
Ollah a S te Univ. Library

Q+-TREE: A SPATIAL INDEX STRUCTURE

By

HUNG-CHI SU

Bachelor of Science

Chen-KW1g University

Tainan, Taiwan

1987

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the degree of

MASTER OF SCIENCE
July, 1999

G+-TREE: A SPATIAL INDEX STRUCTURE

Thesis Approved:

Ii at
Thesis Adviser

~1-.
<~Lz, ~ d

•

W()lDJa. ID~J,.p..1.-JlQ~Q---
if -Dean of the Gradmrte College

11

ACKNOWLEDGEMENTS

I would like to express my appreciation to my thesis advisor, Dr. Huizhu Lu to thank

her guidance and support over the past few years. I would also like to give thanks to my

committee members, Dr. George E. Hedrick and Dr. K. M. George, for their advice and

willing to serve on my graduate committee.

I would also like to give my special thank my family. Without their understanding

and support, it is impossible for me to work on the degree. Moreover, I wish to express

my sincere gratitude to my friends who gave helps and provided suggestions for this

thesis and stood by me during the past years.

Finally, I would also like to thank the faculty and staff of the Computer Science

Department who have helped me so much during these last few years of study.

iii

Chapter

TABLE OF CONTENTS

Page

I. INTRODUCTION AND MOTIVATION 1

II. LITERATURE REVIEW 6

Grid File 8
G-Trec 10
GBD-Tree 13
BANG File 16
Spatial Indexing]9

III. G+-T'REE 21

Introduction 2]
Data Structure 23

Assumptions 23
Grid Numbering and Splitting Scheme 24
Definition for the Total Ordering Scheme 26
Partition Splitting and Numbering 29
The Main Features 36

Algorithms 37
Grid Detennined for a Point Data 39
Algorithm Search 42
Algori thm Insertion 44
Algorithm Bucket Split 48
Algorithm Index Node Split ' 52
Algorithm Deletion 55
Algorithm Range Query 63

IV. PERFORMANCE ANALySIS 65

V. CONCLUSION 71

GLOSSARY 73

REFERENCES 75

IV

LIST OF FIGURES

~~ p~

1. Partitioning scheme of G-tree 11

2. Numbering scheme of GBD-tree 15

3. Numbering scheme of grid regions for BANG file 17

4. Grid numbering scheme 25

5. Splitting and partitioning scheme for overflow in the bucket node

ofG+-tree (mb=2 and Mb=4) 32

6. Splitting and partitioning scheme for inserting two more data points

into partition 0111 ofFig. 5(d) 33

7. A possible example ofG+-tree for two dimensional space 34

8. The constituent grids for the example in Fig.7 35

9. The steps of node split 54

10. An example of range query 70

v

CHAPTER I

INTRODUCTION AND MOTlYATION

Traditionally, the data structures for indexing a data file are for one-dimensional

space only. This one-dimensional space is either a single attribute or composite attributes

with specific order. As prominent as B-tree family (B-tree, B+-tree and B*-tree), this type

of data structures is not only efficient but also popular for query in one-dimensional data

space. For instance, we want to search the names of all students whose J.D. numbers are

between 123456789 and 213456789. To solve this one-dimensional problem, a B*-tree

data is adopted by indexing I.D. numbers. Then, the result is obtainable with a few disk

accesses.

However, a multi-dimensional query is more complicated. For example, finding the

students whose I.D. numbers are between 123456789 and 213456789 as well as birthdays

are between 05/01/70 and 05/01171 is a two-dimensional range query. To solve this

problem, we need two individual keys indexed in a traditional method. In other words,

two indexes of LD. numbers and birth dates have to be set, respectively. Then, use one

index to narrow down the size of the student set. After narrowing the size, we can filter

out those have met the second searching criteria. The other way is to maintain a

composite index on I.D. and birth date; however, neither of the above methods is

favorable enough. In addition, we may need to maintain several key indexes for a data

set. It takes a great deal of space and time to accomplish.

2

Since the traditional index data structures are not effective enough for indexing

multi-dimensional data, some methods were proposed to improve th index technique.

One method used to index multi-dimensional data is named muJti-attribute hashing

[ROT74]. It employs a composed attribute value for the hash key and hash tabl to store

the point data. But, this method is not useful for range queries even though it is good for

exact match queries.

Two other disk-based data structures, the KDB tree (K dimensional B tree)

rROB81] and the Grid file [NlE84], were proposed to index large multi-dimensional data

for data query, including range queries. The former, KDB tree, divides the entire k

dimensional data space into small k-dimensional regions and hyper-rectangles. Then, the

region hyper-rectangles are assembled in the shape of a tree which structure is similar to a

B-tree. Each entry of a leaf node points to a corresponding data tuple, while each entry of

a non-leaf node points to the lower level nodes that are subregions within the entry region

and are disjoint. The latter, Grid file, is a data structure partitioning the data spac into

grid structures. Each dimension of the data space is split into non-uniform space intervals.

All of the physical entries of grids are maintained in a directory. The Grid file guarantees

that at most two disk accesses are needed for retrieving a record, one access for directory

and the other for the record. On the other hand, the disadvantage of Grid file is that the

directory may be very large and the expense of directory maintenance may be very high.

To achieve the goal of high performance and low maintenance cost on indexing

multi-dimensional data, the G-tree (Grid Tree)[KUM94] was thus proposed. It combines

the features of both grid file and B-tree. The foundation of the G-tree is to split the

overflowed partitions into two equal sized subpartitions along one coordinate. If one

3

subpartition still overflows (i.e., the other is empty), the overflowed subpartition has to b

split again along the consequent coordinate. This procedure continues splitting

subpartitions till the point data are distributed into two subpartitions. (Distribution does

not matter as long as the subpartitions are not overflowed.) A unique number assigned to

each subpartition is defined as a total order number sequence. Hence, all unique nwnbers

(partition numbers) build a B-tree together. Since the G-tree manages the data in terms of

partition, it can retain the property of spatial locality for some data. Therefore, this data

structure, which maps the partitions into a total order sequence and organizes the numbers

to be a B-tree, results the G-tree in good perfonnance of data retrieval. Nevertheless, the

possibility of poor space utilization ofleafnodes (only one entry per leafnode) entails the

G-tree unsuitable for very large non-unifonn databases, especially, for the range query.

The other drawback in this data structure lies in the algorithm of range query. It is

unrealistic that the data structure can keep the spatial locality of all data, as the locality

will not consist of those data close to the spatial location but far in the grid number

sequence after hundreds of splitting. It is, therefore, reasonable to perform a range query

simply by sequentially searching neighbors of the leaf nodes after the first grid is found

because there could be a great deal nodes in the neighborhood that are out of the query

range.

Moreover, two other data structures have been proposed for better space utilization

to eliminate the costly maintenance of the data indexes and to improve the querying

perfonnance. They are GBD-tree and BANG file. Both are developed for balancing the

distribution of point data between the subpartitions when overflow occurs. These schemes

have obviously improved the space utilization. (Note that GBD-tree guarantees balance

4

between split leaf nodes rather than non-leaf nodes.) In the worst case, both ofGBD-tree

and BANG-file have nearly one third of the capacity of the leafnedes in respect of space

utilization. The drawback in these two data structures is the poor performance on range

l{uery if data can be dynan1ically added to or deleted from the databases. That is, the

spatial locality for the data is lost.

To improve the performance and to reduce the maintenance expense on query in the

multi-dimensional database is the core consideration of this thesis. Among those data

structures mentioned above, G-tree is the simplest and has good performance on indexing

the multi-dimensional data. However, the worst case of storage utilization makes G-tree

really unsatisfactory in regard to query performance and maintenance expense in the

extreme non-uniformly data distribution situation. On the other hand, the optimistic

algorithm ofrange query is also a significant drawback. Thus, we would like to eliminate

the poor performance and speed up the algorithm ofrange query by improving the storage

utilization of the G-tree. Therefore, the author introduces a new data structure, the G+

tree, to increase the space utilization and to expedite the range query. Unlike G-tree, the

G+-tree distributes the point data evenly to two sub-partitions when decomposing a

partition. Therefore, G+-tree guarantees that the space utilization reaches 50% or higher

even though under the circumstance of extreme non-uniformly data distribution.

G+-tree is given the name because of being derived from G-tree with balanced

distribution of point data between partitions. The G+-tree employs a special and simple

method for decomposing partition:

1. Decompose the whole partition into several grids till point data can be evenly

distributed between two groups.

5

2. Group the lower grids with continuous grid numbers and upper ones into two

partitions with evenly point data distribution.

Hence, each partition is assigned with a number same as the smallest constituent grid

number and then, is inserted into the tree. The partitions with the assigned numbers have

the property of total order as no any grid can be placed inside of two different partitions.

The partitions also keep the property of spatial locality within themselves. Thus, we can

eliminate the G-tree's problem of the low space utilization without degrading much the

query performance.

This thesis is organized as follows. Section 1 begins with the introduction. Section 2

reviews the data structures proposed to index the multi-dimensional data. Section 3

introduces the G+-tree and its algorithms. Section 4 is for performance analyses between

G-tree and G+-tree. Section 5 is the conclusion.

