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PREFACE

A suffix tree is a trie-like data structure representing all suffixe of a string. Such

trees have a central role in many algorithms on strings, such as finding the longest

repeated substring, finding all squares in a string, approximate string matching, data

compression, and DNA sequence assembly. It is quite commonly felt, however, that the

linear-time suffix tree algorithms presented in the literature are rather difficult to grasp. I

implemented the suffix trees using two linear-time algorithms and tested the application

to string matching in the thesis.

In
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CHAPTER I

INTRODUCTION

String matching is an integral part of many problems that occur naturally uch as

text editing, data retrieval, symbol manipulation, lexical analysis, and computational

biology. Formally, string matching is defined as follows: given a short string of length m,

called the pattern, and a long string of length n, called the text string, locate an

occurrence of the pattern in the text string (either the first occurrence or all occurrences),

reporting "not present" if the pattern does not occur in the text. Usually, the text strings to

be searched are very large documents, such as books, dictionaries, encyclopedias, and

databases of DNA sequences.

There are several linear-time string matching algorithms, such as the Knuth­

Morris-Pratt algorithm [14]. the Boyer-Moore algorithm [4], and the Karp-Rabin

algorithm [11]. that are designed to solve the specific string matching problem.

A suffix tree is a trie-Iike data structure representing all suffixes of a tring. Such

trees have a central role in many algorithms on strings [3] [7], such as finding the longe t

repeated substring [20], finding all squares in a string [2], approximate string matching

[8] [5], data compression [16], and DNA sequence assembly [5]. It is commonly felt,

however, that the linear-time suffix tree algorithms presented in the literature are rather

difficult to grasp.
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The suffix tree which can be constructed in linear time in the length of the text

string, and yet which enables substring searches to be completed in time linear in the

length of the substring, was first discovered by Weiner [20].

In constrast with the method by Weiner that proceeds right to left and adds the

suffixes to the tree in increasing order of their length, starting from the hortest suffix,

and with the method by McCreight [15] that adds the suffixes to the tree in decreasing

order of their length from left to right, an on-line construction algorithm was discovered

by Ukkonen [19], which proceeds the string symbol by symbol from left to right, and

always has the suffix tree for the scanned part of the string ready (this is the definition of

"on-line" in this context).

In this thesis, 1 implemented the suffix tree using two linear time algorithms ­

McCreight's algorithm and Ukkonen's algorithm, which proces the string from left to

right, tested its application for string matching, and compared the time and space being

used by the two algorithms.



CHAPTERll

LITERATURE REVIEW

2.1 Basic Definitions

2.1.1 Suffix Trie and Suffix Tree

A trie is a type of digital search tree [13], and thus represents a set of pattern strings,

or keys, over a finite alphabet [17]. For a set of strings over a finite alphabet C, each edge

of the trie for the set represents a symbol from C, and sibling edges must represent

distinct symbols. The maximum degree of any node in the trie is thus equal to leI. The

suffix trie, which is also sometimes referred to as a position tree or a non-compact suffix

tree, is a trie whose set of keywords comprises the suffixes of a single tring [17].

Furthermore, it requires that each suffix is represented by a distinct terminal node (I af)

of the trie. Figure 1 shows a suffix trie for the string ABCABC$.

3
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Figure I: Suffix trie for string ABCABC$ [17]

The suffix tree, which is sometimes referred to more specifically a the compact

suffix tree, reduces the number of edges by collapsing paths containing unary nodes, i.e.

those nodes having only one child node. Figure 2 shows the result of converting the

suffix trie of Figure 1 in this manner.
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Figure 2: Suffix tree for string ABCABC$ [17]

Theorem I A suffix tree over a string 8 oflength n uses 8(n) space [13].

I...

Proof: From the definition of the suffix tree, we know that each internal node of

the suffix tree has at least two children. And a suffix tree over a string of length n has

exactly n leaves. 80, the total number of nodes in the suffix tree is at most 2n - 1, at least

n, and so the suffix tree takes 8(n) space.

2.1 .2 Explicit States and Implicit States

A tree is a graph consisting of vertices, also called nodes, and states. All

branching states (nodes), from which there are at least two transitions, and all leaves of

suffix trie, are called explicit states (explicit nodes). By definition, root is included in the

branching states. In Ukkonen' s algorithm [19], state .l... is also an explicit state. The other

states (the states other than root and .l... from which there is exactly one transition) are

called implicit states (implicit nodes).
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2.1.3 Suffix Link

For a node corresponding to a non-empty factor aw (a i a symbol and w is a

string), we define the suffix link from aw to w, by suJIaw] = w (see Figure 3). It i

expensive to walk down the root to find the path in each step of the extension of a suffix

tree [6]. Both McCreight's algorithm and Ukkonen's algorithm take advantage of uffix

links to save some unnecessary steps in this walk. We will discuss them in detail later.

,,
Suffix Ii'!k';uf,,,,

Figure 3: A suffix link suf[6]
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2.2 The Two Algorithms That Construct a Suffix Tree in Linear Time

2.2.1 Differences in Suffix Tree Construction by the Two Algorithms

The algorithm of McCreight inserts the suffixes of string T into an initially empty

tree. Starting with the longest suffix - the whole text string, the method i not on-line,

and the intermediate trees are not suffix trees. The left column of Figure 4 show the

intermediate trees when constructing T(c) =cst(adadc) using McCreight's algorithm.

The algorithm of Ukkonen has the important property of being on-line. That

means processing the text string symbol by symbol from left to right, and always has the

suffix tree for the scanned part of the text string ready. The algorithm is based on the

simple observation that the suffixes of a string T = t} ... t; can be obtained from the

suffixes of string T-1=tl ... ti.} by concatenating symbol ti at the end of each uffix of T- '

and by adding the empty suffix. The suffixes of the whole string T = '['I = tl t2 ... tTl can be

obtained by first expanding the suffixes of f1 into the suffixes of T1 and 0 on, until the

suffixes of T are obtained from the suffixes of r- I [19]. The intermediate trees when

constructing cst(adadc) using Ukkonen's algorithm are shown in the right column of

Figure 4.
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cst(e) 0 cst(e) 0

0 ./T(adade) 7 est(a)

a 0

0
0

T(dade)

7~
est(ad) ~~

o 0
a 0

T(ade)

~o~c
est(ada)

0

~~
af~ 0

a 0

T(d8 0 est(adad)

o~
0

7~acy "\.. ~~
a 0

o 0 a 0

T(e)

~
o a ~A;o

~"\ Jr~o 0 a 0

est(adade)

Figure 4: Sequence of trees constructed by McCreight and Ukkonen [10]
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2.2.2 McCreight's Algorithm

General Scheme for Trie Construction

McCreight's algorithm is an incremental algorithm for constructing a suffix tree.

The suffixes of the text string are inserted into the initial empty tree one-by-one, starting

from the longest suffix. The intennediate trees contain the subsets of the uffixe. The

insertion continues until all suffixes are included in the tree. For example, suppose p is

the next suffix to be inserted in the current tree T. McCreight's algorithm defines the head

of p, head(p, 1), as the longest prefix of p occurring in T (as the label of a path from the

root). We can find head(p, 1) with its corresponding node in the tree. After finding the

node, only the remaining part of p, say 1t, needs to be appended to head(p, 1). Now a new

intermediate tree is constructed, and a new branch labeled by p is included (see Figure 5).

Below is the general scheme of McCreight's al.gorithm [6].

Algorithm general-scheme;
begin

compute initial tree T for the first suffix;
leaf:= leaf of T;
for i := 2 to n do begin

{insert next suffix}
localize next head as head(current suffix, 1);
let 1t be the string corresponding to path from head to leaf;
create new path starting at head corresponding to 1t;

leaf:= lastly created leaf;
end;

end.
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Root

Graft the new path

New leaf

Figure 5: Insertion of the next suffix [6]

Up_Link_Down is the main technique used by McCreight's algorithm. It is the

most significant improvement on a straightforward construction by using the suffix links.

