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CHAPTER 1

INTRODUCTION

1.1 Perspective of Artificial Neural Networks

Artificial Intelligence (AI) is one of the emerging fields in computer science that

has interested many scientists and researchers. It is about the study of machines that can

understand and make judgements, in the way that humans do. Animal and human

intelligence is the inspiration to the development of AI. These machines with replicated

intelligence traits have been applied in many fields including aerospace, banking and

finance, medical, manufacturing, and telecommunication. In addition, many researchers'

keen interests have led further to the rapid growth and development of these machines.

Artificial Neural Networks (ANNs) are a sub-field of AI and are designed to simulate the

intelligence aspects of biological neural networks. Warren McCulloch and Walter Pitts

first proposed ANNs that could compute any arithmetic or logical function in 1943

[McCulloch 43]. The first practical application of ANNs appeared in the late 1950's,

with work done by Frank Rosenblatt on a device called the perceptron [Freeman92].

During the same period, Bernard Widrow and Ted Hoff [Widrow60] introduced another

ANN application called Adaline [Freeman92]. Research in ANN dropped off

between1969 and the early 1980's as a result of a publication by Marvi.n Minsky and



Seymour Papert, who convinced others that A s were a dead end [Fre man92;

Minsky69]. ANN research was revitalized during the mid-1980s when the

backpropagation algorithm for training multi-layered networks became lUore widespread

[Hagan96]. With many researchers concentrating on the backpropagation algorithm,

Teuvo Kohonen pursued research in associative and topology preserving neural networks

during the same period [Maren90]. The Self-organizing Map (SOM), developed by

Kohonen, is a significant achievement in ANN research [Caudi1l93].

1.1.1 Self-Organizing Map

SOM is a winner-take-all, competition type of neural network. It does not

require complicated mathematical calculations as compared to the widely accepted

feedforward networks, which commonly use the backpropagation learning technique. [0

addition, SOM is an unsupervised learning network that also provides topological

preservation mapping from higher dimensional space to one- or two-dimensional space

[Hiotis93; Kohonen89].

The architecture of SOM is a two-layered network with an input-layer and an

output-layer [CaudiIl93; Kohonen89]. The input-layer is a one-dimensional array of

neurodes. However, the output-layer can be arranged as a two-dimensional array of

neurodes. The neurodes in the output-layer are not interconnected. Each neurode in the

output-layer is connected to each neurode in the input layer by a weight vector. The

individual weights of connections between the input neurodes and the output neurodes

can be described as a strength or capacity. During the training process, the weight
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vectors of the winning nemode and its neighbors are updated over time to more closely

match those in the input vector. The nemode with a weight vector that most closely

matches to the input vector, is the winner. Once the training is complete, the SOM is able

to classify new input data to the best-matching nemode.

1.1.2 Sequential Self-Organizing Map

SOM was designed to process only fixed lengths of input vectors. It cannot

effectively process a collection of input vectors of various lengths, nor recognize the

relationships within the input data. Therefore, a neural network referred to as the

Sequential Self-Organizing Map (SeqSOM) was proposed by Boydstun and Mayfield in

1995 [Boydstun95]. The SeqSOM can deal effectively with data of variable input

lengths. The SeqSOM uses a feedback method to build relationships between subsequent

input vectors. SeqSOM has been trained and tested using strings from languages

accepted by Finite State Automata (FSA). The network was shown to be able to both

learn and capture the relationships of the strings. After the network was trained, a new

FSA was created, which could recognize the strings from the language accepted by the

original FSA.
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1.1.3 Self-Organizing Map using N-gram Method

A method called "n-gram" also has been used to deal with data of variable input

lengths, which can be either characters or words. The n-gran1 method uses a fixed length

of scrolling, overlapping windows on the input text to produce a sequence of input

vectors [Scholtes92]. An example of the window is shown in Figure 8 in CHAPTER 2.

The derived input vectors can then be used to train a neural network.

The study of the SOM, SeqSOM, and n-gram methods leads to the possibility of

applying the n-gram method to SOM. Thereafter, the network is able to both learn and

capture the relationship between a sequence of input strings and produce an FSA

equivalent to the original FSA that produced the strings. The network, named

N-gramSOM, is used initially as a neural filter for contextual data by Scholtes

[Scholtes92]. After modifying the original N-gramSOM training method to use the

SeqSOM training method, N-gramSOM is able to construct an FSA that recognizes the

language of the input contextual data and that performs better than SeqSOM.
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CHAPTER 2

LITERATURE REVIEW

2.1 Biological Neural Network

The development of Artificial Neural Networks (ANNs) was first inspired by the

characteristics of brain function and their relation to biological counterparts in the brain.

In the human brain, there are large numbers of elements called neurons that are highly

interconnected so as to facilitate thinking, movement, and autonomic responses, etc.

These neurons have four main components: dendrites, a cell body, an axon, and synapses.

which are shown in Figure 1. Each of these components has their specific function. The

dendrites are tree-like receptive networks of nerve fibers that receive electro-chemical

stimuli from other neurons, and then send a signal into the cell body [Anderson95]. The

cell body perfonns a processing function that is characterized as summing up all the

dendrite input signals; if the sum exceeds a threshold, a signal will be sent out via the

axon, a single long fiber, to other neurons. A small gap known as a synapse exists

between the contact point of the axon of one cell and a dendrite of another cell. The

arrangement of the neurons and. the strength of any individual synapse establish the

5
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function of the neural network [Hagan96]. The study of biological neural networks has

set a foundation for the development of ANNs.

Dendrites

Synapse

Axon

Figure I. An example of two biological neurons [Hagan96]

2.2 Artificial Neural Networks

An ANN is composed of a group of artificial neurons that are similar in function

to the neurons found in biological neural networks even though an ANN does not

approach the complexity of the brain. The structure of ANNs is similar to biological

6
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neural networks only in tenns of their simple computational building block and

connection of neurons [Hagan96]. An artificial neuron also is called a "processing

element" [Ritter91] or a "neurode [Kohonen89]."

The ANN architecture is comprised of neurodes that are interconnected to one

another and are usually arranged into layers of neurodes. An example of an ANN

architecture, referred to as a feedforward ANN, is illustrated in Figure 2. It consists of

three or more layers: an input-layer, one or more hidden-layers, and an output-layer. The

function of the input-layer is to distribute the input signals to each of the neurodes in the

hidden-layer. The hidden-layer is used to calculate activation values, which are forwarded

to the output-layer. The activation values of neurodes in the output-layer are the

network's response to a given input signal. An error value also is computed by

comparing the activation values of the output-layer with its target values. A target value

is the correct output of the network expected from the input signal. Thereafter, the error

values will be distributed back to the hidden-layer for updating the internal weights,

which serves to draw closer resemblance to the target values.

The feedforward ANN is just one of many types of ANNs. The main ANN for

this thesis is the Self-Organizing Map (SOM).

7



Input Layer Hidden Layer Output Layer

Figure 2. A simple structure of a feed forward ANN.

2.3 Self-Organizing Map

One type of A .s, called the S If-Organizing map (SOM), was proposed by

Kohonen in the early 1980's [Kohonen89]. SOM is a competitive neural network based

on the idea of competition and neighborhood updates. The concept of competition and

neighborhoods will be explained in the 2.3.4 and 2.3.7. SOM is an unsupervised leaming

network that does not need human assistance during its leaming period

SOM also is a "topology-preserving map" [Fausett94]. Topology is the

mathematical study of the properties of objects that are preserved through deformations,
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twisting, and stretching [Weiss98A]. The various maps formed in SOMs are able to

describe topological relations of input signals using a one- or two-dimensional medium

for representation [Kohonen89]. Since the output layer of an SOM usually is a planar

array, it can preserve topological relationships while performing dimensionality reduction

from 11 dimensions into a one- or two-dimensional representation space [Hiotis93;

Kohonen89].

2.3.1 SOM Architecture

The basic architecture of the SOM, shown in Figure 3, is a two-layered network

with an input-layer and an output-layer [Caudi1l93; Kohonen89]. The input-layer is a

one-dimensional array ofneurodes. However, the output-layer nonnally is arranged as a

two-dimensional array of neurodes. The neurodes in the output-layer are not

interconnected [Kohonen89]. Each neurode in the output-layer is fully connected to the

neurodes in the input-layer. Like the input-layer of the feed forward network described in

section 2.2, the SOM input-layer distributes its input signal to each of the neuTodes in the

output-layer across a set of adaptive, weighted connections. The neurodes of the output

layer then make up a competitive assembly [CaudiIl93]. During the self-organizing

process, the neurode whose weight vector matches an input vector most closely is chosen

as the winner for that input vector. The selection of a winner wi JI be explained in section

2.3.4. The winning neurode and its neighboring new'odes update their weights by using

the Kohonen rule [Fausett94; Hagan96]. The Kohonen rule will be explained in section

9



2.3.6. By updating the weights (wij) at each pass, the winning neurode and its

neighboring neurodes will be made to match the input data more closely.

