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CHAPTERl

INTRODUCTION

The efficiency of automated sup TVlSlon of chemical processes can be significantly

improved through the development of generic multitasking computer systems for pattern-based

real-time fault monitoring. Pattern-based methods for fault diagnosis, implem nted as computer

programs, can be quickly and easily taught to recognize malfunctions of proc ss equipm nt without

long and expensive first-principle modeling or manual generation of knowledge bases. R.eal-tim

monitoring can provide a quick identification of equipment failure and can initiate prompt actions

to avoid the serious consequences that may be incurred by these failures. Generic and multitasking

features greatly facilitate the job of configuring the system to monitor new chemical processes and

allow the simultaneous monitoring of several different processes using different user-defmed

pattern-based fault identification methods within the framework of the same monitoring system. A

process monitoring system that successfully combines pattern-based, real-time, generic and

multitasking approaches to automated fault diagnosis will b a great asset to the process industry.

A number of real-time computer systems for automated fault diagnosis in industry hav

appeared in the recent years. However, almost none of them, to the. author's knowledge, are

designed for pattern-based monitoring, are fully genenc, and multitasking at the same time.

Therefore, there is a need for a generic pattern-based real-time multitasking monitoring system to

fiU this gap.

The author of this thesis has created a generic pattern-based, real-time multitasking system

for automated fault monitoring in the process industry. This system is capable of monitoring the

operating conditions of several industrial processes simultaneously. Each process is monitored by a

custom monitoring application. The proposed system has tools for configuring the existing

monitoring applications to enable them to monitor new processes and for designing completely new



monitoring applications that implement novel user-defined pattern-based m thods for automated

fault detection and diagnosis. The proposed system is llser-fri ndJ and allo th u er to create his

or her own monitoring application for any process monitoring task based on the user s expertise.

The proposed system can serve as a building block for oth.er more advanced process monitoring

systems.

This work gives a brief summary of the existing generic and pattern-based methods for

automated process supervision and a detailed description of a new generic pattern-based, real-time

multitasking monitoring system. Chapter 2 describes various pattern-based methods for real..;time

fault identification and process monitoring systems implemented in industry in the recent years.

Chapter 3 presents the key concepts about the generic multitasking design of the novel monitoring

system and the programming techniques employed for automated generic real-time process

monitoring. Chapter 4 focuses on the details of system implementation and describes the

components of the new monitoring system. Chapter 5 concludes the thesis and offers directions for

future work. The operating manual for the proposed system is documented in a separate technical

report [Shapovalov and Whiteley, 1999]. This documentation is also embedded in the monitoring

system code as a Microsoft® Windows® help file. The reader is frequently referred to this report

for specific details.

The work presented IS ploneermg in the area of computer-aided process monitoring.

Although numerous real-time computer systems for process monitoring have been developed,

afmost all of these systems offer only a limited choice of the method for fault diagnosis, and none

of these system are as flexible and easy to use as the one described in this thesis. The new features

provided the proposed monitoring system will enable broad application of automated pattern-based

fault monitoring, improve the efficiency of industrial process supervision, and enhance safety in the

process industry.



CHAPTER 2

PATTERN-BASED AND GENERIC METHODS FORF ULT DIAGNOSIS

2.1 Introduction to automated pattern-based fault diagnosis

The efficiency of supervision of chemical processes can be significantly increased wh n

computers perfonn the task of fault detection. Just like human operators, computers can be taught

to detect process malfunctions. At the same time, computers can be more unfailing and productive

than humans at perfonning this job. Unlike human beings, computers do not fall asleep, do not get

distracted, and are less prone to making mistakes. Due to the recent advances in hardware

manufacturing, a program running on a typical desktop can monitor dozens processes

simultaneously. Finally, the purchase price and maintenance costs of a computer are many times

lower than the salary of a plant operator. Therefore, computerization of process monitoring is a

good solution to reduce operating costs and increase safety in the modern chemical industry.

Automated computer-aided fault monitoring is a complex task that can be described in

brief as follows [Lee 1995]. Process data is continuously collected from sensors installed on

process equipment and programmable logic controllers. A special computer program uses this data

to detect occurrence of a fault, i.e. the inability of the monitored system to correctly perform the

expected functions. If a fault occurrence is detected, the recently collected plant data, called plant

signatures, may be analyzed by a computer program to diagnose a particular type of fault. Once

the type of fault has been determined, either the plant operation strategy is changed or the operation

of the plant is completely stopped to rectify the fault. Very often, especially in the process industry,

fault detection and fault diagnosis are merged into one operation. This sequence of actions is called

automated process (or fault) monitoring.

There are a great number of various methods for automated computer-aided fault

diagnosis. A recent survey on automated process monitoring [Sharif and Grosvenor, 1998) briefly
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describes eight of the most common fault diagnostic teehniqu : logical m thod, algorithmic

method, functional systems documentation, expert systems multivariate statistical m thods mod 1-

based approaches, artificial neural networks, and Petri nets. Each of th se methods is based either

on knowledge engineering and logical inference, first-principle process modeling, or on

classification of patterns (pattern-based) obtained from the current plant signatures, i.e. the trends

of the sensors measuring the monitored process variables. A hierarchy of comput r-aided methods

for fault diagnosis is presented on Figure 2.1.

METHODS FOR AUTOMATED
FAULT DIAGNOSIS

functional systems
documentation

Figure 2.1. Hierarchy ofmethods for automated fault diagnosis.

The scope of application of each group of methods for automated fault monitoring is

limited. Computer-aided monitoring of faults in chemical processes is usually a very nontrivial

problem. Usually fault occurrence in an industrial process is an extremely complicated and highly

nonlinear function of monitored variables. Very often this function cannot be derived from a first

principle-based process model or identified using conventional regression techniques. Moreover,
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the number of inputs to the function is normally quite large and th inpu are frequ ntl correlated.

Therefore, fault detection techniques based on first principle mod ling are infrequ ntly applied for

monitoring chemical processes.

The methods for automated fault monitoring based on knowledge engin ring and logical

inference (usually expert systems) have been extensively used to diagnos manufacturing

equipment, however, it is difficult to apply these methods for the monitoring of chmicaJ processes.

The reason is that the design of knowledge engineering and logical infer nce-based monitoring

systems requires extensive knowledge about the monitored processes, as well as the nature and

causes of the diagnosed faults. For chemical processes, which are usually very complex, this

knowledge is often unavailable in explicit form. Besides that, the process of generating knowledge

bases for monitoring based on logical inference is often very tedious. As a result, logical inference­

based systems have not found a wide application for the monitoring of chemical processes.

Pattern-based techniques are the group of real-time monitoring methods most suitable for

diagnosis of faults in chemical processes. Pattern-based methods in general solve pattern

classification problems. In fault monitoring, the pattern classification problem consists of

classifying the current monitored condition (state of operation) of the process as normal or as a

certain fault using a pattern extracted from the latest trends of the monito~ed variables (latest plant

signatures). Essentially, pattern classi.fication consists of assigning class membership to pattern

vectors using a mapping from the space of patterns to a finite set of classes (operation states in the

case of fault monitoring). This mapping is "taught" using a set of training patterns generated from

the historical trends of the monitored variables recorded at various operating states of the

monitored process. A first-principle model of the monitored process is not required (pattern-based

techniques belong to the family of the so-called "black box" approaches). This feature makes

pattern-based methods especially attractive for fault monitoring in the process industry.
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Computer-aided automatic fault diagnosis is a rapidly developing Ii ld. Recent rs have

seen an explosive growth in the number of m tbods, including pattern-based techniques, which

have been developed and tested for automated monitoring of many industrial processes. Different

pattern-based methods have a variety of advantages and shortcomings. Successful solution of any

process-monitoring problem is possible only with the selection of a suitable method for fault

diagnosis. The next section discusses various pattern-based techniques successfully applied for

real-time diagnosis of faults in the process industries.

2.2 Pattern-based methods for automated fault diagnosis

There exist a great number of pattern classification methods. However, few are applicable

for real-time fault diagnosis in the process industry. First, an applicable classifier should be able to

recognize data patterns with very highly interrelated parameters that have nonlinear relationships

with the classified monitored conditions (operation states). The classification must be performed

with a very high degree of accuracy with noisy data as input. It is absolutely unacceptable to

classify a fault as a nonnal operating condition, even if some fault patterns were not available at

the time when the classifier was trained. Furthennore, a classification m1.!st be perfonned within a

limited time because fault occurrence must be detected as soon as possible after the problem arises.

It is very desirable that the classifier be capable of incremental learning during the monitoring as

patterns from new regions of the state space become available. Finally, the classifier should be

easy to use and maintain. Only the methods that comply with all of these requirements can

generally be used in pattern-based monitoring.

Pattern-based techniques can be divided into three subgroups (see Figure 2.1): multivariate

statistical methods, methods using probability distribution, and artificial neural network-based
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methods. This section describes and compares various patt rn-based techniques and groups of

techniques developed for process monitoring in the recent years.

2.2.1 Multivariate statistical methods

Multivariate statistical methods typically project input data into lower dim nsional spaces

that contain all the relevant infonnation in possibly as few as two or three latent variables that are

a linear combination of the original variables. The best combinations are found using process

historical data. Linear regression methods are then applied to classify the projected pattern vector.

There are two basic techniques for multivariate statistical classification: principal

component analysis (PCA) and projection to latent structures (PLS). Both techniques have been

tested for fault identification [Martin and Morris, 1995] in the process industry.

Principal component analysis (PCA) linearly decomposes the input pattern vector X of

dimension n into m orthogonal principal components ti:

T m T
X =TP = IliPi

i=1
(1)

where Pi is the direction of i-th greatest variablility in X (essentially Pi is an i-th eigenvector of the

covariance matrix of X). Extensions of PCA and PLS called Multiway Partial Component

Analysis (MPCA) and Multiway Projection to Latent Stwctures (MPLS) showed good

performance in monitoring a continuous stirred tank reactor [Martin and Morris, 1995] and an

emulsion polymerization batch process [Neogi and Schlags, 1998].

Projection to latent structures (PLS) [Martin and Morris, 1995] can be used to

simultaneously monitor several process conditions (operation states) using the same classified

pattern X. Unlike PCA, PLS linearly decomposes both the pattern vector X and the vector of

operation states (monitored conditions) Y into the most highly correlated orthogonal components of

X and Y generating a biased linear regression between X and Y.

...
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Experiments indicated [Martin et aI. 1996) that multivariate statistical methods show an

unsurpassed performance on correctl scaled data with linearly correlated variabl . Multivariate

statistical methods can predict severity of faults in the monitored process s. At the sam time, an

incorrect scaling degrades the performance of multivariate statistical mthods drastically.

Unfortunately, there is no completely reliable scaling technique, especially when the variables are

the measurements of quantities of different nature, e.g., pressure and temperature. If there are large

differences between the variances of the elements of the classified pattern X, those pattern

elements, whose variances are large, will tend to dominate the first few principle components that

play the key role in pattern classification. However, the variables with high variances are not

necessarily of prime importance in detecting process malfunctions and, as a result, an incorrect

scaling can lead to an incorrect classification.

Another problem with multivariate statistical methods is that these techniques are not

effective in the analysis of data from highly nonlinear processes. To deal with nonlinear processes,

a nonlinear PCA method was introduced rMartin et a1., 1996]. The primary difference from the

conventional PCA technique is the introduction of nonlinear mappings (most often sigmoid

functions) between the original and reduced spaces of pattern variables. In this method the

nonlinear principal components are generated by a neural network, therefore, nonlinear PCA is a

combined neural network-multivariate statistical method. A comparative study of detecting faults

in the operation of a batch reactor by linear and nonJinear PCA [Martin et ai, 1996] showed that

the nonlinear PCA performs significantly better. With linear PCA three principle components were

explaining 67% of the variability in the pattern vector X, whereas with the nonlinear peA three

principle components explained as much as 90% of the data variance.