The idea is to find the node (the head) of the next suffix to be inserted from the most

recently created leaf of the tree. The data structure that takes advantage of suffix links

gives shortcuts in searching for the heads. The procedure Up_Link_Down works as

follows: it starts from the last leaf, going up, until a shortcut through a suffix link is met;

it then goes through the suffix link and goes down the tree to find the new head (see

Figure 6). The following is the procedure Up_Link_Down [6].
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function Up_Link_Down(link, q) node;

{finds new head, from leaf q}
begin
{UP, going up from leaf q}

v := first node v on path from q to root S.t. link[v] :I nil;
if no such node then retnrn nil;
let 1t = aj aj+l ... lin be the string, label of path from v to q;

{LINK, going through suffix link}
head:= link[v];

{DOWN, going down to new head, making new link }
while son(head, aj) exists do begin

v := son(v, aj); head:= son(head, aj);
link[v] := head; j := j+ I;

end;
return (v, head);

end.

Leaf

Link
~

LINK
~'

~

New
Lmks ~

~

Before After

Figure 6: Strategy for finding the next head [6]

The procedure Graft [6] constructs a path of new nodes from the current head to a

newly created leaf. It also updates the suffix links from the nodes on the path containing

the previous leaf pointing to the corresponding nodes on the newly created path.
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procedure Graft(link, v, head, aj aj+I. .. an);
begin w:= head;

for k := j to n do begin
v := son(v, ak); W := createson(w, aJ; link[v] := w;

end;
{w is the last leaf}
end.

The algorithm Lefeto_Right [6] builds the suffix tree of text tring. Table sujwill

keep track of all the suffix links created during the construction of Trie(pJ, pz ... , Pn). In

Trie(pJ, pz ... , Pn) it is possible for suj[v] to be undefined, for some node v. Thi ituation

does not occur for (compressed) suffix trees.

Algorithm Lefeto_Right(a\az... an, 0>0);
begin

T := Trie(p J) with suffix link (from son of root to root);
for i := 2 to n do begin
{insert next suffix Pi =ala2... an into T}

{FIND new head}
(v, head) := Up_Link_Down(suj, lea!;.I); {head = head;}
if head = nil then begin
{root situation}

let v be the son of root on the branch to leaf;_I;
suj[v] := root; head:= root;

end;
{going down from headi to leaf; creating a new path}
let aj... an be the label of the path from v to leaf;-I;
Graft(suf, v, head, aj aj+1. .. an);

end;
end.
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The algorithm Lefeto_Right constructs th T=Trie(text) in tim 0(111) [6].

Proof: The time is proportional to the number of suffix link (suj) , which i

obviously proportional to the number of internal nodes, and then to the total size of the

tree.

McCreight's Algorithm

After the path 1[ corresponding to a new suffix p is inserted into the tree, a new

leaf is created. The father of the leaf, the nearest non-root explicit node, is denoted to be

the current head. The head may not exist when the path contains only two explicit nodes

- root and a leaf. In this case, we have to split the edge at the first implicit node from the

root.

Following the function Up_Link_Down, the searching for heads may top at some

implicit nodes. We need break: the edge at that point. Let (w, a) be an implicit node of the

tree T (w is an explicit node of T, a is a string corresponding to the implicit node). The

operation break(w, a.) on the tree T is called only if our searching for the new head

stopped at the implicit node (w, a.). The effect of the operation break(w, a) is to break the

corresponding edge, a new explicit node is inserted at the breaking point, and the edge is

split into two edges: one is the existing edge, another will be grafted to a new path. The

value of break(w, a.) is the node created at the breaking point.

Let v be an explicit node of the tree T, and let p be a substring of the input string

text represented by a pair of indexes i, r, then p =text[l ... r). The basic function used in
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McCreight's algorithm is the function find. The value returned by find(v, p) is the last

implicit node along the path starting in node v and labeled by p. Th important pect of

McCreight's algorithm is the use of two different implementations of the function find.

Function fastfind deals with the situation when we know in advance that the earching

path labeled by p is fully contained in some path starting at v. The paths between the two

suffix links should have an exactly same sequence. Node v is connected by a suffix link,

and p actually is a path from the node that connects to v. We can save some steps by

using fastfind to jump from one explicit node to another. Checking the first symbol of

each edge to determine where to go is the only thing we need to do. Another

implementation of find is the function slowfind [6] that follows the path symbol by

symbol. The application of fastfind [6] is a main feature of McCreight's algorithm, and

plays a central role in the performance.

functionfastfind(v: node; p: string) node;
(p is fully contained in some path starting at v)
begin

from node v, follow path labeled by p in the tree using labels of edges as
shortcuts; only first symbols on each edge are checked;
let (w, a.) be the last implicit node;
if a is empty then return w
else return break (w, a.);

end.

function slowfind(v: node; p: string) node;
begin

from node v, follow the path I.abeled by the longest possible prefix of p
letter by letter;
let (w, a.) be the last implicit node;
if a. is empty then return w
else return break (w, a.);

end.



15

McCreight's algorithm builds a sequence of trees T; in the order i = 1, 2, ... , n.

The tree T; contains all the suffixes with length equal to or greater than n-i+ 1. Then Tn is

the suffix tree for the whole text, but the intermediate tree are not strictly suffix trees.

When we build tree Tk from Tk-I , suffix links playa crucial role in reducing the

complexity.

McCreight's algorithm [6] is a transformation of the algorithm LefCto_Right;

most of the nodes become implicit nodes here.

Algorithm scheme of McCreight's algorithm;
{Ieft-to-right suffix tree construction}
begin

compute the two-node tree T with one edge labeled p! =text;
for i := 2 to n do begin

{insert next suffix p; =text[i ..n1}
localize head; as head(pi, TJ,
starting the search from suj[father(head;_/)] ,
usingfastfind whenever possible;
T := insert(pi, T);

end;
end.

Property 1 head; is a descendant of the node suj[head;_/], suj[v] is a descendant of

suj[father(v)] for any v [6].

Localizing heads is the first step in construction of the intermediate trees for

McCreight's algorithm. The relation between head; and head;_! (Property 1) permits the

search for the next head to start from some internal node, instead of from the root. This

saves some work and the amortized complexity is linear. The behavior of McCreight's

algorithm [6] is illustrated in Figure 7 and Figure 8.



Algorithm McCreight;
begin

T:= two-node tree with one edge labeled by PI =text;
for i := 2 to n do begin

{insert next suffix pj = textli ..n] }
let Pbe the label of the edge (father[headj_d, headj );

let 1 be the label of the edge (headj_l , leak/);
u := suj[father[headj _J]];

l' := fastfind(u, P);
if v has only one son then

{v is a newly inserted node} headj := v
else headj := slowfind(v, 1);
suj[headj _/ ] := v;
create a new leaf leaf;; make leaf; a son of headj;
label the edge (head j , leafi) accordingly;

end;
end.

aa ~
au

Ov

111 ea~

o lea!;.,

Figure 7: McCreight's algorithm: the case when v is an existing node [6]

16



17

an ~
au

~ ~ fastfind(u, ~)

v=head;

lEdr.a ~l

leafi-J

Figure 8: McCreight's algorithm: the case when v = head; is a newly created node [6]

Theorem 3 McCreight's algorithm has O(nhlogL4.l) time complexity, where A is the

underlying alphabet of the text of length n [6].

Proof: Let's assume that the alphabet is of a constant size. The time complexity of

fastfind and slowfind can be considered separately. First, from the function fastfind

above, it is not difficult to find that the time spent by fastfind at tage i should be

proportional to the difference Ihead;1 - Ihead;.,I, plus some constant. The total time should

be bounded by L(lhead;1 - Ihead;.JI) + D(n). It is linear time. Similarly, the time spent by

slowjind at stage i is proportional to the difference !father;1 - !father;., I, plu some

constant. Therefore, the total time of slowfind is bounded by :E(lfather;1 - !father;_,I) +

O(n). It is also in linear time. For the situation that the alphabet size is not constant, we

can find the stage from a single symbol down the tree through binary search in time

O(logIAI). So, the total time complexity for McCreight's algorithm is O(nhlogIAI).
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2.2.3 Uk:k:onen's Algorithm

We mentioned early that Ukkonen's algorithm for constructing uffix tree was on-

line. It processes the text string symbol by symbol from left to right, and always has the

suffix tree for the scanned part of the string ready. Now, we discuss the algorithm in

detail.

Construction of Suffix Trie (STrie(T»

- -
The transition function is defined as g(x, a) =y for all X, Y in Q uch that y =xa,

-
where a € I. Q is the set of the states in the suffix trie (STrie(T». X denotes the state that

corresponds to a substring x [19].