Winning eurode

Output
Layer (Y)

f f f f f
Input Pattem (x)

t t

Figure 3. SOM architecture [CaudiIl93].

2.3.2 Input and Output Layers

The input-layer is fully connected to the output-layer and it delivers its signal to

each neurode in the output-layer [Hiotis91]. An input signal is a vector such as:

10
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The output-layer (Y) is a two-dimensional array consisting of 11'1 neurodes, connect d to

the input-layer by a weight vector that is illustrated in Figure 3 such as:

(2)

where 1 -::;'j -::;. m and n is the length ofx. Note that the weight vector is the same size as

the input vector. wij refers to tbe incoming weight from input-layer neurode Xi to the

output-layer neurode Y j .

2.3.3 Weights

The individual weights of the connections between the input neurodes and the

output neurodes can be described as a strength or capacity. They are similar to the

synapses in the biological network as shown in Figure 1. The weights are used to

compute the response of a neurode to a given input signal. During training, the weights

may be changed based on a training function.

2.3.4 The Competitive Process

In SOM, the neurodes of the output layer are competing with one another to

represent each input vector. The winning neurode is chosen based on the minimal

distance between the weigbt vector of the neurode and the input vector. The weight

11



vector of the winning neurode is then adjusted to bring the weight vector closer to the

input vector. There are two methods to find the winning neurode.

The first method uses the dot product (/;) between the input vector and weight

vector, as expressed below:

/I

/j =LW;jX i
i=1

where w ii E the weight vector wj for neurode j, and Xi E the input vector x [CaudiIl93].

The neurode that has the largest value of lj is the winning neurode. Therefore, the

(3)

winning neurode is the one that has the largest dot product, which implies that the angle

between the input vector and the winner's weight vector is smaller than that of any other

neurode's weight vector.

The second method uses the square of the Euclidean distance (D;) between the

input vector and the weight vector, as expressed below:

/I 2

D j = I (Wij - Xi )
;=1

(4)

where w ii E the weight vector wj for neurodej, and Xi E the input vector x [Fausett94]. Dj

is the sum of the square of the differences between the weight vector and the input vector.

The neurode with the smallest value of the D j is the winning neurode. The Euclidean

distance is used to calculate the distance between the input vector and a weight vector.

Therefore, the smaller the value ofDj , the closer the distance between the input vector

and the weight vector.

12
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After determining the winning neurode by either of the above methods, the weight

vectors for all neurodes within a specified neighborhood (i.e., radius) of the winning

neurode are updated using the Kohonen rule [Kohonen89]. The weight-updating process

is called training.

2.3.5 Training

A collection of input vectors that is used to train an ANN is called the training set.

Each member of the training set is presented to the ANN during the training process; as a

result, the weights within the network may be updated using the learning rules. An

interval during "vhich each member of the training set is presented to the network once is

called an epoch. Therefore, the network can be trained for many epochs with the training

set. There are two types of methods used to train an ANN: supervised methods and

unsupervised methods. In a supervised method, the training sets and the target values are

known ahead of time. During the training process, the learning algorithm uses the prior

knowledge about the target values to adjust the weights to more closely map the input

vectors to the target values.

The difference between unsupervised training and supervised training is that there

i.s no prior knowledge of the output vector for an unsupervised method. In other words,

when a training set is presented to the network, no target values will be known ahead of

time. SOM is an ANN that uses unsupervised training.

13
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Initially, a training set is chosen and the weight vectors are initialized with

random values. Weight vectors may also be initialized based on prior knowledge

[Boydstun95]. In addition, the value of the neighborhood size and learning rate must also

be initialized (the learning rate is a parameter that controls the weight adjustments.)

During the training process, the neighborhood (see section 2.3.7) and the learning rate

(see section 2.3.8) size are reduced based on elapsed time T. The purpose ofreducillg the

learning rate and the neighborhood size over time is to fine-tune the map.

2.3.6 Kohonen Rule

The weights of the winning neurode and its neighbors are updated using the

Kohonen rule [Fausett94],

wij(new) = wij(old) + a [Xi - wij(o/d)] (5)

where wij(new) is the new weight vector, wij(o/d) is the previous weight vector, Xi is the

current input vector, and a is the current learning rate.

2.3.7 Neighborhoods

The neurons of the brain are densely interconnected and each neuron can have

thousand oflateral interconnections with neighboring neurons [Kohollen89]. Kohonen

14



says that there are both anatomical and physiological evidences from the mammalian

brains to suggest that the degree of lateral interaction are related to the distance at which

the excitation occurs [Kohonen89]. Neurons that are closest to the active cells have more

positive lateral feedback center of excitation. A region of negative lateral feedback is·

formed after the positive lateral feedback is diminished. A minimal positive lateral

feedback will be formed after the negative lateral feedback region that is farther from the

center of the excitation [Kohonen89]. The degree oflateral interaction is usually

described as having the form of a Mexican hat [Kohonen89]. The "Mexican-hat

function" is illustrated in Figure 4.

Interaction

/
" 1

+
,

",
\,

,
\
\
'.

,
\

\

\ ,/' ~
,.:./ Lateral

distance

Figure 4. The "Mexican-hat function" of lateral interaction
[Kohonen89].

The SOM model does not directly implement lateral feedback. As the neurodes in

SOM's output-layer are not interconnected, there is no lateral connection. Instead, a

IS



neighborhood is defined that includes all the neurodes within a given radius of a winning

neurode. An example of a neighborhood is illustrated in Figure 5, where the

neighborhood represents the lateral distance between the neurodes [Kohonen89]. Only

the weight vectors of the neurodes within the neighborhood can be updated [Hagan96;

Kohonen89]. This not only corresponds to the concept of the center of positive lateral

feedback of the "Mexican-hat function", but also simplifies the "Mexican-hat function" to

a "bubble" neighborhood function. The bubble neighborhood function is illustrated in

Figure 6. The bubble neighborhood function is a constant function within the defined

neighborhood of the winning neurode; that is, weight vector of each neurode in the

neighborhood is updated with the same proportion of the difference between its weight

vector and the input vector [Hollmen96]. The neighborhood radius is decreased

gradually during the training process. The neighborhood radius can be reduced using a

linearly decreasing function such as:

(6)

where TJ is the neighborhood radius, ,is elapsed training time, and 'rna< is the maximum

allowable training time [Boydstun97; Fausett94; Kohonen89]. The purpose of decreasing

the neighborhood radius during the training process is to sharpen the response of the

neurodes within the neighborhoods and fOrol clusters. If the neighborhood radius is zero,

it means that the neighborhood only contains the winning neurode, thus it will not form

16



any cluster. A cluster is a group of neurodes that are adjacent to one another and that

match similar input vectors.

* * :+: * * * *

* * * * * * *
;.. ,........................................................;

* * * * * * * * = Neurode
,. -

I

I I

* * * i @ I * * * @ = Winning neurode
I

I. _. _. _. _. j

* * * * * * * r = 2
..............

* * * * * * * = 1· .... ··r

* * * * * * * 3 _._-_._._.-r =

Figure 5. Neighborhood function for rectangular grid [Fausett94J.

Bubble neighborhood function

Lateral distance

Figure 6. "Bubble" neighborhood function
[Hollmen96].
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2.3.8 Learning Rate

The learning rate controls how much the weight vectors can change in one pass

and is a slowly decreasing function of time during the training process [Fausett94].

Kohonen indicates that both a linearly and geometrically decreasing function oftime for

the learning rate will produce similar results [Fausett94; Kohonen89]. The following

linearly decreasing function is used in this research:

(7)

where the anew is the new learning rate, a o1d is the previous leaming rate, r is the elapsed

time, and T;na. is the maximum allowable training time [Boydstun97; Fausett94;

Hollmen96; Kohonen89].

Figure 7a shows that the weight vector could oscillate between points "a" and "h"

but can never get any closer to the input vector with a constant learning rate. However,

Figure 7b shows that by reducing the learning rate over a period of time, the values in the

weight vector will graduaJly adjust themselves closer to the input vector (i·om points "a"

to "b," "b" to "c," and then "c" to "d." The result of reducing the learning rate and the

neighborhood size during the training process over a period of time will yield the

forn1ation of clusters [Kohonen89].

Learning is usually performed in two phases. In the first phase, a relatively large

initial learning rate is used (a=O.3, ... ,0.99), whereas in the second phase a smaller initial

18



learning rate is used (0.=0.01, .. ,,0.1) [Hollmen96]. The fIrst phase is used to create an

initial fonnation of the correct order [Fausett94]. The second phase is used to fine-tune

the map and yield the final convergence [Fausett94; Hollmen96].

