AN APPLICATION OF N-GRAM

SELF-ORGANIZING MAPS

By
LEE YONG TAN
Bachelor of Science
Oklahoma State University
Stillwater, Oklahoma

1995

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
May, 1999



OKLAHOMA STATE UNIVERSITY

AN APPLICATION OF N-GRAM

SELF-ORGANIZING MAPS

Thesis Approved:

Plee %ﬁ
20

Thesis Adws

(L) aepro 6. P tf

Dean of the Graduate College



ACKNOWLEDGEMENTS

I would like to express my sincerely appreciation to Dr. Blayne Mayfield for being my
thesis advisor. I thank him for his intelligent supervision, constructive guidance and
friendship. I would also like to express my gratitude to my thesis committee members,
Dr. John Chandler and Dr. George Hedrick for assisting with my research. And special
thanks go to Dr. Mansur Samadzadeh for his kindness assistance for my thesis research.

In addition, I would like to specially thank my girlfriend, Wan Fong Estelle Kew, for
her strong encouragement and support through the difficult times, generous assistant,
tmmeasurable love and understanding through out the whole process. I would also like to
specially thank my parent for their financial support, encouragement and understanding
that giving me the opportunity to further my education at Oklahoma State University.

Finally, I thank the Computer Science Department for giving me the opportunity to
accomplish the undergraduate and the gradua;e programs. Special acknowledgement also
goes to Mr. Mike Bradley for his friendship and assistance on proof reading my thesis
report and not forgetting my best friend, Mr. Kuang Ming Yoo for his generous support
and kind assistance in my thesis printing. My thanks also go to the librarians and many

others, who have in one way or other, make my completion of thesis possible.

11




TABLE OF CONTENTS

L. INTRODUCGCTION.:iivuisiivissninsisirosisssssssonssamsisisssssssssisisssssssisissis s ssssoirssssiiossiass 1
1.1. ‘Perspective of Artificial Neural NetWoIKS: ...uiminsunmmsmsissssmsssisisiiv 1
1.1.1. Self-Organizing Map ......ccoeiiiiiioiieie e as e eene s 2

1.1.2. Sequential Self-OFganizing MAP....univnsimssiainseiseiiseaisisias 3

1.1.3. Self-Organizing Map Using N-gram Method .........ccccocevieninnennieniiniinnicnens 4

Z: LITERATURE REVIEW ...cooniiimnionmsimissimissimmiisimaarsias iy 5
2.1. Biological Neutal NCTWOTK .iciormsvsmsmmiuenisisirimeisssiimssesmsasisvastss s o 5
22 Arhficial Newrd] NEWOTKS: c.o.ccsssmsuossmmnnrmnmmsmmissss s s sssmsmsss sy wastss iy 6
2.3, Self-0rganizing MAP ....c.coovivieriiiiiiiii et e st 8
2151, 'SOM ATChIECIITe e i snessim iR ra e el 9

2.3.2, Input and Output: LAVEIS «ssmamrsismsomsisonussmnesansssmsssnsyimessnmsssis 10

B WIS e orverirvmion i s Fimas s ) AVt o 37 ft .8 P B PO I SV Y I

2.3.4. The! COMpentive PROCEES ... umsimssiariieis oo st i iiateaissesi 11

235, THAININME citveetiei ittt e e e b e s sae s sn s e st aenn e e s ssesnneon )

2.36: Kohonen Rule iuaniinmumnmsaimmmnticmurmamsnsisa o 14

2.35F. N PREOTROOAS .ivcuscionswimivsaassivmsasisi.istss st sym ey v s s s 14

2.3.8. Leaming Rate.....cccccvviivriiiiiiiiieiiiiiiei it e ern e eneen 18

S8 Al PSP it i s R T T i i it 19
Dol 1. NSRBI o covsmanwmcnsis comsoniyassmies isias:s e S SRS SRR TN R N SV R SRS i 20

2.4.2. Neural Filtering Model .........ccoovviiiiiiiiiiii e 20

2.5, Sequential Self-Organizing NIADE oo s s s 21
LBUL, IEOIIRERONIDE o cimsasssmsmissntio vas'an s s sodas v i SRR NS B 5 A S AR5 M 22

B WIET OIS iciviuasiosasnsssessuninnsssssssnsss s o 654y vassa s A G aR R Ve S gy oGaas 24
3oL, INEOAUCTION ...ttt ettt a ettt e e s nsse e en 24
3.1.1. An Application of N-gramSOM ........ccocevviemininieniiicniesinionearnnnne 25

312 N-gramSOM ArEhiteeInre ..ccucusv s i 25

3.1.3. The N-gramSOM Algorithm.......c.ccoevvvvimmiciiiiieiineeee s 27

4. IMPLEMENTATION AND TESTING ..iiciiiivsoinisimssonssossssvsimssomsrsisisssd
ol IIOAUCTIO <o cnmns sisuns st s s A S AR S A S 003 30
o 5T s U o) OO SOOIV - |
4.2 1. SArnE GENETAOr. o s mnsisi s i e SR R R 31

4.2.2. N-Sraiy GENEFAOL ... cunssssmisisssamiessmsssss sasssssoassin shassaiisssbdsacasssnsis v 34



4.2.3. N-gram Translator........ccccciieeiiiniieeiiniceeinersires e sessneennie e e 39

424, N-2pamBSOM ..ivmnnminminmusmma s m st i 37

A2 S BUNG BEEA icuciiauvisaisuseiuisase st s s s b i st avees 38

4.2.6. Nondeterministic FSA to Deterministic FSA (NftoDf) ................. 42

427 NOIENENE FRA vwimncsmnmmiabammaims ne s 45

4.2.8. Baruvalence CRECK. siussimsssmmnissmvisimm s taasssrisiiaesamesmmmmms 49

4.2.9. Determining String Length ........cccocoviiiiiniiiiiiinii e 49

42,10, N-gramSOM SYStemlunnsmsiias i ssum s e i 52

B3 T OBUITRE cuiomininsnmsiu s s nws s vassis i b8 KR 5 A A GRS RV S R R ATS 54

4.3.1. Selection 0f FSA .......oooiiiiieieeeceeeeee e et 54

4.3.2; ‘Bxperimestal RESuMS ...uunimmnuinasmamsmisuississmis i die 55

4.3.3. Failures from the TeStNgG .....ccccooivviiveirnieniiiieie e 57

4.3.4. Compare the N-gramSOM to SeqSOM .........ccocoeiviiinniiriniicnns 58

5. CONLUSIONS AND FUTURE WORK.....cceccurruirernressimmsessnnsessinsesmsesssisssassesesnsassaeses 60

B0 T OTHCIEBIONIS v s umeissonna i e s AN A i A RS S SRS AR 60

5.2 FUuture WOrK ..o 6l

REFERENCES ot s o sns s v s siin s iasissssiosssvsss 63

APPENDYCES vosi: isivuciciorsiniesssstesssiiossnsasn s isian oo s s iass s s sk ova s pp seiins 66

APPENDIX A GLOSSARY ..ottt eeeesisse s ssessssssasessaaessesenesnssseenns s sanes 67

APPENDIX B ACROINVIMEY ....conismuininomonsmimss s omsisssags s s m s s s s s 69
APPENDIX C FINITE STATE AUTOMATA USED FOR EXPERIMENTING

N-GRAMSOM ..ottt s enae s 71

APPENDIX D TRAINING SET ......ooveieviieeeerieieceieiesteee e sraeee e sess s s 83



LIST OF TABLES
Table 1. Calculate the size of the DINAIY VECIOT...aummsmsimssmmsvintmimssmansssissisisiwass 27
Table2. The size O HABING 818 v umimaninmmssmm s s e s seiss 55
Table:3: The ARALTERUIS ..occis iiimssnmsimmmmminsbissiepsnmmnsrrsssomiarasassemsrmssssrismmeseasssrssismsnsimyses 56
Table 4. The parameters that N-gramSOM used to learn a language............cccocevveiveeienen. 56

vi



LIST OF FIGURES
Figure 1. Biological Neurons [Hagan96]........cccoooveiieieoecoeiieee et eee et ens 6
Figure 2. An simple architecture of a feedforward ANN ..., 8
Figire 3. SOM architechire [CaudillId] ... sipmsaasiismig 10
Figure 4. The “Mexican-hat function” of lateral interaction [Kohonen89]....................... 15
Figure 5. Neighborheod function for rectangular grid [Fausett94] ...........ccooevvievenienn. 17
Figure 6. “Bubble” neighborhood function [Hollmen96].........cccoeevviviiiiiiiciniiiiienriennn 17
Figure 7a. Learning with a fixed learning rate over time ........c.c.ccocveviiiniencinnnnnsiennienennnes 19
Figure 7b. Learning with a decreasing leaming rate over time ............cccoooveeeveeieenrcenens 19
Figure 8. A window of size 3 scrolls over the input text “wind”...........c...ccooveevnie v, 21
FigiiteD. Ilastration of the SeqgSOM ATehitetire. ...cciusiuncusivmmmsamnssii 23
Figure 10. Illustration of the N-gramSOM Architecture. ..........ccccoovivviiriiivinncennnineninins 20
Figure 11. Algorithm of Kohonen’s SOM. .......cccccoiiiiiiiiiiiieieiiese e 28
Figure 12. Algorithm of N-gramSOM System. .........cccoeiiininiiininiiisieniiniessessesivassnessess 29
Figure 13.: Ioput tomiats 1or the SInng GeRerator. «:wiivmsniaisisissipemiaamrin g
Figure 14. An example of input formats with real data. ................ccocoocoiiiiiiiii. 33
Figure:15. "The praphical ilustration 0L FSALL. . cwccomasmmmcmiomimsmmmssmsmssmmesmsssnssmons 33
Figure 16. Sample strings penerated from FSA L ....ciivuunnnmmmasmnmsimmssossimo 34
Eipure 17 Sample olith-pram v asnsnivaumims s s rta 35
Figure 18. A 100KUP 1able. ...ooviviiiiiiiiieic et s 36

Vil



Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24,
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.

Figure 34.