2.2.2 Probability distribution-based methods

Probability distribution-based methods use distributions of class membership probabilities

ill the space of the variables of the classified pattern. Th probability distribution-based

classification technique called F-eurve-improved Bayesian method was d veloped t sted and

showed an acceptable performance for real-time automated monitoring of the operation of a

continuous stirred tank reactor [Won and Modarres, 1998]. Probability distribution methods can be

applied to upgrade other diagnostic methods to detect not only occurrence of a failure, but also the

severity of the failure. In general, it is a hybrid pattern-based and inference-based m thod.

The classical Bayesian method is a statistical approach to reasoning under uncertainty that

calculates the probability of fault existence. The method uses Bayes' formula relating the

conditional (a priori) and unconditional (posterior) probabilities to calculate the probability of fault

existence:

P(hIX) = p(h)fI P(x;lh)
;=1 p(x;)

(2)

l

where X is the vector of the observed events with n elements denoted Xj (in the pattern-based fault

diagnosis X is the pattern vector), h is the occurrence of a specific fault, P is a probability of a

certain event (P(a) means the unconditional probability of event a, P(alb) means the conditional

probability of event a in case event b has occurred). Being a product of the observed events,

Bayes' formula is valid only if the events of vector X are independent of each other. In reality, this

is seldom the case with patterns extracted from plant signatures. To deal with interdependent

events (elements of the pattern vector in our case) the F-eurve improved Bayesian method corrects

this fonnula with dependency coefficients. Unfortunately, specification of the dependency

coefficients is not straightforward. This represents a major drawback to the widespread application

of this method.
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2.2.3 Artificial neural network-based methods

Artificial neural network-based methods are the most common!' used techniqu for

pattern-based fault monitoring in the process industry [Sharif and Grosv nor 1998). The mo t

important advantage of neural networks is the ability to model nonlinear dependencies with highly

correlated inputs. At present most of the research on the methods for pattern-based fault diagno is

is focused on artificial neural networks.

A number of different types of neural network have been developed and some of them have

established a good reputation as a tool for process monitoring. The following types of neural

network are known to have been applied for pattern-based process monitoring: MLP (Multilayer

Perceptron), GMDH (Group Method and Data Handling) network, RBF (Radial Basis Function)

network, WSBF (Wavelet Sigmoid Basis Function) network, an RBF-type network with ellipsoidal

activation functions, and a family of ART (Adaptive Resonance Theory) networks, such as ARTI

and Fuzzy ARTMAP. In some cases, ensembles of networks or neural-fuzzy classifiers have been

applied for automated fault diagnosis. Below is a brief review of the neural n tworkstested for

pattern-based process monitoring.

Perceptron-based networks were the first group of neural networks applied for fault

diagnosis. The most widely used neural network of this group is the multilayer perceptron (MLP).

An MLP network usually consists of three layers with neurons of perceptron type in the hidden

layer and simple summation neurons in the output layer. The vector of outputs from the hidden

layer is calculated the following way:

a =r(Wp +b) (3)

where W is the weight matrix, p is input vector (pattern), b is the bias vector, and TO is a transfer

function.

10



The most popular technique for training an MLP neural network is back-propagation

[MT.Hagan et aI., 1996]. Fault diagnosis in a distillation-reactor system using an MLP network

was one of the first reported applications of neural networks in automated process monitoring

[Hoskins and Himmelblau, 1988].

The advantage of MLP networks is the ability to perform classification within a very short

time because of the low computational complexity of the classification. However, it takes a large

amount of historical data and computer time to train an MLP network. Furthermore, MLP may

misclassify patterns in the regions where no training samples are available. One more problem with

MLPs consists in finding the optimal number of neurons in the hidden layer. So far, this problem

has not been solved in general, and the number of neurons has to be determined in an ad hoc

manner by the user.

An extension of MLP called the GMDH (Group Method and Data Handling) network has

been tested to diagnose a gravimetric dustimeter [Kobricz and Kus, 1998]. This type of network

calculates the output for each neuron in a hidden layer using a polynomial of input variables (e.g.

a=/ogsig(Wlpz+Wzp+b) where WI and Wz are weight matrices, p is input patt rn, pZ is a cross-

product of two identical input pattern vectors, b is the bias vector, and logsigO is th log-sigmoid

transfer function). The GMDH network can be trained to minimize the following objective

function:

nB * 2
L(Yi - Yi)

n - .;....i=...::.l _
dev -- (4)

where ndev is regularity, nB is the size of the testing data set, Yi * is a computed output and Yi is the

measured output.
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The GMDH is a new type of neural network, and its p rfonnance in process monitoring in

comparison with other methods is unknown. It is also unclear bow to select the type of polynomial

for each neuron. Similar to the MLP network, it is not clear bow to select the correct numb r of

neurons for a GMDH neural network.

The second group of neural networks applied for process monitoring is RBF (Radial Basis

Function) type networks. An RBF network usually has three layers: an input layer with no data

processing, a hidden layer with RBF neurons, and an output layer containing perceptron-type

neurons (usually with unit weights and without biases). Each neuron in the output layer

corresponds to one monitored condition. In general, the output a from a classical RBF neuron with

the Gaussian activation function is calculated using the foUowing relationship:

a =exp[-(p - w/ S-l (p - w)l (5)

where p is input patt~m, w is the weight vector for the neuron, and S is a normalization matrix.

The schematics of an RBF network for pattern classification are presented in Figure 2.2.

The input pattern is supplied to each RBF neuron in the hidden layer. Each hidden neuron

calculates the "proximity" of the input pattern to the neuron center using a radial-basis function

and outputs a signal corresponding to the calculated proximity. The output from each RBF neuron

is passed to one output perceptron with a positive linear transfer function. The calculated operating

state will be the one that corresponds to the output perceptron that fires a non-zero (or, sometimes,

the strongest) signal.

RBF-type neural networks have been tested for automated fault diagnosis in many

different chemical processes, for example, in monitoring the operation of a continuous stirred tank

reactor with a recycle [Leonard and Kramer, 1991]. Many techniques for training RBF networks

automatically select the number of hidden neurons [Reilly et ai, 1982] and support incremental

12
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training. Incremental training improves prediction accuracy with tim . How v r RBF u tworks ar

not good at the classification ofnoisy data.

input pattern

fault1

Figure 2.2. An example of an REF neural network for fault diagnosis.

An REF-type neural network called WSBFN (Wavelet Sigmoid-Basis Function Network)

was proposed recently [Zhao et aI., 1998] to improve the accuracy of pattern classification.

WSBFN is similar to the classical RBF network. except the hidden layer employs wavelet-sigmoid

neurons. The i-th element ofWSBFN output vector is calculated as follows:

{

n
s

. [. (m XI -bJl ]21 nh mx/-bj/ [m(X I -bj/]21}Yi =S I Wi' exp - I + I Wi I exp - I (6)
j=1 'J 1=1 ajl j=ns+l IJ 1=] ajl 1=] ajl

where SO is the sigmoid function, ns is the number of scaling hidden units. nJt is the total number of

hidden units, m is the number of inputs to the network, Wjj is the weight for i-th output and j-th

hidden unit, XI is I-th element of the input vector, and ajl and bj1 are the scaling and translation

factors, respectively, for j-th hidden unit and l-th input. A heuristic algorithm for training the

WSBFN was developed [Zhao et aI., 1998]. The WSBFN was tested for monitoring the operation
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of a hydrocarbon-eracking reactor [Zhao et al. 1998] and howed b tt r p rformance (100%

correct classification of the monitored conditions) than th MLP that was previously used to

monitor the operation of the same reactor.

To avoid extrapolation by an RBF network in the regions with no training patterns, a

neural network with ellipsoidal activation function was proposed [Kavuri and

Venkatasubramanian, 1993]. This network has three layers and outputs of each neuron in the

hidden layer are calculated using:

(7)

where p is the input vector. a is the neuron output signal m is the vector of the coordinates of the

neuron center, and D is the diagonal matrix consisting of the half-lengths of principal axes of the

ellipsoid. The network was used to monitor a reactor-distillation system. The network was trained

with a proprietary algorithm that randomly creates hidden neurons, splits them if they cover wrong

patterns, and eliminates neurons if the sum of "activations" of the covered patterns is 100 small,

The aim is to minimize the mean square error of the classification of the patterns on which the

training is performed.

The problem with this network is a very long training time and a relatively long

classification time because of the extremely large size of the resulting network. In their Later work

[Kavuri and Venkatasubramanian, 1994J the authors proposed to avoid the creation of an

excessively large network by creating a smaller, individual network for each fault class.

The third group of neural networks studied for process monitoring utilizes Associative

Resonance Theory (ARn. A number of ART-based neural networks for recognition of ana/og

patterns have been developed by S.Grossberg and his associates [Carpenter and Grossberg, 1987;

Carpenter and Grossberg, 1990; Carpenter et al., 1991; Carpenter et al., 1992; Carpenter and

Ross, 1995]. The design of these associative type networks was inspired by investigation of the

14
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operation of the human brain. The principal building block for th s networks is the so-called

"leaky integrator" whose response n to an input p as a function of time t is

net) =n(O) exp(-~) + ~J p(t - r)exp( r ~ t)dr
o

(8)

where & is the system time constant. The design of ART networks is very complex and lies outside

the scope of this thesis.

Just like REF networks, the networks from the ART family can be taught incrementally as

new plant data becomes available. Similar to the network with an ellipsoidal activation function,

ART neural networks will not classify a pattern in the region of state space where there were no

training samples. ART neural networks can handle noisy patterns. The problems with ART neural

networks are the complexity of their implementation, a relatively slow speed of pattern recognition

and the need to adjust certain network parameters manually.

Two members of the family of ART neural networks: ART2 [Carpenter and Grossberg,

19871 and Fuzzy ARTMAP rCarpenter et aI., 1992] were tested for process monitoring. ARTI

was tested for monitoring a simulated recycle reactor [Whitely and Davis, 1994]. The network

determined the monitored condition with 100% accuracy. At about the same time an experiment

was conducted where ART2, MLP, REF with RCE learning, Cascade and Fuzzy ARTMAP neural

networks were tested for monitoring the operation of a nuclear plant [Keyvan et ai, 1993"1. Fuzzy

ARTMAP perfonned better than all the other tested neural networks in processing both crisp and

noisy data. In fact, of all the neural networks tested for the classification of the nuclear plant data

with a high level of noise, only Fuzzy ARTMAP provided acceptable perfonnance (95% of al.1 test

patterns were classified correctly).

To increase the reliability of pattern classification during automated process monitoring, it

has been proposed to combine several neural networks into a hybrid network. Reported

15



applications for monitoring a reciprocating compressor [Kotani et ai. 1993] and a 'continuou

stirred tank reactor cascade [Tsai and Chang, 1995] utilized two MLP . In both test s, tb :first

MLP was used to extract patterns from the input data, and the econd MLP was trained to classify

the patterns obtained by the first network. Hybrid networks diagnos d faults with a high r

robustness than a single MLP.

Hybrid neural networks of another proposed type {Sharkey and Sharkey, 1997] consist of

several independent networks. These independent networks concurrently classify either patterns

from several different sets of sensors or patterns obtained from the original pattern by different

nonlinear transfonnations. The authors of this method claim that several independent neural

networks can diagnose faults with a greater reliability than a single neural network.

Most pattern-based methods do not use heuristic rules explicitly. The classification

algorithms are effectively "black boxes." This drawback can be overcome with the help of neural­

fuzzy classifiers. The classifiers of this type are trained the same way as regular neural networks,

but, in addition to that, the network weights are later converted into a set of fuzzy rules. With these

fuzzy rules, the patterns are classified using a fuzzy inference engine. Unlike the weights of a

neural network, the fuzzy rules can be interpreted, edited, and amended by the user, based on the

user's experience.