- -
The suffix functionfis defined for each state X € Q as follows. Let x t root. Then

x =ay for some a € I, and we setj{:;) =y[19]. And,j{root) =1.. We callj{r) the uffix

link of state r in Ukkonen's algorithm.

By Ukkonen's algorithm, the intennediate suffix trier can be obtained from 'I-I

by concatenating symbol ti at the end of each suffix of 'I-I and by adding the empty

suffix. Algorithm I shows the procedure for building STrie(r) from STrieCr-J
).

Here top denotes the state tl ... L,-J.
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Algorithm 1

begin
r:= top;
while g(r, ti) is undefined do

create new state r' and new transition g(r, tj) =r';
if r =f. top then create new suffix linkf(oldr') = r';
oldr' := r';
r :=f{r);

create new suffix linkf(oldr') = g(r, ti);
top := g(top, til;

end.

On-Line Construction of Suffix Tree

The suffix tree of T is denoted as STree(1) = (Q' U {1.}, root, g', f') [19].

Ukkonen's algorithm refers to an explicit or implicit state r of a suffix tree by a reference

pair (s, w), where s is some explicit state that is an ancestor of r, and w is the string spelled

out by the transitions from s to r in the corresponding suffix trie. A reference pair is

canonical if s is the closest ancestor of r (and, hence, w is the shortest po sible string)

[19]. For an explicit r the canonical reference pair obviou Iy i (r, €) [19].

Let's see how Algorithm] works. Let SJ =tJ ••• t;-J, S2, S3, ... , Sj =root, S;+, = 1. be

the states of STrie(r-'). j is the smallest index such that Sj is not a leaf, j' is the smallest

index such that sj' has a t;-transition. We know that Sf is a leaf and root 1. is a nonleaf that

has a ti -transition. j "Sj' is always true.
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Theorem 4
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Algorithm I adds to STrieCr-J
) a ti -transition for each of the tates Sfh 1 ~

h < j', the new transition expands an old branch of the trie that ends at leaf Sh, and, for j ~

h < j', the new transition initiates a new branch from 511. Algorithm I does not create any

other transitions [19].

Ukkonen's algorithm calls state Sj the active point and sr the endpoint of STrieCt-

\ The states may be explicit or implicit. The active points of the last three tree in Figure

9 below are (root, c), (root, ca), (root, c).

Figure 9: Construction of STree(cacao) [19]

From Theorem 4 we know that Algorithm 1 inserts two different group of t; -

transitions into STrieCt-J
): Group one are the states before the active point Sj get a

transition. Theses states are leaves, so each such transition has to expand an exi ting

branch of the trie. Another group are the states between the active point sJ and the

endpoint sr, the endpoint is excluded, get a new transition. These states are not leaves, so

each new transition has to initiate a new branch.

Any transition of STrieCr- l
) leading to a leaf is called an open transition [19]. The

form of the transition is g'(s, (k, i-i» = r, where the right pointer points to the last

position i-l of tree r l
. So the actual value of the right point does not have to be present
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in the fonnula. We can rewrite an open transition as g'(s, (k, 00)) =r where 00 means the

transition is "open to grow." The explicit updating of the right pointer when tj is in erted

into this branch is not needed. So the first group of transition is implemented without

any explicit changes to STree(r-\

Now let's focus on how to add the second group of transitions to STree(r-\ Let

h =j (Sj is an active point) and let (s, w) be the canonical reference pair for SII. Since s/, is

in STrie(r- I
), w is a suffix of T-]. SO (s, w) = (s, (k, i-I)) for some k 5 i. Some new

branches from states Sh, j ~ h < j' should be created. We need to take advantage of

reference pairs and suffix links to save the steps searching states s" since Sh may not be

explicit states.

Next we need to create a new branch starting from the state represented by (s, (k,

i-i)). At first, we should test whether or not (s, (k, i-i)) already refers to the endpoint sr.

If it does, we do nothing. Otherwise a new branch will be created. The state s" referred to

(s, (k, i-I)) should be explicit. If it is not, we need to split the edge to generate a new

explicit state Sh. Now a tj -transition from Sh is created. It is an open transition g '(SIl, (i,

00)) =Sh' where Sh' is a new leaf. At the end, the suffix linkf'(sh) should be added if SII was

not an explicit state before.

The reference pair for s" was (s, (k, i-i)), the canonical reference pair for SMl is

canonize(f'(s), (k, i-i)) where canonize makes the reference pair canonical by updating

the state and the left pointer. The above operations are then repeated for Sh+l, and so on

until the endpoint sr is found.
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The procedure update [19], given below, together with procedure canonize [19)

and test-and-split [19] transfonns STreeCr-J
) into STree(T) by inserting the t, -tran ition

in the second group. The procedure test-and-split [19] tests whether or not a given

reference pair refers to the endpoint. If it does not, then the procedure creates and returns

an explicit state for the reference pair, provided that the pair does not already repre ent an

explicit state.

procedure update(s, (k, i»:
(s, (k, i - 1» is the canonical reference pair for the active point;
oldr := root; (end-point, r) := test-and-split(s, (k, i - 1), tj);
while not(end-point) do

create new transition g'(s, (i, 00» = r' where g'(s, (k, 00» =,. is a new state;
if oldr i- root then create new suffix linkf'(oldr) = r;
oldr:= r;
(s, k) := canonize(j'(s), (k, i - 1»;

(end-point, r) := test-and-split(s, (k, i -1 ), [I);
if oldr i- root then create new suffix linkf'(oldr) = s;
return (s, k).

procedure test-and-split(s, (k, p), t):
if k:Sp then

let g '(s, (k', p '» =s' be the lk"""""transition from s;
if t = (k' +p-k + I then return(true, s)
else

replace the tk"""""transition above by transitions g'(s, (k', k' + p - k» =rand
g'(r, (k' + p-k + 1, p'» = s' where r is a new state;
retum(false, r)

else
if there is no t-transition from s then return(false, s)
else return(true, s).
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procedure canonize(s, (k, p)):

if p < k then return (s, k)
else

find the trtransition g'(s, (k',p')) =s' from s;
while p' - k' ~ p - k do

k:= k + p' - k' + 1;
s :=s';
if k ~ p then find the tk-transition g '(s, (k', p ')) =s' from s;

return (s, k).

The overall algorithm [19] for constructing STree(1) is finally as follows.

Algorithm 2. Construction of STree(1) for string T= t,t2 ... # in alphabet:E = {t.j,
... , t.m }; # is the end marker not appearing else where in T.
create states root and.1.;
for j:= I, ... , m do create transition g'(.L, (-j, -j)) =root;
create suffix linkf'(mot) =..1.:
s := root; k := 1; i := 0;
while tj + 1f. # do

i:= i + I;
(s, k) := update(s, (k, i));
(s, k) := canonize(s, (k, 0).
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CHAPTER ill

COMPARISION OF THE TWO ALGORITHMS

Suffix trees provide efficient solutions to a "myriad" of string proces mg

problems. The suffix tree for a string t really turns t inside out, immediately exposing

properties like longest or most frequent subwords. The fundamental question whether w

occurs in t can be answered in O(lwl) steps - independent of the length of t - once the

suffix tree for t is constructed. Thus it is of great importance that the suffix tree for t can

be constructed and represented in linear time and space.

In spite of the basic role of suffix trees for string processing, elementary books on

algorithms and data structures barely mention suffix trees and never give efficient

algorithms for their construction.

There are two classical suffix tree construction algorithms: Weiner's algorithm

and McCreight's algorithm. Weiner's algorithm [20] was the first linear-time algorithm.

A few years later, a more space-efficient algorithm was developed by McCreight [15].

The two algorithms follow the same scheme for construction: the tree is computed for a

subset of the suffixes and this procedure continues until all suffixes are included in the

tree. Weiner's algorithm scans the text from right to left, while McCreight's algorithm

scans the text from left to right. Though both algorithms use linear time, McCreight's

algorithm was the first algorithm truly using linear space.

24
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Ukkonen's algorithm [19] is a conceptually similar linear-time algorithm for

constructing a suffix tree. Like McCreight's algorithm, Ukkonen's algorithm can the

text from left to right and has the same space improvement as Weiner's algorithm.

However, "on-line construction" is the distinct difference from McCreight's algorithm.

I implemented the two efficient algorithms: McCreight's algorithm and

Ukkonen's algorithm in C++, and, using real data, a book, as the input English text data

and also using randomly generated DNA data.

