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PREFACE

A suffix tree is a trie-like data structure representing all suffixes of a string. Such
trees have a central role in many algorithms on strings, such as finding the longest
repeated substring, finding all squares in a string, approximate string matching, data
compression, and DNA sequence assembly. It is quite commonly felt, however, that the
linear-time suffix tree algorithms presented in the literature are rather difficult to grasp. I
implemented the suffix trees using two linear-time algorithms and tested the application

to string matching in the thesis.
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CHAPTER 1

INTRODUCTION

String matching is an integral part of many problems that occur naturally such as
text editing, data retrieval, symbol manipulation, lexical analysis, and computational
biology. Formally, string matching is defined as follows: given a short string of length m,
called the pattern, and a long string of length n, called the text string, locate an
occurrence of the pattern in the text string (either the first occurrence or all occurrences),
reporting “not present” if the pattern does not occur in the text. Usually, the text strings to
be searched are very large documents, such as books, dictionaries, encyclopedias, and

databases of DNA sequences.

There are several linear-time string matching algorithms, such as the Knuth-
Morris-Pratt algorithm [14], the Boyer-Moore algorithm [4], and the Karp-Rabin

algorithm [11], that are designed to solve the specific string matching problem.

A suffix tree is a trie-like data structure representing all suffixes of a string. Such
trees have a central role in many algorithms on strings [3] [7], such as finding the longest
repeated substring [20], finding all squares in a string [2], approximate string matching
[8] [5], data compression [16], and DNA sequence assembly [5]. It is commonly felt,
however, that the linear-time suffix tree algorithms presented in the literature are rather

difficult to grasp.



The suffix tree which can be constructed in linear time in the length of the text
string, and yet which enables substring searches to be completed in time linear in the

length of the substring, was first discovered by Weiner [20].

In constrast with the method by Weiner that proceeds right to left and adds the
suffixes to the tree in increasing order of their length, starting from the shortest suffix,
and with the method by McCreight [15] that adds the suffixes to the tree in decreasing
order of their length from left to right, an on-line construction algorithm was discovered
by Ukkonen [19], which proceeds the string symbol by symbol from left to right, and
always has the suffix tree for the scanned part of the string ready (this is the definition of

“on-line” in this context).

In this thesis, I implemented the suffix tree using two linear time algorithms —
McCreight’s algorithm and Ukkonen’s algorithm, which process the string from left to
right, tested its application for string matching, and compared the time and space being

used by the two algorithms.



CHAPTER 11

LITERATURE REVIEW

2.1 Basic Definitions

2.1.1 Suffix Trie and Suffix Tree

A trie is a type of digital search tree [13], and thus represents a set of pattern strings,
or keys, over a finite alphabet [17]. For a set of strings over a finite alphabet C, each edge
of the trie for the set represents a symbol from C, and sibling edges must represent
distinct symbols. The maximum degree of any node in the trie is thus equal to ICl. The
suffix trie, which is also sometimes referred to as a position tree or a non-compact suffix
tree, is a trie whose set of keywords comprises the suffixes of a single string [17].
Furthermore, it requires that each suffix is represented by a distinct terminal node (leaf)

of the trie. Figure 1 shows a suffix trie for the string ABCABCS.



o

Figure 1: Suffix trie for string ABCABCS [17]

The suffix tree, which is sometimes referred to more specifically as the compact
suffix tree, reduces the number of edges by collapsing paths containing unary nodes, i.e.
those nodes having only one child node. Figure 2 shows the result of converting the

suffix trie of Figure 1 in this manner.



Figure 2: Suffix tree for string ABCABCS [17]

Theorem | A suffix tree over a string S of length n uses ®(n) space [13].

Proof: From the definition of the suffix tree, we know that each internal node of
the suffix tree has at least two children. And a suffix tree over a string of length n has
exactly n leaves. So, the total number of nodes in the suffix tree is at most 2n — 1, at least

n, and so the suffix tree takes ®(n) space.

2.1.2 Explicit States and Implicit States

A tree is a graph consisting of vertices, also called nodes, and states. All
branching states (nodes), from which there are at least two transitions, and all leaves of
suffix trie, are called explicit states (explicit nodes). By definition, root is included in the
branching states. In Ukkonen’s algorithm [19], state L is also an explicit state. The other
states (the states other than root and - from which there is exactly one transition) are

called implicit states (implicit nodes).




2.1.3 Suffix Link

For a node corresponding to a non-empty factor aw (a is a symbol and w is a
string), we define the suffix link from aw to w, by suflaw] = w (see Figure 3). It is
expensive to walk down the root to find the path in each step of the extension of a suffix
tree [6]. Both McCreight’s algorithm and Ukkonen’s algorithm take advantage of suffix

links to save some unnecessary steps in this walk. We will discuss them in detail later.

Path w

Path w

#

Suffix link suf

Figure 3: A suffix link suf [6]



2.2 The Two Algorithms That Construct a Suffix Tree in Linear Time

2.2.1 Differences in Suffix Tree Construction by the Two Algorithms

The algorithm of McCreight inserts the suffixes of string 7 into an initially empty
tree. Starting with the longest suffix — the whole text string, the method is not on-line,
and the intermediate trees are not suffix trees. The left column of Figure 4 shows the

intermediate trees when constructing T(c) = cst(adadc) using McCreight’s algorithm.

The algorithm of Ukkonen has the important property of being on-line. That
means processing the text string symbol by symbol from left to right, and always has the
suffix tree for the scanned part of the text string ready. The algorithm is based on the
simple observation that the suffixes of a string 7' = ¢, ... #; can be obtained from the
suffixes of string =4 ... i by concatenating symbol #; at the end of each suffix of j s
and by adding the empty suffix. The suffixes of the whole string T=T" =1, 1,... , can be
obtained by first expanding the suffixes of 77 into the suffixes of 7 and so on, until the
suffixes of T are obtained from the suffixes of 7"’ [19]. The intermediate trees when
constructing cst(adadc) using Ukkonen’s algorithm are shown in the right column of

Figure 4.
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Figure 4: Sequence of trees constructed by McCreight and Ukkonen [10]



2.2.2 McCreight’s Algorithm

General Scheme for Trie Construction

McCreight’s algorithm is an incremental algorithm for constructing a suffix tree.
The suffixes of the text string are inserted into the initial empty tree one-by-one, starting
from the longest suffix. The intermediate trees contain the subsets of the suffixes. The
insertion continues until all suffixes are included in the tree. For example, suppose p is
the next suffix to be inserted in the current tree 7. McCreight’s algorithm defines the head
of p, head(p, T), as the longest prefix of p occurring in T (as the label of a path from the
root). We can find head(p, T) with its corresponding node in the tree. After finding the
node, only the remaining part of p, say =, needs to be appended to head(p, T). Now a new
intermediate tree is constructed, and a new branch labeled by p is included (see Figure 5).

Below is the general scheme of McCreight’s algorithm [6].

Algorithm general-scheme;
begin
compute initial tree 7 for the first suffix;
leaf .= leaf of T,
for i := 2 to n do begin
{insert next suffix |
localize next head as head(current suffix, 7);
let 7 be the string corresponding to path from head to leaf;
create new path starting at head corresponding to ;
leaf := lastly created leaf;
end;
end.
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Root

Find the head

Graft the new path

New leaf

Figure 5: Insertion of the next suffix [6]

Up_Link_Down is the main technique used by McCreight’s algorithm. It is the
most significant improvement on a straightforward construction by using the suffix links.
The idea is to find the node (the head) of the next suffix to be inserted from the most
recently created leaf of the tree. The data structure that takes advantage of suffix links
gives shortcuts in searching for the heads. The procedure Up_Link_Down works as
follows: it starts from the last leaf, going up, until a shortcut through a suffix link is met;
it then goes through the suffix link and goes down the tree to find the new head (see

Figure 6). The following is the procedure Up_Link_Down [6].



function Up_Link_Down(link, q) node;

{finds new head, from leaf g}
begin
{UP, going up from leaf g}
v := first node v on path from g to root s.t. link[v] # nil;
if no such node then return nil;
let © = a; aj;1._ a, be the string, label of path from v to g;
{LINK, going through suffix link}
head := link[v];
(DOWN, going down to new head, making new links}
while son(head, a;) exists do begin
v = son(v, aj); head := son(head, a);
link[v] := head, j = j+1,
end;
return (v, head);
end.

| Link > ., LINK |

—_—
New
“TLinks >
—— i DOWN

UP) —>

Head

Leaf
Before

ek Head

Leaf
After

Figure 6: Strategy for finding the next head [6]

The procedure Graft [6] constructs a path of new nodes from the current head to a
newly created leaf. It also updates the suffix links from the nodes on the path containing

the previous leaf pointing to the corresponding nodes on the newly created path.
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procedure Graft(link, v, head, a; aj. . a,).
begin w := head,
for k :=j to n do begin
v ;= son(v, ay); w := createson(w, ay); link[v] := w;
end;
{w is the last leaf}
end.

