show the transit response of minimum and maximum gray levels.
As we can see, the minimum and maximum gray levels are forced to 10 and 60 from the
prescribed initial state 60 and 90, respectively. Figures 4.14 (a), (b), and (c) show the transit
response plots of control variables gain, offset, and threshold. During the transit period, for
Cameras I and 2, respectively, gain increased by 28 (112 to 140) and 56 (150 to 206), offset
decreased by 57 (129 to 72) and 64 (119 to 55), and threshold decreased by 40 (75-35) and 41
(75-34).

Comparing to the other 3 controllers discussed previously, the FID controller has faster
transit response than FL1C and FL2C, and just slightly slower transit response than the F(E+D)+]
controller. It took less gain change than the other 3 controllers to make this happen during the
transit period. The offset change is smaller than that of FL1C, and about the same as that for the
FL2 and F(E+D)+I controllers, while the threshold change is about the same for all 4 controllers.
Observe that there is a large overshot of maximum gray levels for both Cameras 1 and 2, which is
even worse than for the F(E+D)+I controller as far as Camera 2 is concerned. This yielded values

of I, of 13285 for Camera 1 and 15604 for Camera 2, which are higher than those for the

F(E+D)+I and FL2 controllers, but still lower than that for the FL1 controller.

Figure 4.15 (a) and (b) show the dynamic responses of minimum and maximum gray levels
during the steady state responses tests. In Figure 4.15 (a), when lighting tubes were covered at 2
and 6 minutes, the minimum gray levels of both Cameras 1 and 2 fell to 0, and then recovered to
10. When the lighting tubes were uncovered at 4 and 8 minutes, the minimum gray levels of both

cameras reached about 33 and 45, respectively, and recovered to 10. In Figure 4.15 (b), when

79

MINIMUM GRAY LEVEL

———Xmin(1) -+ Xmin(2)

Maximum Gray Level Transit Response

Figure 4.13 FID Controller

80

0 10 20 30 40 50 60
TIME (seconds)
(a)
Minimum Gray Level Transit Response
—Xmax(1) - ----.. Xmax(2) | j'

110 -
_, 100
w
2 |
- 90
>
&
G 80
=
>
= 70
= 60

50

0 10 20 30 40 50 60
TIME (seconds)
(b)

o

10 20 30 40 50 60

— gain-camt - - - - - - gain-cam2
TIME (seconds) : = !

(a)

Gain Transit Response

[0 10 20 30 40 50 60
off-cam1 - ---- off-cam2
L TIME (seconds) e — ———
(b)
Offset Transit Response

THRESHOLD

0 10 20 30 40 50 60 ’

! thr-cam1 - --- - thr-cam2 |
' TIME (seconds) DRI |l B b

(©)
Threshold Transit Response

Figure 4.14 FID Controller

lighting tubes were covered at 2 and 6 minutes, the maximum gray levels of both Cameras | and
2 fell to 5040 and 2540, respectively, then recovered to 60 quickly. When the lighting tubes
were uncovered at 4 and 8 minutes, the maximum gray levels of both cameras reached about 80
and 95-105, respectively, and recovered quickly to 60. Figures 4.16 (a), (b), and (c) show the
dynamic responses of control variables of gain, offset, and threshold, respectively. During the
time of ambient lighting change, when the lighting tubes were covered and uncovered at 2, 4, 6,
and 8 minutes, the control variables gain and offset changed very fast, such that the minimum and
maximum gray levels responded faster than for FL1C and FL2C. When one lighting tube was
covered at 2 to 4 minutes, for Cameras 1 and 2, respectively, gain decreased by 12 (120 to 108)
and 35 (196 to 231), offset increased by 23 (83 to 106) and 9 (58 to 67), while threshold
decreased by 1 (37 to 38) (36 to 37). When two lighting tubes were covered at 6 to 8 minutes, for
Cameras | and 2, respectively, gain increased by 15 (120 to 135) and 58 (196 to 254), offset

increased by 33 (83 to 116) and 23 (58 to 81), while threshold decreased by 5 (37 to 32) and 2 (36

to 38). The integral square error, /_, was 759 for Camera 1 and 818 for Camera 2.

Compared to the steady state responses tests of the other 3 controllers discussed
previously, the minimum and maximum gray levels in the FID control system responded faster
than for the FL1C and FL2C, and about the same as for the F(E+D)+I controller. The change of
gain was larger than that of FL1C and less than that of FL2C as well as F(E+D)+I, while change

of threshold was less than that of FL1C and larger than that of FL2C and F(E+D)+]. The integral

square error, /_, was the smallest one among the 4 controllers. Based on the steady response test,

the FID controller is better than the other 3 controllers discussed previously. On the other hand,
for the transit response test it is better than FL1C and FL2C, but not as good as the F(E+D)+I

controller. The large overshot of maximum gray level, in transit response testing, is undesirable.

82

MINIMUM GRAY LEVEL

— Xmin(1) ------ Xmin(2)

0 2 4 6 10
TIME (minutes)
(a)
Minimum Gray Level Steady State Response
- | ——— Xmax(1) ------- Xmax(2) |
120

—
g8 8

MAXIMUM GRAY LEVEL
3

2 4 6
TIME (minutes)

(b)
Maximum Gray Level Steady State Response

Figure 4.15 FID Controller

83

GAIN

0 2 4 6 8 10

TIME (minutes) ——gaincam1 gain-cam2

(@)
Gain Steady State Response

140
120
100

80

OFFSET
3

40 -
20

0 2 4 6 8 10
TIME (minutes)

(b)
Offset Steady State Response

THRESHOLD

0 2 4 6 8 10
TIME (minutes)

()
Threshold Steady State Response

Figure 4.16 FID Controller

84

PID Controller

PID control is powerful, relatively simple to design and easy to implement. It takes
advantages of proportional, integral, and derivative control action, and is easy to tune, even
without a model of the process to be controlled. While the PD portion gives fast response, the
integral action handles steady state error, such that the overall performance of the controller is
increased significantly.

Figures 4.17 (a) and (b) show the transit response of minimum and maximum gray levels.
As we can see, the minimum and maximum gray levels are forced to 10 and 60 from the
prescribed initial state 60 and 90, respectively. Figure 4.18 (a), (b), and (c) show the transit
response plots of control variables gain, offset, and threshold. During the transit period, for
Cameras I and 2, respectively, gain increased by 54 (82 to 136) and 78 (119 to 197), offset
decreased by 33 (106 to 73) and 38 (96 to 58), and threshold decreased by 40 (76-36) and 40 (76-
36).

Compared to the other 4 controllers discussed previously, the PID controller had the
fastest transit response of these 5 controllers, requiring less than 10 cycles for the system to reach
desired minimum and maximum gray levels. It required the smallest offset changes among all 5
controllers during the transit period. The gain changes were less than for the FL1C, FL2C, and
F(E+D)+I1, and just slightly larger than that of FID, while the threshold changes were about the

same as for the other 4 controllers. It overcame the large overshoot problem of the F(E+D)+I and
FID controllers and the undershoot problem of the FL2C. The I, value for the PID control

system was only 4622 for Camera 1 and 4627 for Camera 2, which were the lowest for these 5
controllers.

Figures 4.19 (a) and (b) show the dynamic responses of minimum and maximum gray
levels during the steady state responses tests. In Figure 4.19 (a), when lighting tubes were covered

at 2 and 6 minutes, the minimum gray levels of both Camera | and 2 fell to 0, and recovered to 10

85

MINIMUM GRAY LEVEL

R T S Xmin(2)

0 10 20 30 40 50 60

TIME (seconds)
(a)
Minimum Gray Level Transit Response
|—— Xmax(1) - Xmax(2) |

110
_ 100
T}
o
-4 90
>
&
o 80
=
>
g 70
= 60

50 '

0 10 20 30 40 50 60
TIME (seconds)
(b)

Maximum Gray Level Transit Response

Figure 4.17 PID Controller

86

GAIN

10 20 30 40 50 60
TIME (seconds) gaincami .-..... gain-cam2 I
(a)
Gain Transit Response

140
120

o -

10

20 30 40

0 50 60
TIME (seconds) offcamt -...... off<cam?2 ‘ ‘
(b)
Offset Transit Response

THRESHOLD

10

20 30 40

TIME (seconds) | —thrcam1

(c)
Threshold Transit Response

Figure 4.18 PID Controller

rapidly. When the lighting tubes were uncovered at 4 and 8 minutes, the minimum gray levels of
both cameras reached about 30 and 40-50, respectively, and recovered to 10 quickly. In Figure
4.19 (b), when lighting tubes were covered at 2 and 6 minutes, the maximum gray levels of both
Camera 1 and 2 fell to 45 and 30 respectively, then recovered to 60 quickly. When the lighting
tubes were uncovered at 4 and 8 minutes, the maximum gray levels of both cameras reached
about 75-80 and 100, respectively, and recovered quickly to 60. Figure 4.20 (a), (b), and (c) show
the dynamic responses of control variables of gain, offset, and threshold, respectively. During the
time of ambient lighting change, when the lighting tubes were covered and uncovered at 2, 4, 6,
and 8 minutes, the control variables gain and offset changed very fast and reached new steady
plateaus, while threshold returned to a nominal value around 40. When one lighting tube was
covered at 2 to 4 minutes, for Cameras 1 and 2, respectively, gain decreased by 9 (87 to 78) and
31 (189 to 220), offset increased by 19 (99 to 118) and 9 (59 to 68), while threshold decreased by
2 (39 to 37) and 1 (37 to 38). When two lighting tubes were covered at 6 to 8 minutes, gain
increased by 29 (89 to 118) and 53 (190 to 243), offset increased by 27 (98 to 125) and 23 (60 to
83), while threshold decreased by 9 (39 to 30) and 2 (37 to 39) for Cameras 1 and 2, respectively.

Compared to the steady state responses of the other 4 controllers, the PID controller had
the fastest response speed without overshoot or undershoot. The offset changes needed were less
than for FL1C, and about the same as for FL2C, F(E+D)+], and FID. The gain changes were

slightly larger than for FL1C, and about the same as for FL2C, F(E+D)+I, and FID, while the
threshold changes were about the same. The integral square error, I, was 539 for Camera 1 and

714 for Camera 2. These values are the smallest of the 5 controllers. Based on these results for
both transit and steady state response, the PID controller designed in this work is the best one for

this application.

88

—Xmin(1) ------. Xmin(2)

MINIMUM GRAY LEVEL

0 2 4 6 8 10
TIME (minutes)

(2)
Minimum Gray Level Steady State Response

120

100

60

40

MAXIMUM GRAY LEVEL

20

0 2 4 6 8 10
TIME (minutes)

(b)
Maximum Gray Level Steady State Response

Figure 4.19 PID Controller

89

GAIN

2 4 6

8

10

TIME (minutes)

gain-cam1

--gain-cam2]|

OFFSET

120

(2)
Gain Steady State Response

2 4 6

TIEM (minutes)
(b)

Offset Steady State Response

THRESHOLD

38 8 8

o

o

2 4 6

[
TIME (minutes)

- (c)

—thre-cam1

Threshold Steady State Response

Figure 4.20 PID Controller

Summary
In this chapter, two tests were conducted on each controller designed in this work, a
transit response test, and a steady state response test. While individual response has already been

presented in this chapter, appendix A present these responses overlap with each other for easier
comparison. The summed integral squared error I, was calculated for each test. These results
provided good indication of how well each controller functioned and which one is the best for this

application. While the plots of the output variables X X and control variables gain,

min * max
offset, and threshold in both tests were presented during the discussion, we summarize the values

for I_ in Table 4.1 and 4.2, while the peak changes of control variables gain, offset, and

threshold are summarized in Table 4.3 and 4.4.

Table 4.1

I, for Transit Response Test

Controller FL1C FL2C |F(E+D)+1 FID PID
Camera

1 23825 6994 12780 13285 4622

2 25227 7639 8834 15604 4627

Table 4.2
I for Steady State Response Test

ontroller | FLIC FL2C |F(E+D)+I FID PID
Camera

1 4331 1739 887 759 539

2 4003 1024 997 818 714

Table 4.3

Peak Control Variable Changes for Transit Response Test

-w FL1C FL2C F(E+D)+I FID PID
Camera

AG 1 09(64-163) | 107(58-165) | 28(113-141) | 28(112-140) | 54(82-136)
AG 2 135(109-244)| 142(103-245) | 116(84-200) | 56(150-206) | 78(119-197)
AO 1 -72(134-62) | -61(123-62) | -57(128-71) | -57(129-72) | -33(106-73)
AO 2 -82(122-40) | -70(111-41) | -64(120-56) | -64(119-55) -38(96-58)
AT 1 -39(74-35) -40(75-35) -40(75-35) -40(75-35) -40(76-36)
AT 2 41(73-32) -40(74-34) -41(75-34) -41(75-34) -40(76-36)

where: AG = Gain change; AO = Offset change; AT = Threshold change; - means decrease.

Table 4.4

Peak Control Variable Changes for Steady State Response Test

w FLIC FL2C F(E+D)+I FID PID
Camera
AG| One 1 3(173-170) | 7(61-68) | 41(66-107) |-12(120-108)] -9(87-78)
tube 2 33(219-252) | 33(212-245)| 44(188-232) | 35(196-231) | 31(189-220)
AG| Two 1 12(173-185) | 96(70-166) | 61(71-132) | 15(120-135)| 29(89-118)
Tube 2 22(231-253) | 41(211-252)| 58(194-252) | 58(196-254) | 53(190-243)
AO| One 1 24(59-83) | 14(114-128)| 15(110-125) | 23(83-106) | 19(99-118)
tube 2 11(49-60) | 11(49-60) | 6(59-65) 9(58-67) | 9(59-68)
AO| Two 1 40(59-99) |23(109-132)| 23(107-130) | 33(83-116) | 27(98-125)
Tube 2 33(46-79) | 29(49-78) | 24(57-81) | 23(58-81) | 23(60-83)
AT | One 1 4(33-37) -10(40-30) -5(39-34) 1(37-38) -2(39-37)
tube 2 2(35-37) 2(36-38) 1(36-37) 1(36-37) 1(37-38)
AT | Two 1 2(34-32) | -18(40-22) | -15(40-25) | -5(37-32) | -9(39-30)
Tube 2 0(36-36) 2(36-38) 2(36-38) 2(36-38) 2(37-39)

92

where: One Tube = cover one lighting tube each side; Two Tube = cover two lighting tubes each

[15% L}

side; an means decrease.
For the transit response tests, the PID controller brought the output variables from the
prescribed initial state (60 for minimum and 90 for maximum) to the desired final state (10 for

minimum and 60 for maximum) at the fastest rate without overshoot or undershoot and with the
smallest value for I . It required the smallest offset changes among all these 5 controllers during

the transit period. The gain changes were less than for FLIC, FL2C, and F(E+D)+I, and just
slightly larger than that of FID, while the threshold changes were about the same as for the other
4 controllers, as listed in Table 4.3. We judge it the best, by far, for this test. Based on the plots of
minimum and maximum gray levels, the FID and F(E+D)+I controllers are faster than FL2C from
the prescribed initial state to the desired final state. However, due to the large overshoot that
occurred in the maximum gray level transit response, the I, values for the FID and F(E+D)+I
controllers in Table 4.1 are much larger than that for the FL2 Controller. Among these 5

controllers, the FL1 Controller had the slowest transit response with highest I value, and was

judged the worst.

For steady state response tests, when ambient lighting changed at 2, 4, 6, and 8 minutes,
the PID controller exhibited the fastest correction with control variables gain, offset, and
threshold, such that the minimum and maximum gray level outputs were forced to recover from
disturbances to desired values in the least time. And as indicated in Table 4.2, the I value for
the PID controller is the lowest of the 5 controllers. The offset changes needed were less than for
FLIC, and about the same as for FL2C, F(E+D)+], and FID. The gain changes were slightly
larger than for FL1C, and about the same as for FL2C, F(E+D)+], and FID, while the threshold
changes were about the same, as listed in Table 4.4. Again the PID controller was the best as far
as speed of response and robustness are concerned. The FID and F(E+D)+I controllers showed

better performance than FL2 Controller for the steady state response test. Again, the FLI

93

Controller exhibited the slowest response to all ambient lighting disturbances and had the highest
I value as listed in Table 4.2. In summary, the PID controller designed in this work is the best

choice for our dishwashing automation system, based on both transit response and steady state

response tests.

94

CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

The goal of this research was to analyze CCD camera performance dynamics and develop
a good controller to implement automatic and continual calibration of the cameras in real time.
Two tests were conducted in order to evaluate the camera performance dynamics. One was a 55-
minute long term test without ambient lighting disturbances; the other was a 10-minute short term
test with ambient lighting disturbances applied intentionally. Five different controllers were
designed using conventional PID and fuzzy logic control techniques. Two tests were used to
evaluate the performance of each controller, a transit response and a steady state response test.
The integral square error (ISE) was calculated on line during each test and gave a quantitative
indication of performance. Following are the major contributions of this work together with some

recommendations.

Conclusions

1. Without control, the minimum and maximum gray levels for two tested CCD cameras shifted
away from the desired initial setting (in this experiment 10 for minimum and 60 for
maximum) over time, even without large disiurbances in ambient lighting. The variations
were unacceptable for high quality, repeatable imaging.

2. With substantial disturbances in lighting intensity introduced, the minimum and maximum
gray levels changed dramatically if no control was applied. The larger the lighting
disturbance, the larger was the variation in gray level. The variations were unacceptable for

high quality, repeatable imaging.

95

3. Five camera controllers were proposed and implemented to realize automatic and continual
adjustment of the camera parameters “gain”, “offset”, and “threshold” to compensate for
power fluctuation, changes in ambient lighting, and camera sensitivity drift in our machine
vision system. These controllers were:

* Fuzzy Logic 1 Controller (FL1C)

e Fuzzy Logic 2 Controller (FL2C)

e Fuzzy-Integral Controller (F(E+D)+I)

¢ Fuzzy-Integral-Derivative Controller (FID)

¢ Proportional-Integral-Derivative Controller (PID)

4. Each of these 5 controllers applied to the vision system improved the performance
significantly. Among these 5 controllers, the PID controller was the best for this machine
vision system, giving the fastest transit response without overshoot and undershoot, and
maintaining the highest robustness during the steady state test when intentional ambient
lighting disturbances were applied. The ISE value for the PID controller in both tests was the
smallest of the 5 controllers.

5. During the transit response test with the PID controller, the minimum and maximum gray
levels reached desired values quickly from preset initial states without any oscillation, as
shown in Figure 4.17. During the steady state response test, the PID controller reacted to
disturbances quickly, forcing the minimum and maximum gray levels back to desired values
without any oscillation, as shown in Figure 4.19. Moreover, the ambient lighting
disturbances, introduced during the steady state response test, were relatively large in
amplitude at a relatively high frequency (once per two minutes), which constituted much
worse conditions than that would likely ever occur in industry applications. Based on our
extensive test results, not all of which were documented herein, the PID control system

demonstrated very stable performance over time. All of these results give a high level of

96

confidence that the PID camera control system will exhibit good, stable behavior, even
though a separate stability analysis was not investigated in this work.
Recommendations
After investigating transit and steady state responses, and calculating the ISE value for
each controller, the PID controller appeared the best for this machine vision application.
Analyzing the control action of the PID controller during our steady state response test, as shown
in Figure 4.19 and 4.20, demonstrated that different levels of control action were needed to
overcome different intensity of disturbances, as expected. Larger ambient lighting disturbances
require larger control actions. If the disturbances are extremely large, the control action of one of
the parameters could reach its limit, such as 256 for gain, 255 for offset, or 127 for threshold. In
this case, control saturation would occur, and new control algorithms would need to be
investigated. Since the control action is determined by certain combinations of the control
parameters gain, offset and threshold, it may be possible to fix the parameter that reached its limit
and increase or decrease a preset increment on the other parameters according to an appropriate
algorithm. More experiments need to be done to address possible control saturation problems.
Moreover, in this research we did not address system stability for each control system, mainly
because we sought to find a reasonable controller without modeling camera dynamics. In order to
address system stability analytically, a model of the camera dynamics needs to be found, and

further investigation would be required.

97

10.

11.

12.

13.

BIBLIOGRAPHY

Adept V/V+ Programming Course Manual. (1991). Adept Technology, Inc. San Jose,
CA.

AdeptVision AGS-GV Programming Course Manual. (1991). Adept Technology, Inc.
San Jose, CA.

AdeptVision FGS User’s Guide. (1990). Adept Technology, Inc. San Jose, CA.

AdeptVision Reference Guide. (1990). Adept Technology, Inc. San Jose, CA.

. Brainard, D. H., Wandell, B. A., and Cowan, W. B. (1989). Black Light: How

Sensors Filter Spectral Variation of The Illuminant, /[EEE Trans. Biomedical
Engineering, 36 (1), 140-149.

Byler, E., Chun, W., Hoff, W., and Layne, D. (1995, March). Autonomous Hazardous
Waste Drum Inspection Vechicle, IEEE Robotics and Automation Magazine, 6-17.

Chang, Y. C. and Reid, J. F. (1996). RGB Calibration for Color Image Analysis in
Machine Vision, IEEE Trans. Image Processing, 5 (10), 1414-1422.

Chen, B., and Hoberock, L. L. (1995 August). Fuzzy Logic controller for Automatic
Vision Parameter Adjustment in a Robotic dish Handling System. In Proc. The 10"
IEEE International symposium on Intelligent Control, Monterey, CA.

Chen, B. (1996, May). Unsupervised and Supervised Fuzzy Neural Network
Architecture, With Applications in Machine Vision fuzzy Object recognition and
Inspection, Thesis, Oklahoma State University, Stillwater, OK.

Dorf, R. C., and Bishop, R. H. (1995). Modern Control Systems, 7 Edition, Addison
Wesley, Reading, MA.

Feng, K., and Hoberock, L. L. (1996 March). A Modified ARTMAP Network, With
Applications to Scheduling of A Robot-Vision-Tracking Systems, ASME Journal of
Dynamic Systems, Measurement, and Control, 118 (1).

Freeman, H. (1989). Machine Vision for Inspection and Measurement, Academic
press, Inc.

Gerald, C. F., and Wheatley, P. O. (1994), Applied Numerical Analysis, 5% Edition,
Addison Wesley, Reading, MA.

98

14.

15.

16.

7

18.

B

20.

21.

22,

23,

24.

25.

Gergenback, V., Nagel H. H., Tonko, M., and Schafer, K.(1996). Automatic
Dismantling Integration Optical Flow into a Machine Vision-Controlled Robot
System, Proceedings of the 1996 IEEEE International Conference on Robotics and
Automation, 2, 1320-1325. Minneapolis, Minnesota.

Grewe, L., and Kak, A. (1993). Integration of Geometric and Non-Geometric
Attributes for Fast Object Recognition, Proceedings SPID — The International Society
for Optical Engineering. Applications of Artificial Intelligence. 1993: Machine Vision
and Robotics, 1964, 13-28, Orlando, Florida.

He, D., Hujic, D., Mills, J. K., and Benhabib, B. (1996). Moving - Object
Recognition Using Premarking and Active Vision, Proceedings of the 1996 IEEE
International ~ Conference on Robotics and Automation, 3, 1980-1985.
Minneapolis, Minnesota.

Healey, G. and Kondepudy, R.(1994). Radiometric CCD Camera Calibration and
Noise Estimation, I[EEE Trans. Pattern Analysis and Machine Intelligence, 16 (3),
267-276.

Hellendoorn, H., Thomas, C. (1993). Defuzzification in Fuzzy Controllers, Journal of
Intelligent and Fuzzy Systems, 1, 109-123.

Jain, R., Kasturi, R., and Schunck, B. G. (1995). Machine Vision, McGraw-Hill, Inc.