The first fuzzy-neural classifiers were Fuzzy ARTMAP [Carpenter et al., 1992] and

ANFIS [Jang, 1993]. A number of fuzzy-neural applications for fault diagnosis, that allow the user

to edit and add new classification rules, have been developed, e.g., a fuzzy-neural system for

monitoring the operation of an electric motor [Goode and Chow, 1993]. Several fuzzy-neural

classifiers have been applied for fault diagnosis in the chemical industry [Zhang and Morris, 1994;

Ozyurt and Kandel, 1996; Calado and Sa da Costa, 1998], however, unlike the fuzzy-neural

system proposed by Goode and Chow, none of these applications allow the user to modify and

amend the fuzzy rule base manually.
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A pattern-based technique related to fuzzy-neural classifiers called Bayesian neural

network was proposed for fault diagnosis [Kirsch and Kroschel 1994]. Th· classification

algorithm of the Bayesian neural network can be easily interpreted and mocli£ed by a human bing.

Unfortunately, the Bayesian neural network, as proposed by Kirsch and Kroschel, bas never bn

applied for fault diagnosis in the industry because the training of the Bayesian neural n twork takes

an unacceptably large amount ofcomputer time.

2.2.4 Selection of a pattern-based method for automated fault monitoring

Selection of an appropriate pattern-based method for automated fault monitoring JS

difficult. There are no clearly defined rules how to perform the selection. To achieve the desired

performance, several different pattern classification methods may have to be tried. In general,

multivariate statistical methods are the best choice for the classification of small patterns generated

from the trends of piant sensors that measure quantities of a similar nature (e.g., all monitored

variables are temperatures). Large patterns with highly correlated variables and nonlinear

relationships with the monitored operation state are probably classified best with Fuzzy ARTMAP.

In summary, there is no "universally best" classifier for solving any pattern-based

monitoring problem. Moreover, the existing pattern recognition methods are far from full

compliance with the requirements outlined in the first paragraph of Section 2.2. Considering this

fact, a good monitoring system that can simultaneously monitor several processes should be able to

run several classifiers of different type for monitoring different processes in the same monitoring

session. The monitoring system should also allow the user to easily select, train and test different

pattern-based methods, including those that had not existed or had not been implemented as a

computer code at the time when the system shell was developed.
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2.3 Pattern generation

Pattern-based monitoring techniques require a compact and crisp r pres ntatioo of s mor

data in the patterns. Input patterns used for real-time pattern-based monitoring sbould be compact

to minimize the computation time. Reducing sensor noise is also very critical for classifying th

monitored operation states with a high degree of accuracy. Therefore, pattern g n ratioo t cbniques

employed in pattern-based monitoring systems should be able to extract patterns of the minimal

size necessary for the correct classification and to filter out the noise contained in the sensor trends.

Several different techniques of pattern extraction can be used for pattern-based monitoring.

The most commonly used techniques are wavelet transfonns, autoregressive modeling (AR), and

hypothesis feedback modeling (HFM).

Discrete wavelet transforms have been proposed for smoothening input data for pattern-

based process monitoring [Raghavan, 1995]. This approach represents the trended signalf(t) as a

sum of scaling aft) and wavelet fJ(t) functions

let) =Lgkak(t) + LhkA(t)
k k

(9)

where gk and hk are decomposition coefficients. Scaling functions and wavelet functions are

represented by dilation equations. The general fonn of a dilation equation is as follows:

qy(t) = "L/ep(2t - k)
k

(10)

where lk is a vector of filter coefficients. [n discrete wavelet transforms f(t), aft) and f3(t) are

discrete functions oftime for use with sampled trends of the monitored variables.

Wavelet transfonns provide variable frequency analysis capability and good time-

frequency localization. At the same time, application of wavelet smoothening in real-time process

monitoring is complicated by the need for the user to choose the transform parameters, for

instance, filter coefficients.
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A technique that uses a wavelet transform for patt m extraotion from raw tr ods of

monitored process variables has been proposed [Ganti 1996]. This teohniqu automaticall s loots

all the coefficients of the wavelet transform along with choosing an optimal pattern tim window

(see Subsection 2.2.3 in [Shapovalov and Whiteley, 1999]) based on the characteristics of the

monitored sensor trends. The smoothed trends are subsequently classified using a pattern-based

method. This method for pattern generation is illustrated on Figure 2.3. In this e ample, the

extracted pattern for classification contains four samples of the values of the smoothed monitored

variables.
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Figure 2.3. Extraction ofa pattern for classification from plant signatures using discrete wavelet

transfonns .

A similar method for pattern generation using wavelets was developed [Alexander and

Gor, 19981. The difference between this technique and that proposed by Ganti is that in the method

by AJexander and Gor the wavelet transform parameters are selected in such a way that the level of

discrimination between patterns corresponding to different monitored conditions is the highest.
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A method for compact pattern extraction in pattern-based monitoring called autor gressive

modeling (AR) has been proposed [Huang and Wang, 1996]. AR repres nts a sampled tr nd of a

monitored variable as a time series:

p

X k =L C1> j X k-; + Ek
;=1

(ll)

whereX. is a k-th element of the sample vector, (/)is a vector of AR parameters with el m nts (1)"

p is the order of the AR model, and Ek is a residual. The order of the AR model is selected in such

a way that for aU the training samples the average fmal prediction error is minimized or the Akaike

information criterion is maximized [Lin and Wang, 1993]. The final pattern used as input to the

classifier is the vector (/).

Autoregressive modeling is very computation-intensive at the training stage, but it leads to

a reduction of the input pattern size and, as a result, reduces the classification time significantly.

During the experiments [Huang and Wang, 1996] the patterns for classification generated with AR

were smaller than the patterns for classification generated with Fast Fourier Transfonns (a

technique similar to wavelet transforms) by a factor of 60. The AR method was tested for

monitoring faults in roller bearings using plant data with a low level of noise. Applicability of this

method in the chemical industry where the patterns for classification are ~suaUy extracted from

sensor trends with a high level of noise is unclear.

Another technique for extracting compact patterns from plant data is called hypothesis

feedback modeling (HFM) [Farell and Roat, 1994]. HFM is a complex technique that consists of

several steps. At the first step, a minimal set of independent variables is selected and a matrix of

the sampled recent trends of these variables is formed. At the second step, the values of the selected

variables are normalized and the precision of the selected variables is reduced by converting the

values of the variables from the floating point to integer type. At the third step the average, mean

deviation and numerical partial derivatives with respect to time are calculated for each normalized
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trend. The resulting pattern is formed by th values calculated at s p three for ch nonnalized

trend.

HFM was tested for monitoring a simulated continuous stirred tank r ctor using an MLP

network to recognize faults (Farell and Root, 1994). The perfonnanc ofch method was g nerally

satisfactory, but still well below the expected leveL. [t is also unclear how good HFM is at

generating patterns from noisy trends of monitored variables or from the trends smoothed with

discrete wavelet transforms.

To imitate the process of extracting important qualitative fi turesthat describe the

essential aspects of process behavior, a syntactic approach to pattern generation was developed

[Rengaswamy and Venkatasubramanian, 1995}. The syntactic approach describes complex

patterns using a small set of primitive patterns that indicate the presence or absence of faults.

Rengaswamy and Venkatasubramanian proposed to identify the primitive patterns in plant

signatures by an MLP neural network.

In addition to the lack of a single approach to pattern classification, there exist several

techniques for generation of patterns from the trends of the monitored variables. None is best for

every situation. Therefore, the user of a pattern-based method of fault diagnosis should be able to

select, test, and apply several different techniques for generating patterns for: classification.

2.4 Computer systems for automated fault diagnosis

A successfid pattern-based system for fault monitoring in chemical industry must be

flexible. The continuing advances in computing power provide the capability of real-time

monitoring of many different processes on the same computer. The existing methods for pattern­

based monitoring are far from perfection, with better methods under development. Therefore, a

good monitoring system should be able to use the newest pattern-based techniques implemented as
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modules within a general purpose monitoring sh ll. Furthermor , a good monitoring s tern should

be able to run several different monitoring programs simultaneously. Finally a monitoring syst m

is especially valuable if it can serve as a building block for other more sophisticated process

automation applications. A good pattern-based monitoring system should have all of th features

which make the system fully generic, multitasking, and therefore capable of solving most real-time

process monitoring problems in the process industry.

A number of computer systems for automated fault diagnosis m industry have been

proposed in the recent years. However, almost none of these systems are designed for pattern-based

monitoring, are fully generic, and multitasking at the same time.

One of these pattern-based monitoring systems is described in detail [Huang and Wang,

1996]. The system includes data acquisition, pattern generation, neural network, and fuzzy logic

inference engine blocks. The system collects real-time data from plant sensors, generates patterns

for classification using autoregressive modeling, classifies the patterns with a modified ARTMAP

neural network and displays the classification results on the user interface. If the modified

ARTMAP network cannot classify the current pattern, the fuzzy logic inference engine perform

the classification.

The algorithms implemented in Huang and Wang's pattern-based. monitoring system are

very powerful. However, their system can monitor only one process. It is unclear if several copies

of the system can simultaneously run on the same computer and monitor different processes. The

system is not generic because the system components are hard-coded as a single module, and the

user cannot change them (e.g. upgrade the modified ARTMAP network that perronns the pattern

classification) to other alternate components that perronn the same operations.

A generic distributed system for real-time fault diagnosis was developed and tested for

monitoring the operation of a paper mill [Rao et at. 19981. The system consists of several

independent modules for data acquisition, data calibration, data conversion, condition monitoring,
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fault diagnosis, maintenance assistance, and includes on-lin.e s t m op ration and accid nt

handling manuals. The monitored sensor data are acquired in real time, calibrated, converted., and

input to a rule-based inference engine that determines if there is a fault in the monitored process. If

a fault is detected, the diagnostic block determines the type of the fault, and th system suggests

how to rectify the fault.

The described system is generic because it consists of blocks that perform differ nt tasks

and each block can be replaced or upgraded. However this system does not have the facilities that

help the user in generating pattern-based fault diagnosis blocks. The system is also designed to

monitor only one process.

A fully generic monitoring system was developed [Karsai et al., 1996] for model-based

and inference-based monitoring. The system is designed to create custom standalone monitoring

applications in a special programming environment. The environment allows the user to generate

very complex monitoring applications that handle fault propagation. The user can program custom

fault diagnosis models and even incorporate custom executable code, designed to diagnose faults

and/or handle fault recovery, into the user-generated monitoring applications.

Unlike the monitoring systems described previously, this one can be used for generic,

multitasking pattern-based real-time fault diagnosis. However, implementation of pattern-based

monitoring using this system would be extremely complicated and inefficient for three reasons.

First, the proposed system does not have special facilities for pattern-based applications. These

facilities include the environment and standard templates that helps the user generate, train and test

pattern-based monitoring applications. Second, the resulting monitoring applications run

continuously and independently of each other without a kernel that schedules execution of each

monitoring application in real time. If a. large number of different processes are to be monitored

using the proposed system, all the applications that monitor these processes must run in parallel.

Running many monitoring applications in parallel is difficult because of hardware limitations
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(primarily because the computer memory is al ays limited and capabJ of accommodating th

executable code and data only for a limited number of applications). It also drastically slows down

the operating system that may not be able to accomplish the execution of pattern-based fault

detection subroutines within the required time limits. The third problem is that the proposed system

d~s not have a data interface that synchronizes real-time and historical data, which is necessary to

generate patterns for classification at the beginning of a monitoring session (at least there is no

mention that such a facility exists: only real-time data interface is mentioned).