The algorithm Left_to_Right [6] builds the suffix tree of text string. Table suf will
keep track of all the suffix links created during the construction of Trie(p;, p> ..., pn). In

Trie(py, p> ..., pn) it is possible for suf[v] to be undefined, for some node v. This situation

does not occur for (compressed) suffix trees.

Algorithm Left_to_Right(a;a;  a,, n>0).

begin
T := Trie(p;) with suffix link (from son of root to root);
for i := 2 to n do begin
{insert next suffix p,= a,a, a,into T}
{FIND new head)
(v, head) := Up_Link_Down(suf, leaf;.;); {head = head,)
if head = nil then begin
{root situation}
let v be the son of root on the branch to leaf, ;.
suf[v] = root; head := root;
end;
{going down from head; to leaf; creating a new path}
let a;... a, be the label of the path from v to leaf; ;;
Graft(suf, v, head, a; aj . ay),
end;

end.
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Theorem 2  The algorithm Left_to_Right constructs the T=Trie(text) in time O(IT1) [6].
Proof: The time is proportional to the number of suffix links (suf), which is
obviously proportional to the number of internal nodes, and then to the total size of the

tree.

McCreight’s Algorithm

After the path 7 corresponding to a new suffix p is inserted into the tree, a new
leaf is created. The father of the leaf, the nearest non-root explicit node, is denoted to be
the current head. The head may not exist when the path contains only two explicit nodes
—root and a leaf. In this case, we have to split the edge at the first implicit node from the

root.

Following the function Up_Link_Down, the searching for heads may stop at some
implicit nodes. We need break the edge at that point. Let (w, @) be an implicit node of the
tree T (w is an explicit node of 7, a is a string corresponding to the implicit node). The
operation break(w, a) on the tree T is called only if our searching for the new head
stopped at the implicit node (w, o). The effect of the operation break(w, a) is to break the
corresponding edge, a new explicit node is inserted at the breaking point, and the edge 1s
split into two edges: one is the existing edge, another will be grafted to a new path. The

value of break(w, @) is the node created at the breaking point.

Let v be an explicit node of the tree 7, and let p be a substring of the input string

text represented by a pair of indexes [/, r, then p = text[/ ... r]. The basic function used in



McCreight’s algorithm is the function find. The value returned by find(v, p) is the last
implicit node along the path starting in node v and labeled by p. The important aspect of
McCreight’s algorithm is the use of two different implementations of the function find.
Function fastfind deals with the situation when we know in advance that the searching
path labeled by p is fully contained in some path starting at v. The paths between the two
suffix links should have an exactly same sequence. Node v is connected by a suffix link,
and p actually is a path from the node that connects to v. We can save some steps by
using fastfind to jump from one explicit node to another. Checking the first symbol of
each edge to determine where to go is the only thing we need to do. Another
implementation of find is the function slowfind [6] that follows the path symbol by
symbol. The application of fastfind [6] is a main feature of McCreight’s algorithm, and

plays a central role in the performance.

function fastfind(v: node; p: string) node;
{p is fully contained in some path starting at v}
begin
from node v, follow path labeled by p in the tree using labels of edges as
shortcuts; only first symbols on each edge are checked;
let (w, a) be the last implicit node;
if o is empty then return w
else return break (w, 0.);
end.

function slowfind(v: node; p: string) node;
begin
from node v, follow the path labeled by the longest possible prefix of p
letter by letter;
let (w, a) be the last implicit node;
if o is empty then return w
else return break (w, ),
end.
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McCreight’s algorithm builds a sequence of trees T; in the order i = 1, 2, ..., n.
The tree T; contains all the suffixes with length equal to or greater than n-i+1. Then 7, is
the suffix tree for the whole text, but the intermediate trees are not strictly suffix trees.
When we build tree T, from T}, suffix links play a crucial role in reducing the

complexity.

McCreight’s algorithm [6] is a transformation of the algorithm Left_to_Right;

most of the nodes become implicit nodes here.

Algorithm scheme of McCreight’s algorithm;
{left-to-right suffix tree construction}
begin
compute the two-node tree T with one edge labeled p; = text;
for i := 2 to n do begin
{insert next suffix p; = text[i..n]}
localize head; as head(p;, T),
starting the search from suf[father(head, )],
using fastfind whenever possible;
T :=insert(p;, 1),
end;
end.

Property | head; is a descendant of the node suflhead, ], suf|v] i1s a descendant of

suflfather(v)] for any v [6].

Localizing heads is the first step in construction of the intermediate trees for
McCreight’s algorithm. The relation between head; and head;., (Property 1) permits the
search for the next head to start from some internal node, instead of from the root. This
saves some work and the amortized complexity is linear. The behavior of McCreight’s

algorithm [6] is illustrated in Figure 7 and Figure 8.
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Algorithm McCreight;
begin
T := two-node tree with one edge labeled by p; = text;
for i := 2 to n do begin
{insert next suffix p; = rext[i..n]}
let B be the label of the edge (father[head,. /], head,);
let y be the label of the edge (head,.;, leaf;.));
u := suff{father[head, ;1]:
v = fastfind(u, p);
if v has only one son then
{vis a newly inserted node} head, := v
else head; := slowfind(v, y);
suflhead; ;] := v,
create a new leaf leaf;; make leaf; a son of head,;
label the edge (head;, leaf;) accordingly;

end;
end.
Root
fafher,-,, O
fastfind(u, B)
L slowfind(v, y)
Hy ead;
Y —_—
© leaf.., leaf;

Figure 7: McCreight’s algorithm: the case when v is an existing node [6]
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father;.

fastfind(u, B)

head,-_; [ ....saffix-tink >
Y172
o 1,
leaf;.;

Figure 8: McCreight’s algorithm: the case when v = head, is a newly created node [6]

Theorem 3  McCreight’s algorithm has O(nhloglAl) time complexity, where A is the

underlying alphabet of the text of length n [6].

Proof: Let’s assume that the alphabet is of a constant size. The time complexity of
fastfind and slowfind can be considered separately. First, from the function fastfind
above, it is not difficult to find that the time spent by fastfind at stage i should be
proportional to the difference |lhead)| - |head, |, plus some constant. The total time should
be bounded by X(|head|| - |head;.,;l) + O(n). It is linear time. Similarly, the time spent by
slowfind at stage i is proportional to the difference Ifather|l - |father,;l, plus some
constant. Therefore, the total time of slowfind is bounded by X(|father/| - Ifather;,l) +
O(n). It 1s also in linear time. For the situation that the alphabet size is not constant, we
can find the stage from a single symbol down the tree through binary search in time

O(loglAl). So, the total time complexity for McCreight’s algorithm is O(nhloglAl).
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2.2.3 Ukkonen’s Algorithm

We mentioned early that Ukkonen’s algorithm for constructing suffix tree was on-
line. It processes the text string symbol by symbol from left to right, and always has the
suffix tree for the scanned part of the string ready. Now, we discuss the algorithm in

detail.

Construction of Suffix Trie (STrie(T))

The transition function is defined as g(;, a)= ; for all ;, ; in Q such that y=xa,

where a € Y. Q is the set of the states in the suffix trie (STrie(T)). x denotes the state that

corresponds to a substring x [19].
The suffix function fis defined for each state x€ Q as follows. Let x # root. Then
x = ay for some a € ), and we set f(;) = v,_' [19]. And, firoot) = L. We call fir) the suffix

link of state r in Ukkonen'’s algorithm.