Johnson, A. K. (1993, July). Machine Vision sorting and Inspection in Commercial
Automatic Dishwashing, Thesis, Oklahoma State University, Stillwater, OK.

Joshi, R., and Sanderson, A. C.(1996). Application of Feature-Based Muti-View
Servoing for Lamp Filament Alignment, Proceedings of the 1996 IEEE International
Conference on Robotics and Automation, 2, 1306-1313. Minneapolis, Minnesota.

Kim, L, and Vachtsevanos, G. (1998, September). Overlapping Object Recognition :
Aparadiam for Multiple Sensor Fustion, IEEE Robotics and Automation Magazine,
37-44.

Kuo, B. C.(1995). Automatic Control System, 7™ Edition, Prentice Hall, Englewood
Cliffs, NJ.

Li, Y. F,, and Lee, M. H.(1996, March). Applying Vision Guidance in Robotic Food
Handling, IEEE Robotics and Automation Magazine, 4-12.

Mandow, A., Gomez-de-gabriel, J. M., Martinez, J. L., Munoz, V. F,, Ollero, A., and

Garcia-Cerezo, A. (1996, December). The autonomous Mobile Robot Aurora for
Greenhouse Operation, I[EEE Robotics and Automation Magazine, 18-28.

99

26.

21.

28.

29.

30.

31.

32

33.

Mohtadi, O., sagar, F., and Sanz, J. L. C.(1992). AGUILA: an automatic tube
detection system, Proceedings of SPID-The International Society for Optical
Engineering. Applications of Artificial Intelligence X: Machine Vision and Robotics,
1708, 483-495. Orlando, Florida.

Murase, H., and Nayar, S. K. (1993, July). Leamning Object Models From
Appearance, Proceedings of AAAI, Washington, D.C.

Murase, H., and Nayar, S. K. (1994, June). Illumination Planning for Object
Recognition in Structured Environments, Proceedings of IEEE, International
Conference on Computer Vision and Pattern Recognition, Seattle, 31-38.

Murase, H., and Nayar, S. K. (1995, January). Visual Leaming and Recognition of
3D Objects from Appearance. International Journal of Computer Vision, 14 (1), 5-24.

Nelson, B. J., Papanikolopoulos, N. P., and Khosla, P. K. (1996, June). Robotic
Visual Servoing and Robotic Assembling Tasks, IEEEE robotics and Automation
Magazine, 23-31.

Parra-Loera, R. (1992). Partial Shape Recognition of 2-K Shapes Using Normalized
Internal Vertex Descriptors, Proceedings of SPIE — The International Society for
Optical Engineering. Machine Vision Applications, Architectures, and Systems
Integration. 1823, 37-45, Boston, Massachusetts.

. Pascoal, A., Oliveira, P., Silvestre, C., Bjerrum, A., Lshoy, A., Pignon, J. P., Ayela,

G., and Petzelt,C. (1997, December). Marius : An Autonomous Underwater Vehicle
for Coastal Oceanography, IEEE Robotics and Automation Magazine, 46-59.

Ross, T. J. (1995). Fuzzy Logic With Engineering Applications, McGraw-Hill, Inc.
New York, NY.

34. Tappan, J. H., Wright, M. E., and Sistler, F. E. (1987). Error Sources In A Digital

Image Analysis System, Computers and Electronics in Agriculture, 2, 109-118.

100

APPENDIXES

101

APPENDIX A
COMPOSITE PLOTS FOR TRANSIT RESPONSE TEST

AND STEADY STATE RESPONSE TEST

102

€01

——FL1C -----FL2C — F(E+D)+l ---- FID —PID

Transit Response-Minimum Gray level (camera 1)

70
-
L
>
1]
=i
>
<
o
O
=
-
=
<
=
0 T T T T T
10 20 30 40 50 60
TIME (seconds)
Figure A.1

YOI

——FL1C ------FL2C — F(E+D)+l ---- FID —PID

Transit Response-Minimum Gray Level (camera 2)

70
—J
m
>
L
="
>
<
ve
O
=
>
=
<
=
0] | | | |
10 20 30 40 50 60
TIME (seconds)
Figure A.2

]

MAXIMUM GRAY LEVEL

120

——FL1C

------ FL2C — F(E+D)+| --—- FID —PID

100 -

80 -

60 |

40 -

20 A

10

I

20

30
TIME (seconds)

| I

40 50

60

Figure A.3

Transit Response-Maximum Gray Level (camera 1)

901

——FL1C -~ FL2C — F(E+D)+l --—- FID —PID

Transit Response-Maximum Gray Level (camera 2)

120

= 100 /i

= |

L

ol

S

<

o

O]

-

= 40

3

s 20 -

0 | i | I I
0 10 20 30 40 50 60

TIME (seconds)
Figure A.4

LOT

GAIN

180

160 -

140 |
120 -/

100 -

80 {' /
60 °

40 A
20 -

10

I I

20 30
TIME (seconds)

40

50

Figure A.5
Transit Response-Gain (camera 1)

60

801

GAIN

—t—FL 10

------ FL2C — F(E+D)+l ---- FID —PID

300

250 A

200 1/
150 {if
100 -

50

I Al I I

20 30 40 50 60
TIME (seconds)

Figure A.6
Transit Response-Gain (camera 2)

601

OFFSET

—4—FL1C

------ FL2C — F(E+D)+l ---- FID —PID

160
140 A

120 :

100 {\|

60 -
40 -
20 -

80 | N

0 10

| | I 1

20 30 40 50 60
TIME (seconds)

Figure A.7
Transit Response-Offset (camera 1)

OFFSET

Or11

——FL1C -----FL2C — F(E+D)+l -~ FID —PID

20 -
0 J 1 | 1]
0 10 20 30 40 50
TIME (seconds)
Figure A.8

Transit Response-Offset (camera 2)

44!

THERSHOLD

——FL1C

------ FL2C — F(E+D)+l ---- FID —PID

10

T | | I

20 30 40 50 60
TIME (seconds)

Figure A.9
Transit Response-Threshold (camera 1)

(48

THRESHOLD

——FL1C - FL2C — F(E+D)+l -~ FID —PID

90

0 10 20 30 40 50
TIME (seconds)

Figure A.10
Transit Response-Threshold (camera 2)

el

MINIMUM GRAY LEVEL

‘——FL1C -

FL2C — F(E+D)+| — FID —PID

TIME (minutes)

1.2

Figure A.11

Steady State Response-Minimum Gray Level (camera 1)

148!

MINIMUM GRAY LEVEL

——FL1C -----FL2C — F(E+D)+l --- FID —PID

60

TIME (minutes)

12

Figure A.12
Steady State Response-Minimum Gray Level (camera 2)

CIl

MAXIMUM GRAY LEVEL

120

[=—FLIC -—-FL2C —F(E+D)+| ---- FID —PID]

100 |

20 -
0 |] i
0 2 4 6 8
TIME (minutes)
Figure A.13

Steady State Response-Maximum Gray Level (camera 1)

or1

MAXIMUM GRAY LEVEL

120

——FL1C -—FL2C — F(E+D)+| --—- FID —PID]

100 -

TIME (minutes)

10

12

Figure A.14
Steady State Response-Maximum Gray Level (camera 2)

LIT

250

[~=FL1C -~ FL2C — F(E+D)+l —--- FID ——PID

200 -

150 -

GAIN

100 A

50 A

TIME (minutes)

Figure A.15
Steady State Response-Gain (camera 1)

811

GAIN

300

250

200

150

100

50 -

——FL1C ~----FL2C ~— F(E+D)#] —— FID —PID

TIME (minutes)

12

Figure A.16
Steady State Response-Gain (camera 2)

611

OFFSET

160

140 -
120

100 -
80 -
60 -
40 -
20 -

TIME (minutes)

y

Figure A.17
Steady State Response-Offset (camera 1)

OFFSET

0c1

[——FL1GC - FL2C — F(E+D)+| ---- FID —PID

100

90 -
80 - =

70 - I
60 | st —
50 - P ——
40 -
30 |
20 -
10 -

0 2 4 6 8 10
TIME (minutes)

Figure A.18
Steady State Response-Offset (camera 2)

IZ1

THERSHOLD

90

——FL1C ------FL2C — F(E+D)+| - -- FID —PID

O

TIME (minutes)

Figure A.19
Steady State Response-Threshold (camera 1)

12 |

(44!

THRESHOLD

90

80 -
70 |
60

~ FID —PID|

o)
"

TIME (minutes)

Figure A.20
Steady State Response-Threshold (camera 2)

APPENDIX B

SOURCE CODE IN V/V+

AGS VISION CODE IN V/V+

ADEPT ONE LANGUAGE FOR

FUZZY LOGIC 1

CONTROLLER

124

/***********tt***iiitt**ti******’kwb FLlC 200***:r**t*****tttit*r*i*tr/

.PROGRAM fuzzy.set.gain()

; ABSTRACT:set gain and offset for vision system by a fuzzy controller
; INPUT PAR: none
; OUTPUT PAR: vision parameters(gain,offset, threshold)
LOCAL clock[]), framel, frame2
LOCAL cam, 1, camera
CALL vi.init.cam()
yscale = 1/0.5397496
xscale = 1/0.542155
IF NOT DEFINED(framel) THEN
framel = 1001
frame2 1002
END
FOR camera = 1 TO 3
PARAMETER V.GAIN[camera)] =
PARAMETER V.OFFSET|[cameral
END
first.time = 0
IF first.time 0 THEN
first.time = 1
area.ref = PARAMETER(V.LAST.COL[camera]l) -
PARAMETER(V.FIRST.COL[camera] })+1
area.ref = area.ref* (PARAMETER(V.LAST.LINE[camera])-
PARAMETER(V.FIRST.LINE[camera])+1)

i
= 128

area.ref = area.ref/1000
min.gray[l] = 60 ;decided
max.gray([l] = 90 ;decided
min.gray[2] = 60 ;decided
max.gray[2] = 90 ;decided
min.gray(3] = 30 ;decided
max.gray([3] = 80 ;decided
END
PARAMETER V.THRESHOLD[1] = &5
PARAMETER V.THRESHOLD[2] = 65
PARAMETER V.THRESHOLD[3] = 65
FOR i =1 TO 3
i_a_min(i,0] =
i_a_min_ave([i,0] = 0
i_a_max[(i,0] = 0
i_a max_avel[i,0] =0
i_a_sum([i,0] =0
i_s min(i,0] = 0
i_s min_avel[i,0] = 0
i_s max([i,0] = 0
i_s_max_ave[i,0] = 0
i_s_sum[i,0] = 0
END
PARAMETER V.FIRST.LINE[1l] = v.first.linel
PARAMETER V.LAST.LINE[1l] = w.last.linel
PARAMETER V.FIRST.COL[1l] = v.first.coll
PARAMETER V.LAST.COL[1l] = wv.last.coll
PARAMETER V.FIRST.LINE[2] = v.first.line2
PARAMETER V.LAST.LINE[2] = w.last.line?2
PARAMETER V.FIRST.COL[2] = v.first.col2
PARAMETER V.LAST.COL[2] = v.last.col2

125

.END

PARAMETER
PARAMETER
PARAMETER
PARAMETER
DISABLE V.
DISABLE V.
count . fuz.
TIMER (4)

TIMER (5)

FOR count.

IF count.fuz ==

V.FIRST.LINE[3]
V.LAST.LINE[3]
V.FIRST.COL[3]

V.LAST.COL[3] =

BOUNDARIES
CENTROID
end = 200
= 0

= 0

fuz =

TIMER (5) = 0

min
max.
min.
max.
min
max.
FOR

END
END

v.first.line3
= v.last.line3

= v.first.col3
v.last.col3

1l TO count.fuz.end
101 THEN

gray(1l]
gray(2]
gray[2]

.gray[3]

gray[3]
i =

.gray{l] = 10
= 60

= 10

= 60

10
60

1TO 3

;decided
;decided
;decided
;decided
;decided
;decided

i_a_min[i,100] = 0
i_a_min_avel[i,100] = 0
i_a_max[i,100] =0
i_a_max_avel[i,100] = 0
i_a_sum([i,100] = 0
i s min[i,100] =0
i_s min_avel[i,100] = 0
i_s max[1.100] = 0O
i_s_max_ave([i,100] = 0
i_s_sum([i,100] = 0

VPICTURE

(1, TRUE)

CALL fuzzy.ctrl(1l,

VPICTURE

(2, TRUE)

CALTL furzy.ctrL (2
TRUE) 2, 0

VPICTURE
CALL fuzzy.ctrl(3,
tran time[count.fuz] =

(3,

TYPE count. fuz,

TYPE
END
RETURN

2,

0

framel)

2:

0

framel)

framel)
TIMER(4)

, tran_time[count.fuz],

126

.

TIMER(S)

.PROGRAM fuzzy.ctrl (camera, frame)
;ABSTRACT:Automatically sets the system paramters V.GAIN and V.OFFSET
;for the specified camera in an AdeptVision AGS system.Fuzzy controller
;is used to make the target have stable minimun and maximun gray level
;as well as a suitable threshold.
; INPUT PARM:camera and frame,The virtual camera and frame number to use
; OUTPUT PAREM: None

LOCAL gain, offset

LOCAL var, x0, xn

LOCAL area.x0, area.xn, pixell]

dmode = 0

VWAIT

VHISTOGRAM (dmode) hst[] = frame
; set threshold for the cameras

thresh = 0

pixel [camera] = hst[0]

WHILE (pixel[camera] < set.point([camera]) DO
thresh = thresh+l
pixel [camera] = pixel|[camera]+hst[thresh]
END
x0 =0
var = hst[0]
WHILE (var <= area.ref) AND (x0 < 128) DO

x0 = x0+1

var = var+hst[x0]
END
xn = 127

var = hst(127]
WHILE (var <= area.ref) AND (x0 < xn) DO
Xn = xn-1
var = var+hst[xn]
END
Xxn = xn+l
area.x0.e = x0-min.gray[camera]
area.xn.e max.gray[camera] -xn
k=20
L.=0
CALL infer(area.x0.e, area.xn.e)
gain = PARAMETER (V.GAIN[cameral)
offset = PARAMETER(V.OFFSET [cameral
gain = MIN(256,MAX (1, INT (gain+gain.fuzzy+1)))
offset = MIN(256,MAX (1, INT(offset-offset.fuzzy+0.5))
PARAMETER V.GAIN[camera] = gain
PARAMETER V.OFFSET[camera] = offset
PARAMETER V.THRESHOLD{camera] = thresh

l

;***ii***************KEEP M.IL THE PARAMETER FOR ANALYSIS*****'*********
j*****ywarm up period (transit respond) *****
count.gen = 1

x0_warm[camera, count.gen, count. fuz] = x0
xn_warm|[camera,count.gen,count.fuz] = xn

i_aal0 = ABS(x0-min.gray[camera])

i_aan = ABS(xn-max.gray[camera])

i_ss0 = i_aal*i_aal

i_ssn = i_aan*i_aan

i_a_min([camera,count.fuz] = i_a_min[camera,count.fuz-1]+i_aal

127

i_a _min_ave([camera,count.fuz] =

i_a_min[camera,count.fuz] /TIMER(5) *60

i_a_max|[camera,count.fuz] = i_a_max[camera,count.fuz-1]+i_aan
i_a_max_ave[camera,count. fuz] =

i_a_max[camera, count.fuz] /TIMER(5) *60

i_a_sum[camera,count.fuz] =
i_a_min_ave[camera,count.fuz]+i_a_max_ave[camera, count.fuz]
i_s_min[camera,count.fuz] = i_s_min[camera,count.fuz-

1]+i_ss0

i_s_min_ave[camera,count.fuz] =

i_s_min[camera,count.fuz]/TIMER(5) *60

i_s_max[camera,count.fuz] = i_s_max[camera,count.fuz-1]+1i_ssn
i_s_max_ave[camera,count.fuz] =

i_s_max[camera,count.fuz] /TIMER(5) *60

i_s_sum|[camera,count.fuz] =

i_s_min_ave|[camera,count.fuz]+i_s_max ave[camera,count.fuz]

thresh_warm[camera,count.gen,count.fuz] = thresh

gain_warm([camera, count.gen,count.fuz] = gain

offset_warm[camera, count.gen, count.fuz] =

TYPE /S, camera, " ", x0, " ", xn

TYPE /S, " ga= ", gain, " of= ", offset, " th= ", thresh

TYPE /S, " ", i_s_min_ave[camera,count.fuz], " ",
i_s_max_ave[camera, count. fuz]

TYPE " ", i_s_sum[camera, count.fuz]

RETURN

-END

128

.PROGRAM infer(e, ie)
; initialize outputs and parameters

LOCAL z, o0z, Sumac, OSumac, sumacz, osumacz, i, j, emax, iemax
LOCAL zmax, ozmax, enm, ens, ezo, eps, epm, epb, banda, ienb,

ienm
LOCAL iens, iezo, ieps, iepm, iepb, bandb, bandc, obandc
LOCAL znb, znm, zns, zzo, zps, zZpm, zpb, oznb, oznm, ozns,
LOCAL ozps, ozpm, ozpb

LOCAL mual], mub([], area, oarea ;m,n
z =0
oz =0

sumac = 0
osumac = 0
sumacz = 0
osumacz = 0
;calculate fuzzy numbers and band width for each input
IF NOT DEFINED(enb} THEN

emax = 3
iemax = 3
zmax = 3

ozmax = 3

enb = -emax
enm = -2*emax/3
ens = -emax/3
ezo = 0

eps = -ens

epm = -enm

epb = emax
banda = emax/3

ienb = -iemax
ienm = -2*iemax/3
iens = -iemax/3
iezo = 0

ieps = -iens

iepm = -ienm

iepb = iemax
bandb = iemax/3

znb = -zmax
znm = -2*zmax/3
zns = -zmax/3
zzo = 0

Zps = -zns

Zpm = -zZnm

zpb = zmax
bandc = zmax/3

oznb = -ozmax
oznm = -2*ozmax/3
ozns = -ozmax/3
ozzo = 0

0ZpsS = -0zZns

ozpm = -0zZnm

ozpb = ozmax
obandc = ozmax/3

129

END

; calculate index and mu vector
m = INT((e+4*banda)/banda)
IF m < 0 THEN

m =0
mua[m] =
mua [m+1]
ELSE
IF m > 7 THEN
m= 7
mua [m]
mua [m+1]
ELSE
mua[m] = (banda* (m-3)-e)/banda
mua[m+l] = l-mua[m]
END
END

1
=0

1

a
=0

n = INT((ie+4*bandb) /bandb)
IF n < 0 THEN

n =0
mub[n] = 1
mub[n+1l] = 0
ELSE
IF n > 7 THEN
n =17
mub[n] = 1
mub[n+l] = 0
ELSE
mub(n] = (bandb*(n-3)-ie)/bandb
mub[n+1] = l1-mub(n]
END
END
IF ((m == 3) OR (m == 4})) AND ((n == 3) OR (n == 4)) THEN
CALL sub.infer(e, 1ie)
ELSE

calculate the output using larsens rule and COA for defuzzification
FOR i = m TO m+l
CASE 1 OF
VALUE 0, 1:
FOR j = n TO n+l
area = bandc*MIN(muali],mub(3j])
oarea = obandc*MIN(mua[i)]),mub([j])
sumac = sumac+area
osumac = osumac+oarea
CASE j OF
VALUE 0, 1:
sumacz = sumacz+area*znb
osumacz = osumacz+oarea*ozzo
VALUE 2, 3:
sumacz = sumacz+area*znm
osumacz = osumacz+oarea*ozns
VALUE 4, 5:
sumacz = sumacz+area*zns

130

osumacz = osumacz+oarea*oznm
ANY
sumacz = sumacz+area*zzo
osumacz = osumacz+oarea*oznb
END
END

VALUE 2:
FOR j = n TO n+1
area = bandc*MIN(mual[i],mub[j])
oarea = obandc*MIN(muali],mub[j])
sumac = sumac-+area
osumac = osumac+oarea
CASE j OF
VALUE 0, 1, 2:
sumacz = sumacz+area*znm
osumacz = osumacz+oarea*ozzo
VALUE 3, 4:
sumacz = sumacz+area*zns
osumacz = osumacz+oarea*ozns

ANY
sumacz = sumacz+area*zzo
osumacz = osumacz+oarea*oznm
END
END
VALUE 3:

FOR j = n TO n+l
area = bandc*MIN(mua[i],mub([j])
oarea = obandc*MIN{mua[i],mub[j])
sumac = sumac+area
osumac = osumac+oarea
CASE j OF
VALUE 0, 1:
sumacz = sumacz+area*znm
osumacz = osumacz+oarea*0ozps
VALUE 2, 3:
sumacz = sumacz+area*zns
osumacz = osumacz+oarea*ozzo
VALUE 4, 5, 6:

sumacz = sumacz+area*zzo
osumacz = osumacz+oarea*ozns
ANY

sumacz = sumacz+area*zps
osumacz = osumacz+oarea*oznm
END
END

VALUE 4:
FOR j = n TO n+l
area = bandc*MIN(mua[i],mub[j])
oarea = obandc*MIN(mua[i],mub[j])
sumac = sumac+area
osumac = osumac+oarea
CASE j OF
VALUE 0, 1, 2:
sumacz = sumacz+area*zns

131

osumacz = oOsumacz+oarea*ozps
VALUE 3, 4, 5:

sumacz = sumacz+area*zzo
osumacz = Osumacz+oarea*ozzo
VALUE 6:

sumacz = sumacz+area*zps
osumacz = osumacz+oarea*ozns
ANY
sumacz = sumacz+area*zpm
osumacz = osumacz+oarea*oznm
END
END

VALUE 5:
FOR j = n TO n+l
area = bandc*MIN(mual[i],mab[j])
carea = obandc*MIN(muali], mub[j])
sumac = sumac+area
osumac = osumac+oarea
CASE j OF
VALUE 0, 1:
sumacz = sumacz+area*zns
osumacz = osumacz+oarea*ozpm
VALUE 2, 3, 4:
sumacz = sSumacz+area*zzo
osumacz = osumacz+oarea*ozps

VALUE 5, 6:
sumacz = sumacz+area*zps
osumacz = osumacz+oarea*0zzo
ANY

sumacz = sumacz+area*zpm
osumacz = osumacz+oarea*ozns
END
END

VALUE 6:
FOR j = n TO n+l
area = bandc*MIN(mua[i] mub(j])
oarea = obandc*MIN(mua([i],mub([j])
sumac = sumac+area
osumac = osumac+oarea
CASE j OF
VALUE 0, 1, 2, 3:
sumacz = sumacz+area*zzo
osumacz = osumacz+oarea*ozpm
VALUE 4:
sumacz = sumacz+area*zps
osumacz = osumacz+oarea*ozps
VALUE 5:
sumacz = sumacz+area*zps
osumacz = osumacz+oarea*ozzo
ANY
sumacz = sumacz+area*zpm
osumacz = OsSumacz+oarea*ozzo
END
END

132

VALUE 7, 8:
FOR j = n TO n+l
area = bandc*MIN(mua([i],mub(j])
oarea = obandc*MIN{(mual[i],mub[j])
sumac = sumac+area
osumac = osumac+oarea
CASE j OF
VALUE 0, 1, 2:
sumacz = sumacz+area*zzo
osumacz = osumacz+oarea*ozpb
VALUE 3, 4:
sumacz = sumacz+area*zps
osumacz = osumacz+oarea*ozpm
VALUE 5, 6:
sumacz = sumacz+area*zpm
osumacz = osumacz+oarea*ozps
ANY
sumacz = sumacz+area*zpb
osumacz = oSumacz+oarea*ozzo

