
COMPARISON OF PERFECT HASHING METHODS

By

QIZHITAO

Master of Science

Harbin Institute of Technology

Harbin, P R China

1991

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the degree of

MASTER OF SCIENCE
July, 1999

a·. Li rary

COMPARlSON OF PERFECT HASHING METHODS

Thesis Approved:

~,~dvlser

!fJLtdf\~

ean of the Graduate College

~g.~l~

W~ 8. Pt7UHL!

11

PREFACE

This study was conducted to compare two minimal perfect hashing meth d

Chang's method and Jaeschke's method. Since hashing is a widely u ed technique for

store data in symbol table and the data are strings of characters, this study f use on the

performance of these methods with the letter-oriented set and gives their run time

performance curves. Through the analysis of run time and space complexity, an optimal

method is given to make each algorithm perfonnance well.

I sincerely thank my M. S. Committee-Drs. J. P. Chandler, J. Lafranc , and H.

K. Dai---for guidance and support in the completion of this research.

iii

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my advisor, Dr. 1. P. Chandler, for

his intelligent supervision, constructive guidance, inspiration and friendship. My sincere

appreciation extends to my other committee members Dr. J. Lafrance and Dr. H. K. Dai,

whose guidance, assistance, encouragement, and friendship are also invaluable.

I also like to give my special appreciation to my parents Prof. Chongde Tao and

Ms. Aihua Zhou for their support of my studies, strong encouragement at times of

difficulty, love and understanding throughout the whole process.

Finally, I would like to thank the Department of Computer Science for support

during these two years of study.

IV

Chapter

TABLE OF CONTENTS

Page

I. lNTRODUTION' 1

II. LITERATURE REVIEW 2

Hashing and its Application 2
The Hashing Table and Hashing Function 4
Collision Resolution Strategies 7
Table Overflow 11
Perfect Hashing 13
Other Hashing Methods 15

III. CHANG'S METHOD: A MINIMAL PERFECT HASl-UNG SCHEME 16

Theorems 16
Flowchart for Calculating C 17
Flowchart for Chang's Method 19
The C Programming Code for This Method , , 19
The Test Sets and Test Results of Chang's Method , 20

IV JAESCHKE'S METHOD: ANOTHER PEFECT HASHING SCHEME 26

Theorems , '" 26
The Algorithm for Calculating C 26
Flowchart for Calculating C 28
Flowchart for Calculating D and E , 29
The C Programming Code for This Method , , 30
The Test Sets and Test Results of Jaeschke's Method 30

V. COMPARISON OF THETWO METHODS 32

'Run Time Analysis , , 32
Space Complexity Analysis '" 39
Machine Dependence .40
Operation Time Comparison 40

VI. CONCLUSIONS AND IMPROVEMENTS 42

Advantages of Chang's Algorithm .42

v

Chapter Page

Limitations of Chang's Method 43
Advantages of Jaeschke's Algorithm 44
Disadvantages of Jaeschke's Algorithm 44
Suggestions , 45
Improvements 45

BIBLIOGRAPHY 47

APPENDIXIES 52

APPENDIX A--C PROGRAMMING CODE FOR CHANG'S
ALGORITI-IM 52

APPENDIX B--C PROGRAMMING CODE FOR JAESCHE'S
ALGORITlI1vf 65

vi

r

Table

L1ST OF TABLES

Page

I. The Calculating Values of p(x), d(x), and C(x)
of the Month Set , 20

II. Hashing Results on the Month Set 21

1II. The Calculating Values of p(x), d(x), and C(x) of
the Key Words Set of the C Programming Language 21

IV. Hashing Results on the Key Words Set of the
C Programming Language 23

V. The Calculating Values ofp(x), d(x), and C(x)
for the Frequently Used Words Set 24

VI. Hashing Results on the Frequently Used Words Set 25

VII

Figure

LIST OF FIGURES

Page

1. A Hash Table Implement of the DICTIONARY ADT 5

2. Collision Resolution by Separate Chaining 8

3. Flowchart for Calculating C value 18

4. Flowchart for Calculating Hashing Value by Chang's Method 19

5. Flowchart for Calculating C 29

6. Flowchart for Calculating D and E , '" 30

7. Run Time of Chang's Algorithm 33

8. Run Time of Jaeschke's Algorithm 34

9. Comparison the Run Time between the Two Algorithms 35

10. Impact of the Length of the Words in Set
on the Two Algorithms , 37

11. Impact of the Distribution of the Words in Set
on the Two Algorithms 39

12. Operation Time Comparison on the Two Hash Tables
Established by the Two Algorithms 41

viii

Chapter I

INTRODUTION

Hashing is a well-known technique for storing data. With this technique, a key is

transfonned into a pseudorandom number and this number provides us with a good gue s

where the key and its associated information are located. Using hashing as a data

organization and data retrieving method may cause the key-collision problem.

To handle the key-collision problem, there are several perfect hashing methods

proposed by some researchers. Much work has been done to develop perfect hashing

functions.

Among these methods, there are about five classic algorithms: Sprugnoli's

algorithm, Jaeschke's algorithm, Chang's algorithm, CicheLli's algorithm, and Cook's

algorithm [11]. Most of their methods have focused on solving perfect hashing problems

on Pascal reserved words and abbreviated symbols for the twelve months.

The goal of this project is to compare some of the methods in details. First I use

the C programming language to implement the algorithm calculation, and then I give the

minimal perfect hashing function for the reserved words of C programming language.

Based on these results, this project will analyze the time and space complexity, discuss

the advantages and disadvantages of each method, and give some advice and suggestions

about improving the efficiency of these perfect hashing methods.

-

Chapter 2

LITERATURE REVIEW

2.1 Hashing and its Application

Often a computer program needs to accept all or part of its input as a sequence of

character strings and decide, for each string, whether that string is a member of some

finite set of known strings. The set of known strings may be nonempty when the

program starts and may change as the program receives input. The strings, both known

and otherwise, are generally referred to as keys. Testing a key for membership in the set

of known keys is called a search, adding a key to the set of known keys is called an

insertion, and removing a key from the set is a deletion.

Many different schemes have been developed to handle this computational task.

These include linear search of an unordered table, binary search of an ordered table, B

trees, tries, various forms of string pattern matching, and hashing. By using a binary

search tree, we will have the worst case complexity for these operations of O(n). If we

use some refinements of the binary search tree, that would be O(log n). But can it be

better? Yes, hashing is the solution for this.

Hashing refers to schemes that use some simple arithmetic function of a key as

the location in the table at which the key should be stored. With this technique,

implementing insertion, deletion and finding operations on ADT (abstract data type) can

be accomplished in constant average time. Unlike the search tree method that relies on

2

identifier comparisons to perform a search, hashing relies on a formuJ call d the ha h

function. The table in which identifiers are stored is the hash table.

Hashing applications are abundant. Compilers use hash tables to keep track of

declared variables in source code. Since hashing can be used to implement earching,

inserting and deleting in constant average time, hashing is the ideal application for

implementation of the symbol table. The other reason is the identifiers are typically short,

so the hash function can be computed quickly [43].

Hashing is useful for any graph theory problem where the nodes have real names

instead of numbers. Here, as the input is read, vertices are assigned integers from one

onward by order of appearance. Again, the input is likely to have large groups of

alphabetized entries. If a search tree is used, there could be a dramatic decrease in

efficiency.

A third common use of hashing is in programs that play games. As the program

searches through different lines of play, it keeps track of positions it has seen by

computing a hash function based on the position (and storing its move for that position).

If the same position reoccurs, usually by a simple transposition of moves, the program

can avoid expensive re-computation. This general feature of all game-playing programs

is known as the transposition table.

Another use of hashing is in on-line spelling checkers. If misspelling detection (as

opposed to correction) is important, an entire dictionary can be prehashed and words can

be checked in constant average time [6].

3

-

Currently, hashing is widely used in natural language understanding system,

programming system such as compilers and interpreters and other application y t IDS

where data are stored and retrieved frequently.

2.2 The Hashing Table and Hashing Function

2.2.1 The Hashing Table

The hashing table is a sequentially mapped data structure that makes use of the

random-access capability afforded by sequential mapping. We use an arithmetic function,

f, to determine the address, or location of an identifier in the table. The hash table ht is

stored in sequential memory locations that are partitioned into b buckets, ht[O] ,..... .ht [b

1]. Each bucket has s slots. Usually s =1 which means that each bucket holds exactly one

record. The important part of hashing table is the size of the table that is referred to as

TableSize (denoted as m in Fig. 1) since each key is mapped into orne number in the

range 0 to TableSize-l and placed in an appropriate cell.

2.2.2 The Hashing Function

The hashing function is the function used to transfonn the identifier into an

address in the hash table. Using hashing function f, we can compute a hashed value for

each identifier h(kj). That is kj hashes to slot nh(ki)] in hash table T.

The advantages of this approach are that, if we pick the hash function properly,

TableSize can be chosen so as to be proportional to the number of elements actually

stored in table T [44].

4

-

k2---~----~

kl
k4 ------+----.t

k3

h

ha h

function

h(i4)

Figure 1 Hash Table Implement of the DICTIONARY ADT

Criteria for a good hash function:

• The hash address is easily calculated.

• The loading factor (LF) of the hash table is high for a given set of keys. (The LF is the

fraction of used or occupied hash table locations in the total hash table locations).

• The hash addresses of a given set of keys are distributed uniformly in the hash table.

There are a wide variety of hash functions. Here are a number of specific techniques used

to create hash functions [22].

Division Method Hash functions that make use of the di vision method generate hash

values by computing the remainder of k divided by m:

h(k)= kmodm (1)

With this hash function, h(k) will always compute a value that is an integer in the

range 0,1, , m-I.

The choice of m is critical to the performance of the division method. For instance

choosing m as a power of 2 is usually ill-advised, since h(k) is simply the p least

significant bits of k whenever m=2P . In this case the distribution of keys in the hash table

is based on only a portion of the information contained In the keys.

5

-

In general, the best choices for m when using th divi ion m thod turn out to be

prime numbers that do not divide ,J ± a, where 1and a are small natural numbers, and r i

the radix of the character set we are u ing (typically r =128 or 256)[43].