CHAPTER II

LITERATURE REVIEW

In this section, the literature on or related to multi-dimensional indexing method

will be discussed briefly. Since this thesis is trying to construct a data structure to

eliminate the drawback of G-tree in the worst case, we will discuss more on the G-tree

data structure.

To efficiently manage multi-dimension objects, a database system requires an

effective mechanism to index the spatial objects in order to get a high performance on

accessing the data. However, the traditional one-dimensional indexing method is not

suitable for the multi-dimensional data; therefore, a new data structure is needed.

Many data structures are proposed to manage the multi-dimensional point data; and

all of them allocate in the secondary storage in consideration of the huge data needed to

be stored. The access to the secondary memory, usually a disk. is an important factor to

the performance of the system. Hence, the index nodes or bucket nodes are usually

designed to be the size of disk pages. Furthermore, the fan-out of a node (the number of

pointers to the subnodes) should not be too small for tree-structured system, otherwise,

the tree becoming much deeper means that much more disk I/Os for data access and more

time for the operations are resulted. As the time of disk 1/0 dominates that of other

factors, the time of data retrieval proportions to the number of disk I/O for accessing the

data.

6

7

The G"-tree is a data structure with grids; therefore, in this section, grid-related data

structures are discussed in more detail. The size of a bucket node is assumed to be same

size for the grid-related data structures.

8

Grid File

Grid file [NIE84] is one of the data structures that partition the data space into

disj oint grids by splitting each dimension into several space intervals. (The space

intervals constitute hyper-rectangles that are referred to be grids in this thesis.) There

exists a directory maintaining grid entries. Each grid is designed to contain less data than

a disk page does. The later (disk page) contains the data enclosed with the corresponding

grid. In other words, every grid has a maximum number of stored data; however, different

elements may point to the same disk page if the total number of the data is less than the

capacity of a disk page.

The grid file structure is proposed for data retrieval by at most two disk accesses

and for efficient range query execution. To achieve these two purposes, it maintains a

dynamic grid directory of the grid pages for access. The directory consists of two parts.

One is a k-dimensional array which contains the entries for all the grids; the other is a set

ofk one-dimensional arrays called linear scales which define the domain of each attribute

in order to indicate the grid directory elements that overlap the query range.

The first purpose of the grid file (i.e., to retrieving data by at most two disk access)

can be achieved by performing one disk access for the grid entry in the directory and the

other disk access via the grid entry for the grid page which keeps the data. The second

purpose (i.e., processing range query efficiently) can be met in terms of the linear scales

(second part of the grid directory) to indicate the grid directory elements that overlap the

query.

However, the maintenance of the grid directory can be very expensi ve and the size

of the directory will be very large if the distribution of the data is non-uniform. Grid file,

9

therefore, may not be an effective method for a very large database, especially, is not for

that with non-unifonnly distributed data.

10

G-Tree

The G-tree [KUM94] is one of the data structures for multi-dimensional data access.

It divides the data space cyclically along each dimension into disjoint partitions. The

number of point data in a partition is between one and the capacity of a bucket node (the

capacity of a bucket node can be assumed as max_num). A unique number is assigned to

each subpartition which results from the original (parent) partition. Each unique number

is derived from the parent partition number concatenated with either '0' if the sub-

partition is the lower part along the splitting dimension or '1' if it is the upper part on the

splitting dimension. This partitioning scheme is shown as Fig. 1. The partition numbers

are maintained in a B-tree. Because of taking advantage of B-tree's structure, the G-tree

performs well on data retrieval.

The features of the G-tree are: (quoted from [KUM94])

- The data space is divided into non-overlapping partitions of rectangles (hyper-rectangle)

. . .
In vanous Size.

- Each partition is assigned with a unique partition number.

- Partition numbers are defined in a total order then stored in a B-tree.

- Empty partitions are not stored in the tree to save storage space.

o

(a)

01

00

(b)

11

010 011 1

00

(c)

Fig. } Partitioning scheme of G-tree

010 0111 1

0110

00

(d)

(a) First, partition along the coordinate 1. Lower part (left in this
Fig.) is assigned with '0' and higher part (right) with 'I '.

(b) Partition along the coordinate 2. Lower part is padded with a '0'
and higher part with a'}'.

(c) Partition along the coordinate 1 again.

(d) Partition along the coordinate 2 again.

12

Storage utilization is the major problem of G-trees. The G-tree will elicit very

dissatisfying storage utilization for large non-uniformly distributed data since they might

allocate as few as only one point data in a pat1ition. For example, the G-tree splitting

algorithm splits an overflowed partition which is max_num + I into two sub-partitions

that may contain max_num point data in one sub-partition and only one point datum in

the other. After several splits like this situation, there will be many partitions that contain

only one datum; meanwhile, the storage utilization of the bucket nodes will be close to

l/max_num (though it does not happen often). That is, if max num is 25, the space

utilization is nearly 4%. It is terrible for a huge database.

The disadvantage of storage utilization causes the G-tree unsuitable for managing a

very large non-uniformly distributed multidimensional point data.

13

GBD-Tree

The GBD-tree (General BD-tree) [OHS90] was proposed for the multi-dimensional

spatial data rather than the point diata. However, it can be a good algorithm for

multidimensional point data as GBD-tree uses one point (the centroid) to represent the

spatial obj ecl.

This type of data structure is similar to G-tree in respect of its partition number

scheme. The distinction is that the partition numbers (bit strings) of the GBD are

concatenated with '*' for each partition to denote the end of the bit string. This

partitioning scheme is shown as Fig. 2. Note that the partition may enclose some other

partitions, i.e., partitions may be nested inside the others. For example, partition 00* is

nested inside partition 0*.

The most significant differences between GBD-tree and G-tree are the modes of

splitting a partition and constructing an index-tree. On the one hand, the partitions of a G

tree are disjoint and accommodate the number of point data between one and max_num

while the partitions of GBD-tree are not disjoint and accommodate a balanced number of

point data. The balanced number in a GBD-tree is any number between one third and two

thirds of capacity (max_flum). The scheme of the splitting partition leads GBD-tree to a

better data distribution between bucket nodes (page nodes) than G-tree does. On the other

hand, the G-tree holds the partition numbers in a B-tree, but the GBD-tree adopts a

hierarchical structure with ancestor-descendant-relationship. In short, the partition

number of the entry in the parent nodes prefixes the partition number in the child nodes.

Although the GBD-tree can obtain better balance for the number of points in

partitions, it does not guarantee balance for the non-leaf nodes. GBD-tree suffers the

14

similar problem to what G-tree has though, its balance can guarantee to be one third of

max_num +1 in the page nodes in the worst case. (This may not be a good structure in the

view of balanced tree.) Besides, it may not be a good structure for range query since its

structure is nested.

00*

(a)

*

000* 00*

(b)

IS

01* I!
,.

000* 00*

(c)

01* *

000* 00*

0000*

(d)

Fig. 2 Numbering scheme of GBD-tree

(a) First, partition along the coordinate 1 and coordinate 2 till data
are distributed evenly. Inner (lower left) part is assigned with
'00*' (because it is in the lower and the left part) and outer part,
'*', remains unchanged.

(b) Partition in the '00*' region. Inner part is padded with '0' and
outer part remains unchanged.

(c) Partition in '*' region. Then, the right upper grid is split from
the '*' and assigned with '01 *' because it is in the right and
upper location.

(d) Partition in '000*' region. The inner part IS lower, so '0' IS

padded. The outer part remains unchanged

16

BANG File

The BANG (Balanced and ested Grid) file [FRE87] is an interpolation grid file. It

partitions the data space into block regions by successive binary division. The union of all

the subpartitions must span the data space. Each block region is identified by (r, f), which

is the region number. The I is the granularity or level number. The numbering scheme for

grid regions is shown as Fig. 3.

The number of point data in a partition is restricted to be max_num as other tree

structures do. Therefore, the partition splits when the number of point data is over

max_num. The splitting method is trying to split into two regions with equivalently

distributed number of point data by successive binary division. Like the GBD-tree,

BANG file permits one partition nested inside the others. The worst case in data

distribution may be one third of max_num. So is GBD-tree.

The regions are organized as tree structure for index. Non-leaf nodes treat all of

their children in the same way as the leaf nodes do the point data. Then, the balancing

algorithm can be applied to both of leaf and non-leaf nodes. In short, all the nodes in the

tree structure are better balanced in space utilization. As leaf nodes are always updated

upwards, BANG file has a compact and balanced structure similar to B-tree.

0,0 0,1

(a) (b)

1,1

17

2,2 3,2

0,2 1,2

2,3 6,3 3,3 7,3

I

0.3 4,3 1,3 5,3
i
I
I

I

,

I

(c) (d)

Fig. 3 Numbering scheme of grid regions for BANG file

(a) No any splitting. The region number is 0 and the level number
is 0, too. That is, the (r, l) is (0,0).

(b) First split is undertaken along the dimension 1. The region
number is 0 for the lower part (left in this case) and 1 for upper
(right) part. That is, (0, 1) and (1,]) for each (r, l).

(c) Second split is undertaken along the dimension 2. Hence, the
level number is 2 and the region numbers are inherited from
itself. The region number is added with d/.1 where d is the
number of dimensions. So, 0 splits to two region numbers, 0
and 0+22

-
1=2.

(d) Third split is undertaken along the dimension 1 again. The
level number is 3 and the region is the original one added with
dll

.