END
END
END
END
IF sumac == 0 THEN
sumac = 1E-06
END
IF osumac == 0 THEN
osumac = 1E-06
END

gain.fuzzy = sumacz/sumac
offset.fuzzy = osumacz/osumac
END
RETURN

.END

133

™

.PROGRAM sub.infer (e, ie)
; initialize outputs and parameters
LOCAL z, oz, sumac, osumac, sumacz, osumacz, i, j, emax, iemax
LOCAL zmax, ozmax, ez, ep, banda, ien
LOCAL iez, iep, bandb, bandc, obandc
LOCAL zn, zz, zp, 0zn, ©OZZ, OZp
LOCAL mua[], mub[], area, oarea
2. =0
Oz = 10
sumac = 0
osumac 0
sumacz 0
osumacz = 0
;calculate fuzzy numbers and band width for each input
IF NOT DEFINED(en) THEN
emax = 3.5
iemax = 3.5
zmax = 1.5
ozmax = 1.5

en = -emax
ez = 0

ep = emax
banda = emax/2

ien = -iemax
iez = 0

iep = iemax
bandb = iemax/2
Zn = -zmax

zz = 0

Zp = zmax
bandc = zmax/2

n

ozn -ozmax

ozz = 0

0zp = Ozmax

obandc = ozmax/2
END

; calculate index and mu vector
k = MIN(INT((e+3*banda) /banda) ,4)

IF k == 1 THEN
mualk] = 1-(banda*(k-2)-e)/banda

mual[k+1l] = 0
ELSE

IF k == 4 THEN
muaik] = (banda* (k-2)-e)/banda
mua(k+1l] = 0

ELSE
mua[k] = (banda*{k-2)-e)/banda
mual{k+1l] = l-mualk]

END

END

134

1 = MIN(INT((ie+3*bandb) /bandb),4)

IF 1 == 1 THEN
mub[l] = 1-(bandb*(1-2)-ie)/bandb
mub[l+1l] = 0

ELSE
IF 1 == 4 THEN
mubf{l] = (bandb*(1-2)-ie)/bandb
mub[l+1] = 0
ELSE
mub[l] = (bandb*(1-2)-ie)/bandb
mub[1l+1] = 1-mub[l]
END
END

; calculate the output using larsens rule and COA for defuzzification
FOR i = k TO k+1
CASE i OF
VALUE 1, 2:
FOR j = 1 TO 1+1
area = bandc*MIN(mua[i],mub[j])
oarea = obandc*MIN(mua([i],mub[j])
sumac = sumac+area
osumac = OsSumac+oarea
CASE j OF
VALUE 1, 2:
sumacz = sumacz+area*zn
osumacz = osumacz+oarea*ozz
VALUE 3:
sumacz = sumacz+area*zn
osumacz = OSumacz+oarea*ozn

ANY
sumacz = sumacz+area*zz
osumacz = osumacz+oarea*ozn
END
END
VALUE 3:

FOR j = 1 TO 1+1
area = bandc*MIN(mua[i],mub[j])

oarea = obandc*MIN(mua[i]),mub(j])
sumac = sumac+area
osumac = osumac+oarea
CASE j OF
VALUE 1, 2:

sumacz = sumacz+area*zn
osumacz = osumacz+oarea*ozp

VALUE 3:

sumacz = sumacz+area*zz
osumacz = osumacz+oarea*ozz
ANY

sumacz = sumacz+area*zp
osumacz = osumacz+oarea*ozn
END
END

ANY
FOR j = 1 TO 1+1

135

.END

END
END
END
IF sumac =
sumac
END
IF osumac
osumac
END

gain.fuzzy
offset. fuz
RETURN

area = bandc*MIN(mua[i],mub[3j])
oarea = obandc*MIN(mual[i] ,mub(j])
sumac = sumac+area

osumac = osumac+oarea

CASE j OF
VALUE 1, 2:
sumacz = sumacz+area*zz

osumacz = osumacz+oarea*ozp

VALUE 3:

sumacz = sumacz+area*zp

osumacz = osumacz+oarea*ozp

ANY

sumacz = sumacz+area*zp

osumacz = osumacz+oarea*o0zz
END

= 0 THEN
= 1E-06

== 0 THEN
= 1E-06

= sumacz/sumac
zy = osumacz/osumac

136

.PROGRAM vi.init.cam()
; Virtual camera setup and initialization for 3 colinear units

LOCAL cam
framel = 1001 ;global value for frame store one
frame2 = 1002 ;global value for frame store two

; Set Basic Camera switches:
ENABLE V.BINARY
DISABLE V.BACKLIGHT
ENABLE V.BOUNDARIES

DISABLE V.FIT.ARCS
DISABLE V.DISJOINT
DISABLE V.RECOGNITICN
DISABLE V.SUBTRACT.HOLE
DISABLE V.PERIMETER
DISABLE V.STROBE
DISABLE V.2ND.MOMENTS

ENABLE V.HOLES
FOR 1 = 1.PO 3

ENABLE V.CENTROID[i]

DISABLE V.2ND.MOMENTS[1]

DISABLE V.HOLES[i] ;hole count unessessary for sorting
END

; Disable display switches:
DISABLE V.SHOW.EDGES
DISABLE V.SHOW.BOUNDS
DISABLE V.SHOW.GRIP
DISABLE V.SHOW.RECOG

; Set Parameters:

I

PARAMETER V.MAX.AREA 260000
PARAMETER V.MIN.AREA = 35000

PARAMETER V.MIN.HOLE.AREA = 50
D

PARAMETER D.SCALE.MODE = 3
;Processed image (default)

PARAMETER V.FIRST.LINE = 1 ;bottom line (1)
PARAMETER V.LAST.LINE = 484 ;top line {484)
PARAMETER V.FIRST.COL = 1 ;first column (1)
PARAMETER V.LAST.COL = 512 ;last column (512)
PARAMETER V.FIRST.LINE = 50 ;bottom line (1)
PARAMETER V.EDGE.STRENGTH[1l] = 7 ;used for food detection
PARAMETER V.EDGE.STRENGTH(2] = 9 ;used for food detection
PARAMETER V.EDGE.STRENGTH{3] = 10 ;used for food detection

set_point = FALSE
IF set_point == TRUE THEN

FOR cam = 1 TO 3

VPICTURE (cam) 2

t = PARAMETER (V.THRESHOLD[cam])

tmin = MAX(0,t-70)

tmax MIN(127,t+70)

VWAIT

VAUTOTHR (0, tmin, tmax) thrs|[]
: IF thrs[0] > 1 THEN

PARAMETER V.THRESHOLD|[cam] = thrs[1]
; END

137

END

PARAMETER V.FIRST.LINE[1l] = 3
PARAMETER V.LAST.LINE[1l] = 33
PARAMETER V.FIRST.COL[1] = 100
PARAMETER V.LAST.COL[1] = 200
PARAMETER V.FIRST.LINE[2] = 3
PARAMETER V.LAST.LINE[2] = 33
PARAMETER V.FIRST.COL[2] = 92
PARAMETER V.LAST.COL[2] = 192
PARAMETER V.FIRST.LINE[3] = 3
PARAMETER V.LAST.LINE[3] = 33
PARAMETER V.FIRST.COL[3] = 102
PARAMETER V.LAST.COL[3] = 202
FOR cam = 1 TO 3

VPICTURE (cam) 2

dmode = 0
VWAIT

VHISTOGRAM (dmode) hst[]

E =
thresh = 0
pixel [cam]
WHILE

thresh

pixel[cam] =

END

set.point[cam] =
set.point [cam]

TYPE L,

END
ELSE
set.point[1]
set.point[2]
set.point[3]
END

PARAMETER V.FIRST.LINE = 1
PARAMETER V.LAST.LINE =
PARAMETER V.FIRST.COL = 1
PARAMETER V.LAST.COL =
PARAMETER V.FIRST.LINE =

1l

PARAMETER (V. THRESHOLD [cam])

hst (0]
{thresh < t) DO

thresh+1

pixel [cam]

3900 ;2:10pm
3900 ; 2100
3900

;set reference value for some subroutines

; 1.) vi.find.spot
l.length = 110
1l.width = 180
s.length = 120
s.width = 90
angle = 90
large = 1

;jcamera IT
thre
thre
thre
thre

76
99
73
95

1

.pixal5]
pixb[5] =
.pixal8] =
.pixb[8] =

;clean: min=77,

;clean: min=72,

138

pixel [cam] +hst[thresh]

;bottom line (1)

484 ;top line (484)
;first column (1)

512 ; last column (512)
42 ;bottom line (1)

max=99

max=94 for small spacer

thre.pixa[ll] = 60

thre.pixb[11l] = 77 ;clean: min=72, max=94 for
;camera I

thre.pixal[4] = 56

thre.pixb(4] = 77 ;clean: min=56, max=77 for small

thre.pixa[7] = 53

thre.pixb[7] = 75 ;clean: min=51, max=73 for small

thre.pixa[10] = 42

thre.pixb([10] = 70 ;clean: min=42, max=70 for
;camera IIT

thre.pixa[6] = 89

thre.pixb[6] = 123 ;clean: min=88,max=107

thre.pixa[9] = 81

thre.pixb(9] = 107 ;clean:

thre.pixa([12] = 63

thre.pixb[12] = 90 ;jclean: min=63,max=90 for
;dirty threshold

thre.dirtyl[4] = 6

thre.dirtyl[5] = 10

thre.dirtyl[6] = 50

thre.dirtyl([7] = 5

thre.dirtylf{8] = 15

thre.dirtyl[9] = 50

thre.dirtyl{10] = 10

thre.dirtyl{1ll] = 10

thre.dirtyl[l12] = 10

thre.dirty2([4] = 90

thre.dirty2([5] = 110

thre.dirty2([6] = 115

thre.dirty2[7] = 85

thre.dirty2[8] = 98

thre.dirty2[S] = 110

thre.dirty2[10] = 60

thre.dirty2[11] = 80

thre.dirty2[12] = 85

vi.inspect.sm

yscale = 1/0.53974396

xscale

cxbig
widthbig

155
140
180

cyl
cy?2
cy3
height

180

gr.win.show =
gr.mode = 5
gr.overlay

; 3.)vi.sort

72
0

-1
=y
i i

1/0.542155

512/xscale/2
512/xscale

3

0

139

large spacer

spacer
spacer

large spacer

min=88,max=107 for small spacer

large spacer

areal
area2
areal
area?2

.ref[1l]
.ref[1]
.ref[2]
.ref[2]
areal .ref[3]
area2.ref [3]
gray.ref[1l]

gray.ref[2]

gray.ref[3]

count.ref0[1]
count.refl[1]
count.ref0[2]
count.refl[2]
count.ref0[3]
count .refl[3]

; 4.)fuzzy.set.gain

v.first.linel
.last.linel
Eirst.coll
.last.coll
.first.line2
.last.line2
.first.col2
.last.col2
.first.line3
.last.line3
.first.col3
.last.col3

49 a9 999

56500
53555
54800
52000
53055
51500

= 67

86

98

55
85
65
100
80
120

;68
;98

and real.time.ctrl
INT(5*yscale)
INT (25*yscale)
INT (115*xscale)
INT(195*xscale)
INT(5*yscale)
INT (25*yscale)
INT(102*xscale)
INT(192*xscale)
INT(2*yscale)
INT (22*yscale)
INT(112*xscale)
INT(192*xscale)

FOR cam = 1 TO 12

VDISPLAY (cam) 2,

END
RETURN
. END

1

140

AGS VISION CODE IN V/V+

ADEPT ONE LANGUAGE FOR

FUZZY LOGIC 2

CONTROLLER

141

/**'ki—it**********t****i*w*******wl*wb FL2C_200iittt*+****’ﬁ*lt****lnitt/

.PROGRAM fuzzy.set.gain()
; BABSTRACT:set gain and offset for vision system by a fuzzy controller
; INPUT PAR: none
; OUTPUT PAR: vision parameters(gain,offset, threshold)
LOCAL clock[], framel, frame2
LOCAL cam, i, camera
CALL vi.init.cam{)
yscale 1/0.5397496
xscale 1/0.542155
IF NOT DEFINED(framel) THEN
framel 1001
frame?2 1002
END
FOR camera

1 TO 3

PARAMETER V.GAIN[camera] = 1
PARAMETER V.OFFSET[camera)] = 128

END

area.ref = PARAMETER(V.LAST.COL[camera])) -

PARAMETER(V.FIRST.COL[camera])+1
area.ref = area.ref* (PARAMETER(V.LAST.LINE[camera]) -
PARAMETER (V.FIRST.LINE [cameral) +1)

area.ref = area.ref/1000 ;Significant amount of
overlap,orignal 5000

min.gray[l] = 60 ;decided
max.grayl[l] = 90 ;decided
min.gray([2] = 60 ;decided
max.gray[2] = 90 ;decided
min.grayl[3] = 60 ;decided
max.gray[3] = 90 ;decided
PARAMETER V.THRESHOLD[1] = 65
PARAMETER V.THRESHOLD[2] = 65
PARAMETER V.THRESHOLD[3] 65
FOR i =1 TO 3

i_a_min[i,0] = 0

i_a min_ave([i,0] = 0

i_a_max[i,0] = 0

i_a_max_ave([i,0] = 0

i_a_sum[i,0) = 0

i_s min[i,0] =0

i_s min_ave[i,0] = 0

i_s_max[i,0] = 0

i_s_max_avel[i,0] = 0

i_s_sum[i, 0] 0
END
DISABLE V.BOUNDARIES

DISABLE V.CENTROID

count. fuz.end = 200
TIMER (4) = 0
TIMER (5) =0

FOR count. fuz
IF count. fuz
TIMER (5)
min.gray[1]
max.gray[1]
min.gray[2]

0

I

|

1 TO count.fuz.end

101 THEN

10 ;decided
60 ;decided
10 ;decided

142

.END

max.gray[2] = 60 ;decided
min.gray[3]) = 10 ;decided
max.gray[3] = 60 ;decided
FOR i =1 TO 3
i_a_min[i,100] = 0
i_a_min_ave([i,100] = 0
i_a max[i,100] = 0
i_a max_ave[i,100] = 0
i_a_sum[i,100] = 0
i_s_min[i,100] = 0
i_s _min_ave[i,100] = 0
i_s max[i,100] = 0
i_s_max_ave([i,100] = 0
i_s_sum([i,100] = 0
END
END
VPICTURE (1, TRUE) 2, 0
CALL fuzzy.ctrl(l, framel)
VPICTURE (2, TRUE) 2, O
CALL fuzzy.ctrl(2, framel)
tran_time[count.fuz] = TIMER(4)

TYPE count.fuz,

TYPE
END
RETURN

"

, tran_time[count. fuz],

143

TIMER(S)

.PROGRAM fuzzy.ctrl(camera, frame)
; ABSTRACT: Automatically sets paramters V.GAIN and V.OFFSET
; for the specified camera in an AGS system. Fuzzy controller
; is used to make the target have stable minimun and maximun gray level
; as well as a suitable threshold.
; INPUT PARM: camera and frame The camera and frame number to use
; OUTPUT PARM: None
LOCAL gain, offset
LOCAL var, x0, xn
LOCAL area.x0, area.xn, pixell]

dmode = 0

VWAIT

VHISTOGRAM (dmode) hst[] = frame
; set threshold for the cameras

thresh = 0

pixel [camera] = hst[0]

WHILE (pixel[camera] < set.point[camera)) DO
thresh = thresh+l
pixel [camera] = pixel[camera] +hst[thresh]
END
x0 = 0
var = hst[0]
WHILE (var <= area.ref) AND (x0 < 128) DO

x0 = x0+1

var = var+hst[x0]
END
¥ = 127

var = hst[127]
WHILE (var <= area.ref) AND (x0 < xn) DO
Xxn = xn-1
var = var+hst[xn]
END
area.x0.e x0-min.gray[camera]
area.xn.e = xn-max.gray|[cameral]
k=20
L o=)
CALL infer(area.x0.e, area.xn.e)
gain = PARAMETER(V.GAIN|[camera])
of fset = PARAMETER(V.OFFSET[camera])
gain = MIN(256,MAX (1, INT(gain+gain.fuzzy+0.5)))
offset = MIN(255,MAX(1,INT(offset+offset.fuzzy+0.5)))

PARAMETER V.GAIN|[camera] = gain ;Make the changes ;L03-
PARAMETER V.OFFSET([camera] = offset
PARAMETER V.THRESHOLD [camera] = thresh

;*t*t*t**************KEEP ALL THE PARAMETER FOR ANALYSIS******t*******
;¥ ****warm up period (transit respond) *****

count.gen = 1
- IF (count.gen <= 1) THEN

x0_warm[camera, count.gen,count.fuz] = x0

xn_warm[camera, count.gen,count.fuz] = xn

i_aal = ABS(x0-min.gray[cameral)

i_aan = ABS(xn-max.gray[camera]l)

i_ss0 = i_aal*i_aal

i_ssn = i_aan*i_aan

i_a min[camera,count.fuz] = i_a_min[camera,count.fuz-1]+i_aal

144

i_a_min_ave[camera,count. fuz] =
i_a_min[camera, count.fuz] /TIMER(5) *60

i_a_max|[camera,count.fuz] = i_a_max[camera,count.fuz-1]+i_aan

i_a_max_ave[camera,count.fuz] =
i_a_max[camera,count.fuz] /TIMER(5)*60
i_a_sum[camera,count.fuz] =

i_a_min_ave[camera,count.fuz]+i_a_max_ave[camera,count. fuz]

i_s_min[camera,count.fuz] = i_s_min[camera,count.fuz-1]+i_ss0

i_s_min_ave[camera, count.fuz] =
i_s_min[camera,count.fuz] /TIMER(5) *60

i_s_max|[camera,count.fuz] = i_s_max[camera,count.fuz-1]+i_ssn

i_s_max_ave[camera,count.fuz] =
i_s_max[camera,count.fuz] /TIMER(5) *60
i_s_sum[camera,count.fuz] =

i_s_min_ave|[camera,count.fuz]+i_s_max_ave[camera,count.fuz]

thresh_warm[camera, count.gen,count.fuz] = thresh

gain_warm[camera,count.gen,count.fuz] = gain

offset_warm[camera,count.gen,count.fuz] = offset

TYPE [S; camera; " %,; x0, * 2, Xxn

TYPE /S, " ga=", gain, " of=", offset, " th=",

TYPE /S, " ", i_s_min[camera,count.fuz], " *,
i_s_max[camera,count.fuz]

TYPE " ", i_s_sum[camera,count.fuz]

RETURN

.END

145

.PROGRAM infer(e, ie)
AL SEEE LSRR SRR program Variable****t**t*i*****t****tti

LOCAL emin, emax, gnum, gden, onum, oden, emin.member,
emax.member, layer

LOCAL emin.spread, emax.spread, g.spread, o.spread, emin.n,
emax.n, g.n, o0.n

LOCAL emin.nl, emin.nm, emin.ns, emin.nz, emin.ze, emin.pz,
emin.ps, emin.pm, emin.pl

LOCAL emax.nl, emax.nm, emax.ns, emax.nz, emax.ze, emax.pz,
emax.ps, emax.pm, emax.pl

LOCAL gnl, gnm, gns, gnz, gze, gpz, gps, gpm, gpl

LOCAL onl, onm, ons, onz, ocze, opz, ops, opm, opl

LOCAL mu.emin[[], mu.emax|]

emin = e
emax = ie
gden = 0
oden = 0
gnum = 0
onum = 0

jRFHEF AR R AKX N KK ANgasign initial wvalue and calculate fuzzy numbers******

rangel = 4
rangeZ = 12
IF (((emin <= rangel) AND (emin >= -rangel)) AND ((emax <=
rangel) AND (emax >= -rangel)}) THEN
Layer = 1

emin.support = rangel/2
emax.support = rangel/2

g.support = 2
o.support = 2
ELSE
IF (({emin <= range2) AND (emin >= -range2)) AND ((emax <=
range2) AND (emax >= -rangeZ2))) THEN
emin.support = range2/2
emax.support = range2/2

g.support = 4

0.support 4
ELSE

emin.support

emax.support

g.support = 8

o.support = 8
END

range?
range2

o
:
=
]
o

emin.spread = emin.support*emin.n
emax.spread = emax.support*emax.n
g.spread = g.support*g.n
o.spread = o.support*o.n
;****x*¥*x*partition the universe of discourse for input fuzzy variable***
emin.pl = emin.spread
emin.pm = emin.spread*3/4

146

emin.ps = emin.support

; (emin.spread/2)

emin.pz = emin.support/2 ; (emin. spread/4)
emin.ze = 0

emin.nz = -emin.pz

emin.ns = -emin.ps

emin.nm = -emin.pm

emin.nl = -emin.pl

emax.pl = emax.spread
emax.pm = emax.spread*3/4

emax.ps = emax.support

; (emax.spread/2)

emax.pz = emax.support/2 ; (emax.spread/4)
emax.ze = 0
emax.nz = -emax.pz
emax.ns = -emax.ps
emax.nm = -emax.pm
emax.nl = -emax.pl
;*****partition the universe of discourse for output fuzzy wvariable****
gpl = g.spread
gpm = g.spread*3/4
gps = ¢g.support
gpz = g.support/2
gze = 0
gnz = -gpz
gns = -dgps
gnm = -gpm
gnl = -gpl
opl = o.spread
opm = o.spread*3/4
ops = oO.support
opz = o.support/2
oze = 0
onz = -0pz
ons = -ops
onm = -opm
onl = -opl
; *calculate input range and mu vector for tow consequentive partitions*
IF (emin >= 0) THEN
emin.num = INT(emin/emin.support*2)
ELSE
emin.num = INT{emin/emin.support*2-1)
END
IF (emin.num < -4) THEN
emin.num = -4
ELSE
IF (emin.num >= 4) THEN
emin.num = 4
END
END
IF (emax >= 0) THEN
emax.num = INT(emax/emax.support*2)
ELSE
emax.num = INT(emax/emax.support*2-1)
END

IF (emax.num

-4} THEN

147

emax.num = -4
ELSE
IF (emax.num >= 4) THEN
emax.num = 4
END
END

({emin.num+1) *emin.support/2-emin) /emin.support/2
l-mu.emin(1]
({emax.num+1) *emax.support/2-emax) /emax.support/2
l-mu.emax[1l]

mu.emin([1]
mu.emin (2]
mu.emax[1]
mu.emax[2]

Il

I

j*¥*xxxs*calculate fuzzy output gain.fuzzy and offset.fuzzy using*****x*
pRakkebitrrs et iyeighted average method for defuzzification***xxewmes
FOR i = 1 TO 2
emin.member = emin.num+i-1
CASE emin.member OF

VALUE -4:
FOR j =1 TO 2
emax.member = emax.num+j-1

gden = gden+MIN{mu.emin[i],mu.emax[j])

oden = gden

CASE emax.member OF
VALUE -4:
gnum = gnum+gze*MIN(mu.emin([i],mu.emax[j])
onum = onum+opl*MIN(mu.emin[i],mu.emax[j])
VALUE -3:
gnum = gnum+gze*MIN(mu.emin[i], mu.emax[j])
onum = onum+opm*MIN(mu.emin[i],mu.emax([j])
VALUE -2:
gnum = gnum+gnz*MIN(mu.emin(i] , mu.emax[3j])
onum = onum+opPmM*MIN (mu.emin[i],mu.emax([3j])
VALUE -1, 0, 1:
gnum = gnum+gns*MIN(mu.emin[i],mu.emax[j])
onum = onum+ops*MIN(mu.emin[i],mu.emax[j])
VALUE 2:
gnum = gnum+gnm*MIN(mu.emin[i],mu.emax([j])
onum = onum+opz*MIN(mu.emin[i],mu.emax[j])
VALUE 3:
gnum = gnum+gnm*MIN(mu.emin[i],mu.emax([j])
onum = onum+oze*MIN(mu.emin[i],mu.emax[3j])
VALUE 4:
gnum = gnum+gnl*MIN(mu.emin[i],mu.emax[j])
onum = onum+oze*MIN(mu.emin[i],mu.emax[]j])
VALUE 5:
gnum = gnum+ (gnl-

g.support/2) *MIN(mu.emin[i] ,mu.emax[j])

onum = onum+oze*MIN(mu.emin[i],mu.emax([]j])