Multiplication Method Although the division method has the advantages of

being simple and easy to compute, its sensitivity to the choice of m can be overly

restrictive. The principal advantage of the multiplication method is that the choice of m is

not critical----in fact, m is often chosen to be a power of 2 in fixed-point arithmetic

implementations.

Hash functions that make use of the multiplication method generate hash values

in two steps. First the fractional part of the product of k and a real constant A, where 0< A

< 1, is computed. This result is then multiplied by m before applying the floor function to

obtain the hash value:

h(k) =Lm(kA mod l)J. (2)

Note that kA mod 1 means kA - LkA Jyields the fractional part of the real number kA.

Since the fractional part must be greater than or equal to 0, and less than 1, the hash values

must be integers in the range 0,1, ... , m-l. One choice of A that often does a good job of

distributing keys throughout the hash table is the inver e of the golden ration:

A= cP -1 -""0.61803399 (3)

The multiplication method exhibits a number of nice mathematical features.

Because the hash values depend on all bits of the key, permutations of a key are no more

likely to collide than any other pair of keys [43].

Universal Hashing If a malicious adversary chooses the keys to be hashed, then

he can choose n keys that all hash to the same slot, yielding an average retrieval time of

6

B(n). Any fixed hash function is vulnerable to this ort of worst-c e haviof' th nly

effective way to improve the situation is to choose the hash function randomly in ay

that is independent of the keys that actually going to be stored. This approach, call d

universal hashing, yields good perfonnance on the average [17, 25,26].

Let H be a finite collection of hash functions that map a given universe U of keys

into the range {O, 1,... , m-l }. Such a collection is said to be functions 11 E H for which

hex) =h(y) is precisely IHI 1m. In other words, with a hash function randomly cho en from

H, the chance of a collision between x and y when x:;:. y is exactly 11m, which is ex.actly

the chance of a collision if hex) and h(y) are randomly chosen from the set {O. 1 m-

I}. Universal hashing has not been used much, if any, in practice.

2.3 Collision Resolution Strategies

A problem we must deal with when we use hashing is deciding what to do

when two keys hash into the same value (this is known as a collision). Although we

should strive to construct hash functions that minimize collisions, in most applications it i

reasonable to assume that collisions will occur. Therefore the manner in which we resolve

collisions will directly affect the efficiency of the operations on the ADT.

2.3.1 Separate Chaining

One of the simplest collision resolution strategies, called separate chaining,

involves placing all elements that hash to the same slot into a linked list. In this case the

slots in the hash table will no longer store data elements, but rather pointers to linked

lists, as shown in Figure 2. This strategy is easily extended to allow for any dynamic data

7

structure. Note that with separate chaining, the number of items ttl t oan to d i only

limited by the amount of available memory. The disadvantage i that ach linkJ d Ii t oan

only be searched sequentially, and this is very slow if a list is at a11long. AI the links

occupy valuable space [44].

h

Hash
function

Figure2 The Collision Resolution by Separate Chaining

2.3.2 Open Addressing

In open addressing all data elements are stored in the hash table itself. In this case,

collisions are resolved by computing a sequence of hash slots. This sequence is

successively examined, or probed, until an empty hash table slot is found in the case of

insertion, or the desired key is found in the case of searching or deletion. The memory

saved by not storing pointers can be used to construct a larger hash table if necessary.

Thus, using the same amount of memory we can construct a larger hash table, which

potentially leads to fewer collisions and therefore faster operation implementations.

8

In open addressing, the ordinary hash functions which p rl rm m pping from

the universe of keys U to slots in the hash table T[O ..m -1] will be modified 0 th t they

use both a key and a probe number when computing a hash value. This additional

information is used to construct the probe sequence. More specifically, in open addressing,

hashing functions perform the mapping:

H: U x {O, 1, ... , oo}~ {O, 1, ... , m-l} and produces the probe equence

< h(k,O), h(k,l), h(k,2), >

Because the hash table contains m slots, there can be at most m unique values in a probe

sequence. Note, however, that for a given probe sequence we are allowing the possibility

of h(k, i) =h(k, j) for i~j. Therefore it is possible for a probe sequence to contain more

than m values.

There are three main probing strategies for open addressing.

1) Linear Probing. This is one of the simplest probing strategies to implement;

however, its performance tends to decrease rapidly with an increa ing load factor (LF).

If the first location probed is j, and CI is a positive constant, the prob sequence

generated by linear probing is:

<j, (j+ cIXl) mod m. (j+ Ctx2) mod m,>.

Given any ordinary hash function h': U~ to, 1,,,., m -J}, a hash function that

uses linear probing is easily constructed using:

h(k, i) =:;(h '(k) + Cl i) mod m (4),

where i =O,l, ...m-l is the probe number. Thus the argument supplied to the module

operator is a linear function of the probe number.

9

The use of linear probing leads to a problem Irno n clusterin ----el ments tend

to clump (or cluster) together in the hash table in u h a way that they can only be

accessed via a long probe sequence.

There are two factors in linear probing that lead to clustering. First, ev ry prob

sequence is related to every other probe sequence by a simple cyclic shift. Specifically, if

we interpret a given probe sequence as a q-permutation (qSm) of q shift of this

permutation, this leads to a specific fonn of clustering cailed primary clustering.

Because any two probe sequences are related by a cyclic shift, they will overlap after a

sufficient number of probes. A less severe form of clustering. called secondary clustering,

results from the fact that if two keys have the same initial hash value h(kl , 0) = h(k2, 0).

then they will generate the same probe sequence---h(kl , i) = h(k2, i), for i = 1, 2..... 0'

m-l. Primary clustering results if the resolution method follows an established chain of

collisions no matter where it enters the chain; secondary clustering results if an

established chain of collisions is followed only if it is entered at the beginning of the

chain.

2) Quadratic Probing. This is a simple extension of linear probing in which one

of the arguments supplied to the mod operation is a quadratic function of the probe

member. More specifically, given any ordinary hash function h', a hash function that uses

quadratic probing can be constructed using:

h(k, i) =(h'(k) + cli + c2P) mod m (5),

where Ct and C2 are positive constants. Once again. the choices for CI. C2, and mare

critical to the perfOlmance for this method. Since the left-hand argument of the mod

operation in equation (5) is a nonlinear function of the probe number. probe sequences

to

cannot be generated from other probe s quences via imple cyclic shifts. This eliminates

the primary clustering problem and tends to mak! quadratic probing work better than

linear probing. However, as with linear probing, the initial probe h(k, 0) d tennines th

entire probe sequence, and the number of unique probe sequences is m. Thus, econdary

clustering is still a problem.

3) Double Hashing. Given two ordinary hash functions h't and h '2, double

hashing computes a probe sequence using the hash function

h(k, i) =(h'l(k) + i h'2(k» mod m (6)

Note that the initial probe h(k, 0) =h'l (k) mod m, and that successive probes are

offset from previous probes by the amount h"2 (k) mod m. Thus the probe sequence

depends on k through both h' I and h'2 This approach avoids both primary and secondary

clustering by making the second and subsequent probes in a sequence independent of the

initial probe. The probe sequences produced by this method have many of the

characteristics associated with randomly chosen sequences, which makes the behavior of

double hashing a good approximation to uniform hashing [45].

2.3 Table Overflow

In practice, if there is an insertion operation on a full table, that will cause table

overflow. If separate chaining is being used, this is typically not a problem since the total

size of the chains is only limited by the amount of available memory in the free store.

Thus the discussion to table overflow in open address hashing is needed.

Two techniques that circumvent the problem of table overflow by allocating

additional memory will be considered. In both cases, it is best not to wait until the table

11

becomes completely full before allocating more memory; instead, m mary will

allocated whenever the load factor a exce ds a certain threshold which is d not d ard.

1) Table Expansion: The simplest approach for hashing table overflow invotv

allocating a larger table whenever an insertion causes the load factor to exceed atd, and

then moving the contents of the old table to the new one. The memory of the old table

can then be reclaimed. Using this technique with hash tables is complicated by the fact

that the output of hash functions is dependent on the table size. This means that aft r the

table is expanded (or contracted), every data element needs to be "rehashed" into the new

table. The additional overhead due to rehashing tends to make this method too slow.

2) Extendible Hashing: An alternative approach for the problem above is using

extendible hashing. Extendible hashing limits the overhead due to rehashing by splitting

the hashing table into blocks. The hashing proceeds in two steps: The low-order bits of a

key are first checked to detennine which block a data element will be stored in, and then

the data element is actually hashed into a particular slot in that block using the method

discussed previously. The addresses of these blocks are stored in a directory table. [n

addition, a value b is stored with the table---this gives the number of low-order bits to use

during the first step of the hashing process [44].

Table overflow can now be handled as follows. Whenever the load factor a,d of

anyone block d is ex.ceeded, an additional block d' the same size as d is created, and the

elements originally in d are rehashed into both d and d' using b + 1 low-order bits in the

first step of the hashing process. Of course, the size of the directory table must be doubled

at this point, since the value of b is increased by one.

12

If the block sizes are kept relatively small, the extendible hashing ppro ch will

greatly reduce the overhead due to rehashing. Of course, this come at the

additional time that is spent on comparing low-order bits in the directory tab} during the

first step of the hashing process [41,42].

2.4 Perfect Hashing

In order to overcome the collision problem there was developed a kind of hashing

method in the 1970's, which is called perfect hashing [27].

2.4.1 Notation

Definition 2.1 A refinement of hashing which allows retrieval of an item (=key)

in a static table with a single probe is called perfect hashing.

Definition 2.2 A hashing function is a peifect hashing function for a set of keys if

and only if the function is one-to-one on that set of keys, i.e., this is a collision-free

hashing function.

Definition 2.3 A hashing function is a minimal peifect hashing function for a set

of keys if and only if the function maps the keys one-to-one onto the buckets 0, 1, ... , k

l,whe k is the number of keys in the set. That is, it is perfect and it completely fills the

table [44].

2.5.2 Development of perfect hashing

Since using hashing as a data organization and data retrieving method may cause

the key-collision problem, some collision resolution strategies must be applied to handle

them. One strategy of solving key-collision problem is to construct a perfect hashing

13

function. With this function, a one-to-one mapping from the k y t into the ddr s

space is established.. Therefore, a retrieval operation can be executed in a single step.