18

Yeh [YEH90] has proposed BANG file concurrency for the distributed databases

systems and multi-tasking operating systems. The most important feature is to increase

the throughput. Hosur, Lu and Hedrick [HOS92] proposed dynamic addition and removal

of attributes in BANG files to make the BANG file more robust and efficient in different

quenes.

However, the problem incurred from BANG file is the query. Although the exact

match queries in BANG file usually require one pass from root to leaf, it may take a

longer traversal for non-unifonn data distributions. In light of range queries and partial

queries, the BANG file may not be good enough (same as GBD-tree) in view of the

nested structure.

19

Spatial Indexing

Since the multi-attributes are related to and used by spatial data, the spatial data

structures are briefly discussed here. Spatial data have extents (area or volumes). Unlike

the point data, the spatial data might frequently overlap. The overlapping of spatial data

causes the multi-attribute space indexing to be increasingly complex. There are two

modes that are used to treat spatial data. One is called "native space indexing" which can

be indexed naturally. The other is called "parameter space indexing" which maps the

spatial data to "parameter" space [GAE98].

Native space indexing preserves the locality of the data space. In other words, the

object close to the underlying native space will be close to the space as indexed. This

method organizes the space objects based on their locations. The hyper-area of nodes

encloses all the hyper-area of their children nodes. The R-tree developed by Guttman

[GUT84] is one of the preliminary methods for native space indexing. This method

extends the B-tree to k-dimensions. It is a height-balanced tree with leaf nodes pointing to

the data objects. Each entry in leaf node contains lower and upper points of the rectangle

which minimum encloses the data objects, and the entry in non-leaf node contains the

upper and lower points of the rectangle that completely encloses the children nodes' area.

The data objects may overlap, but they belong to only one of the enclosing rectangles. So,

we may search several different paths to find the desired data object. Besides, the splitting

of a node is complex. A variant of the R-tree, R*-tree [BEC90J reduces the overlapping

area with neighbors to improve search efficiency; however, its splitting method is more

complex and inefficient. Searching for data object still requires several searching paths.

Berchtold et al. [BER96] proposed a modification of the R*-tree, called X-tree. The X-

20

tree is designed particularly for indexing high-dimensional data. Another variant of the R-

tree is R+-tree [SAM90]. The major difference between the R-tree and the R+-tree is that

the non-leaf nodes of an R+-tree's cannot overlap while those of an R-tree's can. The data

objects in an R+-tree may appear in several leaf nodes resulting in poor space utilization.

The Quad-tree [SAM90] [BRE93], a hierarchical data structure, which recursively

decomposes the space to four equal-sized quadrants. This method is not so good as to

deal with the disk va access in secondary storage in view of the small (four) fan-outs.

The SMR-tree [BAN95] combines the features of both R-trees and R+-trees that

decompose the data space to disjoint subspaces. Then, it re-distributes the data objects

completely enclosed in the subspaces and moves the data objects partly in both of the

subspaces to another SMR-tree. This method improves the search efficiency and space

utilization. Another method to improve the search is proposed by Giinther and Gaede

[GUN97], the oversize shelves, which are attached to the interior nodes of a tree-based

spatial access method to avoid the excessive fragmentation in order to have b tter

performance of the search queries.

Alternatively, parameter space indexing transforms a spatial object from a data

space to a point in a higher dimensional space, say parameter space. As an example, a

data space denoted by the upper and lower points (XI' Y\), (x2, Y2) in 2-dimensional space

will be transformed to a point (XI' YI' x2, Y2) in a 4-dimensional space. Then, we can apply

the multi-attribute indexing methods such as Grid files, BANG files, and G-tree to these

higher multidimensional points. As a result, the spatial locality no longer existing is the

disadvantage.

CHAPTER III

Introduction

G+-tree is a data structure associating both grids and B-trees in a specific manner for

multi-dimensional data access. It adopts the variable length of a binary numbering

scheme to specify grids in the data space. The binary numbers (or called binary codes) are

defined as a total ordering sequence; i.e., the grids can be ordered by their binary codes.

G+-tree clusters the consecutive grids in a partition and produces the partition number by

the smallest grid code. Then, the G+-tree employs a B-tree-like structure to maintain the

binary codes (grid codes), and each leaf node of the B-tree-like structure points to a

corresponding bucket node which stores the tuples' keys for the corresponding partition.

The main idea of G+-tree is to distribute point data equivalently to two partitions

when some partition is overflowed. This idea is different from G-tree which distributes

point data simply to fit in two hyper-rectangles. G+-tree is also distinct from GBD-tree

which nests in the split hlock. Nevertheless, to make the point data distributed

equivalently into two blocks, the G+-tree's blocks could no longer be hyper-rectangles.

However, the equivalent distribution of point data to two blocks in G+-tree can attain at

least 50% of the space utilization which is much better than possibly 5% in the worst case

22

of the G-tree. Therefore, G+-tree can achieve better performance especially in the worst

case.

The other benefit of the G+-Tree appears when range query is submitted. Like the

G-tree, G'"-tree keeps the property of some spatial locality among the point data and the

bucket nodes. Meanwhile, the point data in the structure have been tried to be closely

stored in the tree if they are close to each other in the data space.

23

Data Structure

In this section, the data structure of the G+-tree will be described in detail:

including the assumptions, the grid numbering scheme, the partition numbering scheme,

the definition of the total order for the grid code, and the G+-tree algorithms.

Assumptions

I. The data space is n-dimensional and the dimensions are numbered 0,1 ,2,3,.... ,n-l

2. The range of dimension i is [I;, hi); i.e., the location of a point on dimension i is Xj, and

3. All of the point data (or tuples) lie in this n-dimensional space.

4. The maximum number of keys per non-leaf node is M.(The maximum number of

descendents per node is M+ 1.)

5. The minimum number of keys per non-leaf node is m except the root node,

where m = r~l

6. The maximum number of keys per leaf node (bucket node) is M b.

7. The minimum number of keys per leaf node (bucket node) is mb except that the total

number of the split partitions is less than mb , where mb = r~b1·

24

Grid Numbering and Splitting Scheme

This numbering and splitting scheme is adopted from G-tree[KUM94]. A grid is

numbered as a binary string of O's and]'so Initially, the whole data space is a grid with

empty string. Then, the scheme splits a grid into two equal sized grids along one

dimension. The lower grid along this dimension is assigned with the original grid string

appended with '0'; and, the higher one, with the original string appended with 'I'. The

following split will be along another dimension on the overflowed grid only. This scheme

is to split the grid cyclically along the dimensions. Fig. 4 is an example of the grid

numbering for 2-dimension data space. Fig. 4(a) shows that the entire data space is

divided evenly by splitting its range along dimension I (horizontal coordinate) into two

sub-partitions (new grids), numbered 0 and 1 for lower and higher sub-partitions (grids),

respectively. Next split, as in Fig. 4(b), when a sub-partition (grid) is split again, proceeds

along dimension 2 (vertical coordinate) and the right of denoted number is concatenated

with 0 (lower sub-subpartition) or 1 (higher sub-subpartition). The splitting scheme splits

the space re-cyclically along the consecutive dimensional coordinate. Fig. 4(c) and (d)

shows the results of grid 01 split and 011 split.

a

(a)

01

00

(b)

25

010 all 1

00

(c)

Fig. 4 Grid numbering scheme

010 0111 1

0110

00

(d)

(a) Divide the initial data space along the dimension 1, and then
assign aand 1 to the lower and higher partitions, respectively.

(b) Divide grid 1 along the dimension 2, concatenate 0 and 1 to the
new lower and higher partitions to be 00 and 01, respectively.

(c) Divide grid 01 along the dimension 1, concatenate a and 1 to the
new lower and higher partitions to be 010 and all, respectively.

(d) Divide grid all along the dimension 2, concatenate a and 1 to the
new lower and higher partitions to be 0110 and 0111,
respectively.

26

Definition for the Total Ordering.Scheme

Assume two binary codes denoted by PI and P2 with bl and b2 bits long, respectively.

Let b be the length of the shortest one ofbl and b2.

So, b=min(bl, b2). II The length of the shortest one between bl and b2.

Let MSB(P, b) be a function to extract b from the most significant bits of P (partition

number).