END
END
VALUE -3:
FOR j = 1 TO 2
emax.member = emax.num+j-1
gden gden+MIN(mu.emin[i] ,mu.emax([j])
oden = gden
CASE emax.member OF

148

VALUE -4:
gnum = gnum+gze*MIN(mu.emin(i],mu.emax([j])
onum = onum+opl*MIN(mu.emin(i],mu.emax[3j])
VALUE -3:
gnum = gnum+gze*MIN{mu.emin[i],mu.emax[j])
onum = onum+opm*MIN(mu.emin(i] ,mu.emax[3j])
VALUE -2:
gnum = gnum+gze*MIN(mu.emin(i] ,mu.emax([3j])
onum = onum+ops*MIN(mu.emin[i],mu.emax[3j])
VALUE -1, O0:
gnum = gnum+gnz*MIN{mu.emin[i],mu.emax[j])
onum = onum+ops*MIN(mu.emin[i].,mu.emax[j])
VALUE 1, 2:
gnum = gnum+gns*MIN(mu.emin[i] ,mu.emax[j])
onum = onum+opz*MIN{(mu.emin(i],mu.emax[j])
VALUE 3:
gnum = gnum+gnm*MIN(mu.emin(i],mu.emax[3j])
onum = onum+oze*MIN(mu.emin[i],mu.emax([3j])
VALUE 4:
gnum = gnum+gnm*MIN(mu.emin([i],mu.emax[3j])
onum = onum+oze*MIN(mu.emin([i],mu.emax(3j])
VALUE 5:
gnum = gnum+gnl*MIN(mu.emin(i],mu.emax[3j])
onum = onum+onz*MIN(mu.emin[i],mu.emax[3j])
END
END
VALUE -2:
FOR j = 1 TO 2
emax.member = emax.num+j-1
gden = gden+MIN(mu.emin[i],mu.emax([j])
oden = gden
CASE emax.member OF
VALUE -4:
gnum = gnum+gps*MIN(mu.emin(i],mu.emax[j])
onum = onum+opm*MIN(mu.emin([i],mu.emax[j])
VALUE -3:
gnum = gnum+gze*MIN(mu.emin[i],mu.emax[j])
onum = onum+ops*MIN(mu.emin[i],mu.emax[j])
VALUE -2:
gnum = gnum+gze*MIN(mu.emin[i], mu.emax([j])
onum = onum+ops*MIN(mu.emin(i],mu.emax[j])
VALUE -1:
gnum = gnum+gnz *MIN(mu.emin(i], mu.emax[j])
onum = onum+opz*MIN{mu.emin[i],mu.emax[]j])
VALUE 0, 1:
gnum = gnum+gns*MIN(mu.emin(i],mu.emax[j])
onum = onum+oze*MIN{(mu.emin[i],mu.emax[Jj])
VALUE 2:
gnum = gnum+gns*MIN(mu.emin(i],mu.emax[j])
onum = onum+oze*MIN(mu.emin[i],mu.emax[]j])
VALUE 3:
gnum = gnum+gns*MIN(mu.emin[i],mu.emax[7])
onum = onum+oze*MIN(mu.emin[i], mu.emax[]j]}
VALUE 4:
gnum = gnum+gnm*MIN(mu.emin[i],mu.emax[j])
onum = onum+ons*MIN(mu.emin(i] , mu.emax([3j])
VALUE 5:

149

gnum
onum =
END
END
VALUE -1:

gnum+gnl*MIN(mu.emin[i] ,mu.emax[j])
onum+onm*MIN (mu.emin[i] ,mu.emax(j])

FOR j =1 TO 2
emax.member = emax.num+j-1
gden = gden+MIN(mu.emin[i],mu.emax[j])

oden = g

den

IF (layer = 1) THEN

CASE emax.member OF

VALUE -4:

gnum = gnum+gps*MIN(mu.emin(i],mu.emax[j])
onum = onum+opm*MIN(mu.emin(i],mu.emax([j])
VALUE -3:

gnum = gnum+gps*MIN(mu.emin[i],mu.emax[j])
onum = onum+ops*MIN(mu.emin(i],mu.emax[j])
VALUE -2:

gnum = gnum+gpz*MIN(mu.emin[i],mu.emax[]j])
onum = onum+ops*MIN(mu.emin[i],mu.emax[3j])
VALUE -1:

gnum = gnum+gze*MIN(mu.emin[i], mu.emax[j])
onum = onum+opz*MIN(mu.emin(i] , mu.emax[Jj])
VALUE O0:

gnum = gnum+gze*MIN(mu.emin[i],mu.emax[j])
onum = onum+opz *MIN(mu.emin[i],mu.emax[3j])
VALUE 1:

gnum = gnum+gnz*MIN (mu.emin[i],mu.emax[j])
onum = onum+oze*MIN(mu.emin[i],mu.emax[j])
VALUE 2:

gnum = gnum+gns*MIN(mu.emin(i],mu.emax[j])
onum = onum+onz*MIN(mu.emin[i],mu.emax(j])
VALUE 3:

gnum = gnum+gns*MIN(mu.emin[i] ,mu.emax[j])
onum = onum+onz*MIN(mu.emin[i],mu.emax([j])
VALUE 4:

gnum = gnum+gns*MIN(mu.emin[i],mu.emax([j])
onum = onum+ons*MIN(mu.emin[i],mu.emax[j])
VALUE 5:

gnum gnum+gnm*MIN(mu.emin(i] ,mu.emax[j])
onum = onum+onm*MIN(mu.emin(i],mu.emax[J])

END

ELSE

CASE emax.member OF

VALUE
gnum =
onum =

-4:
gnum+gps*MIN(mu.emin(i] ,mu.emax(3j])
onum+opm*MIN (mu.emin[i] ,mu.emax[j])
VALUE -3:
gnum = gnum+gps*MIN(mu.emin(i], mu.emax[j])
onum = onum+ops*MIN(mu.emin[i] mu.emax[j])
VALUE -2:
gnum = gnum+gze*MIN(mu.emin(i],mu.emax[j])
onum = onum+opz*MIN(mu.emin[i],mu.emax[3j])
VALUE -1:
gnum = gnum+gze*MIN(mu.emin([i],mu.emax[j])
onum = onum+opz*MIN(mu.emin([i],mu.emax([j])
VALUE O:

150

gnum = gnum+gnz*MIN(mu.emin[i],mu.emax[j])
onum = onum+oze*MIN(mu.emin[i],mu.emax[]j])
VALUE 1:
gnum = gnum+gnz*MIN(mu.emin(i] ,mu.emax([j])
onum = onum+oze*MIN(mu.emin(i], mu.emax[j])
VALUE 2:
gnum = gnum+gns*MIN(mu.emin[i],mu.emax[3j])
onum = onum+oze*MIN(mu.emin[i],mu.emax[j])
VALUE 3:
gnum = gnum+gns*MIN(mu.emin[i] ., mu.emax[3j])
onum = onum+onz*MIN{mu.emin([i] ,mu.emax([j])
VALUE 4:
gnum = gnum+gns*MIN (mu.eminf[i],mu.emax[j])
onum = onum+ons*MIN(mu.emin(i],mu.emax([j])
VALUE 5:
gnum = gnum+gnm*MIN(mu.emin(i],mu.emax[j])
onum = onum+onm*MIN(mu.emin[i], mu.emax[]j])
END
END
END
VALUE O0:
FOR j = 1 TO 2
emax.member = emax.num+j-1
gden = gden+MIN(mu.emin[i],mu.emax[j])
oden = gden
IF (layer = 1) THEN
CASE emax.member OF
VALUE -4:
gnum = gnum+gps*MIN(mu.emin(i],mu.emax[]j])
onum = onum+opm*MIN (mu.emin[i],mu.emax[j])
VALUE -3, -2:
gnum = gnum+gps*MIN(mu.emin(i],mu.emax([j])
onum = onum+ops*MIN(mu.emin[i],mu.emax([7j])
VALUE -1:
gnum = gnum+gze*MIN(mu.emin[i],mu.emax[j])
onum = onum+opz*MIN(mu.emin[i],mu.emax([7j])
VALUE O0:
gnum = gnum+gze*MIN(mu.emin(i] ,mu.emax[j])
onum = onum+oze*MIN(mu.emin[i],mu.emax[j])
VALUE 1:
gnum = gnum+gze*MIN(mu.emin[i] ,mu.emax[]j])
onum = onum+onz*MIN(mu.emin(i],mu.emax[j])
VALUE 2:
gnum = gnum+gnz*MIN(mu.emin[i],mu.emax[j])
onum = onum+onz*MIN(mu.emin([i],mu.emax[j])
VALUE 3, 4:
gnum = gnum+gns*MIN(mu.emin([i],mu.emax[j])
onum = onum+ons*MIN(mu.emin([i],mu.emax(j])
VALUE 5:
gnum = gnum+gnm*MIN(mu.emin[i] ,mu.emax(j])
onum = onum+onm*MIN(mu.emin([i], mu.emax([j])
END
ELSE
CASE emax.member OF
VALUE -4:
gnum = gnum+gps*MIN(mu.emin[i],mu.emax[j])
onum = onum+opm*MIN(mu.emin[i],mu.emax[j])

151

END
END
VALUE 1:
FOR j =

emax.

gden
oden

VALUE -3, -2:

gnum = gnum+gps*MIN(mu.
onum = onum+ops*MIN(mu.
VALUE -1:

gnum = gnum+gpz*MIN(mu.
onum = onum+oze*MIN(mu.
VALUE O:

gnum = gnum+gze*MIN(mu.
onum = onum+oze*MIN{mu.
VALUE 1:

gnum = gnum+gnz*MIN (mu
onum = onum+oze*MIN (mu.
VALUE 2:

gnum = gnum+gns*MIN (mu.
onum = onum+onz*MIN (mu
VALUE 3, 4:

gnum = gnum+gns*MIN (mu
onum = onum+ons*MIN(mu.
VALUE 5:

gnum = gnum+gnm*MIN{(mu.
onum = onum+onm*MIN (mu.

END
1 TO 2
member emax.num+j-1

emin([i],mu.emax[j])
emin[i],mu.emax(j])

emin([i],mu.emax(j])
emin(i],mu.emax[j])

emin[i]},mu.emax(3j])
eminf[i], mu.emax[]j])

.emin(i),mu.emax([j])

emin[i],mu.emax[j])

emin(i],mu.emax(3j])

.emin(i],mu.emax[j])

.emin[i],mu.emax[j])

emin([i] ,mu.emax[j])

emin[i],mu.emax[j])
emin(i],mu.emax[j])

= gden+MIN(mu.emin[i],mu.emax[7j])

= gden

IF (layer = 1) THEN
CASE emax.member OF
VALUE -4, -3:

ELSE

gnum = gnum+gps*MIN (mu.
onum = onum+ops*MIN {mu
VALUE -2:

gnum = gnum+gps*MIN{mu.
cnum = onum+opz*MIN (mu.
VALUE -1:

gnum = gnum+gze*MIN (mu.
onum = onum+oze*MIN(mu.
VALUE O:

gnum = gnum+gze*MIN (mu
onum = cnum+onz*MIN(mu
VALUE 1:

gnum = gnum+gze*MIN(mu.
onum = onum+onz*MIN(mu.
VALUE 2:

gnum = gnum+gnz*MIN(mu.
onum = onum+onz*MIN (mu.
VALUE 3, 4:

gnum = gnum+gns*MIN(mu.
onum = onum+ons*MIN(mu.
VALUE 5:

gnum = gnum+gnm*MIN(mu.
onum = onum+onm*MIN (mu.

END

152

emin[i] ,mu.emax([j])

.emin[i) ,mu.emax[j])

emin(i),mu.emax[j])
emin{i] ,mu.emax([J])

emin(i],mu.emax([j])
emin[i],mu.emax[j])

.emin[i] ,mu.emax[j])
.emin[i],mu.emax([3j])

emin(i],mu.emax[j])
eminf(i] , mu.emax([j])

emin(i] ,mu.emax([j])
emin(i],mu.emax[j])

emin[i),mu.emax([j])
emin[i],mu.emax[3])

emin[i],mu.emax[j])}
emin[i] ,mu.emax[j])}

CASE emax.member OF
VALUE -4, -3:
gnum = gnum+gps*MIN(mu.emin[i] ,mu.emax[j])
onum = onum+ops*MIN(mu.emin(i],mu.emax[j])
VALUE -2:
gnum = gnum+gps*MIN(mu.emin[i] ,mu.emax(3j])
onum = onum+oze*MIN{(mu.emin[i],mu.emax([j])
VALUE -1:
gnum = gnum+gpz*MIN(mu.emin[i],mu.emax[3j])
onum = onum+oze*MIN(mu.emin[i] ,mu.emax[j]}
VALUE O0:
gnum = gnum+gpz*MIN(mu.emin[i] , mu.emax[j]}
onum = onum+oze*MIN(mu.emin[i],mu.emax[j])
VALUE 1:
gnum = gnum+gze*MIN(mu.emin[i],mu.emax([j])
onum = cnum+onz*MIN(mu.emin[i], mu.emax[3j])
VALUE 2:
gnum = gnum+gze*MIN(mu.emin(i] ,mu.emax[j])
onum = onum+onz*MIN(mu.emin([i],mu.emax[j])
VALUE 3, 4:
gnum = gnum+gns*MIN(mu.emin[i],mu.emax[3j])
onum = onum+ons*MIN(mu.emin[i],mu.emax[j])
VALUE 5:
gnum = gnum+gnm*MIN(mu.emin(i] ,mu.emax([3j])
onum = onum+onm*MIN(mu.emin{i],mu.emax([3j])
END
END
END
VALUE 2:
FOR j = 1 TO 2
emax.member = emax.num+j-1
gden = gden+MIN(mu.emin[i],mu.emax[j])
oden = gden
CASE emax.member OF
VALUE -4:
gnum = gnum+gpm*MIN(mu.emin[i],mu.emax[j])
onum = onum+ops*MIN(mu.emin[i],mu.emax[j])
VALUE -3:
gnum = gnum+gps*MIN(mu.emin(i],mu.emax[i])
onum = onum+oze*MIN(mu.emin(i],mu.emax[j])
VALUE -2:
gnum = gnum+gps*MIN(mu.emin([i},mu.emax[3j])
onum = onum+oze*MIN(mu.emin[i},mu.emax[7j])
VALUE -1:
gnum = gnum+gps*MIN(mu.emin(i],mu.emax[j])
onum = onum+cze*MIN(mu.emin(i],mu.emax[j])
VALUE 0:
gnum = gnum+gps*MIN(mu.emin(i],mu.emax(j])
onum = onum+onz*MIN(mu.emin(i],mu.emax[3j])
VALUE 1:
gnum = gnum+gze*MIN(mu.emin|[i],mu.emax[j])
onum = onum+onz*MIN(mu.emin([i],mu.emax[j])
VALUE 2:
gnum = gnum+gze*MIN(mu.emin[i] ,mu.emax[j])
onum = onum+ons*MIN(mu.emin(i],mu.emax([j])
VALUE 3:
gnum = gnum+gze*MIN(mu.emin[i],mu.emax(3j])

153

onum = cnum+ons*MIN(mu.emin[i]),mu.emax[j])
VALUE 4:
gnum = gnum+gns*MIN(mu.emin[i],mu.emax[3j])
onum = onum+onm*MIN(mu.emin(i] , mu.emax([j])
VALUE 5:
gnum = gnum+gnm*MIN(mu.emin[i],mu.emax(j])
onum = onum+onl*MIN(mu.emin[i],mu.emax[3j])}
END
END
VALUE 3:
FOR j = 1 TO 2
emax.member = emax.num+3j-1
gden = gden+MIN (mu.emin(i],mu.emax[j])
oden = gden
CASE emax.member OF
VALUE -4:
gnum = gnum+gpm*MIN(mu.emin(i}, mu.emax[(j])
onum = onum+oze*MIN(mu.emin[i].mu.emax[j])
VALUE -3:
gnum = gnum+gpm*MIN(mu.emin(i],mu.emax[3j])
onum = onum+oze*MIN(mu.emin[i],mu.emax[j])
VALUE -2:
gnum = gnum+gps*MIN(mu.emin(i)], mu.emax[j])
onum = onum+oze*MIN(mu.emin([i], mu.emax[j])
VALUE -1:
gnum = gnum+gps*MIN(mu.emin(i], mu.emax[j])
onum = onum+onz*MIN(mu.emin[i] , mu.emax[j])
VALUE 0, 1:
gnum = gnum+gps*MIN(mu.emin[i] ,mu.emax[j])
onum = onum+ons*MIN(mu.emin(i],mu.emax([3j])
VALUE 2:
gnum = gnum+gze*MIN(mu.emin[i],mu.emax[j])
onum = onum+ons*MIN(mu.emin[i],mu.emax[3])
VALUE 3:
gnum = gnum+gze*MIN(mu.emin(i] , mu.emax[j])
onum = onum+onm*MIN{(mu.emin(i],mu.emax[j])
VALUE 4:
gnum = gnum+gnz*MIN(mu.emin([i],mu.emax[3j])
onum = onum+onl*MIN(mu.emin[i],mu.emax[j])
VALUE 5:
gnum = gnum+gns*MIN(mu.emin[i],mu.emax[3j])
onum = onum+onl*MIN(mu.emin[i],mu.emax[j])
END
END
VALUE 4:
FOR i =1 TO 2
emax.member = emax.num+7J]-1
gden = gden+MIN(mu.emin[i],mu.emax(j])
oden = gden
CASE emax.member OF
VALUE -4:
gnum = gnum+gpl*MIN(mu.emin[i],mu.emax[]j])
onum = onum+oze*MIN(mu.emin[i],mu.emax[j])
VALUE -3:
gnum = gnum+gpm*MIN(mu.emin([i], mu.emax([j])
onum = onum+oze*MIN(mu.emin[i],mu.emax[j])
VALUE -2:

154

gnum = gnum+gpm*MIN(mu.emin[i],mu.emax[j])
onum = onum+onz*MIN(mu.emin(i],mu.emax[j])
VALUE -1:

gnum = gnum+gps*MIN(mu.emin[i],mu.emax[3j])
onum = ocnum+ons*MIN(mu.emin[i],mu.emax[j])
VALUE 0, 1:
gnum = gnum+gps*MIN(mu.emin[i],mu.emax[j])
onum = onum+onm*MIN(mu.emin(i], mu.emax[j])
VALUE 2:
gnum = gnum+gpz*MIN(mu.emin[i],mu.emax[j])
onum = onum+onm*MIN(mu.emin[i], mu.emax([j])
VALUE 3:
gnum = gnum+gze*MIN(mu.emin[i],mu.emax[3j])
onum = onum+onl*MIN(mu.emin[i],mu.emax[j])
VALUE 4:
gnum = gnum+gze*MIN(mu.emin([i],mu.emax(3j])
onum = onum+onl*MIN(mu.emin(i].,mu.emax[]j])
VALUE 5:
gnum = gnum+gnz*MIN(mu.emin[i],mu.emax[j])
onum = onum+ (onl-
o.support/2)*MIN(mu.emin(i] ,mu.emax[j])
END
END
VALUE 5:
FOR j =1 TO 2
emax.member = emax.num+j-1
gden = gden+MIN(mu.emin[i],mu.emax[j]}
oden = gden
CASE emax.member OF
VALUE -4:
gnum =
gnum+ (gpl+g.support/2)} *MIN(mu.emin[i] ,mu.emax[j])
onum = onum+oze*MIN(mu.emin[i],mu.emax[j])
VALUE -3:
gnum = gnum+gpl*MIN{(mu.emin[i], mu.emax[]j])
onum = onum+onz*MIN{mu.emin{i],mu.emax[(j])
VALUE -2:
gnum = gnum+gpl*MIN(mu.emin(i], mu.emax(j])
onum = onum+ons*MIN(mu.emin[i],mu.emax(j])
VALUE -1:
gnum = gnum+gpm*MIN (mu.emin([i],mu.emax(j])
onum = onum+onm*MIN (mu.emin(i],mu.emax([j])
VALUE 0, 1:
gnum = gnum+gpm*MIN (mu.emin(i],mu.emax[3])
onum = onum+onl*MIN(mu.emin([i], mu.emax[j])
VALUE 2:
gnum = gnum+gps*MIN(mu.emin(i],mu.emax([]])
onum = cnum+onl*MIN(mu.emin(i],mu.emax([j])
VALUE 3:
gnum = gnum+gps*MIN(mu.emin[i],mu.emax[j])
onum = onum+onl*MIN(mu.emin[i],mu.emax[j])
VALUE 4:
gnum = gnum+gpz*MIN(mu.emin[i],mu.emax([j])
onum = onum+ (onl-
o.support/2)*MIN(mu.emin[i] ,mu.emax([j])
VALUE 5:
gnum = gnum+gze*MIN(mu.emin[i],mu.emax[j])

Il

155

onum = onum+ (onl-
o.support/2)*MIN(mu.emin[i] ,mu.emax[j])
END
END

END
END
gain.fuzzy = gnum/gden
offset.fuzzy = onum/oden
RETURN

.END

156

.PROGRAM wb. fuz.test()
;ABSTRACT: This program is used to test the FUZ controller

; INPUT PAR: None

;OUTPUT PAR: Gain offset and threshold, min gray and max gray level
; INIT DATE: Aug 28, 1998

;LAST UPDATE: Aug 28, 1998

LOCAL camera.num
CALL vi.init.camf{)

FOR i = 1. TO 3
i_a min[i,0] = 0
i_a_min_ave[i,0] = 0
i_a_maxf[i,0] =0
i_a_max_ave[i,0] = 0
i_a_sum[i,0] = 0
i_s min[i,0] = 0
i_s min_avel[i,0] = 0
i_s max[i,0] =0
i_s_max_avel[i,0] = 0
i_s_sum[i,0] = 0

END

TIMER (2) = 0

FOR count.gen = 1 TO 120

CALL fuzzy.set.gain()

TYPE count.gen, " ", TIMER(2)
time.gen[count.gen] = TIMER({2)
FOR camera.num = 1 TO 2
TYPE /S, "cam", camera.num, " x0=",
x0_arr|[camera.num,count.gen], " xn=", Xn_arr|[camera.num,count.gen]j
TYPE /S, " pixcel=", pixcel_arr[camera.num,count.gen]
TYPE /S, " thresh=", thresh_arr[camera.num,count.gen], "

gain=", gain_arr(camera.num, count.gen]
TYPE " offset=", offset_arr|[camera.num,count.gen]
: TYPE gain.fuzzy, offset.fuzzy
TYPE /8§, " iaal=", i_a_min_ave[camera.num, count.gen]
TYPE /S, " iaan=", 1_a_max_ave[camera.num,count.gen]
TYPE /S, " iss0=", i_s_min_ave|[camera.num,count.gen]
TYPE " issn=", 1i_s_max_ave[camera.num,count.gen)
TYPE /S, " iaa_sum=", i_a_sum[camera.num, count.gen]
TYPE " iss_sum=", i_s_sum[camera.num,count.gen]
END
TYPE
TIMER (3) = 0
WAIT TIMER(3)
END

> 15

.END

157

AGS VISION CODE IN V/V+

ADEPT ONE LANGUAGE FOR

FUZZY INTEGRAL

CONTROLLER

158

/***i***i****i*********tt**t**tt****iF{E+D) +I 200*'***itii****ti**tt/

.PROGRAM wb.fd.i.test ()
;ABSTRACT: This program is used to test the (fuz+d)+i controller
; INPUT PAR: None
;OUTPUT PAR: Gain offset and threshold, min gray and max gray level
; INIT DATE: Oct 30, 1998
; LAST UPDATE: Aug 30, 1998