By Ukkonen’s algorithm, the intermediate suffix trie 7' can be obtained from il
by concatenating symbol # at the end of each suffix of 7°/ and by adding the empty

suffix. Algorithm 1 shows the procedure for building STrie(?") from STrie(T').

Here top denotes the state t; ... ¢,..
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Algorithm 1

begin

= t0m;

while g(r, t,) is undefined do
create new state r’' and new transition g(r, ) = r";
if 7 # rop then create new suffix link floldr’) =r",
oldr’' :==r’;
r:=fr);

create new suffix link floldr’) = g(r, t));

top .= g(top, 1;);
end.

On-Line Construction of Suffix Tree

The suffix tree of T is denoted as STree(T) = (O’ U {-1-}. root, g', f') [19].

Ukkonen’s algorithm refers to an explicit or implicit state r of a suffix tree by a reference
pair (s, w), where s is some explicit state that is an ancestor of r, and w is the string spelled
out by the transitions from s to r in the corresponding suffix trie. A reference pair is
canonical if s is the closest ancestor of r (and, hence, w is the shortest possible string)

[19]. For an explicit r the canonical reference pair obviously is (r, €) [19].

Let’s see how Algorithm | works. Let s; =1; ... 1., $2, $3, ..., 8§ = root, 8i.; = L be
the states of STrie(T*"). j is the smallest index such that s;is not a leaf, j'is the smallest
index such that s;-has a #;—transition. We know that s, is a leaf and root L is a nonleaf that

has a r; —transition. j <j' is always true.
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Theorem 4 Algorithm 1 adds to STrie(T"') a t;—transition for each of the states sy, 1 <
h <j’, the new transition expands an old branch of the trie that ends at leaf s, and, for j <
h < j’, the new transition initiates a new branch from s;. Algorithm 1 does not create any

other transitions [19].

Ukkonen’s algorithm calls state s; the active point and s;- the endpoint of STrie(T"
!). The states may be explicit or implicit. The active points of the last three trees in Figure

9 below are (root, c), (root, ca), (root, €).

By b BB Y

VX N

Figure 9: Construction of STree(cacao) [19]

From Theorem 4 we know that Algorithm 1 inserts two different groups of #; —
transitions into STrie(T"'): Group one are the states before the active point s; get a
transition. Theses states are leaves, so each such transition has to expand an existing
branch of the trie. Another group are the states between the active point s; and the
endpoint s;-, the endpoint is excluded, get a new transition. These states are not leaves, so

each new transition has to initiate a new branch.

Any transition of STrie(T"") leading to a leaf is called an open transition [19]. The
form of the transition is g'(s, (k, i-1)) = r, where the right pointer points to the last

position i-/ of tree /. So the actual value of the right point does not have to be present
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in the formula. We can rewrite an open transition as g’(s, (k, e)) = r where e means the
transition is “open to grow.” The explicit updating of the right pointer when ¢, is inserted
into this branch is not needed. So the first group of transitions is implemented without

any explicit changes to STree(T"").

Now let’s focus on how to add the second group of transitions to STree(T"). Let
h = j (s; is an active point) and let (s, w) be the canonical reference pair for s;. Since s, is
in STr’ie(T”), w is a suffix of 7. So (s, w) = (s, (k, i-1)) for some k < i. Some new
branches from states s, j < h < j’ should be created. We need to take advantage of
reference pairs and suffix links to save the steps searching states s, since s, may not be

explicit states.

Next we need to create a new branch starting from the state represented by (s, (k,
i-1)). At first, we should test whether or not (s, (k, i-/)) already refers to the endpoint s;-.
If it does, we do nothing. Otherwise a new branch will be created. The state sy, referred to
(s, (k, i-1)) should be explicit. If it is not, we need to split the edge to generate a new
explicit state s;. Now a #; —transition from s, i1s created. It is an open transition g'(ss, (i,
o0)) = s> Where s, is a new leaf. At the end, the suffix link f'(s;) should be added if s, was

not an explicit state before.

The reference pair for s, was (s, (k, i-/)), the canonical reference pair for s, is
canonize(f'(s), (k, i-1)) where canonize makes the reference pair canonical by updating
the state and the left pointer. The above operations are then repeated for s,,;, and so on

until the endpoint s;- is found.
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The procedure update [19], given below, together with procedure canonize [19]
and test-and-split [19] transforms STree( 7"y into STree(T") by inserting the t; —transitions
in the second group. The procedure test-and—split [19] tests whether or not a given
reference pair refers to the endpoint. If it does not, then the procedure creates and returns
an explicit state for the reference pair, provided that the pair does not already represent an

explicit state.

procedure update(s, (k, i)):
(s, (k, i — I)) is the canonical reference pair for the active point;
oldr := root; (end-point, r) .= test-and-split(s, (k, i — 1), t;);
while not(end-point) do
create new transition g’(s, (i, e)) = r’ where g'(s, (k, =0)) = r' is a new state;
if oldr # root then create new suffix link f'(oldr) = r;
oldr :=r;
(s, k) := canonize(f'(s), (k, i = 1));
(end-point, r) .= test-and-split(s, (k, i -1 ), t;);
if oldr # root then create new suffix link f’(oldr) = s;
return (s, k).

procedure rest-and-split(s, (k, p), 1):
if k <p then
let g'(s, (k', p")) = 5" be the f—transition from s;
if t =ty 4 , & + s then return(true, s)

else
replace the f,—transition above by transitions g'(s, (k’, k' + p — k)) = r and
gir,(k’+p—k+ 1,p")=s"where r is a new state,
return(false, r)
else

if there is no t-transition from s then return(false, s)
else return(true, s).
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procedure canonize(s, (k, p)):

if p < k then return (s, k)
else
find the fi—transition g'(s, (k’, p')) = s’ from s;
while p’ -k’ <p-kdo
k=k+p'-k'+1,
s=s';
if kK < p then find the f;—transition g'(s, (k’, p’)) = s’ from s;
return (s, k).

The overall algorithm [19] for constructing STree(T) is finally as follows.

Algorithm 2. Construction of STree(T) for string T =11, ... # in alphabet £ = {t.,
..., I.m}; # is the end marker not appearing else where in T .
create states root and -
for j := /, ..., m do create transition g'(<, (-, -j)) = root;
create suffix link f'(root) = 1.
si=rootk:=1i=0
while #; . ;##do
=i+ 1I;
(s, k) := update(s, (k, 1)),
(s, k) := canonize(s, (k, i)).




CHAPTER 1II

COMPARISION OF THE TWO ALGORITHMS

Suffix trees provide efficient solutions to a “myriad” of string processing
problems. The suffix tree for a string ¢ really turns r inside out, immediately exposing
properties like longest or most frequent subwords. The fundamental question whether w
occurs in ¢ can be answered in O(lwl) steps — independent of the length of t — once the
suffix tree for ¢ is constructed. Thus it is of great importance that the suffix tree for ¢ can

be constructed and represented in linear time and space.

In spite of the basic role of suffix trees for string processing, elementary books on
algorithms and data structures barely mention suffix trees and never give efficient

algorithms for their construction.

There are two classical suffix tree construction algorithms: Weiner’s algorithm
and McCreight’s algorithm. Weiner’s algorithm [20] was the first linear-time algorithm.
A few years later, a more space-efficient algorithm was developed by McCreight [15].
The two algorithms follow the same scheme for construction: the tree is computed for a
subset of the suffixes and this procedure continues until all suffixes are included in the
tree. Weiner’s algorithm scans the text from right to left, while McCreight’s algorithm
scans the text from left to right. Though both algorithms use linear time, McCreight’s

algorithm was the first algorithm truly using linear space.
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Ukkonen’s algorithm [19] is a conceptually similar linear-time algorithm for
constructing a suffix tree. Like McCreight's algorithm, Ukkonen’s algorithm scans the
text from left to right and has the same space improvement as Weiner's algorithm.

However, “on-line construction™ is the distinct difference from McCreight’s algorithm.

I implemented the two efficient algorithms: McCreight's algorithm and
Ukkonen’s algorithm in C++, and, using real data, a book, as the input English text data

and also using randomly generated DNA data.