1. PI > P2 ifMSB(P1, b) > MSB(P2, b)

Example: Pl=Oll, P2=0101, then,

b=min(bl=3, b2=4) => b = 3

MSB(P1, b) = MSB(Oll, 3) = 011

MSB(P2, b) = MSB(0101, 3) = 010

¢ MSB(Pl, b) > MSB(P2, b)

¢ By this rule, PI> P2

2. PI < P2 if MSB(PI, b) < MSB(P2, b)

Example: PI=OlOl, P2=011, then,

b=min(bl=4, b2=3) => b = 3

MSB(Pl, b) = MSB(OlO1, 3) = 010

MSB(P2, b) = MSB(Oll, 3) = 011

¢ MSB(PI, b) < MSB(P2, b)

¢ By this rule, PI < P2

3. PI > P2 ifMSB(P1, b) = MSB(P2, b) and bl > b2

Example: P1=0111, P2=01l, then,

b=min(b1=4, b2=3) => b = 3

MSB(P1, b) = MSB(01I1, 3) = 011

MSB(P2, b) = MSB(Oll, 3) = 011

¢ MSB(p1, b) = MSB(P2, b), but, b1 > b2

¢ By this rule, PI > P2

4. PI < P2 ifMSB(PI, b) = MSB(P2, b) and b1 < b2

Example: PI=OIO, P2=0100, then,

b=min(b1=3, b2=4) => b = 3

MSB(P1, b) = MSB(010, 3) = 010

MSB(P2, b) = MSB(0100, 3) = 010

¢ MSB(PI, b) = MSB(P2, b), but, bI < b2

¢ By this rule, PI < P2

5. PI = P2 ifMSB(P1, b) = MSB(P2, b) and bi = b2

Example: PI=OII, P2=0II, then,

b=min(bl=3, b2=3) => b = 3

MSB(PI, b) = MSB(011, 3) = 011

MSB(P2, b) = MSB(Oll, 3) = 011

¢ MSB(Pl, b) = MSB(P2, b), and, bI = b2

¢ By this rule, PI = P2

27

28

Note, definitions 3 and 4 show that binary codes are defined to be greater than the

binary codes of their enclosing grids. For example, grid with the binary code, 011,

encloses the one with binary code, 0110. But, the order of these 2 binary codes is that

binary code 011 > binary code 0110.

29

Partition Splitting and Numbering

In G-tree, the partition number is also the grid number. That is, a partition is a

hyper-rectangle grid. However, in the G+-tree, a partition may consist of several hyper

rectangle grids rather than one. Each partition contains at least mb point data except in the

initial state (the data space initially is the only partition) and at most Mb point data. In

order to keep more than mb of the point data in a partition when it is split, we must

redistribute the data points evenly between the two split partitions; i.e., divide the

partition into two sub-partitions with no less than mb data in each sub-partition.

The method splitting an overflowed partition in the G+-trees is to group the

consecutive binary grids from the cyclically binary divisions of the partition into two

groups. The number of point data in the two groups must be greater than or equal to mb.

In the first group, all of the grid codes are less than any of the grid codes in the second

group. The partition number is then assigned with the smallest binary code of the grids

inside of this partition. Fig. 5 shows the procedure of splitting the initial partition for

Mb=4, mb=2. Fig. 5(a) splits the initial partition into two grids which codes are assigned

with 0 and 1. In the grid 1, there is only one point data. (The number of point data in grid

1 is less than mb; an imbalanced distribution) We, therefore, need to split the other grid

again. Fig. 5(b) shows three grids after dividing grid 0 into two grids. In the meantime,

there exists three grids with the grid codes 00, 01, and I. Obviously, we can group grid 00

as lower partition; and grid I as higher partition. But, the distribution will not be balanced

no matter how these grids are combined as two groups. In other words, grid 01 grouped to

either lower (grid 00) or higher (grid 1) partition can not make both of the groups with the

number of data no less than mb• Therefore, we have to divide grid 01 into two partitions

30

to distribute the point data to the lower and higher partitions. Fig. S(c) is newly resulted

from Fig. 5(b). There are four grids; i.e., grid 00 with no data, grid 010 with one data,

grid 011 with three data, and grid 1 with one data. Again, in Fig. 5(c), we still can not

group the grids as two partitions with both of the number of data no less than mb• But, we

can assign grid 00 and grid 010 to the lower partition and grid 1 to the higher partition.

Hence, the only unassigned grid, 011, has to be split again. Fig. 5(d) shows the result of

the final partitioning scheme: after dividing grid 011, the data point distributed to two

new grids, 0110 and 0111, can be distributed to lower partition and higher partition,

respectively. Meanwhile, we obtain the balanced distributed data points in the lower and

higher partitions. The constituent in the lower partition are grids 00, 010, 0]] 0; in the

higher partition are grids 0111 and 1. Finally, the partition numbers (codes) can be

determined. In this example, 00 is determined in the lower partition and 0111 in the

higher partition. Both are the smallest grid codes in the order sequence among the

constituents.

Fig.6 shows the other example of splitting non-rectangle partition (following Fig.

5). Fig. 6(a) shows the first division of the partition 0111 which includes grids 0111 and

1. The lower partition, grid 0111 does not balance with the higher partition, gird 1. Fig.

6(b) continues to divide the higher partition, grid 1, into grids 11 and 10. Nevertheless,

the lower partition contains only grid 0111; the higher partition contains grid II. Grid 10

is going to be divided to distribute its data points to the two partitions. Fig. 6(c) shows the

division of grid 10. After grid 10 being divided, the grid 100 can be placed in the lower

partition and the grid 101 in the higher partition. In view of the definition, the partition

number is the smallest number among the constituent grids. Thus, the lower partition is

31

assigned with 0III and the higher partition with 101. The result is shown in Fig. 6(d).

Each grid is divided cyclically along every dimension. ote, the grids 0 III and 100

belong to the same partition, 0Ill.

a

•
•

••

(a)

•

01 1

•
• •

• •
00

(b)

32

010 all 1

•
• •

••
- - - - -

00

(c)

010 0111 : 1
I

• I

I

0110• I •I

I ••I

00

(d)

Fig. 5 Splitting and partitioning scheme for overflow in the
bucket node ofG+-tree (mb=2 and Mb=4).

(a) Divide the space along dimension 1 (horizontal coordinate).
The distribution is not balanced for the lower and higher
partitions are not balanced.

(b) Divide grid 0 along dimension 2 (vertical coordinate), still
imbalanced.

(c) Divide grid 01 along dimension 1, still imbalanced in two
partitions for any combinations of lower grids and higher
grids.

(d) Divide grid 011 along dimension 2 into two grids. Lower
partition with grids 00, 010, and a110 has mb +1 data points.
Higher partition with grids 0111 and 1 has mb data points;
i.e., balanced. Then, the partition number is assigned to each
partition by choosing the smallest constituent grid numbers,
00 and 0111 , respectively.

33

010 0111 1

•
• : 0110 •

I
I ••_____ 1. _____

00

•
• •

010 0111 11

•
• : 0110 •

1
I •• I------,------

00 10

•
• •

(a) (b)

•

11010

• : 0110 •
I
I ••_____ .J _

(d)(c)

010 0111 11

•
• : 0110 •

I
I ••----_.1_----

00 100 101

•
• •

Fig. 6 Splitting and partitioning scheme for inserting two more
data points into partition a111 of Fig. 5(d)

(a) Divide along dimension 1 (horizontal coordinate), lower and
higher partitions (grid 0111 and grid 1) are imbalanced.

(b) Divide grid 1 along dimension 2 (horizontal coordinate),
imbalanced. The lower partition contains grid 0111; higher
partition contains grid 11.

(c) Divide grid 10 along dimension 1 into two grids. The lower
partition with grids a111 and 100 has mb +1 data points; the
higher partition with grids 101 and 11 has mb data points; i.e.,
balanced. Then, the partition number is assigned to each
partition by choosing the smallest constituent grid number,
0111 and 101, respectively.

(d) This is the result. Note that grids 0111 and 100 belong to the
same partition 0111, the same bucket node.

010010

OOlll

Fig. 7 A possible example of G+-tree for two dimensional space

The partitions of G+-tree could be hyper-rectangles or non-hyper
rectangles.

34

010101 010Il1 01110 011111 IlOlO1 I 11011 11110 III 11
I

I

I,
OlO100 010110 : 011110 110100

I
I
I

------- -------
OIOOO 010011 0110 II 00 LIlO

010010

000101 I 00011 I 00110 00111 100101 I 10011 10101
1 I I

I I I I

I I I
I I I

I

000100 I 100100
I

I
I,
------- ------- ------

0000 0010 1000 10100

Fig. 8 The constituent grids for the example in Fig.7

Note that most of the partitions keep the property of locality
even though they are not hyper-rectangles. The others keep the two
groups of data with property of locality.

Examples:
Partition 0000 has only one grid, 0000.
Partition 000101 has constituents of grids 000101, 000 II, 0010, and

00110. It is not a hyper-rectangle.
Partition 011111 has constituents of grids 011111, 1000, and

100100. This partition has two groups of data. Each group keeps
the property of locality within itself. But, the two groups are far
away from each other.

35

36

The Main Features

1. The data space is decomposed into non-overlapping partitions in variable size.

2. All the partitions together can span the whole data space.

3. Each partition corresponds to a disk page (or bucket).

4. The number of entries in a partition is between the minimum number of entries (mb)

and the maximum (Mb) except that only one partition exists in the data space (the total

number of entries is less than or equal to Mb).

5. The partitions keep the property oflocality, i.e., the entries inside the partition are close

to each other. In the worst case, two groups of data inside a partition are far from each

other. But, the data are close to each other within the same group.

6. A partition consists of the consecutive grids that are binarily split from the data space

cyclically along each dimension to meet the above requirements.

7. Each partition is assigned a unique partition code that is the least grid code of the

constituted grids.

8. The total ordering is defined over the partition codes (grid codes) so lhey can be stored

in a B+ tree with the order of M. That is, the maximum number of keys and pointers in

a non-leaf node is M and M+1, respectively.

37

Algorithms

From last section's description, a short definition for this data structure can be made

as follows:

1. G+-tree is a height-balanced tree like B+ tree.

2. The sub-tree of G+-tree is also a G+-tree.

3. There arc two types of nodes in a G+-tree:

(1) Index node (non-leaf node), which contains M keys (partition numbers) and M+ I

pointers to the child nodes.