LOCAL camera.num

first.time = 0

TIMER (2) = 0

CALL wb.vi.init.cam()

FOR i = 1 TO 3

i_a_min[i,0] = 0
i_a min_ave[i,0] = 0
i_a_max[i,0] =0
i_a_max_ave[i,0] =0
i_s_min[i,0] = 0
i_s_min_avel[i,0] = 0
i_s max[i,0] = 0
i_s max_avel[i,0] =0

END
FOR count.gen = 1 TO 120
CALL wb.pid.cal()

TYPE count.gen, " ", TIMER(2)
time.gen[count.gen] = TIMER(2)
FOR camera.num = 1 TO 2
TYPE /S, "cam", camera.num, " x0=",
x0_arr (camera.num,count.gen], " xn=", Xn_arr[camera.num, count.gen)
TYPE /S, " pixcel=", pixcel_ arr[camera.num,count.gen]
TYPE /S, " thresh=", thresh_arr[camera.num,count.gen], "
gain=", galn_arr[camera.num,count.gen]
TYPE " offset=", offset_arr[camera.num,count.gen]
TYPE [5; " aal=", i_a_min_ave[camera.num, count.gen]
TYPE /S, " aan=", i_a_max_ave[camera.num,count.gen]
TYPE /S, " ss0=", i_s_min_ave[camera.num, count.gen]
TYPE " ssn=", i_s_max_ave[camera.num,count.gen]
TYPE /S5, " aa_sum=", i_a_sum[camera.num,count.gen]
TYPE " ss_sum=", 1i_s_sum[camera.num,count.gen]
7 TYPE
END
TYPE
TIMER (3) = 0
WAIT TIMER(3) > 15

END
-END

159

.PROGRAM wb.pid.cal()

;ABSTRACT: set gain, offset and threshold using a PID controller

; INPUT PARAMETER: none

; OUTPUT PARAMETER: vision parameter such as: gain, offset, threshold
; INITIAL DATE: Aug 16, 1998
; LAST UPDATE: Aug 22, 1998
;****yvariables declaration****
LOCAL cameral, cameraZ2, cameral, camera.number
cameral = 1
cameraz = 2
cameral = 3
count.pid.end = 200
;****initialize cameras****
first.time = 0 ;flag for initialization at only the first time

2 CALL wb.vi.init.cam()

;***following is for testing the program defuz_ fd ix**x**

; first.time = 0
H TIMER (2) = 0
CALL wb.vi.init.cam()
FOR i =1 TO 3
i_a min(i,0] =0
]

i_a_min_avel[i,0] = 0
i_a_max([i,0] = 0
i_a_max_avel[i,0] = 0
s minli, 0] =0
i_s_min_ave(i,0] = 0
i_s max[i,0] = 0
i_s max_ave[i,0] =0

END
;*****end testing

;****calibrate vision parameters using PID controller***=*
FOR camera.number = cameral TO cameral

gain.inc.sum[camera.number] =
gain.inc.der [camera.number] =
offset.chg.sum|[camera.number]
offset.chg.der [camera.number]

END
TIMER (1) = 0
TIMER (5) = 0
d

FOR count.pid = 1 TO count.pid.end

IF count.pid == 101 THEN
TIMER (5) = O
min.gray[l] = 10 ;decided
max.gray[l] = 60 ;decided
min.gray([2] = 10 ;decided
max.gray[2] = 60 ;decided
min.gray([3] = 10 ;decided

max.gray[3] = 60 ;decided
FOR i = 1 TO 3
i_a_min[i,100] =0

i_a_min_avel[i,100] = 0
i_a_max[i,1l00] = 0
i_a_max_avel[i,100] = 0

160

0
0

P

i_s min[i,100] = 0

i_s_min_ave[1,100] = 0
i_s max[1,100] = 0
i1_s_max_ave[i,100] = 0

END

FOR camera.number = cameral TO cameral
gain.inc.sum|[camera.number] = 0
gain.inc.der[camera.number] = 0
offset.chg.sum[camera.number] = 0
offset.chg.der[camera.number] = 0

END

END

VPICTURE (cameral, TRUE) 2, O
CALL wb.pid.control (cameral, framel)

VPICTURE (camera2, TRUE) 2, O

CALL wb.pid.control (camera2, framel)
VPICTURE (camera3, TRUE) 2, 0
CALL wb.pid.control (cameral3, framel)

tran_time[count.pid] = TIMER(1)
TYPE count.pid, " ", tran_time[count.pid], " ", TIMER({S5)
TYPE
TYPE /B, TIMER(1l), " sec"
END
RETURN

161

.PROGRAM defuz_fd_i(el, e2, el_der, e2_der}

:***tt*i***tt**********t program variablet**ti*‘k***tii**i*********tit*
g R*E e A F AKXt () (9B * hwkxkkkkw A A kAR IR Kk kh Ak F R AR AN h Xk ko h ok

LOCAL eg, eo, gnum, gden, onum, oden, eg.member, eo.member
LOCAL eg.spread, eo.spread, g.spread, o.spread, eg.n, eo.n, g.n,

Q.11

LOCAL eg.support, eo.support, g.support, o.support

LOCAL eg.nl, eg.nm, eg.ns, eg.nz, egze, eg.pz, €g.ps, eg.pm,
eg.pl

LOCAL eo.nl, eo.nm, eo.ns, €0.nz, eo.ze, €0.pz, €0.ps, e€0.pm,
eo.pl

LOCAL gnl, gnm, gns, gnz, gze, gpz, gps, gpm, gpl
LOCAL onl, onm, ons, onz, oze, opz, ops, opm, opl
LOCAL mu.eg[], mu.eol(]

LOCAL eg.rangel, eg.range2, eo.rangel, eo.range2
LOCAL eg.num, eo.num

eg = el

eo = e2

egd = el_der

eod = el2_der

gden = 0
oden = 0
gnum = 0
onum = 0

pFEEEFRFAAkxFxkxI*go5ign initial value and calculate fuzzy numbers******
eg.rangel = 2
eg.range2 = 4
eo.rangel = 4
eo.range? 12
IF ((eg <= eg.rangel) AND (eg >= -eg.rangel)) THEN
eg.support = eg.rangel/2
g.support = 2
ELSE
IF ((eg <= eg.range2) AND (eg >= -eg.range2)) THEN
eg.support = eg.range2/2
g.support = B
ELSE
eg.support = eg.range?2
g.support = 32
END
END

IF ((eo <= eo.rangel) AND (eo >= -eo.rangel)) THEN
eo.support = eo.rangel/2
o.support = 2
ELSE
IF ((eo <= eo.range2) AND (eo >= -eo.range2)) THEN
eo.support = eo.range2/2
o.support = 4
ELSE
eo.support = eo.range?2
o.support = 8
END
END
egd.support
eod. support

Il
L= =1

162

eo.n = 2
egd.n = 2
eod.n = 2
g.n = 2
o.n = 2

eg.spread = eg.support*eg.n
eo.spread = eo.support*eo.n
egd. spread egd.support*egd.n
eod. spread eod.support*eod.n
g.spread = g.support*g.n
o.spread = o.support*o.n

1l

j¥***x*x*x*x*partition the universe of discourse for input fuzzy variable

eg.pl = eqg.spread

eg.pm = eg.spread*3/4

eg.ps = eg.support ; (emin.spread/2)
eg.pz = eg.support/2 ; {emin.spread/4)

eg.ze = 0

eg.nz = -eq.pz

eg.ns = -eg.ps

eg.nm = -eg.pm

eg.nl = -eg.pl

egd.pl = egd.spread

egd.pm = egd.spread*3/4

egd.ps = egd.support ; (emin.spread/2)
egd.pz = egd.support/2 ; (emin.spread/4)
egd.ze = 0

egd.nz = -egd.pz

egd.ns = -egd.ps

egd.nm = -egd.pm

egd.nl = -egd.pl

eo.pl = eo.spread

eo.pm = eo.spread*3/4

e0.ps = eo.support ; lemin.spread/2)
e0.pz = eo.support/2 ; l[emin.spread/4)

eoc.ze = 0

eo.nz = -eo0.pz

£0.Ns = - 0.PS

eo.nm = -eo.pm

eo.nl = -eo.pl

eod.pl = eod.spread

eod.pm = eod.spread*3/4

eod.ps = eod.support ; (emin.spread/2)
eod.pz = eod.support/2 ;(emin.spread/4)
eod.ze = 0

eod.nz = -eod.pz

eod.ns = -eod.ps

eod.nm = -eod.pm

eod.nl = -eod.pl

;*****partition the universe of discourse for output fuzzy variable****

163

gpl =
gpm =
gps =
gpz =
gze =
gnz =
gns =
gnm =
gnl =

opl =
opm =
ops =
opz =
oze =
onz =
ons =
onm =
onl =
; **calculate
IF (eg

eqg.

ELSE

eqg.

END

IF (eg.
eqg.

ELSE
IF

END

IF (eg

eg
ELSE

egd.

END

IF (egd.

eg
ELSE
IF

EN
END

g.spread
g.spread*3/4
g.supporkt
g.support/2

0

_gpz
-gps
-gpm
-gpl

o0 00O

-opz
-0ps
-opm
-opl

input
>= 0}

num
num

num
num

{eg.

d >=

I}

.spread
.spread=*3/4
.support
.support/2

range and mu vector for tow consequentive partitions

THEN
INT(eg/eg.support*2)

INT(eg/eg.support*2-1)

-4) THEN
-4

num >= 4) THEN
eg.num = 4 p¥***%4my emin(1]=0 and mu.emin[2]=1***
END

0

d.num

num

num

d.num

(egd.
egd.num = 4 ;***xx+my emin([1]=0 and mu.emin[2]=1***

D

IF (eo >= 0)

eo
ELSE
eo
END
IF (eo
eo
ELSE
IF

.num

» um

-num
-num

1

)

n

THEN
INT (egd/egd. support*2)

INT (egd/egd.support*2-1)

-4) THEN
-4

um >= 4) THEN

THEN
INT (eo/eo.support*2)

INT (eo/eo.support*2-1)

-4) THEN
-4

{eco.num >= 4) THEN
20 . num
END

= 4 s*¥***x*xmy emax([1]=0 and mu.emax[2]=1****

164

END

IF (eod >= 0) THEN
eod.num = INT(eod/eod.support*2)

ELSE
eod.num = INT(eod/eod.support*2-1)
END
IF (eod.num < -4) THEN
eod.num = -4
ELSE
IF (eod.num >= 4) THEN
eod.num = 4 ;*****mu _emax[1)=0 and mu.emax[2]=1****
END
END
mu.eg(l] = ({eg.num+l)*eg.support/2-eg)/eg.support/2
mu.eg[2] = l-mu.eg[l]
mui.egd[l] = ((egd.num+l)*egd.support/2-egd)/egd.support/2
mu.egd[2] = l-mu.egd[1l]
mu.eof(l] = ((eo.num+l)*eoc.support/2-eo)/eo.support/2
mu.eol[2] = l-mu.eo[l]

({eod.num+1l) *eod. support/2-eod) /eod. support/2
l-mu.eod[1]

mu.eod[1]
mu.eod[2]

jrx*xx*xxx*calculate fuzzy output gain.fuzzy and offset.fuzzy using*****
pRExAkxxxxkxkkxx*ywejghted average method for defuzzification*****x***x%%
FOR i =1 TO 2
eg.member = eg.num+i-1
CASE eg.member OF
VALUE -4:
FOR j = 1 TC 2
egd.member = egd.num+j-1
gden = gden+MIN(mu.eg[i],mu.egd[]])
CASE egd.member OF

VALUE -4:
gnum = gnum+gnm*MIN(mu.eg[i] ,mu.egd[j])
VALUE -3:
gnum = gnum+gnm*MIN(mu.eg[i],.mu.egd[j])
VALUE -2:

gnum = gnum+gnl*MIN(mu.eg[i] , mu.egd(j])
VALUE -1, 0, 1:
gnum = gnum+gnl*MIN(mu.eg[i],mu.egd[j])
VALUE 2:
gnum = gnum+gnl*MIN(mu.eg[i].mu.egd[j])
VALUE 3:
gnum = gnum+gnl*MIN(mu.eg[i] ,mu.egd[j])
VALUE 4:
gnum = gnum+gnl*MIN(mu.eg[i] , mu.egd[]])
VALUE 5:
gnum = gnum+{gnl-g.support/2)*MIN(mu.eg[i],mu.egd[]j])
END
END
VALUE -3:
FOR j = 1 TO 2
egd.member = egd.num+j-1
gden = gden+MIN(mu.eg(i],.mu.egd[(j])
CASE egd.member OF

165

VALUE -4:
gnum = gnum+gns*MIN(mu.eg[i] ,mu.egd(j])
VALUE -3:
gnum = gnum+gns*MIN({mu.eg([i] , mu.egd(j])
VALUE -2:

gnum = gnum+gnm*MIN{mu.eg[i] , mu.egd[j])
VALUE -1, 0:
gnum = gnum+gnm*MIN{mu.eg[i],mu.egd[j])

VALUE 1:
gnum = gnum+gnm*MIN(mu.eg[i] ,mu.egd[j])
VALUE 2:
gnum = gnum+gnl*MIN(mu.eg[i],mu.egd(j])
VALUE 3:
gnum = gnum+gnl*MIN(mu.eg[i),mu.egd[j])
VALUE 4:
gnum = gnum+gnl*MIN(mu.eg[i].,mu.egd[]j]}
VALUE 5:
gnum = gnum+gnl*MIN(mu.eg[i],mu.egd[7j])
END
END
VALUE -2:

FOR j = 1 TO 2
egd.member = egd.num+j-1
gden = gden+MIN(mu.eg[i],mu.egd[j])
CASE egd.member OF

VALUE -4:
gnum = gnum+gns*MIN(mu.eg[i],mu.egd[j])
VALUE -3:
gnum = gnum+gnz*MIN(mu.eg[i],mu.egd[j])
VALUE -2:
gnum = gnum+gns*MIN(mu.eg[i],mu.egd(j]})
VALUE -1:
gnum = gnum+gns*MIN(mu.eg[i],mu.egd[]j])
VALUE 0, 1:
gnum = gnum+gns*MIN(mu.eg(i],mu.egd(]])
VALUE 2:
gnum = gnum+gnm*MIN(mu.eg[i],.mu.egd[j])
VALUE 3:
gnum = gnum+gnm*MIN{mu.eg[i] ,mu.egd[]j])
VALUE 4:
gnum = gnum+gnl*MIN(mu.eg(i],mu.egd[]j])
VALUE 5:
gnum = gnum+gnl*MIN(mu.eg(i],mu.egd[j])
END
END
VALUE -1:

FOR j = 1 TQ 2
egd.member = egd.num+j-1
gden = gden+MIN(mu.eg[i],mu.egd([j])
CASE egd.member OF

VALUE -4:
gnum = gnum+gnz*MIN(mu.eg(i], mu.egd[]j])
VALUE -3:
gnum = gnum+gnz*MIN(mu.eg[i],mu.egd[j])
VALUE -2:
gnum = gnum+gnz*MIN(mu.eg(i],mu.egd[j])
VALUE -1:

166

gnum = gnum+gnz*MIN(mu.eg[i),mu.egd[j])
VALUE O0:
gnum = gnum+gnz*MIN(mu.eg[i],mu.egd[]])
VALUE 1:
gnum = gnum+gnz*MIN(mu.eg[i], mu.egd[j])
VALUE 2:
gnum = gnum+gns*MIN(mu.eg[i],mu.egd[]j])
VALUE 3:
gnum = gnum+gnm*MIN(mu.eg(i],mu.egd[j])
VALUE 4:
gnum = gnum+gnm*MIN(mu.eg(i], mu.egd[j])
VALUE 5:
gnum = gnum+gnm*MIN(mu.eg[i]. . mu.egd[j])
END
END
VALUE O:
FOR j =1 TO 2
egd.member = egd.num+j-1
gden = gden+MIN(mu.eg[i].mu.egd[j])
CASE egd.member OF

VALUE -4:
gnum = gnum+gze*MIN(mu.eg[i],mu.egd[j])
VALUE -3:
gnum = gnum+gze*MIN({(mu.eg[i] , mu.egd[]j])
VALUE -2:
gnum = gnum+gze*MIN(mu.eg[i], mu.egd[]])
VALUE -1:
gnum = gnum+gze*MIN(mu.eg[i] , mu.egd[]j])
VALUE 0O:
gnum = gnum+gze*MIN(mu.eg[i],mu.egd[]j])
VALUE 1:
gnum = gnum+gze*MIN(mu.eg{i],mu.egd[j])
VALUE 2:
gnum = gnum+gze*MIN(mu.eg[i] .mu.egd[j])
VALUE 3:
gnum = gnum+gze*MIN(mu.eg[i],mu.egd[j])
VALUE 4:
gnum = gnum+gze*MIN(mu.eg[i],mu.egd[]j])
VALUE 5:
gnum = gnum+gze*MIN{mu.eg[i] ,mu.egd[j])
END
END
VALUE 1:

FOR j = 1 TO 2
egd.member = egd.num+j-1
gden = gden+MIN(mu.eg[i], mu.egd[j])
CASE egd.member OF

VALUE -4:
gnum = gnum+gps*MIN(mu.eg(i],mu.egd[j])
VALUE -3:
gnum = gnum+gps*MIN(mu.eg[i],mu.egd(j])
VALUE -2:
gnum = gnum+gps*MIN(mu.eg[i],mu.egd(j])
VALUE -1:
gnum = gnum+gpz*MIN(mu.eg([i],mu.egd[j])
VALUE 0:

gnum = gnum+gpz*MIN(mu.eg[i],mu.egd[j])

167

VALUE 1:
gnum = gnum+gpz*MIN(mu.eg([i],mu.egd[j])}
VALUE 2:
gnum = gnum+gpz*MIN(mu.eg(i],mu.eqd[]])
VALUE 3:
gnum = gnum+gpz*MIN(mu.eg[i],mu.egd[j])
VALUE 4:
gnum = gnum+gze*MIN(mu.eg(i], mu.egd([j])
VALUE 5:
gnum = gnum+gze*MIN(mu.eg[i],mu.egd[]j])
END
END
VALUE 2:
FOR j = 1 TO 2
egd.member = egd.num+j-1
gden = gden+MIN(mu.eg[i] ,mu.egd[j])
CASE egd.member OF

VALUE -4:

gnum = gnum+gpm*MIN(mu.eg[i] , mu.egd(j])
VALUE -3:

gnum = gnum+gpm*MIN(mu.eg[i] ,mu.egd[j])
VALUE -2:

gnum = gnum+gpm*MIN(mu.eg(i],mu.egd[j])
VALUE -1:

gnum = gnum+gps*MIN(mu.eg[i],.mu.egd[]])
VALUE O:

gnum = gnum+gps*MIN(mu.eg[i],mu.egd[7j])
VALUE 1:

gnum = gnum+gps*MIN(mu.eg[i],mu.egd[]j])
VALUE 2:

gnum = gnum+gps*MIN(mu.eg[i],mu.egd[]j])
VALUE 3:

gnum = gnum+gps*MIN(mu.eg([i],.mu.eqgd[j])
VALUE 4:

gnum = gnum+gpz*MIN(mu.egli],mu.egd([j]}
VALUE 5:

gnum = gnum+gze*MIN(mu.eg[i], mu.egd[j])

END
END
VALUE 3:

FOR j = 1 TO 2
egd.member = egd.num+j-1
gden = gden+MIN(mu.eg(i],mu.egd[j])
CASE egd.member OF

VALUE -4:

gnum = gnum+gpl*MIN(mu.eg[i],mu.egd([j])
VALUE -3:

gnum = gnum+gpl*MIN(mu.eg[i],mu.egd(Jj])
VALUE -2:

gnum = gnum+gpl*MIN(mu.eg([i],mu.egd[]])
VALUE -1:

gnum = gnum+gpm*MIN({(mu.eg[i],mu.egd[j])
VALUE 0:

gnum = gnum+gpm*MIN(mu.eg[i], mu.egd[j])
VALUE 1:

gnum = gnum+gpm*MIN(mu.eg[i],mu.egd[j])
VALUE 2:

168

gnum = gnum+gps*MIN(mu.eg[i],mu.egd[j])
VALUE 3:
gnum = gnum+gps*MIN(mu.eg[i],mu.egd[3j])
VALUE 4:
gnum = gnum+gps*MIN(mu.eg[i], mu.egd[]j])
VALUE 5:
gnum = gnum+gpz*MIN(mu.eg[i],mu.egd(j])
END
END
VALUE 4:
FOR j = 1 TO 2
egd.member = egd.num+j-1
gden = gden+MIN{(mu.eg[i],mu.egd[]j])
CASE egd.member OF

VALUE -4:

gnum = gnum+gpl*MIN{mu.eg[i],mu.egd[]])
VALUE -3:

gnum = gnum+gpl*MIN(mu.eg[i] . mu.egd[j])
VALUE -2:

gnum = gnum+gpl*MIN(mu.eg[i] , mu.egd[j])
VALUE -1:

gnum = gnum+gpl*MIN(mu.eg[i] ,mu.egd[3j])
VALUE O:

gnum = gnum+gpl*MIN(mu.eg(i],mu.egd[j])
VALUE 1:

gnum = gnum+gpl*MIN(mu.eg[i], mu.egd[j]}
VALUE 2:

gnum = gnum+gpm*MIN(mu.egli],mu.egd[j])
VALUE 3:

gnum = gnum+gpm*MIN(mu.eg[i],mu.egd[j])
VALUE 4:

gnum = gnum+gps*MIN(mu.eg(i],.mu.egd[7j])
VALUE 5:

gnum = gnum+gpz*MIN(mu.eg[i] . mu.egd[]j])

END
END
VALUE 5:

FOR j = 1 TO 2
egd.member = egd.num+j-1
gden = gden+MIN(mu.eg[i],mu.egd(7j])
CASE egd.member OF

VALUE -4:

gnum = gnum+gpl*MIN(mu.eg[i], mu.egd[]j])
VALUE -3:

gnum = gnum+gpl*MIN(mu.eg[i],mu.egd[j])
VALUE -2:

gnum = gnum+gpl*MIN(mu.eg[i] . mu.egd[j])
VALUE -1:

gnum = gnum+gpl*MIN(mu.eg(i] , mu.egd[]j])
VALUE O0:

gnum = gnum+gpl*MIN(mu.eg[i],mu.egd[]j])
VALUE 1:

gnum = gnum+gpl*MIN(mu.eg[i] ,mu.egd[j])
VALUE 2:

gnum = gnum+gpl*MIN(mu.eg[i],mu.egd[]j])
VALUE 3:

gnum = gnum+gpl*MIN{mu.eg[i], mu.egd[j])

169

VALUE 4:
gnum = gnum+gpm*MIN(mu.eg[i],mu.egd[j])

VALUE 5:
gnum = gnum+gpm*MIN{(mu.eg[i],mu.egd[j])
END
END
END

END
calculate fuzzy number for offset*xxxxrx
FOR i = 1 TO 2
eo.member = eo.num+i-1
CASE eo.member OF
VALUE -4:
FOR j = 1 TO 2
eod.member = eod.num+j-1
oden = coden+MIN(mu.eo[i],mu.eod([]j])
CASE eod.member OF