3.1 Time Complexity

Using the English text data and DNA data, I ran the programs for text string sizes

n: 200, 500,1000,2000,4000,6000,8000,10000,12000,14000,16000, 18000,20000,

22000, 24000. I got the average system time of constructing of suffix trees for the two

algorithms with English text data and DNA data for each size n. Each average value was

calculated from 20 outputs with the same size of random input data.
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3.1.1 Time Complexity

Plot timetn versus n for English text data
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Figure 10: Plot time/n versus n for English text data

Plot timeJn versus n for DNA data
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Figure 11: Plot time/n versus n for DNA data

From Figure 10 and Figure 11 that plot time/n versus n for English text data and

DNA data, we can see that with the increment of n, the graphs approach horizontal
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straight lines (y=O.OOOO15, a very small number). This verifies empirically that the time

complexity of the two algorithms is O(n).

3.1.2 Comparison of the Two Algorithms in the Time Being Used for Constructing of

Suffix Tree

Plot time versus n for English text data
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Figure 12: Plot time versus n for English text data

We know that both of the two algorithms are linear time algorithms. But which

one is more efficient?

From Figure 12 and 13, we can see that the time spent by both algorithms

increases with the increment of the size of text string. And, for both English text data and

DNA data, the time spent by Ukkonen's algorithm in constructing a suffix tree is slightly

more than McCreight's algorithm, though the difference is not big.
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Plot time versus n for DNA data
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Figure 13: Plot time versus n for DNA data

We can conclude that McCreight's algorithm is slightly more efficient than

Ukkonen's algorithm in the time being used for constructing suffix trees.
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3.1.3 Deviation of the Two Algorithms

Deviation of two algorithms for English text data
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Figure 14: Deviation of two algorithms for English text data

Deviation of two algorithms for DNA data
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Figure 15: Deviation of two algorithms for DNA data

I also plot the deviation of timeln versus n for both algorithms using two different

sets of data. From Figure 14 and Figure 15, we can see that the difference of deviations

for the two algorithms is not significant.
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3.2 Space Complexity

Now, let's discuss the space complexity of the suffix trees constructed by the two

algorithms. Since the suffix tree is composed of edges (node ), from the number of edges

of a suffix tree, we know the space occupied by the tree.

We know that the definition of the suffix tree for both of the algorithms is unique.

The space occupied by the suffix trees that constructed by the two algorithms hould be

exactly the same. My programs also verify this point.

Using the English text data and DNA data, I ran the programs for text string sizes

n: 200, 500,1000,2000,4000,6000,8000,10000,12000,14000, 16000, 18000,20000,

22000, 24000. I got the average edge number of the suffix tree with random DNA data

for each size n. Each average value was calculated from 20 outputs with the arne ize of

random input data. Since the edge number is the same for both algorithms for one input

data, I just used one set of data for each of the graphs, not as in the above part for time

complexity.
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Plot edge number versus n for DNA data
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Figure 16: Plot edge number versus n for DNA data

We can see from Figure 16 that with the increment of n the edge number is

increased. The graph is almost a perfect straight line. From Figure ]7 that plot edge

number/n versus n, we can see the value of edge number/n is within [1.617, 1.624], a

small range.
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Plot edge numln versus n for DNA data
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CHAPTER IV

APPLICATIONS OF SUFFIX TREE

For convenience, I just use one algorithm to test the applications of suffix tree. It

is McCreight's algorithm.

4.1 String Matching

We know that a suffix tree is a very useful data structure in solving string

matching problems. When we have a text string and want to know if some pattern strings

are included in the text string and how many times they appear in the text string, we can

take advantage of the suffix tree. Using the text string as input, we can construct a suffix

tree in linear time (use either of the two algorithms).

Since a path from the root of a suffix tree to a leaf represents a uffix of the text

string, we can search the pattern from the root of the suffix tree to an .internal node in

linear time to find out if the pattern appears in the text string. And since the number of

leaves of the subtree (the root of the subtree is the internal node that the end of pattern

belongs to) is equal to the number of times it is repeated, it is not difficult to get the

repeated times of the pattern by calling a recursive function.
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Using the English text data, I ran my programs to con truct a uffix tr and try to

search for some patterns from the tree.

Script started on Man May 24 16:39:12 1999
[ltongyu@Linux-home thesis]$ out
System time for constructing suffix tree is: 0.270000
Please input the pattern string you want to search for.
the

The pattern was found.
The number of times the pattern appears is 185
Do you want to continue to search for some patterns?
y
Please input the pattern string you want to search for.
hello
No match for this pattern.
Do you want to continue to search for some patterns?
n
*************** End of Program ***************
[ltongyu@Linux-home thesis)$ exit
Script done on Man May 24 16:39:33 1999

Above is a typescript file I got when I ran my programs on Linux. The length of

the input file (the book) is 20228. When I typed the executable file name "out", a suffix

tree was constructed and the elapsed system time was displayed, 0.27 second . The user

then was asked to input the pattern string. When I typed a word "the", the pattern "the"

was searched for in the tree and "The pattern was found." was displayed. And, when the

pattern is found, the program will call some functions to get the number of ti mes the

pattern appears. We can see from the output that the number of occurrences of the pattern

"the" is 185. The program will continue to ask the user if he/she wants to continue to

search for patterns. Ifthe user's answer is "y" or "Y", the program will continue.

We can see that the pattern "Hello" was not found, and "No match for this

pattern." was displayed. If the user type "n" or "N" when being asked "Do you want to

continue to search some patterns?", the program will terminate.
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We can use a book, a dictionary, a lexicon or any other text file as the input text

strings, searching for any words or sentences quickly by running the programs.

4.2 Other Applications

Bioinfonnatics is a very popular research area recently. It combines biological

sciences and computational methods together to help the research in DNA sequence

search, DNA sequence assembly, RNA sequence search, protein analy es etc.

DNA (deoxyribonucleic acid) is the pnmary genetic material in aU living

organisms - a molecule composed of two complementary strands that are wound around

each other in a double helix formation. The strands are connected by base pairs that look

like rungs in a ladder. Each base will pair with only one other: adenine (A) pairs with

thymine (T), guanine (G) pairs with cytosine (C). The sequence of each single strand can

therefore be deduced by the identity of its partner.

Genes are sections of DNA that code for a defined biochemical function, usually

the production of a protein.

DNA is composed of four kinds of components: A, T, C and G. When I ran the

programs to analyze the system time and the space it took to construct a suffix tree for the

two algorithms, I wrote one program to generate different sizes of random text strings

over the alphabet: A, T, C and G.
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4.2.1 DNA Sequence Search

We can use the DNA sequence of a real gene as input text string data to construct

a suffix tree. We use another small piece of DNA sequence as the pattern string to find

out if the piece of DNA is a part of the gene and how many times it is repeated. This is

very useful in biological research to detennine the character or effects of a certain DNA

piece in the whole gene.

My thesis is not focused on Bioinfonnatics, but I tried to test my programs in this

area using some real data. The data is the DNA sequence of a gene I downloaded from a

project of University of Washington Genome Center. The name of the project is HLA

class one locus. The size of the gene is 16888 and it also can be found in Genbank.

Using the DNA sequence of the gene as input text data, 1 te ted my program using

some small DNA sequences to find out if the sequences appeared in the gene and how

many times they repeated.
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Script started on Mon May 24 16:27:44 1999
[ltongyu@Linux-home thesisl$ out
System time for constructing suffix tree is: 0.250000
Please input the pattern string you want to search for.
AGAAGAT
The pattern was found.
The number of times the pattern appears is 2
Do you want to continue to search for some patterns?
y
Please input the pattern string you want to search for.
GAAGATTTC
The pattern was found.
The number of times the pattern appears is 1
Do you want to continue to search for some patterns?
y

Please input the pattern string you want to search for.
AGAAGATTTC
No match for this pattern.
Do you want to continue to search for some patterns?
n
*************** End of Program ***************
[ltongyu@Linux-home thesis]$ exit
Script done on Mon May 24 16:28:26 1999

From the above output, we can see that the system time it took to construct the

suffix tree was 0.25 seconds. The DNA sequence AGAAGAT repeated 2 times in the

gene and GAAGATTTC appeared only one time. The sequence AGAAGATTTC wa not

found in the gene.