In the recent years a number of commercial process monitoring systems, such as AlM­

Supervisor® by SimSci®, IFIX® by Intellution®, and FactorySuite2000® by Wonderware®,

have appeared in the market. Being similar to the monitoring system described above [Karsai et al.,

1996], these systems have similar shortcomings: they do not have facilities for developing pattern­

based monitoring applications and managing real-time execution of these applications.

Another recently developed commercial monitoring system, 02 Diagnostic Assistant® by

Oensym®, does have facilities for developing and testing pattern-based monitoring applications

and for managing execution of these monitoring applications in real time. In fact, this system can

be considered pattern-based, multitasking, generic and capable of real-time operation at the same

time. However, the choice of pattern recognition methods used by 02 Diagnostic Assistant® is

limited to a set of a few standard neural networks. The system can import pattern-based monitoring

applications developed in other environments, but cannot modify these monitoring applications to

enable them to monitor different processes.

There are other computer systems for real-time monitoring of industrial processes fProck,

1992; Rengaswamy and Venkatasubramanjan, 1993; Linkens and Abbod, 1994]. However, these

other systems are even farther away from the fully generic, pattern-based, and multitasking ideal.

Therefore, there is a need for creating a generic multitasking system for pattern-based real-time
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process monitoring. Such a system has been created and the design and op ration of this s st m is

described in the subsequent chapters of this work.

2.5 Chapter summary

This chapter explained what pattern-based methods for mult diagnosis are and why they

should be used for real-time fault monitoring in the process industry. A brief overview of various

pattern generation and pattern classification techniques was presented. It was explained why a

good pattern-based monitoring system should be generic and multitasking. The chapter concluded

by describing the monitoring systems whose design is closest to the generic pattern-based

multitasking ideal and motivated the need for a new monitoring system that would be an

implementation of this ideal.
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CHAPTER 3

CONCEPTUAL DESIGN OF A GENERIC SYSTEM FOR PATTERN-BASED REAL­

TIME PROCESS MONITORING

3.1 Introduction

The design of a successful computer system for fault monitoring should address a number

of issues [Russell, 1994; Lee, 1995J. First, the system should be flexible and economic. This

means that the system should be able to monitor a variety of industrial processes and the human

effort necessary to adjust the system to monitor a new process should be minimal. Second the

monitoring system should integrate human operators into the process of automated fault

supervision instead of completely removing humans from the industrial production cycle. Third, the

system should provide early detection of process malfunctions to give plant personnel an

opportunity to remedy the faults in the preventive mode. The basic concepts of the monitoring

system design that implements the principles of flexibility, economy, human involvement and real­

time operation are presented in this chapter.

Flexible computer software is usually developed in a modular manner. A computer

program generated using this approach consists of several building bloc~: a base program or

framework and a number of different interchangeable modules that customize the program and

provide the desired flexibility. The resulting monitoring tool is "generic" in a sense that the

framework can be used to address any type and number of specific tasks.

Minimization of the development effort required to mtegrate new monitoring applications

into a monitoring system can be achieved with the help of special user-friendly facilities. These

facilities simplify generation of new modules and modification of existing application-specific

modules. In addition to mini.mizing human effort, these facilities solve the problem of integrating

human operators into the monitoring system and employing the operators' knowledge about the
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monitored processes. System developers should take advantag of the b st way to teach plant

operators to understand and value the process monitoring system by I tting the op rators

themselves participate in the creation and customization of the system.

Timely detection of malfunctions is possible only if the system runs with the latest process

data. To have access to the latest readings of the monitored sensors, a monitoring system should

acquire these readings using real-time data acquisition techniques. Correct scheduling of tasks in a

complex generic system is possible only if some jobs are executed in parallel. This requires a

programming technique called multithreading. The abi,lity of the ove aU monitoring system to

control execution of different modules is enhanced if the modules are implemented as dynamic-link

libraries (DLLs). Use of real-time techniques is critical for an efficient real-time performance of

the system.

This chapter proposes a methodology for design of a generic real-time multitasking system

for pattern-based process monitoring. Section 3.2 discusses the basic design concepts. Section 3.3

is devoted to the programming techni.ques that were used to implement the proposed monitoring

system. The proposed concepts and real-time programming techniques are presented for a generic

pattern-based monitoring system that runs on a PC under Microsoft Windows . However, the

proposed methods are also generally applicable for other multitasking ~nvironments and other

hardware platforms.

3.2 Basic concepts of generic pattern-based monitoring system design

The conceptual design of a generic system for pattern-based real-time process monitoring

proposed in this work is presented in Figure 3. I. The monitoring system has a kernel that

schedules, initiates, and controls (based on the situation and user actions) execution of different

tasks within the monitoring system. The kernel is also responsible fOT formatting data for
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"monitoring applications" that perfonn pattern classification. Finall th m Ldisplays the stat

diagnosed by each individual monitoring application. The s 51 m has custom modul for

acquisition of historical and real-time data needed to detennin th monitored conditions

displaying the latest trends of the monitored variables and an arbitrary number of custom

monitoring programs called monitoring applications. This section discusses the most important

concepts of the proposed monitoring system design.

Ireal-time data acquisition modulel Ihistorical data acquisition moduleI

------- ------SYSTEM KERNEL
task scheduling and execution

execution control
monitoring data processing and formatting
displaying the current monitored conditions

------- --------displaying trends of MONITORING APPLICATIONS
monitored sensors II II

trend smoothening

II II
pattern generation

II II
pattern cia ificatlon

II II

Figure 3.1. Design of a generic system for real-time pattern-basea monitoring.

3.2.1 Monitoring different processes by different monitoring applications with a single

control center

The proposed monitoring system IS capable of usmg different methods for fault

monitoring. A number of different pattern-based methods for fault diagnosis were discussed in

Sections 2.2 and 2.3 with the conclusion that there is no universally best fault monitoring

technique. Moreover, new methods for pattern classification are being developed, and these
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methods may show a better perfonnance in fault monitoring than th existing chniqu s.

Consequentially, the ability to upgrade or replace a monitoring application with relative ease is

essential. Therefore, the best monitoring performance can be achi ved if a gen ric process

monitoring system is able to use different process monitoring methods implemented as ind p nd ot

easily replaceable modules.

The most reasonable approach to developing a pattern-based process monitoring system

that allows the user to choose fault diagnosis methods is to implem nt the modules for pattern

generation and pattern classification as separate programs that can be created by the user.

Compared to the existing monitoring systems that generate fault recognition subroutines using a

rigid framework defined by the system manufacturer [e.g. Karsai et aI., 1996], this design gives the

user more freedom in choosing and applying different pattern-based fault monitoring methods.

The generic monitoring system described in this section is primarily intended for pattern­

based fault diagnosis. However, the proposed design allows the user to run non-pattern-based

monitoring applications as well. The user can upgrade the monitoring system at any time by

supplementing it with non-pattern-based monitoring applications that comply with the

configuration and communication standards described in Subsection 3.2.3.

In the proposed monitoring system design, monitoring applications are special programs

configured to run within the monitoring system framework. Each monitoring application is

designed and customized by the user to monitor one user-defined process. Every monitoring

application has its own configuration file that contains the information on how the monitoring

system kernel should prepare data for the monitoring application and interpret the result generated

by the monitoring application. The monitoring application should be executable code that generates

patterns from the data provided by the monitoring system kernel and classifies the input patterns to

determine the monitored condition. In general, any program for pattern generation and

classification that can run in a batch mode (i.e., after being launched in such a mode the program
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reads process data, generates a pattern for classificatio~classifi t.h p m, and terrnina: ) can

be configured to run with the proposed monitoring s stem.

A monitoring application should not run as an independ nt program. As opposed to oth r

concepts of generic monitoring system design [e.g. Karsai et ai., 1996] h re each monitoring

application independently executes, collects real-time plant data d termin the monitored

condition and displays the result along with the monitored plant signatures, in the monitoring

system design described in this work, monitoring applications do not run independently, do not

collect plant data and do not display anything. The tasks of plant data acquisition, displaying the

diagnosed monitored conditions, and displaying the trends of the monitored variables are carried

out by other parts ofthe monitoring system. Monitoring applications run in the background 'without

opening any windows and simply create and classify input patterns. Each monitoring application is

launched and supplied with current plant data prepared in an application-specific format from the

monitoring system kernel.

There are two reasons for delegating the tasks of collecting plant data and displaying the

monitored conditions and trends from monitoring applications to other parts of the proposed

monitoring system. The first reason is efficiency. Running a single data coli ction utility and a

single user interface for multiple monitoring applications that simultaneously monitor different

processes takes much less processor time and memory than running individual data collection

modules and user interfaces for each monitoring application. The second reason is simplicity.

There is no need for the user to write custom user and data interface code for each monitoring

application, and there is DO need for a facility that would generate a user and data interface for

each monitoring application.

The most important concept of the generic monitoring system design proposed in this work

is the use of multiple monitoring applications controlled from a single center. Each process is

monitored by one monitoring application developed by the user. After being launched by the system
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kernel, the monitoring appl.ication reads the current plant data, calculates th current monitored

condition, and tenninates. Other parts of the monitoring system prform plant data acquisition and

formatting for each monitoring application and display the monitored tr nds togeth r with the

operating states identified by the individual monitoring applications. This generic d sign concept

makes the monitoring system highly flexible computationally effici at, and capable of monitoring

an almost unlimited number of processes on the same computer. The user of a monitoring syst In,

that implements the outlined concept, can choose virtuaUy any fault diagnosis method for any

monitored process.

3.2.2 Simultaneous monitoring of several different processes

Due to the recent achievements in computer hardware and software manufacturing, current

computers are powerful enough to perform pattern-based monitoring of several processes

concurrently on the same hardware platform. A system monitoring several processes on the same

computer is more convenient to plant operators and requires a much smaller investment in

hardware than a system that can monitor only one process.

The proposed system monitors different processes with different priorities. High prioritie

are attached to more dynamic processes where the monitored conditions change frequently and a

prompt responSL: is required in the case of fault appearance. The monitored condition of a high

priority process should be updated more frequently than the monitored state of a low priority

process.

The proposl:d monitoring system determines the current condition (operation state) of each

monitored process sequentially, by executing not more than one monitoring application in a batch

mode at any time during a monitoring session. There are three reasons for executing monitoring

applications sequentially rather than in parallel. First, the simultaneous execution of all monitoring

applications may be impossible due to limited hardware resources, primarily the finite-size memory
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where the monitoring applications load. their code and data. Second. it is difficult for til syst m to

enforce the monitoring priorities for each process if all the monitored conditions are calculated in

parallel. The system does not know when each monitoring application will compl te calculation of

the monitored condition. Therefore, if monitoring applications are run concurrentJ the system will

update more often the monitored conditions whose calculation takes less processor time. On the

other band. the system where monitoring applications are executed. sequentially will calculate and

update more frequently the monitored conditions of the high priority processes. The third reason

(simplification of application linking) is discussed in Subsection 3.3.2. In swnmary a system that

calculates the monitored conditions for each monitored process sequentially can supervise a

virtually unlimited number of processes with a great efficiency.

Figure 3.2 illustrates the concept of sequential priority scheduling for a system that

monitors three different processes simultaneously using three different monitoring applications one

for each process. Monitoring application 1 has a high priority, and is executed very frequently.

Monitoring of processes 2 and 3 has a low priority, and. as a result, monitoring applications 2 and

3 are executed less frequently.