S AT AT BIE . cocrcmvions cicumnitmosisonsinss 6T ST eSS RS RN S ARSI 37
Sample map of N-gratSOM......c...ccovininminmmmmsmsms st 38
Sample o netWOrk TeSpONSES . i innnnnmns i e R s 40
An FSA generated from N-gramSOM. .......c.cocviviiiiiiniiniiiicnine e 40
A diagram that illustrates the FSA in Figure 22........cccocevviviiiiiiiiiineicienene 4]
An algorithm that convert NDFSA to DFSA [Linz96]. .......coovvviviiviiiiicninnenn. 43
A DFSA generated from the algorithm in Figure 24...........ooveiivivviciviiinneennnn. 44
A diagram that illustrates the DFSA in Figure 25.......cccoovvviiviniinncicicnene 45
The mnimization algonithtn by MAartif. v manimmsareisnnssiaiissi 47
A I IXE S 55, . 5 4 cronsrnsisrthosss RS 985t e b B A B e RS SR AR B T 48
A diagram that illustrates the minimized DFSA in Figure 28...........cccccoooo.e. 48
The definition of indistinguishable state. .........c.c.ccocociiiiicniiinniiincinne, 50
A lemma to determine two states in an FSA, which are indistinguishable. ....50
An algorithm to decide the equivalence ol two FSAS......c.coceviiiiiiiiiiiicenn, 50
T IO O N0 TV IINIIES cimmsminsani a9 A VAN BS54 A 51
IHustration of N-gramSOM SYSeM. ..ot e, 53

viil



CHAPTER 1

INTRODUCTION

1.1  Perspective of Artificial Neural Networks

Artificial Intelligence (Al) is one of the emerging fields in computer science that
has interested many scientists and researchers. It is about the study of machines that can
understand and make judgements, in the way that humans do. Animal and human
mntelligence is the inspiration to the development of Al. These machines with replicated
intelligence traits have been applied in many fields including aerospace, banking and
finance, medical, manufacturing, and telecommunication. In addition, many researchers’
keen interests have led further to the rapid growth and development of these machines.
Artificial Neural Networks (ANNSs) are a sub-field of Al and are designed to simulate the
intelligence aspects of biological neural networks, Warren McCulloch and Walter Pitts
first proposed ANNs that could compute any arithmetic or logical function in 1943
[McCulloch 43]. The first practical application of ANNs appeared in the late 1950’s,
with work done by Frank Rosenblatt on a device called the perceptron [Freeman92].
During the same period, Bernard Widrow and Ted Hoff [ Widrow60] introduced another
ANN application called Adaline [Freeman92]. Research in ANN dropped off

between1969 and the early 1980’s as a result of a publication by Marvin Minsky and



Seymour Papert, who convinced others that ANNs were a dead end [Freeman92;
Minsky69]. ANN research was revitalized during the mid-1980s when the
backpropagation algorithm for training multi-layered networks became more widespread
[Hagan96]. With many researchers concentrating on the backpropagation algorithm,
Teuvo Kohonen pursued research in associative and topology preserving neural networks
during the same period [Maren90]. The Self-organizing Map (SOM), developed by

Kohonen, is a significant achievement in ANN research [Caudill93].

1.1.1 Self-Organizing Map

SOM is a winner-take-all, competition type of neural network. It does not
require complicated mathematical calculations as compared to the widely accepted
feedforward networks, which commonly use the backpropagation learning technique. In
addition, SOM is an unsupervised learning network that also provides topological
preservation mapping from higher dimensional space to one- or two-dimensional space
[Hiotis93; Kohonen89].

The architecture of SOM is a two-layered network with an input-layer and an
output-layer [Caudill93; Kohonen89]. The input-layer is a one-dimensional array of
neurodes. However, the output-layer can be arranged as a two-dimensional array of
neurodes. The neurodes in the output-layer are not interconnected. Each neurode in the
output-layer is connected to each neurode in the input layer by a weight vector. The
individual weights of connections between the input neurodes and the output neurodes

can be described as a strength or capacity. During the training process, the weight



vectors of the winning neurode and its neighbors are updated over time to more closely
match those in the input vector. The neurode with a weight vector that most closely
matches to the input vector, is the winner. Once the training is complete, the SOM is able

to classify new input data to the best-matching neurode.

1.1.2 Sequential Self-Organizing Map

SOM was designed to process only fixed lengths of input vectors. It cannot
effectively process a collection of input vectors of various lengths, nor recognize the
relationships within the input data. Therefore, a neural network referred to as the
Sequential Self-Organizing Map (SeqSOM) was proposed by Boydstun and Mayfield in
1995 [Boydstun95]. The SeqSOM can deal effectively with data of variable input
lengths. The SeqSOM uses a feedback method to build relationships between subsequent
input vectors. SeqSOM has been trained and tested using strings from languages
accepted by Finite State Automata (FSA). The network was shown to be able to both
learn and capture the relationships of the strings. Afler the network was trained, a new
FSA was created, which could recognize the strings from the language accepted by the

original FSA.



1.1.3  Self-Organizing Map using N-gram Method

A method called “n-gram™ also has been used to deal with data of variable input
lengths, which can be either characters or words. The n-gram method uses a fixed length
of scrolling, overlapping windows on the input text to produce a sequence of input
vectors [Scholtes92]. An example of the window is shown in Figure 8 in CHAPTER 2.
The derived input vectors can then be used to train a neural network.

The study of the SOM, SeqSOM, and n-gram methods leads to the possibility of
applying the n-gram method to SOM. Thereafter, the network is able to both learn and
capture the relationship between a sequence of input strings and produce an FSA
equivalent to the original FSA that produced the strings. The network, named
N-gramSOM, is used initially as a neural filter for contextual data by Scholtes
[Scholtes92]. After modifying the original N-gramSOM training method to use the
SeqSOM training method, N-gramSOM is able to construct an FSA that recognizes the

language of the input contextual data and that performs better than SeqSOM.



CHAPTER 2

LITERATURE REVIEW

2.1 Biological Neural Network

The development of Artificial Neural Networks (ANNs) was first inspired by the
characteristics of brain function and their relation to biological counterparts in the brain.
In the human brain, there are large numbers of elements called neurons that are highly
interconnected so as to facilitate thinking, movement, and autonomic responses, etc.
These neurons have four main components: dendrites, a cell body, an axon, and synapses,
which are shown in Figure 1. Each of these components has their specific function. The
dendrites are tree-like receptive networks of nerve fibers that receive electro-chemical
stimuli from other neurons, and then send a signal into the cell body [Anderson95]. The
cell body performs a processing function that is characterized as summing up all the
dendrite input signals; if the sum exceeds a threshold, a signal will be sent out via the
axon, a single long fiber, to other neurons. A small gap known as a synapse exists
between the contact point of the axon of one cell and a dendrite of another cell. The

arrangement of the neurons and the strength of any individual synapse establish the




function of the neural network [Hagan96]. The study of biological neural networks has

set a foundation for the development of ANNS.

Dendrites

A A A
Cell\_ > 2%

et

B—gdy \;:«”__ \ I{_JEW_ = I | \." L

~—

Figure 1. An example of two biological neurons [Hagan90]

2.2 Artificial Neural Networks

An ANN is composed of a group of artificial neurons that are similar in function
to the neurons found in biological neural networks even though an ANN does not

approach the complexity of the brain. The structure of ANNs is similar to biological

6



neural networks only in terms of their simple computational building block and
connection of neurons [Hagan96]. An artificial neuron also is called a “processing
element” [Ritter91] or a “neurode [Kohonen89].”

The ANN architecture is comprised of neurodes that are interconnected to one
another and are usually arranged into layers of neurodes. An example of an ANN
architecture, referred to as a feedforward ANN, is illustrated in Figure 2. It consists of
three or more layers: an input-layer, one or more hidden-layers, and an output-layer. The
function of the input-layer is to distribute the input signals to each of the neurodes in the
hidden-layer. The hidden-layer is used to calculate activation values, which are forwarded
to the output-layer. The activation values of neurodes in the output-layer are the
network’s response to a given input signal. An error value also is computed by
comparing the activation values of the output-layer with its target values. A target value
is the correct output of the network expected from the input signal. Thereafter, the error
values will be distributed back to the hidden-layer for updating the internal weights,
which serves to draw closer resemblance to the target values.

The feedforward ANN is just one of many types of ANNs. The main ANN for

this thesis is the Self-Organizing Map (SOM).



Input Layer  Hidden Layer Output Layer

Figure 2. A simple structure of a feedforward ANN.

2.3 Self-Organizing Map

One type of ANNs, called the Self~Organizing map (SOM), was proposed by
Kohonen in the early 1980’s [Kohonen89]. SOM is a competitive neural network based
on the idea of competition and neighborhood updates. The concept of competition and
neighborhoods will be explained in the 2.3.4 and 2.3.7. SOM is an unsupervised learning
network that does not need human assistance during its leaming period

SOM also is a “topology-preserving map” [Fausett94]. Topology is the

mathematical study of the properties of objects that are preserved through deformations,



twisting, and stretching [Weiss98A]. The various maps formed in SOMs are able to
describe topological relations of input signals using a one- or two-dimensional medium
for representation [Kohonen89]. Since the output layer of an SOM usually is a planar
array, it can preserve topological relationships while performing dimensionality reduction
from n dimensions into a one- or two-dimensional representation space [Hiotis93;

Kohonen89].

2.3.1 SOM Architecture

The basic architecture of the SOM, shown in Figure 3, is a two-layered network
with an input-layer and an output-layer [Caudill93; Kohonen89]. The input-layer is a
one-dimensional array of neurodes. However, the output-layer normally is arranged as a
two-dimensional array of neurodes. The neurodes in the output-layer are not
interconnected [Kohonen89]. Each neurode in the output-layer is fully connected to the
neurodes in the input-layer. Like the input-layer of the feedforward network described in
section 2.2, the SOM input-layer distributes its input signal to each of the neurodes in the
output-layer across a set of adaptive, weighted connections. The neurodes of the output-
layer then make up a competitive assembly [Caudill93]. During the self-organizing
process, the neurode whose weight vector matches an input vector most closely is chosen
as the winner for that input vector. The selection of a winner will be explained in section
2.3.4. The winning neurode and its neighboring neurodes update their weights by using

the Kohonen rule [Fausett94; Hagan96]. The Kohonen rule will be explained in section




2.3.6. By updating the weights (w,) at each pass, the winning neurode and its

neighboring neurodes will be made to match the input data more closely.

Winning Neurode

Input Pattern (x)

Figure 3. SOM architecture [Caudill93].

2.3.2 Input and Output Layers

The input-layer is fully connected to the output-layer and it delivers its signal to

each neurode in the output-layer [Hiotis93]. An input signal is a vector such as:

X =00 X5 e ) (1)

10




The output-layer (Y) is a two-dimensional array consisting of m neurodes, connected to

the input-layer by a weight vector that is illustrated in Figure 3 such as:

wf' = (“JH ' “’_7; ey “'."‘.') (2)

where / <j <m and n is the length of x. Note that the weight vector is the same size as
the input vector. w; refers to the incoming weight from input-layer neurode x; to the

output-layer neurode Y,

2.3.3 Weights

The individual weights of the connections between the input neurodes and the
output neurodes can be described as a strength or capacity. They are similar to the
synapses in the biological network as shown in Figure 1. The weights are used to
compute the response of a neurode to a given input signal. During training, the weights

may be changed based on a training function.