3.1 Time Complexity

Using the English text data and DNA data, I ran the programs for text string sizes
n: 200, 500, 1000, 2000, 4000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000,
22000, 24000. I got the average system time of constructing of suffix trees for the two
algorithms with English text data and DNA data for each size n. Each average value was

calculated from 20 outputs with the same size of random input data.
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3.1.1 Time Complexity

Plot time/n versus n for English text data
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Figure 10: Plot time/n versus n for English text data

Plot time/n versus n for DNA data
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Figure 11: Plot time/n versus n for DNA data

From Figure 10 and Figure 11 that plot time/n versus n for English text data and

DNA data, we can see that with the increment of n, the graphs approach horizontal
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straight lines (y=0.000015, a very small number). This verifies empirically that the time

complexity of the two algorithms is O(n).

3.1.2 Comparison of the Two Algorithms in the Time Being Used for Constructing of

Suffix Tree
Plot time versus n for English text data
0.35
03 2

2
g 02 | ——Ukk |
wn
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E
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0 -
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Figure 12: Plot time versus n for English text data

We know that both of the two algorithms are linear time algorithms. But which

one is more efficient?

From Figure 12 and 13, we can see that the time spent by both algorithms
increases with the increment of the size of text string. And, for both English text data and
DNA data, the time spent by Ukkonen's algorithm in constructing a suffix tree is slightly

more than McCreight’s algorithm, though the difference is not big.




Plot time versus n for DNA data
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Figure 13: Plot time versus n for DNA data
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We can conclude that McCreight’s algorithm is slightly more efficient than

Ukkonen’s algorithm in the time being used for constructing suffix trees.
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3.1.3 Deviation of the Two Algorithms

' Deviation of two algorithms for English text data
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Figure 14: Deviation of two algorithms for English text data

‘ Devlation of two algorithms for DNA data
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Figure 15: Deviation of two algorithms for DNA data
I also plot the deviation of time/n versus n for both algorithms using two different

sets of data. From Figure 14 and Figure 15, we can see that the difference of deviations

for the two algorithms is not significant.
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3.2 Space Complexity

Now, let’s discuss the space complexity of the suffix trees constructed by the two
algorithms. Since the suffix tree is composed of edges (nodes), from the number of edges

of a suffix tree, we know the space occupied by the tree.

We know that the definition of the suffix tree for both of the algorithms is unique.
The space occupied by the suffix trees that constructed by the two algorithms should be

exactly the same. My programs also verify this point.

Using the English text data and DNA data, I ran the programs for text string sizes
n: 200, 500, 1000, 2000, 4000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000,
22000, 24000. I got the average edge number of the suffix tree with random DNA data
for each size n. Each average value was calculated from 20 outputs with the same size of
random input data. Since the edge number is the same for both algorithms for one input
data, I just used one set of data for each of the graphs, not as in the above part for time

complexity.
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Plot edge number versus n for DNA data
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Figure 16: Plot edge number versus n for DNA data

We can see from Figure 16 that with the increment of n the edge number is
increased. The graph is almost a perfect straight line. From Figure 17 that plot edge
number/n versus n, we can see the value of edge number/n is within [1.617, 1.624], a

small range.
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Plot edge num/n versus n for DNA data
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Figure 17: Plot edge number/n versus n for DNA data
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CHAPTER IV

APPLICATIONS OF SUFFIX TREE

For convenience, I just use one algorithm to test the applications of suffix tree. It

1s McCreight’s algorithm.

4.1 String Matching

We know that a suffix tree is a very useful data structure in solving string
matching problems. When we have a text string and want to know if some pattern strings
are included in the text string and how many times they appear in the text string, we can
take advantage of the suffix tree. Using the text string as input, we can construct a suffix

tree in linear time (use either of the two algorithms).

Since a path from the root of a suffix tree to a leaf represents a suffix of the text
string, we can search the pattern from the root of the suffix tree to an internal node in
linear time to find out if the pattern appears in the text string. And since the number of
leaves of the subtree (the root of the subtree is the internal node that the end of pattern
belongs to) is equal to the number of times it is repeated, it is not difficult to get the

repeated times of the pattern by calling a recursive function.
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Using the English text data, I ran my programs to construct a suffix tree and try to

search for some patterns from the tree.

Script started on Mon May 24 16:39:12 1999
[ltongyu@Linux-home thesis]$ out

System time for constructing suffix tree is: 0.270000

Please input the pattern string you want to search for.
the

The pattern was found.

The number of times the pattern appears is 185

Do you want to continue to search for some patterns?

Y

Please input the pattern string you want to search for.
hello

No match for this pattern.

Do you want to continue to search for some patterns?

n
Feode o ok ko g ok e ok ok ok End Of Program RS EE R EEEE SRR RS

[ltongyu@Linux-home thesis]$ exit
Script done on Mon May 24 16:39:33 1999

Above is a typescript file I got when I ran my programs on Linux. The length of
the input file (the book) is 20228. When I typed the executable file name “out”, a suffix
tree was constructed and the elapsed system time was displayed, 0.27 seconds. The user
then was asked to input the pattern string. When I typed a word “the”, the pattern “the”
was searched for in the tree and “The pattern was found.” was displayed. And, when the
pattern is found, the program will call some functions to get the number of times the
pattern appears. We can see from the output that the number of occurrences of the pattern
“the” is 185. The program will continue to ask the user if he/she wants to continue to

[T 4

search for patterns. If the user’s answer is “y” or “Y”, the program will continue.

We can see that the pattern “Hello” was not found, and “No match for this

1

pattern.” was displayed. If the user type “n” or “N” when being asked “Do you want to

continue to search some patterns?”, the program will terminate.
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We can use a book, a dictionary, a lexicon or any other text files as the input text

strings, searching for any words or sentences quickly by running the programs.

4.2 Other Applications

Bioinformatics is a very popular research area recently. It combines biological
sciences and computational methods together to help the research in DNA sequence

search, DNA sequence assembly, RNA sequence search, protein analyses etc.

DNA (deoxyribonucleic acid) is the primary genetic material in all living
organisms - a molecule composed of two complementary strands that are wound around
each other in a double helix formation. The strands are connected by base pairs that look
like rungs in a ladder. Each base will pair with only one other: adenine (A) pairs with
thymine (T), guanine (G) pairs with cytosine (C). The sequence of each single strand can

therefore be deduced by the identity of its partner.

Genes are sections of DNA that code for a defined biochemical function, usually

the production of a protein.

DNA is composed of four kinds of components: A, T, C and G. When I ran the
programs to analyze the system time and the space it took to construct a suffix tree for the
two algorithms, I wrote one program to generate different sizes of random text strings

over the alphabet: A, T, C and G.
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4.2.1 DNA Sequence Search

We can use the DNA sequence of a real gene as input text string data to construct
a suffix tree. We use another small piece of DNA sequence as the pattern string to find
out if the piece of DNA is a part of the gene and how many times it is repeated. This is
very useful in biological research to determine the character or effects of a certain DNA

piece in the whole gene.

My thesis is not focused on Bioinformatics, but I tried to test my programs in this
area using some real data. The data is the DNA sequence of a gene I downloaded from a
project of University of Washington Genome Center. The name of the project is HLA

class one locus. The size of the gene is 16888 and it also can be found in Genbank.

Using the DNA sequence of the gene as input text data, I tested my program using
some small DNA sequences to find out if the sequences appeared in the gene and how

many times they repeated.
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Script started on Mon May 24 16:27:44 1999
[ltongyu@Linux-home thesis]$ out

System time for constructing suffix tree is: 0.250000
Please input the pattern string you want to search for.
AGAAGAT

The pattern was found.

The number of times the pattern appears is 2

Do you want to continue to search for some patterns?

Y

Please input the pattern string you want to search for.
GAAGATTTC

The pattern was found.

The number of times the pattern appears is 1

Do you want to continue to search for some patterns?

¥

Please input the pattern string you want to search for.
AGAAGATTTC

No match for this pattern.

Do you want to continue to search for some patterns?
?*i***t*tt***i—* End Df Program Fk ok dde koo ok ok k&
[ltongyu@Linux-home thesis]$ exit

Script done on Mon May 24 16:28:26 1999

From the above output, we can see that the system time it took to construct the
suffix tree was 0.25 seconds. The DNA sequence AGAAGAT repeated 2 times in the
gene and GAAGATTTC appeared only one time. The sequence AGAAGATTTC was not

found in the gene.