Theoretically, it is not difficult to construct a perfect hashing function for an

arbitrary given set of keys if the memory space used by the ha hing function is not

restricted. For example, assume that the values of the keys are all positive and the

maximum value is L, then h(k)= k is a perfect hashing function. However, it may lead to

a very small loading factor. In order to avoid sparse hash tables, there are several perfect

hashrng methods that have been developed:

1) Sprugnoli's method: Sprugnoli proposed two simple functions (1) h(k)=(k + s)/

N where sand N are integers, and (2) h(k)=l«d + kq) mod M)/ NJ, where d, q, M, N are

integers, as the candidates for constructing perfect hashing functions. There are two

algorithms for finding sand N for (1) and d, q, M and N for (2) [8].

2) Jaeschke's method: Jaeschke proposed a method for establishing minimal

perfect hashing functions. If K={k1, k2, ... , kn } is a set of po itive integers, Jaeschke's

method attempts to find integer constants C, D and E such that for each ki in K,

h(k,)=Lc/(Dki+ E)J mod n is a minimal perfect hashing function. He gave two algorithm,

called Algorithm C and Algorithm DE, to find C and D, E respectively [5].

3) Chang's method: Chang proposed a minimal perfect hashing scheme based on

the Chinese remainder theorem. His hashing function is of the form: h(k)= C mod p(k),

where k belongs to a set K={k1, k2, •.••.• , kll } of positive integer and p(k) is a prime

number function on K [1,9,13,20,32].

4) Cichelli' s method: Cichelli proposed a heuristic method to build tables and

associated hashing functions for a number of particular data sets. In his method, each

14

character is assigned a value. The form of hashing function is defined a h(word) =

length (word) + value (first letter) + value (last letter). That is, the table position can be

calculated as the sum of the word length plus the associated values of the first and last

letter of the word [2, 3,4,6, 16].

5) Cook's method: Cook proposed several algorithms to improve Cichelli's

backtracking algorithm for assigning suitable associated values for characters [10,14,15,

34].

Perfect hashing is frequently used for memory efficient storage and fast retrieval

of items from a static set, such as reserved words in programming languages, command

names in operating system, commonly used words in natural language, etc. Therefore, in

the following chapters, we will choose two methods from these five methods mentioned

above and analyze their performance for the letter-oriented input sets since most of the

input sets are string of characters.

2.5 Other Hashing Methods

There are other hashing methods: non-obvious hashing [30) and spiral hashing

[45]. Since they do not have much relation with perfect hashing, they are not mentioned

here.

15

Chapter 3

CHANG'S METHOD: A MINIMAL PERFECT HASHING SCHEME

3.1 Theorems

The following theorems are quoted from [9].

LEMMA 1. [Chinese Reminder Theorem].

Let rl, r2, ',', rn be integers. There ex.ists an integer C such that C == " (mod m,).
C =='2 (mod m2), ',., and C == rn (mod mn), if mj and mj are relatively prime for all i:t: j.

Theorem 3.1

Given a finite set K = { k" k2, ... , k n } of positive integers, there exists an integer

C such that h(k i) =C mod p(k i) is a minimal perfect hashing function if p(x) is a prime

number for every k i in K.

Corollary 1

Given a finite set K ={ k" k2, ... , k n } of positive integers, there exists a hashing

function h(k) = C mod p(k) such that the keys in K can be stored in ascending order by

applying hex).

LEMMA 2.

16

Let mj and mj be relatively prime where i:f:. j and 1 ~ i,j ~ n. Let 1t11<m2 <... < m n.

"
~ bMii mod mj =j if M i = IT. .mj and b;M; E 1 (mod mj).
L.J '''')
i=1

Theorem 3.2

Let mj and mj be relatively prime where i:f:. j and 1 ~ i,j ~ n. Let ml<m2 <...< m /I'

"
C = LbMd mod IT=lmi is the smaJlest positive integer such that C == i (mod mi), if M;

i=1

Theorem 3.3

Let C = ~~ bi[IT. p(kj)]i, where f]. p(ki)bi == 1 [mod p(kj)]. The hashing
L.J'=l It) ''''I

function h(k) = C mod p(k) is a minimal perfect hashing function if p(k) is a prime

number function for K ={k l , k2, ... , kn }.

Theorem 3.4

Let M'b == 1 (mod m), (M', m) =1, and M' < m. Then b =Bk, with Bo =1,81 =-Qk.

and B j+\ =-B j Qk-j + B j_l. where M' == M mod m.

3.2 Flowchart for Calculating C

Output: C

17

Calculate
mi = p(k;)

Calculate

Mi =ni>9 m;

Calculate bi

DEND=:m;

DSR=Mi

; =1

i =i +1
Qj = DENDIDSR
RMD=DEND- QJ

No

Compute & Output C

Figure 3 Flowchart for Calculating C value

18

3.3 Flowchart for Chang's Method

{ Begin J

"I Input words set I

Get the extracted pair (k1• k2) and according to
k i separate words into groups

Compute three integer d(x), p(x),C(x)

Get hashing values
H(kjj, k iz)=d(kjj) + (C(kj]) mod p(kjz»

Print the hashing results
according to hashing value

"
Print the time used
for this calculation

(End]
Figure 4 Flowchart for Calculating Hashing Value by Chang's Method

3.4 The C Programming Code for This Method

19

This is attached in Appendix A.

3.5 Test Sets and Test Result of Chang's Method

3.5.1 The Month Set

a) The i.nput set is: January, February, March, April. May, June, July, August, September,

October, November, December

b) The calculating values are:

x= A D F J M N 0 S

d(x) = 0 2 3 4 7 9 10 11

C(x) = 28 1 1 23 36 1 1 1

Table 1 The Calculating Values of p(x), d(x), and C(x) of the Month Set

c) The test results are:

Group Extracted Pair Original Key Location

1 (A,p) April 2

(A,u) August 1

2 (D,e) December 3

3 (F,r) February 4

20

4 (J,u) January 6

(J,e) June 5

(J,y) July 7

5 (M,r) March 8

(M,y) May 9

6 (N,o) November 10

7 (O,e) October 11

8 (S,e) September 12

Table 2 Hashing Results on the Month Set

3.5.2 The Key Words Set of the C Programming Language

a) The input set is: Auto, Break, Case, Char, Const, Continue, Default, Do. Double, Else,

Enum, Extern, Float. For, Goto, If, Int, Long, Register, Return, Short, Signed, Sizeof,

Static, Stmet, Switch, Typedef, Union, Unsigned, Void, Volatile, While

b) The calculating values are:

x U R E S T f 0 L n x G Z a 1 y h

p(x) 29 7 37 19 23 11 2 5 17 43 13 53 31 3 47 41

X A B C D E F G I L R S T U V W

d{x.) o 1 2 6 9 12 14 15 17 18 20 26 27 29 31

e(x.) 1 1 29604 409 2841 7 1 155 1 209 779159 1 40 7 1

Table 3 The Calculating Values ofp(x), d(x), and C(x) on the Key Words Set of the C
Programming Language

21

c) The test results are:

Group Extracted Pair Original Key Location

1 (A, u) Auto 1

2 (B, r) Break 2

3 (C, e) Case 6

(C, r) Char 3

(C, s) Const 4

(C, t) Continue 5

4 (D, f) Default 8

(D,o) Do 7

(D, u) Double 9

5 (E,I) Else 10

(E, n) Enum 11

(E, x) Extern 12

6 (F, I) Float 14

(F,o) For 13

7 (G,o) Goto 15 I

8 (I, f) If 16

(r, n) lnt 17

9 (L,o) Long 18

10 (R, g) Register 19

(R, t) Return 20

11 (S,o) Short 21

22

(S, g) Signed 24

(S, z) Sizeof 26

(S, a) Static 25

(S, r) Struct 23

(S, i) Switch 22

12 (T, y) Typedef 27

13 (U, i) Union 28

(U, s) Unsigned 29

14 (V, i) Void 30

(V, I) Volatile 31

15 (W, h) While 32

Table 4 Hashing Results on the Key Words Set of the C Programming Language

3.5.3 The Frequently Used Words Set

a) The input set is: And, Are, As, At, Be, But, By, From, For, Had, He, Her, His, Have,

In, Is, It, Not, Of, On. Or, That, The, This, To, Which, Was, With, You

b) The calculating values are:

X N r S T E u y a d v F h a 1

p(x) II 3 5 13 7 37 43 2 19 41 23 29 17 31

I

23

d(x) 0 4 7 9 14 17 18 21 25 1

C(x) 1642 5034 5 61792 211 1 739 17 13023 1

Table 5 The calculating value of p(x), d(x), and C(x) for the Frequently Used Words Set

a) The test results are:

Group Extracted Pair Original Key Location

1 (A, n) And 3
,

(A, r) Are I

(A, s) As 2

(A, t) At 4

2 (B, e) Be 5

(B, u) But 6

(B, y) By 7

3 (F, r) From 9

(F,o) For 8

4 (H, d) Had 11
I

(H, e) He 12

(H, r) Her 10

(H, s) His 11

(H, v) Have 14

5 (1, n) In 16

(1, s) Is 15

24

(I, t) It 17

6 (N,o) Not 18

7 (0, f) Of 21

(0, n) On 20

(0, r) Or 19

8 (T, t) That 25

(T, e) The 24

(T, s) This 23

(T,o) To 22 ,

9 (W, h) Which 27
,

(W, a) Was 26

(W, i) With 28

10 (Y,o) You 29

Table 6 Hashing Results on the Frequently Used Words Set

25

Chapter 4

JAESCHKE'S METHOD: ANOTHER PEFECT HASIDNG SCHEME

4.1 Theorems

The following theorems are quoted from [5].

Theorem 4.1 [Reciprocal Hashing]

Given a finite set W ={WI, W2, ... , w n } of positive integers, there exist three

integer constants C, D, E such that h defined by

hew) =LCI (Dw + E) J mod n

is a minimal perfect hashing fuction.

LMMEA 4.1 For any set W = {WI, W2, ... , wn}of positive integers, there exists two integer

constants D. E such that

DWI +E.Dw2+E, ...• Dwn+E

are pairwise relatively prime.