Weight
vector

a I

lnpul
vector

• b

Weight
vector

a I C :

Input
vector

• I d \ , b
b

c

Learning role

ima~e of

image of . b

Figure 7a. Learning with a
fixed learning rate.

2.4 Neural Filtering

Figure 7b. Leamjng with a
decreasing learning rate over
time.

d imnge of c

The Neural Filtering method implemented by Scholtes is used for free-text

information filtering [Scholtes92]. Free-text is a keyword that is used to retrieve any

related information from databases [Lebanon95]. A neural filtering model that combines

the n-gram method with the SOM is proposed by Scholtes. The proposed model is able

to act as a neural filter to retrieve associated subjects from the dynamic free-text database

[Scholtes92].

19



2.4.1 N-Gram

An n-gram is a vector that contains a sequence of characters from a word or token;

where each n-gram must contain at least one non-b lank character, and at most 11

characters. An example ofthe 3-grams or tri-grams of a word, "windows" is given below

to illustrate the meaning ofn-gram:

--w, -wi, win, ind, !lda, dow, ows, wS-, S--,

where the "-" represents a space [SchoItes92].

2.4.2 Neural Filtering Model

The neural filtering model consists of two parts: the preprocessing section and the

SOM. The preprocessing section is used to prepare input vectors using the n-gram

method. A "window" of size 3 is used to represent the 3-gram or tri-gram shown in

Figure 8. The window will scroll over the elements in the input text and a program will

translate them into input vectors with the assistance of a lookup table. An element of the

window can be either a character or a word. All unique elements in the input text are

assigned randomly to specific codes in the lookup table. Each input vector to the SOM

holds exactly one n-gram.

The architecture of the SOM in the second part is the same as the original SOM

architecture, which consists of an input-layer and an output-layer. Each neurode in the

20



output-layer competes to represents an n-gram. SOM will fonn clusters on the map for

the most frequent n-grams occuning in the input text. However, the less frequent n

grams will be overridden when the number of neurodes in the output-layer is less then the

number of the n-gral11s generated in the input text [Scholtes92].

Figure 8. A window of size 3 scrolls over the input text "wind" [Scholtes92].

2.5 Sequential Self-Organizing Maps

SOM is not designed to process sequential input vectors and is not able to

recognize the relationships between the sequential input vectors. Therefore, the

Sequential Self-Organizing Map (SeqSOM) was proposed by Boydstun and Mayfield,

which uses a feedback method to build the relationship within the sequence of the input

vectors [Boydstun95]. A set of strings from a language accepted by an FSA is used (0

train the network. The network is able to learn and capture the relationship of the strings

21



and produce a new representation of the FSA. The new FSA is able to accept any strings

from a language accepted by the original FSA.

2.5.1 SeqSOM Architecture

The architecture of the SeqSOM is illustrated in Figure 9, which basically is the

same as the original SOM architecture, consisting of an input-layer and an output-layer.

The difference between the SeqSOM and the original SOM architecture is that the

SeqSOM uses a feedback method. Unlike the input vector in original SOM, the input

vector in the SeqSOM is an "input bundle". The input bundle is a concatenation of an

input vector from the input vector sequence with three feedback coordinate values, which

consists of a row, column, and plane (as illustrates in Figure 9). The first input bundle is

different from others because it contains no feedback values. When an input bundle is

distributed to each neurode in the output-layer, a winning neurode will be chosen. The

output-layer coordinates of the winning neurode are used as the feedback value and are

concatenated with the next input vector to form a new input bundle. The new inpul

bundle is used as the next input to the network. This procedure will continue until all the

input vectors from the input vector sequence are consumed [Boydstun97]. Three

feedback values must be added to the weight vector of each neurode to accommodate the

feedback values.
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Input Bundle
r.--------'~'------.\

Input Vector Sequence

Inpul Vector

~

Fccubllck

Feedback Coordinate

Figure 9. Illustration of the SeqSOM Architecture [Boystun95].
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CHAPTER 3

METHODS

3.1 Introduction

The Kohonen SOM is not designed to process input vectors ofvarying sizes. It

also not able to capture the sequential relationships between a sequence of input vectors.

To overcome the problem, a network called SeqSOM designed by Boydstun is able to

process input vectors with varying sizes [Boydstun95; Boydstun97]. The SeqSOM

breaks an input vector into a sequence of fixed size new input vectors and feed this

sequence of input vectors into the network sequentially. SeqSOM uses a feedback

method to relate the input vectors in a sequence to one another. As a result, the network

is able to capture the sequential relationships between the input vectors in a sequence.

The architecture ofSeqSOM is illustrated in CHAPTER 2.

Another model is proposed by Scholtes using Kohonen SOM to deal with the

contextual data [Scholtes92]. Scholtes uses the n-gram method to generate a sequence of

input vectors from a strings and feed the n-grams into the network sequentially. His

research shows that the network is able to capture the most frequent occurrence of 11

grams. This model is used as a neural filter to retrieve associated subjects from the

dynamic free-text database. Scholtes did not give a name to this model; nevertheless, in
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this thesis, it will be referred to as N-gramSOM. This model is described in detail

CHAPTER 2.

3.1.1 An Application of -gramSOM

With the study of the SeqSOM and the N-gramSOM methods, there is a

possibility that the N-gramSOM method may be able to capture the relationships between

a sequence of input vectors, as the SeqSOM does. For this research purpose, a sequence

of n-grams will be generated from a language that is accepted by an FSA. The sequence

of n-grams will be translated to a sequence of input vectors using a lookup table and feed

the input vectors into the network sequentially. The network will capture the

relationships between the sequence of input vectors and produce an equivalent FSA

compared to the original FSA.

3.1.2 N-gramSOM Architecture

The architecture of the N-gramSOM, as illustrated in Figure 10, is the same as the

original SOM that consists of an input-layer and a two-dimensional output-layer. When a

winning neurode is chosen, the weight vectors of the winning neurode and its

neighborhood are updated with the Kohonen Rule [Kohonen89].
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In addition, the -gramSOM also shares the same underlying architecture as tl1

SeqSOM and both use a sequential input method. A difference between these two

architectures is that the N-gramSOM does not use a feedback method.

The size of an input vector that represents an n-gram is n times larger than the

length of a binary representation of a symbol. For example, if a 3-gram or tri-gram is

used to generate a sequence of input vectors and the length of the binary representation of

a symbol is four digits, then the size of the input vector will be twelve digits. The

example is explained in more detail in Table 1.

Columns

A sequence of input vectors (N-grams)

InpUl Vector

~

Figure 10. Illustration of the N-gramSOM Arch itecture. This architecture is a
modification of Figure 9.
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Representation Size

3-gram or Tri-grarn abc 3

Binary representation a- 0000 4
b - 0010
c - 0100

Input Vector 000000100100 4x3=12

Table 1. The size ofthe input vector is calculated by multiplying the size of the tri-gram
with the size ofthe binary representation.

3.1.3 The N-gramSOM Algorithm

The algoritlun for the SOM and the N-gramSOM are mostly identical

except for the training method. The N-gramSOM algorithm serves as an extension of tile

SaM algorithm. The algorithms are shown in Figures 11 ancl 12. The training method

for Kohonen's SaM selects input vectors in a random order to feed into the network. On

the other hand, the training method for the N-gramSOM feeds input vectors from a

seq uence into the network sequential] y to maintain the order and relationship 0 f the 11-

grams. The differences of these two algorithms are printed in bold in Figurel! and

Figure 12.

27



-

BEGIN
Initialize all neurode 's weight vectors to random values;
Set neighborhood radius;
Set learning rate;
While stopping condition is false
Begin

For all input vectors ill tlte training set(each vector is picked once ami
ilt random order)

Begin
Calculate the square ofEuclidean distance for each neurode to
the input vector;
Find the neurode that has minimum Euclidean distance as the
winning neurode;
Update the weights ofthe winning neurode and its neighbors
using the Kohonen rule;

End;
Update learning rate at a specified time;
Update neighborhood radius at a specified time;

End;
END.

Figure 11. Algorithm ofKohonen's SOM [Fausett94]
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BEGIN
Initialize all neurode 's weight vectors to random values;
Set neighborhood radius;
Set learn ing rate;
While stopping condition is false;
Begin

For all i/lput sequences ill the traini/lg set
Begin

For all input vectors in tlte sequence(all input vectors are picked
sequentially)
Begin

Calculate the square ofEuclidean distance for each neurode to
the input vector;
Find the new'ode that has minimum Euclidean distance as the
winning neurode;
Update the weights ofthe winning neurode and its neighbors
using the Kohonen rule;

End;
Elld;

Update learning rate at a specified time;
Update neighborhood radius at Cl specified time;

End;
END.