2.3.4 The Competitive Process

In SOM, the neurodes of the output layer are competing with one another to
represent each input vector. The winning neurode is chosen based on the minimal

distance between the weight vector of the neurode and the input vector. The weight

11



vector of the winning neurode is then adjusted to bring the weight vector closer to the
input vector. There are two methods to find the winning neurode.
The first method uses the dot product (7)) between the input vector and weight

vector, as expressed below:

;= 2wy, (3)

i=|

where w;; € the weight vector w, for neurode j, and x; € the input vector x [Caudill93].
The neurode that has the largest value of /; is the winning neurode. Therefore, the
winning neurode is the one that has the largest dot product, which implies that the angle
between the input vector and the winner’s weight vector is smaller than that of any other
neurode’s weight vector.

The second method uses the square of the Euclidean distance (D,) between the

input vector and the weight vector, as expressed below:

D, =>.(w,-x,) (4)

where w; € the weight vector w, for neurode /, and x; € the input vector x [Fausett94]. D,
is the sum of the square of the differences between the weight vector and the input vector,
The neurode with the smallest value of the D, is the winning neurode. The Euclidean
distance is used to calculate the distance between the input vector and a weight vector.
Therefore, the smaller the value of D), the closer the distance between the input vector

and the weight vector.

12




After determining the winning neurode by either of the above methods, the weight
vectors for all neurodes within a specified neighborhood (i.e., radius) of the winning
neurode are updated using the Kohonen rule [Kohonen89]. The weight-updating process

is called training.

2.3.5 Training

A collection of input vectors that is used to train an ANN is called the training set.
Each member of the training set is presented to the ANN during the training process; as a
result, the weights within the network may be updated using the learning rules. An
interval during which each member of the training set is presented to the network once is
called an epoch. Therefore, the network can be trained for many epochs with the training
set. There are two types of methods used to train an ANN: supervised methods and
unsupervised methods. In a supervised method, the training sets and the target values are
known ahead of time. During the training process, the learning algorithm uses the prior
knowledge about the target values to adjust the weights to more closely map the input
vectors to the target values.

The difference between unsupervised training and supervised training is that there
1s no prior knowledge of the output vector for an unsupervised method. In other words,
when a training set is presented to the network, no target values will be known ahead of

time. SOM is an ANN that uses unsupervised training.

13

W

P

-



Initially, a training set is chosen and the weight vectors are initialized with
random values. Weight vectors may also be initialized based on prior knowledge
[Boydstun95]. In addition, the value of the neighborhood size and learning rate must also
be initialized (the leaming rate is a parameter that controls the weight adjustments.)
During the training process, the neighborhood (see section 2.3.7) and the learning rate
(see section 2.3.8) size are reduced based on elapsed time 7. The purpose of reducing the

learning rate and the neighborhood size over time is to fine-tune the map.

2.3.6 Kohonen Rule

The weights of the winning neurode and its neighbors are updated using the

Kohonen rule [Fausett94],

wi(new) = wy(old) + a. [x; — w(old)] (5)

where w,(new) is the new weight vector, w,(old) is the previous weight vector, x, is the

current input vector, and a is the current learning rate.

2.3.7 Neighborhoods

The neurons of the brain are densely interconnected and each neuron can have
thousand of lateral interconnections with neighboring neurons [Kohonen89]. Kohonen

14



says that there are both anatomical and physiological evidences from the mammalian
brains to suggest that the degree of lateral interaction are related to the distance at which
the excitation occurs [Kohonen89]. Neurons that are closest to the active cells have more
positive lateral feedback center of excitation. A region of negative lateral feedback is:
formed after the positive lateral feedback is diminished. A minimal positive lateral
feedback will be formed after the negative lateral feedback region that is farther from the
center of the excitation [Kohonen89). The degree of lateral interaction is usually
described as having the form of a Mexican hat [Kohonen89]. The “Mexican-hat

function” is illustrated in Figure 4.

Interaction

|

- Lateral
distance ‘

Figure 4. The “Mexican-hat function” of lateral interaction
[Kohonen89].

The SOM model does not directly implement lateral feedback. As the neurodes in

SOM’s output-layer are not interconnected, there is no lateral connection. Instead, a

15



neighborhood is defined that includes all the neurodes within a given radius of a winning
neurode. An example of a neighborhood is illustrated in Figure 5, where the
neighborhood represents the lateral distance between the neurodes [Kohonen89]. Only
the weight vectors of the neurodes within the neighborhood can be updated [Hagan96;
Kohonen89]. This not only corresponds to the concept of the center of positive lateral
feedback of the “Mexican-hat function”, but also simplifies the “Mexican-hat function™ to
a “bubble” neighborhood function. The bubble neighborhood function is illustrated in
Figure 6. The bubble neighborhood function is a constant function within the defined
neighborhood of the winning neurode; that is, weight vector of each neurode in the
neighborhood is updated with the same proportion of the difference between its weight
vector and the input vector [Hollmen96]. The neighborhood radius is decreased
gradually during the training process. The neighborhood radius can be reduced using a

linearly decreasing function such as:

T
r?m’u- = |V’,?n.’n’ (1 = f—]-‘ ((’)

where 7 is the neighborhood radius, 7is elapsed training time, and 7, is the maximum
allowable training time [Boydstun97; Fausett94; Kohonen89]. The purpose of decreasing
the neighborhood radius during the training process is to sharpen the response of the
neurodes within the neighborhoods and form clusters. If the neighborhood radius is zero,

it means that the neighborhood only contains the winning neurode, thus it will not form

16



any cluster. A cluster is a group of neurodes that are adjacent to one another and that

match similar input vectors.

* * * * & * *
¥ * * * * * *
E * * %* *® * *® * = NCI.II‘OCIB
H = _._._.I H
] 1 . .
* | x i ox i@ i * * | x (@ = Winning neurode
. ,
L e i
* * * * * * * = 2
* * * *
* * * F= 1
* * * * * * ¥
g e

Figure 5. Neighborhood function for rectangular grid [ Fausett94].

Bubble neighborhood function

—
Lateral distance

Figure 6. “Bubble” neighborhood function
[Hollmen96].

17



2.3.8 Learning Rate

The learning rate controls how much the weight vectors can change in one pass
and 1s a slowly decreasing function of time during the training process [Fausett94].
Kohonen indicates that both a linearly and geometrically decreasing function of time for
the learning rate will produce similar results [Fausett94; Kohonen89]. The following

linearly decreasing function is used 1in this research:

T
anru' = aul’d [1 = _-_J (?)

where the o, 1s the new leamning rate, o, is the previous leaming rate, 7is the elapsed

time, and 7

max

is the maximum allowable training time [Boydstun97; Fausett94;
Hollmen96; Kohoneng9].

Figure 7a shows that the weight vector could oscillate between points “a” and *b"”
but can never get any closer to the input vector with a constant learning rate. However,
Figure 7b shows that by reducing the learning rate over a period of time, the values in the
weight vector will gradually adjust themselves closer to the input vector from points “a”
to “b,” “b” to “c,” and then “c’ to *“d.” The result of reducing the learning rate and the
neighborhood size during the training process over a period of time will yield the
formation of clusters [Kohonen89].

Leamning is usually performed in two phases. In the first phase, a relatively large

(nitial learming rate is used (x=0.3, ..., 0.99), whereas in the second phase a smaller initial

18



learning rate is used («=0.01, ..., 0.1) [Hollmen96]. The first phase is used to create an
initial formation of the correct order [Fausett94]. The second phase is used to fine-tune

the map and yield the final convergence [Fausett94; Hollmen96].

— Learning rate

Weight Input Weight Input
vector vector vector vector )
b mageor @
" @& T @
: c image of h
\ d image ol ¢

Figure 7a. Leaming with a Figure 7b. Learning with a
fixed learning rate. decreasing learning rate over
time.

2.4 Neural Filtering

The Neural Filtering method implemented by Scholtes is used for [ree-text
information filtering [Scholtes92]. Free-text is a keyword that is used to retrieve any
related information from databases [Lebanon95]. A neural filtering model that combines
the n-gram method with the SOM is proposed by Scholtes. The proposed model is able
to act as a neural filter to retrieve associated subjects from the dynamic free-text database

[Scholtes92].

19



24.1 N-Gram

An n-gram 1s a vector that contains a sequence of characters from a word or token;
where each n-gram must contain at least one non-blank character, and at most n
characters. An example of the 3-grams or tri-grams of a word, “windows™ is given below

to illustrate the meaning of n-gram:

--w, -wI1, win, ind, ndo, dow, ows, ws-, s--,

1381

where the “-” represents a space [Scholtes92].

2.4.2 Neural Filtering Model

The neural filtering model consists of two parts: the preprocessing section and the
SOM. The preprocessing section is used to prepare input vectors using the n-gram
method. A “window” of size 3 is used to represent the 3-gram or tri-gram shown in
Figure 8. The window will scroll over the elements in the input text and a program will
translate them into input vectors with the assistance of a lookup table. An element of the
window can be either a character or a word. All unique elements in the input text are
assigned randomly to specific codes in the lookup table. Each input vector to the SOM
holds exactly one n-gram.

The architecture of the SOM in the second part is the same as the original SOM

architecture, which consists of an input-layer and an output-layer. Each neurode in the

20



output-layer competes to represents an n-gram. SOM will form clusters on the map for
the most frequent n-grams occurring in the input text. However, the less frequent n-
grams will be overridden when the number of neurodes in the output-layer is less then the

number of the n-grams generated in the input text [Scholtes92].

ﬁld willld wi aldl | winld 1]

[Wind [Wilnd W

Figure 8. A window of size 3 scrolls over the input text “wind” [Scholtes92].

2.5 Sequential Self-Organizing Maps

SOM is not designed to process sequential input vectors and is not able to
recognize the relationships between the sequential input vectors. Therefore, the
Sequential Self-Organizing Map (SeqSOM) was proposed by Boydstun and Mayfield,
which uses a feedback method to build the relationship within the sequence of the input
vectors [Boydstun95]. A set of strings from a language accepted by an FSA is used to

train the network. The network is able to learn and capture the relationship of the strings

21




and produce a new representation of the FSA. The new FSA is able to accept any strings

from a language accepted by the original FSA.

2.5.1 SeqSOM Architecture

The architecture of the SeqSOM is illustrated in Figure 9, which basically is the
same as the original SOM architecture, consisting of an input-layer and an output-layer.

The difference between the SeqSOM and the original SOM architecture is that the
SeqSOM uses a feedback method. Unlike the input vector in original SOM, the input
vector in the SeqSOM 1is an “input bundie”. The input bundle is a concatenation of an
mput vector from the input vector sequence with three feedback coordinate values, which
consists of a row, column, and plane (as illustrates in Figure 9). The first input bundle is
different from others because it contains no feedback values. When an input bundle is
distributed to each neurode in the output-layer, a winning neurode will be chosen. The
output-layer coordinates of the winning ncurode are used as the feedback value and are
concatenated with the next input vector to form a new input bundle. The new inpul
bundle is used as the next input to the network. This procedure will continue until all the
input vectors from the input vector sequence are consumed [Boydstun97]. Three
feedback values must be added to the weight vector of each neurode to accommodate the

feedback values.