4.2 The Algorithm for Calculating C

Let W= {WI, W2, ... , wn } consist of positive integers with WI< W2< ...< Wn., Then

the algorithm to find an integer C such that the following condition is satisfied

LCI Wi J*LCI wjJ mod n, for all i, j, with 1 S; is; j S; n (4.3)

The algorithm starts with an arbitrary positive integer C = Co. Then the residues

ofLCI Wi Jmod n are calcuJ ated. If they are all different from each other the algorithm

tenninates successfully. Otherwise the actual C is increased conveniently by a certain

26

amount a.(C, W), and the new C is examined in the same way. The algorithm terminate

unsuccessfully if C exceeds a prescribed limit L.

4.2.1 Starting Constant --- Co

Usually we start from Co = 1. If the identifier sets W with a small differenc

W n - WI I in order to avoid the unnecessary calculating, we choose:

Co =[(n-2) WI W n I(W TI - WI)]

as a reasonable start"

4.2.2 Increment --- a(C. W)

(4.1)

In order to get a (C, W), we examine only such integers C that are multiples of at

least one element Wi of W. This is clear because a C value that is not a multiple of any

element of W gives a remainder:

ri == C mod Wi (0 < ri < Wi)

and by taking the minimum of these ri , referred as ro, the quotients LC/ Wi Jequals the

quotients LC'I Wi J where C' = C - '0; C' is a multiple of wo. That means a(C, W) should

be one of the numbers:

where rj =C - LCI Wi JWi. We choose

0·· =nu"n { w- r· w·-," ~IJ I I, J .I"

K(C, W) ={(i, j) 11 s i < j s n !\ LCI Wi J== LCI wjJ mod n} and

a'(C. W) = max 6j'
(i,j)EK(C,W) J

then a'(C, W) should be an appropriate increment of C.

27

4.2.3 Limitation of Calculate C ---L

A natural limit for the C value to be inspected is:

(4.2)

where scm means "sma.1lest common multiple". Because if a C > L of the desired kind

exists, the C - L is also a C value which satisfies Eq. (4.1). That means if no C < L

satisfies Eq. (4.2), then no C exists at all such that Eg. (4.2) holds. The number L

determined by Eg. (4.2) is generally very large and therefore not adequate for the

tennination of Algorithm C. Therefore we have a upper bound value of L to avoid the C

value to be examined getting too large.

4.3 Flowchart for Calculating C

[Begin]
~

I Input words set

~
I Input C =Co

~,

.. Compute residues..
rj= LCI w;J mod n

1

28

Yes (succe sful end)

Yes (unsuccessful end)

;0 = max { j 13 i(LC/WiJ == L C/wjJ mod n)}

io =max {i~(Lc/wiJ==LC/wjoJmodn)}
a(C, W) =min {WiO-C mod WiO, WjO-C mod Wjo}

C= C+a(C, W)

Figure 5 Flowchart for Calculating C

4.4 Flowchart for Calculating D and E

[Begin)
~

Input words set

Get prime set

In ={pip E P 1\ P < nl2}

"
Determine the

P2={ {pipE Inl\~(P)S I}

where ~(P) = min {i Iw, • v mod p} I
O~v~p

29

,r
PI = In - PI

D=l if PI =<1>; D = np otherwise
peP1

"
Determine the set

M(P) ={ - Dv mod pi 0 ~ v <pl\l{i Iw, • vrnod p} I~ I}

,Ir

Examine
(Emodp) E M(P) for pE P2

I

(E modp);c 0 for pE PI

+
[End 1

Figure 6 Flowchart for Calculating D and E

4.5 The C Programming Code for This Method

This is attached in Appendix A.

4.6 The Test Sets and Test Result of Jaeschke' s Method

4.6.1 Twelve Months Set

a) The input set is: January, February, March, April, May, June, July, August,

September, October, November, December

b) The calculating values are: CO= 4039; C=29952

30

4.6.2 The Key Words Set of the C Programming Language

a) The input set is: Auto, Break. Case, Char, Const, Continue, Default, Do,

Double, Else, Enum, Extern, Float, For, Goto, If, Int, Long, Register, Return, Short.

Signed, Sizeof, Static, Struct, Switch, Typedef, Union, Unsigned, Void, Volatile, While

b) The calculating values are: C = 49329781, D =10140585, E = 4137

4.6.3 The Frequently Used Words Set

a) The input set is: And, Are, As, At, Be, But, By, From, For, Had, He, Her, His,

Have, In, Is, It, Not, Of, On, Or, That, The, This, To, Which. Was, With, You

b) The calculating values are: C = 78645213, D = 8541735, E = 5423

31

Chapter 5

COMPARISON OF TWO MEfHODS

5. LRun Time Analysis

There are many aspects that affect the run time of the algorithm. Here are three of

them: number of words in the set, length of words in the set, and distribution of words.

All these aspects will be discussed separately.

5.1.1 Number of Words in the Set and Their Impact

1) Run Time for Chang's Algorithm

a) Theoretical Analysis. Since the run time for getting the abstracted pair is O(n),

the run time for calculating the p(x), d(x) is O(n). And for C(x), it is O(mn), where m is

the number of iteration for calculating b. But because m ~ n, so O(mn) ~ O(n2
).

b) Empirical result. The actual run time of Chang's algorithm is shown in Figur 7.

From the test result we have the fit curve function is y= 12 + O.37xI6
. The actual run tim

of this method is O(nJ.~.

2) Run Time of Jaeschke's Algorithm

a) Theoretical Analysis. Run time for calculating C is O(kn), where k is the upper

bound of the value of the Input set as shown in Figure 8. The run time should add the run

time of calculating D, which is O(n), and run time for calculating E, which is O(cn
),

32

where c is the maximum difference Wi - Wj. Thus the run time of this algorithm is O(tf),

where a is a certain constant.

Run time of key words set in the C programming
language

10 a:>
C\I C\I

f~t-Gurve

C\I
C\l

o

100

80 +---------------~ __

60 +-----------~JfIIl,....~-

40 +---------........f3L-------

20 1H;e::e~....~------'-------
O+--r-,--,r-r-r-r-.--r--.-...---r-...--r-,--,r-r-r-r-.--r--.-...---r-...--r--r-r-"

>.c
-g 1Il
.- "C
"Q.C:
.- 0
::: 0

::::J (I)E Ih
-c:
Q.l .-

Eo
;;~
c:
::::J
a:

No of words In set

Figure 7 Run time of Chang's Algorithm

b) Empirical Result. Figure 8(a) shows the semi-log plot of a month et for which the C

value is successful calculated. In the curve we get the y= O.39x-3. Figure 8(b) the semi-

log plot of the key words set of the C programming language for which ,0 and E are

calculated. We have y = O.34x-O.5. Thus these prove the run time of this algorithm is

O(aD), where in the month set, a is eO.
39 and in the key words set of the C programming

I . 034anguage, a IS e .. .

3) Comparison between the Two Algorithms

33

•

Since Chang's algorithm always costs G(ne
) ~ O(n2

), where c is con tant and les than 2,

theoretically, it is better than Jaeschke's algorithm. But in the actual calculation this is

not always the case. As shown in FigurelO, we can see that for the mall set (rt~ 15),

laeschke's algorithm is always faster than Chang's algorithm. For a large set (n>15),

Chang's algorithm is a better choice.

Run time of the months set

4-.------------------.,

-
• Series1

-Linear (Series1)

1

't:J
.!!!
c.C;;3+------------~~~--t
-"0=C
::::J 0 2 ./-----------.IIlI"""----E (,)
-II)
Q) III
E c
~~

§ g 0 -+---.,----,-~,.,.._,___r__,-.--_,_~
a::ll)
- >- -1OlD +--.~-------------__t

o
..J -2 ..1.- ---'

No. of words In set

Run time of key words se1 In the C programming
language

"0 12 ..,.....----------------,
Q)=a C;; 10 f-------
.- "0
3 5 8 -1-------

g ~ 6 +----------:,...~~~~
II) III

.5.!: 4 +------~I"'=----
~S
::::J g 2 +------,~pL--------..
-0; ~ 0 1otl'"~'-r-r_._r_.__r.....___r_r'·-r"_r_r_r

o v ~ 0 ~ ~ ~ N II) 00..J -2 .i.-----__~__-_W-E"oJ____Q\.......

- -- j• Series1

-Linear ~S~rie~1)

No. of words in set

Figure 8. Run Time of Jaeschke's Algorithm (a) the Month Set
(b) Key words set of the C programming language

34

q

Small set comparison

180

160

140

120

100

80

60

40

20

o

.,.
,'~ I

I
I
I

?
"""""11 ~

... _...-
1 2 3 4 5 6 7 8 9 10 11 12 13 14

No. of words in set

Large set comparison

_]-+-serleS1
Jaeschke's _Serles2- --I

.E 8000.------------------,
g 7000 -1-------
lO

~ 6000 -1-------

j ~ 5000 +-----
:9- g 4000 -t-----
"5 g 3000 +- _
.5.'"
~ 2000 -1-----

;:; 1000 -1---
c:
~ 0 ••M.4....lMIM...,.j

No. 01 words In set

Figure 9. Comparison the Run Time between the Two Algorithms
(a) Small set (b) Large set

5.1.2 The Impact of the Length of Words in the Set on Run Time

1) Chang's Algorithm

The most important factor that affects Chang's algorithm's run time is the time of

getting the abstracted pair. The length of words in the set does not affect the time of

getting the abstracted pair. In order to test this, we choose five sets: 3-character set, 4-

35

character set, 5-character set, 7-character et and gr ater than 7-character set. Each word

in one of these sets has same length except that in the greater than 7-character set. The

results show the length of words has no effect on run time of this method as we can see in

Figure lO(a).

2) Jaeschke's Algorithm

The run time of this algorithm depends on the number of iteration for calculating C, D

and E, and the number of iteration is also detennined by the value of each word in the set.

Since the value of the word increases as the length of words goes up, the length of the

words does have an effect on the run time of this algorithm as we can see in Figure lO(b).

3) Test Sets for the Run Time of Each Algorithm

Here is the test sets of these algorithms. Their run time performance will be

discussed later on.

a) 3-character Set. And, bee, car, cob, cog, dip, din, dad, eat, foe

b) 4-character Set. Auto, beat, case, char, cone, deep, dome, dose, else, flag

c) 5-character Set. Among, break, crank, crazy, creep, dense, decoy, deceit, elect,

false.

d) 7-character Set. Alumnus, bracket, creator, crazily, creeper, dancing, density,

deduce, elastic, forgi ve.