VALUE -4:
onum = onum+onm*MIN(mu.eo[i] ,mu.eod[]j])
VALUE -3:
onum = onum+onm*MIN(mu.eo[i],mu.eod[]j])
VALUE -2:

onum = onum+onl*MIN(mu.eo[i] , mu.eod[j])
VALUE -1, 0, 1:
onum = onum+onl*MIN(mu.eo[i],mu.eod[]])
VALUE 2:
onum = onum+onl*MIN(mu.eo[i] , mu.eod(j])
VALUE 3:
onum = onum+onl*MIN(mu.eo{i].mu.eod([j])
VALUE 4:
onum = onum+onl*MIN({(mu.eo[i).mu.eod[]j])
VALUE 5:
onum = onum+ (onl-o.support/2)}*MIN{(mu.eo[i],mu.eod[]j])
END
END
VALUE -3:
FOR j = 1 TO 2
eod.member = eod.num+j-1
oden = oden+MIN(mu.eo[i],mu.eod[j])
CASE eod.member OF

VALUE -4:
onum = onum+ons*MIN(mu.eo(i],.mu.eod[]])
VALUE -3:
onum = onum+ons*MIN(mu.eo[i],mu.eod[j])
VALUE -2:

onum = onum+onm*MIN(mu.eo[i],mu.eod[]])
VALUE -1, O:

onum = onum+onm*MIN(mu.eo[i],mu.eod[]j])
VALUE 1:

onum = onum+onm*MIN(mu.eo([i],mu.eod[]j])
VALUE 2:

onum = onum+onl*MIN(mu.eo(i],mu.eod(j])
VALUE 3:

onum = onum+onl*MIN(mu.eo[i],mu.eod[j])
VALUE 4:

onum = onum+onl*MIN(mu.eo[i],mu.eod([]])
VALUE 5:

170

END

onum = onum+onl*MIN(mu.eo[i],mu.eod[]j])
END

VALUE -2:

FOR 7j

=1 TO 2

eod.member = eod.num+j-1
oden = oden+MIN(mu.eo[i],mu.eod[j])
CASE eod.member OF

VALUE -4:
onum = onum+ons*MIN(mu.eo(1],mu.
VALUE -3:
onum = onum+onz*MIN(mu.eo([i],mu.
VALUE -2:
onum = onum+ons*MIN(mu.eo[i],mu.
VALUE -1:
onum = onum+ons*MIN(mu.eo[i],mu.
VALUE (0, 1:
onum = onum+ons*MIN(mu.eo[i],mu.
VALUE 2:
onum = onum+onm*MIN (mu.eo[i],mu.
VALUE 3:
onum = onum+onm*MIN(mu.eoc[i],mu.
VALUE 4:
onum = onum+onl*MIN(mu.eo[i],mu.
VALUE 5:
END

END

VALUE -1:

FOR § = 1 T0 2

eod[j])
eod[j])
eod[j])
eod(j])
eod(3])
eod(]])
ecd[j])

ecd[]j])

onum = onum+onl*MIN(mu.eo[i].,mu.eod[]j])

eod.member = eod.num+j-1
oden = oden+MIN(mu.eo(i],mu.eod[j]}
CASE eod.member OF

onum = onum+onz*MIN{(mu.ec[i],mu.eod[]])

onum = onum+onz*MIN(mu.eo[i],mu.eod([]j])

onum = onum+onz*MIN(mu.eo[i],mu.eocd[]])

onum = onum+onz*MIN(mu.eo[i],mu.eod[]j])

onum = onum+onz*MIN(mu.eo[i] . mu.eod[]j])

onum = onum+onz*MIN(mu.eo[i],mu.eod[]j])

onum = onum+ons*MIN(mu.eo[i],mu.eod[]j])

onum = onum+onm*MIN(mu.eo[i],mu.eod[j])

onum = onum+onm*MIN(mu.eo([i],mu.eod[7j])

onum = onum+onm*MIN(mu.eo[i],mu.eod[j])

VALUE -4:
VALUE -3:
VALUE -2:
VALUE -1:
VALUE O0:
VALUE 1:
VALUE 2:
VALUE 3:
VALUE 4:
VALUE 5:
END

END

VALUE O:

FOR j = 1 TO 2

171

eod.member = eod.num+j-1
oden = oden+MIN(mu.eo[1i] , mu.eod[]j])
CASE eod.member OF

onum = onum+oze*MIN(mu.eo[i],mu.
END
END
VALUE 1:
FOR § = 1-TO: 2

VALUE -4:
onum = onum+oze*MIN(mu.eo[1],mu
VALUE -3:
onum = onum+oze*MIN(mu.eo[i],mu
VALUE -2:
onum = onum+oze*MIN{mu.eo[1],mu
VALUE -1:

onum = onum+oze*MIN{(mu.eo[i],mu.

VALUE 0O:
onum = onum+oze*MIN{mu.eo[i],mu
VALUE 1:

onum = onum+oze*MIN{(mu.eo[i],mu.

VALUE 2:
onum = onum+oze*MIN(mu.eo[1i],mu
VALUE 3:
onum = onum+oze*MIN(mu.eo[i],mu
VALUE 4:
onum = onum+oze*MIN(mu.eo[i],mu
VALUE 5:

eod.member = eod.num+j-1
cden = oden+MIN(mu.eo[i],mu.eod[]j])
CASE eod.member OF

VALUE 3:
onum = onum+cpz*MIN(mu.eo[i],mu.
VALUE 4:
onum = onum+oze*MIN(mu.eo[i],mu.
VALUE 5:
onum = onum+ocze*MIN(mu.eo[i],mu.
END

END

VALUE 2:

FOR j = 1 TO 2

VALUE -4:
onum = onum+ops*MIN(mu.eo[i],mu
VALUE -3:

onum = onum+opsS*MIN{(mu.eo[i],mu.

VALUE -2:
onum = onum+ops*MIN(mu.eo[i],mu
VALUE -1:

onum = onum+opz*MIN{mu.eo[i],mu.

VALUE O:

onum = onum+opz*MIN(mu.eo[i],mu.

VALUE 1:
onum = onum+opz*MIN{(mu.eo[i],mu
VALUE 2:

onum = onum+opz*MIN(mu.eo[i],mu.

eod.member = eod.num+3j-1
oden = oden+MIN(mu.eo[i] , mu.eod[]])
CASE eod.member OF

172

.eod([j])
.eod[3j])

.eod([j])

eod[j])

.eod[j])

eod(j])

.eod[]])}
.eod[]])

.eod[j])

eod([j])

.eod(j])

eod(]])

.eod(3j])

eod(]])

eod(j])

.eod[j])

eod[j])
eod(j])
eod[j])

eod[j])

VALUE -4:
onum = onum+opm*MIN(mu.eo[i],mu.eod[j])

VALUE -3:
onum = onum+opm*MIN(mu.eoc[i],mu.eod[]])
VALUE -2:
onum = onum+opm*MIN(mu.eoc[i],mu.eod[j])
VALUE -1:
onum = onum+ops*MIN(mu.eo[i],mu.eod[]j])
VALUE O:
onum = onum+ops*MIN(mu.eo[i], mu.eod[j])
VALUE 1:
onum = onum+ops*MIN(mu.eo[i],mu.eod[]j])
VALUE 2:
onum = onum+ops*MIN(mu.eo[i],mu.eod[j])
VALUE 3:
onum = onum+ops*MIN(mu.eo(i],mu.eod[]])
VALUE 4:
onum = onum+opz*MIN(mu.eo[i),mu.eod(j])
VALUE 5:
onum = onum+oze*MIN(mu.eo([i],mu.eod[]j])
END
END
VALUE 3:

FOR j = 1 TO 2
eod.member = eod.num+j-1
oden = oden+MIN(mu.eo[i],mu.eod[j])
CASE eod.member OF

VALUE -4:
onum = onum+opl*MIN(mu.eo[i],mu.eod[]])
VALUE -3:
onum = onum+opl*MIN{mu.eo[i],mu.eod(j]}
VALUE -2:
onum = onum+opl*MIN{(mu.eo[i],mu.eod{j])
VALUE -1:
onum = onum+opm*MIN{mu.eo[i], mu.eod[(]])
VALUE O:
onum = onum+cpm*MIN(mu.eo[i] ,mu.eod([j])
VALUE 1:
onum = onum+opm*MIN(mu.eo[i] ,mu.eod[]j])
VALUE 2:
onum = onum+ops*MIN(mu.eo[i],mu.eod([]])
VALUE 3:
onum = onum+ops*MIN(mu.eo(i],mu.eod[]j])
VALUE 4:
onum = onum+ops*MIN{mu.eo(i],mu.eod(j])
VALUE 5:
onum = onum+opz*MIN(mu.eo[i],mu.eod[]])
END
END
VALUE 4:

FOR j = 1 TO 2
eod.member = eod.num+3j-1
oden = oden+MIN(mu.eo[i] , mu.eod[]])
CASE eod.member OF

VALUE -4:
onum = onum+opl*MIN({(mu.eo(i],mu.eod[3])
VALUE -3:

173

onum = onum+opl*MIN(mu.
VALUE -2:
onum = onum+opl*MIN (mu.
VALUE -1:
onum = onum+opl*MIN (mu.
VALUE O:
onum = onum+opl*MIN(mu.
VALUE 1:
onum = onum+opl*MIN(mu.
VALUE 2:
onum = onum+opm*MIN (mu.
VALUE 3:
onum = onum+opm*MIN (mu.
VALUE 4:
onum = onum+ops*MIN (mu
VALUE 5:
onum = onum+opz*MIN(mu.
END

END

VALUE 5:

FOR j = 1 TO 2

eod.member =

eod.num+3j-1

eo(i],mu.
eoc[i],mu.
eo[i],mu.
eo[i],mu.
eo[i],mu.
eo[i],mu.
eo(i],mu.
.eofi],mu.
eo[i],mu.

eo[i],mu
eo[i],mu.
eo[i], mu.
.eo[1],mu.
eo[i],mu.
eo[i],mu.
eo[i],mu.
eo[i], mu.
eo[i],mu.
eo[i],mu.

eod[j])
eod(3])
eod[j])
eod(3j])
eod([]])
eod(j])
eod([3j])
eod[]])

eod[3j])

.eod[j])
eod(3j])
eod(3j])
eod[j])
eod[]])
eod([]])
eod[3])
eod[]])
eod[Jj])

eod[j])

for defuzzification

oden = oden+MIN(mu.eo(i],mu.eod[]])
CASE eod.member OF
VALUE -4:
onum = onum+opl *MIN (mu.
VALUE -3:
onum = onum+opl*MIN (mu.
VALUE -2:
onum = onum+opl*MIN(mu.
VALUE -1:
onum = onum+opl*MIN (mu
VALUE 0:
onum = onum+opl*MIN (mu.
VALUE 1:
onum = onum+opl*MIN (mu.
VALUE 2:
onum = onum+opl*MIN(mu.
VALUE 3:
onum = onum+opl*MIN (mu.
VALUE 4:
onum = onum+opm*MIN (mu.
VALUE 5:
onum = onum+opm*MIN (mu.
END
END
END
END
; calculate the output using weighted average sum
END
fid.g.fuzzy = gnum/gden
fid.o.fuzzy = onum/oden
RETURN

. END

174

.PROGRAM wb.pid.control (cam.number, fra.number)
;ABSTRACT: Using PID controller to set gain, offset and threshold
; INPUT PAR: Camera number (cam.number) and frame number (fra.number)
;OUTPUT PAR: Gain offset and threshold
;INIT DATE: Aug 16, 1998
;LAST UPDATE: Aug 22, 1998
LOCAL x0, xn, hst{], h
gain.i.gain = 0.1
IF cam.number == 1 THEN
offset.i.gain = 0.1
ELSE
offset.i.gain = 0.1
END

h = 0.3
gain.inc[0] = 0
offset.change[0] = 0

dmode = 0
VWAILIT
VHISTOGRAM (dmode) hst([] = fra.number

‘.***********t**#************THRESHOLD CONTROL**********t***i*t*ii*ii**

thresh = 0
pixel [cam.number] = hst([0]
WHILE ((pixel[cam.number] < set.point[cam.number]) AND (thresh <
127)) DO
thresh = thresh+l
pixel [cam.number] = pixel[cam.number]+hst(thresh]
END
x0 = 0
var = hst[0]
WHILE (var <= area.ref|[cam.number]) AND (x0 < 128) DO
x0 = x0+1
var = var+hst[x0]
END
xn = 127
var = hst[127]
WHILE (var <= area.ref[cam.number]) AND (x0 < xn) DO
xn = xn-1
var = var+hst[xn]
END

- * * * * ok kk ok kkk ok * * * L IEREEE R EEE SR
‘***i * ko hk ok ko k kK * * * * GAIN CON‘I‘ROL* o g od ok ok ok ok ko ke LE] *

var [cam.number, count .pid] = ((x0-min.gray[cam.number])+
(max.gray[cam.number]-xn)) /2
var.offset [cam.number, count.pid] = ((max.gray[cam.number]+
min.gray[cam.number]) - (xn+x0)) /2

j¥rxkxkkxaxxxxxxrxxxxcglculate the fuzzy change for the gain and offset*
IF cam.number == 1 THEN

CALL defuz_fd_i(var[cam.number, count.pid],
var.offset [cam.number, count.pid], gain.inc.der [cam.number],
offset.chg.der[cam.number])

ELSE
CALL defuz_fd_i_2(var[cam.number,count.pid],
var.offset [cam.number, count.pid], gain.inc.der[cam.number],
offset.chg.der[cam.number])

175

END

gain = PARAMETER (V.GAIN[cam.number])

gain.inc|count.pid] = INT(fid.g.fuzzy+gain.inc.sum[cam.number]*
gain.i.gain-0.5)

IF gain+gain.inc[count.pid] > 256 THEN

gain.inc[count.pid] = 256-gain
END
IF gain+gain.inc[count.pid] < 1 THEN
gain.inc|[count.pid] = l-gain
END

;****simpson 1/3 rule to do 2 interval integration****
IF count.pid < 3 THEN
IF count.pid < 2 THEN
gain.inc.sum[cam.number] = var[cam.number, count.pid]
ELSE
gain.inc.sum[cam.number] = h*(var[cam.number, count.pid]+
var [cam.number, count.pid-1]) /2
END
ELSE
gain.inc.sum[cam.number] = h/3*(var[cam.number,count.pid-2]+
4* var[cam.number,count.pid-1]+ wvar[cam.number,count.pid])
END
IF count.pid > 100 THEN
IF count.pid < 103 THEN
IF count.pid < 102 THEN
gain.inc.sum|[cam.number]

I

var [cam.number, count.pid]

ELSE
gain.inc.sum[cam.number] = h*(var[cam.number,count.pid]+
var [cam.number, count..pid-1]1)/2
END
ELSE
gain.inc.sum[cam.number] = h/3*(var[cam.number, count.pid-

2]+
4* var[cam.number,count.pid-1]+
var [cam.number, count.pid])

END
END
;****backward approxmation of first derivative****
gain.inc.der[cam.number] = (var{cam.number,count.pid]-

var [cam.number,count.pid-1])/h
;****calculate new gain value, but not change real parameter****
gain = gain+gain.inc[count.pid]

= *
F: ****t******t***i*i*OFFSET CONTROL***i#****t****t**t*t**ﬁ** LR i

offset = PARAMETER(V.OFFSET[cam.number])
IF (var.offset[cam.number, count.pid] <> 0) THEN
offset.change(count.pid] =
INT(fid.o.fuzzy+offset.chg.sum[cam.number] *offset.i.gain)
IF offset+offset.change[count.pid] < 0 THEN
offset.change[count.pid] = -offset

END

IF offset+offset.change[count.pid] > 255 THEN
offset.change[count.pid] = 255-offset

END

ELSE
offset.change(count.pid] = 0

END

176

;****simpson 1/3 rule to calculate 2 interval integral****
IF count.pid < 3 THEN
IF count.pid < 2 THEN
offset.chg.sum[cam.number]
var.offset [cam.number, count.pid]
ELSE

offset.chg.sum[cam.number] =
h* (var.offset[cam.number, count .pid]+
var.offset [cam.number, count.pid-1]}/2
END
ELSE
offset.chg.sum[cam.number] = h/3*(
var.offset [cam.number, count.pid-
2]+4* var.offset[cam.number, count.pid-1]+
var.offset[cam.number, count.pid])
END
IF count.pid > 100 THEN
IF count.pid < 3 THEN
IF count.pid < 2 THEN
offset.chg.sum([cam.number]
var.offset [cam.number, count.pid]
ELSE
offset.chg.sum(cam.number]
* (var.offset [cam.number, count.pid]+
var.offset [cam.number,count.pid-1])/2
END
ELSE
offset.chg.sum[cam.number] = h/3*(
var.offset [cam.number, count.pid-
2])+4* var.offset{cam.number,count.pid-1]+
var.offset [cam.number, count.pid])

I

END
END
; ****backward approxmation of first derivative****
offset.chg.der[cam.number] = (var.offset[cam.number, count

var.offset [cam.number, count .pid-1])/h

; ****calculate new offset value before change real parameter***
offset = offset+offset.change[count.pid]

;***~**make change to the gain offset and threshold****
PARAMETER V.THRESHOLD [cam.number] = thresh
PARAMETER V.GAIN|[cam.number] = gain
PARAMETER V.OFFSET[cam.number] = offset

.pid] -

:**l****t****KEEP ALL THE PARAMETER FOP ANALYSIS**********t*******

;¥*¥**warm up period (transit respond) *****

count.gen = 1 ; for transent response test,when run main

pro, takeoff

x0_warm[cam.number, count.gen,count.pid] = x0

xn_warm[cam.number, count.gen,count.pid] = xn

i_aal = ABS(x0-min.gray[cam.number])

i_aan = ABS(xn-max.gray[cam.number])

i_ss0 = i_aal*i_aal

i_ssn = i_aan*i_aan

i_a_min[cam.number, count.pid] = i_a_min[cam.number, count.pid-
1]+1i_aal

i_a_min_ave[cam.number, count.pid] =
i_a_min[cam.number, count.pid] /TIMER(5) *60

177

i_a_max[cam.number, count.pid] = i_a_max[cam.number, count.pid-
1]+i_aan

i_a_max_ave[cam.number, count.pid] =
i_a_max[cam.number,count.pid] /TIMER(5) *60

i_a_sum[cam.number, count.pid] =
i_a_min_ave[cam.number, count.pid]+i_a_max_ave[cam.number, count.pid]

i_s_min[cam.number,count.pid] = i_s_min[cam.number, count.pid-
1]+i_ss0

i_s_min_ave[cam.number, count.pid] =
i_s_min[cam.number, count.pid] /TIMER{5) *60

i_s_max[cam.number,count.pid] = i_s_max[cam.number,count.pid-
1l]+i_ssn

i_s max_ave|[cam.number, count.pid] =
i_s_max[cam.number, count.pid] /TIMER(5) *60

i_s_sum{cam.number, count.pid] =
i_s_min_ave[cam.number, count.pid]+i_s_max_ave [cam.number, count.pid]

pixcel_warm|[cam.number, count.gen,count.pid] = pixel[cam.number]
thresh_warm[cam.number, count.gen,count.pid] = thresh
gain_warm[cam.number, count.gen, count.pid] = gain
offset_warm[cam.number, count.gen,count.pid] = offset
TYPE /S, cam.number, " th=", thresh, " ga=",
PARAMETER (V.GAIN[cam.number])
TYPE /S, " of=", PARAMETER(V.OFFSET|[cam.numberj), " ", x0, " ",
Xn
TYPE /S, " g.i=", gain.inc[count.pid], " o.i=",
offset.change[count.pid]
TYPE /S, " ", i_s_min_ave[cam.number,count.pid], * ",

i_s_max_ave[cam.number, count.pid]
TYPE " ", i_s_sum[cam.number,count.pid]
RETURN

.END

178

AGS VISION COCDE IN V/V+

ADEPT ONE LANGUAGE FOR

FUZZY-INTEGRAL-DERIVATIVE

CONTROLLER

179

/**tt**t*1’**'&t**tt**************i*FID 200**********i**t***tt*****t**r/

.PROGRAM wb.pid.cal()
;ABSTRACT:set gain, offset and threshold using a PID controller
; INPUT PARAMETER: none
;OUTPUT PARAMETER: vision parameter such as: gain, offset, threshold
; INITIAL DATE: Aug 16, 1998
; LAST UPDATE: Aug 22, 1998
;****variables declaration****
LOCAL cameral, camera2, camera3, camera.number
cameral 1
camera? 2
camera3 = 3
count.pid.end = 200
;****initialize cameras****
first.time = 0
CALL wb.vi.init.cam()
FOR. 1. =1 TO 3

i

i_a_minf[i,0] = 0
i_a min_avel[i,0] = 0
i_a max[(i,0] =0
i_a max_avel[i,0] = 0
i_s_ min[i,0] = 0
i_s_min_avel[i,0] = 0
i_s max[i,0] = 0
i_s_max_avel[i,0] =0
END

;****calibrate vision parameters using PID controller****
FOR camera.number = cameral TO camera3l
gain.inc.sum[camera.number] = 0
gain.inc.der[camera.number] =
offset.chg.sum[camera.number]
offset.chg.der[camera.number]
END
TIMER (1)
TIMER (5) =
FOR count.pid = 1 TO count.pid.end
IF count.pid == 101 THEN
TIMER (5) = 0
min.gray[1l] = 10 ;decided
max.gray[l] = 60 ;decided
min.gray[2] = 10 ;decided
max.gray[2] 60 ;decided
min.gray(3] = 10 ;decided
max.gray[3] = 60 ;decided
FOR 1 =1 TO 3
i_a_min[i,100] = 0
i_a_min_ave[i,100] =0
i_a max[1i,100] = 0
i_a max_ave[i,100] = 0
i_s min[i,100] = 0
i_s_min_ave[i,100] = 0
i_s_max[i,100] = 0
i_s_max_ave([i,100] = 0
END
FOR camera.number = cameral TO cameral
gain.inc.sum[camera.number] = 0
gain.inc.der [camera.number] = 0

{1 | T =
oo

0
0

180

offset.chg.sum[camera.number] = 0
offset.chg.der [camera.number] = 0
END
END
VPICTURE (cameral, TRUE) 2, 0
CALL wb.pid.control (cameral, framel)
VPICTURE (camera2, TRUE) 2, O
CALL wb.pid.control (camera2, framel)
VPICTURE (camera3, TRUE) 2, 0
CALL wb.pid.control (camera3, framel)
tran_time[count.pid] = TIMER(1)
TYPE count.pid, " ", tran_time[count.pid], " ", TIMER(5)
TYPE
TYPE /B, TIMER(1l), " sec"
END
RETURN

181

.PROGRAM fid_defuzl(el, e2)
LOCAL eg, eo, gnum, gden, onum, oden, eg.member, eo.member
LOCAL eg.spread, eo.spread, g.spread, o.spread, eg.n, eo.n, g.n,

LOCAL eg.nl, eg.nm, eg.ns, eg.nz, egze, eg.pz, eg.ps, eg.pm,
eg.pl

LOCAL eo.nl, eo.nm, eo.ns, e€o.nz, eo.ze, €0.pz, €0.ps, eo.pm,
eo.pl

LOCAL gnl, gnm, gns, gnz, gze, gpz, gps. gpm, gpl

LOCAL onl, onm, ons, onz, oze, opz, ops, opm, opl

LOCAL mu.eg[], mu.eo[]

LOCAL eg.rangel, eg.range2, eo.rangel, eo.range2

eg = el

eo = e2

gden =

oden =

gnum =

onum =

o0 0O o

¥rFxwxFkkdagsgign initial value and calculate fuzzy numbers******xrsdrx
eg.rangel = 2
eg.range2 = 4
eo.rangel 4
eo.range?2 12
IF ((eg <= eg.rangel) AND (eg >= -eg.rangel)) THEN
g.layer = 1
eg.support = eg.rangel/2
g.support = 2
ELSE
IF ((eg <= eg.range2Z) AND (eg >= -eg.range2)) THEN
eg.support = eg.range2/2
g.support = 8
ELSE
eg.support = eg.range2
g.support = 32
END
END