We can also use the whole Genbank or part of Genbank as the text string data. For
example, when somebody wants to know if one gene has already been registered in the

Genbank, he/she can use the DNA sequence of the gene as a pattern to search for.
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4.2.2 Other Applications in Bioinformatics

A suffix tree is also useful in RNA sequence search, protein sequence analyses

and DNA error copies search, etc.



CHAPTER V

SUMMARY, CONCLUSIONS AND FUTURE WORK

5.1 Summary

The suffix tree is a very important data structure in string search algorithms. It

provides linear time solutions to many string matching problems.

McCreight’s algorithm inserts the suffixes of the text string into an initially empty
tree, starting with the longest suffix. The method is not on-line, and the intermediate trees

are not suffix trees.

Ukkonen’s algorithm reads the text string from left to right, character by
character, and incrementally constructs suffix trees for the prefixes of the text string seen

so far. It is on-line construction.

In my thesis, I implemented two linear time algorithms to construct a suffix tree —
McCreight’s algorithm and Ukkonen’s algorithm in C++; compared the time and space
used by the two algorithms using some random data; tested the applications of suffix

trees in string matching and Bioinformatics.
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5.2 Conclusions

5.2.1 Time Complexity

From the outputs of the programs and graphs, I verified empirically that the time

complexity of both algorithms is O(n).

I compared the time spent by the two algorithms by running the programs using
certain sets of data. I found out that McCreight’s algorithm is more efficient than

Ukkonen’s algorithm in the time being used in constructing a suffix tree.

The difference in performance of the two algorithms is not significant.

5.2.2 Space Complexity

Since the definition of the suffix tree for the two algorithms is same, the structure

of the suffix tree should be the same. I verified this point through the programs. The

space spent by the suffix trees constructed by the two algorithms for a certain input text

string is exactly the same. The space complexity is O(n).
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5.2.3 Applications of Suffix Tree

A suffix tree is a very useful data structure that embodies a compact index to all
the distinct, non-empty substrings of a given text string. The suffix tree is not only useful
in plain English text string searching but is also useful in many areas of Bioinformatics,
for example, DNA sequence search, DNA sequence assembly, RNA sequence search and

protein sequence analyses, etc.

5.3 Future Work

The suffix tree is a trie-like data structure representing all suffixes of a string.
Such trees have a central role in many algorithms on strings. I have already tested string

matching and DNA sequence searching in my thesis.

In practical pattern-matching applications, exact matching is not always pertinent.
It is often more important to find objects that match a given pattern in a reasonably
approximate way. This is approximate pattern matching, and is very useful in
Bioinformatics to find out the effects of the sets of analogue DNA, RNA or protein in

living organisms.

Suffix tree can be used to solve the approximate string matching problem. Beside
the applications in Bioinformatics, research and implementation of the algorithms in

determining longest common substrings; sequentially compressing data; ascertaining
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whether or not a given string is square-free are also very interesting areas in the future

study of suffix trees.
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APPENDIX A: SOURCE CODES FOR IMPLEMENTATION OF McCREIGHT'S
AND UKKONEN'S ALGORITHMS

LHIELTEEP LIS T LI r LR i i 7 ii it iiiriitirirrliriiiiiriltellriirlri
/Y
// Contents: suffix_tree.h

1/

// Tongyu Li

i

// Date: May, 1999
it

LELHEETETEET LR 0000000 EE I b i ittt bi it riidi it iitdirtirirtirtilt!

/7

// This is the header file of suffix_tree, which is also the parent of
// MCC and Ukk.

//

#ifndef SUFFIX_TREE_H
#define SUFFIX_TREE_H

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#define N 30000
#define MAX_HASH TABLE 505605

typedef struct(
int begin_node_index; //the index of begin node in the edge
int end_node_index; //the index of end node in the edge
int first_char; //the index of first character in the edge
int last_char; //the index of last character in the edge
}edge;

class Suffix tree{
public: //functions

Suffix_tree(); //constructor
int hash_function(int, int); //hash function
edge find_edge(int, int); //find the edge
bool insert_to_hash_table(int, int, int); //insert edge
bool insert_to_hash_table(int, int, int, int);
//insert edge (overload)
bool remove_ from_hash_table(int, int); //remove the edge
char get_element(int i) {return text_string[i];}
//get string’'s element
//get the last element of text string
char get_last_element ()
{return text_string[text_string_length-1];}
int get_length() {return text_string_length;)} //get string length
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void add_suffix link(int i, int su) {nodes([i]=su;)
//add suffix link
int get_suffix_ link(int i) {return nodes([i];} //get suffix link
int get_next_node () {return nodes_num++; }
//get the next node number
int get_node_num() {return nodes_num;} //get node number

void print_edges(); //print all the used edges
edge search_string(char*); //search the matching string
bool check_tree(); //check if the suffix tree is correct

void appear_times(int);
//calculate the number of appearence of a pattern
int get_app_times() (return app_times;} //get the appear times
double get_add_time() {return add_time;}
double get_min_time() {return min_time;)
int get_edge_num();

private: //data

ifstream in_ptr; //input file

char text_string[N]; //text string

int text_string_length; //text string length

edge edge_array[MAX_HASH TABLE]; //array of edges

int nodes [N*2];
//the index of the array is node number and
//the element contains the information of suffix link
//for this node.

int nodes_num; //node number

int app_times; //appear times of a pattern

double add_time; //time need add to total time

double min_time; //time need minus from total time

#endif
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LAP7TT0L00 0000077000007 di il iiiiidiiiiridriiiiilriiiitiliiilile/
//

// Contents: suffix_tree.cc

/7

// Tongyu Li

1/

// Date: May, 1995

//

LALLET LI ELLE 7000007 iiiiirrriiitirirtilrriltlriiritiitiittlirt/

!/
// This is the source file of suffix_tree.
//

#include "suffix_ tree.h"
#include <sys/times.h>

Suffix_tree::Suffix_tree() //constructor

{
in_ptr.open("input"); //open the input file

if(!in_ptr) //check if opened properly

{
cerr<<"Cannot open the file -- input."<<endl;
exit(1l);

}

char* line=new char[257];
int 4y J=0;

while(in_ptr.getline(line, 256)) //read the file line by line
for(i=0; i<strlen(line); i++)
text_string[j++]=1line[i];
text_string([jl="#"';
//add a special character to the end of string
text_string[j+1]='\0'; //the end of string
text_string length=strlen(text_string); //string length is j+2
for(i=0; i<N*2; i++) //initialize the array of nodes
nodes(i]=-1;

for(i=0; i<MAX_HASH_TABLE; i++) //initialize the array of edges
{

edge_array[i] .begin_node_index=-1;

edge_array(i] .end_node_index=-1;

edge_arrayl[i] .first_char=-1;

edge_array(i].last_char=-1;

}

nodes_num=0; //initialize node_num to 0
delete[] line;

in_ptr.close();

app_times=0;

add_time=0;

min_time=0;
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7/

//The edges of suffix tree are stored in the hash table. The hash
//function is decided by the node that the edge is connected to and
//the first character of the edge. In order to enlarge the difference
//of nodes, multiply node times 109 before adding character.

il

int Suffix tree::hash_function(int node, int character)

{
return( (node*109 + character) % MAX_ HASH TABLE) ;

}

//find the edge from hash table
edge Suffix_tree::find_edge(int node, int character)
{
int a=hash_function(node, character); //call hash function first

int count=0;
int ch;

double temp;

struct tms tms_st, tms_fin;
clock_t st, fin;

st=times (&tms_st) ;

while (count<=MAX_HASH_TABLE) //loop times <= hash table size
{
if (edge_array[a] .begin_node_index==node) //if find
{
ch=text_string[edge_array(a].first_char];
if (ch==character)
return edge_arraylal;

)

if(edge_array[al .begin_node_index==-1) //if not find
return edge_arraylal];
count++;
a=(++a)$MAX_HASH_TABLE;
}

fin=times (&tms_£fin) ;
temp=(tms_£fin.tms_stime-tms_st.tms_stime) /(double) CLK_TCK;

if {count>1)
{
min_time += temp;
add_time += temp/(double)count;