36

4

e) Greater Than 7-character Set. Ambiguous, breakfast, creativity, crazines ,

cremation, deductive, departure, decorative, elasticity, fragment.

Impact of the maximum length of words in set on
run time

25
>.a
'i II) 20
.- 'tJ
'i5. c
E 815
~ Q)e en
';' .5 10
e---8
~ It) 5
::J
a:

.-II-.....e.:f~II--Chang's algorithm

~Series1

_Series2

-.-Series3
~Serles4

-+-Sarlas5

0+----,--,...--,---.---.----,--..,-----,--,...------,

2 3 4 5 6 7 8 9 10

No. of words in set

- - ------------------,
Impact of the maximum length of words in set on run

time

~Serles1

_Serles2
k Series3

--*-Serles4
-+-Serles5

2 3 4 5 6 7 6 9 10

No. of words In set

Series l--cufve for 3-character set; Series 2--curve faT 4-character set;
Series 3 - curve for 5-character set; Series 4 ~urve for 7-character set;
Series 5 curve for greater than 7-character set.

Figure 10 Impact of the Length of the Words in Set on the Two Algorithms
(a) Chang's Algorithm (b) Jaeschke's algorithm

5.1.2 Impact of the Distribution of Words on Run Time

37

1) Chang's Method

Since the run time of this algorithm is affected by the time of getting the abstracted

pair, the distribution of words has an effect on its run time. If the words are all

concentrated in one small region of the alphabet, it is difficult to get the abstra ted pair,

and this will cause the run time to go up very quickly. This is shown in Figure 11 (a). On

the other hand, if the words focus on a small range of characters, we sometime need to

separate them into groups to get a good performance of this algorithm.

2) Jaeschke's Method

The run time of Jaeschke's method depends only on the word value. The distribution

does not have any considerable effect on the run time of this method as we can see from

Figure 11 (b).

3) Test sets

Here is the test et of these algorithms. Their run time performance will be

discussed later on.

a) Uniform Set. About, body, come, data, elect, flag, hear, jeans, kind, lady.

b) Concentrated Set. Easy, elect, eager, erect, establish, erupt, equal, engage,

exercise, exit.

Figure 11 shows the distribution of the words and their effects.

38

Impact of the distribution of words on run time
(Chang's algorithm)

~ 80
"0 I/) 70
~ "0 600.1:
E 8 50
E 5l 40 .--------------::::....~

-;.5 30 unlfarm s-et

Eo 20 t~~:1;::~~~~~~=~~~~--+-....,....,~-I!=::-=:~-:;::0
I: Ltl 10
~ 0

2 3 4 5 6 7 8 9 10

>- 25
..0
"0 20CD I/)
-"0
0.1:
.- 0

15=(J:::J CD
E I/)

-I: 10CD .-
Eo
.- 0

5~Ltl
:::J
a:

0

No. of words in set

Distribution of words impact on run time

2 3 4 5 6 7 8 9 10

Set number

Figure 11 Impact of the Distribution of the Words in Set on the Two Algorithms
(a) Chang's Algorithm (b) Jaeschke's Algorithm

5.2 Space Complexity Analysis

39

5.2.1 Chang's Algorithm

Chang's algorithm uses space to store the input set and the abstracted pair set.

The space used is O(n), and storage used to save C(x), p(x) and d(x) is also D(n). The

storage to save bi is less than O(n2
). So the space complexity of this algorithm is O(n2

).

5.2.2 Jaeschke's Algorithm

Jaeschke's algorithm uses D(n) storage to save the input set, In set, PI set and P2

set which are O(n) for all. Thus the space complexity of this algOllthm is D(n).

5.3 Machine Dependence

Both Chang's algorithm and Jaeschke's algorithm are machine-dependent if the

input set is letter-oriented since different kinds of machines have different machine

character code representations which are used to get appropriate values of the hash

functions. Nowadays, most machines use the ASCII code for character that will make

these algorithms depend less on machines.

For the numeric input set, laeschke's algorithm is machine independent, since the

machine code never participate the calculation of the value of hash function. For

Chang's method, we fmt should shift the input sehnto words et which make this

method machine-dependent for the numeric input set. Or we can choose another

approach also developed by Chang which uses a different formula as mentioned in [9J,

then the machine character code never be used for calculating the value of hash function,

and this make Chang's algorithm machine-independent either.

40

5.4 Operation Time Comparison

After getting the perfect hash functions for the input set by using two algorithms,

there comes the problem: Does the operation on the hash table established by those hash

functions, such as searching and finding, consume same a mount of time?

Here is the analysis of this. We choose the hash table of the Month set which

includes twelve slots. The test set is composed of each element of the Month set and

other twelve words. The words are Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday, Sunday, Day, Date, Year, Month and Week. The run time for finding if the

element of the test set is in the hash table is hown in Figure 12.

From the figure, we can see that operation on the hash table built by Jaeschke's

hashing is much faster than that of Chang's because the hashing value is easier to

calculate for a given hash function by laeschke's algorithm than that of Chang's.

Operation time comparison

400

~ 350
't:l 't:l 300
.! c
Q. a 250:= (.)
"3 5: 200.s..!: 150

~ g 100
; ~ 50
c
2 0

-50

No of words

• Series1
• Series2

-Linear (Series1)
-Linear (Series2)

Figure 12 Operation Time Comparison on the Two Hash Tables Established by the Two
Algorithms.

41

Chapter 6

CONCLUSIONS AND IMPROVEMENTS

From the last chapter, we can see that these two methods have their own time and

space complexity. Each of them has their own advantages and disadvantages. Here are

some discussions on them.

6.1 Advantages of Chang's Algorithm

6.1.1 Good Run Time Complexity

As shown in the last chapter this method has the time complexity of D(n). It is

also good for a large input set. For a large set (n> 15), Chang's algorithm is a good choice

since Chang's algorithm is O(n'). where c is less than 2, and Jaeschke's algorithm is

O(an).

6.1.2 Good for the Letter-oriented Input Set

This method uses the abstracted pair that is based on the input set to calculate the

hashing value. It is very powerful for letter-oriented sets.

6.1.3 Easy Coding and High Efficiency

42

This method is based on the Chinese Remainder Theorem. It is easy to cod . and the

result is guaranteed to be a minimal perfect hashing function. So it is good to u this

method to perfonn hashing.

6.2 Limitations of Chang's Method

Although Chang's method has good perfonnance in run time for a letter-oriented

input set, it has some disadvantages. Here are some of them.

6.2.1 Space Limitation

This algorithm's space complexity is O(nz), that means it will use a large space to

hold the calculation values. If the input set is large, there will be a problem.

6.2.2 Distribution of the Input Set

This method uses the grouped abstracted pair (Ph pz). Each pair in th group ha

the same PI, but different Pz. This means the maximum number of the pairs in the group

must be less than 26. So if the input words is concentrated in a small range that will cause

the run time to find the abstracted pair to go up, or even worse there will be no olution

for this kind of set and some additi.onal methods must be used to re-group the et.

6.2.3 Handles Only Letter-oriented Input Set Effectively

This method is powerful and fast only for coping with a letter-oriented set. For

other kinds of sets there must be a different approach of Chang's method or it will need

more complicated calculation to shift them to word sets.

43

6.3 Advantages of Jaeschke s Algorithm

6.3.1 Good Space Complex.ity

This method use only O(n) space for calculating hashing valu , which av d

more space than Chang's method.

6.3.2 No limitation for the input set

This method does not need the input to be words or letters. It can handle both

characters and integers without much difference. Also the distribution of the input words

has no effect on the run time of this method. Therefore, this method has a wide range of

application than Chang's method.

6.3.3 Good Run Time for the Small Input Set

For a small set (n ~IS), Jaeschke's algorithm is better than hang' algorithm as

we can see from the last chapter. It uses only as half time as that of Chang's algorithm on

the average.

6.4 Disadvantages of Jaeschke's Algorithm

6.4.1 Run Time Complex.ity

This method is slower than Chang's method as n becomes large, because its run

time is O(a"). It is sometimes 100 times slower than Chang's method as number of

elements in the set is greater than 30.

44

6.4.2 Run time Changes according to the Length of the Input Words or Value of the Input

Data

If the input data are integers, the large input set will cause the run time go up. If

the input set consists of words only, as the length of the input words goes up, it will cause

the run time to increase as shown in the last chapter.

6.5 Suggestions

These two methods have their own advantages and disadvantages. It is better to

use them properly and limit their drawbacks. Here are two suggestions

1) For the small input set use Jaeschke's algorithm, and for a large set use Chang's

algorithm.

2) If the input set is concentrated in a small range of characters, first use Jaeschke's

algorithm. If the length of the words is greater than seven characters, try Chang's

algorithm first.

6.6 Improvement

There are also some methods to combine them and make them perform well.

I) For the concentrated word set, separate the input set into several groups and make

sure each group has less than 15 words, then use Jaeschke's algorithm. In this way the

only extra overhead is another storage to save the group table and increased run time

because of calculating values for each group. Since they are all O(n), it is not a big issue.

So compare with the run time and space complex.ity of each method, it is still a

45

reasonable approach to separate the input set into sub ets and u e the Jaeschke's

algorithm to hash each subset separately, then united the results together to get the

hashing values.

2) For longer length word set or large integer set

First use Chang's method to get the abstracted pair set and then use Jaeschke's

algorithm for longer length input words or just use some bits of input integers to build a

new input set. In this way the calculation will be easy and simple and the extra time and

space cost is only O(n).

46

BIBLIOGRAPHY

[1] C. C. Chang, A letter-oriented minimal perfect hashing scheme. The Computer 1.,

29(3),277-281 (1986).

[2] R. J. Cichelli, Minimal perfect hash function made simple. Commun. ACM, 23(1), 17

19 (1980).

[3] V. G. Winters, Minimal perfect hashing in polynomial time. Bit 30,235-244(1990).

[4] M. Gori amd G. Soda, An algebraic approach to Cichelli's perfect hashing. BIT 29, 2

13 (1989).

[5] G. Jaeschke. Reciprocal hashing: a method for generating minimal perfect hashing

functions. Commun. ACM, 24(12), 829-833 (1981).

[6] N. Cercon, J. Boates and M. Krause, An interactive system for finding perfect hash

functions. IEEE Software, 2(6),38-53 (1985).