EXECUTION TIME INTERVALS FOR
c::::::J monitoring application 1 (high priority)

- monitoring application 2 (low priority)

vmmmmmt monitoring application 3 (low priority)

UPDATES OF MONITORED CONDITIONS FOR

U1 monitored process 1

l.'l monitored process 2

U
3

monitored process 3

I I i j I I

time
c::::::::Jlltlt?U2WWOic==::Jc==::J_ )

Figure 3.2. An example of scheduling calculation of monitored conditions for different processes.
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3.2.3 Quick and easy generation of new monitoring applications

The success of any computer software, including a monitoring syst In, strongly d p nds on

how easy it is to understand and use the software. A computer program is us less, no matter how

capable it may be, until the user can operate and appreciate the program. The proposed system has

been developed with an emphasis on ensuring that the design and operation of the system make

sense to the operators of the plants where the system will be installed.

The part of a monitoring system, which is most difficult to implement in a fashion that the

user easily understands, is the monitoring application builder. Implementation of the real-time

modules of a monitoring system is quite straightforward: a typical design allows the user to start a

monitoring session, check the current monitored conditions, and view the trends of the monitored

variables by pressing some conunand buttons or selecting menu items. However, to create a custom

monitoring application, the user has to specify many parameters, user actions have to be

application-dependent, and sometimes the user has to have an advanced knowledge of the

monitoring application or some specific skills, e.g.. th<; ability to program in a computer language.

In order to substantially facilitate the process of designing monitoring applicati.ons by monitoring

system users, the user interface and the process of creating monitoring applications must be

simplified and standardized. The proposed system satisfies this requirement.

The proposed generic pattern-based monitoring system makes it possible to create

monitoring applications in a simple user-friendly fashion for both advanced and basic level users.

The system has standard routines for communicating with the kernel and a detailed description of

how to develop a new monitoring application from scratch using a set of these routines as a

template and how to integrate these routines into already existmg pattern classification programs.

The standard routines accelerate the process of generating executable programs that employ new

pattern generation and classification methods. A library of standard pattern-based methods for
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fault diagnosis can be provided for basic level users. A simple-to-use editor for creation and

modification of monitoring application configuration files is a part ofth monitoring system.

The data communication and configuration protocols for aU monitoring applications must

also be standardized. The monitoring system kernel must pass plant data to a monitoring

application and receive classification results from the application in a standard form. The

application-specific format of this data, the monitored conditions and other application-sp cific

details must be maintained in configuration files in a standard format that can be recognized by

both the kernel and the monitoring applications. A standard configuration file generation utility and

data transfer routines are provided with the proposed generic pattern-based monitoring system.

Figure 3.3 shows the modules provided to meet the previously discussed concept.

MONITORING
SYSTEM
KERNEL

monitoring
r-----------; appllcaiton

templates

D Standard modules

~ Modules with standard format

Modules with user-defined format and conten1s

Figure 3.3. Building a monitoring application.
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3.2.4 Section summary

Section 3.2 described the design concepts underlying the proposed g (11 ric patt m-based

real-time process monitoring system.

1. The concept of monitoring different processes by different monitoring applications with a

single control center. This design concept provides the capability to monitor diffe~ nt

processes using custom methods. This concept also makes it possible to easily upgrade th

monitoring system to use new methods for fault diagnosis in the future.

2. The concept of simultaneous monitoring of several processes by running the corresponding

monitoring applications sequentially, one at a time, in a batch mode. This design concept

provides the capability to efficiently monitor a virtually unlimited number of processes on

one computer with limited hardware resources.

3. Each monitoring application communicates with the monitoring system kernel usmg

standard system-defined protocols. The monitoring system has standard data transfer and

processing routines that can be a part of new monitoring applications. New monitoring

applications can be developed using special templates that includ data transfer and

processing routines. Each monitoring application has a standard configuration file with the

information on how to run and communicate with the application. Monitoring application

configuration files are created with a special user-friendly utility. This concept is aimed at

making economical monitoring systems and involving the user into the process of

monitoring system creation and custornization.

3.3 ReaJ-time programming techniques for generic pattern-based monitoring

Although not necessarily obvious, reliable operation of a real-time monitoring system

requires the use of sophisticated real-time progranuning techniques. These techniques enable the
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monitoring system to perform tirne-eritical tasks as fast as possibL and to accomplish th tasks

within specified time intervals. The most tlme-eritical tasks are acquisition of process data from

external sources, data processing, displaying the monitored condition tog th r with monitnred

variable trends, and running individual monitoring applications. Real-time data acquisition is best

performed using Dynamic Data Exchange (DOE) and other related techniques that transfer data

between programs without using permanent data storage devices (e.g. hard drives) as an

intermediate buffer. Timely processing of monitoring data and calculation of monitored conditions

can be achieved by using multithreading (makes it possible for several subroutines of the same

program to run simultaneously). Fast and efficient execution of monitoring applications can be

achieved with dynamic linking. We use these real-time techniques (DOE multithreading, and

dynamic linking) in Microsoft® Windows operating environment. Details are presented in the

remainder of this section.

3.3.1 Multithreading

The proposed monitoring system design was developed specifically for a multitasking

operating system, i.e., an operating system capable of performing several tasks simultaneously.

The system must be able to collect plant data, run monitoring applications, and interact with the

user at the same time. It is impractical to execute all the required system tasks sequ ntially, one

after another, in the same manner as the monitoring applications. For example, real-time data

acquisition cannot wait while a user interacts with the monitoring system interface or until a

monitoring application finishes running. Likewise, the user expects prompt response to keyboard or

mouse entries and should not wait for the current monitoring application to finish running or for the

current data sample coJlection to be completed.

Although Microsoft Windows® and other operating systems can execute several

independent applications simultaneously, it is impractical to make a monitoring system
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multitasking by implementing it as a set of standalon executabl tiles. Th re are thr r ons wb

each task should not be implemented as a separate executabl file. The first reason is that task

synchronization (initiating, suspending, and terminating execution of a monitoring system task at

the request of other tasks) and exchange of data b tween the tasks requires bared m mol)' (a

Win32 facility that allows several processes to access the same virtual memory addr sses

[Microsoft Corporation, I995c)). The second reason is that under Microsoft. Windows separate

processes (in computer science terminology process means an executing program that consists of a

private virtual address space, code, data, and other operating system resources) are limited in the

ability to control each other. One process cannot be suspended by another process (unless the first

process is a debugger for the second process). In addition, termination of one process by another

may affect the stability of the operating system. The third reason is that initializing a new process

to perfonn a monitoring system task and terminating the process when the task is completed may

take a significant share of central processing unit (CPU) time and make the monitoring system slow

and inefficient. Therefore, a real-time monitoring system should run as a single process and use

advanced multitasking techniques.

The multitasking technique best suited for a generic pattern-based real-time monitoring

system is multithreading [Kleiman, 1996]. This technique is available under Microsoft. Windows

and other operating systems. Multithreading is a method for simultaneous execution of several

subroutines within the same process. The subroutines that are executed concurrently within the

same process are called threads. Threads share the same memory space, therefore execution of

different threads can be easily synchronized, and data can be easily exchanged between the threads

using global variables, arrays, and structures. Under Microsoft. Windows , each thread can be

allowed (depending on the mode of thread creation) to fully control execution of any other thread of

the same process [Microsoft Corporation, 1995d]. A thread is assigned one of seven possible

priorities [Microsoft Corporation, 1995d] that designate how much CPU time should be allocated
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for the thread. The initialization 3I11d termination of a thread tak s much less CPU tim than the

initialization and tennination of an individual process. A multithreaded monitoring 5 t m will use

much less memory than a monitoring system where each task is perfonned bas parate process.

Our proposed monitoring system implements different tasks or modules as difii rent threads of th

same process.

3.3.2 Dynamic linking of monitoring applications at run time

To run as one process, aU executable parts of the monitoring system must be Linked

together. However, monitoring applications are supposed to be compiled and linked with their run­

time libraries independently of the compiling and linking of the monitoring system kernel. One

possibility to solve this problem would be to include a tool for the conventional static linking of

selected monitoring applications with the system kernel before each real-time monitoring session.

Unfortunately, in such an implementation, the function called by the monitoring system kernel to

execute a monitoring application (monitoring application entry function) must have a unique name

known to the kernel for each selected monitoring application. Otherwise, the linker will produce an

error caused by multiple declarations of the same entry function identifier in different monitoring

appJications. A more serious drawback of such a design is that the static linking usually requires

the executable code of all the monitoring applications and the monitoring system kernel to be

written in the same programming language. Finally, the resulting statically linked code may be too

large and use too much memory.

To simplify the design of our generic real-time monitoring system, provide the ability to

run monitoring applications written in different programming languages, and reduce the size of

memory required by the monitoring system, our system kernel links standalone executable code of

the monitoring applications dynarni.cally at run time.
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Dynamic linking is a way for a program to run a subroutinJ tha is not a part of the

executable code of th.e program. Under Microsoft Windows , instances of executable code that

can be linked dynamically to a program are usually located in dynamic-link librari s [Microsoft

Corporation, 1995b}. A process running under Windows can map the xecutable code of a

dynamic-link library (DLL) into the address space of the process and execute functions (more

generally, subroutines) whose code is contained in the DLL. Programs written in differ; nt

programming languages can call the same DLL function as long as the programs follow the

function's calling convention. After completing execution of a DLL function a process can

terminate the dynamic link by unloading the DLL from the process address space. The ability to

unload DLLs provides for efficient use of hardware resources and allows a process to use the same

identifier to call different functions contained in different DLLs. Calling different functions using

the same identifier in the same process is not a conventional use of DLLs, but, as discussed in the

next paragraph, this method is very useful for running monitoring applications.

The monitoring system kernel should be dynamically linked only to the currently running

monitoring application. According to Subsection 3.2.2, monitoring applications should always be

executed one at a time, therefore the monitoring system kernel. can be designed to have not more

than one monitoring application linked to the kernel at any time. In this case, the entry function

(called by the monitoring system kernel to run the application) for each monitoring application can

have a standard prototype (function prototype consists of function name, set of arguments and

return value type). In our monitoring system running as a single process, this standa.rd prototype

will unambiguously refer to the entry function of the currently loaded monitoring application. To

simplify the process of developing monitoring applications, the standard entry function prototype is

included in monitoring application templates. Besides the simplification of monitoring application

development, dynamic linking of only one monitoring application simplifies the development of the

monitoring system kernel. It is easier to develop a generic real-time monitoring system that
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executes all the monitoring applications by calling the sam function than a s stem that has to k p

track of all the monitoring application entry function prototyp s.

Figure 3.4 illustrates the dynamic Linking of monitoring applications described in this

section. In this monitoring session the monitoring system kernel runs monitoring applications A, B

and C. Monitoring application B is currently loaded into the monitoring system m mary space and

is being executed by the kernel. To execute monitoring application B, the kernel called a standard

entry function, and this call referred to the entry function of monitoring application B currently

linked to the kernel. Once the execution of monitoring application B is completed, it will be

unloaded, and the dynamic link with B will be automatically terminated. After that the kernel will

choose the next monitoring application to execute, load the selected monitoring application, and

call the standard entry function again. This time the standard entry function call will start the

execution of the newly loaded monitoring application which is not necessarily application B.

3.3.3 Real-time data acquisition techniques

In real-time monitoring, it is essential to have the very latest readings of the monitored

process variables. Therefore, the monitoring system must use a fast and efficient method for data

acquisition.

Real-time data for pattern-based process monitoring should be acquired from the installed

software and hardware systems that control the process and not directly from the sensors. Making

use of already collected data is less expensive than establishing independent hardware links with

the sensors measuring process variables. Process control systems typically log sensor readings in a

continuous mode, however there is a significant delay between the collection of data from sensors

and appending this data to the log file. Therefore, the real-time data acquisition by a pattern-based

monitoring system should be implemented as direct requests of the current sensor readings from the

process controlling and process data logging software.
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Figure 3.4. Run-time dynamic linking of monitoring applications.