}

//

//There are two situations when inserting an edge to hash function.
//First, we don’t know the end node. Second, the end node already
//exists.
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//insert edge to hash table
bool Suffix_tree::insert_to_hash_table(int node, int begin_index, int
end_index)
{
//call hash function
int h = hash_function(node, text_string[begin_index]) ;

int count=0;
double temp;

struct tms tms_st, tms_fin;
clock_t st, fin;

st=times (&tms_st) ;

//if the slot is not empty
while(edge_array([h] .begin_node_index != -1 &&
edge_array[h] .begin_nocde_index != -2 && count <= MAX HASH TABLE)
{
h=(++h) $MAX_HASH_TABLE;
count++;

}

fin=times (&tms_£fin);
temp=(tms_fin.tms_stime-tms_st.tms_stime) / (double)CLK_TCK;

if (count<=MAX HASH TABLE) //find a proper slot

{
edge_array[h] .begin_node_index = node;
edge_array(h].end_node_index = nodes_num++;
edge_array[h].first_char = begin_index;
edge_array|h].last_char = end_index;

if (count>1)
{
min_time += temp;
add_time += temp/ (double)count;

}
return true;

}

return false; //not find a proper slot
}

//overload function of insert
bool Suffix_tree::insert_to_hash_table(int node, int end_node, int
begin_index, int end_index)
{
//call hash functicn
int h = hash_function(node, text_string[begin_index]);
int count=0;

double temp;
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struct tms tms_st, tms_£fin;
clock_t st, fin;

st=times (&tms_st);

//if the slot is not empty
while(edge_array[h] .begin_node_index != -1 &&
edge_array[h] .begin_node_index != -2 && count <= MAX HASH TABLE)
{
h=(++h) $MAX_HASH_TABLE;
count++;

}

fin=times (&tms_fin) ;
temp=(tms_fin.tms_stime-tms_st.tms_stime)/(double)CLK _TCK;

if{count<=MAX HASH_TABLE) //find a proper slot
{
edge_array (h] .begin_node_index = node;
edge_array[h] .end_node_index = end_node;
edge_array[h]l.first_char = begin_index;
edge_arrayl[h] .last_char = end_index;

if (count>1)
{
min_time += temp;
add_time += temp/(double)count;

}

return true;
}

return false; //not find a proper slot

)

//
//Remove an edge from hash table. First, find the index of the edge.
//We will not remove it really, just change the begin node index to -2.

il
bool Suffix tree::remove_ from _hash_table(int node, int begin_index)
{

int a = hash_function({node, text_string[begin_index]);

int count = 0;

double temp;

struct tms tms_st, tms_£fin;
clock_t st, fin;

st=times (&tms_st) ;

while(edge_array(a] .begin_node_index != node ||
edge_arrayl[a] .first_char!= begin_index)
{

if (count>MAX_ HASH TABLE)
break;
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a = (++a)%MAX_HASH TABLE;
count++;
}

fin=times (&tms_£fin);
temp=(tms_fin.tms_stime-tms_st.tms_stime) /{double)CLK_TCK;

if (count<=MAX_ HASH TABLE)
{
edge_array[a] .begin_node_index=-2;

if (count>1)
{

min_time += temp;

add_time += temp/ (double)count;
}

return true;

}

return false;

}

//print the edges of suffix tree
void Suffix_tree::print_edges|)

{
Int i g3
for(i=0; i<MAX HASH TABLE; i++)
{
if (edge_array[i] .begin_node_index != -1 &&
edge_array|[i] .begin_node_index!=-2)
(

cout<<"Begin node "<<edge_array[i].begin_node_index;

cout<<" End node "<<edge_array[i].end_node_index
<<endl;

cout<<"begin "<<edge_array([i].first_char<<endl;

cout<<"end "<<edge_array[i].last_char<<endl;

o

)

//get the total used edge number
int Suffix_tree::get_edge_num()

r
L8

int e=0;
for(int i=0; i1<MAX_HASH TABLE; i++)
if(edge_array[i] .begin_node_index!=-1 &&
edge_array(i] .begin_node_index!=-2)
e++;
return e;

//search for the matching string
edge Suffix_tree::search_string(char* pattern)

{

int m, n;



app_times=0;
edge e=find_edge (0, pattern[0]); //find the edge from root

if (e.begin_node_index==-1)
return e; //no matching

m=e.first_char + 1;
n=1;

for(;;) //compare the character one by one
: while (m<=e.last_char && n<strlen(pattern))
: if (text_string[m++] != pattern(n++])
( e.begin_node_index=-1;
return e; //no matching

¥

if(n==strlen(pattern)) //find
return e;

e=find_edge(e.end_node_index, pattern([n]);

if(e.begin_node_index==-1) //no matching
return e;

m=e.first_char + 1;
n++;

}

//check if all the suffixes of text string are included in the
//suffix tree
bool Suffix_tree::check_tree()
{
int n=0, i, k;
char* p;
edge e;
p=new char[text_string_length];
strepy(p, text_string);

while(n<text_string_length-1)
{
e=search_string(p);
if (e.begin_node_index==-1) //if one suffix is not included
return false;
n++;
i=0;
for{k=n; k<text_string length; k++)
pli++]=text_string(k];
pli]='\0";
]

return true; //if all the suffixes are included



}
//find the number of times the pattern appears
void Suffix tree::appear_times(int n)

{

for (char a=' ‘; a<='~'; a++)

{
aj);

edge e=find_edge(n,
1= -1)

if (e.begin_node_index

{

app_times++;
appear_times{e.end_node_index) ;

//call

54
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//
// Contents: McCreight.h

i

// Tongyu Li

1/

// Date: May, 1999
/Y
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/7

// This is the header file of MCC, which is to implement McCreight's
// algorithm of constructing cf suffix tree.

//

#ifndef MCC_H
#define MCC_H

#include "suffix_tree.h"
class MCC:public Suffix_tree(
public: //functions

MCC(); //constructor

bool fast_find(int); //fast find string using suffix links
void slow_£find(); //find string one character by one character
void create_suffix_tree(); //create the suffix tree

void check_nodes(); //check nodes

edge Is_implicit(int); //check if the edge is implicit

private: //data

edge father; //father edge

edge head; //head edge

int root; //root of tree

int node_v; //node v

int head_n; //next head (node)

int curr_j; //current scan character index

#endif
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// Contents: McCreight.cc

/7

// Tongyu Li

i

// Date: May, 1999

!/
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Lt
// This is the source file of MCC.
s

#include "McCreight.h"

MCC::MCC() //constructor, initialize the private data
{
head.begin_node_index=-1;
head.end_node_index=-1;
head. first_char=-1;
head.last_char=-1;

father=head;
root=-1;
curr_j=-1;

}

bool MCC::fast_find(int node_u) //fast find father edge from node_u

{
edge e=find_edge(node_u, get_element{father.first char));

if (e.begin_node_index==-1) //root situation
(
if (curr_j==get_length()-1) //if the last character
{
insert_to_hash_table(root, curr_j, curr_j);
curr_j++;
return true;
1

//1if curr_j is not the last character
insert_to_hash_table(root, curr_j, curr_j};
father=find_edge(root, get_element (curr_3j));
head_n=father.end_node_index;

curr_Jj++;

node_v=root;

return true;

)

//1if find the edge

if(node_u!=root) //if node_u is not root, update curr_j
curr_j=head.first_char-(father.last_char-

father.first_char+1);

int ll=e.last_char-e.first_char;



int l2=father.last_char-father.first_char;

if(11==12) //if father edge is equal to e edge
{

node_v=e.end_node_index;

curr_j += 11+1;

father=e;

return false;

}
edge el;

if(11>12) //if e edge is longer than father edge, split e edge
{
remove_from_hash_table(node_u, e.first_char);
insert_to_hash_table(node_u, e.first_char,
(e.first_char+12));
el=find_edge(node_u, get_element(e.tirst_char));
insert_to_hash_table(el.end_node_index, e.end_node_index,
(e.first_char+12+1), e.last_char);
node_v=el.end_node_index;
head_n=node_v;
father=el;
curr_j += 12+1;
return true;

)