(2) Bucket node, which contains all the entries corresponding to its partition.

4. Inserting one more point datum into a full partition makes the partition split into two

sub-partitions. Each of which contains no less than mb entries. (i.e., the number of

point data ~ mb).

5. Deleting one point datum from a partition which contains only mb point data makes its

point data redistributed or merged to neighbor partitions.

There are two types of nodes in the G+-tree index structure. One is the internal node

which is the same as that of B+-tree's or G-tree's. The maximum number of keys in an

internal node is M. Also, the minimum number of keys in an internal node except the root

node is m which is less than or equal to the ceiling ofM/2. The minimum number of keys

i.n root node is one. The keys in a node are ordered according to the rule of total ordering

of grid codes. A node with k keys has k+1 children in the next level. All the keys in the

child i are greater than or equal to key i-I but less than key i.

The other type of node is leaf node also named bucket node. This node contains all

the coordinates of each data and the addresses to the indexed file. The maximum number

38

of the point data in a node is Mb and the minimum number of keys is mb which is less

than the ceiling of MJ2.

Before any operation executed, the current longest grid code (smallest in partition

size) for the requested data has to be determined in order to locate the enclosing partition.

Then, search the G+-tree by descending from the root in the manner similar to a B-tree to

find the actual partition number which corresponding partition encloses the grid (partition

number $ requested grid number < next partition number). Thus, we need to keep a

global variable, b, for the current longest length of the grid code.

G+-Tree Algorithms assume:

1. There are n dimensions in the data space.

2. b is the length of the grid number which is the longest in the system.

3. MAX_VALUE is an array to keep the maximum value for each coordinate.

4. MIN_VALUE is an array to keep the minimum value for each coordinate.

The algorithms are all similar to those ofB+-tree since G+-tree takes the B+-tree as the

index tree to the partition with partition numbers as keys.

39

Grid Detennined for a Point Data

As all the partitions are variable in shape (might not be a hyper-rectangle), to locate a

point datum we have to locate the enclosing grid first. In other words, we have to find the

current smallest grid that encloses the point data. Then, we can use this grid code to

locate the partition that encloses this grid (and the point data) in the G+-tree and find the

corresponding tuple. The Grid_Detennine function is served for this purpose.

Grid_Detennine(P, T)

Input:

P: the coordinates of the point data

T: the G+-tree

b: the longest bit number for a grid so far. (b is a global variable)

Output

G: the grid code of the current smallest sized grid that contains P.

i: index variable

1. {

2. G='''';

3. for (i = 1; i:s; n; i++)

4. {

5. I, = MIN_VAL[i];

II initialize the grid number as an empty string

II assign the max and min value for each dimension

II minimum value along the dimension i

40

6. hi = MAX_VAL[i]; II maximum value along the dimension i

7. }

8. for(k=l;ksb;k++)

9. :

II repeat b times since the current longest length of a

grid code is b

10. i=«k-1)modn)+ 1; II decide which coordinate to be split along

11. II binary split along dimension i

12. if (Xi < (li +h;)/2) 1/ the data located in the lower grid

concatenate 'a' to right ofG ;

13. {

14.

]5.

16. }

h; = (Ii +h i)/2 ;

II New Grid code

II the higher boundary moved to the new position

17. else II the data located at the higher grid

concatenate' I' to right of G;

I; = (Ii +h;)/2 ;

18. {

19.

20.

21. }

22. }

23. return (G);

II New Grid code

II the lower boundary moved to the new position

II The current longest grid code enclosing data

24. }

41

The Grid_Determine is to determine the grid which encloses the point data. The grid

code is h bits long (the current smallest size of a grid). First of all, the maximum and

minimum values of each dimension are assigned to low and high for each dimension (on

line 3 to line 7). Then, like the binary search, narrow down the low and high point

cyclically along each dimension until the length of grid code is b bits long(on line 8 to

line 22). The grid number is appended with '0' when data is inside the lower part (on line

12 to line 16); appended with '1' when it is inside the higher part. After b times of

narrowing down (on line 17 to line 21), the grid is found (the grid number is b bits long).

Let T = entry E;

1* find the entry to the next level *1

42

Algorithm Search

Given a G+-tree whose root node is T and a point data P=(xl> x2, ..• , xJ, find the tuple

for the point data P=(x1, x2,··., xJ.

Search(p, T) lIP: point data; T: G+-tree

Input:

P: the point data to be looked for

T: the G+-Tree

Output:

Address: the tuple's address in the indexed file if found; -1 ifnot found.

G: the grid number which accommodates the point data.

Ej : the entry to the next node ofG+-tree.

1. {

2. G = Grid Detemline(P, T);

3. while (T is not a leaf node)

4. {

5.

O.

7.

8. }

orT=EM+1 if KEYM ~ G. II M: the max number of keys in the node

9. 1* Now, T is a leaf node *1

43

10. Check the entries in the leaf node to detennine whether there is a key same as P

which is (x.,x2, •.• ,xJ.

11. If the point data found in the leaf node, return address of the tuple in the indexed file

12. else return NOTFOUND.

13. }

Description:

Ta search a point datum, we invoke the Grid_determine to locate the grid which

encloses the point data (on line 2). Then, use this grid number (G) as a key to traverse

down to the G+-tree to the leaf node (on line 3 to line 8). At the leaf node, look for the

entry which is (Xl' x2, ... , Xn) (on line 10). It will return the address of the tuple location in

the indexed file ifit is found (on line 11); NOTFOUND (-1); otherwise (on line 12).

44

Algorithm Insertion

Given a G+-tree whose root node is T and a tuple with indexing data P=(x" x2, ... , xu),

insert the tuple with the point data P=(x" x2, ... , xJ to T.

Inserting a new point data is similar to t.he insertion in B-tree. That is, data are added

into the leaf node. If that node overflows, it must be split and insert the new node key to

the parent. If parent node overflows after the insertion, the parent node has to be split

again. That is, the splits may propagate up to the tree root.

Insertion(P, T)

Input:

P: the point datum which is to be inserted to the G+-tree

T: the G+-tree to.

Output:

T: the new G+-tree which encloses the new point datum P.

1. {

2. G = Grid_Determine(P); II To locate the grid no. G for operations in the G+-tree.

3. TreeInsert(P, G, T); II To insert: key G to the G+-tree

4. if (overflowed) II if the G+-tree's root split, create a new root.

5. Create a new node as the root to accommodate the 2 nodes that split from the old

root;

6. }

1* find the entry to the next level *1

TreeInsert(P, G, T)

Input:

P: the point data to be inserted into the tree

G: the grid no. to accomodate the point data P.

T: the G+-tree

Output:

T: the (sub)G+-tree with P inserted

PromotedKey: the key promoted if the node split

PromotedAddr: the address of the promoted node if the original node split

l.{

2. if (T is not a leaf)

3. {

4.

45

Find the entry E j if KEY j ~ G < KEYi+1 or EM+1 if KEYM ~ G.5.

6.

7.

8.

9.

10.

Treelnsert(P, G, E j);

if (propagating up for insertion)

{

add the new entry to the node;

if (overflowed)

II recursively down to leaf node

11.

12. }

13. }

14. else

15. {

index_split(T); II non-leaf node split

II T is a leafnode

46

16. Check the entries in the leaf node to detennine whether there is a key same as P

which is (x j ,x2, ..• ,xn).

II split the bucket node if overflowed

17.

18.

19.

20.

21. }

22.}

if exist, return error of data collision exist.

else add P to this node

if (overflowed)

bucket_split(T);

Description:

To insert a data, several steps are required:

1. Find the current smallest size grid (longest in grid code length) to which the point

belongs by calling the function of Grid_deterrnine (on line3 ofInsertion).

2. Search for the actual partition to which the point belongs in the G+-tree by invoking the

recursive Insert function, Treelnsert, to reach the leaf node.

3. At the level of leaf node, if the partition found has one more vacancy, the Treelnsert

function just puts the point data into it and, then, stops. Otherwise, split the partition

into two sub-partitions by redistributing the Mb +1 data according to the partition

47

number scheme described and return the new partition number to the upper level (0+-

tree) for propagating up (by invoking the function of bucket_split).

4. At the level of non-leaf node, if the node has one more vacancy, the Treelnsert just

puts the point data into it and, then, stop. Otherwise, split the node into two by

redistributing the M +1 point data and return the new partition number(s) to the upper

level (G+-tree) for propagating up (by invoking the index_split).

5. If it overflowed at root node, then, create a new node. Distribute those point data

including the promoted key evenly distribute between the old root and the new node.

Then, create another new node for indexing these 2 redistributed nodes. Therefore, this

finally created node becomes the new root node.

II P is added to T, G is the grid code, T is a full

Algorithm Bucket Split

Given a uatum P, its corresponding grid G, and a full leaf node T. this function

creates a new node and evenly distributes data between the old and the new node, and

then return them to the parent.

Bucket_Split (P, G, T)

node.

Input:

P: the point data to be inserted into the full node T

G: the grid to accommodate the point data P.

T: the full leaf node in G+-tree

Output:

T: the (sub-)G+-tree with P inserted

PromotedKey: the key promoted after split

PromotedAddr: the address of the promoted node after

1.{

2. for (k = 1; k ~ n; k++) II assign the max and min value for each dimension

3.