22



Input Bundle

' N

/’ Input Vector Feedback
Planes _ / ) ! ‘
Columns

Boyes
olese
 sbeee
 eeeee

column

.. plane

row

Rows

Input Vector Sequence A i

OITT H——={I1IT]

Feedback Coordinates £ 5

Figure 9. Illustration of the SeqgSOM Architecture [Boystun95].

23




CHAPTER 3

METHODS

3.1 Introduction

The Kohonen SOM is not designed to process input vectors of varying sizes. [t
also not able to capture the sequential relationships between a sequence of input vectors.
To overcome the problem, a network called SeqSOM designed by Boydstun is able to
process input vectors with varying sizes [Boydstun95; Boydstun97]. The SeqSOM
breaks an input vector into a sequence of fixed size new input vectors and feed this
sequence of input vectors into the network sequentially. SeqSOM uses a feedback
method to relate the input vectors in a sequence to one another. As a result, the network
is able to capture the sequential relationships between the input vectors in a sequence.
The architecture of SeqSOM is illustrated in CHAPTER 2.

Another model is proposed by Scholtes using Kohonen SOM to deal with the
contextual data [Scholtes92]. Scholtes uses the n-gram method to generate a sequence of
input vectors from a strings and feed the n-grams into the network sequentially. His
research shows that the network is able to capture the most frequent occurrence of n-
grams. This model is used as a neural filter to retrieve associated subjects from the

dynamic free-text database. Scholtes did not give a name to this model; nevertheless, in

24



this thesis, it will be referred to as N-gramSOM. This model is described in detail

CHAPTER 2.

3.1.1 An Application of N-gramSOM

With the study of the SeqSOM and the N-gramSOM methods, there is a
possibility that the N-gramSOM method may be able to capture the relationships between
a sequence of input vectors, as the SeqSOM does. For this research purpose, a sequence
of n-grams will be generated from a language that is accepted by an FSA. The sequence
of n-grams will be translated to a sequence of input vectors using a lookup table and feed
the input vectors into the network sequentially. The network will capture the
relationships between the sequence of input vectors and produce an equivalent FSA

compared to the original FSA.

3.1.2 N-gramSOM Architecture

The architecture of the N-gramSOM, as illustrated in Figure 10, is the same as the
original SOM that consists of an input-layer and a two-dimensional output-layer. When a
winning neurode is chosen, the weight vectors of the winning neurode and its

neighborhood are updated with the Kohonen Rule [Kohonen89].

25



In addition, the N-gramSOM also shares the same underlying architecture as the
SeqSOM and both use a sequential input method. A difference between these two
architectures is that the N-gramSOM does not use a feedback method.

The size of an input vector that represents an n-gram is n times larger than the
length of a binary representation of a symbol. For example, if a 3-gram or tri-gram is
used to generate a sequence of input vectors and the length of the binary representation of
a symbol is four digits, then the size of the input vector will be twelve digits. The

example is explained in more detail in Table 1.

Input Vector
Columns ey
( ( \ I~ [ { | I | |
( x X ¥ % X £ X & 4 )
._--1 P — = - - - - _' =
CYX X 0 X XX X))
C 0 0 X 0 0 X 0 L)
» F X 3 X X £ X X ¥ )
Z AN AN N AN AN AN AN N N
= (U G G SR S G (R S SR G
CY XXX )
Y XY Y X XY Y Y y y )
e e S ; e ) — — - == - —
( F ¥ X ¥ X ¥ x % I )
X X X X X ¥ X x )
. [
A sequence of input vectors (N-grams) %
[T T T———TTTT] =JLIJ:_I%1J__D

Figure 10. Illustration of the N-gramSOM Architecture. This architecture is a
modification of Figure 9.

26



Representation Size
3-gram or Tri-gram abc J
Binary representation a— 0000 4
b- 0010
c—-0100
Input Vector 000000100100 4x3=12

Table 1. The size of the input vector is calculated by multiplying the size of the tri-gram

with the size of the binary representation.

3.1.3 The N-gramSOM Algorithm

The algorithm for the SOM and the N-gramSOM are mostly identical
except for the training method. The N-gramSOM algorithm serves as an extension of the
SOM algorithm. The algorithms are shown in Figures 11 and 12. The training method

for Kohonen’s SOM selects input vectors in a random order to feed into the network. On

the other hand, the training method for the N-gramSOM feeds input vectors from a

sequence into the network sequentially to maintain the order and relationship of the n-

grams. The differences of these two algorithms are printed in bold in Figurel ]l and

Figure 12.

27




BEGIN
Initialize all neurode’s weight vectors to random values;
Set neighborhood radius,
Set learning rate;
While stopping condition is false
Begin
For all input vectors in the training set(each vector is picked once and
in random order)
Begin
Calculate the square of Euclidean distance for each neurode to
the input vector;
Find the neurode that has minimum Euclidean distance as the
winning neurode;
Update the weights of the winning neurode and its neighbors
using the Kohonen rule;
End;
Update learning rate at a specified time;
Update neighborhood radius at a specified time;
End;
END.

Figure 11. Algorithm of Kohonen’s SOM [Fausett94]

28




BEGIN
Initialize all neurode's weight vectors to random values;
Set neighborhood radius;
Set learning rate;
While stopping condition is false;

Begin
For all input sequences in the training set
Begin
For all input vectors in the sequence(all input vectors are picked
sequentially)
Begin
Calculate the square of Euclidean distance for each neurode to
the input vector;
Find the neurode that has minimum Euclidean distance as the
winning neurode;
Update the weights of the winning neurode and its neighbors
using the Kohonen rule,
End;
End;

Update learning rate at a specified time,
Update neighborhood radius at a specified time;
End;
END.

Figure 12. Algorithm of the N-gramSOM

29




CHAPTER 4

IMPLEMENTATION AND TESTING

4.1 Introduction

[n the early stages of N-gramSOM software development for this research,
Kohonen’s SOM algorithm was implemented using C language to understand in more
detail how the network works; it was tested on the UNIX operating system. In the later
stages, a visual aid tool was needed to validate the network learning activities and their
final convergence. Without a visual aid tool, the validation process would have been
more difficult. Therefore, the network was implemented again by using Microsoft Visual
Basic 4.0, and tested in the Microsoft Windows 95 platform. However, the execution of
the network using Microsoft Visual Basic 4.0 was very slow. As a result, the network
was implemented again using Microsoft Visual C++ 5.0 and was tested again on the
Microsoft Windows 95 platform. The reasons for choosing Microsoft Visual C++ 5.0 are
that it executes much faster than Microsoft Visual Basic 4.0 and that it also provides
visual aid. After the Kohonen’s SOM was validated, the algorithm was used to
implement put into use by N-gramSOM. After the N-gramSOM algorithm was validated,
visual aid was no longer needed. Therefore, the software then was moved to a SUN

server to do testing, since the SUN server has multiple CPUs that are faster than the CPU

30



of PC, and it is able to handle multiple tasks much better. As a result, several tests could

be run at the same time, saving a lot of time on testing.

4.2 Implementation

For the purpose of this research, a set of tools was programmed using C-++
language. The tools consist of eight process stages: String Generator, N-gram Generator,
N-gram Translator, N-gramSOM, Build FSA, Determinize FSA, Minimize FSA, and
Check for Equivalent FSA. Each of these tools is designed to work independently.
Therefore, they can be used to do independent testing for every stage or to build a system
to do all the testing automatically. The effort to program these tools also may benefit
future research. Each of the tools will be explained and discussed respectively in the
following sections. An N-gramSOM system is built using the tools mentioned above and

also will be explained in the last section of this chapter.

4.2.1 String Generator

For the purpose of this research, a set of strings from the language accepted by an
FSA is chosen to train the N-gramSOM network. Therefore, String Generator is
programmed to prepare strings for the network.

String Generator needs three parameters: an input file, an output file and the

maximum length of the strings to be generated. The input file contains a given FSA in

31



specified format, illustrated in Figure 13. Figure 14 shows the input file representing the
FSA 1llustrated in Figure 15. The output file contains the strings generated by String
Generator. The String Generator will generate all strings from the given FSA with the
maximum length specified by the third parameter. When the first output file is created by
String Generator, it contains a lot of duplicate strings. Duplicate strings are unnecessary
for training the network; in addition, these strings increase the network training time.
Therefore, all duplicate strings should be removed. A Mergesort program by Kruse,
Leung and Tondo is used to sort the strings [KruseLT91]. The worst-case analysis
running time for the Mergesort program is O(rlogn) [KruseLT91]. Kruse, Leung and
Tondo define this O(nlogn) as the Mergesort algorithm does no more than nlogn basic
operations and the size of its input is 7 [KruseLT91]. The Mergesort algorithm is one of
the most efficient sorting algorithms and is easy to implement.

After the file is sorted, all the duplicate strings are grouped together and are
removed easily by a simple program. As a result, the size of the file is greatly reduced.
An example of the strings generated by the String Generator using the FSA from Figures

14 and 15 is illustrated in Figure 16 (with duplicate strings removed.)

# the total number of final state(s)
start_state final_state(s)

&

start_state state2 output_symbol

statel state2 output_symbol

b

Figure 13. The input formats for the String Generator. The symbols “#” means the
beginning of the input format, “‘&" means the beginning of the state transition format, and
“$” means the end of both the input and the state transition format.

32




#1
05

01t
02p
11s
13x
221
24v
32x
35s
43p
45v
$

Figure 14. An example of the input formats with real data. The diagram of this FSA is
illustrated in Figure 15.

Figure 15. The graphical illustration of the FSA of Figure 14. Each rim with
a number represents a state. The “Start” followed with an arrow indicates that
the state 0 1s the start state. The double rim in state 5 indicates that the state is
the final state. The arrows represent the transitions from one state to another
state.

33




ptttttttvv Pttvpxtvps
ptttittvps pttvpxtvyv
ptittttvv pttvpxvps
ptttttvps pitvpxvy
ptttttvv pttvv
pttttvps ptvps
pttttvpxvyv ptvpxtttvy
pttttvv ptvpxttvps
ptttvps ptvpxttvy
ptttvpxtvy ptvpxtvps
ptttvpxvps ptvpxtvv
ptttvpxvv ptvpxvps
ptttvy ptvpXvpxvv
pttvps ptvpxvv
pttvpxttvy ptvv

=

Figure 16. A sample of the string file generated from the FSA shown in Figure 15 with
string length of 10 or less. The complete set of thel03 strings is included in APPENDIX
B.