//if edge is shorter than father edge, continue to search
int i=father.first_char;

while(1l1<12) //continue to search edge by edge
{

1 += 11+1;
e=find_edge(e.end_node_index, get_element (i));
12 -= 11+1;

ll=e.last_char-e.first_char;
} //end while

if(l1==12) /[/11=12
{
node_v=e.end_node_index;
curr_j += father.last_char - father.first_char + 1;
father=e;
return false;

}

//1if 11512, split the edge

remove_from_hash_table(e.begin_node_index, e.first_char);

insert_to_hash_table(e.begin_node_index, e.first_char,
e.first_char+12);

el=find_edge(e.begin_node_index, get_element(e.first_char));

insert_to_hash_table(el.end_node_index, e.end_node_index,
e.first_char+12+1, e.last_char);

node_v=el.end_node_index;

head_n=node_v;

curr_j += father.last_char-father.first_char+1l;

57




father=el;
return true;

}

void MCC::slow_find() //slow find, character by character
{
edge e=find_edge(node_v, get_element (head.first_char));

int check=1;
edge el;

if{e.begin_node_index != -1) //if find the edge
{

int m, n;

curr_j++;

father=e;

m=e.first_char+l;

n=curr-3j;

for(;:;)
{
while (m<=e.last_char && n<get_length()) //check one by one
{
if (get_element (m++)==get_element (n++) )

curr_j++;
else
{
check=0;
break;
}

}

if (check==0) //find the point not matching, split edge
{
remove_from hash_table(e.begin_node_index,
e.first_char);
insert_to_hash table(e.begin_node_index,
e.first_char, m-2);
el=find_edge(e.begin_node_index,
get_element (e.first_char));
insert_to_hash_table(el.end_node_index,
e.end_node_index, m-1, e.last_char);
father=el;
head_n=el.end_node_index;
return;
}

//the whole edge is matching, continue find next edge
e=find_edge(e.end_node_index, get_element(n));

if(e.begin_node_index != -1) //if find the edge
{

father=e;

curr_J++;

m=e.first_char+l;

n++;




}

else //not find matching edge

{
head_n=father.end_node_index;
return;

)

check=1; //update check
}//end for(;;)
} //end if

if(node_v==root) //not find matching edge and node_v is root
{
insert_to_hash_table(root, curr_j, curr_j);
el=find_edge(root, get_element (curr_3j));
head_n=el.end_node_index;
add_suffix_link(head_n, root);
father=el;
curr_j++;
}
else //not find the matching edge and node_v is not root
head_n=node_v;

void MCC::create_suffix tree() //create the suffix tree

{

get_next_node();

if(get_length()==1) //if the text string has only one character
{

insert_to_hash_table(0, 0, get_length() - 1);

return;

)

//else insert the first edge

insert_to_hash_table(0, 0, 0);

father=find_edge (0, get_element(0));
root=father.begin_node_index;
insert_to_hash_table(father.end_node_index, 1, get_length()-1);
head=find_edge(father.end _node_index, get_element(l));
add_suffix_link(head.begin_node_index, root);

edge e, el;
char* ch=new char [get_length()];
Tt 1. W E;

for(i=1; i<get_length(); i++) //insert the edges one by one
{

curr_j=i; //current scan character index is i

u=get_suffix_link(father.begin node_ index) ;
//get suffix link

if(u'!=-1) //if find a suffix link
{
if(!fast_find(u))
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slow_£find();
}

else //root situation
{
node_v=root;
slow_find();
}

if(curr_3j < get_length())
//1if curr_j < string length, insert
{
if (head.begin_node_index != node_v) //add suffix link
add_suffix_link(head.begin_node_index, node_v);

insert_to_hash_table(head_n, curr_j, get_length()-1);

//update head
head=find edge(head_n, get_element(curr_1j));
}
} //end for
}

void MCC::check_nodes() //check the nodes next to root
{

edge e, el;

char a;

for(a=' '; a<='~"'; a++)
{

e=find_edge(root, a);

if (e.begin_node_index != -1)
{

el=Is_implicit(e.end_node_index);

if(el.begin_node_index != -1) //if implicit, remove
{
remove_from hash_table(e.begin_node_index,
e.first_char);
remove_from hash table(el.begin_node_index,
el.first char);
insert_to_hash_table(root, el.end node_index,
e.first_char, el.last_char);

)

edge MCC::Is_implicit(int n) //check if the node is implicit
{

char a;

edge e, el;

int i=0;

el.begin_node_index=-1;

for(a=' *'; a<='~'; a++)



e=find_edge(n, a);

if(e.begin_node_index != -1)
{
1++;
if(i>=2) //if edge number is >= 2, then explicit
{
el.begin_node_index=-1;
return el;
}
else
el=e;

)

return el; //only one edge under the node, implicit
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//

// Contents: Ukkonen.h

/7

// Tongyu Li

Lt

// Date: May, 1999

/7
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/!

// This is the header file of Ukk, which is to implement Ukkonen’s
// algorithm for constructing a suffix tree.

/!

#ifndef UKK_H
#define UKK_H

#include "suffix_tree.h"
class Ukk:public Suffix_tree(
public: //functions

Ukk(); //constructor

bool Is_explicit() const //if edge is explicit

(return (active_point.last_char<active_point.first_char)
? true : false;]}

void split_edge(edge); //split the edge

bool test_and_split(); //test and split

void canonize(); //canonize

void update(); //update the tree

void create_suffix tree(); //create the suffix tree

private: //data

edge active_point;
//active point may not be the whole edge, so the
//end_node_index can be ignored, active_point is a
//part of one edge.

int state_r; //the state r

int old_r; //the old state

int curr_scan; //the last index of the string that being scanned

}:

#endif
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// Contents: Ukkonen.cc

//

// Tongyu Li

//

// Date: May, 1999

//
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// This is the source file of Ukk.
//

#include "Ukkonen.h"

Ukk: :Ukk() //constructor, initialize the private data
{
active_point.begin_node_index=0;
active_point.end_node_index=-1;
active_point.first_char=0;
active_point.last_char=-1;

state_r=0;

old_r=-1;

curr_scan=0;
}

void Ukk::split_edge(edge e) //split the edge
{
//remove the original edge first
remove_from_hash table(e.begin _node_ index, e.first_char);

int m=e.first_char + active_point.last_char -
active_point.first_char;

//insert the first part of edge
insert_to_hash_table(e.begin_node_index, e.first_char, m);

edge el=find_edge(e.begin_node_index, get_element(e.first_char));

//add the suffix link
add_suffix_ link(el.end_node_index,
active_point.begin_node_index) ;

//insert the second part of edge
insert_to_hash_table(el.end_node_index, e.end_node_index, m+1l,
e.last_char);

state_r=el.end_node_index; //update state_r
}

bool Ukk::test_and_split() //test and split
{
edge e;

if(Is_explicit()) //if the active edge is explicit



e=find_edge (state_r, get_element (curr_scan)) ;

if (e.begin_node index!=-1) //if find the edge
return true;

else //if not find the edge
return false;

)

//1if the edge is implicit
e=find_edge(state_r, get_element (active_point.first_char));

int i=e.first_char+active_point.last_char-
active_point.first_char+l;

if(get_element (i)==get_element (curr_scan)) //if find the matching
return true;

//1if not find the matching, split the edge
split_edge(e);

return false;
b

void Ukk::canonize() //canonize
{
if(!Is_explicit()) //if the edge is implicit
{
edge e=find_edge(active_point.begin_node_index,
get_element (active_point.first_char));

int i=e.last_char - e.first_char;

//update active_point.first char and i
while(i <= (active_point.last_char - active_point.first_char))
{
active_point.first_char += i + 1;
active_point.begin_node_index = e.end_node_index;

if(active_point.first_char <= active_point.last_char)
{
e=find_edge(active_point.begin_node_index,
get_element (active_point.first_char));
i=e.last_char - e.first_char;
}
} //end while

state_r=active_point.begin_node_index; //update state_r
} //end if
}

void Ukk::update() //update the suffix tree

{
old_r=0; //old state initialized to 0
state_r=active_point.begin_node_index;

while(!test_and_split())



//create open transition
insert_to_hash_table(state_r, curr_scan, get_length()-1);

if(old_r > 0) //if old_r is not root, add suffix link
add_suffix link(old r, state_r);

old_r=state_r; //update the old_r

if (active_point.begin_node_index==0)
active_point.first_char++;
else
active_point.begin_node_index=get_suffix link
(active_point.begin_node_index) ;

state_r=active_point.begin_node_index; //update state_r
canonize() ;
} //end while

if(old_r > 0) //if old_r is not root, add suffix link
add_suffix_link(old_r, state_r);

active_point.last_char++; //update active point

canonize();
}

void Ukk::create_suffix tree() //create suffix tree
{
for(int i=0; i<get_length(); 1++)
//update tree one char by one char
{
curr_scan = 1;
update() ;
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// Contents: main.cc (for McCreight’s algorithm)

//

// Tongyu Li

/

// Date: May, 1999
i/
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// This is the test program of McCreight’s algorithm for the whole
// project.