4. Ii = MIN_VAL[i]; II minimum value along the dimension i

5. hi = MAX_VAL[i]; II maximum value along the dimension i

6. }

48

49

7. Create a new bucket node, T; II create a new node

8. Create 3 new temporary nodes, named workingNode, tmpl, tmp2 which are able to

accommodates Mb+1 keys.

9. Move all the entries ofT and the new point data P to workingNode which has, then,

Mb+1 keys. (So, T is empty now.)

10. done = false;

i = «(k-l) mod n) + 1; II decide which coordinate to be split along

Move entries with Xi < (I; +h j)/2) in workingNode to tmp 1 II the data located at

II the lower grid

Move entries with Xi >= (I; +h;)/2) in workingNode to tmp2 II the data located at

II the higher grid

11.G'="

II the kth time for the redistribution

II initial the grid number ofT to empty

II number of split

II entry number of node < mb

k++;

12. k = 0

13. while (not done)

14. {

15.

16.

17.

18.

19. if«EntryOf(tmpl)+EntryOf(T) >= mb) and

(EntryOf(trnp2)+EntryOf(T) >= mb» II done

{

Move all the entries of tmp 1 to T;

Move all the entries oftmp2 to T ;

b = the longest bit length ofG and G';

20.

21.

22.

23. if (MSB(G', b) = G) II the last split occurs at the smallest

50

II grid of partition G

Move all the entries oftmpi to T.

Move all the entries oftmp2 to workingNode II entries oftmp2 need to be

redistributed

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

{

G = G' concatenated with '0';

}

G' = G' appended with 'I ';

done = true;

else if (EntryOf(tmpl)+EntryOf(T) < mb)

II the smallest grid code changed

II for the new grid

34. concatenate 'I' to the left of G' ; II the grid to be re-split is at

higher part

35.

36.

37.

38.

39.

}

else II EntryOf(tmp2)+EntryOf(T') < mb

{

Move all the entries oftmp2 to T';

Move all the entries oftmpi to workingNode; II entries oftmpl need to be

redistributed

40.

41.

42. }

Concatenate '0' to G' ;

II end of while (not done)

II the grid to be re-split is lower one

51

43.}

Description:

The strategy of splitting a partition is to divide the original partition several times

according to the method we used in partition numbering and splitting until both of the

sub-partitions have the evenly distributed point data. In other words, we divide the

partition into two sub-partitions and distribute the point data into these two sub-partitions.

It is accomplished if all the point data are evenly distributed; otherwise, the sub-partition

with more than mb point data needs to be divided again along the next dimension. It is

like to divide the partition into small grids, then group the grids as two partitions which

have the evenly distributed number of point data.

Line 2 to line 5 of this algorithm set up the highest and lowest of each dimension for

later use. Line 7 creates a new node to keep the data in the higher part of the overflowed

partition. Line 8 creates three temporary nodes, workNode, temp 1, and temp2. The

workNode keeps all the data which have not been assigned to any of the two partitions

yet. The tempI (temp2) keeps the data on the lower part (higher part) when division

occurs along some dimension.

On line 13 to line 44, it cyclically divides the space along each dimension to

separate the data into two partitions.

52

Algorithm Index Node Split

Given a full internal node (index node) T, a promoted node (which key

is PromotedKey and address is PromotedAddr), this algorithm splits the full

internal node T evenly into two nodes while the promoted node is inserted,

and then returns them to the T's parent node.

Index_Split(T, PromotedKey, PromotedAddr)

Input:

T: the full non-leaf node in G+-tree with M keys (M+1 entries to children)

PromotedKey: the key promoted from the child level

PromotedAddr: the address of the promoted node

Output:

T': the new sub-G+-tree which is separated from the original full node T.

PromotedKey: the key promoted after split

PromotedAddr: the address of the promoted node after split

l.{

') CreateNewNode(T'); II create a new node

3. Distribute the keys (M+l) and children (M+2) in T to T and T evenly with

smaller half to T, the larger half to T.

4. The middle key and the T' node address are promoted (to parent level).

53

5. }

Description:

The strategy of splitting the index node is the same as that of B+-tree. The keys in

the overflowed node are in linear order. The index node has M+ 1 keys and M+2 entries

(overflowed) to children. It redistributed the first (M+1)/2 and last (M+1)/2 to two nodes

(the node T and a new node T'). Hence, the middle of the keys is the promoted key to the

upper level of G+-tree; and the address of the second node (T') is the promoted address.

Fig.9 is the procedure to split the full index node.

G

54

(a)

............

Insert the prompted key 011 and I0 l'i ~
(address 05 to the full page)

(b)

working page~ 01~ 10~

(c)

new page (address 06)promoted key
(d)

[QIT]

original page

Fig. 9 The steps of node split

In this figure, white box is the key; black box is the pointer to the child node. The

maximum number of keys in a node is 4; the minimum is 2.

(a) Initially, there are keys 00, 01, 10, and 11 in a full node. Then, a key 011 IS

promoted from the child node.

(b) Create a working node to keep all of the keys, and then redistribute those data into
two groups.

(c) Create a new node and let the old node keep the lower keys, 00 and 01; and new
node keep the higher keys, 10,11.

(d) Promote the middle key 011 to the parent with the new node address (06).

55

Algorithm Deletion

Given The G+-tree T and the datum P which is going to be deleted from T, then return

the nev,' G+-tree with P deleted.

Deletion(P, T)

Input:

P: the point data to be deleted

T: the G+-tree

Output:

T: the G+-tree with P deleted

G: the smallest sized possible grid no. that the point datum P lies on.

1.{

2. G = Grid_Detemline(P);

3. Deletelnlndexnode(P, G, T);

4.}

Description:

Deletion algorithm includes three steps:

1. Determine the current smallest grid that contains the point data by invoking

Grid Determine.

2. Search the grid in the G+-tree and find the point data in the found node.

56

3. Delete the point datum in the bucket node ifit exists.

3a. Done if the number of data left in this node is greater than mb•

Jb. Redistribute the data with the sibling (left or right) if the number of data in bucket

node is less than fib and the number of data in the sibling is greater than mb.

3c. Move the keys to the sibling and delete itself if the number of data in this bucket

node is less than mb and the number of data in the sibling is less than mb• Then,

propagate the deletion to the upper level of the G+-tree.

In this algorithm, line 2 is for step I, line J for step 2, and step 3 by calling the other

function (DeleteInIndexnode) which is listed in the next page.

DeleteInIndexnode(P, G, T)

Input:

P: the point data to be deleted from G+-Tree, T

G: the grid number to accommodate the point data P.

T: Node of the G+-tree

Output:

T: the (sub)G+-tree with P deleted.

PropagatcdKey: the key propagated for deletion.

1.{

2. If T is leaf node II for leaf node

57

3. {

4. DeletelnBucketnode(P, T);

5. if redistribution after delete P

6. return PropagatedKeyOfRedistribution

7. else if deletion propagating

8. return DeletionPropagation, PropagatedKey.

9. else

10. return NoDeletionPropagation.

11. }

12. II T is non-leaf node

13. In the node T, find the entry E j to the node in the next level for P

14. DeleteInIndexnode(P, G, E); II recursively down to the leafnode

15. if redistribution in the lower level

16. {

17. replace the key with the propagted key

18. return NOPROPAGATION

19. }

20. if no deletion propagated from the lower level

21. return NOPROPAGATION

22. II deletion propagated from the next level

23. if the number of the keys in the node> m

24. {

II m is the minimum no. in a node

58

25. delete the key and compact the node

26. return NOPROPAGAnON

27. :

28. if the left sibling exist and its number of keys > m

redistribution

II Need sibling's

29. {

30. move the key of parent and left sibling's right-most child to this node

31. return propagated key of right-most key of left sibling

32. }

33. if the right sibling exist and its number of keys > m

34. {

35. move the key of parent and right sibling's left-most child to this node

36. return propagated the key of the most left key of the right sibling

37. }

38. II No redistribution possible, concatenate with the parent key and the sibling

39. Combine the key and left sibling node and this node together to form a new node.

40. return deletion propagation

41.,

Description:

This is a recursive function of deleting a point data in the G+-tree. First, go from top

of the G+-trec down to the leaf node and delete the point datum at the bucket node (which

is listed next). At each level, there are four conditions that we have to take into

59

consideration to delete a data (key). (For convenience, we can let the number of keys of

its left sibling be 0 if a node has no left sibling.)

I. The number ofkeys in a node is still greater than or equal to m.

Then, just return.

2. The number of the keys in a node is less than m, but that of its left sibl ing's is greater

than m.

Then, get one key from the left sibling and change the parent's key pointer to this node.

3. The number of the keys in a node is less than m and that of its left sibling's is equal to

m; but, that of the right sibling's is greater than m.

Then, get one key from the right sibling and change the parent's key pointer to the right

sibling.

4. The number of the keys in a node is less than m and those of both of its siblings' are

equal to m.

Then, merge with the left sibling if exists; merge with right sibling, otherwise

However, if the current node is a root node, then, we do not consider the situation for the

number of keys less than m.

60

Delete a datum in a G+-tree at the bucket node:

Given a datum P, a G+-tree T (bucket node level), then delete the data P in G+-tree T if

exists one. This function is called by Deletelnlndexnode which is listed at page 56.