4.2.2 N-gram Generator

The n-gram is explained in CHAPTER II. After the String Generator prepares a
string file, all strings in the string file must be translated to n-grams. Therefore, a
program named the N-gram Generator was written to generate n-grams from a file
containing strings. All generated n-grams are saved to another file. N-grams are
generated based on the method discussed in CHAPTER II and illustrated in Figure 8.

The N-gram Generator needs three parameters: an input file, an output file and the
size of the n-gram. The input file contains a set of strings generated from String

Generator. The output file contains n-grams with the predetermined n-gram size. The n-

34



grams that contain spaces before the first character occurs, as discussed in CHAPTER 2,
will not be used in this research. The N-gram Generator therefore eliminates that type of
n-grams. Two extra symbols, a “B™ and an “E”, are added to the n-grams file and
indicate the beginning and the ending of a word, respectively. These two symbols will be
used to represent the start state and the final state respectively while analyzing the output

of the N-gramSOM network. An example of tri-gram or a 3-gram of a string is shown at

Figure 17.

B B
ptt ptt
{tt ttt
ttt ttt
ttt ttt
ttt ttt
ttt ttv
ttv tvp
tvv vps
vV ps
v S

E E

Figure 17. Two examples of a tri-gram or a 3-gram generated from the word “pttttittvv”

and “pttttttyps”.

4.2.3 N-gram Translator

N-gramSOM is designed to train using input vectors of binary values only.

Therefore, before the n-grams can be used to train N-gramSOM, they must be translated

35



to binary representation. Because of this, a program called the N-gram Translator was
programmed to translate n-grams to vector of binary values.

The N-gram Translator collects all the unique symbols from a file of n-grams and
creates a binary representation for each symbol. The binary representations are
orthogonal to one another. Based on these symbols and their binary representations, a
lookup table is built. An example of the lookup table is illustrated in Figure 18.

The N-gram Translator needs two parameters: an input file and an output file.
The input file contains n-grams that are generated from a string file; the output file
contains the binary vectors that represent each n-gram in the input file. The output file is
used to train the N-gramSOM network. An example of the input file is illustrated in

Figure 19.

0000001
0000010
0000100
0001000
0010000
0100000
1000000

X < T v T Mo

Figure 18. An example of a lookup table. This table is created from the strings in Figure
16. The “0000001” represents an “B”, “0000010” represents an “E”, and so on. In
addition, “0000000 represents an empty space.

36




000000100000000000000
000010000100000010000
001000000100000010000
001000000100000010000
001000000100000010000
001000000100000010000
001000000100000010000
001000000100000100000
001000001000000100000
010000001000000000000
010000000000000000000
000001000000000000000

000000100000000000000
000010000100000010000
001000000100000010000
001000000100000010000
001000000100000010000
001000000100000010000
001000000100000100000
001000001000000000100
010000000001000001000
000010000010000000000
000100000000000000000
000001000000000000000

Figure 19. The binary numbers in this figure are directly translated from the tri-grams in
Figure 17. The “000000100000000000000" represents “B™, the
“000010000100000010000” represents *“ptt”, and so on.

424 N-GramSOM

N-gramSOM is a modified SOM network, which is trained using input vectors

generated by the N-gram Translator. The network model is illustrated in Figure 10, and

its training process is shown in the algorithm in Figure 12. During the training process,

the program feeds the same training set into the network for many epochs.

The training process will be slow if the training set is read from the file for cach

epoch. To speed up the training process, the training set is read in at the beginning of

execution and stored into internal memory, so that it can be reused over all epochs. The

length of training time can range from a few epochs to a few hundred epochs, depending

on needs of the network. After the network is trained, the weights of the network are

saved into a file; therefore, they can be loaded to an untrained network later, which can be



put into application immediately. An example of a map of the weights of a network, after

being trained, is illustrated in Figure 20.

10000000.00878099 0.991218 7.27849¢-07 00 0 0 0 0.999998 1.77606e-06 0 0 0 0

1000 8.79088e-08 0 0 0.60672 0.393279 3.31479¢-07 000 0 0 0.999999 8.71364¢-07 000 0
0.634838 00 00.365162 00 0.999991 8.60027¢-06 3.92012e-0800000 1 1.03049¢-070000
0.000892599 0 0 6.04139¢-07 0.9991070010000000 0.999999 0 1.65491e-07 00 0
0000.361497 0.638503000.99999900000 0 0.358139 0.638503 0 0.00335679 0 0 0
000100010000000.999973 00 2.72962e-05000
00010000.927671000.07232920000.997073 ¢ 0 0.00292708 0 0 0
00010007.93837e-05000.9999200 00.999719 0 0 0.00028023900 0

0000.00310488 0 0.99689500000.00310488 0 0 0 0.00309685 00 8.032¢-06 000
000001000000000000000

10000000.574547 0.415792 0.00966132 0000 0 0.984873 0.0151269000 0

Figure 20. A partial map that consists of 11 out of 100 weights of a 10x10 N-gramSOM
networks.

4.2.5 Build FSA

After the network is trained, the same training set is reused to test its response by
feeding the training set into the network again. The response of the network is
determined by the winning neurode for each input vector from the training set. The
response of the network is then recorded. A new FSA will be analyzed and translated
from the recorded data. An example of the network response is shown in Figure 21. In
this figure, each line of data represents the network responses for each input sequence

from a training set, and also represents a transition from start state to final state. For

38




example, “89B 74 ptt 72ttt 72ttt 72ttt 72ttt 72ttt 52 ttv SOtvv 93 vv 95v 9E”
is the network response for the input sequence “B ptt ttt ttt ttt ttt tit ttv tvwv vv v E”
The first number, “89,” is the index of the winning neurode for the letter “B.” The start
state 1s the index of the winning neurode, “89,” of the letter “B.” Therefore, the first
number always serves as the start state. The last number before “E,” in this case ©9,” is
the network response of the letter “E” and will not be used. The letter “E” indicates that
the number, “95,” before the last number, “9,” represents the actual final state. A
transition from one state to another state can be analyzed from the last example in which
state 89 to state 74 produces symbol “p”’; state 74 to state 72 produce symbol “t”, and so
on. The symbol is the first letter of each word, such that “p” is for “ptt” and “t™ is for
“ttt”. The full translation of the transitions from the above example is illustrated at

below:

89— 74— 72— 72— 372 —572—>12—>52—50——>93——>95

where gg__ P , 74 means the transition from state 89 to state 74, and produces output
symbol “p,” An example of an FSA translated from the network response data in Figure

21, is illustrated in Figure 22; this FSA is shown graphically in Figure 23.

39



89B 74 ptt 72ttt 72ttt 72ttt 72ttt 72ttt 52 ttv 50tvv 93 vv 95v 9E
89B 74 ptt 72ttt 72ttt 72ttt 72ttt S2ttv 70tvp 97 vps 47ps 25s 9F
89B 74 ptt 721ttt 72ttt 72ttt 72ttt S2ttv SOtvv 93vv 95v 9E

89B 74 ptt 72ttt 72ttt 72ttt 5S2ttv 70tvp 97 vps 47ps 25s OE

89B 74ptt 72ttt 72ttt T2ttt 52 ttv 50tvv 93 vv 95v 9E

89B 74 ptt 72ttt 72ttt S2ttv 70tvp 97 vps 47 ps 25s 9E

89B 74 ptt 72ttt 72ttt 5S2ttv 70tvp 76 vpx 3 pxv Oxvv 93vv 95v 9E
8OB 74ptt 72ttt 72ttt S2ttv 50tvy 93 vv 95v 9E

89 B 74ptt 72ttt 52ttv 70tvp 97 vps 47 ps 25s 9 F

89B 74 ptt 72ttt 52 ttv 70 tvp 76 vpx 23 pxt 30 xtv 50tvv 93 vv 95v 9E
89B 74ptt 72ttt 52ttv 70 tvp 76 vpx 3 pxv 90 xvp 97 vps 47ps 25s 9E
89B 74 ptt 72ttt 52 ttv 70 tvp 76 vpx 3 pxv Oxvv 93vv 95v 9E

89B 74ptt 721ttt 52ttv S0tvw 93 vv 95v 9E

Figure 21. Part the network response from the strings at the left column in Figure 17.

[#2 5815s 32 44 x 763 p
892595 585s 715s 9747 p
& 64 50t 75% 093 v
8929t 64 70t 9395 v 9076 v
89491 69 21 x 1556x 9097 v
8950p 69 32 x 321 x 30501
89 58t 74 52t 532x 30701
89 64 p 74 721 70 76 v 44 521

| 8969 t 80 76 v 7097 v 44 721
1 8974 p 8097 v 210x 2330 x
89 80 p 5625s 52501 2344 x
29 56 x 2727s 52701 30%
4927s 277s 72 521 390 x
497s 2190 x 7272t 4725s
5093 v 3230 7623 p $ N

Figure 22. The FSA translated from the responses of the network. The diagram of this
FSA is illustrated in Figure 23.

40



el

( )
!

Figure 23. The diagram of the FSA in Figure 22.

41




4.2.6 Nondeterministic FSA to Deterministic FSA (NftoDf)

If an FSA is nondeterministic, it means that in each situation there is a finite set of
possible moves that the FSA can make, rather than just assigning a unique move

[Linz96]. A nondeterministic FSA (NDFSA) is defined as the following:

(Q} z: 6!\&: QU,FN J:

where
Q is a finite set of internal states,
Z is a finite set of symbols called the input alphabet,
Sp O x (ZuU{A}—>2%isatotal function called the transition function,
g, € Q is the initial state,
F, < Qs aset of final states,
A 1s an empty string [Linz906].
If an FSA is deterministic, it means that in each situation there is a unique move

in the FSA. A deterministic FSA (DFSA) is defined as the following:

(©, 2, 8p., 40.F ),

where O, Z, q, and F, are defined as the NDFSA above, and &, is defines as
8, O x T Q.

The new FSA constructed by N-gramSOM normally has many states and is

42



complicated; in addition, the new FSA may be a NDFSA. To reduce the size and
complication of the new FSA, it needs to be minimized. John C. Martin developed a
minimization algorithm that only works on minimizing a DFSA [Martin91]. This
algorithm will be discussed in the next section. To use the minimization algorithm, the
new NDFSA must be converted to an equivalent DFSA. An algorithm by Peter Linz is

used to convert the NDFSA to an equivalent DFSA, illustrated in Figure 24 [Linz90].