We can also use the whole Genbank or part of Genbank as the text string data. For

example, when somebody wants to know if one gene has already been registered in the

Genbank, he/she can use the DNA sequence of the gene as a pattern to search for.
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4.2.2 Other Applications in Bioinfonnatics

A suffix tree is also useful in RNA sequence earch, protein sequence analyses

and DNA error copies search, etc.
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CHAPTER V

SUMMARY, CONCLUSIONS AND FUTURE WORK

5.1 Summary

The suffix tree is a very important data structure in string search algorithm . It

provides linear time solutions to many string matching problems.

McCreight's algorithm inserts the suffixes of the text string into an initially empty

tree, starting with the longest suffix. The method is not on-line, and the intermediate trees

are not suffix trees.

Ukkonen's algorithm reads the text tring from left to right, character by

character, and incrementaHy constructs suffix trees for the prefixe of the text string seen

so far. It is on-line construction.

In my thesis, I implemented two linear time algorithms to construct a suffix tree ­

McCreight's algorithm and Ukkonen's algorithm in C++; compared the time and space

used by the two algorithms using some random data; tested the applications of uffix

trees in string matching and Bioinforrnatics.
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5.2 Conclusions

5.2.1 Time Complexity

From the outputs of the programs and graphs, I verified empirically that the time

complexity of both algorithms is O(n).

I compared the time spent by the two algorithms by running the programs using

certain sets of data. I found out that McCreight's algorithm is more efficient than

Ukkonen's algorithm in the time being used in constructing a suffix tree.

The difference in performance of the two algorithms is not significant.

5.2.2 Space Complexity

Since the definition of the suffix tree for the two algorithms is arne, the structure

of the suffix tree should be the same. I verified this point through the program . The

space spent by the suffix trees constructed by the two algorithms for a certain input text

string is exactly the same. The space complexity is O(n).
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5.2.3 Applications of Suffix Tree

A suffix tree is a very useful data structure that embodies a compact index to all

the distinct, non-empty substrings of a given text string. The suffix tree is not only u eful

in plain English text string searching but is also useful in many areas of Bioinforrnatics,

for example, DNA sequence search, DNA sequence assembly, RNA sequence earch and

protein sequence analyses, etc.

5.3 Future Work

The suffix tree is a trie-like data structure representing all suffixes of a string.

Such trees have a central role in many algorithms on strings. I have already tested string

matching and DNA sequence searching in my thesis.

In practical pattern-matching applications, exact matching is not always pertinent.

It is often more important to find objects that match a given pattern in a reasonably

approximate way. This is approximate pattern matching, and is very useful in

Bioinforrnatics to find out the effects of the sets of analogue DNA, RNA or protein in

living organisms.

Suffix tree can be used to solve the approximate string matching problem. Beside

the applications in Bioinforrnatics, research and implementation of the algorithms in

determining longest commun substrings; sequentially compressing data; ascertaining
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whether or not a given string is square-free are also very interesting areas in the future

study of suffix trees.
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APPENDIX A: SOURCE CODES FOR IMPLEMEI\T'fATION OF McCREIGHT'S
AND UKKONEN'S ALGORITHMS

111111111111/11111/1111/////1111111111111/11111//11111111111111111/1111
II
II Contents: suffix_tree.h
II
II 'I'ongyu Li
1/
II Date: May, 1999
II
111111/111111111111111111/111/111111111111111111111111111111/1111111111

II
II This is the header file of suffix_tree, which is also the parent of
II MCC and Ukk.
II

#ifndef SUFFIX_TREE_H
#define SUFFIX_TREE_H

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#define N 30000
#define MAX_RASH_TABLE 505605

typedef struct{
int begin_node_index; lithe index of begin node in the edge
int end_node_index; lithe index of end node in the edge
int first_char; lithe index of first character in the edge
int last_char; lithe index of last character in the edge

ledge;

class Suffix_tree{

public: Ilfunctions

Suffix_tree(); Ilconstructor
int hash_function (int, int); Ilhash function
edge find_edge (int, int); Ilfind the edge
bool insert_to_hash_table(int, int, int); Ilinsert edge
bool insert_to_hash_table(int, int, int, int);

Ilinsert edge (overload)
bool remove_from_hash_table(int, int); Ilremove the edge
char get_element(int i) {return text_string[i];}

Ilget string'S element
Ilget the last element of text string
char get_last_element()

{return text_string[text_string_length-1];}
int get_length() {return text_string_length;} Ilget string length

46



void add_suffix_link(int i, int su){nodes(i]=su;)
Iladd suffix link

int get_suffix_Iink{int i) {return nodes[i];) Ilget suffix link
int get_next_node{) {return nodes_num++;)

Ilget the next node number
int get_node_num() {return nodes_nurn;} Ilget node number
void print_edges{); Ilprint all the used edges
edge search_string (char*) ; Iisearch the matching string
bool check_tree{); Ilcheck if the suffix tree is correct
void appear_times (intl ;

Ilcalculate the number of appearence of a pattern
int get_app_times() {return app_times;} Ilget the appear times
double get_add_time() {return add_time;}
double get_min_time{) {return min_time;}
int get_edge_num();

private: Iidata

ifstream in-ptr; Ilinput file
char text_string[N); Iitext string
int text_string_Iength; Iitext string length
edge edge_array[MAX_HASH_TABLE)j Ilarray of edges
int nodes [N*2) ;

lithe index of the array is node number and
lithe element contains the information of suffix link
Ilfor this node.

int nodes_num; Iinode number
int app_times; Ilappear times of a pattern
double add_time; Iitime need add to total time
double min_time; I/time need minus from total time

} ;

#endif
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111111111111111111111111111111111111111111111111111111111111111111/1///
/I
II Contents: suffix_tree.cc
/I
1/ Tongyu Li
/I
II Date: May, 1999
/I
1111111111111111111111111111111111111111111111////11////111111111/1/11/

/I
II This is the source file of suffix_tree.
/I

#include "suffix_tree.h"
#include <sys/times.h>

Suffix_tree::Suffix_tree() Ilconstructor
{

in-ptr. open (" input"); I/open the input file

if(!in-ptr) /Icheck if opened properly
(

cerr«"Cannot open the file -- input. "«endl;
exit (1) ;

char* line=new char[257];
int i, j=O;

while(in-ptr.getline(line, 256)) Ilread the file line by line
for(i=O; i<strlen(line); i++)

text_string[j++l=line[i] ;
text_string[jl='#' ;

Iladd a special character to the end of string
text_string[j+l]='\O'; lithe end of string
text_string_length=strlen(text_string); Ilstring length is j+2
for(i=O; i<N*2; i++) Ilinitialize the array of nodes

nodes[il=-l;

for(i=O; i<MAX_HASH_TABLE; i++) Ilinitialize the array of edges
{

edge_array[i] .begin_node_index=-l;
edge_array[i] .end_node_index=-l;
edge_array[i] .first_char=-l;
edge_array[i] .last_char=-l;

}

nodes_num=O; Ilinitialize node_num to 0
delete [J line;
in-ptr.close() ;
app_times=O;
add_time=O;
min_time=O;



...

II
liThe edges of suffix tree are stored in the hash table. The hash
Ilfunction is decided by the node that the edge is connected to and
lithe first character of the edge. In order to enlarge the difference
Ilof nodes, multiply node times 109 before adding character.
II

int Suffix_tree: : hash_function {int node, int character)

return((node*109 + character) % MAX_RASH_TABLE);

Ilfind the edge from hash table
edge Suffix_tree::find_edge{int node, int character)
{

int a=hash_function(node, character); Ilcall hash function first

int count=Oi
int Chi

double temp;

struct tms tms_st, tms_fini
clock_t st, fini

st=times(&tms_st)i

while (count<=MAX_RASH_TABLE) Illoop times <= hash table size
(

if (edge_array [a] .begin_node_index==node) Ilif find
(

ch=text_string[edge_array[a] . first_char] i

if{ch==character)
return edge_array[a];

if {edge_array [a] .begin_node_index==-l) Ilif not find
return edge_array [a] ;

count++i
a=(++a)%MAX_HASH_TABLE;

}

fin=times(&tms_fin) ;

if (count>l)
{

min_time += temp;
add_time += tempi (double) count;

}

II
IIThere are two situations when inserting an edge to hash function.
IIFirst, we don't know the end node. Second, the end node already
Ilexists.
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Ilinsert edge to hash table
bool Suffix_tree: :insert_to_hash_table(int node, int begin_index, int
end_index)
(