Figure 12. Algorithm of the N-gramSOM
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CHAPTER 4

IMPLEMENTATION AND TESTING

4.1 Introduction

In the early stages ofN-gramSOM software development for this research,

Kohonen's SOM algorithm was implemented using C language to understand in more

detail how the network works; it was tested on the UNIX operating system. In the later

stages, a visual aid tool was needed to validate the network learning activities and their

final convergence. Without a visual aid tool, the validation process would have been

more difficult. Therefore, the network was implemented again by using Microsoft Visual

Basic 4.0, and tested in the Microsoft Windows 95 platform. However, the execution of

the network using Microsoft Visual Basic 4.0 was very slow. As a result, the network

was implemented again using Microsoft Visual C++ 5.0 and was tested again on the

Microsoft Windows 95 platform. The reasons for choosing Microsoft Visual C++ 5.0 are

that it executes much faster than Microsoft Visual Basic 4.0 and that it also provides

visual aid. After the Kohonen's SOM was validated, the algorithm was used to

implement put into use by N-gramSOM. After the -gramSOM algorithm was validated,

visual aid was no longer needed. Therefore, the software then was moved to a SU

server to do testing, since the SUN server has multiple CPUs that are faster than the CPU
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of PC, and it is able to handle multiple tasks much better. As a result, several tests could

be run at the same time, saving a lot of time on testing.

4.2 Implementation

For the purpose of this research, a set of tools was programmed using C++

language. The tools consist of eight process stages: String Generator, N-gram Generator,

N-gram Translator, N-gramSOM, Build FSA, Determinize FSA, Minimize FSA, and

Check for Equivalent FSA. Each of these tools is designed to work independently.

Therefore, they can be used to do independent testing for every stage or to build a system

to do all the testing automatically. The effort to program these tools also may benefit

future research. Each of the tools will be explained and discussed respectively in the

following sections. An N-gramSOM system is built using the tools mentioned above and

also will be explained in the last section of this chapter.

4.2.1 String Generator

For the purpose ofthis research, a set of strings from the language accepted by an

FSA is chosen to train the N-gramSOM network. Therefore, String Generator is

programmed to prepare strings for the network.

String Generator needs three parameters: an input fi Ie, an output file and the

maximum length of the strings to be generated. The input file contains a given FSA in
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specified fonnat, illustrated in Figure 13. Figure 14 shows the input file representing the

FSA illustrated in Figure 15. The output file contains the strings generated by String

Generator. The String Generator will generate all strings from the given FSA with th

maximum length specified by the third parameter. When the first output file is created by

String Generator, it contains a lot of duplicate strings. Duplicate strings are unnecessary

for training the network; in addition, these strings increase the network training time.

Therefore, all duplicate strings should be removed. A Mergesort program by Kruse,

Leung and Tondo is used to sort the strings [KruseLT91]. The worst-case analysis

nmning time for the Mergesort program is O(nlogn) [KruseLT91]. Kruse, Leung and

Tondo define this O(nlogn) as the Mergesort algorithm does no more than nlogn basic

operations and the size of its input is Tl [KruseLT91]. The Mergesort algorithm is one of

the most efficient sorting algorithms and is easy to implement.

After the file is sorted, all the duplicate strings are grouped together and are

removed easily by a simple program. As a result, the size of the file is greatly r duced.

An example of the strings generated by the String Generator using the FSA from Figures

14 and 15 is illustrated in Figure ]6 (with duplicate strings removed.)

# the total number of final state(s)
start state final state(s)- -
&
start_state state2 output_symbol

state] state2 output_symbol

$

Figure 13. The input formats for the String Generator. The symbols "#" means the
begilming of the input format, .,&" means the begilming of the state transition format, and
"$" means the end of both the input and the state transition format.
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# 1
05
&
o1 t
02p
lIs
1 3 x
22t
24v
32x
3 5 s
43p
45v
$

Figure 14. An example of the input fonnats with real data. The diagram of this FSA i
illustrated in Figure 15.

s

t

x

x

p

p

t

v v

Figure 15. The graphical illustration of the FSA of Figure 14. Each rim with
a number represents a state. The "Start" followed with an arrow indicates that
the state 0 is the start state. The double rim in state 5 indicates that the state is
the final state. The arrows represent the transitions from one state to another
state.
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ptttttttvv
pttttttvps
pttttttvv
ptttttvps
pttlttvv
pttttvps
pttttvpxvv
pttttvv
ptttvps
ptttvpxtvv
ptttvpxvps
ptttvpxvv
ptttvv
pttvps
pttvpxttvv

Pttvpxtvps
pttvpxtvv
pttvpXVPS
pttvpxvv
pttvv
ptvps
ptvpxtttvv
ptvpxttvps
ptvpxttvv
ptvpxtvps
ptvpxtvv
ptvpxvps
ptvpxvpXVV
ptvpxvv
ptvv

Figure 16. A sample of the string file generated from the FSA shown in Figure 15 with
string length of 10 or less. The complete set ofthel03 strings is included in APPENDIX
B.

4.2.2 N-gram Generator

The n-gram is explained ill CHAPTER II. After the String Generator prepares a

string file, all strings in the string file must be translated to n-grams. Therefore, a

program named the N-gram Generator was written to generate n-grams from a file

containing strings. All generated n-grams are saved to another file. N-grams are

generated based on the method discussed in CHAPTER II and illustrated in Figure 8.

The N-gram Generator needs three parameters: an input file, an output file and the

size of the n-gram. The input file contains a set of stri ngs generated from String

Generator. The output file contains n-grams with the predetermined n-gram size. The n-
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grams that contain spaces before the first character occurs, as discussed in CHAPTER 2,

will not be used in this research. The -gram Generator therefore eliminates that type of

n-grams. Two extra symbols, a "'B" and an "E", are added to the n-grams file and

indicate the beginning and the ending of a word, respectively. These two symbols will be

used to represent the start state and the final state respectively while analyzing the output

of the N-gramSOM network. An example oftri-gram or a 3-gram of a string is shown at

Figure 17.

B B
ptt ptt
ttt ttt
ttt ttt
ttt ttt
ttt ttt
ttl ttv
ttv tvp
tvv vps
vv ps
v s
E E

Figure 17. Two examples ofa tri-gram or a 3-gram generated from the word "pltlttltvv"
and "pttttttvps".

4.2.3 N-gram Translator

N-gramSOM is designed to train using input vectors of binary values only.

Therefore, before the n-grams can be used to train N-gramSOM, they must be translated
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to binary representation. Because of this, a program called the -gram Translator was

programmed to translate n-grams to vector of binary values.

The N-gram Translator collects all the unique symbols from a file of n-grams and

creates a binary representation for each symbol. The binary representations are

orthogonal to one another. Based on these symbols and their binary representations, a

lookup table is built. An example of the lookup table is illustrated in Figure 18.

The N-gram Translator needs two parameters: an input file and an output file.

The input file contains n-grams that are generated from a string file; the output file

contains the binary vectors that represent each n-gram in the input file. The output file is

used to train the N-gramSOM network. An example of the input file is illustrated in

Figure 19.

,B 0000001
E 0000010

P 0000100
s 0001000

0010000
v 0100000
x 1000000

Figure 18. An example of a lookup table. This table i.s created from the strings in Figure
16. The "0000001" represents an "B", "0000010" represents an "E", and so on. In
addition, "0000000" represents an empty space.
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000000100000000000000
000010000100000010000
001000000100000010000
001000000100000010000
001000000100000010000
001000000100000010000
001000000100000010000
001000000100000100000
001000001000000100000
010000001000000000000
010000000000000000000
000001000000000000000

000000100000000000000
000010000100000010000
001000000100000010000
001000000100000010000
001000000100000010000
001000000100000010000
001000000100000100000
001000001000000000100
010000000001000001000
000010000010000000000
000100000000000000000
000001000000000000000

Figure 19. The binary numbers in this figure are directly translated [rom the tri-grams in
Figure 17. The "000000100000000000000" represents "8", the
"000010000100000010000" represents "ptt", and so 011.

4.2.4 N-GramSOM

N-gramSOM is a modified SOM network, which is trained lIsing input vectors

generated by the N-gram Translator. The network model is i.llustrated in Figure 10, and

its training process is shown in the algorithm in Figure 12. During the training process,

the program feeds the same training set into the network for many epochs.

The training process will be s]ow if the training set is read from the file for each

epoch. To speed lip the training process, the training set is read in at the beginning of

execution and stored into internal memory, so that it can be reused over all epochs. The

length of training time can range from a few epochs to a few hundred epochs, depending

on needs of the network. After the network is trained, the weights of the network are

saved into a file; therefore, they can be loaded to an untrained network later, which can be
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put into application immediately. An example of a map of the weights of a network, after

being trained, is illustrated in Figure 20.