1l

1

IF ((eo <= eo.rangel) AND (ec >= -eo.rangel)) THEN
o.layer =1
eo.support = eo.rangel/2
o.support = 2
ELSE
IF ((eo <= eo.range2) AND (eo >= -eo.range2)) THEN
eo.support = eo.range2/2
o.support = 4
ELSE
ec.support = eo.range2
o.support = 8

END
END
eg.n = 2
ec.n = 2
g.n = 2
o.n = 2

eg.spread = eg.support*eg.n

182

eo.spread = eo.support*eo.n

g.spread = g.support*g.n
o.spread = o.support*o.n
je****¥*xxxpartition the universe of discourse for input fuzzy variable**
eg.pl = eg.spread
eg.pm = eg.spread*3/4

eg.ps = eg.support ; {emin.spread/2)
eg.pz = eg.support/2 ; lemin.spread/4)

eg.ze = 0

eg.nz = -eg.pz

eg.ns = -eqg.ps

eg.nm = -eg.pm

eg.nl = -eg.pl

eo.pl = eo.spread
eo.pm = eo.spread*3/4

eo.ps = eo.support ; {emin.spread/2)
€0.pz = eo.support/2 ; (emin.spread/4)

eo.ze = 0

eo.nz = -eo0.pz

eo.ns = -eo.ps

eo.nm = -eo.pm

eo.nl = -eo.pl

;*****partition the universe of discourse for output fuzzy variable****
gpl = g.spread

gpm = g.spread*3/4
gps = g.support
gpz = g.support/2
gze = 0

gnz = -gpz

gns = -gps

gnm = -gpm

gnl = -gpl

opl = o.spread
opm = o.spread*3/4
ops = 0O.support
opz = o.support/2
oze = 0

onz = -opz

ons = -0Ops

onm = -opm

onl = -opl

;calculate input range and mu vector for tow consequentive partitions**
IF (eg >= Q) THEN
eg.num = INT(eg/eg.support*2}
ELSE
eg.num = INT(eg/eg.support*2-1)
END
IF (eg.num < -4) THEN
eg.num = -4
ELSE
IF (eg.num >= 4) THEN
eg.num = 4 gx*xxdvmy . eminf[l]1=0 and mu.emin[2]=1***
END

183

END

IF (eo >= 0) THEN
eo.num = INT(eo/eo.support*2)

ELSE
eo.num = INT(eo/eo.support*2-1)
END
IF (eo.num < -4) THEN
eo.num = -4
ELSE
IF (eo.num >= 4) THEN
eo.num = 4 ;¥ **xvmy . emax[1]=0 and mu.emax[2]=1****
END
END
mu.eg[l] = ((eg.num+l) *eg.support/2-eqg)/eg.support/2
mu.eg[2] = l-mu.eg[l]
mu.eo[l] = ((eo.num+l) *eo.support/2-eo0)/eo.support/2
mu.eo[2] = l-mu.eo[l]

;¥x*xkxxx*caglculate fuzzy output gain.fuzzy and offset.fuzzy using*****
jEaFxkxxxkkxxxrkxweighted average method for defuzzification*****x*xxkxx»

FOR i =

1 TO 2

eg.member = eg.num+i-1
gden = gden+mu.egli]
IF g.layer < 2 THEN

Ca

EN

SE eg.member OF

VALUE -4:

gnum = gnum+gnl*mu.eg[i]
VALUE -3:

gnum = gnum+gnm*mu.eg[i]
VALUE -2:

gnum = gnum+gns*mu.eg(i]
VALUE -1:

gnum = gnum+gze*mu.eg[i]
VALUE 0:

gnum = gnum+gze*mu.eg[i]
VALUE 1:

gnum = gnum+gze*mu.eg[i]
VALUE 2:

gnum = gnum+gps*mu.eg[i]
VALUE 3:

gnum = gnum+gpm*mu.eg[i]
VALUE 4:

gnum = gnum+gpl*mu.eg(i]
VALUE 5:

gnum = gnum+gpl*mu.eg(i)]

D

ELSE

CA

SE eg.member OF

VALUE -4:

gnum = gnum+gnl*mu.eg[i]
VALUE -3:

gnum = gnum+gnm*mu.eg[i]
VALUE -2:

gnum = gnum+gns*mu.eqg(i]
VALUE -1:

184

gnum = gnum+gnz*mu.egli]
VALUE 0:
gnum = gnum+gze*mu.eg[i]
VALUE 1:
gnum = gnum+gpz*mu.eg(i]
VALUE 2:
gnum = gnum+gps*mu.eg[i]
VALUE 3:
gnum = gnum+gpm*mu.eg(i]
VALUE 4:
gnum = gnum+gpl*mu.eg[i]
VALUE 5:
gnum = gnum+gpl*mu.eg[i]
END
END
eo.member = eo.num+i-1
oden = oden+mu.eo[i]
IF o.layer < 2 THEN
CASE eo.member OF
VALUE -4:
onum = onum+onl*mu.eo(i]
VALUE -3:
onum = onum+onm*mu.ec[i]
VALUE -2:
onum = onum+ons*mu.eo(i]
VALUE -1:
onum = onum+onz*mu.eo[i]
VALUE 0:
onum = onum+cze*mu.ec[i]
VALUE 1:
onum = onum+opz*mu.eoc(i]
VALUE 2:
onum = onum+ops*mu.eo[i]
VALUE 3:
onum = onum+opm*mu.ec[i]
VALUE 4:
onum = onum+opl*mu.ec[i]
VALUE 5:
onum = onum+opl*mu.eo{i]
END
ELSE
CASE eo.member OF
VALUE -4:
onum = onum+onl*mu.eo[i]
VALUE -3:
onum = onum+onm*mu.eo[i]
VALUE -2:
onum = onum+ons*mu.eo[i]
VALUE -1:
onum = onum+onz*mu.eo[i]
VALUE O:
onum = onum+oze*mu.eo[i]
VALUE 1:
onum = onum+opz*mu.eo|i]

VALUE 2:
onum = onum+ops*mu.eo|1i]

185

VALUE 3:
onum = onum+opm*mu.eo[i]
VALUE 4:
onum = onum+opl*mu.eo[i]
VALUE 5:
onum = onum+opl*mu.eo[i]
END
END
END
fid.g.fuzzy gnum/gden
fid.o.fuzzy = onum/oden
RETURN

.END

186

-PROGRAM wb.pid.control (cam.number, fra.number)

; ABSTRACT: Using PID controller to set gain, offset and threshold
; INPUT PAR: Camera number (cam.number) and frame number (fra.number)
;OUTPUT PAR: Gain offset and threshold

; INIT DATE: Aug 16, 1998

;LAST UPDATE: Aug 22, 1998

LOCAL x0, xn, hstf], h
gain.gain = 3.84

gain.i.gain 0.1
gain.p.gain = 0.01
offset.gain =1
offset.i.gain = 0.1

offset.p.gain = 0.01

h = 0.3

gain.inc[(0] = 0

offset.change([0] = 0

dmode = 0

VWAIT

VHISTOGRAM (dmode) hst[] = fra.number

;ll‘*****t*********it*******tTHRESHOLD CONTROL******t**t**ttt*x********

127}))

thresh = 0
pixel [cam.number] = hst[0]
WHILE ((pixel{cam.number] < set.point{cam.number]) AND (thresh <
DO
thresh = thresh+l
pixel [cam.number] = pixel [cam.number]+hst|[thresh]
END
x0 = 0
var = hst[0]
WHILE (var <= area.ref[cam.number]) AND (x0 < 128) DO

x0 = x0+1

var = var+hst[x0]
END
xn o= 127

var = hst[127]

WHILE (var <= area.ref[cam.number]) AND (x0 < xn) DO
xn = xn-1
var = var+hst([xn]

END

;1(*wil**tit*****ti***t********GAIN CONTROL****ti**t**t******t***it***t**

var [cam.number,count.pid] = ((x0-
min.gray[cam.number]) + (max.gray[cam.number] -xn)) /2
var.offset[cam.number, count.pid] =
((max.gray[cam.number]+min.gray[cam.number)) - (xn+x0)) /2
;******calculate the fuzzy change for the gain and offset*****xxx
CALL fid_defuz(var(cam.number, count.pid],
var.offset[cam.number, count.pid])
gain = PARAMETER(V.GAIN[cam.number])
gain.inc[count.pid] =
INT{fid.g.fuzzy+gain.inc.sum[cam.number] *gain.i.gain+gain.i
nc.der [cam.number] *gain.p.gain-0.5)

IF gain+gain.incfcount.pid] > 256 THEN
gain.inc[count.pid] = 256-gain

END

IF gain+gain.inc[count.pid] < 1 THEN

187

gain.inc[count.pid] = 1l-gain
END
;****simpson 1/3 rule to do 2 interval integration***?
IF count.pid < 3 THEN
IF count.pid < 2 THEN
gain. inc.sum[cam.number] = wvar[cam.number, count.pid]
ELSE
gain.inc.sum[cam.number] = h*(var[cam.number, count.pid]+
var [cam.number, count .pid-1])/2
END
ELSE
gain.inc.sum[cam.number] = h/3* (var[cam.number,count.pid-2]+
4* var[cam.number,count.pid-1]+ var[cam.number, count.pid])
END
IF count.pid > 100 THEN
IF count.pid < 103 THEN
IF count.pid < 102 THEN
gain.inc.sum[cam.number]

var [cam.number, count.pid]

ELSE
gain.inc.sum[cam.number] = h*(var[cam.number,count.pid]+
var [cam.number, count.pid-1])/2
END
ELSE
gain.inc.sum[cam.number] = h/3*(var[cam.number, count.pid-

2]+
4* var|[cam.number, count.pid-1]+
var [cam.number, count .pid])

END
END
;****backward approxmation of first derivative****
gain.inc.der(cam.number] = (var[cam.number,count.pid]-

var [cam.number, count.pid-1])/h
;****calculate new gain value, but not change real parameter****
gain = gain+gain.inc[count.pid]

;**r**’k*i’*****l’***ﬁ***t*tt**OFFSET CONTROL**********‘**'&tt*t*iti***itt

offset = PARAMETER (V.OFFSET[cam.number])
IF (var.offset[cam.number,count.pid] <> 0) THEN
offset.change[count.pid] =
INT(fid.o.fuzzy+offset.chg.sum[cam.number)] *offset.i.gain+offset.chg.der
[cam.number])
IF offset+offset.change[count.pid] < 0 THEN

offset .change([count.pid] = -offset
END
IF offset+offset.change[count.pid] > 255 THEN
offset.change([count.pid] = 255-o0ffset
END
ELSE
offset.change[count.pid] = 0
END

;*¥***gimpson 1/3 rule to calculate 2 interval integral****
IF count.pid < 3 THEN
IF count.pid < 2 THEN
offset.chg.sum[cam.number] =
var.offset [cam.number, count .pid]
ELSE

188

offset.chg.sum[cam.number] =
h* (var.offset[cam.number, count.pid]+
var.offset [cam.number, count.pid-1])/2

END
ELSE

offset.chg.sum[cam.number] = h/3*{ var.offset[cam.number, count.pid-
2]+4* var.offset[cam.number,count.pid-1]+
var.offset [cam.number, count.pid])

END
IF count.pid > 100 THEN
IF count.pid < 3 THEN

IF count.pid < 2 THEN

offset.chg.sum[cam.number]

var.offset [cam.number, count.pid]

ELSE

offset.chg.sum[cam.number]

h* (var.offset[cam.number, count .pid]+
var.offset [cam.number, count.pid-1])/2

END
ELSE
offset.chg.sum[cam.number]

END
END

= h/3*(
var.offset{cam.number, count.pid-

2]+4* var.offset[cam.number,count.pid-1]+
var.offset [cam.number, count.pid])

;****backward approxmation of first derivative****
offset.chg.der(cam.number] = (var.offset[cam.number,count.pid]-
var.offset [cam.number,count.pid-1])/h

offset.chg.der [cam.number] =

offset.chg.der [cam.number] *offset.p.gain
;****calculate new offset value before change real parameter***
offset = offset+offset.change[count.pid]

;*****make change to the gain offset and threshold****
PARAMETER V.THRESHOLD[cam.number] = thresh

= gain

PARAMETER V.OFFSET[cam.number] =

PARAMETER V.GAIN|[cam.number]

offset

I******************'*KEEP ALLLL THE PARAMETER FOR ANALYSIS*'*******'****‘
;*****warm up period (transit respond) *****

count.gen = 1
z IF (count.gen <= 1) THEN

x0_warm{cam.number, count.gen, count .pid]
xn_warm{cam.number, count .gen, count.pid]

%0
xn

i_aal = ABS(x0-min.gray[cam.number])

i_aan =
i_ss0 = i_aal*i_aal
i_ssn = i_aan*i_aan

i_a_min[cam.number, count.pid]
1]+i_aal

ABS (xn-max.gray [cam.number])

i_a_min[cam.number, count.pid-

i_a min_ave[cam.number, count.pid] =
i_a_min[cam.number, count.pid] /TIMER (5) *60

i_a_max[cam.number,count.pid]
1]+i_aan

i_a_max[cam.number, count.pid-

i_a_max_ave[cam.number,count.pid] =
i_a_max{cam.number,count.pid] /TIMER(5)*60

189

i_a_sum[cam.number, count.pid] =
i_a_min_ave[cam.number, count.pid] +i_a_max_ave[cam.number, count.pid]

i_s_min[cam.number,count.pid] = i_s_min[cam.number, count.pid-
1]+i_ss0

i_s_min_ave[cam.number, count.pid] =
i_s_min[cam.number, count.pid] /TIMER(5) *60

i_s_max[cam.number,count.pid] = i_s_max[cam.number,count.pid-
11+i_ssn

i_s_max_ave[cam.number, count.pid] =
i_s_max[cam.number, count.pid] /TIMER(5) *60

i_s_sum[cam.number,count.pid] =
1_s_min_ave({cam.number,count.pid]+i_s_max_ave[cam.number, count.pid]

pixcel_warm[cam.number, count.gen, count.pid] pixel [cam.number]
thresh_warm[cam.number, count.gen,count.pid] thresh
gain_warm[cam.number, count.gen,count.pid] = gain
offset_warm[cam.number, count.gen,count.pid] = offset
TYPE /S, cam.number, " th=", thresh, " ga=",

PARAMETER (V.GAIN[cam.number])
TYPE /S, " of=", PARAMETER(V.QOFFSET|[cam.number]), " ", x0, " ",

1"

xn
TYPE: /S5, ¥ g.i=",, gain. inelcount.pidl, ™ o.i=",
offset.change[count.pid]
TYPE /S, " ", i_s min[cam.number, count.pid], " ",
i_s_max[cam.number,count.pid]
TYPE " ", i_s_sum(cam.number, count.pid]
RETURN
. END

190

AGS VISION CODE IN V/V+

ADEPT ONE LANGUAGE FOR

PROPORTIONAL-INTEGRAL-DERIVATIVE

CONTROLLER

191

/*t*t************ttttrrtt***tr****ipID_200*** \\‘**t**i‘*t*tiiilttfii**t/

.PROGRAM wb.pid.cal ()
;ABSTRACT : set gain, offset and threshold using a PID
controller
; INPUT PARAMETER: none
;OUTPUT PARAMETER: vision parameter such as: gain, offset, threshold
;INITIAL DATE: Aug 16, 1998
;LAST UPDATE: Aug 22, 1998
;****yariables declaration****

LOCAL cameral, cameraZ, cameral, camera.number

cameral = 1

camera2 = 2

camera3 = 3

count.pid.end = 200

count.pid.cutof = 101
;****jnitialize cameras****

first.time = 0 ;flag for initialization at only the first
time

CALL wb.vi.init.cam()

FOR i =1 TO 3

i_a_min[i, 0]

i_a_min_aveli,0] = 0
i_a_max[i,0] =
i_a_max_avel[i,0] = 0

i_a_sum[i, 0]

i_s min[i,0] = 0
i_s_min_ave[i,0] = 0
i_s max[i,0] = 0
i_s_max_ave[i,0] = 0
i_s_sumfi,0] =0

END

;****calibrate vision parameters using PID controller****
FOR camera.number = cameral TO camera3l
gain.inc.sum(camera.number] = 0
gain.inc.der [camera.number] = 0
offset.chg.sum{camera.number] =
offset.chg.der[camera.number] = 0
END
TIMER (1) 0
TIMER (5) 0
FOR count.pid = 1 TO count.pid.end
IF count.pid == count.pid.cutof THEN
TIMER (5) = 0
min.gray[l] = 10 ;decided
max.gray[l] = 60 ;decided
min.gray[2] 10 ;decided
max.grayl2] = 60 ;decided
min.gray([3] = 10 ;decided
max.gray[3] = 60 ;decided
FOR i = 1 TO 3
i_a_min([i,count.pid-1] = 0
i_a_min_ave[i,count.pid-1]
i_a_max[i,count.pid-1] = 0
i_a _max_avel[i,count.pid-1]
i_a_sum[i,count.pid-1] = 0

]

I
o

n
o

192

. END

FOR camera.number = cameral TO camera3l

i_s_min([i,count.pid-1] = 0

i_s min_ave[i,count.pid-1]

i_s_max(i,count.pid-1] = 0

i_s_max_ave[i,count.pid-1]

i_s_sum[i,count.pid-1] = 0
END

gain.inc.sum[camera.number] =

gain.inc.der(camera.number] =

offset.chg.sum[camera.number]

offset.chg.der[camera.number]
END

END

VP

ICTURE (cameral, TRUE) 2, 0

CALL wb.pid.control (cameral, framel)

VP
CA

tr
TY
TY

END
RETURN

ICTURE (camera2, TRUE) 2, 0

LL wb.pid.control (camera2, framel)
VPICTURE (camera3d, TRUE) 2, 0
CALL wb.pid.control (camera3,
an_time[count.pid] = TIMER(1l}

PE count.pid, " ", tran_time[count.pid],

PE
TYPE /B, TIMER(1l), " sec"

193

]
[==]

I
o

0
0

framel)

(==

TIMER(5)

.PROGRAM wb.pid.control (cam.number, fra.number)
;ABSTRACT: Using PID controller to set gain, offset and threshold
; INPUT PAR: Camera number (cam.number) and frame number (fra.number)
;OUTPUT PAR: Gain offset and threshold
;INIT DATE: Aug 16, 1998
;LAST UPDATE: Aug 22, 1998

LOCAL x0, xn, hst([], h, acc_time

gain.gain = 3.84

gain.i.gain = 0.1
gain.p.gain = 0.05
offset .gain = 1
offset.i.gain = 0.1
offset.p.gain = 0.05
h = 0.3

gain.inc([0] = 0

offset .change[0] = 0

dmode = 0
VWAIT
VHISTOGRAM (dmode) hst[] = fra.number

;**\k*‘k***i***********itt*i**THRESHOLD CDNTROL************It***i***ti**

thresh = 0
pixel [cam.number] = hst([0]
WHILE ((pixel[cam.number] < set.point[cam.number]) AND (thresh <
127)) DO
thresh = thresh+l
pixel [cam.number] = pixel[cam.number]+hst[thresh]
END
x0 =0
var = hst[0]
WHILE (var <= area.ref[cam.number]) AND (x0 < 128) DO

x0 = x0+1
var = var+hst([x0]
END
IF %0 > 0 THEN
x0 = x0-1
END
xn = 127

var = hst[127]

WHILE (var <= area.ref[cam.number]) AND (x0 < xn) DO
xn = xn-1
var = var+hst([xn]

END

. * kk ok okkhhhkh * * * * ok k ok ok * dode g ok ook ok kW
'**tt******* * * E GAIN CONTROL* *hhkkkkkh * * w W *

var [cam.number, count.pid] = ((x0-min.gray([cam.number])+

(max.gray[cam.number]-xn)) /2

gain = PARAMETER(V.GAIN[cam.number])

gain.inc[count.pid] = INT(var{cam.number,count.pid]*

gain.gain+gain.inc.sum[cam.number] *gain.i.gain+gain.inc.der[cam.n
umber] *

gain.p.gain)

IF gain+gain.inc[count.pid] > 256 THEN

gain.inc[count.pid] = 256-gain
END
IF gain+gain.inc[count.pid] < 1 THEN

194

gain.inc[count.pid] = 1l-gain
END
;****simpson 1/3 rule to do 2 interval integration****
IF count.pid < 3 THEN
IF count.pid < 2 THEN
gain.inc.sum[cam.number]

[}

var [cam.number, count .pid]
ELSE
gain.inc.sum[cam.number] = h*(var[cam.number, count.pid]+
var [cam.number, count .pid-1]) /2
END
ELSE
gain.inc.sum|[cam.number] = h/3*(var[cam.number,count.pid-2]+
4* wvar[cam.number, count.pid-1]+ var[cam.number,count.pid])
END
IF count.pid > 100 THEN
IF count.pid < 103 THEN
IF count.pid < 102 THEN

gain.inc.sum[cam.number] = var[cam.number,count.pid]
ELSE
gain.inc.sum[cam.number] = h*(var[cam.number,count.pid]+
var [cam.number, count.pid-1])/2
END
ELSE
gain.inc.sum[cam.number] = h/3*(var[cam.number, count.pid-

2]+
4* wvar[cam.number,count.pid-1]+
var [cam.number, count.pid])

END
END
;****backward approxmation of first derivative****
gain. inc.der[cam.number] = (var[cam.number,count.pid]-

var [cam.number, count.pid-1])/h
;****calculate new gain value, but not change real parameter***x*
gain = gain+gain.inc([count.pid)]
:**t*t***i*iit*********oFFSET CONTROL#*******t*****t***tt***tt*t
var.offset [cam.number, count.pid] = ((max.gray(cam.number]+
min.gray|[cam.number]) - (xn+x0)) /2
offset = PARAMETER (V.OFFSET [cam.number])
IF (var.offset[cam.number,count.pid] <> 0) THEN
offset.change[count.pid] =
INT (var.offset [cam.number, count.pid] *
offset.gain+offset.chg.sum|cam.number] *
offset.i.gain+offset.chg.der(cam.number])
IF offset+offset.change[count.pid] < 0 THEN

of fset.change[count.pid] = -offset
END
IF offset+offset.change[count.pid] > 255 THEN
offset.change[count.pid] = 255-offset
END
ELSE
offset.change([count.pid] = 0
END

;****gimpson 1/3 rule to calculate 2 interval integral****
IF count.pid < 3 THEN
IF count.pid < 2 THEN
offset.chg.sum{cam.number] =
var.offset[cam.number, count .pid]

195

ELSE
offset.chg.sum[cam.number] =
h* (var.offset[cam.number, count .pid]+
var.offset [cam.number, count.pid-1]) /2
END
ELSE
offset.chg.sum[cam.number] = h/3* (
var.offset [cam.number, count.pid-
2)1+4* var.offset[cam.number,count.pid-1]+
var.offset [cam.number, count.pid])
END
IF count.pid > 100 THEN
IF count.pid < 3 THEN
IF count.pid < 2 THEN
offset.chg.sum[cam.number] =
var.offset [cam.number, count.pid)]
ELSE
offset.chg.sum[cam.number] =
h* (var.offset[cam.number, count.pid]+
var.offset[cam.number,count.pid-1])/2
END
ELSE
offset.chg.sum[cam.number] = h/3*(
var.cffset [cam.number, count.pid-
2]+4* var.offset[cam.number,count.pid-1]+
var.offset [cam.number, count.pid])

END
END
;****hackward approxmation of first derivative***»*
offset.chg.der[cam.number] = (var.offset[cam.number,count.pid]-

var.offset [cam.number, count.pid-1]}/h
offset.chg.der[cam.number] =

offset.chg.der[cam.number] *offset.p.gain

;****calculate new offset value before change real parameter***
offset = offset+offset.change[count.pid]

;*****make change to the gain offset and threshold****
PARAMETER V.THRESHOLD|[cam.number] = thresh
PARAMETER V.GAIN[cam.number] = gain
PARAMETER V.QFFSET[cam.number] = offset

;*********"***'*****KEEP ALL THE PARAMETER FOR ANALYSIS********&*****
;¥****warm up period (transit respond) ****¥
count.gen = 1
x0_warm[cam.number, count .gen, count.pid] x0
xn_warm[cam.number, count.gen, count.pid] xn
pixcel_warm(cam.number, count.gen,count.pid]

pixel [cam.number]

thresh_warm[cam.number, count.gen,count.pid] = thresh
gain_warm|[cam.number,count.gen,count.pid] = gain
offset_warm[cam.number, count.gen, count.pid] = offset

IF count.pid < count.pid.cutof THEN
acc_time = TIMER(1l)

ELSE
acc_time

END

i_aal = ABS(x0-min.gray[cam.number])

i_aan ABS (xn-max.gray [cam.number])

I

TIMER(5)

196

i_ss0 i_aal0*i_aal
i_ssn = i_aan*i_aan

I

i_a_min[cam.number,count.pid] = i_a_min[cam.number, count.pid-

1]+i_aal
i_a_min_ave([cam.number,count.pid] =
i_a_min[cam.number, count.pid] /acc_time*60

i_a_max[cam.number,count.pid] = i_a_max[cam.