One technique for fast data transfer developed by Microsoft Corporation and supported

by many industrial data processing systems is Dynamic Data Exchange [see Microsoft

Corporation, 1995a). Dynamic Data Exchange (ODE) is a protocol for data transfer between two

independent programs. One of these two programs runs as a DOE server and the other one runs as

a ODE client. To perform data transfer, the DOE client establishes a connection with the DOE

server and sends a description of the requested data. Upon receiving the request, the server

prepares the requested data and sends it back to the client. DOE does not require an ongoing user

interaction to transfer data. DOE has a hot-link option that allows a DOE server to supply the
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client with data continuously by perfonning data transfers as soon as the data becomes available

without waiting for client requests. One of the most important featur s of DDE is th capability of

linking two programs running on different computers connected by a local n twork (N tODE).

Therefore, one good technique for real-time data collection by a g neric pattern-based monitoring

system is acquisition of the current sensor readings from industrial data processing software via a

DOE link.

DOE is not the only technique appropriate for acquisition of real-time data in pattern­

based process monitoring. One extension of DOE is Object Linking and Embedding (OLE). OLE

lets Microsoft Windows® applications achieve a very high degree of integration. OLE provides a

set of standard interfaces so that any OLE program can interact fully with any other OLE program

without any built-in knowledge of its possible partners. A modification of OLE called OPC (OLE

for Process Control) is supported by a majority of commercial automated control systems

developed in the recent years.

Making use of Structured Query Language (SQL) servers is a third possible method for

real-time data acquisition by a pattern-based monitoring system. An SQL s rver is a relational

database written in SQL. Windows applications can transfer data to and from SQL servers in real

time using a special protocol similar to DOE. [f installed plant data processing software sends the

current sensor readings to an SQL server, it may be very convenient for a monitoring system to use

this SQL server for real-time data acquisition.

Real-time data acquisition techniques applicable for pattern-based monitoring are not

limited to DOE, OLE, and communication with SQL servers. Any method that allows a quick

transfer of data without writing it on hard drives or other permanent data storage devices and is

supported by the installed software and hardware is appropriate. As described in Chapter 4, our

monitoring system uses DOE and NetDDE for real-time data acquisition.
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3.3.4 Section summary

Section 3.3 described the programming techniques (multithreading run~time dynamic

linking, and real-time data transfer) that should be used to develop an efficient g neric real-time

monitoring system operating under Microsoft Windows . Application of th s programmmg

techniques affects the monitoring system implementation as follows.

1. The monitoring system should be able to nm certain tasks simultaneously. The system

should run as a single process with simultaneously running tasks implemented as different

threads. More urgent tasks should be assigned higher priorities, and less urgent tasks

should have lower priorities.

2. Monitoring applications should be implemented as dynamic-link libraries. The monitoring

system kernel should execute each monitoring application by loading an application in the

monitoring system memory space and calling a function with a standard prototype. This

function has the same prototype and is defined as an entry function in all monitoring

applications.

3. The monitoring system should collect the current values of the monitored variables from

the existing plant control system. The process of data collection should be performed using

a real-time technique such as DOE, OLE, SQL data interface or any other method that

allows a fast transfer of data without using hard drives and other permanent storage

devices as an intermediate buffer.

3.4 Chapter summary

This chapter discussed general requirements for a genenc pattern-based real-time

monitoring system. Basic concepts of monitoring system design were proposed. According to these

concepts, the system should be able to simultaneously monitor several different processes, each
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process should be monitored with an independl ntly dev loped custom monitoring application, and

the development and design of the monitoring applications should be within a fram wor of certain

standards and facilities. This chapter also described the most important programming tecbniqu s

required for the monitoring system to operate in real time under Microsoft Windows . These

techniques are multithreading, run-time dynamic Linking, and real-time data acquisition.
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CHAPTER 4

IMPLEMENTATION OF A GENERIC PATTERN-BASED REAL-TIME MONITORlNG

SYSTEM

4.1 System design

This chapter describes our proposed generic pattern-based real-time monitoring system.

We refer to the composite system as GRTMS (Generic Real-Time Monitoring System). The

system described in this chapter provides the ability to perfonn simultaneous monitoring of

multiple industrial processes. The GRTMS software also provides the tools necessary to develop

and test custom monitoring applications. The GRTMS was written in the ANSI C programming

language and compiled and linked using Borland C++ into a 32-bit code that runs under

Microsoft® Windows®. The user interface for the system was developed with CVI

LabWindows®. The GRTMS was developed specifically for the industrial processes that use the

lntouch® plant historian software by Wonderware Corporation®. The GRTMS is the first generic

real-time monitoring system specifically intended for pattern-based process monitoring.

GRTMS was developed according to the principles proposed in Chapter 3. An overview of

the different components of the GRTMS is presented in Figure 4.1. The system consists of a kernel

that can simultaneously monitor multiple processes using separate monitoring applications.

GRTMS also includes the tools and standards for developing monitoring applications. The

GRTMS runs as a single multithreaded process with monitoring applications implemented as

dynamic-link libraries (DLLs) with standard entry functions. The system perfonns acquisition of

real-time data using DDE or NetDDE (networked version of the DDE protocol). The details of

how the methods presented in Chapter 3 are implemented in the GRTMS are given further in this

chapter.
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The GRTMS performs real-time monitoring using a Generic Real·tim Monitoring Module

(GRTMM). The GRTMM collects historical and real-time data, formats this data for monitoring

applications, schedules and runs monitoring applications and displays data tr nds and th

diagnosed conditions. The GRTMM can be configured and controlled from a user-fri Ddly

graphical interface. The most important component of the GRTMM is Application Data Queu

(ADQ) that processes monitoring data in real time. The GRTMM serves as the control c cter

(kernel) for real-time monitoring.

GENERIC REAL-TIME MONITORING SYSTEM (GRTMS)
development testing~ and real-time execution

of custom pattern-based monitoring applications

GENERIC REAL-TIME MONITORING MODULE [GRTNMJ
management of real-time mointoring

APPLICATION DATA QUEUE (ADQ) USER INTERfACE THREAD

acquiring current sensor readings processing user acitons

processing monitoring data and displaying monitoring results

scheduling execuUon of monitoring displaying monitored trends

applications in real time launching monitoring applications
configuring monitoring sessions

I I

HISTORICAL DATA I M.o~ITO~I~G API;'~ICATI9~S .1
ACQUISITION UTILIlY fHDAUI smoothening monitored variable trends

retrieval of historical data I generation of Input patterns I
from Intouch historical log files chlssifying monitored operating states

l-.-..-.J l-.-..-.J L--.J L--.J L--.J

MONITORING DATA PLAYER
off-line testing of monitoring application

performance on previously recorded data

MONITORING APPLICATION EDITOR
generation and modification of monitoring application configuration files

MONITORING APPLICATION TEMPLATES
standard input/output routines for creatJon of

new executable code for monitoring applications

Figure 4.1. Hierarchical structure of the Generic Real-Time Monitoring System (GRTMS).
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The composite GRTMS also has facilities for deveLopm Dt of monitoring applications.

Monitoring application code can be created using special templates included in th GRTMS. To

enable the GRTMS to monitor new processes, the existing monitoring applications can be

configured with a Monitoring Application Editor. Perfonnance of monitoring applications can b

tested off-Line on recorded historical plant data with a Monitoring Data Player that mulates th

GRTMM. The application templates, Monitoring Application Editor, and Monitoring Data Player

simplify the job of creating new monitoring applications.

In addition to the principles discussed in Chapter 3 the GRTMS was built to satisfy two

more requirements. The first requirement is ease of use. Although the GRTMS is a highly

sophisticated piece of computer code, it was developed to be user-friendly without any sp cial user

training requirements. The second requirement is reliability. The GRTMS provides stable real-time

operation even when unusual situations are encountered. The GRTMS code incorporates a

significant number of sophisticated error traps. In the case when a problem is detected, the system

provides a dialog box that describes the problem with an easily understandable explanation of what

IS wrong.

4.2 Implementation of real-time monitoring

Generic Real-Time Monitoring Module (GRTMM) is a part of the GRTMS that perfonn

real-time monitoring. The GRTMM can simultaneously monitor several industrial processes in real

time using one custom monitoring application for each supervised process. The GRTMM perfonns

several principal tasks simultaneously: coUecting monitoring data, processing momtoring data for

each monitoring application, running monitoring applications on a priority-based, user-defined

schedule, and interacting with the user.

A data flowchart for the GRTMM is shown in Figure 4.2.
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Figure 4.2. Data flowchart for real-time monitoring with the GRTMM.

Real-time monitoring involves perfonning a combination of seven tasks numerated below:

1) retrieval of historical monitoring data from Wonderwar Intouch log files using the

Intouch® Histdata utility;

2) acquisition of real-time monitoring data from Intoucb Windowviewe

3) synchronization of historical and real-time data;

4) scheduling execution ofthe different monitoring applications that the user desires to run;

5) preparing "fresh" monitoring data for monitoring applications and for display;

6) running monitoring applications;
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7) processing user actions and displaying the diagnosed conditions and th monitored variabl

trends.

Task 1) is perfonned by a standalone utility implemented as a separate ex cutable til . Th SIX

remaining tasks are implemented in the GRTMM as three separate threads. The first thread

perfonns tasks 2) through 5). The second thread perfonns task 6), and the third thread perfonns

task 7). The third thread can also configure the GRTMM before each real-time monitoring s ssion

at user request. Details associated with each task are provided in the following subsections.

4.2.1 Retrieval of historical data by Historical Data Acquisition Utility

The GRTMM uses both real-time and historical (i.e., previously logged) data for pattem­

based real-time fault diagnosis. At the beginning of each real-time monitoring session, the

GRTMM must be initialized not only with the current value of each monitoring variable, but also

with a finite number of prior measurements. This subsection describes the process ofacquisition of

historical data by the GRTMM. Subsection 4.2.2 includes a description of the process of collecting

real-time data and synchronizing the real-time data with the historical data.

To acquire historical data at the beginning of each monitoring session, GRTMM runs a

standalone Historical Data Acquisition Utility (HDAU). The process of retrieving historical data is

schematically shown at the top of Figure 4.2. The HDAU works with Wonderware lntouch , a

commonly used data logging PC application for industrial processes. After being launched by the

GRTMM at the beginning of a real-time monitoring session, the HDAU establishes a ODE or

NetDDE link with Intouch Histdata . Histdata is a utility that accesses historical trends logged

by Intouch®. The HDAU uses the DOE or NetDDE link to request and receive the historical data

required by the monitoring applications. Upon receiving the requested data, the HDAU logs the

historical data in the format that the GRTMM can read, notifies the GRTMM of the data

availability, and tenninates. The HDAU is implemented as a separate process (and not as a thread
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within the GRTMM) because of conflicts associated with real-tim data acquisition. Th Intouch

software is incapable of establishing safe parallel DOE or NetDDE links. However impl m nting

the HDAU as a separate batch process is not a problem because of the Limited frequenc of us of

this facility.

4.2.2 Real-time handling of monitoring data and scheduling execution of monitoring

applications

The tasks of acquiring real-time process data from Wonderware Intouch ,

synchronization of real-time and historical data, scheduling monitoring applications, and preparing

"fresh" data for the currently active monitoring applications are performed by a single thread

created at the beginning of each monitoring session and terminated at the session end. During a

monitoring session, this thread reads the current values of all the monitored variables from

Intouch® WindowViewer® (a utility that collects, displays, and logs the current trends of the

monitored variables) via a DOE or NetDDE link after equal time intervals. The monitored variable

values acquired in real time from WindowViewer are supplemented, as required, with the

historical data samples retrieved by the HDAU. This operation requires synchronization of the

real-time and historical data. Once the GRTMM collects enough data to run monitoring

applications, a decision must be made as to which application to execute next. This task is called

"scheduling monitoring applications." Before setting the flag that invokes execution of the

scheduled monitoring application, the thread logs the latest available monitored variable value

samples into the corresponding application input data file.