[7] F. Berman, M. E. Bock, et al. Collections of functions for perfect hashing. SIAM J.

Comput., 15(2), 604-618 (1986).

[8] R. SprugnoJi, Perfect hashing functions: a single probe retrieving method for statk

sets. Commun. ACM, 20(11), 841-850 (1977).

[9] C. C. Chang, The study of an ordered minimal perfect hashing scheme. Commun.

ACM, 27(4),384-387 (1984).

[10] T. J. Sager, A polynomial time generator for minimal perfect hash functions.

Commun. ACM, 28(5),523-532 (1985).

47

-

[11] G. V. Connack, R. N.S. Horspool and M. Kaiserswerth, Practical perfect h hing.

The Computer 1., 28(1), 54-58 (1985).

[12] Z. J. Czech and B. S. Majewski, A linear time algorithm for finding minimal perfect

hashing functions. The Computer J., 36(6), 579-587 (1993).

[13] C. C. Chang, An ordered minimal perfect hashing scheme based upon Eu! r'

theorem. Infonnation Sciences, 32(3), 165-172 (1984).

[14] C. R. Cook, A letter oriented minimal perfect hashing function. Sigplan Notices.

17(9),18-27 (1982).

[15] M. W. Du, K. F. lea and D. W. Shieh, The study of a new perfect hash scheme.

Proceedings, the IEEE Computer Societies: International Computer Software &

Application Conference'80, Chicago, 341-347 (1980).

[16] G. Jaesche and G. Osterburg, On Cichelli's minimal perfect hash functions method.

Communications of the association for computing Machinery, 23(12), 728-729

(1981).

[L7] D. E. Knuth, The Art of Computing Programming. Vol. 3: Sorting and Searching.

Addison-Wesley, Reading, Mass., 506-507 (1973).

(18] M. L. Fredman, l. Konlos and E. Szemeredi, Storing a sparse table with 0(1) wor t

case access time. loural ACM, 31(3), 538-544(1984).

[19] C. Bell and B. Floyd, A Monte Carlo study ofCichelli of hash-junction solvability.

Commun, ACM, 26(11),924-925 (1983).

[20] C. C. Chang, The study of an ordered minimal perfect hashing scheme with single

parameter. Information Processing Letters, 27,79-83 (1988).

48

[21] W. P. Yang and M. W. Du, A backtracking method for constru ting perfect hash

functions from a set of mapping functions. BIT, 25, 148-164 (1985).

[22] G. D. Knott, Hashing functions. The Computer J., 18, 265-278 (1975).

[23] C. Cook and R. Oldehoeft, More on minimal and almost minimal perfect hash

function search. Computers and Mathematics with Application. 9(1),215-232

(1983).

[24] D.E. Knuth, Estimating the efficiency of backtrack programs. Math. Comput., 29(2),

121-136 (1975).

[25] J. L. Carter and M. N. Wegman, Universal classes of hash functions. Proc. Ninth

Annual Symposium on the Theory ofComputing. 106-112 (1977).

[26] D. Comer and M. J. O'Donnell, Geometric problems with application to hashing,

The Computer Journal, 11,217-226 (1982).

[27] K. Mehlhorn, On the program size of perfect and universal hash functions. Proc.

23rd AnnuaL Symposium on the Foundations of Computer Science. 170-175 (1982).

[28] R. E. Tarjan and A. C. Yao, Storing a sparse table. Commun. ACM. 22,606-61 L

(1979).

[29] A. C. Yao, Should tables be sorted? 1. Assoc. Comput. Mach.. 28, 6L5-628 (1981).

[30] W. D. Maurer and T. G. Lewis, Hash table methods. Computing Surveys. 7(1), 5-20

(1975).

[31] D. G. Severance, Identifier search mechanisms: A survey and generalized model. .

Computing Surveys, 6(3), 175-194 (1974).

[32] C. C. Chang, The study of an ordered minimal perfect hashing scheme. Commun.

ACM, 27(4), 384-387 (1984).

49

[33] B. Bollobas, Random Graphs. Academic Press, w York (1985).

[34] M. D. Brian and A. L. Tharp, Near-perfect hashing of large word sets. Software

Practice and Experience, 19,967-978 (1990).

[35] Z. J. Czech, G. Havas and B. S. Majewski., An optimal alogrithm for generating

minimal perfect hash functions. Information Process. Lett., 43,257-264 (1992).

[36] J. Ebert, A versatile data sturcture for edge-oriented graph algorithms. Commun.

ACM, 30,513-519 (1987).

[37] P. Flajolet, D. E. Knuth and B. Pittel, The first cycles in an evolving graph. Discrete

Mathematics, 75, 167-215 (1989).

[38] E. A. Fox, L. S. Heath, et aL., Practical minimal perfect has functions for large

datbases. Commun. ACM, 35, 105-121 (1992).

[39] G. Haggard and K. Karplus, Finding minimal perfect hash functions. ACM SpeciaL

Interest Group on Individual Computing Environments Bull., 18, 191-193 (1986).

[40l G. H. Gonnet and R. Baeza-Yates, Handbook ofAlgorithms and Data Structures,

Addison-Wesley, Reading, MA (1991).

[411 T. G. Lewis and C. R. Cook, Hashing for dynamic and static internal tables. IEEE

Computer, 21,45-56 (1988).

[42] E. M. Palmer. Graphical Evolution: An Introduction to the Theory ofRandom

Graphs. New York, John Wiley & Sons (1985).

[43] M. A. Weiss, Data Structures and Algorithm AnaLysis in C. Menlo Park, Addison

Wesley Publishing Company (1997).

[441 B. S. Majewski, N. C. Worwald, etal, A family of perfect hashing methods. The

Computer J., 39(6),547-554 (1996).

50

[45] T. H. Connen, C. E. Leiserson, R. L. Ri vest, Introduction to Algorithms. McGraw

HillCompanies (1997).

51

APPENDIX A C PROGRAMMING CODE FOR CHANG'S ALGORITHM

#include<stdio.h>
#include<string.h>
#include<math.h>
#include<time.h>

1* Group Structure */
typedef struct group
(

char G;
int Pos[2) ;/* posen) stands for pos, Pos[l) stands for length*1
int size;
int link [3°1;
struct group *next;

) group;

/* Abstracted Pair */
typedef struct pair
(

char kl;
char k2;
int h.x;

)pair;

/* d(x) and c(x) of input element */
typedef struct d_c

char k1;
int d;
int c;

/* Frequency of each character *1
typedef struct fre{

char k2;
int n;
int p;

}fre;
char tempy(30),input(SO) [10) ;1* input should be separated by comma.*/
pair x [32) ;
d_c dx_cx [26) ;
fre f[26)={{'O',O,O}};
int kk(26),size;
/* Functions *1
group * sort_group(group *Group);
void get_abstract (group *Group);
int get_ab(group *node,int sign);
int get_group(int group());
void get_dx(d_c dx_cx[], int group[),int g_Num);
int get_fx(fre f[));
void get-prime(int f_Num,int Primer));

52

void get-px(fre f[),int PrimeCl,int f_Num);
void print (group *Group,FILE *out);
void print_dx(FILE *out);
void print-px(fre f[),FILE *out);
int get_ff(char c);
int get_c(int kk[) ,int size);
void get_cx(group *Group);
void print_cx(FILE *out);
int c(char kl);
int d(char kl);
int p(char k2);
void cal_hx(FILE *out,group *Group);
void sort(int size);

void main(void) {
int i,j,k,n,loop;
char temp;
group *Group,*node;
int g_Num,grou[26) ,f_Num;
int d[261 ,Prime[26);
FILE *out,*tout;
time t start,end,usetime;

i=l;
j=O;

ou t = f open ("aa" , "w") ;
tout=Eopen("time", ·w");
start=time(NULL) ;

for(n=O;n<500;n++l (
fprintE(out, "******** n= %2d **************\n\n",n);
Group=(group *)malloc(sizeoE(group»;
Group->next=(group *)malloclsizeof (group»);
node=Group->next;
node->size=O;
node->next=NULL;
for(i=O;i<50;i++) {

input [i I [0 1=' \ 0' ;
}

I*get input set and store it in char array temp */
printE("Please in put the letter set:\n");
printE("···****-************************\n") ;
usetime=O;
1* data set are stored in input array *1
temp=getchar() ;
i=l;
j=O;
while (templ='\n') (

if (temp! =' , ') (
input [iJ [j++l=temp;

}

else{
input[iJ [jl='\O';
j=O;
i++;

53

temp=getchar() ;

size=i;
inpu t [i ++ 1 [j 1= I \ 0 I ;

input[i++1 [01=0;/* show the input is finished */

/*sort the set and group them */
Group=sort_group(Group) ;

get_abstract (Group) ;
print(Group,out);

g_Num=get_group(grou);
get_dx(dx_cx,grou,g_Num) ;
print_dx(out);
f_Num=get_fx(f) ;
get-prime (f_Num, Prime) ;
get-px(f, Prime, f_Num) ;
print-px(f,out) ;
get_cx(Group);
print_cx (out) ;
cal_hx(out,Group) ;
end+=time (NULL) ;
usetime=end-start;
fprintf(tout,"---

__ \nn) ;

fprintf(tout, "words nurober=%10d, time
used=%lOd\n",size,usetime) ;

fprintf(out,"--
------\n") ;

free (Group) ;

}

fclose(out) ;
fclose(tout) ;

}

void sort(int size){
int i,j,temp;
for(i=O;i<size-l;i++) (

for(j=size-l;j>i;--j){
if(kk[j-ll>kk[j]) (

temp=kk[j-l] ;
kk[j-ll=kk[j] ;
kk[jl=temp;

void cal_hx(FILE *out,group *Group) {
group *node;

54

int i,k,j;
i=O;
while(x[i] .kl!=O) {

xli] .hx=d(x[i] .kl)+(c(x[i] .k1)%p(x[i] .k2));

i++;

fprintf(out," Location Extracted Pair
Original Key \n U

);

fprintf(out,"--
----------------------\n");

i=l;
j=O;
k=O;
node=Group->next;
while (node !=NULL) {

k=O;
fprintf(out, "%13d (%lc,%lc)