1]+i_aan
i_a_max_ave[cam.number,count.pid] =

1_a_max[cam.number,count.pid] /acc_time*60
i_a_sum[cam.number,count.pid] =

i_a min_ave[cam.number,count.pid]+i_a_max_ave[cam.

i_s_min[cam.number,count.pid] = i_s_min[cam.

1]+i_ss0
i_s_min_ave|[cam.number, count.pid] =
i_s_min[cam.number, count.pid]/acc_time*60

i_s_max[cam.number,count.pid] = i_s_max[cam.

1]+i_ssn
i_s_max_ave[cam.number, count.pid] =
i_s_max[cam.number,count.pid] /acc_time*60
i_s_sum[cam.number, count.pid] =

number, count.pid-

number, count.pid]

number, count .pid-

number, count .pid-

i_s_min_ave[cam.number,count.pid]+i_s_max_ave[cam.number, count.pid]

TYPE /S, "cam ", cam.number, " th=",
PARAMETER (V.GAIN|[cam.number])

ga=",

x0,

TYPE /S, PARAMETER|(V.OFFSET[cam.number]), "

TYPE /S, " g.i=", gain.inclcount.pid]; o.i=",
offset.change[count.pid]

TYPE /S, " ", i_s_min_ave|[cam.number, count.pid],

i_s_max_ave[cam.number, count.pid]

TYPE " ", i_s_sum[cam.number, count.pid]

RETURN
. END

197

"

Xn

.PROGRAM wb.pid.test()
;ABSTRACT: This program is used to test the PID controller

; INPUT PAR:
; OUTPUT PAR:
; INIT DATE:

Neone

Gain offset and threshold, min gray and max gray level

Aug 22,

; LAST UPDATE: Aug 22,
LOCAL camera.num

first.
first time

CALL wb.vi.init.cam()

TIMER
FOR i

i_a_min(i,0]

time = 0

(2) =0
=1T0 3

1998
1998

=0

i_a min_ave([i,0]

i_a_max[i,0]

=0

i_a_max_ave[i,0]
i_a_sum[i,0] = 0

i_s min([i,0]

=0

i_s min_ave[i,0]

i_s max[i,0]

=0

i_s max_avel[i,0]

i_s_sum(i,0] =

END

FOR count.gen

CALL wb.pid.cal()
count.gen,
time.gen[count.gen] =
i TO: 2

TYPE

0

;flag for initialization at only the

1 TO 120

FOR camera.num =

gain=",

TYPE /S,

TYPE /S,
TYPE. /8,

TYPE *
TYPE
TYPE /S,
TYPE /S,
TYPE *
TYPE /5,
TNEE "

/S,

END
TYPE

TIMER (3)
WAIT TIMER(3)

END

. END

"cam",
x0_arr|[camera.num,count.gen], "
" pixcel=",
" thresh=",
gain_arr|[camera.num, count.gen]
of fset=",

" jaan=",
* igsQ=",
issn=",

"

iss_sum=",

0

", TIMER(2)

camera.num, "

xn=",

iaal=",

TIMER(2)

x0=",
Xn_arr [camera.num, count.gen]

pixcel_ arr[camera.num,count.gen]
thresh arr|[camera.num,count.gen]j,

offset_arr([camera.num,count.gen]
: Ul
i_a_max_ave[camera.num, count.gen]
i_s_min_ave[camera.num, count.gen]

a_min_ave[camera.num,count.gen]

i_s max_ave[camera.num, count.gen]

iaa_sum=",
i_s_sum[camera.num, count.gen]

= 1.5

198

i_a_sum[camera.num,count.gen]

.PROGRAM wb.vi.init.cam()
; ABSTRACT: initialize all the parameter for 3 cameras before using
PID control
; INPUT PAR: none
;OUTPUT PAR: initial vision parameters
;INIT DATE: Aug 16, 1998
;: LAST UPDATE:Aug 16, 1998
framel = 1001 ;global value for frame store one
frame2 = 1002 ;global value for frame store two
; Set Basic Camera switches:
ENABLE V.BINARY
DISABLE V.BACKLIGHT
ENABLE V.BOUNDARIES
DISABLE V.FIT.ARCS
DISABLE V.DISJOINT
DISABLE V.RECOGNITION
DISABLE V.SUBTRACT.HOLE
DISABLE V.PERIMETER
DISABLE V.STROBE
DISABLE V.2ND.MOMENTS
ENABLE V.HOLES
FOR i = 1 TO 3
ENABLE V.CENTROIDI[i]
DISABLE V.2ND.MOMENTS[1i]
DISABLE V.HOLES[i] ;hole count unessessary for sorting
END

; Disable display switches:
DISABLE V.SHOW.EDGES
DISABLE V.SHOW.BOUNDS
DISABLE V.SHOW.GRIP
DISABLE V.SHOW.RECOG

;Set up parameters for 3 cameras

yscale = 1/0.5397496

xscale = 1/0.542155

v.first.linel = INT(5*yscale)
v.last.linel = INT(25*yscale)
v.first.coll = INT(l1l5*xscale)
v.last.coll = INT(195*xscale)
v.first.line2 = INT(5*yscale)

v.last.line2 = INT(25*yscale)
v.first.col2 = INT(102*xscale)
v.last.col2 = INT(192*xscale)
v.first.line3 = INT(2*yscale)
v.last.line3 = INT(22*yscale)
v.first.col3 = INT(ll2*xscale)
v.last.coll3d = INT(192*xscale)

PARAMETER V.FIRST.LINE[1l] = v.first.linel
PARAMETER V.LAST.LINE[1l] = wv.last.linel
PARAMETER V.FIRST.COL[1l] = v.first.coll
PARAMETER V.LAST.COL[1] = v.last.coll
PARAMETER V.FIRST.LINE[2] = v.first.line2
PARAMETER V.LAST.LINE[2] = wv.last.line2
PARAMETER V.FIRST.COL[2] = v.first.col2
PARAMETER V.LAST.COL[2] = v.last.col2
PARAMETER V.FIRST.LINE[3] = v.first.line3

199

PARAMETER V.LAST

.LINE[3]

PARAMETER V.FIRST.COL[3]

PARAMETER V.LAST
IF first.time ==
first.time =

FOR j = 1 TO
area.ref[j

area.ref[j

area.ref(j

overlap

END

min.gray([1]
max.grayll]
min.gray([2]
max.gray (2]
min.grayl[3]
max.gray(3]

.COL[3] =

0 THEN
1
3

I

v.last.col3

v.last.line3
v.first.col3

] = PARAMETER(V.LAST.COL[j])-
PARAMETER (V.FIRST.COL[j]) +1
] = area.ref[j]* (PARAMETER(V.LAST.LINE([]])-
PARAMETER (V.FIRST.LINE[j]) +1)

] = area.ref[3j]/1000

= 60 ;decided
= 90 ;decided
= 60 ;decided
= 90 ;decided
= 60 ;decided
= 90 ;decided

;****get gain to low and offset

PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER

g <cac <

.GAIN[1] =
.GAIN[2]
.GAIN[3]
.OFFSET[1]
.OFFSET[2]
.OFFSET[3]

1
T

;****get initial threshold****

PARAMETER V.THRESHOLDI(1]
PARAMETER V.THRESHOLD[2]
PARAMETER V.THRESHOLD[3]

END

DISABLE V.BOUNDARIES
DISABLE V.CENTROID

FOR cam = 1 TO 1
VDISPLAY (ca
END

2
my 2 A

;Significant amount of

to neutral valueg***=*

128
128
128

65
65
65

;decided
;decided
;decided

;e*¥*x**get pixel numbers FOR THRESHOLD CONTROL* * * * %% &3 & % & &

.END

set.point[1l] = 3
set.point[2] 3
set.point[3] 3

RETURN

900
900
900

200

APPENDIX C

SAMPLE OUTPUT DATA

201

COLUMN

!

OUTPUT DATA
TRANSIT RESPONSE TEST FOR
PID CONTROLLER
(FIGURE 4.17 AND 4.18)

Accumulated time in seconds

Transit response testing time in seconds
Minimum gray level for camera |
Minimum gray level for camera 2
Maximum gray level for camera |
Maximum gray level for camera 2

Gain for camera 1

Gain for camera 2

Offset for camera |

10. Offset for camera 2

11. Threshold for camera 1

12. Threshold for camera 2

202

£0¢

Time(sec.) Time(sec.) Xmin(1)

52.648
53.188
53.73
54.268
54.808
55.35
55.89
56.43
56.97
57.51
58.052
58.592
59.13
59.672
60.212
60.754
61.292
61.832
62.374
62.914
63.456
63.994
64.536
65.076
65.618
66.158
66.696
67.238
67.778
68.318
68.858
69.4
69.94

0.543998
1.083999
1.625999
2.164001
2.703998
3.245998
3.785999
4.326
4.866001
5.405998
5.947998
6.487999
7.026001
7.568
8.108001
8.650001
9.187999
9.728
10.27
10.81
11.352
11.89
12.432
12.972
13.514
14.054
14.592
15.134
15.674
16.214
16.754
17.296
17.836

60
30
23
17
13
13
13
12
11
1
11
11
1
11
10
10
10
10
10
10

10
10
10
10
10
10
10
10
10
10
10
10

Xmin(2)

60
29
23
20
16
15
13
12
12
12
11
10
10
11
11
11
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

Xmax(1)
90
67
66
64
61
61
61
62
61
61
60
60
61
61
60
60
60
60
60
60
60
59
60
60
60
60
60
60
60
60
60
60
60

Xmax(2)
90
66
64
64
62
62
61
60
61
60
61
60
60
60
60
61
60
59
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60

gain-cam1 gain-cam2 off-cam1

82
107
120
125
128
131
134
134
134
134
135
136
136
136
136
136
136
136
136
136
135
136
136
136
136
136
136
136
136
136
136
136
136

119
144
161
172
179
184
187
190
191
194
194
194
194
195
196
196
196
197
197
197
197
197
197
197
197
197
197
197
197
197
197
197
197

106
93
84
79
78
77
76
75
75
74
74
74
74
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73

off-cam2
96
84
76
70
67
64
62
62
61
60
59
59
59
59
59
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58

thr-cam1
76
49
45
41
38
38
38
38
37
37
36
36
37
37
36
36
36
36
36
36
36
35
36
36
36
36
36
36
36

36
36
36
36

thr-cam2
76
49
45
41
38
38
38
38
37
37
36
36
37
37
36
36
36
36
36
36
36
35
36
36
36
36
36
36
36
36
36
36
36

0T

70.482
71.022
71.562
72.104
72.644
73.186
73.724
74.264
74.804
75.346
75.886
76.424
76.966
77.506
78.046
78.586
79.126
79.594
80.136
80.676
81.218
81.758
82.298
82.838
83.38
83.922
84.46
85
85.54
86.082
86.622
87.162
87.704
88.244

18.378
18.918
19.458
20
20.54
21.082
21.62
22.16
22.7
23.242
23.782
2432
24.862
25.402
25.942
26.482
27.022
27.49
28.032
28.572
29.114
29.654
30.194
30.734
31.276
31.818
32.356
32.896
33.436
33.978
34.518
35.058
35.6
36.14

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
11

10
10

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
11
10
10

60
60
60
60
60
60
60
60
60
60
59
60
60
60
61
60
60
60
59
60
60
60
60
60
60
60
60
60
60
61
59
59
60
60

60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60

136
136
136
136
136
136
136
136
136
136
137
137
137
137
136
136
136
136
137
137
137
137
137
137
137
137
137
137
137
137
137
137
137
137

197
197
197
197
197
197
197
197
197
197
197
197
197
197
197
197
197
197
197
197
197
197
197
197
197
197
197
197
197
197
197
198
198
198

73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
72
72
73
73
73

58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58
58

36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
35
35
36
36

36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36

36

36
35
35
36
36

c0T

88.786
89.324
89.864
90.406
90.946
91.486
92.026
92.566
93.108
93.648
94.188
94.728
95.27
95.812
96.35
96.89
97.43
97.972
98.514
99.052
99.592
100.134
100.674
101.214
101.754
102.296
102.836
103.378
103.918
104.458
104.998
105.54
106.082

36.682
37.22
37.76

38.302

38.842

39.382

39.922

40.462

41.004

41.544

42.084

42.624

43.166

43.708

44.246

44.786

45.326

45.868
46.41

46.948

47.488
48.03
48.57

49.10999
49.64999
50.19199
50.73199
51.27399
51.81399

52.354

52.894

53.436

53.978

10
10
10
10
10
11
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

10
10
10
11
11
10
10
10

10
10
10
10
10
10
10
10
10

10
10
10
10
10
10
10
10
10
10
10
10
10

60
60
60
60
60
60
61
60
60
60
60
60
60
60
61
60
60
60
59
60
60
61
60
60
60
60
60
60
60
60
60
60
60

60
60
60
60
61
60
60
60
60
59
60
60
60
60
60
60
60
60
60
59
61
60
60
60
60
60
60
60
60
60
60
60
60

137
137
137
137
137
138
137
137
137
137
137
137
137
137
136
136
136
136
137
137
137
136
136
136
136
136
136
136
136
136
136
136
136

198
198
198
199
199
199
199
199
198
199
189
199
199
199
199
199
199
199
198
198
197
197
197
197
197
197
197
197
197
197
197
197
197

73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73
73

58
58
58
58
57
57
57
57
57
57
57
57
57
57
57
57
57
57
57
58
58
58
58
58
58
58
58
58
58
58
58
58
58

36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
35
36
36
36
36
36
36
36

36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
35
36
36
36
36
36
36
36

OUTPUT DATA
STEADY STATE RESPONSE TEST FOR
PID CONTROLLER
(FIGURE 4.19 AND 4.20)

COLUMN
I. Testing time in seconds
2. Testing time in minutes
3. Minimum gray level for camera |
4. Minimum gray level for camera 2
5. Maximum gray level for camera |
6. Maximum gray level for camera 2
7. Gain for camera |
8. Gain for camera 2
9. Offset for camera !
10. Offset for camera 2
11. Threshold for camera |

12. Threshold for camera 2

206

Lot

Time(sec.) Time(min) Xmin(1)

32.212
37.576
42.966
48.358
53.748
59.14
64.532
69.924
75.318
80.708
86.098
91.49
96.882
102.274
107.666
113.06
118.452
123.844
129.236
134.628
140.024
145.416
150.81
156.21
161.532
166.924
172.316
177.708
183.102
188.498
193.892
199.284
204.68

0.536867
0.626267
0.7161
0.805967
0.8958
0.985667
1.075533
1.1654
1.2553
1.345133
1.434967
1.524833
1.6147
1.704567
1.794433
1.884333
1.9742
2.064067
2.153933
2.2438
2.333733
2.4236
2.5135
2.6035
2.6922
2.782067
2.871933
2.9618
3.0517
3.141633
3.231533
3.3214
3.411333

10
11
11
10
10
10
10
10
10
10
10
10
10
10
11

10

10
10

11

10
10
10
10
10
10
10
10

Xmin(2)
11

10
10
10
10
10
10
10
10
10
10
10
10
10
10
11

10
10
10
10
10

11
10
10
10
10
11
10
10
10

Xmax(1)
60
61
61
60
60
60
59
60
61
60
60
60
60
60
60
59
61
44
60
60
60
61
59
60
60
60
60
60
60
60
60
60
60

Xmax(2)
61
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
61
42
60
60
60
60
61
59
61
60
60
60
60
61
60
61
60

gain-cam1 gain-cam2 off-cam1

84
85
85
86
85
85
85
86
85
86
87
87
87
86
87
87
87
80
78
77
78
78
78
77
77
77
77
77
77
77
78
78
78

190
189
188
188
188
188
188
190
190
189
189
189
189
188
189
189
189
216
219
219
220
220
220
220
219
220
220
220
220
218
219
220
222

101
100
101
100
100
100
100
100
100

99

99

99

99

99

99

99

99
118
119
119
118
118
119
118
118
118
118
118
118
118
118
119
119

off-cam2
59
59
60
60
60
60
60
59
59
59
59
59
59
59
59
59
59
70
69
69
69
69
69
69
68
68
68
68
68
68
69
70
69

thre-cam1 thre-cam2

39
40
40
39
39
39
39
39
40
39
39
39
39
39
39
38
39
37
38
37
37
38
37
37
37
37
37
37
37
38
37
37
37

37
36
37
37
37
37
37
37
37
37
36
37
37
36
37
37
37
39
38
38
38
38
39
37
39
38
38
38
38
38
38
39
38

80T

210.072
215.464
220.86
226.252
231.648
237.042
242,436
247.756
253.148
258.548
263.942
269.334
274.726
280.12
285.516
290.908
296.3
301.698
307.092
312.484
317.878
323.272
328.668
334.062
339.454
344,85
350.242
355.636
361.028
366.424
371.816
377.212
382.608
388.004

3.5012
3.591067
3.681
3.770867
3.8608
3.9507
4.0406
4.129267
4.219133
4.309133
4.399033
4.4889
4.578767
4.668667
4.7586
4.848466
4.938333
5.0283
5.1182
5.208067
5.297967
5.387867
5.4778
5.5677
5.657567
5.7475
5.837367
5.927266
6.017134
6.107067
6.196933
6.286867
6.3768
6.466733

10
10
10
10
10
10
29
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

10
10
10
10
10

10
10
10
10
10
10
28
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
11
10
10
10

10
10
10
10
10

60
60
60
61
60
61
76
60
60
59
60
60
60
60
60
60
60
60
60
60
60
60
61
60
60
60

31
60
60
60
59
59

60
60
60
60
60
60
82
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60

60
60
60
60
60

78
78
78
78
78
78
85
87
88
89
89
89
89
89
89
89
89
90
89
89
89
89
89
89
89
89
89
90
125
121
119
117
119
118

222
223
223
223
223
223
200
191
191
191
190
190
190
190
190
190
190
190
189
190
190
190
190
188
190
189
188
188
228
240
242
242
244
243

119
119
119
119
119
119
101
99
99
98
98
98
98
98
98
98
98
98
98
98
98
98
98
98
o8
98
98
98
119
125
125
126
125
125

69
69
69
69
69
69
55
59
59
59
59
59
59
59
59
59
59
59
60
59
59
59
59
60
60
60
60
60
90
84
83
83
83
83

37
37
37
37
37
37
40
39
39
39
39
39
39
39
39
39
39
39
39
39
39
39
39
39
39
39
39
39

30
29
30

29

38

38
38
38
38
35
37
37
37
37
37
37
37
37
37
36
37
37
36

37
36
37
37
37
37
36
16
39
39
39
39
39

60¢

393.398
398.79
404.184
409.508
414.902
420.3
425.694
431.092
436.412
441.804
447.198
452.594
457.99
463.382
468.776
474.168
479.564
484.962
490.356
495.75
501.144
506.54
511.932
517.324
522.72
528.114
533.504
538.9
544,292
549.688
555.084
560.48
565.876
571.27

6.556634
6.6465
6.7364

6.825133

6.915033

7.005
7.0949

7.184867

7.273533
7.3634
7.4533

7.543233

7.633167

7.723033

7.812933
7.9028

7.992733
8.0827
8.1726
8.2625
8.3524

8.442333
8.5322

8.622066

8.712
8.8019

8.891734

8.981667

9.071533

9.161466
9.2514

9.341333

9.431266

9.521167

10

11
10
10
10
10
10
10
10
10
10
10
10
10
10
10
37
10
10
11
10
10
11
10
10
11
10
10
11
10
10
10
10

10
10
10
10
10
10
10
10
10
10

10
10
10
10
11

49
10
11
10
10
10
10
10
10
10
10
10
10
10
10
10
10

59
60
60
61
60
60
60
60
59
60
60
60
60
60
60
60
60
102
60
60
60
60
60
61
60
59
61
60
60
60
60
60
59
60

60
60
60
60
60
60
60
60
60
60
59
60
60
60
60
60
59
108
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60

119
117
118
117
118
119
118
118
118
118
118
118
118
118
118
118
10+
92
92
90
91
92
92
91
92
92
91
92
92
91
92
92
92
92

243
245
244
244
244
244
243
243
243
242
242
242
243
243
243
242
242
193
190
189
189
189
187
187
187
187
187
187
187
188
188
188
188
188

125
125
126
126
125
125
125
125
125
125
125
125
125
125
125
125
125
96
96
97
97
96
96
96
96
96
96
96
96
a7
96
96
96
96

83
83
83
83
83
83
83
83
83
83
84
83
83
83
83
84
84
57
59
60
59
59
60
60
60
60
60
60
60
60
60
60
60
60

29
29
30
31
30
30
30
29
29
30
30
30
30
30
30
30
30
39
39
39
39
39
39
39
39
38
39
38
39
39
39
39
38
39

39
39
39
39
39
39
39
39
39
38
38
38
39
39
39
39
38
36
37
37
36
36
37
37
37
37
36
36
37
37
37
37
37
37

01¢

576.662
582.056
587.452
592.848

9.611033
9.700934
9.790867

9.8808

10

10
10

10
10
10
10

60
60
60
60

60
60
60
60

92
91
92
92

188
188
188
188

96
96
96
96

60
60
60
60

39
38
38
39

37
37
37
37

T

VITA
BIN WANG

Candidate for the Degree of
Master of Science

Thesis: AUTOMATIC CAMERA CALIBRATION USING PID AND FUZZY LOGIC
CONTROL

Major Field: Mechanical Engineering
Biographical:

Personal Data: Born in Tianjin, China, March 20, 1966, the son of Liuxiang Li and Zhiyi
Wang.

Education: Graduated from Tianjin No. 7 High School, Tianjin, China, in July, 1984,
Received Bachelor of Science Degree in Mechanical Engineering from Harbin
Institute of Technology in July, 1988; Completed requirements for the Master of
Science Degree at Oklahoma State University in May, 1999.

Professional Experience: Graduate Research and Teaching Assistant, School of
Mechanical and Aerospace Engineering, Oklahoma State University, from
Augest, 1997, to December, 1998; Manager of Technology Development
Department, Tianjin Wix Filter Corp. Ltd. from March, 1993, to August, 1997,
Mechanical Engineer, Tianjin Wix Filter Corp. Ltd. from April, 1991, to March,
1993; Mechanical Engineer, Tianjin Automotive Industry Corp. from July, 1988,
to April, 1991.