1 0000000.008780990.991218 7.2784ge-07 0 0 0 0 0 0.999998 1.77606e-06 0 0 0 0
1 000 8.79088e-08 0 0 0.60672 0.393279 3.3147ge-07 0 0 0 0 0 0.999999 8.71364e-07 0 000
0.6348380000.365162000.999991 8.60027e-06 3.92012e-08 0 0 0 0 0 1 1.0304ge-070 0 0 0
0.00089259900 6.0413ge-07 0.999107 0 0 100000000.9999990 1.65491e-07 000
0000.3614970.638503000.9999990000000.3581.390.638503 0 0.00335679 000
000 I 000 1 0000000.99997300 2.72962e-05 000
000 1 0000.927671 000.07232920000.997073000.00292708000
000 1 000 7.93837e-05 000.99992 0 000.999719000.000280239000
o0 0 0.00310488 0 0.996895 00000.00310488 0 000.00309685 0 0 8.032e-06 0 0 0
000001000000000000000
1 000000 0.5745470.4157920.00966132000000.9848730.01512690000

Figure 20. A partial map that consists of 11 out of 100 weights of a lOx I0 N-gramSOM
networks.

4.2.5 Build FSA

After the network is trained, the same training set is reused to test its response by

feeding the training set into the network again. The response of the network is

determined by the winning neurode for each input vector from the training set. The

response of the network is then recorded. A new FSA will be analyzed and translated

from the recorded data. An example of the network response is shown in Figure 21. Tn

this figure, each line of data represents the network responses for each input sequence

from a training set, and also represents a transition from start state to final state. For
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example, "89 B 74 ptt 72 ttl 72 ttt 72 ttt 72 ttt 72 ttt 52 ttv 50 tvv 93 vv 95 v 9 E"

is the network response for the input sequence "B ptt ttt ttt ttl ttt ttt ttv tvv vv v E."

The first number, "89," is the index of the winning neurode for the letter "B." The start

state is the index of the winning neurode, "89," of the letter "B." Therefore, the first

number always serves as the start state. The last number before "E," in tills case "9," is

the network response of the letter "E" and will not be used. The letter "E" indicates that

the number, "95," before the last number, "9," represents the actual final state. A

transition from one state to another state can be analyzed from the last example in which

state 89 to state 74 produces symbol "p"; state 74 to state 72 produce symbol "t", and so

on. The symbol is the first letter of each word, such that "p" is for "ptt" and "t" is for

"ttt". The full translation of the transitions from the above example is illustrated at

below:

where 89~ 74 means the transition from state 89 to state 74, and produces output

symbol "p," An example of an FSA translated from the network response data in Figure

21, is illustrated in Figure 22; this FSA is shown graphically in Figure 23.
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89 B 74 ptt 72 ttt 72 ttt 72 ttt 72 ttt 72 ttt 52 ttv 50 tvv 93 vv 95 v 9 E
89 B 74 ptt 72 ttt 72 ttt 72 ttt 72 ttt 52 tty 70 tvp 97 vps 47 ps 25 s 9 E
89 B 74 ptt 72 ttt 72 ttt 72 ttt 72 ttt 52 tty 50 tvv 93 vv 95 v 9 E
89 B 74 ptt 72 ttt 72 ttt 72 ttt 52 tty 70 tvp 97 vps 47 ps 25 s 9 E
89 B 74 ptt 72 ttt 72 ttt 72 ttt 52 tty 50 tvv 93 vv 95 v 9 E
89 B 74 ptt 72 ttt 72 ttt 52 tty 70 tvp 97 vps 47 ps 25 s 9 E
89 B 74 ptt 72 ttt 72 ttt 52 tty 70 tvp 76 vpx 3 pxv 0 xvv 93 vv 95 v 9 E
89 B 74 ptt 72 ttt 72 ttt 52 tty 50 tvv 93 vv 95 v 9 E
89 B 74 ptt 72 ttt 52 tty 70 tvp 97 vps 47 ps 25 s 9 E
89 B 74 ptt 72 ttt 52 tty 70 tvp 76 vpx 23 pxt 30 xtv 50 tvv 93 vv 95 v 9 E
89 B 74 ptt 72 ttt 52 tty 70 tvp 76 vpx 3 pxv 90 xvp 97 vps 47 ps 25 s 9 E
89 B 74 ptt 72 ttt 52 tty 70 tvp 76 vpx 3 pxv 0 xvv 93 vv 95 v 9 E
89 B 74 ptt 72 ttt 52 tty 50 tvv 93 vv 95 v 9 E

Figure 21. Part the network response from the strings at the left column in Figure 17.

#2 58 15 s 3244 x 763 P
8925 95 585 s 7 15 s 9747 P
& 6450 t 7 5 s 093 v
8929 t 6470 1 9395 v 9076 v
8949 t 6921 x 15 56 x 90 97 v
8950 p 6932 x 5 21 x 30 50 t
8958 t 7452 t 532 x 3070 t
8964 P 7472 1 70 7() v 4452 t

8969 t 8076 v 7097 v 4472 t

8974 P 8097 v 21 0 x 2330 x

8980 P 5625 s 5250 L 2344 x
2956 x 2727 s 5270 t 30x
4927 s 277 s 72 52 t 390 x
497 s 21 90 x 72 72 t 4725 s
5093 v 3230 x 7623 P $

Figure 22. The FSA translated from the responses of the network. The diagram of this
FSA is illustrated in Figure 23.

40



-

Start

p

l--__x
l
56 l--__S__--ll

v

v

t

)---+--+---"-------.j 7a
t

v

I+-- t ---{ 64
p

Figure 23. The diagram of the FSA in Figure 22.
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4.2.6 Nondeterministic FSA to Detenninistic FSA (NftoDf)

If an FSA is nondetenninistic, it means that in each situation there is a finite set of

possible moves that the FSA can make, rather than just assigning a unique move

[Linz96]. A nondeterministic FSA ( DFSA) is defined as the following:

where

Q is a finite set of internal states,

L is a finite set of symbols called the input alphabet,

OM Qx ( l: u { A}~ 2Q is a total function called the transition function,

qo E Q is the initial state,

FN ~ Q is a set of final states,

Ais an empty string [Linz96].

If an FSA is detenninistic, it means that in each situation there is a unique move

in the FSA. A deterministic FSA (DFSA) is defined as the following:

(Q, L, 00" qo. Fo ),

where Q, L, go and FD are defined as the NDFSA above, and 0D is defines as

0D: QXL~Q.

The new FSA constructed by N-gramSOM normally has many states and is
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complicated; in addition, the new FSA may be a NDFSA. To reduce the size and

complication of the new FSA, it needs to be minimized. John C. Martin developed a

minimization algorithm that only works on minimizing a DFSA [Martin91]. This

algorithm will be discussed in the next section. To use the minimization algorithm, the

new NDFSA must be converted to an equivalent DFSA. An algorithm by Peter Linz is

used to convert the NDFSA to an equivalent DFSA, illustrated in Figure 24 [Linz96].

BEGIN
Create a graph GD with vertex (qaJ and mark the vertex as the start state;
Repeat until no more edges are missing
begin

Take any vertex ofGD {q,qi'" qJ that has no outgoing edge for some a E I;

Compute bN (qj, a). b"'(9i' a) ... , O!iqk' a);
Thenform the Ullioll ofaII these 0. yielding the set {qj, (jill' .... q,j;
Create a vertex for GD labeled {q/JIII ... q,J ifit does /lot exist;
Add to Go an edge from (q,.(j,qJto (q,qlll ... q,jand label it with a;

end;

AllY vertex ofGD whose label contains any q/ E FN is identified asfinal vertex;
for all vertex

for all a E L

if there is no outgoing edge labeled a
Add to GD an edge from the vertex 10 il vertex (trap);

END.

Figure 24. An algorithm that converts the NDFSA to an equivalent DFSA [Linz9G].

A tool named Determinize FSA was developed based on the algorithm in Figure

24. The program takes two parameters: an input file and an output file. The input file

contains an NDFSA and the output file contains an equivalent DFSA, which is converted

from the aforementioned NDFSA. An example of the input file NDFSA is shown in
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Figure 22 and Figure 23. The output file that is constructed by the Determinize FSA

from the input data in Figure 22 is illustrated in Figure 25, and the graphical look of the

FSA is illustrated in Figure 26.