/I

#include "suffix tree.h"
#include "Ukkonen.h"
#include "McCreight.h"
#include <iomanip.h>
#include <sys/times.h>

#define MAX_LEN 80

main()
{
char* p=new char[MAX LEN];
char* answer=new char[B80+1];
int app_t; //appear times
edge e;
double sys_time;
struct tms tms_start, tms_£finish;
clock_t start, finish;

MCC m; //initialize the object
cout<<setiosflags(ios::fixed)<<setprecision(6);

start=times (&tms_start); //start to count time
m.create_suffix_tree();
finish=times (&tms_finish); //finish counting time

sys_time=(tms_finish.tms_stime-tms_start.tms_stime)}

/ {(double) CLK_TCK;
sys_time += m.get_add_time(); //add the necessary extra time
sys_time -= m.get_min_time(); //minus the useless time

cout<<"System time for constructing suffix tree is:
<<sys_time<<endl;

m.check_nodes(); //check the nodes

m.print_edges(); //print all the edges in the tree

if(m.check tree()) //check if the suffix tree is correct
cout<<"After checking, the suffix tree is correct."<<endl;

else //if the tree i1s not correct
{



cerr<<"The tree is not correct."<<endl;
exit(1l);

do{
cout<<"Please input the pattern string you want to search
for."<<endl;
cin.getline(p, MAX_LEN-1); //get the pattern
e=m.search_string(p); //search the pattern
if(e.begin _node_index!=-1) //if found
{
cout<<"The pattern was found."<<endl;
m.appear_times(e.end_node_index}; //get appear times
app_t=m.get_app_times();
if(app_t==0) //if pattern appears one time
cout<<"The number of times the pattern appear
is 1"<<endl;
else
cout<<"The number of times the pattern appear
is "<<app_t<<endl;
}
else //if pattern not found
cout<<"No match for this pattern.'"<<endl;
cout<<"Do you want to continue to search for some
patterns?"<<endl;
cin.getline (answer, B80);
}while(answer[0]==‘y’ || answer[0]=='Y'); //continue to search

COUC<€"*************** End Of Program ******iiitt***t"q(_endl;
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// Contents: main.cc (for Ukkonen’s algorithm)

l/

// Tongyu Li

//

// Date: May, 1999

Vi
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// This is the test program of Ukkonen’s algorithm for the whole
// project.

!/

#include "suffix_tree.h"
#include "Ukkonen.h"
#include "McCreight.h"
#include <iomanip.h>
#include <sys/times.h>

#define MAX_LEN 80

main()
{
char* p=new char[MAX LEN];
char* answer=new char[80+1];
int app_t; //appear times
edge e;
double sys_time;
struct tms tms_start, tms_finish;
clock _t start, finish;

Ukk m; //initialize the object
cout<<setiosflags(ios::fixed)<<setprecision(6);

start=times (&tms_start); //start to count time
m.create_suffix_tree();
finish=times (&tms_finish); //finish counting time

sys_time=(tms_finish.tms_stime-tms_start.tms_stime)

/ (double) CLK_TCK;
sys_time += m.get_add_time(); //add the necessary extra time
sys_time -= m.get_min_time(); //minus the useless time

cout<<"System time for constructing suffix tree is: "
<<sys_time<<endl;

m.print_edges(); //print all the edges in the tree

if (m.check_tree()) //check if the suffix tree is correct
cout<<"After checking, the suffix tree is correct."<<endl;
else //if the tree 1is not correct
{
cerr<<"The tree is not correct.'"<<endl;
exit(1l);



do{

cout<<"Please input the pattern string you want to search
for."<<endl;

cin.getline(p, MAX_LEN-1); //get the pattern

e=m.search_string(p); //search the pattern

if(e.begin_node_index!=-1) //if found

{
cout<<"The pattern was found. "<<endl;
m.appear_times(e.end_node_index); //get appear times
app_t=m.get_app_times|() ;
if (app_t==0) //if pattern appears one time

cout<<"The number of times the pattern appear
is 1"<<endl;
else
cout<<"The number of times the pattern appear
is "<<app_t<<endl;

}

else //if pattern not found
cout<<"No match for this pattern."<<endl;

cout<<"Do you want to continue to search for some
patterns?"<<endl;

cin.getline(answer, BO0);

}while(answer([0]=='y’' || answer[0]=='Y’'); //continue to search

Cout{{ll*t***********t* End Df Program **t****t*t****t".((endl:
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#
# Makefile
#
out: suffix tree.o Ukkonen.o McCreight.o main.cc
g++ -g -o out suffix tree.o Ukkonen.o McCreight.o main.cc
suffix tree.o: suffix_tree.h suffix_tree.cc

g++ -c¢ -g suffix tree.cc

Ukkonen.o: Ukkonen.h Ukkonen.cc

g++ -c -g Ukkonen.cc

McCreight.o: McCreight.h McCreight.cc

clean:

g++ -¢ -g McCreight.cc

rm -f *.o0
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APPENDIX B: SOURCE CODES FOR GENERATING RANDOM DNA DATA

L00000ELP PP L P8Il 77007 tdiriiiiiddiiriliiriititiriirtiriiily
//

// Contents: random_char.cc

/!

// Tongyu Li

//

// Date: May, 1989

//

T BN T8 18505408 7 A AT G s A S U7 OF &5 B9 50 ' 87 A7 o0 A8 A0 4 0 A 40 07 B0 ) 80 0 7 00 0 7 7 88 0 A7 00 0 0 4 B¢ A O A0V 0 ¥ A 4

7'
// This is the program that generates random DNA data.
s

#include <iostream.h>
#include <fstream.h>
#include <math.h>
#include <stdlib.h>

#define A 16807
#define M 2147483647
#define Q 127773
#define R 2836

#define size 20000

float get_random(); //get random float number between 0 and 1
int get_JRand(int, int); //get a random integer

char shuffle(char*); //shuffle function

long int seed=6;

main()

({

char* s=new char(4+1];

s[0]="A";

S[L1="C";

s[2]='G";

sE3]=r2";

s[4]1="\0";

char* name=new char([3];
char c;

iRt 4, 3%

for{i=1l; 1<=20; i++) //name the output file and write to the file
{
if{i<10)
{
name[0]=1i+48;
name[1l]}="\0";
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else

name[0]=1/10+48;
name[1]=1%10+48;
name[2]='\0";

}

ofstream out (name); //open the file
for (j=0; j<size; j++)
{
if(j!=0 && j%60==0) //there are 60 char in one line
out.put{’'\n’};

out.put (shuffle(s)); //write to the file
}

out.close(); //close the file

}

float get_random() //get a pseudorandom float number between 0 and 1

{
float URand;

do(
seed = seed % Q * A - seed / Q * R;
if(seed < 0}
seed = seed + M;
URand = (float)seed/M;
}while(URand <=0 || URand >= 1);

return URand;
}

int get_JRand(int JL, int JH)
//get a pseudorandom integer between JL and JH

{
int JRand;
float URand;

do{

URand = get_random() ;

JRand = JL + (int) ((JH + 1 - JL) * URand):
Jwhile (JRand > JH);

return JRand;

}

char shuffle(char* string) //shuffle function

{
int i, j, temp;

for(i=strlen(string)-1; i>=1; i--)
{



j=get_JRand (0, 1);
temp=string[i];
stringlil=string(j];
string([j]=temp;

}

return string(0];
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