Ilcall hash function
int h = hash_function(node, text_string[begin.....index]);

int count=O;

double temp;

struct tms tms_st, tms_fin;
clock_t st, fin;

st=times(&tms_st) ;

Ilif the slot is not empty
while (edge_array [h] .begin_node_index != -1 &&
edge_array[h] . begin_node_index != -2 && count <= MAX_RASH_TABLE)
(

h=(++h)%MAX_HASH_TABLE;
count++;

fin=times(&tms_fin);
temp=(tms_fin.tms_stime-tms_st.tms_stime) I (double)CLK_TCK;

if (count<=MAX_HASH_TABLE) Ilfind a proper slot
(

edge_array[h] .begin_node_index = node;
edge_array[hl . end_node_index = nodes_num++;
edge_array [h) . first_char = begin_index;
edge_array[h].last_char = end_index;

if(count>l)
{

min_time += temp;
add_time += tempi (double)count;

return true;
}

return false; Iinat find a proper slot

Iloverload function of insert
bool Suffix_tree: :insert_to_hash_table(int node, int end_node, int
begin_index, int end_index)
(

Ilcall hash function
int h = hash_function (node, text_string[begin_index);
int count=O;

double temp;
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struct tms tms_st, tms_fini
clock_t st, fin;

st=times(&tms_st);

Ilif the slot is not empty
while (edge_array(hl .begin_node_index != -1 &&
edge_array(hl _begin_node_index != -2 && count <= MAX_HASH_TABLE)
(

h=(++h)%MAX_HASH_TABLEi
count++;

fin=times(&tms_fin) ;
temp~(tms_fin.tms_stime-tms_st.tms_stime)/(double)CLK_TCK;

if (count<=MAX_HASH_TABLE) Ilfind a proper slot
(

edge_array[hl .begin_node_index = node;
edge_array[h] .end_node_index = end_node;
edge_array[hl . first_char = begin_index;
edge_array[hl . last_char = end_index;

if (count>l)
(

min_time += temp;
add_time += tempi (double) count;

return true;

return false; Iinot find a proper slot

II
IIRemove an edge from hash table. First, find the index of the edge.
IIWe will not remove it really, just change the begin node index to -2.
II

bool Suffix_tree: : remove_from_hash_table(int node, int begin_index)
(

int a ~ hash_function (node, text_string[begin_indexl);
int count = 0;

double temp;

struct tms tms_st, tms_fin;
clock_t st, fin;

st=times(&tms_st) ;

while (edge_array(al .begin_node_index != node I I
edge_array(al .first_char!= begin_index)
(

if (count>MAX_HASH_TABLE)
break;



a = (++a) %MAX_HASH_TABLEi
count++i

fin=times(&trns_fin) i

temp=(tms_fin.tms_stime-tms_st.tms_stime)/(double)CLK_TCK;

if (count<=MAX_HASH_TABLE)
(

if(count>l)
{

min_time += temp;
add_time += temp/(double)counti

return true;
}

return false;

/Iprint the edges of suffix tree
void Suffix_tree::print_edges()

int i, j;
for(i=O; i<MAX_HASH_TABLE; i++)
{

if (edge_array[il .begin_node_index != -1 &&
edge_array[il.begin_node_index!=-2)

(

cout«"Begin node "«edge_array[il.begin_nod ind x;
cout«" End node "«edge_array[il.end_node_index

«endl;
cout«"begin "«edge_array[il.first_char«endl;
cout«"end "«edge_array[il.last_char«endl;

//get the total used edge number
int Suffix_tree: :get_edge_num()

int e=O;
for(int i=Oi i<MAX_HASH_TABLE; i++)

if (edge_array[il .begin_node_index!=-l &&
edge_array[il.begin_node_index!=-2)

e++;
return e;

I/search for the matching string
edge Suffix_tree: : search_string (char* pattern)
{

int m, n;
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edge e=find_edge(O, pattern[O]}i Ilfind the edge from root

if (e.begin_node_index==-l)
return ei Ilno matching

m=e.first_char + 1;
n=l;

forti;) I/compare the character one by one
(

while(m<=e.last_char && n<strlen(pattern))
{

if (text_string [m++] [= pattern[n++l l
(

e.begin_node_index=-l;
return e; Ilno matching

if(n==strlen(pattern)) Ilfind
return e;

e=find_edge(e.end_node__ index, pattern[nl);

if (e.begin_node_index==-l) Ilno matching
return e;

m=e.first_char + 1i
n++;

Ilcheck if all the suffixes of text string are included in the
Ilsuffix tree
bool Suffix_tree: :check_tree()
(

int n=O, i, k;
char* Pi
edge e;
p=new char [text_string_length] ;
strcpy(p, text_string) i

while (n<text_string_length-l)
(

e=search_string(p) ;
if (e. begin_node_index==-l) Ilif one suffix is not included

return false;
n++;
i=O;
for(k=n; k<text_string_length; k++)

p[i++l=text_string[k] ;
p[il='\O';

return true; Ilif all the suffixes are included
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//find the number of times the pattern appears
void Suffix_tree::appear_times(int n)

for(char a=' '; a<='-'; a++)
{

edge e=find_edge(n, a);
if(e.begin_node_index != -1)
(

app_times++;
appear_times (e.end_node_index) ; //call recurrsively
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////1111111111111111111111111111111111111111111111111111111111111111111
1/
II Contents: McCreight.h
1/
1/ Tongyu Li
/I
1/ Date: May, 1999
/I
1///11111111111/111111111111111/111111111111111111111111111111111111111

/I
II This is the header file of MCC, which is to implement McCreight's
1/ algorithm of constructing of suffix tree.
/I

#ifndef MCC_H
#define MCC_H

#include "suffix_tree.h"

class MCC:public Suffix_tree{

public: Ilfunctions

MCC(); Ilconstructor
bool fast_find(int); Ilfast find string using suffix links
void slow_find(}; Ilfind string one character by one character
void create_suffix_tree(); Ilcreate the suffix tree
void check_nodes(); Ilcheck nodes
edge Is_implicit(int); Ilcheck if the edge is implicit

private: Iidata

edge father; Ilfather edge
edge head; Ilhead edge
int root; Ilroot of tree
int node_v; Iinode v
int head_n; Iinext head (node)
int curr_j; Ilcurrent scan character index

} ;

#endif
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///////////////////////////////////////////////////////////////////////
II
// Contents: McCreight.cc
II
// Tongyu Li
//
// Date: May, 1999
//
1///1////1/11///1///111///1///1/1//1///111111////////1////////1///1////

II
// This is the source file of MCC.
II

#include "McCreight.h"

MCC: :MCC() Ilconstructor, initialize the private data
{

head.begin_node_index=-l;
head.end_node_index=-l;
head.first_char=-l;
head.last_char=-li

father=headi
root=-li
curr_j=-l;

bool MCC::fast_findlint node_u) I/fast find father edge from node_u
{

edge e=find_edge(node_u, get_element (father. first_char) );

if (e.begin_node_index==-l) I/root situation
(

if(curr_j==get_length()-l) flit the last character
{

insert_to_hash_table(root, curr_j, curr_j);
curr_j++;
return true;

flit curr_j is not the last character
insert_to_hash_table(root, curr_j, curr_jii
father=find_edge(root, get_element(curr_j));
head_n=father.end_node_index;
curr_j++;
node_v=root;
return truei

I/it find the edge

if (node_u!=root) Ilif node_u is not root, update curr_j
curr_j=head.first_char-(father.last_char­

father.first_char+l) ;

int ll=e.last_char-e.first_chari



int 12=father.last_char-father.first_char;

if(11==12) Ilif father edge is equal to e edge
{

node_v=e.end_node_index;
curr_j += 11+1;
father=e;
return false;

edge eli

if{11>12) Ilif e edge is longer than father edge, split e edge
{

remove_from_hash_table{node_u, e.first_char);
insert_to_hash_tab1e{node_u, e.first_char,

(e.first_char+12)) ;
e1=find_edge(node_u, get_e1ement{e.tirst_char));
insert_to_hash_tab1e{el.end_node_index, e.end_node_index,

(e.first_char+12+1), e.1ast_char);
node_v=e1.end_node_index;
head_n=node_v;
father=e1;
curr_j += 12+1;
return true;