Each of the tasks listed above involve access and modification of collected monitoring data

and require little central processing unit (CPU) time. To avoid dealing with access conflicts and to

maximize the execution speed, these tasks are implemented as a single thread.
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Monitoring applications are scheduled according to us r~spec.ified prioriti and th

consideration of how much time has elapsed since each monitoring application was xecuted last

time. Monitoring application priorities are specified in the monitoring application configuration

files generated by the user with the help of the Monitoring Application Editor. To s t the

application priorities, the user specifies the desired time interval between consecutive xecutions of

the monitoring application. When determining which monitoring,application to run next, the user­

specified time interval is divided by the time currently elapsed since the last execution for each

monitoring application. The resulting ratios are compared and the monitoring application. with the

smallest ratio is selected. No monitoring application is scheduled when aU the calculated ratios are

greater than one. As soon as a monitoring application finishes running, the procedure of scheduling

is repeated. This method of scheduling allows the system to match the monitoring frequency of any

monitoring application with the dynamics of the process being monitored.

The GRTMM handles monitoring data with the help of a custom data structure developed

specifically for GRTMM and called Application Data Queue (ADQ). The ADQ is an extension of

a common computer science data structure called a "queue" [Weiss, 1997]. The classic queue is a

list, i.e., a series of structures of a certain type. There are two standard public (available to the

code not belonging to the structure) operations on a queue: ENQUEUE that consists in inserting

one element at the end of the list and DEQUEUE that consists in deleting from the list and

returning the element located at the start of the list. It is convenient to keep monitoring data in a

structure similar to a queue whose elements are vectors containing the values of all the monitored

variables observed at a certain time. In this structure, ENQUEUE will add the samples acquired

via a DOE or NetDDE link from WindowViewer®. DEQUEUE will transfer the monitored

variable value samples into the monitoring application data input files and delete them from the

structure.

51



---

Unfortunately, a simple queue is not suitable as a structure for th monitoring data in the

GRTMM. Data samples must be added not only at the end, but also at the start ofthe qu ue during

data syncbrornzation. Second, monitoring data is transferred to each monitoring application input

data file separately, therefore deletion of any data should not be performed until the data have b n

transferred to all the monitoring application input files that require the data. An extension of the

conventional queue, ADQ, was developed to handle additiQn of elements at the queue start and to

allow multiple DEQUEUE operations on the same queue element.

Design of the ADQ is shown in Figure 4.3. The ADQ is organized as two dynamically

allocated arrays of equal length. One array stores monitoring data samples and the other array

stores vectors of monitoring application flags. The ADQ has two pointers: the first pointer shows

which array element corresponds to the beginning of the queue and the second pointer shows which

array element corresponds to the queue end. Samples of monitored variable values are stored in the

vectors located between the beginillng and the end of the queue. Each monitoring data sample has a

corresponding vector of monitoring application flags in the array of application flag vectors at the

same position as the position of the data sample in the array of monitoring data. The length of each

vector of application flags is equal to the number of monitoring applications being run by the

GRTMM. Each element of the application flag vector corresponds to one monitoring application.

The vector element is equal to zero if the data from the monitored variable value sample

corresponding to the application flag vector has been transferred to the monitoring application

input data file that corresponds to the vector element. Otherwise, the element is equal to one. This

design provides the means for the ADQ to keep track of DEQUEUE operations performed for each

monitoring application.
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Figure 4.3. Application Data Queue (ADQ).

The first public operation perfonned by the ADQ is ENQUEUE, which adds a real-time

data sample at the end of the queue. The ADQ either aHocates memory for two new vectors

attaching them immediately after the queue end in the arrays of sampled monitoring data and

application flags or uses the previously allocated memory recycled to that location. After that the

newly acquired values are copied to that memory location, aU the elements of the corresponding

application flag vector are set to one, and the pointer that indicates the queue end is set to the new
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sample. At the same time, the ADQ checks if the data samples at the qu ue start hav b n

transferred to all the monitoring applications that require this data. If th l ments of the flag

vectors corresponding to the data samples at the queue start are all zeros, th n th data is no longer

needed. In this case the ADQ copies (recycles) to the locations after queue end the pointers to th

memory taken by the samples that are no longer needed and by the corresponding application flag

vectors. If all the positions after queue end are already occupied with recycled vectors, the memory

taken by the used samples and the corresponding flag vectors is de-allocated. The pointer showing

the queue beginning is updated accordingly.

If the physical end of the monitoring data and application flag vector arrays is reached,

then new arrays for monitoring data and application flag vectors are allocated with an extra space

for the pointers to the new samples and corresponding flag vectors to be added in the future. The

pointers to the existing flag vectors and monitoring data samples are copied to the new flag vector

and monitoring data arrays, and the old monitoring data and application flag vector arrays are de­

allocated. This implementation of ENQUEUE provides efficient utilization of computer memory

and minimizes the number of memory allocations and de-aUocations required for real-time

monitoring.

The second public operation of ADQ, lNSERT, places a block of historical data samples

at the start of the queue. As soon as the GRTMM receives the historical data samples retrieved by

the HDAU, the ADQ attaches these samples immediately before the queue beginning, allocates

memory for the corresponding vectors in the application flag array, sets all the elements of those

vectors equal to one, and updates the pointer showing the start of the queue. The GRTMM requires

the ADQ to perform the INSERT operation only when historical data is required to run the selected

monitoring applications.

The third public operation returns the sample of monitored variable values from the

specified location in the queue once for each monitoring application. This operation is called
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DEQUEUE. When a monitoring application is scheduled to run the GRTMM update the input

data file for the scheduled monitoring application with the data that have become available since

the application was last run. Each monitoring application utilizes its own user-specified data­

sampling interval. If the monitored variable values were not sampled at the sp cified time, the

ADQ will return a linear interpolation between the two nearest available samples. After returning

the requested variable value sample, the ADQ updates the application flags. All the flags of the

scheduled monitoring application contained in the vectors corresponding to the samples located on

the queue before the requested sample are set to zero. This setting indicates that the data preceding

the requested sample are no longer needed for the monitoring application. When performing the

ENQUEUE operation, the ADQ will check if the samples at the beginning of the queue have

already been transferred to aU the selected monitoring applications and remove the samples if the

samples are no longer needed. In this implementation. DEQUEUE does not remove queue elements

(as would occur in a classical queue) because this is the responsibility only of the ENQUEUE

operation.

Monitoring data from the ADQ is transferred to monitoring application input data files

organized as conventional queues of fixed length. Each application input data file has a fixed

number of samples fonnatted as lines with a fixed number of symbols. These samples are queue

elements. The queue starts with the earliest collected sample and ends wi.th the latest one. The start

of the queue immediately follows the queue end. Before running a monitoring application the

GRTMM perfonns ENQUEUE and DEQUEUE operations on the application's input data file by

replacing the earliest collected data samples at the queue start with the samples of data that have

become available since the last execution of the application. The process of updating monitoring

application input data files is shown in Figure 4.4. More details about the fonnat of application

data files are given in Subsection 2.2.6 of the GRTMS Operating Manual [Shapovalov and

Whiteley, 1999}. The design of the monitoring application input data files enables updates by
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writing only the samples that have become available since th last file update instead of cr ting a

whole new data file.

IAPPLICATION DATA QUEUEI

W

NEW
APPLICATION MONITORING APPLICATION

INPUT DATA INPUT
DATA FILE DATA FilE
BEFORE AFTER

THE UPDATE THf;: UPDATE
sample 18 sample 18

sample 19 sample 19
sample 20 queue end sample 20

sample 11 queue start sample 21

sample 12 / sample 22

sample 13 "- sample 23

sample 14 queue end sample 24
sample 15 queue s1art sample 15

sample 16 > sample 16
sample 17 sample 17

Figure 4.4. lllustration of updating a monitoring application input data file.

The scheduling and data handling approaches described previously are key design elements

that provide the requisite flexibility when the choice of the monitoring application to be executed

next and the amount of monitoring data to be stored in the memory at any given moment of time

cannot be planned beforehand. The priority-based scheduling ensures that CPU (central processing

unit) time is used efficiently with the most critical needs addressed first. Updating application data

files only immediately before they are used by monitoring applications (and not continuously as

new monitoring data becomes available) and writing only new data samples minimizes the use of

the hard drive This is important for a real-time application since the hard drive handles data by an

order of magnitude slower than the random access memory. The flexible and relatively simple
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design of the ADQ minimizes the processmg time requues simplified computer code and

optimizes the use of computer memory. The procedure of recycling dynamic memory, from th

start of the ADQ to the queue end, also saves CPU time and d creass memory fragm ntation

caused by memory allocations and de-allocations.

4.2.3 Running monitoring applications

Monitoring applications run by the GRTMM can be created as either standalone

executables or dynamic-link libraries (DLLs). In either case, the monitoring applications run as

separate threads or as separate processes and do not delay real-time data processing by the

GRTMM or operations with the user interface. As described in Subsection 3.2.2, the GRTMM

executes monitoring applications sequentially, in a batch mode, one at a time. The GRTMM

schedules execution of the monitoring applications according to the principle outlined in Subsection

4.2.2. As soon as a monitoring application is scheduled to run, the GRTMM updates the

corresponding application input data file and checks the application type. If the scheduled

monitoring application is a DLL, the GRTMM creates a new application thread that loads the DLL

and calls the standard entry function that starts DLL execution. When a DLL-based monitoring

application finishes running, it assigns the calculated result to a global variable. After that, the

application thread unloads the DLL and terminates. If the scheduled monitoring application is a

standalone executable file, the GRTMM launches this file and waits until it finishes ex cuting. As

soon as the application completes the monitoring analysis and tenninates, the GRTMM reads the

calculated condition and stores it in the same global variable as the one where it would store the

condition calculated by a DLL-based monitoring application. The ability of GRTMM to run

monitoring applications as both DLLs and standalone executables makes the GRTMS more

convenient and friendly to monitoring application developers as well as the end users.
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4.2.4 Interaction with the user during real-time monitoring

The user interface for the GRTMM is controlled by the primary process thread created at

program launch. This thread is responsible for creation of all the other threads of the process. To

accelerate fulfilling user requests sent to the GRTMM user interface, new threads are not created

when user actions are being processed.

The GRTMM user interface allows the user to configure, start, and tenninate real-time

monitoring sessions, check the monitored conditions, view the trends of the monitored variables for

each monitoring application, and receive error notifications. The main window of GRTMM user

interface is shown in Figure 4.5. This window is used for starting and tenninating monitoring

sessions. The main window also displays information about the currently selected monitoring

applications, the current monitoring status, and error messages. From the main window, the user

can open the GRTMM configuration screen. More information on operating the main window and

starting monitoring sessions can be found in Sections 3.3 and 3.4 of the GRTMS Operating

Manual rShapovalov and Whiteley, 1999].

Prior to initializing a monitoring session, the GRTMM must be configured u ing th

configuration window shown in Figure 4.6. The user chooses which processes he or she wants to

monitor by selecting the corresponding monitoring applications in the configuration selection

window. The user also specifies the paths required to access the lntouch historical data log files

as well as several control parameters for the real-time monitoring session. Configuration

information can be saved in the GRTMM configuration file, so that the operators can easily launch

thcir own custom monitoring sessions. Full description of how to configure the GRTMM can be

found in the GRTMS Operating Manual [Shapovalov and Whiteley, 1999], Section 3.2.
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Figure 4.6. GRTMM configuration screen.
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As soon as a real-time monitoring session is started, the GRTMM Taskbar window (s

Figure 4.7) opens. The Taskbar window displays the current state for all monitored processes. The

Taskbar window has scroll buttons that can be used to display monitored conditions for an

arbitrary number of monitoring applications. The GRTMM Taskbar window can also be used to

open the Trendpad window that displays the current trends of the monitored variables for any

monitoring application. The trends for each monitoring application are displayed in separate

windows. Operation of GRTMM Taskbar window is described In detail in Section 3.4 of the

GRTMS Operating Manual [Shapovalov and Whiteley, 1999].