DeleteInBucketnode(p, T)

Input:

P: the point data to be deleted from G+-Tree, T

T: Node of the G+-tree

Output:

T: the (sub)G+-tree with P deleted.

PropagatedKey: the key propagated for deletion.

1.{

2. If P exists in the node T

3. delete it

4. else

5. return error no such point data

6. if current node is the only one node in the G+-tree

7. {

8. if no data in the node

9. {

10. delete the current node

II only node in the G+-tree

II empty after delete P

11. return the propagated key

12. }

13. else

14. return NoPropagated

15. }

16. if the number of keys >= mb

II return to the root for del ring the key

11mb is the minimum number for a bucket node

61

17. return NOPROPAGATION

18. II The following code block means the number of keys in the node < mb

19. if the left sibling exists and the number of keys > mb

20. {

21 . Redistribute the keys in left sibling and itself by the partition numbering method

to reorganize these two partitions and propagated the new current

partition number to the parent.

22. return the propagated number

23. }

24. if the right sibling exist and the number of keys > mb II left sibing's <= mb

25. {

26. Redistribute the keys in its right sibling and itself by the partition numbering

method to reorganize these two partitions and propagated the new right

sibling's partition number to the parent.

27. return the propagated number

28. }

29. II the number of keys in siblings are ~ mb

62

30. Combine with one ofthe sibling to be one node, and delete the original node.

31. return deletion propagated

32.}

Description:

This is similar to the algorithm Deletelnlndexnode(P, G, T). The difference is that it

is for a bucket node which has distinct node structure and different maximum and

minimum numbers of keys in a node. Besides, the algorithm is not a recursive function

call.

A special case for this deletion algorithm: if the current node is the only bucket node

in the G+-tree. After the deletion of the data, if the number of data in this only one node is

0, then delete the node; othernise, just return without considering requirement of the

minimum number of keys in a node. (On line 6 to line 15.)

63

Algorithm Range Query

Given a pair of points to be the range query's hyper-rectangle to get all the point data

from the G+-tree, G. (The two points are the lower left and right upper points of that

hyper-rectangle.)

Input:

R: the range of query (x, , x2, ... , xl1 , YI> Y2' ... , Yn)

T: the G+-tree

Output:

P,etum: the linked list of the point data

B: the bucket node in the G+-tree

BneKt : the right neighbor of B in the G+-tree T.

l.{

2. Divide the query range into a set of smallest sized grids and, then, order these grids

according to their grids codes into a linked list L.

3. P,etUflI initialized to be empty.

4. while (L is not NULL)

5. {

6. Choose the first grid, G, in the linked list L as a key to search in the G+-tree to get

the bucket node B.

64

7. Put B's point data, which locate inside the range query, to Preturn.

8. II Delete the grids, which are included by B, from L.

9. Delete the grids with grid codes < Bnex! in L

I O. ~

I 1. return Preturn'

12.}

II return all the data meet the range query.

Description:

The range query is specified by a hyper-rectangle which is indicated by two points.

To get the data for this range query, first of all, is to find those partitions which have

overlapped (even slightly) with this hyper-rectangle. Hence, the range query hyper

rectangle is cut into the current smallest sized grids for searching the G+-tree to locate

these partitions (on line 2). After then, use these grids to find the partitions (the bucket

nodes). As part of the point data in a located partition might not be inside the range query,

they are filtered to get the desired points (on line 7). Since several grids of L's may be in a

located partition, it is not necessarily searched down for the same partition. Thus, the grid

within this located partition can be deleted (on line 9). Finally, after searching for those

grids, return the point data found in the range.

CHAPTER IV

PERFORMANCE ANALYSIS

In this section, the performance is analyzed and compared to the G-tree. As very

large databases are assumed, the data are stored in a permanent memory, the disk.

Therefore, the performance for the data retrieving operations is bound by the disk va.

The data retrieving operations include insertion, search, deletion, and range query.

For normal data distribution, G+-tree and G-tree structures are simulated and tested to

measure their storage utilization. The storage utilization for bucket nodes is

(the number of data in the data space)

(the number of bucket nodes used) x (the number of entries per node)
The experiments

were run with a large number of randomly generated data on Unix system and repeated

several times. The result of the storage utilization for G; -tree is 67±5% and that of G-tre

is 69±5%. The result shows that the storage utilization of G+-tree is slightly worse than

that of G-tree in the situation of normal data distribution. Th is means that it is only a little

price to pay for G+-tree to eliminate the possible degeneration for G-tree.

For some skew data distribution, the analysis is done by the following description.

Assume that there are N point data and the maximum capacity of an internal node is M

and minimum capacity is m. Meanwhile, assume that the maximum capacity of a leaf

node is Mb and the minimum capacity is mb. Furthermore, in the worst case, every leaf

65

66

node has only ffib point data. Hence, the total number ofbucket node isl:. J.

Use these bucket nodes to build the internal tree (B+-tree); therefore, in the worst

case for the internal G+-tree, the number of nodes at the lowest level of internal node is

l(l:. JJ~Jand the tornl number of fue internal nodes is 2l(l:. JJ~J-L Tbe

internal tree height is IOgml:.Jand fue overall height ofthe G'-tree is 1 + log",l :. J. (I

is the level of bucket node.)

From the above description, it is easy to find the worst case for the space complexity

in G+-tree and the number of internal nodes plus the number of bucket nodes,

i.e., 2 (l~J m) - 1 + l~J·
m b m b ,

Considering the space utilization, the worst case occurs when the numbers of point

data in all bucket nodes are the same as the minimum capacity, mb; i.e., the space

utilization in the worst case is m.!Mb' (We do not consider the situation of only one

bucket node.) For example, ifmb is half of the Mb, the space utilization is 50%.

The time complexity is counted as the number of disk va. Searching one point

datum, it goes from the root of G+-tree down to the bucket node. Thus, the number of disk

I/O is the height of the G'-Iree, 1 + IOgml:J.
Insertion has to go from the root of the G+-tree down to the node for the point datum

to insert. Prior to a datum insertion, it has taken (1 + 10gml~j) times of va. The worst
mb

67

case is to insert the point datum into a full node with all full ancestor nodes. It costs the

propagated up splitting; i.e., every ancestor node has to be split. The number of nodes,

thus, affected is the same as the height of the G'-tree, I + !og",l:, J. Therefore, the total

number of va for an insertion, in the worst case, is the times of va for finding the exact

bucket node, the times of va for the propagating split, and the times of creating new

nodes for each propagating split. Thus, three times of the height of the G+-tree, 3X(1 +

!Og·l:.J)
Like the insertion, deletion has to go from the root of the G+-tree down to the bucket

node and spend the ! + !Og.l:,Jtimes of I/O before deleting a point datum. The worst

case of this deletion occurs when the bucket node has exact fib (minimum capacity) data

and all of its ancestor nodes and ancestors' siblings have exact m (minimum capacity)

data. That means that it needs propagated deletions to the root. The re-distribution of the

data affects 3 nodes (2 siblings and itself); i.e., the number of I/O is three times of the Gi
_

tree's height. Therefore, including the initial nubmer of I/O for searching, totally the

number 0 fIIO is four times of the tree height; i.e., 4x (I +10g·l:,J).

In respect of range query, its number of I/O depends on the size of the query.

However, since the G+-tree keeps partial spatial locality, the overhead of getting data will

not be too high. The worst case for a range query occurs when the range covers the cross

of the nodes (Fig. 10). In this circumstance, the query range overlaps 2d non-continuous

parts (d is the dimensionality). In other words, the overhead (excluding the bucket nodes

68

accesses) of each part goes from the root to the first bucket node of that part. Thus, the

total overhead for the range query is 2'X(lOg"l:b Jl in the worst case.

In tenns of G-tree, it has the same structure of internal node with G+-tree. Hence, the

distinction between these two data structure is on the bucket nodes. If the data are

unifonnly distributed in the data space, both of the G-tree and G+-tree have nearly the

same space utilization in the bucket node. Meanwhile, they can have similar number of

bucket nodes and internal nodes; therefore, they both can have similar time complexity

for the data retrieving operations.

However, if the data are not well distributed in the data space, the G-tree might

suffer the low space utilization and lose well perfonnance. In G-tree, the worst case of

space utilization occurs when the data is skewly distributed to be split for each full node

coming with n nodes of minimum capacity 1. Then, the space utilization of a bucket node

is (1 xn + Mt,)/ (nxMb). The utilization will become very low when the n is getting bigg r.

For example, when n is 10, Mb is 25, the space utilization is (10+25)/(1 OX25) = 35/250

which is 14%. The low space utilization of G-tree might make its tree height higher and

waste the di.sk space. Therefore, in the worst case, the number of G-tree's liD might be

more on search, insertion, and deletion than G+-tree's.

In addition to the low space utilization, the G-tree's range query has very low

perfonnance. G-tree spend only once on searching down from the root to the bucket (the

first bucket node inside the query range). Then, G-tree traverses the neighborhood till it

reaches the upper bound of the range query. In some worse cases which the data are

cumulated in the left upper and lower right parts of the data space. From the partition

number scheming, the order of the right, upper is higher than that of the left and lower

69

part in the data space. A range query is overlapping on the cross of the partitions, it goes

through almost all the grids in the left upper and the right lower parts before reaches the

right upper partition. Figure 10, a range query almost traverses all the partitions, i.e.,

visits nearly all the bucket nodes in the G-tree.