%20s\n",x[j] .hx,x[j] .k1,x[j++] .k2,input[node->link[k++]]);
while (k<node->size) (

fprintf(out, "%13d (%lc,%lcl
%20s\n", x [j) .hx,x [j] . k1 ,x [j++] .k2, input [node->link[k++]]) ;

}

node=node->next;

}

int d (char kl) {
int i=O;
while(dx_cx[i) .kl!=O) (

iE(dx_cx[i) .kl==k1)
return dx_cx[i] .d;

else
i++;

}

return 0;

int c(char k1) (
int i=O;
while (dx_cx[il .k1!=0) {

if (dx_cx[i] .k1==k1)
return dx_cx[i] .c;

else
i++;

return 0;

int p(char k2)(
int i=O;
while(f[i] .k2!=0) {

if (f [i) . k2 ==k2)
return E[i] .p;

else
i++;

ss

}

return 0;

void get_cx(group *Group) {
int i,k,j,z;

group *node=Group->next;
k=z=O;
while(node!=NULL'{

if(node->size!=l) (
i=node->size;
j =0;
while(i>O) {

kk[jl=get_ff(x[k) .k2);
j++;
k++;

i--;
}

kk[j)=O;
sort (node->size) ;

dx_cx[z++J .c=get_c(kk,node->sizel;
}

else{
dx_cx[z++] .c=l;
k++;

}

node=node->next;
}

int get_ff(char cl {
int i=O;
while(f[il.k2!='0'&&f[il.k2!=c) {

i++;
}

return f[i} .p;
}

int get_c{int kk[],int size) {

int i,j,z,k;
int *MM,DEND,RMD,DSR,*Q,*B,*b,*C,*M,c,m;
int *y;
M=(int *)malloc(sizeof(intl*size);
MM=(int *lmalloc(sizeof(int)*size);
Q=(int *)malloc(sizeof(int)*size);
B=(int *)malloc(sizeof(intl*sizel;
b=(int *lmalloc(sizeof(int'*size);
C=(int *lmalloc(sizeof(int)*sizel;
y=(int *)malloc(sizeof(int'*sizel;
for(i=l;i<=size;i++l {

M[iJ=l;
MM[iJ=Q[il=B[il=b[i}=C[il=O;

56

for(i=lji<=size;i++) (
for(j=l;j<=sizejj++) (

if(i!=j)
M[i] *=kk[j-1];

}

for (i=l;i<=size;i++) (
MM[i]=M[i]%kk[i-1];

II printf("%d\n",MM[i]);
}

for(z=l;z<=size;z++) (
DEND=kk[z-l] ;
DSR=MM[z] ;
j =1;
Q[j]=DEND/DSRj
RMD=DEND-Q[j]*DSR;
if (RMD==O) {

b[zJ=l;
}

else{
while(RMD!=O&&RMD!=l) {

DEND=DSR;
DSR=RMD;
j=j+1;
Q[jJ=DEND/DSR;
RMD=DEND-Q[j]*DSRj

}

i=j;
B[O]=l;
B[lJ =-Q[i];
if(i>2){

for (j=1;j=i-1jj++) {
B[j+l]=-B[jJ *Q[i-j]+B[j-l];

}

else (
if(i==2)

B[j]=-B[j-l)*Q[i-j+l]+B[j-2J;
}

b[z)=B[i) ;

}

c=Oj
m=lj
for(i=lji<=size;i++) {

C [i] =b [i] *M [i] * i;

c+=C[iJ;
m* =kk [i -1] ;

}

if(c<O){
c+=m;

}

c=c%mj
free (M) j

free (MM) ;

57

.

-I

free (Q) ;

free (b) ;
free (B) ;

free (C) ;

free (y) ;

return c;

void print-px(fre f(),FILE *out) {
int i;
fprintf (out," ----------------------------\n");

i=O;
while(f(i] .k2!=0) {

fprintf(out,"p(%c)= %2d\n",f(i).k2,f(i).pl;
i++;

)

fprintf(out. "----------------------------\0");
}

void print_dx(FILE *outl {
int i,j;
fprintf(out, " \n");

fprintf (out, "d(%c] = %2d\n" ,x[O] .k1,dx_cx[0) .d);
i=l;
j=1;
while(x[i) .k1!=0) (

if(x(i] .k1==x[i-1J .kl)
i++;

else{

fprintf(out, "d(%c) = %2d".x[iJ .kl,dx_cx(j++) .d);
fprintf(out,"\n");

i++;

fprintf (out, "----------------------------\n");

void print_cx(FILE ~out) (
int i,j;
fprintf(out, "----------------------------\n");
fprintf(out,"c[%c] = %2d\n",x[0) .kl.dx_cx[O) .c);
i=1;
j=l;
whil e (x [i] . k 1 ! =0) (

if(x(ij .k1==x[i-1) .kl)
i++;

else{

58

fprintf(out, "c[%c]
fprintf(out,"\n") ;

i++;

%2d",x(i] .kl,dx_cx(j++] .c);

fprintf(out, "----------------------------\n");

group *sort_group(group *Group) (
int Lk;
group *node,*pnode;
i=l;
k=O;/* for link position */

while(input(i] (Oll=O) (
node=Group->next;
if(i==l) (I*first node*/

node->G=input[i] (0];
node->link(Ol=i;
node->link[ll='\O' ;
node->size=l;

}

else{

if (node->G==input[i] [O]){
k=O;
while (node->link(k] !='\O') {

k++;
}

node->link(kl=i;
node->link(k+l]='\O' ;

node->size++;
}

else{
if(node->G>input(il [OJ) (

Group->next=(group
*)malloc(sizeof(group)) ;

Group->next->G=input(i] (0];
Group->next->link[O]=i;
Group->next->link[ll='\O' ;
Group->next->size=l;
Group->next->next=node;

}

else{
pnode=node;
while(node->G<input(i] [O]&&node-

>next! =NULL) {

pnode=node;
node=node->next;

}

if (node->G==input[ij (0]) (
k=O;
while (node->link[k] '='\0') {
k++;

59

}

node->link [k] =i;
node->link[k+l]='\O' ;
node->size++;

}

else{
if (node->G>input[i] [O]){

pnode->next=(group
*)malloc(sizeof(group)) ;

pnode->next->G=input[i) [0];
pnode->next->link[O]=i;
pnode->next->link[l]='\O' ;
pnode->next->size=l;
pnode->next->next=node;

}

else{
node->next=(group

*)malloc(sizeof(group));
node->next->G=input[i] [0];
node->next->link[O]=i;
node->next->link[l)='\O';
node->next->size=l;
node->next->next=NULL;

i++;
}

return Group;
}

void get_abstract(group *Group) (
group *node=Group->next;
int k,j,z,i=O;
j=O;
while(node~=NULL){

if (node->size==l) (
node->Pos[O]=2;
node->Pos[l]=-l;
xli) .kl=node->G;
k=node->link[O] ;

x[i++) .k2=input[k) [1);
}

else{
j=get_ab(node,ll;
if(j!=-l){

z=O;
while (z<node->size) {

node->Pos[O)=j;
node->Pos[l)=-l;
x[i) .k1=node->G;
k=node->link[z] ;
x[i++].k2=input[k] [j];
z++;

60

}

node=node->next;
}

x [i J .kl =' \ 0' ;
x [i] . k2 =' \ 0 ' ;

int get_ab(group *node,int sign) (
int i,j,k,z;
k=O;
if (sign==10)

return -l;/*feilture */
for(i=0;i<30;i++){

tempy [i] =' \ 0' ;
}

if(strlen(input[node->link[O]]»sign) {
ternpy[k++]=input[node->link[O]] [sign];

}

else{
z=strlen(input[node->link(O]]) ;
tempy[k++]=input(node->link[O]] [z];

}

ternpy (k] = ' \ 0 ' ;
j=l;
i=O;
while (j<node->size) (

if(!strchr(ternpy,input[node->link[j]] [sign])) (
if(strlen(input[node->link[j]]»sign) {

ternpy[k++]=input[node->link[j]] [sign];
}

else{
z=strlen(input[node->link[j]]) ;
tempy[k++]=input[node->link[j]] [z];

}

else{
i=-l;

break;
}

j++;
}

if(i!=-l) {
return sign;

}

else{
get_ab(node,sign+l) ;

void print (group *Group,FILE *out) (
group *node;
int j,k,i=l;
node=Group->next;
j=k=O;

61

fprintf(out,"*** ***********

**********************\n"} ;
fprintf(out,"\n Input set is: \n\n");
while(i<=size) {

fprintf (out, "%20s\n", input [i++]);
}

fprintf(out, "**
**********************\n ll

) ;

fprintf(out," Group Extracted Pair
Original Key \n");

fprintf(out, ,,--
----------------------\n"l;

i=l;
while(node!=NULL) (

k=O;
fprintf(out, "%13d (%lc,%lc)

%20s\n",i++,x[j] .kl,x[j++].k2,input[node->link[k++l 1);

while(k<node->size) {
fprint.flout, "

(%lc, %lc) %20s\n" ,x [j) . kl, x [j++] . k2, input [node->link[k++]]) ;
}

node=node->next;
}

fprintf(out, ,,--
----------------------\n") ;
}

void get-pxlfre f[],int Prime[],int f_Num) (
int i,k,z=O;

forli=O;i<f_Num;i++) (
f[i].p=-l;

)

forli=O;i<f_Num;i++) {

z=O;
wh i 1e (f [z] . P ! = -1) {

z++;
}

forlk=z+l;k<f_Num;k++) {
if(f[k].p==-l

&&((f[k].n>f[z] .n) II (f[k] .n==f[z).n&&(f[kj.k2<f[z] .k2))))
z=k;

}

f[z] .p=Prime[il;

void get-prime(int f_Num, int Primer)~ (
int i,k,z;
Prime[0]=2;

Prime[l)=3;
Prime[2]=5;
k=3;
forli=7;k<E_Num;i++) {

for(z=sqrt(i) ;z>1;z--) (
if (i%z==O)

62

z=l;
}

if(z==l)(
Prime[k++)=i;

}

int get_fx(fre f[) (
int i,z,k;
f [0) . n=l;
f [O).k2=x[O). k2;
k=l;
i=l;
while(x[i).k2!=O) (

for(z=k-1;z>=O;z--) (
if(f[z) .k2==x[i).k2} (

f[z).n++;
z=-l;