BEGIN
Create a graph G, with vertex {q,} and mark the vertex as the start state;
Repeat until no more edges are missing
begin
Take any vertex of G, {q.4;...q,} that has no outgoing edge for some a € X
Compute oy (g, @), OMq; a) ..., OMq,, a);
Then form the union of all these 9, yielding the set {q, ¢,, ....4.},
Create a vertex for G, labeled {4q,,...q.,/} if it does not exist;
Add to Gy, an edge from {qqq,}to {q4,...q,/tand label it with a;
end;
Any vertex of G, whose label contains any q, € F is identified as final vertex;
for all vertex
foralla € £
if there is no outgoing edge labeled a

Add to G, an edge from the vertex to u vertex {trap},
END.

Figure 24. An algorithm that converts the NDFSA to an equivalent DFSA [Linz90].

A tool named Determinize FSA was developed based on the algorithm in Figure
24. The program takes two parameters: an input file and an output file. The input file
contains an NDFSA and the output file contains an equivalent DFSA, which is converted

from the aforementioned NDFSA. An example of the input file NDFSA is shown in

43




Figure 22 and Figure 23. The output file that is constructed by the Determinize FSA
from the input data in Figure 22 is illustrated in Figure 25, and the graphical look of the

FSA is illustrated in Figure 26.

#2

892595

&

89 29495869 t

89 50647480 p

89 trap s

89 trap v

89 trap x

29495869 152757 s
29495869 213256 x
29495869 trap p
29495869 trap t
29495869 trap v
50647480 50527072 t
50647480 769397 v
50647480 trap p
50647480 trap s
50647480 trap x
trap trap p

trap trap s

trap trap t

trap trap v

trap trap x

152757 152757 s

| 152757 213256 x
152757 trap p
152757 trap t
152757 trap v
213256 0304490 x
213256 25 s
213256 trap p
213256 trap t

213256 trap v
50527072 50527072 t
50527072 769397 v
50527072 trap p
50527072 trap s
50527072 trap x
769397 23347 p
76939795 v
769397 trap s
769397 trap t
769397 trap x
0304490 50527072 t
0304490 769397 v
0304490 trap p
0304490 trap s
0304490 trap x

25 trap p

25 trap s

25 trap t

25 trap v

25 trap x

23347 0304490 x
23347 25 s

23347 trap p
23347 trap t
23347 trap v

95 trap p

95 trap s

95 trap t

95 trap v

95 trap x

$

Figure 25. An example of an output file constructed by the Determinized FSA program,
from the input file in Figure 22.

44



-
(somsny

29495869)—— { 213256

v

——

p,l,\-’ p-lv" -
Start 89 L

gy
P.S.X ' .
506474 ' . L (23347

Y
s,h,x %
e p.s.LV,X @
Lv

~»( trap 5

@i

P.S.LV.X PS.LV.X

Figure 26. A graphical looks of the DFSA from Figure 25.

4.2.7 Minimizing FSA

Many DFSAs accept the same language; those DFSAs may have a different
number of states. According to Martin’s theory of the uniqueness of the minimum
DFSA, if there are two equivalent DFSAs and both DFSAs are reduced to minimum

number of states, they will have the same number of states and will look the same

45




[Martin91]. If a DFSA does not have the minimum number of states, it must have some
redundant parts. It is therefore always advisable to reduce a DFSA to the equivalent
DFSA that has the fewest number of states.

The new FSA created by N-GramSOM usually is an NDFSA, has many states,
and 1s complicated. After the new FSA is constructed, it must be compared to the
original FSA to check their equivalence. Therefore, the new FSA should be minimized to
reduce the process time for checking the equivalence process. The method to check
equivalence of both FSAs will be discussed in detail in the section 4.2.8. Martin
developed an efficient algorithm that minimizes the number of states of a DFSA
[Martin91], as shown in Figure 27. The algorithm has been proved to be reliable by the
author; but it only works with a DFSA. Since the new FSA is an NDFSA, it must be
converted from an NDFSA to an equivalent DFSA to use the algorithm. The method and
the algorithm that convert the NDFSA to an equivalent DFSA are discussed in the section
4.2.0.

The Minimized FSA tool is implemented based on the algorithm shown in Figure
27. The tool takes two parameters: a DFSA file-as-input file and a minimized DFSA file-
as-output file. The input file is demonstrated in Figure 25 and the output file is
demonstrated in Figure 28. The diagram of the minimized DFSA in Figure 28 is

itllustrated in Figure 29.

406



BEGIN

Create a (N-1) X (N-1) matrix M where N is number of states and label the
columns with the state name from the first state to N-1 state and label the rows
with the state name from the second state to N state;

Create a set S(i, j) where i is the row number and j is the column number in M
and S(i, j) is going to store a set of state pairs;

List all unordered pairs (p, q) with p =g,

for each pair (p, q) withp #q;

begin

if exactly one of p, q is in F then
MARK (p, q);
else
Initialize the set S(p, q) to be empty;

end;

for each pair (p, q) with p #q

begin

if (p, q) is not marked then
foreacha € X
begin
r=9(p, a);
s=90(q, a);

if r #s then

if (r, s) is not marked then
Insert (p, q) into S(r, s);

else
MARK(p, q);

end;
end;
end;
END.

Procedure MARK(p, ¢)
BEGIN
Mark (p, q);
for each pair (r, s) in S(p, q) ;
MARK(r, s);
END.

Figure 27, An minimization algorithm by Martin [Martin91].

47



#1

89 25

&

89 29495869 t

89 50647480 p

89 trap s

89 trap v

89 trap x

29495869 213256 x
29495869 29495869 s
29495869 trap p
29495869 trap t
29495869 trap v
50647480 50647480 1
50647480 769397 v
50647480 trap p
50647480 trap s
0647480 trap x

trap trap p

trap trap s

trap trap t

trap trap v

trap trap x
21325625 s
213256 50647480 x
213256 trap p
213256 trap t
213256 trap v
769397 213256 p
769397 25 v
769397 trap s
769397 trap t
769397 trap x

25 trap p

25 trap s

251rap t

25 trap v

25 trap x

$

Figure 28. An example of minimized DFSA from Figure 16.

Start—{ 89

S,V,X

/@J\\

P,S,t,V,X

<

P.S,t,V,X

Figure 29. The diagram of the minimized DFSA in Figure 19.

48




4.2.8 Equivalence Check

After the trained N-gramSOM creates a new FSA, the equivalence of the original
FSA and the new FSA is questioned. Two methods can be used to check for the
equivalence of both FSAs: visual comparison and algorithm comparison. As mentioned
in the Minimizing FSA section, according to the uniqueness of the minimum DFSA, both
FSAs are converted to DFSAs and minimized. If both minimized FSAs look exactly the
same then they are equivalent.

If an algorithm is used to check for the equivalency, the strings from both FSAs
are generated, then compared. A problem is encountered in that the number of the strings
in the language of an FSA can be infinite. However, an algorithm developed by Aho and
Ulman shows a finite, maximum length of strings needed to test the equivalence of two
FSAs [AhoUll72]. The selection of the maximum length of strings will be discussed in

the section 4.2.9.

4.2.9 Determining String Length

As discussed in the previous section, the maximum length of strings needed to
check the equivalence of two FSAs must be predetermined. Aho and Ullman’s definition
(Figure 30), lemma (Figure 30) and algorithm (Figure 31) are used to support this

discussion [AhoUl172].

49



DEFINITION 1

Let M=(0, %, 8, q,, F) be a finite automata, and let q, and q, be distinct states.
We say that x in I* distinguishes q, from q, if (g,, X) ——qs, ), (¢, X)——(q,, €),
and exactly one of ¢, and ¢, is in . We say that ¢, and g, are k-indistinguishable, written
4 G ii&nd only if there is no x, with |x| < k, which distinguishes ¢, and ¢,. We say
that the two states q, and q, are indistinguishable, written q, = ¢,, if and only if they are &-
indistinguishable for all k > 0

A state ¢ € O is said to be inaccessible if there is no input string x such that

(qy>x)—>(¢5, ).

Figure 30. The definition of indistinguishable state [AhoUI172].

LEMMA 1
Let M= (0, Z, 8, g,, F) be a finite automaton with n states. States gl and g2 are

indistinguishable if and only if they are (1-2) — indistinguishable.

Figure 31. A lemma to determine two states in an FSA, which are indistinguishable
[AhoUl172].

ALGORITHM 1
Input: two finite automata M, =(Q,, £, d,, q,, F,) and M, = (Q,, Z,, ,, ¢.. F,) such that

on Q=2
Output. “YES if L(M1) = L(M2), “NO” otherwise.
Method. Construct the finite automaton

M=(QFU Q.’&EIU Ezsalu 621’:{||F;U F.’J

Using Lemma | determine whether g, = q,. If so, say “YES”; otherwise, say “NO™.

Figure 32. An algorithm to decide the equivalence of two FSAs. [AhoUl172].

50




The algorithm in Figure 32 can be explained as follows. Assume that there exist
two machines M, = (Q,, £,, 8,, ¢, F,) and M, =(Q,, Z,, 8,, ¢,, F,) that share no states; the
combination of both machines, M = (Q, v 0,, L, U I,,8,U &, ¢, F, U F,), is used to
perform equivalence check using Lemma 1. The union of the machines M, and M, is
shown in Figure 33. Further assume that M, and M, use the same alphabet. Therefore,
the alphabet of M is equal to the alphabet of M, and M,;1.e. Z=Z, U Z, = Z,=Z,. The
subset of all strings, Z°, with length #-2 or less are used by the algorithm, where n = |
0,v O)=|0,|+|0, + 1; and the additional one in the last part of the equation is the
start state of M as shown in Figure 33. According to Definition 1, the two start states q,
and q, are (n-2)-indistinguishable, if and only if no strings with length -2 in Z° are
distinguishable—thus, by Lemma 1, ¢, and ¢, are (n-2)-indistinguishable. If ¢, and ¢, are
(n-2)-indistinguishable, then M, and M, are equivalent according to Algorithm 1.

In conclusion, the maximum length of the string that needs to be used to compare

strings from two FSAs is the sum of the number of states of the both FSAs minus 1; i.c.,

n=10/V O)-2=([Q[+IQ|+1)-2=[0\[+]0y] - I.

M,

Start

M,

“

Figure 33. M=(Q,v 0,.Z, U X,,0,V 8,4, F,w F,)isthe
union of two machines M, = (Q,, £,, 8,, ¢,, ) and
M,=(0,, Z;, 65, q,, F?).

51



Given two FSA machines, M, and M,, their equivalence is tested using their
respective languages (L, and L,). If L, is accepted by M, and L, is accepted by M,, then
M, and M, are equivalent; otherwise M, and M, are not equivalent. A program named
Check Equivalence was programmed based on this concept.

Check Equivalence needs three parameters: two input files contain two FSAs and an
output file contains the string “YES” or “NO”. The program will call the String
Generator to generate strings up to the length of #-1, where n is the total number of states
in both FSAs. Ifthe strings generated from the first FSA are accepted by the second
FSA, and the vice versa, then the program will output the string “YES™ to indicate that
the two FSAs are equivalent; otherwise the program will output the string “NO™ indicate

that the two FSAs are not equivalent.