Ilif edge is shorter than father edge, continue to search

int i=father.first_char;

whi1e{11<12) Ilcontinue to search edge by edge
{

i += 11+1;
e=find_edge(e.end_node_index, get_element{i));
12 -= 11+1;
11=e.1ast_char-e.first_char;

Ilend while

if{11==12) //11=12
{

node_v=e.end_node_index;
curr_j += father. last_char - father. first_char + 1;
father=e;
return false;

Ilif 11>12, split the edge
remove_from_hash_tab1e{e.begin_node_index, e.first_char);
insert_to_hash_.tab1e (e. begin_nodE_index, e. first_char,

e.first_char+12l i

e1=find_edge(e.begin_node_index, get_element (e. first_char) );
insert_to_hash_tab1e{e1.end_node_index, e.end_node_index,

e.first_char+12+1, e.last_char);
node_v=e1.end_node_index;
head_n=node_vi
curr_j += father.1ast_char-father.first_char+1;

57



father=e1;
return true;

void MCC::slow_find() Iislow find, character by character

edge e=find_edge(node_v, get_element(head.first_char));

int check=l;
edge e1;

if(e.begin_node_index != -1) Ilif find the edge
{

int m, n;
curr_j++;
father=e;
m=e.first_char+l;
n=curr_j;

for (; ;)
{

while(m<=e.last_char && n<get_length()) Ilcheck one by one
{

if(get_element(m++)==get_element(n++))
curr_j++ ;

else
(

check=O;
break;

if(check==O) Ilfind the point not matching, split edge
(

remove_from_hash_table(e.begin_node_index,
e. first_char) ;

insert_to_hash_table(e.begin_node_index,
e.first_char, m-2);

e1=find_edge (e. begin_node_index,
get_element (e. first_char) );

insert_to_hash_table(e1.end_node_index,
e.end_node_index, m-1, e.last_char);

father=e1;
head_n=e1.end_node_index;
return;

lithe whole edge is matching, continue find next edge
e=find_edge(e.end_node_index, get_element(n));

if(e.begin_node_index != -1) Ilif find the edge
{

father=e;
curr_j++;
m=e.first_char+1;
n++;
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else I/not find matching edge
{

head_n=father.end_node_index;
return;

cbeck=l; //update check

}liend fore;;}

fiend if

if (node_v==root) flnot find matching edge and node_v is root
(

insert_to_hash_table(root, curr_j, curr_j);
el=find_edge(root, get_element(curr_j}};
head_n=el.end_node_index;
add_suffix_link(head_n, root);
father=el;
curr_j++;

}

else Iinot find the matching edge and node_v is not root
head_n=node_v;

}

void MCC: :create_suffix_tree(} Ifcreate the suffix tree
{

if(get_length()==l) Ilif the text string has only one character
{

insert_to_hash_table(O, 0, get_length() - 1);
return;

/Ielse insert the first edge
insert_to_hash_table(O, 0, 0);
father=find_edge(O, get_element(O»;
root=father.begin_node_index;
insert_to_hash_table(father.end_node_index, 1, get_length()-l);
head=find__edge(father.end_node_index, get_element(l»;
add_suffix_link (head. begin_node_index, root);

edge E, el;
char* ch=new char[get_length()];
int i, u, f;

for(i=l; i<get_length(); i++) lIinsert the edges one by one
(

curr_j=i; ffcurrent scan character index is i

u=get_suffix_link(father.begin_node_index) ;
I/get suffix link

if(u!=-l} Ilif find a suffix link
{

if(!fast_find(u»
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else Ilroot situation
(

node_v=rooti
slow_find () ;

if(curr_j < get_length())
Ilif curr_j < string length, insert

if(head.begin_node_index != node_v) Iladd suffix link
add_.su f f ix_l ink (head. begin_node_index, node_v);

//update head
head=fin~_edge(head_n, get_element(curr_j));

}

/Iend for

void MCC::check_nodes() //check the nodes next to root

edge e, eli
char ai

for(a=' '; a<='-' i a++)
(

e=find_edge(root, ali

if(e.begin_node_index != -1)
(

if(el.begin_node_index != -1) /Iif implicit, remove
(

remove_from_hash_table(e.begin_node_index,
e. first_char) i

remove_from_hash_table(e1.begin_node_index,
e1.first_char) i

insert_to_hash_table(root, e1.end_node_index,
e.first_char, el.last_char) i

}

edge MCC: :Is_implicit(int n) Ilcheck if the node is implicit
(

char ai
edge e, el;
int i=Oi
el.begin_node_index=-li

for(a=' '; a<='-' i a++)



e=find_edge(n, a);

if(e.begin_node_index != -1)
(

i++;
if(i>=2) Ilit edge number is >= 2, then explicit
{

el.begin_node_index=-l;
return el;

}

else
e1=e;

return el; Iionly one edge under the node, implicit
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///////////////////////////////////////////////////////////////////////
/I
// Contents: Ukkonen.h
/I
// Tongyu Li
/I
// Date: May, 1999
/I
/////////////////////111/11111111/111/////1/11//////////////1///1////11

1/
II This is the header file of Ukk, which is to implement Ukkonen's
II algorithm for constructing a suffix tree.
1/

#ifndef UKK_H
#define UKK_H

#include "suffix_tree.h"

class Ukk:public Suffix_tree{

public: Ilfunctions

Ukk(); Ilconstructor
bool Is_explicit() const Ilif edge is explicit
{return (active-point. last_char<active-point. first_char)

? true: false;}
void split_edge (edge) ; Ilsplit the edge
bool test_and_split(); Iltest and split
void canonize(); Ilcanonize
void update(); Ilupdate the tree
void create_suffix_tree(); Ilcreate the suffix tree

private: Ildata

edge active-point;
//active point may not be the whole edge, so the
Ilend_node_index can be ignored, active-point is a
Ilpart of one edge.

int state_r; lIthe state r
int old_r; lithe old state
int curr_scan; /Ithe last index of the string that being scanned

} ;

#endif
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///////////////////////////////////////////////////////////////////////
II
// Contents: Ukkonen.cc
//
// Tongyu Li
//
// Date: May, 1999
II
/11//1//1/111////111/1111/1/11111//1//11///////////////////1111//1////1

II
// This is the source file of Ukk.
II

#include "Ukkonen.h"

Ukk: :Ukk() //constructor, initialize the private data
{

active-point.begin_node_index:Di
active-point.end_node_index=-li
active-point.first_char=O;
active-point.last_char=-l;

state_r=Oi
old_r=-l;
curr_scan=O;

void Ukk: : split_edge (edge e) //split the edge

Ilremove the original edge first
remove_from_hash_table(e.begin_node_index, e.first_char);

int m=e.first_char + active-point.last_char
active-point.first_char;

I/insert the first part of edge
insert_to_hash_table(e.begin_node_index, e.first_char, m);

Iladd the suffix link
add_suffix_link(el.end_node_index,

active-point.begin_node_index) ;

Ilinsert the second part of edge
insert_to_hash_table(el.end_node_index, e.end_node_index, m+l,

e. last_char) ;

bool Ukk: : test_and_split () Iitest and split
{

edge ei

if(Is_explicit()) I/if the active edge is explicit
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if (e.begin_node_index!=-l) Ilif find the edge
return true;

else Ilif not find the edge
return false;

Ilif the edge is implicit
e=find_edge(state_r, get_element(active-point.first_char));

int i=e.first_char+active-point.last_char­
act ive-point.first_char+1;

if(get_element(i)==get_element(curr_scan)) Ilif find the matching
return true;

Ilif not find the matching, split the edge
split_edge (e) ;

return false;

void Ukk: :canonize() Ilcanonize

if(!Is_explicit()) Ilit the edge is implicit
{

edge e=find_edge(active-point.begin_node_index,
get_element(active-point.first_char)) ;

int i=e.last_char - e.first_char;

Ilupdate active-point.first_char and i
while(i <= (active-point.last_char - active-point.first_char))
{

active-point.first_char += i + 1;
active-point.begin_node_index = e.end_node_index;

if(active-point.first_char <= active-point.last_char)
{

e=find_edge(active-point.begin_node_index,
get_element(active-point.first_char)) ;

i=e.last_char - e.first_char;
}

} Ilend while

state_r=active-point.begin_node_index; Ilupdate state_r
I lend if

void Ukk: :update() Ilupdate the suffix tree

old_r=O; Iiold state initialized to 0
state_r=active-point.begin_node_index;