#2
8925 95
&
89 29495869 t
8950647480 P
89 trap s
89 trap v
89 trap x
29495869 152757 s
29495869213256 x
29495869 trap p
29495869 trap t
29495869 trap v
5064748050527072 t
50647480769397 v
50647480 trap p
50647480 trap s
50647480 trap x
trap trap p
trap trap s
trap trap t
trap trap v
trap trap x
152757 152757 s
152757213256 x
152757 trap p
152757 trap t
152757 trap v
213256 0304490 x
21325625 s
213256 trap p
213256 trap t

213256 trap v
50527072 50527072 t
50527072 769397 v
50527072 trap p
50527072 trap s
50527072 trap x

76939723347 p
76939795 v
769397 trap s
769397 trap t
769397 trap x
0304490 50527072 t
0304490 769397 v
0304490 trap p
0304490 trap s
0304490 trap x
25 trap p
25 trap s
25 trap t
25 trap v
25 trap x
233470304490 x
2334725s
23347 trap p
23347 trap t

23347 trap v
95 trap p
95 trap s
95 trap t
95 trap v
95 trap x
$

Figure 25. An example of an output file constructed by the Detenninized FSA program,
from the input file in Figure 22.
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s

s
S

Start

p,s,t,v,x
s,v,x

p,t,v

p,s,X

pstvx p,s,t,v,X, ", ~-------'-":""";"''-'--------------'

Figure 26. A graphical looks of the DFSA from Figure 25.

4.2.7 Minimizing FSA

Many DFSAs accept the same language; those DFSAs may have a different

number of states. According to Martin's theory of the uniqueness ofthe minimum

DFSA, if there are two equivalent DFSAs and both DFSAs are reduced to minimum

number of states, they will have the same number of states and will look the same
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[Martin91]. If a DFSA does not have the minimum number of states, it must have some

redundant parts. It is therefore always advisable to reduce a DFSA to the equivalent

DFSA that has the fewest number of states.

The new FSA created by N-GramSOM usually is an NDFSA, has many states,

and is complicated. After the new FSA is constructed, it must be compared to the

original FSA to check their equivalence. Therefore, the new FSA should be minimized to

reduce the process time for checking the eq uivalence process. The method to check

equivalence of both FSAs will be discussed in detail in the section 4.2.8. Martin

developed an efficient algorithm that minimizes the number of states of a DFSA

(Martin91], as shown in Figure 27. The algorithm has been proved to be reliable by the

author; but it only works with a DFSA. Since the new FSA is an NDFSA, it must be

converted from an NDFSA to an equivalent DFSA to use the algoritlU11. The method and

the algorithm that convert the NDFSA to an equivalent DFSA are discussed in the section

4.2.6.

The Minimized FSA tool is implemented based on the algorithm shown in Figure

27. The tool takes two parameters: a DFSA file-as-input file and a minimized DFSAfile

as-output file. The input file is demonstrated in Figure 25 and the output file is

demonstrated in Figure 28. The diagram of the minimized DFSA in Figure 28 is

illustrated in Figure 29.

46



BEGIN

Create a (N-I) X (N-l) matrix M where N is number ofstates and label the
columns with the state name from the first state 10 N-I state and label the rows
with the state name from the second state to N state;

Create a set Sri, j) where i is the row number and j is the column number in M
and Sri, j) is going to store a set ofstate pairs;

List all unordered pairs (p, q) with p :;r q;

for each pair (p, q) with p :;rq;

begin
ifexactly one ofp, q is in F then

MARK (p, q);
else

Initialize the set S(p, q) to be empty;
end;

for each pair (p, q) with p :;r q
begin

if (p, q) is not marked then

for each a E I;

begin

r = o(p, a);

s = o(q, a):

if I' :;r s then
if (I', s) is 1101 marked then

[nserl (p, q) infO 1.\'(1', s):
else

MARK(p, q);

end;
end;

end;
END.

Procedure MARK(p, q)
BEGIN

Mark (p, q);
for each pair (I', s) in S(p, q) ;

MARK(r, s);
END.

Figure 27. An minimization algorithm by Martin [Martin91].
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#1
8925
&
8929495869 t
89 50647480 p
89 trap s
89 trap v
89 trap x
29495869 213256 x

2949586929495869 s
29495869 trap p
29495869 trap t
29495869 trap v
5064748050647480 t
50647480769397 v
50647480 trap p
50647480 trap s
0647480 trap x
trap trap p

trap trap S

trap trap t
trap trap v
trap trap x
21325625 s
21325650647480 x

213256 trap p
213256 trap t
213256 trap v
769397 213256 P
76939725 v
769397 trap s
769397 trap t
769397 trap x
25 trap p
25 trap s
25 trap t

2S trap v
25 trap x
$

t

p

Figure 28. An example of minimized DFSA from Figure 16.

s

p,s,t,v,x

Figure 29. The diagram of the minimized DFSA in Figure 19.
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4.2.8 Equivalence Check

After the trained N-gramSOM creates a new FSA, the equivalence of the origina I

FSA and the new FSA is questioned. Two methods can be used to check for the

equivalence of both FSAs: visual comparison and algorithm comparison. As mentioned

in the Minimizing FSA section, according to the uniqueness of the minimum DFSA, both

FSAs are converted to DFSAs and minimized. Ifboth minimized FSAs look exactly the

same then they are equivalent.

If an algorithm is used to check for the equivalency, the strings from both FSAs

are generated, then compared. A problem is encountered in that the number of the strings

in the language of an FSA can be infinite. However, an algorithm developed by Aho and

Ulman shows a finite, maximum length of strings needed to test the equivalence of two

FSAs [AboUIl72]. The selection of the maximum length of strings will be discussed in

the section 4.2.9.

4.2.9 Determining String Length

As discussed in the previous section, the maximum length of strings needed to

check the equivalence of two FSAs must be predetermined. Aho and Ullman's defin.ition

(Figure 30), lemma (Figure 30) and algorithm (Figure 31) are used to support this

discussion [AhoUII72].
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DEFINITION 1

Let M = (Q, L, 8, qQ' F) be a finite automata, and let ql and ~ be distinct states.

We say that x in L* distinguishes ql from q2 if(q" x) ~q3' e), (q2' x)~(ql' e)

and exactly one of q3 and q4 is in F. We say that ql and q2 are k-indistinguishable, written
k

qJ q2' if:and only if there is no x, with Ixl ~ k, which distinguishes ql and (12- We say

that the two states ql and q2 are indistinguishable, written ql == q2' if and only if they are k

indistinguishable for all k;:: 0

A state q E Q is said to be inaccessible if there is no input string x such that

(qo,X)~(q3,e).

Figure 30. The definition of indistinguishable state [AhoU1172].

LEMMA 1

Let M = (Q, L, 8, qQ' F) be a finite automaton with n states. States q 1 and q2 are

indistinguishable if and only if they are (n-2) - indistinguishable.

Figure 31. A lemma to determine two states in an FSA, which are indistinguishable
[AhoU1172].

ALGORITHM 1

Input: two finite automata M, = (QI' LI , 01, q" FI) and M] = (Q], L2, 82, q2' F]) such that

Q,n Q2=0.

Output.

Method.

"YES ifL(Ml) = L(M2), "NO" otherwise.

Construct the finite automaton

?

Using Lemma 1 detemline whether ql - Q2' If so, say "YES"; otherwise, say "NO".

Fi.gure 32. An algorithm to decide the equivalence of two FSAs. [AhoUll72].

50



-

The algorithm in Figure 32 can be explained as follows. Assume that there exist

perfonn equivalence check using Lemma 1. The union of the machines M l and M 2 is

shown in Figure 33. Further assume that M 1and M2 use the same alphabet. Therefore,

the alphabet of M is equal to the alphabet of M, and M2; i.e. L = L 1 U L2 = L) = L~. The

subset of all strings, L·, with length n-2 or less are used by the algorithm, where n = I

Q, U Q21 = IQJI + IQ21 + 1; and the additional one in the last part of the equation is the

sta11 state ofM as shown in Figure 33. According to Definition 1, the two start states qo

and q, are (n-2)-indistinguishable, if and only if no strings with length n-2 in L· are

distinguishable-thus, by Lemma 1, qo and qJ are (n-2)-indistinguishable. If qo and ql are

(n-2)-indistinguishable, then MJ and M] are equivalent according to Algoritlull 1.

In conclusion, the maximum length of the string that needs to be used to compare

strings from two FSAs is the sum 0 f the number of states of the both FSAs minus I; i.e.,

Figure 33. M = (Q, u Q], L I U L 2 , 8 1 U 82, qo, F, u F]) is the
union of two machines lvi, = (Q" L I, 8 1, ClI, F,) and

M] = (Q], L2, 82, q2' F2)·
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Given two FSA machines, Mo and M" their equivalence is tested using their

respective languages (Lo and L,). IfLo is accepted by M , and L I is accepted by Mo, then

Mo and M] are equivalent; otherwise Mo and M , are not equivalent. A program named

Check Equivalence was programmed based on this concept.

Check Equivalence needs three parameters: two input files contain two FSAs and an

output .file contains the string "YES" or "NO". The progran1 will call the String

Generator to generate strings up to the length of n-l, where n is the total number of states

in both FSAs. If the strings generated from the first FSA are accepted by the second

FSA, and the vice versa, then the program will output the string "YES" to indicate that

the two FSAs are equivalent; otherwise the program will output the string "NO" indicate

that the two FSAs are not equivalent.