4.2.10 N-gramSOM System

For the purpose of research, a system is built using all the tools discussed above.
The system is named the N-gramSOM System. The system is illustrated in Figure 34,
The system is designed to handle three different options: train the N-gramSOM, put the
N-gramSOM into applications, or both. Therefore, the system can be used to train the N-
gramSOM network only, with many different languages and save all the trained data
maps to different directories. The maps will be loaded for application into the N-
gramSOM again. During the application phase, the system will construct a new FSA

based on the knowledge that the network has leamed. The newly created FSA will be

52



1

compared to the original FSA to check their equiv. The results and statistics will be
output to a file. The system also can do the both jobs described above at once. Thus,
during the testing phase, the three different options are open to experimentation. The
complete system is illustrated in Figure 33. The complete source code of the N-
gramSOM System is not included in the thesis. Future researchers may obtain the N-

gramSOM source code by contacting the author.

Sive
Original " Civt FSA String Slr‘::lgs
FSA Generator
N-gramSOM

Save the
generated
Map

Giet
Strings

N-gram
Generator

Save [nput Get
Veclors N-gra m N-prams

Translalor

Giet Input
Vectors

Gt
Inpunt
Vecetors

Nave
New FSA

Ciet Map

Build
FSA

Get New FSA

Minimized
DFSA

L
‘—l NltoDf
¢

Equivalent ¢ Yes/No _(..P‘icck
W * Equivalent
FSA? FSA

Figure 34. Illustration of the N-gramSOM System. The oval box represents a file, the
rounded rectangular box represents a process, and the arrow represents a process
transition.

53



43 Testing

N-gramSOM System was developed on the SunOS 5.5.1 platform with the UNIX
System V Release 4.0 operating system. All the testing processes also were done in the
same platform. After the implementation of N-gramSOM System was completed, the

next problem encountered was the selection of testing FSA.

4.3.1 Selection of FSA

Eleven FSAs were chosen to test the N-gramSOM. Of these, Boydstun has used
four to test the SeqSOM, all of which are among the eleven test cases used for the current
research. The other seven FSAs were obtained from internet sites [Giovan98; Pelts98].
One of the FSAs from Boystun is illustrated in Figure 16; the rest ol the FSAs are
included in APPENDIX A.

The data chosen to train N-gramSOM are all strings with length of 10 or less,
generated from the FSA in Figure 16, and the FSAs from APPENDIX A. The total
number of strings generated from each FSA is shown in Table 2. The larger the size of

the training set is the longer the time it will take to train the network.

54



Name of FSA | Total number of strings | Name of FSA | Total number of strings
with length 10 or less with length 10 or less
FSA1 103 FSA7 1024
FSA2 30 FSAS8 683
FSA3 9 FSA9 4
FSA4 133 FSA10 2026
FSAS 1233 FSAIl1 511
FSAG6 511

Table 2. The total numbers of strings generated by cach FSA (training set), with a string
length of 10 or less.

4.3.2 Experimental Results

The number of states in the eleven FSAs used in the test ranges from three to six,
and their alphabet sizes ranges from two to five. Each FSA was used to train an N-
gramSOM network. A new FSA was constructed from the trained N-gramSOM with the
same set of strings. After the new FSA was constructed, it was converted to a DFSA and
then minimized. The minimized FSA was compared to the original FSA for equivalence.
The results of six out of eleven test cases are shown in Table 3. All the FSAs shown in
Table 3 are equivalent, showing that N-gramSOM is able to learn languages and construct
equivalent FSAs. The parameters that were used are shown in Table 3. The results of the
other five FSAs are inconclusive, because no specific data shows that N-gramSOM is not
able to leamn their languages. Those FSAs are left for future research, and their diagrams
are shown in APPENDIX A.

In Table 3, the first column contains the names of the FSAs used to test N-

gramSOM,; the total number of states is shown in the second column. The third column

55




shows the total numbers of state of the DFSA that is converted from the original FSA.

From the fourth column to the sixth column are the new FSAs that are generated by N-

gramSOM. The last column demonstrates that the original DFSA is equivalent to the

minimized DFSA, constructed by N-gramSOM.

In Table 4, the first column is the name of the FSA that is used to test N-

gramSOM. The second column is the size of an n-gram used to generate input data. The

third column is the rate that controls the weight adjustment in the network. The fourth

column 1s the size of the neighborhood used to fine-tune the map. The offset is used to

limit the smallest weight value in the network—for example, if the offset is 1.0e-08, any

weight in a network that is less than 1.0e-08 will be set to 0.

Test Original | Original New New Minimized | Equivalence

Cases FSA DFSA FSA DFSA DFSA

FSA] 6 7 31 12 7 YES

FSA2 3 3 12 4 3 YES

FSA3 5 6 I 7 6 YES

FSA4 5 5 14 7 5 YES

FSA6 3 4 12 4 4 YES

FSAIll 3 4 12 4 4 YES

Table 3. The final results after 300 tests run for each test cases.
Test Cases N-gram Epoch Learning rate | Neighborhood Offset
size size

FSAL 3 60 0.3 3 1.0e-08
FSA2 3 4 0.3 3 1.0e-08
FSA3 4 200 0.1 3 1.0e-08
FSA4 3 5 0.3 3 1.0e-08
FSA6 3 3 03 3 1.0e-08
FSA1l 3 2 0.3 3 1.0e-08

Table 4. The parameters that the N-gramSOM use to leam the languages.

56




4.3.3 Failures from the Testing

The N-gramSOM sometimes fails to generate an equivalent FSA. From the
observations during testing N-gramSOM, the parameters shown in Table 3 are the those
that can affect the output of the network. After many tests, two forms of failure were
observed: N-gramSOM inconsistently produced equivalent FSA, or the network never
produced equivalent FSA. Another observation is that when one parameter is changed,
the other parameters may need to be changed, or the performance of the network could be
affected.

Increasing the size of the n-gram increases the likelihood that the network can
produce an equivalent FSA. However, the size of the training set and the training time
also are increased, the reason being that the larger the size of the n-gram, the more unique
the patterns that can be produced. The more input data provided for the network, the
more knowledge it can learn. Increasing the training time also allows increases the
likelihood that a network will generate an equivalent FSA. If the network does not have
enough training time, it will not have enough time to learn. Therefore, the longer the
network is trained, the more the neurodes of the network will be adjusted and settled
down gradually. Once the neurodes are settled down, the increase of the training time
will not make any difference. As a result, other parameters, like the learning rate and
neighborhood size, can be adjusted to improve the network performance. Reducing the
learning rate or the neighborhood size, or both, will increase the likelihood that the
network can produce an equivalent FSA. However, reducing the learning rate requires

that the training time must also be increased. Reducing the learning rate and

57



neighborhood size will sharpen the edge of the clusters formed, and the states will be
more well defined. Therefore, the performance of the network can be improved by
reducing the learning rate and neighborhood size, as well as increasing the learning time.
[ncreasing the value of the offset shows improvement of the network performance, up to a
point. The offset is a control parameter that is used to limit the smallest value of the
weights of the network. The offset value of 1.0e-08 appears to be the optimal value that
works for every test case, but any offset value greater than 1.0e-08 may cause the network
performance to drop immediately.

Another problem that may cause the network to fail is that the number of the
strings that are provided to train the network is not enough. Nonetheless, for the eleven
test cases used in this research, the string length of 10 or less appears to be more than

enough. As aresult, only one size of string was used in this research.

4.3.4 Compare the N-gramSOM to SeqSOM

The purpose of this research is to show that N-gramSOM, like SeqSOM, is
another technique to process contextual data. During the training and analyzing of the
network, a few differences between the results of N-gramSOM and the report o SeqSOM
were observed.

Boydstun [Boydstun97] tested using different string lengths, ranging from nine to
twenty. However, the only string length used in the N-gramSOM was ten. SeqSOM

does not use an offset value, whereas N-gramSOM uses an offset value to control the

58



weights of the network, and it shows improvement of performance.

SeqSOM is able to learn and produce two equivalent FSAs out of the four test
cases used by Boystun. However, N-gramSOM is able to learn and produce four
equivalent FSAs out of the four test cases. From this point of view, N-gramSOM had

about the same success rate: ~50% of the test cases.

39



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

The purpose of the research in this thesis is to show that N-gramSOM network is
able to learn and capture the contextual nature of input data. The experiments that have
been done show that N-gramSOM can successfully learn and construct an FSA that
accepts the language represented by the input data. Like the SeqSOM, N-gramSOM is
trained with strings generated from a given FSA. After the network is trained, a new
FSA is constructed. The new FSA is compared to the original FSA for equivalence. For
the purpose of this research, a set of tools is programmed. The tools are:String
Generator, N-gram Generator, Build Table, N-gram Translator, N-gramSOM network,
Build FSA, Determinize FSA, Minimized FSA and Check Equivalence. All of these
tools are formed together to be an N-gamSOM System, which is used to perform all tests.

The results of this research show that N-gramSOM is able to learn the language
from a given FSA and construct an equivalent FSA. Eleven FSAs are tested and N-
gramSOM is able to produce six equivalent FSAs. By contrast, while N-gramSOM is
able to learn and capture the behavior of the four FSAs that have been used to the

SeqSOM, SeqSOM is able to construct only two equivalent FSAs out the four test cases.

60



From these observations, adjusting the parameters of n-gram size, learning time, learning
rate, neighborhood size and offset can improves the network performance regarding

learning contextual data.

5.2 Future Work

This research shows that N-gramSOM has the potential to learn a language from
an FSA, and to construct an equivalent FSA. However, the research cannot show that N-
gramSOM is able to work on all cases. The primary problem of whether N-gramSOM
will be able to leamn a language from contextual data and produce an FSA that accepts the
language is solved.

Since the research shows that the parameters of n-gram size, training time,
learning rate, neighborhood size and offset are factors that can affect the performance of
N-gramSOM, the parameters are still not limited. More investigation should be done
concemning other possible parameters that can improve the network performance. The
parameter values shown in Table 3 in CHAPTER V are varied for different test cases,
except the offset and neighborhood size. Therefore, the optimal value for the parameters
is open to discussion.

In addition, another the optimal value that need to be investigated is the size of
network. The FSAs used for this research have a small training set. For future research,

more complicated FSAs need to be tested. The network size used for this research is

10 X 10, because only small FSAs have been used. Therefore, for more complicated

61



FSAs, the network size should be increased. The optimal value of the network size
remains unanswered.

In this research, N-gramSOM did not produce equivalent FSAs from the test case
FSAS, FSA7, FSA8, FSA9 and FSA10. Those FSAs are shown in Appendix A. In
conclusion, more investigation is needed on these FSAs, including the utilization of the

above-mentioned and, possibly other parameters.