)

/* if k2 first appearence */
if(z!=-2){

f[k).n=l;
f [k++) .k2=x[i).k2;

i++;
}

return k;

void get_dx(d_c dx_cx[), int grou[),int g_NumJ {
int i,k,z;
for(i=O;i<26;i++) (

dx_cx [i) . d=O;
dx_cx[i) .c=O;

}

i=l;
k=l;
dx_cx[O) .k1=x[O) .kl;
while(x[i] .k1!=O) (

if(x[i) .kl!=x[i-l).kl) (
dx_cx[k++] .kl=x[i) .kl;

i++;
}

whi 1e (x [i) . k1 ! =0) {
for(z=k-l;z>=O;z--) (

if(dx_cx[z] .k1==x[i) .kl) {
f[z).n++;
z=-l;

}

/* if k2 first appearence */

63

if(z!=-2){
f[k).n=l;
f[k++] .k2=x[i].k2;

i++;

for(i=l;i<g_Nurn;i++) (

dx_cx[i] .d=dx_cx[i-1) .d+grou[i-1];

}

int get_group(int grou[)) {
int i,j;
for(i=0;i<26;i++) {

grou[i]=O;
}

grou [0] =1;
for(j=Li=0;j<32;j++) {

if (x [j] . k1 ==x [j -1] . k1) {
grou[i)++;

)

else{
i++;
grou[i] =1;

}

return i+1;

64

APPENDIX B C PROGRAMMING CODE FOR JAESCHKE"S ALGORITHM:

#include<stdio.h>
#include<string.h>
#include<math.h>

char input[SOJ [10J;
int w[SOJ ,ww[50] ,B[SO];
long D,E,bound;
int Prime(SO] ,P1[SO] ,P2(SO] ,M[SO],P[SO],P_temp[SOJ;
int get-prime(int num);
void calcu_D(int nurn);
void calcu_P1(int num);
void calcu_B(int num,int size);
int Check_B(int size);
int multiple(int size);
void sort (int size);
int calcu_C(int size, long C,long L);
int check_same(int size,int same[]);
void printout (FILE *out,int size,int C);
void calcu_M(int num);
void calcu_bound(int num);
void calcu_E(int num);
int get_I(int num);
int get_T (void) ;
int iO,a,T[50];
void main (void) {

int i,j,k,size,num;
long L,C,CO;
char temp;
FILE *out;
time_t start,end,usetime;

out=fopen ("bb" , "w") ;

Eor(i=O;i<SO;i++){
input [i] [0] =' \ 0' ;
w[iJ=ww(i]=O;

}

printf("Please in put the letter set:\n");
printf(II********************************\n ll) ;

/* data set are stored in input array */
i=O;
j=O;
temp=getchar() ;
while (temp!='\n') {

if (temp! = ' , ,) (
input[iJ [j++]=temp;
w[i]+=temp;
ww[i]+=temp;

}

else(

65

input(iJ (jl='\O';
j=O;
i++;

}

temp=getchar();
}

size=i+l;

input (i++l (jl='\O';
w(iJ=O;
ww(il;
input(il (01=0;/* show the input is finished */
start=time(NULL) ;

for(i=0;i<500;i++) {
sort (size) ;

CO=lsize-2)*w(OI*w(size-ll/(w(size-l)-w(OI) ;
L=multiple(size) ;
L*=size;
j=calcu_C(size,CO,L) ;
if(jl=-l){

printout(out,size,j) ;
}

else{
get-prime(size) ;
num=get_I(size/2) ;
for(i=O;i<num;i++)

P_temp(il=P[il;
calcu_B(num, size) ;

calcu_Pl (nurn) ;
calcu_D (num) ;
calcu_M (num) ;
calcu_bound (num) ;
i=get_T();
calcu_E (i, num) ;

}

end+=time (NULL) ;
usetime=end-start;
fprintf(out, ,,---

-\n") ;
fprintf(out. "words number=%10d, time

used=%lOd\n",size.usetime) ;

fprintf(out, ,,--
------\n") ;

)

fclose(out) ;

/*get set I of prime <= n/2 */
int get_I(int num){

int i;
for(i=O;Prime(il<=num;i++)

P(i]=Prime[il;
return i;

66

}

int get_T (void} (
int i,j,temp;
i=sqrt (bound) ;
ternp=bound;
j=get_I(il;
for(i=0;i<50;i++) {

T[i)=O;
}

for(i=O;i<j;i++} {
while(P[il !=O&&temp%P[i)==O}{

T[i)=P[i);
temp /=P[i);

return j;

void calcu_E(int j,int nurn) {
int i,flag;
long temp=l;
for(i=O;i<j;i++} (

if(T[il !=O)
temp *=T [i] ;

if (P_ temp [i] ! =0 l
temp *= P_temp[i);

}

for(E=P[O) ;E<temp;E+=P[Oll (
flag=O;
for(i=O;i<num&&flag!=l;i++) (

if(Pl[il !=O &&(E%Pl[il)==0)
flag=l ;

}

if(flag!=ll
return;

}

void calcu_bound(int num) {
int i,j;
long s~d.deta=l;

for(i=O;i<nurn;i++l (
for(j=i+l;j<num;j++) {

deta *=(w[j]-w[ill;

)

bound=deta;

void calcu_M(int num} {
int i;
for(i=O;i<num;i++l {

M[i]=O;
if(P2[i]!=Ol

67

M[i]=-0*(w[i]%P2[i])%P2[i];

void calcu_O(int num) (
int i;
0=1;
for(i=O;i<num;i++){

if (P1 [i J ! =0)
D *=Pl[il;

}

/*get Pl set */
void calcu_Pl(int num) (

int i,j=O;
for(i=O;i<num;i++)

Pl[il=O;
for(i=l;i<num;i++) (

if(Prime[i] !=P2[i])
Pl[j++]=Prime[i] ;

void calcu_B(int num,int size) (
int i,j,z;
for(i=0;i<50;i++) {

B(i]=-l;
P2[i]=0;

}

for (j =0; j <numi j ++) (

for(i=O;i<sizeii++) {
/* get all resides in B*/
B[il=w[i]%Prime[j]l;

}

z=Check_B(size) i

if(z==l){
P2 [j] =Prime [j 1;
/*if P2[j] !=o that is element of P2 set*/

}

/*check the times of v happens */
int Check_B(int size) {

int i,j,f;
for (i=O;i<size;i++) (

f=1;
for(j=i+l;j<siz8;j++) (

if (B [i] ==B (j])
f++;

}

if(f==l)
return Ii

return 0;

68

int get-prime(int size) (
int i,k,z;
Prime[Ol=2i

Prime(lJ=3;
Prime[21=5;
k=3;
for(i=7;i<sizeii++) (

Eor(z=sqrt(i) iz>liZ--) (
if(i%z==O)

Z=li
}

iE(z==l)(
Prime[k++]=ii

}

Eor(i=kii<50ii++) {
Prime[i)=O;

}

return ki
}

void printout (FILE *out,int size,int C) (
int i;
fprintf(out, "Input set is:\n"J;
fprintf (out, "---------------------------\n");
fprintf(out, " word w[i]\n"J;
fprintf(out,"---------------------------\n") ;
for(i=Oii<sizeii++) (

fprintf (out, "%las %10d\n", input (i) ,w (i)) ;
}

fprintf(out, "\nC=%6d\n\n",C);
fprintf(out, "---------------------------\n");
Eprintf(out," Location word\n");
fprintf(out, "---------------------------\n") ;
for(i=Oii<sizeii++) (
fprintf(out, QUOd %12s\n", (C/w(i))%size,inputliJ);
}

int calcu_C(int size,long C,long L) (
int i,j,same[50] i

iE(C>L) (
return -1;

}

for(i=O;i<50;i++) (
same[i]=Oi

)

for{i=Oii<sizeii++J {
same[i)=(C/w[i])%size;

)

j=check_same(size,same)i

69

if(j==-l)
return C;

else(
iO=O;
for(i=O;i<j;i++)(

if«(C/w[j)%size==(C/w[i])%size)&&iO<i)
iO=i;

}

if ((w [i 0] -C%w (iO]) > (w [j] -C%w [j]))
a=w[j]-C%w[j);

else
a=w[iO)-C%w[iO] ;

C=calcu_C(size,C+a,L) ;
return C;

int check_sarne(int size,int same(]){
int i,j,jj;
jj=-l;
for(i=O;i<size;i++) (

for(j=i+l;j<size;j++) (
if«(same(i)==sarne[jj)&&j>jj)

j j=j ;

}

return jj;

int rnultiple(int size) (
int i,j,flag;
long L,rn;

int ternp(50];
rn=L=l;
for(j=O;j<size;j++) (

temp [j] =w [j] ;
)

for(i=2;i<sqrt(w[size-l]) ;i++)(
flag=O;
for(j=O;j<size;j++)(

if ((ternp [j] - (temp (j] / i) *i) ==0) (
ternp(j]=ternp(j]/i;
iE(flag==O) {

flag=l;
rn*=i;

}

}

Eor(i=O;i<size;i++)
L*=temp[i] ;

return L*m;

70

-

void sort(int size) (
int i,j,temp;
for(i=O;i<size-lii++) (

for(j=size- 1 ij>i;--j) {
if (w [j -1) >w [j)) (

temp=w[j-1) ;
w [j - 1] =w [j) ;
w[j)=temp;

71

,....
I,..

VITA

Qizhi Tao

Candidate for the Degree of

Master of Science

Thesis: COMPARISON OF PERFECT HASHING METHODS

Major Field: Computer Science

Biographical:

Personal Data: Born in Harbin, Heilongjiang Province of P R China, the daughter of
Chongde Tao and Aihua Zhou.

Education: Graduate from the No.3 middle school of Harbin in July 1984; received
Bachelor of Science degree and Master of Science degree in Mechanical
Engineering from Harbin Institute of Technology in July 1988 and March
1991, respectively. Completed the requirements for the Master of Science
degree with a major in Computer Science at Oklahoma State University in
June, 1999.

Experience: Worked as an engineer and translator in Longda Company of Harbin
from 1991 to 1993;employed as an executi ve edi tor of Journal of Harbi n
Institute of Technology (English Edition) for 1993 to 1997.

--------~=~ -~ .