4.2.10 N-gramSOM System

For the purpose of research, a system is built using all the tools discussed above.

The system is named the N-gramSOM System. The system is illustrated in Figure 34.

The system is designed to handle three different options: train the N-gramSOM, put the

-gramSOM into applications, or both. Therefore, the system can be used to train the N

gramSOM network only, with many different languages and save all the trained data

maps to different directories. The maps will be loaded for application into the N

gramSOM again. During the application phase, the system will construct a new FSA

based on the knowledge that the network has learned. The newly created FSA will be
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compared to the original FSA to check their equiv. The results and statistics will be

output to a file. The system also can do the both jobs described above at once. Thus,

during the testing phase, the three different options are open to experimentation. Th

complete system is illustrated in Figure 33. The complete source code of the N-

gramSOM System is not included in the thesis. Future researchers may obtain th N-

gramSOM source code by contacting the author.

N-gramSOM

Save Ihe
l!cncr;llcd
- Map

(lei FSA

Gctlnput
Vectors

String
Generator

(iel

Input
Veelors

Savc
Slrings

Save Input
VeelOrs N-gram

Translator

(;cl
Strings

GCI

N·grams

N-gram
Generator

Save
N-gmms

(jct "'lap Build
FSA

UCI New FSi\

Save
New ['SA

Check
Equivalent

FSA

NnoDf

Figure 34. Illustration of the -gramSOM System. The oval box represents a file, the
rounded rectangular box represents a process, and the arrow represents a process
transition.
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4.3 Testing

N-gramSOM System was developed on the SunOS 5.5.1 platform with the UNIX

System V Release 4.0 operating system. All the testing processes also were done in the

same platform. After the implementation ofN-gramSOM System was completed, the

next problem encountered was the selection of testing FSA.

4.3.1 SelectionofFSA

Eleven FSAs were chosen to test the N-gramSOM. Of these, Boydstun has used

four to test the SeqSOM, all of which are among the eleven test cases used for the current

research. The other seven FSAs were obtained from internet sites [Giovan98; Pelts98].

One of the FSAs from Boystun is iIlustratecl in Figure 16; the rest 0 r the FSAs are

included in APPENDIX A.

The data chosen to train N-gramSOM are all strings with length of 10 or less,

generated from the FSA in Figure 16, and the FSAs from APPENDIX A. The total

number of strings generated from each FSAis shown in Table 2. The larger the size of

the training set is the longer the time it wi II tuke to train the network.
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Name ofFSA Total number of strings NameofFSA Total number of strings
with length 10 or less with length 10 or less

FSAI 103 FSA7 1024
FSA2 30 FSA8 683
FSA3 9 FSA9 4
FSA4 133 FSAIO 2026
FSA5 1233 FSAl1 511
FSA6 511

Table 2. The total numbers of strings generated by each FSA (training set), with a string
length of 10 or less.

4.3.2 Experimental Results

The number of states in the eleven FSAs used in the test ranges from three to six,

and their alphabet sizes ranges from two to five. Each FSA was used to train an N-

gramSOM network. A new FSA was constructed from the trained N-gramSOM with the

same set of strings. After the new FSA was constructed, it was converted to a DFSA and

then minimized. The minimized FSA was compared to the original FSA for equivalence.

The results of six out of eleven test cases are shown in Table 3. All the FSAs shown in

Table 3 are equivalent, showing that N-gramSOM is able to learn languages and construct

equivalent FSAs. The parameters that were used are shown in Table 3. The results of the

other five FSAs are inconclusive, because no specific data shows that N-gramSOM is not

able to learn their languages. Those FSAs are left for future research, and their diagrams

are shown in APPENDIX A.

In Table 3, the first column contains the names of the FSAs used to test N-

gramSOM; the total number of states is shown in the second column. The third column
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shows the total numbers of state of the DFSA that is converted from the original FSA.

From the fourth column to the sixth column are the new FSAs that are generated by -

gramS OM. The last column demonstrates that the original DFSA is equivalent to the

minimized DFSA, constructed by N-gramSOM.

In Table 4, the first column is the name of the FSA that is used to test N-

gramSOM. The second column is the size of an n-gram used to generate input data. The

third column is the rate that controls the weight adjustment in the network. The fourth

column is the size of the neighborhood used to fine-tune the map. The offset is used to

limit the smallest weight value in the network-for example, if the offset is I.Oe-08, any

weight in a network that is less than l.Oe-08 will be set to O.

Test Original Original New New Minimized Equivalence
Cases FSA DFSA FSA DFSA DFSA
FSAJ 6 7 31 12 7 YES

FSA2 3 3 12 4 3 YES

FSA3 5 6 II 7 6 YES
FSA4 5 5 14 7 5 YES
FSA6 3 4 12 4 4 YES
FSAl1 3 4 12 4 4 YES

Table 3. The final results after 300 tests run for each test cases.

Test Cases N-gram Epoch Leaming rate Neighborhood Of0 et
size size

FSAI 3 60 0.3 3 I.Oe-08

FSA2 3 4 0.3 3 I.Oe-08
FSA3 4 200 0.1 3 l.Oe-08

FSA4 3 5 0.3 3 I.Oe-08

FSA6 3 3 0.3 3 I.Oe-08

FSAll 3 2 0.3 3 I.Oe-08

Table 4. The parameters that the N-gramSOM use to learn the languages.
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4.3.3 Failures from the Testing

The N-gramSOM sometimes fails to generate an equivalent FSA. From the

observations during testing N-gramSOM, the parameters shown in Table 3 are the those

that can affect the output of the network. After many tests, two fonns of failure were

observed: N-gramSOM inconsistently produced equivalent FSA, or the network never

produced equivalent FSA. Another observation is that when one parameter is changed,

the other parameters may need to be changed, or the perfonnance of the network could be

affected.

Increasing the size of the n-gram increases the likelihood that the network can

produce an equivalent FSA. However, the size of the training set and the training time

also are increased, the reason being that the larger the size of the n-gram, the more unique

the patterns that can be produced. The more input data provided for the network, the

more knowledge it can learn. Increasing the training time also allows increases the

likelihood that a network will generate an equivalent FSA. If the network does not have

enough training time, it will not have enough time to learn. Therefore, the long r the

network is trained, the more the neurodes of the network will be adjusted and settled

down gradually. Once the neurodes are settled down, the increase of the training time

will not make any difference. As a result, other parameters, like the learning rate and

neighborhood size, can be adjusted to improve the network perfonnance. Reducing the

learning rate or the neighborhood size, or both, wiJl increase the likelihood that the

network can produce an equivalent FSA. However, reducing the learning rate requires

that the training time must also be increased. Reducing the learning rate and
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neighborhood size will sharpen the edge of the clusters formed, and the states wi 11 be

more well defined. Therefore, the performance of the network can be improved by

reducing the learning rate and neighborhood size, as well as increasing the learning time.

Increasing the value of the offset shows improvement of the network performance, up to a

point. The offset is a control parameter that is used to limit the smallest value of the

weights of the network. The offset value of I.Oe-08 appears to be the optimal value that

works for every test case, but any offset value greater than I.Oe-08 may cause the network

performance to drop immediately.

Another problem that may cause the network to fail is that the number of the

strings that are provided to train the network is not enough. Nonetheless, for the eleven

test cases used in this research, the string length of 10 or less appears to be more than

enough. As a result, only one size of string was used in this research.

4.3.4 Compare the N-gramSOM to SeqSOM

The purpose of this research is to show that N-gramSOM, like SeqSOM, is

another technique to process contextual data. During the training and analyzing of the

network, a few differences between the results of N-gramSOM and the report of SeqSOM

were observed.

Boydstun [Boydstun97] tested using different string lengths, ranging from nine to

twenty. However, the only string length lIsed in the -gramSOM was ten. SeqSOM

does not use an offset value, whereas N-gramSOM uses an offset value to control the
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weights of the network, and it shows improvement ofperfonnance.

SeqSOM is able to learn and produce two equivalent FSAs out of the four test

cases used by Boystun. However, N-gramSOM is able to learn and produce four

equivalent FSAs out of the four test cases. From this point of view, N-gramSOM had

about the same success rate: ~50% of the test cases.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

The purpose ofthe research in this thesis is to show that N-gramSOM network is

able to learn and capture the contextual nature of input data. The experiments that have

been done show that N-gramSOM can successfully learn and construct an FSA that

accepts the language represented by the input data. Like the SeqSOM, N-gramSOM is

trained with strings generated from a given FSA. After the network is trained, a new

FSA is constructed. The new FSA is compared to the original FSA for equivalence. For

the purpose of this research, a set of tools is programmed. The tools are:String

Generator, N-gram Generator, Build Table, N-gram Translator, N-gramSOM network,

Build FSA, Detern1inize FSA, Minimized FSA and Check Equivalence. All of these

tools are formed together to be an N-gamSOM System, which is used to perform all tests.