In respect of the space complexity, we can find G+-tree is better than G-tree.

Meanwhile the space complexity affects the time complexity of G-tree. Therefore, in

view of the time complexity analysis, we can clearly comment that G+-tree is superior to

G-tree.

i

Fig. lOAn example of range query

If the query range is at the center and cross several parts

(a) For G+-tree, the overhead is 4 times of the tree height because

the range belongs to 4 partitions which are close in the space

data but far away from the tree's bucket nodes ..

(b) For the G-tree, this is an example of the worse cases. It goes

all of the left upper and righ t lower grids for the query as it is

optimistically believed to keep the property of spatial locality.

70

CHAPTER V

CONCLUSION

A new spatial data management structure named G+-tree is proposed. It has

successfully improved the performance of the G-tree data structure when data are skewly

distributed in the data space. Even in the situation of uniform data distribution, G+-tree

shows not much less efficient than G-tree. One important feature is that G+-tree

eliminates the sparse nodes in G-tree. Hence, no any node in G+-tree is sparse. This

makes each node more compact and reduces the total number of the nodes in the G+-tree.

Furthermore, the nodes access (VO) can be greatly reduced, especially in the situation of

a very skew data distribution.

In addition, G+-tree has improved the range query of the G-tree. The latter could

be very time-consuming to retrieve range data because it thinks all the data within the

range are stored in the close nodes but this is not true. The G-tree structure can keep the

property of locality of the data partially, not completely. In the worst condition, the G

tree may need to traverse nearly all the nodes to get a very small range of data. G+-tree,

instead, takes the advantage of the partial locality kept in its nodes and also considers the

situation that the close data may be stored in the far away data nodes.

In short, G+-tree eliminates the possible degeneration of G-tree with a little bit

price. Thus, it is much better than G-tree as a multi-dimensional indexed tree for large

71

databases, especially, when data are not well distributed.

72

GLOSSARY

This glossary includes terms and defmitions that are mentioned in this thesis.

B-tree of order m. A multi-way search tree with these properties: (quoted from
[FOL92])
1. Every node has a maximum ofm descendents.
2. Every node except the root and the leave has at least rm/2l descendents.

3. The root has at least two descendents (unless it is a leaf).
4. All of the leaves appear on the same level.
5. A non-leaf page with k descendents contains k-l keys.
6. A leaf page contains at least rm/2l-1 keys and no more than m-I keys.

The power of B-tree lies in the facts that: they are balanced (no overly long
branches); they are shallow (requiring few seeks); they accommodate random
deletions and insertions at a relatively low cost while remaining in balance; and they
guarantee at least 50 percent storage utilization.

BANG file. Balanced and Nested Grid file. It is an interpolation grid file. It partitions the
data space into block regions by successive binary division. Then, organize the block
regions into a tree like B-tree.

GBD tree. General BD tree. A data structure for spatial database. It uses a binary
numerical scheme when split a partition. Then, organize the partition number into a
B-tree for indexing.

Grid file. A data structure that partitions the data space into grid structures with a
directory to maintain those grids for data access.

G-tree. Grid tree. A data structure which combines Grid file and B-tree in a special
manner to index point data.

GT tree. Evenly distributed Grid tree. This is a new data structure deri ved from G
tree(Grid tree) for good storage utilization and retrieval efficiency.

Hashing. A technique for generating a unique address for a given key. It is used to
rapidly access data record.

73

74

K-D Tree. K denotes the dimensionality of the space being represented. It is a binary
search tree with the distinction that at each tree level a different attribute value is
tested to determine the direction in which a branch is to be made.

K-D-B tree. A data structure adopts B-tree and each node being assigned an adaptive k-d
tree partition.

R-tree. A data structure for multi-dimensional index. It uses minimum bounded rectangle
to denote an object in the spatial space, then, adopts B-tree to maintain those
rectangles.

R·-tree, R+-tree. The variants ofR-tree. They use different split methods for overflowed
nodes to ohtain better performance.

X-tree. A data structure for improving the R+-tree. It is suitable for high dimensional data
space.

REFERENCES

[BAN95] Bang, K. S. and Lu, H. "SMR-Tree: An Efficient Index Structure for Spatial
Databases," Proceedings of the 1995 ACM Symposium on Applied
Computing," Nashville, TelU1essee, February, 1995,46-50.

[BEC90] BeckmalU1, N. and Kriegel, H. P. "The R*-tree: An Efficient and Robust
Access Method for points and Rectangles," Proceedings of the SIGMOD
Conf.. Atlantic City, June, 1990, 322-331.

[BEN75] Bentley, 1. 1., "Multi-dimensional binary search trees used for associative
searching." Commun. ACM. vol. 18, 9(Sep. 1975), 509-517

[BER96] Berchtold, S., Keirn, D. A., and Kriegel, H.P. "The X-tree: An Index
Structure for High-Dimensional Data" Proceedings of the 22nd VLDB
Conf., Mumbai (Bombay), India, September, 1996,28-39.

[BRE93] Breene, 1. A. "Quadtrees and Hypercubes: Grid Embedding Strategies
Based on Spatial Data Structure Addressing," The Computer Journal, v. 36,
no. 6, 1993,562-569.

[CHE92] Cheng, x., Lu, H. and Hedrick, G. E. "Searching Spatial Objects with Index
by Dimensional Projections," Proceedings of the ACM 1992 Symposium on
Applied Computing, 1992,217-223.

[FOL92] Folk, M. 1., Zoellick, B. File Structures, A Conceptual Toolkit, Addison
Weselsy, 2nd ed., 1992,

[FRE87] Freeston, M. "The BANG File: A New Kind of Grid File", SIGMOD
RECORD, 16,3(1987),260-269.

[GAE98] Gaede, V. and Gunther, O. "Multidimensional Access Method" ACM
Computing Surveys, v. 30, no. 2, 1998, 170-321.

[GUN94] Gunther, O. and Lamberts, 1. "Object-oriented Techniques for the
Management of Geographic and Environmental Data", The Computer
Journal, v. 37, no. L 1994, 16-25.

75

76

[GUN97] Gunther, O. and Gaede, V. "Oversize Shelves: A Storage Management
Technique for Large Spatial Data Objects", lntemational Journal of
Geographic Information Systems, v. 11, no. 1, June, 1997, 5-32.

[GUT84] Guttman, A. "R-Trees: A Dynamic Index Structure for Spatial Searching",
Proceedings ACM SIGMOD, June, 1984,47-57.

[HOE92] Hoel, E. G. and Samet, H. "A Qualitative Comparison Study of Data
Structures for Large Line Segment Databases", Pore. ACM SIGMOD conL
San Diego, CA(1992) 332-342.

[HOS92] Hosur, N., Lu, H. and Hedrick, G. E. "Dynamic Addition and Removal of
Attributes in BANG files," Proceedings of the ACM 1992 Symposium on
Applied Computing, 1992,217-223.

[KUM94] Kumar, A. "G-Tree: A new Data Structure for Organizing Multidimensional
Data" IEEE Trans. Knowledge and Data Eng., 6, 2(1994), 341-347.

[LOM92] Lomet, D. "A Review of Recent Work on Multi-attribute Access Methods",
SIGMOD RECORD, 21, 3(1992),56-63.

[NIE84] Nievergelt, 1., Hinterberger, H., and Sevcik, K. C. "The Grid File: An
Adaptable, Symmetric Multikey File Structure", ACM Trans. Database
Syst., 9,1(1994),38-71.

rOHS90] Ohsawa, Y. and Sakauchi, M. "A New Tree Type Data Structure with
Homogeneous nodes Suitable for a Very Large Spatial Database", Sixth
International Conference on Data Engineering, 296-303.

[ROB8I] Robinson, 1. T. , "The KDB tree: A search structure for large multi
dimensional dynamic indexes," in Proc. ACM SIGMOD ConL Ann Arbor,
MI, Apr. 1981, 10-18.

[ROT74] Rotlmie,1. B. and Lozano, T., "Attribute based file organization in a paged
memory environment," Commun. ACM, vol. 17, no. 2(Feb. 1974).

[SAM90] Samet, H. The Design and Analysis of Spatial Data Structures, Addison
Wesley, 1st ed., 1990.

[YEH90] Yeh, S. S. "BANG File Concurrency," Oklahoma State University Master of
Science Thesis, 1990.

VITA

Hung-Chi Su

Candidate for the Degree of

Master of Science

Thesis: G+-TREE: A SPATIAL INDEX STRUCTURE

Major Field: Computer Science

Biographical:

Personal Data: Born in Taiwan, Republic of China, January 25, 1964, the son of
Yueh-Chau Su and Li Su-Chei.

Education: Received Bachelor of Science Degree in Chemical Engineering from
National Chen-Kung University, Taiwan, R.O.C. June, 1986;
Completed requirements for the Master of Science degree at Oklahoma State
University in July, 1999.

Professional Experience: Programmer, Shin-Kung Computer Service, Inc., Taiwan,
R.O.C., from February, 1989, to May, 1990; System Analyst, Hess chain
book-store, Taiwan, R.O.C., from June, 1989, to October, 1990; Best Color
Enterprise Co., Taiwan, R.O.C., from November, 1990 to July, 1993.