02



[AhoUll172]

[Anderson95]

[Boydstun95]

[Boydstun97]

[Caudili93]

[Fausett94]

[Freeman92]

[Giovan98]

[Hagan96]

[Hiotis93]

[Kohonen89]

REFERENCES

Aho and Ullman. The Theory of Parsing, Transition and Compiling.
Volume 1:Parsing. Prentice-Hall, Englewood Cliffs, NJ, 1972.

Anderson, J. An Introduction to Neural Networks. Cambridge,
MA: The MIT Press, 1995.

Boydstun, R. and Mayfield, B. lnvestlgatlon of chuentlal Self-

Organizing Maps.” ter wa
Qklahoma State University, 1995.
Boydstun, R. Investigation of Sequential Self-Organizing Maps.

Computer Science Department, Stillwater, OK: Master Thesis, 1997.

Caudill, M. “A Little Knowledge is a Dangerous Thing.” Al
Expert, 8(6), 16-22, 1993.

Fausett, L. Fundamental of Neural Networks: Architectures,

Algorithms, and Applications. Englewood Cliffs, NJ: Prestice Hall,
1994

Freeman, J. and Skapura, D. Neural Networks, Algorithms,

Applications, and Programming Techniques. Reading,
MA:Addison-Wesley Publishing Company, 1992.

Giovannetti, R. Finite Automata: Examples. URL:
http://twilight.dsi.unimi.it/~colorssf AUTOMATAHT/MANUAL/AU

TOMATA-MAN html, Date accessed: 6/1998.

Hagan M., Demuth, H., and Beale, M. Neural Network Design.
Boston, MA: PWS Publishing Company, 1996.

Hiotis, A. “Inside a Self-Organizing Map.” Al Expert. 8(4), 38-42,
1993,

Kohonen, T. Self-organizing and Associative Memory Third
Edition. New York, NY: Springer-Verlag, 1989.

63



[KruseLT91]

[Lebanon95]

[Linz96]

[Maren90]

[Martin91]

[McCulloch43]

[Minsky69]

[Pelts98]

[Ritter91]

[Scholtes92]

[Weisstein98A]

[Weisstein98B]

[Widrow60]

Kruce, R., Leung, B. and Tondo, C. Data Structure and Program
QQﬂgn_mQ Englewood Cliffs, New Jersey:Prentice Hall, 1991

Lebanon Valley College. Free Text vs, Controlled Vocabulary.
URL: http://www.lvc.edu/www/library/free.html, Date accessed:

5/1998

Linz, P. An Introduction to Formal Languages and Automata
Second Edition. Lexington, Massachusetts: D.C. Heath and
Company, 1996.

Maren, A., Harston, C., and Par, R. Handbook of Neural Computing
_p_p_h_QatLo_ns San Diego: Academic Press, 1990.

Martin, J. Introduction to Languages and the Theory of
Computation. New York, NY: McGraw-Hill, Inc., 1991.

McCulloch,W. and Pitts,W. *“A Logical Calculus of the Ideas
Immanent in Nervous Activity.” Bulletin of Mathematical
Biophysics. 5, 115-133, 1943.

Minsky, M. and Papert, S. Perceptrons. Cambridge, MA: MIT
Press, 1969.

Peltsverger, B. Finite-State Automata. URL:
http://soda.gsw.peacenet.edu/DM/intro.html. Date accessed: 6/1998.

Ritter, Hedge, Martinetz, Thomas, and Schulten, Kaus. Neural

Computation and Self-Organizing Maps: An Introduction. Reading,
Massachusetts: Addition-Wesley, 1991.

Scholtes, J. “Neural Nets in Information Retrieval.” A Case Study

of the 1987 Pravda. Science of Artificial Neural Networks. 1710,
631-640, 1982.

Weisstein E. Topology.
URL: http://www .astro.virginia.edu/~ewwo6n/math/Topology.html,
Date accessed: 2/98.

Weisstein E. (1998). Markov Chain. URL:
http://www.astro.virginia.edu/~ewwo6n/math/MarkovChain.html,
Date accessed on 5/98.

Widrow, B. and Hoff, M. *Adaptive Switching Circuits.” New

York, NY: IRE WESCON Convention Record, IRE Part 4, 96-104,
1960.

64



[Winston92] Winston, P. Artificial Intelligence Third Edition. New York, NY:
Addison-98 Wesley Publishing Company, 1992.

65



APPENDICES

60



APPENDIX A

GLOSSARY

67



GLOSSARY

Artificial Intelligence (AI): the study of machines that can understand, make judgements,
etc., in the way that humans do.

Artificial Neural Network (ANN): software that simulates the intelligent aspects of
biological neural networks.

Deterministic Finite State Automata (DFSA): if an FSA is deterministic, it means that in
every state for each distinctive alphabet there is a unique move to another state
in the FSA [Linz96].

Epoch: the process of feeding each vector of a training set into the network once.

Learning rate: a parameter that controls weight adjustments in an ANN.

Neurode: an artificial neuron, also is called a “processing element [Kohonen89].”

N-gram: a vector that contains a sequence of characters from a word or token; each n-
gram must contain at least one non-blank character, and at most n characters.

Nondeterministic Finite State Automata (NDFSA): if an FSA is nondeterministic, it
means that in every state for each distinctive alphabet there is a finite set of
possible moves that the FSA can make, rather than just assigning a unique move
[Linz96].

Offset: the smallest permitted weight value in the network; if any weight in a network
that is less than the offset, it will be set to 0.

Target value: the expected output of the neural network.

Topology: the mathematical study of the properties of objects that are preserved through
deformations, twisting, and stretching [Weiss98A].

Training set: a collection of input vectors that is used to train an ANN.

Weight: the strength or capacity of an individual connection between the input neurodes
and output neurodes.

68



APPENDIX B

ACRONYMS

69



ACRONYMS

Al Artificial Intelligence

ANN: Artificial Neural Network

SOM: Self-Organizing Map

SeqSOM: Sequential Self-Organizing Map
N-gramSOM: N-gram Self-Organizing Map
FSA: Finite State Automata

DFSA: Deterministic Finite State Automata
NDFSA: Nondeterministic Finite State Automata

NftoDf: Nondeterministic Finite State Automata to Deterministic Finite State Automata

70



APPENDIX C

FINITE STATE AUTOMATA USED FOR EXPERIMENTING N-GRAMSOM

71



Input Format

#110
05

011

02p
1138
13x
201

24v
32X
358
43p
45v

Test Case FSAI

72




Input Format

#110

AN = — OO
R e N e e
= B I e B |

Test Case FSA2

73



Input Form

#110
04

Oly
02y
132
12y
33z
32y
242z

Test Case FSA3

74



Test Case FSA4

[nput at

#110
04

010
120
220
230
240
32 1
341
441

75



Test Case FSAS

#110
AD

AAO
ABI1
BB I
BCO
CAO
CDI1
DDO
DD

76



Test Case FSAG

arNa

Start—s{ A —_—
B v =

Input Format

#110
AC

ABO
BBO
BCIl1
CBO
cCC1

77



Test Case FSA7
1 1
() A6
(&) 1B
0

#110
AA

AAl
ABO
BAO
BB 1

78



Test Case FSAS

| mat

#110
AA

AB1
ACO
BAI
BDO
CAO
CDI1
DBO
DCI

79



Test Case FSA9

b
RO OGP O
d

Input Format

#110
03

0Ola
12b
21b
23¢

80



Test Case 10

Input Format

#210
ACE
&
AAO
AAl
ABO
ACI
BDO
CDI1
DDO
DD
$



Test Case 11

Input Format

#110
AC
&
AAa
ABD
BBb
BCa
CBb
CAa
$

82



APPENDIX D

TRAINING SET

&3



ptttttttvv
pttttttvps
pttttttvy
ptttttvps
ptttetvv
pttttvps
pttttvpxvv
pttttvv
ptttvps
ptttvpxtvv
ptttvpxvps
ptttvpxvy
ptttvy
pttvps
pttvpxttvy
pttvpxtvps
pttvpxtvv
pttvpxvps
pttvpxvy
ptivv
ptvps
ptvpxtttvy
ptvpxlitvps
ptvpxttvy
ptvpxtvps
ptvpxtvyv
plvpxvps
pLvpxXvpxvv
ptvpxvv
ptvv

pvps
pvpxitttvv
pvpxtttvps
pvpxtttvy
pvpxttvps

pvpxttvv
pvpxtvps
pvpxtvpxvy
pvpxtvy
pvpXvps
pVpPXVpXtvyv
PVPXVPXVPS
PVPXVpPXVV
pvpxvv
pvv
[SSSSSSSXS
[SSSSSSXS
1SSSSSXS
[SSSSSXXVV
tssssxs
tssssxxtvv
tssssxxvps
LSSSSXXVV
tsssxs
tsssxxttvv
tsssxxtvps
tsssxxtvv
ISSSXXVpS
ISSSXXVV
1ssxs
tssxxtttvv
1Ssxxtlvps
Issxxtivv
IsSxxtvps
Lssxxtvv
tssxxvps
{SSXXVPXVV
{ssSxxvv
tsxs
tsxxtittvv

84

The Complete Training Set from FSA1 with String Length of 10

tsxxtitvps
tsxxtitvv
tsxxtivps
tsxxttvv
tsxxtvps
tsxxtvpxvv
tsxxtvv
1SXXVps
ISXXVpXivy
[SXXVpXVps
ISXXVpxvv
lsxxvv

txs
Ixxtttttvy
txxttttvps
txxtittvv
txxtttvps
txxtttvy
txxttvps
IXxttvpxvv
xxttvy
IXxtvps
IxXxtvpxtvy
IXxtvpxvps
IXXLVpxvy
LXXtvv
LXxXvps
LXXvVpxlivy
LXXvpxtlvps
IXxvpxtvy
IXXVpXVps
IXxvpxvy
IXxvv



2
VITA
Lee Yong Tan
Candidate for the Degree of

Master of Science

Thesis: AN APPLICATION OF N-GRAM SELF-ORGANIZING MAPS
Major Field: Computer Science
Biographical:

Personal Data: Born in Kuala Ketil, Kedah, Malaysia, January 25, 1972, the son
of Sow Hee and Geek Keaw Tan.

Educational: Graduated from Jit Sin High School, Bukit Mertajam, Penang,
Malaysia in December 1991; received Bachelor of Science degree in
Computer Science from Oklahoma State University, Stillwater, Oklahoma in
December 1994; completed requirements for the Master of Science degree at
Oklahoma State University in May 1999,

Experience: Employed by Oklahoma State University, Computer Information
Services as a computer lab assistant, September 1996 to May 1997.