The results of this research show that N-gramSOM is able to learn the language

from a given FSA and construct an equivalent FSA. Eleven FSAs are tested and N

gramSOM is able to produce six equivalent FSAs. By contrast, while -gramSOM is

able to learn and capture the behavior of the four FSAs that have been used to the

SeqSOM, SeqSOM is able to construct only two equivalent FSAs out the four test cases.
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From these observations, adjusting the parameters ofn-gram size, learning time, learning

rate, neighborhood size and offset can improves the network performance regarding

learning contextual data.

5.2 Future Work

This research shows that N-gramSOM has the potential to learn a language from

an FSA, and to construct an equivalent FSA. However, the research cannot show that N

gramSOM is able to work on all cases. The primary problem of whether N-gramSOM

will be able to learn a language from contextual data and produce an FSA that accepts the

language is solved.

Since the research shows that the parameters of n-gram size, training time,

learning rate, neighborhood size and offset are factors that can affect the perfonnance of

N-gramSOM, the parameters are still not limited. More investigation should be done

concerning other possible parameters that can improve the network performance. The

parameter values shown in Table 3 in CHAPTER Yare varied for different test ca e ,

except the offset and neighborhood size. Therefore, the optimal value for the parameters

is open to discussion.

In addition, another the optimal value that need to be investigated is the size of

network. The FSAs used for this research have a small training set. For future research,

more complicated FSAs need to be tested. The network size used for this research is

lOX 10, because only small FSAs have been used. Therefore, for more complicated
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FSAs, the network size should be increased. The optimal value of the network size

remains unanswered.

In this research, -gramSOM did not produce equivalent FSAs from the test ca e

FSA5, FSA7, FSA8, FSA9 and FSAIO. Those FSAs are shown in Appendix A. In

conclusion, more investigation is needed on these FSAs, including the utilization of the

above-mentioned and, possibly other parameters.
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GLOSSARY

67



-

GLOSSARY

Artificial Intelligence (AI): the study of machines that can understand, make judgements,
etc., in the way that humans do.

Artificial Neural Network (ANN): software that simulates the intelligent aspects of
biological neural networks.

Deteffilinistic Finite State Automata (DFSA): if an FSA is deteffilinistic, it means that in
every state for each distinctive alphabet there is a unique move to another state
in the FSA [Linz96].

Epoch: the process of feeding each vector of a training set into the network once.

Learning rate: a parameter that controls weight adjustments in an ANN.

Neurode: an artificial neuron, also is called a "processing element [Kohonen89]."

N-gram: a vector that contains a sequence of characters from a word or token; each n
gram must contain at least one non-blank character, and at most 11 characters.

Nondeteffilinistic Finite State Automata (NDFSA): if an FSA is nondeterministic, it
means that in every state for each distinctive alphabet there is a finite set of
possible moves that the FSA can make, rather than just assigning a unique move
[Linz96].

Offset: the smallest permitted weight value inlhc network; if allY weight in a network
that is less than the offset, it will be set to O.

Target value: the expected output of the neural network.

Topology: the mathematical study of the properties of objects that are preserveclthrough
deformations, twisting, and stretching [Weiss98A].

Training set: a collection of input vectors that is used to train an ANN.

Weight: the strength or capacity of an individual connection bctween the input neurodes
and output neurodes.
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ACRONYMS
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ACRONYMS

AI: Artificial Intelligence

ANN: Artificial Neural Network

SOM: Self-Organizing Map

SeqSOM: Sequential Self-Organizing Map

N-gramSOM: N-gram Self-Organizing Map

FSA: Finite State Automata

OFSA: Deterministic Finite State Automata

NDFSA: Nondeterministic Finite State Automata

NftoDf: Nondetemlinistic Finite State Automata to Oetemlinistic Finite State Automata
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APPENDIX C

FINITE STATE AUTOM ATA USED FOR EXPERIMENTING N-GRAMSOM
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Test Case FSA I

s

x
s

t

Start x
P

P
v v

t

Input Format

# 1 10
05
&
o1 t

02p
1 I s
1 3 x
22 t
24v
32x
3 5 s
43p
45v
$
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Test Case FSA2

q

Input Format

# 1 10
02
&
010
o1 1
I 10
121
2 10
221
$

Start
0,1
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Test Case FSA3

z

y

z

y

Input Fonnat

# 1 10
04
&
o I Y
02y
1 3 z
1 2 y
3 3 z
32y
24z
$

y y

z
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Test Case FSA4

o

•

Input Format

# 1 10
04
&
010
120
220
230
240
321
341
441
$
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Test Case FSA5

1 0,1

•

Input Fonnat

# 1 10
AD
&
AAO
A B 1
BBI
B CO
CAO
CDI
D DO
D D 1
$

f--l------+I@)
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Input Format

# 1 10
AC
&
ABO
BBO
B C 1
CBO
CCI
$

Test Case FSA6

/:---- 0
Start-to{ A \l-------+l

~

77

o

1

Q



Input Format

# 1 10
AA
&
AA 1
ABO
BAa
B B 1
S

Test Case FSA7

o
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Input Fannat

# 1 lO
AA
&
ABl
ACO
BAl
BOO
CAO
CDl
DBO
DC 1
$

Start

Test Case FSA8
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Start

Input Fonnat

# 1 [0
03
&
o1 a
1 2 b
2 1 b
23c
$

Test Case FSA9

b

a

80
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Test Case 10

2

Start

0,1 o o 0,1

Input Fonnat

# 2 10
ACE
&
AAO
AA 1
ABO
AC I
BDO
COl
000
DDI
$

1 1
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Test Case II

a

Input Format

# I 10
AC
&
AAa
ABb
BBb
B C a
CBb
C Aa
$

b

a
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APPE DJX D

TRAINING SET
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The Complete Training Set from FSA 1 with String Length of 10

ptttttttvv
pttttttvps
pttttttvv
ptttttvps
ptttttvv
pttttvps
pttttvpxvv
pttttvv
ptttvps
ptttvpxtvv
ptttvpxvps
ptttvpxvv
ptttvv
pttvps
pttvpxttvv
pttvpxtvps
pttvpxtvv
pttvpxvps
pttvpxvv
pttvv
ptvps
ptvpxtttvv
ptvpxttvps
ptvpxttvv
ptvpxtvps
ptvpxtvv
ptvpxvps
ptvpxvpxvv
ptvpxvv
ptvv
pvps
pvpxttttvv
pvpxtttvps
pvpxtttvv
pvpxttvps

pvpxttvv
pvpxtvps
pvpxtvpxvv
pvpxtvv
pvpxvps
pvpxvpxtvv
pvpxvpxvps
pvpxvpxvv
pvpxvv
pvv
tsssssssxs
tssssssxs
tsssssxs
tsssssxxvv
tssssxs
tssssxxtvv
tssssxxvps
tssssxxvv
tsssxs
tsssxxttvv
tsssxxtvps
tsssxxtvv
t ssxxvps
tsssxxvv
tssxs
tssxxtttvv
tssxxtlvps
tssxxttvv
tssxxtvps
tssxxtvv
tssxxvps
tssxxvpxvv
tssxxvv
tsxs
tsxxttttvv

84

tsxxtttvps
tsxxtttvv
tsxxttvps
tsxxttvv
tsxxtvps
tsxxtvpxv
tsxxtvv
tsxxvps
tsxxvpxtvv
tsxxvpxvps
tsxxvpxvv
tsxxvv
txs
txxtttttvv
txxttttvps
txxttttvv
txxtttvps
txxtttvv
txxttvps
txxttvpxvv
txxttvv
txxtvps
txxtvpxtvv
txxtvpxvps
txxtvpxvv
txxtvv
txxvps
lxxvpxttvv
txxvpxtvps
txxvpxtvv
txxvpxvps
txxvpxvv
txxvv



-

'j/
VITA

Lee Yang Tan

Candidate for the Degree of

Master of Science

Thesis: AN APPLICATION OF N-GRAM SELF-ORGANIZING MAPS

Major Field: Computer Science

Biographical:

Personal Data: Born in Kuala Ketil, Kedah, Malaysia, January 25, 1972, the son
of Sow Hee and Geek Keaw Tan.

Educational: Graduated from Jit Sin High School, Bukit Mertajam, Penang,
Malaysia in December 1991; received Bachelor of Science degree in
Computer Science from Oklahoma State University, Stillwater, Oklahoma in
December 1994; completed requirement for the Ma ter of Science degree at
Oklahoma State University in May 1999.

Experience: Employed by Oklahoma State University, Computer Information
Services as a computer lab assistant, September 1996 to May 1997.

c