{

Ilcreate open transition
insert_to_hash_table(state_r, curr_scan, get_length()-l);

if(old_r> 0) Ilif old_r is not root, add suffix link
add_suffix_link(old_r, state_r) i

if (active-point.begin_node_index==O)
active-point.first_char++;

else
active-point.begin_node_index=get_suffix_link

(active-point.begin_node_index) ;

canonize();

} I lend while

if(old_r> 0) Ilif old_r is not root, add suffix link
add_suffix_link(old_r, state_r);

active-point.last_char++i Ilupdate active point

canonize();

void Ukk: :create_suffix_tree() Ilcreate suffix tree

for(int i=Oi i<get_length() i i++)
Ilupdate tree one char by one char

curr_scan = ii
update() i
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11111111111111111111111111111111111111111///////////// /////////////////
II
II Contents: main.cc (for McCreight's algorithm)
/I
II Tongyu Li
II
II Date: May, 1999
/I
111111111/1111111111111111111111111111111111111111111111111111111111111

/I
II This is the test program of McCreight's algorithm for the whole
II project.
/I

#include "suffix_tree.h"
#include "Ukkonen.h"
#include "McCreight.h"
#include <iornanip.h>
#include <sys/times.h>

#define MAX_LEN 80

main( )
{

char* p=new char[MAX_LEN]j
char* answer=new char[80+1] i

int app_t; Ilappear times
edge ej

double sys_tirne;
struct tms tms_start, tms_finish;
clock_t start, finish;

MCC m; Ilinitialize the object

cout«setiosflags(ios: : fixed} «setprecision(6) ;

start=times(&tms_start) i Iistart to count time
m.create_suffix_tree() i

finish=times(&tms_finish); Ilfinish counting time

sys_time=(tms_finish.tms_stime-tms_start.tms_stirne)
I (double)CLK_TCK;

sys_time += m.get_add_time(); Iladd the necessary extra time
sys_time m.get_rnin_time() i Ilminus the useless time

cout«"System time for constructing suffix tree is: "
«sys_time«endl;

m.check_nodes(); Ilcheck the nodes

rn.print_edges(); Ilprint all the edges in the tree

if (m.check_tree{) ) Ilcheck if the suffix tree is correct
CQut«"After checking, the suffix tree is correct. "«endlj

else Ilif the tree is not correct



cerr«"The tree is not correct. "«endl;
exi t (1) ;

do{
cout«"Please input the pattern string you want to search

for. "«endl;
cin.getline(p, MAX_LEN-l); ffget the pattern

e=m. search_string (p) ; Iisearch the pattern

if (e.begin_node_index!=-l) flif found
{

cout«"The pattern was found. "«endl;

m.appear_times(e.end_node_index}; ffget appear times

if(app_t==O) Ilif pattern appears one time
cout«"The number of times the pattern appear

is l"«endl;
else

cout«"The number of times the pattern appear
is "«app_t«endl;

}

else Ilif pattern not found
cout«"No match for this pattern. "«endl;

cout«"Do you want to continue to search for some
patterns?"«endl;

cin.getline(answer, 80);

}while(answer[O]=='y' I I answer[O}=='Y'); flcontinue to search

cout«"*************** End of Program ***************"«endl;
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///////////////////////////////////////////////////////////////////////
II
// Contents: main.cc (for Ukkonen's algorithm)
II
// Tongyu Li
//
// Date: May, 1999
II
///////////////////////////////////////////////////////////////////////

II
// This is the test program of Ukkonen's algorithm for the whole
// project.
//

#include "suffix_tree.h"
#include "Ukkonen.h"
#include "McCreight.h"
#include <iomanip.h>
#include <sys/times.h>

#define MAX_LEN 80

main()
(

char* p=new char [MAX_LEN] ;
char* answer=new char[80+1] i

int app_t; //appear times
edge e;
double sys_time;
struct tms tms_start, tms_finish;
clock_t start, finish;

Ukk m; //initialize the object

cout«setiosflags(ios: :fixed)«setprecision(6);

start=times(&tms_start); //start to count time
m.create_suffix_tree() ;
finish=times(&tms_finish); //finish counting time

sys_time=(tms_finish.tms_stime-tms_start.tms_stime)
/(double)CLK_TCK;

sys_time += m.get_add_time(); //add the necessary extra time
sys_time m.get_min_time(); //minus the useless time

cout«"System time for constructing suffix tree is: "
«sys_time«endl;

m.print_Edges() i //print all the edges in the tree

if(m.check_tree()) //check if the suffix tree is correct
cout«"After checking, the suffix tree is correct. "«endl;

else //if the tree is not correct

cerr«"The tree is not correct. "«endl;
exit(l);



}

do{
cout«"Please input the pattern string you want to search

for. "«endl i

cin.getline(p, MAX_LEN-l); Ilget the pattern

e=m.search_string(p); Iisearch the pattern

if (e. begin_node_index ! =-1) Ilif found
(

cout«"The pattern was found. "«endli

m.appear_times(e.end_node_index)i Ilget appear times

if (app_t==O) Ilif pattern appears one time
cout«"The number of times the pattern appear

is l"«endl;
else

cout«"The number of times the pattern appear
is "«app_t«endli

}

else Ilif pattern not found
cout«"No match for this pattern. "«endli

cout«"Do you want to continue to search for some
patterns?"«endli

cin.getline(answer, 80)i

}while(answer[O]=='y' I I answer[O]=='Y') i Ilcontinue to search

cout«"*************** End of Program ***************"«endl;
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#
# Makefile
#

out: suffix_tree.o Ukkonen.o McCreight.o main.cc
g++ -g -0 out suffix_tree.o Ukkonen.o McCreight.o main.cc

suffix_tree.o: suffix_tree.h suffix_tree.cc
g++ -c -g suffix_tree.cc

Ukkonen.o: Ukkonen.h Ukkonen.cc
g++ -c -g Ukkonen.cc

McCreight.o: McCreight.h McCreight.cc
g++ -c -g McCreight.cc

clean:
rm -f *.0
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APPENDIX B: SOURCE CODES FOR GENERATING RANDOM DNA DATA

///////////////////////////////////////////////////////////////////////
//
// Contents: random_char.cc
II
// Tongyu Li
//
1/ Date: May, 1999
//
//////////////////////////////////////////////////1//1////////////1////

II
/1 This is the program that generates random DNA data.
/I

#include <iostream.h>
#include <fstream.h>
#include <math.h>
#include <stdlib.h>

#define A 16807
#define M 2147483647
#define Q 127773
#define R 2836

#define size 20000

float get_random() ii/get random float number between 0 and 1
int get_JRand(int, int)i //get a random integer
char shuffle(char*); I/shuffle function

long int seed=6;

main ()
(

char* s=new char[4+1] i

s [O]='A';
s [1] ='C' i

s[2]='G' ;
s[3]='T' ;
s(4]='\0';

char* name=new char[3];
char c;

int i, j;

for(i=l; i<=20; i++) //name the output file and write to the file
(

if(i<lO)
(

name[Ol=i+48;
name [1 ] = ' \ 0 ' ;
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}

else
{

name[0]=i/lO+48;
name[ll=i%10+48;
name [ 2] = I \ 0 I ;

ofstream out (narne) ; Ilopen the file

for(j=O; j<size; j++)
(

if(j!=O && j%60==0) Iithere are 60 char in one line
ou t . put ( I \n' ) ;

out.put(shuffle(s)); Ilwrite to the file

out.close(); //close the file

float get_random() //get a pseudorandom float number between 0 and 1
{

float URand;

doe
seed = seed % Q * A - seed / Q * R;

if (seed < 0)
seed = seed + M;

URand = (float)seed/M;
)while(URand <=0 I I URand >= 1);

return URand;

int get_JRand(int JL, int JH)
Ilget a pseudorandom integer between JL and JH

int JRand;
float URand;

doe
URand = get_random();
JRand = JL + (int) «(JH + 1 - JL) * URand);

)while(JRand > JH);

return JRand;

char shuffle(char* string) Iishuffle function
{

int i, j, temp;

for(i=strlen(string)-1; i>=1; i--)
{

72



j=get_JRand{O, i);
temp=string[il;
string[il=string[j);
string[jl=temp;

}

return string[Ol;
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