The Trendpad window (see Figure 4.8) shows the monitored trends for a selected

monitoring application. The Trendpad has two separate charts for the trends of the application

variables used in generation of patterns for fault diagnosis (monitoring variables) and for the trends

of the variables needed for the user to validate the diagnosed condition visually (validation

variables). Inputs for the trends displayed on the Trendpad are retrieved from the current

monitoring application input data file. Monitoring applications include an option of smoothening

the monitored variable trends and supplying these smoothened trends along with the raw data for

display on the Trendpad. More details on operating the Trendpad are given in the GRTMS

Operating Manual [Shapovalov and Whiteley, 1999], Section 3.5.

4.2.5 Section summary

Section 4.2 outlined the most important details for real-time monitoring with the Generic

Real-Time Monitoring System. The basic concepts of design and operation of the Generic Real­

time Monitoring Module (GRTMM), such as the multithreaded design, the implementation of

historical data coUection, real-time data processing, scheduling and executing monitoring

applications, and the design of GRTMM user interface, were described. A considerable amount of

t:ffort was devoted to addressing the issue of real time monitoring efficiency in the GRTMM.
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Figure 4.7. GRTMM Taskbar window
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Figure 4.8. GRTMM Trendpad window.
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4.3 Developing monitoring applications for Generic Real Time Monitoring System

As discussed in Subsection 3.2.3 the GRTMS has standard faciliti s for d lopm Dt of

monitoring applications. Designing a new monitoring application normally starts from a template

that has standard input/output routines for communication with the GRTMM and for reading

monitoring application configuration files. Each monitoring application has a standard-format

configuration file containing lnformation on how the GRTMM should communicate with the

application and interpret application output·. A Monitoring Application Editor was developed to

simplify the task ofcreating new monitoring applications.

Once development of a pattern-based monitoring application is complete, the application

developer should make sure that the monitoring application is operating properly before using the

application for real-time monitoring. Operation of monitoring applications can be tested using

historical plant data with a GRTMS utility called Monitoring Data Player. This section gives a

brief description of the monitoring application templates, Monitoring Application Editor, and

Monitoring Data Player.

4.3.1 Developing new executable code for monitoring applications from templates

The input/output operations, standard for all GRTMS monitoring applications, are

implemented as templates. Developing new monitoring application executable code using these

templates allows the user to avoid writing the code for the standard input/output operations and

focus on implementing the desired pattern-based monitoring method.

This version of GRTMS includes two templates with ANSI C code implementing

input/output operations standard for all GRTMS monitoring applications: one template for

generating monitoring application executable code implemented as dynamic-link libraries (DLLs),

and the other template for the executable code implemented as standalone executable files.

Executable file-based monitoring applications are more forgiving than DLL-based ones when there
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are errors in the application code. If a monitoring application impl muted as a standalon

executable file and running as a separate process is abnormaUy terminated at run time the

GRTMM will stop the monitoring session and display an error message. If the sam probl m

occurs with a DLL-based monitoring application, the GRTMM itself will be abnormaUy

tenninated by the operating system with potentially undesirable side effects. On the oth r hand,

standalone executable files take considerably more time to run, are larger, use more hardware

resources, and limit CPU management capability.

It makes sense to first develop a new monitoring application as a standalone executable file

using the appropriate template, extensively test it with the GRTMS, and, after the tests have been

passed, compile and link the code into a DLL file using the DLL template. The ability of the

GRTMS to generate and run monitoring applications of both DLL and standalone executable types

gives the user a greater convenience in developing new monitoring applications and improves the

reliability of the system. More information on how to generate monitoring application executable

code can be found in the GRTMS Operating Manual [Shapovalov and Whiteley, 1999], Section

2.4.

4.3.2 Configuring monitoring applic.ations with Monitoring Application Editor

GRTMS-compatible monitoring applications have many adjustable user-specified

parameters. Each monitoring application has a configuration file with specifications for aU the

adjustable parameters. The configuration file for a monitoring application specifies how to supply

monitoring data to the application, run the application executable code, interpret the result of the

diagnosis performed by the application, read the application-generated file with smoothened

monitored variable trends, and how to display the trends of the monitored variables. Section 2.2 of

the GRTMS Operating Manual [Shapovalov and Whiteley, 1999] contains a comprehensive

description of the structure and fonnat of GRTMS monitoring application configuration files.
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A standard utility called Monitoring Application Editor was d loped to help th user

generate and edit monitoring application configuration files. Monitoring application file names,

time-related application parameters, monitored variables, and the conditions to be diagnosed by the

monitoring application are specified using the main window in the Monitoring Application Editor

(see Figure 4.9). The Monitoring Application Editor also has a window where the user specifies

special parameters for each monitored variable (see Figure 4.10), a window to set the parameters

for displaying monitored variable trends (see Figure 4.l2), and a window to set the order of

smoothened trends in the smoothened data file generated by the monitoring application (see Figure

4.11). Operation of the Monitoring Application Editor is discussed in further detail in Section 2.3

of the GRTMS Operating Manual [Shapovalov and Whiteley, 1999]. Using the Monitoring

Application Editor, a GRTMS-compatible monitoring application can be created within minutes by

simply clicking control buttons, selecting menu items and colors, and filling in text boxes.

The GRTMS supports the use of flexible executable code for monitoring applications. The

same executable code can be shared by several monitoring applications that use the same pattem­

based monitoring method. When the GRTMM runs a monitoring application, the nam of the

application's internal configuration file is passed to the executable code of the application. At th

same time, the default directory is changed to the one where additional application-sp cific data is

contained (e.g., neural network weights). The executable code reads the internal configuration file

together with the additional application-specific data and performs the classification according to

the method being employed. Subsection 2.3.9 of the GRTMS Operating Manual [Shapovalovand

Whiteley, 1999] explains how internal monitoring application configuration files are generated and

formatted.
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Figure 4.10. The window for editing parameters of monitored variables.
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Figure 4.11. The window for setting the order of smoothened trends in smoothened data files.
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Figure 4.12. The window for setting parameters of displaying monitored variable trends.

4.3.3 Testing monitoring application performance on recorded data with Monitoring

Data Player

Before putting a GRTMS monitoring application to use for the first time, its performance

should be tested. In practice, computer-aided fault diagnosis must be perfonned with a very high

degree of reliability because misclassification of the monitored conditions can have very serious

consequences. There is also a need to ensure that newly generated monitoring application code
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executes without run-time errors. In the GRTMS operation of user-d igned monitoring

applications can be tested on previously logged trends of the monitored variables with a special

utility called Monitoring Data Player.

The Monitoring Data Player emulates the GRTMM by usmg previously recorded

(historical) plant data. To test a monitoring application with the Monitoring Data Player, the user

creates an ASCII conuna-separated variable (*.CSV type) file containing sampled historical trends

of all the monitoring variables (Wonderware Intouch performs this operation in a simple user­

friendly fasbion). The trends should correspond to different conditions associated with the

monitored process. By running a monitoring application with the Monitoring Data Player on

familiar historical data trends, the user gets a feeling of the quality of the diagnosis performed by

the monitoring application.

The main window for the Monitoring Data Player is shown in Figure 4.13. The window

has control buttons for the user to select a monitoring application, the historical ASCII data file to

"play," and controls for the "playback" of the monitoring application. The window displays

dl:tailed information about the selected monitoring application and input historical data file along

with the current diagnosed process condition generated by the monitoring application. The user can

control the playback speed of the Monitoring Data Player during an evaluation session. Just like

with the GRTMM, the user can call the Trendpad to view the monitored variable trends currently

being "played" by the Monitoring Data Player. Operation of the Monitoring Data Player IS

described in detail in Chapter 4 of the GRTMS Operating Manual.
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Figure 4.l3. The main window for the Monitoring Data Player.
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4.3.4 Section summary

Section 4.3 described in brief the utilities included with this version of the GRTMS to

simplify the process of developing pattern-based monitoring applications. This version of GRTMS

provides help in three areas of development of a new pattern-based monitoring application:

implementing a pattern-based fault detection method as a computer code configuring a monitoring

application, and testing the application performance. The most important features of these utilities

that include the monitoring application templates, Monitoring Application Editor, and Monitoring

Data Player, were described in this section.

4.4 Chapter summary

This chapter described our genenc pattern-based real-time monitoring system called

GRTMS. The system was developed from the principles outlined in Chapter 3. The implementation

of simultaneous real-time generic pattern-based monitoring of several different processes in the

GRTMS, using multithreading, run-time dynamic linking, and real-time data acquisition with DDE

and NetDDE, was explained. The basic features of the GRTMS that allow the user to configure

and control real-time monitoring sessions were discussed. This chapter also described the

components of the GRTMS included with the system to facilitate the user's job of building

monitoring applications: monitoring application templates, the Monitoring Application Editor, and

the Monitoring Data Player. Operability of the GRTMS has been demonstrated on an industrial

scale. Documentation of this demonstration is not provided for reasons of confidentiality.

72



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

Completion of this work resulted in development of a novel generic computer syst m for

real-time pattern-based process monitoring. The developed monitoring system is called GRTMS

(Generic Real-Time Monitoring System). The system consists ofa GRTMM (Generic Real-Time

Monitoring Module) that serves as a kernel for executing the user's monitoring applications,

application templates that implement communication protocols for monitoring applications, a

Monitoring Application Editor that can configure monitoring applications, and a Monitoring Data

Player that can be used to test the performance of monitoring applications on previously recorded

process data. The specific contributions of the work presented in this thesis are listed below.

a) The system utilizes real-time programming techniques and runs on a PC under Microsoft

Windows® operating system.

b) The system is capable of monitoring different processes with independently developed

custom monitoring applications

c) The system monitors multiple processes simultaneously using priority-based scheduling.

d) The system communicates with monitoring applications using standard protocol .

e) Facilities for developing new monitoring applications and customizing old applications to

monitor new processes are provided.

t) To perform real-time monitoring, the system runs as a single process with different tasks

implemented as separate threads.

g) The system uses run-time dynamic linking to attach monitoring applications.

h) The system provides industrial real-time data acquisition capability.

The significance of the work presented is as follows.
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1. lbis work described one of the first known generic, real-time multitasking pa m-based

monitoring system.

2. The system proposed in this work facilitates application ofne methods 0 fault diagnosis

in the process industry

3. The proposed monitoring system IS an essential tool for developing and testing Il! W

monitoring methods.

5.2 Future work

This section lists the potential improvements to the proposed GRTMS.

1. The GRTMS can be made even more generic. The GRTMS can be enhanced to acquire

real-time data from any data historian. This can be achieved if real-time data acquisition is

performed using custom dynamic-link libraries that run as a separate thread. Besides real­

time data acquisition, display of monitored trends can also bt: made more generic to allow

the user to view trends of the monitored variables using his or her own custom dynamic­

link libraries. If the GRTMM is made more generic, it will be more widely applicable,

convenient to the user, and more suitable for further upgrades.

') The facilities responsible for development of new monitoring applications can be upgraded

and supplemented with new components. Monitoring application templates can also be

implemented as object files that can be added to newly developed monitoring application

executable code at the link stage. A user-friendly module that trains pattern-based

monitoring applications to classify the monitored operation states, using recorded process

data, can be added. The value of the GRTMS would increase further if the proposed

training module supported incremental learning during real-time monitoring.
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3. The user interface of the GRTMM and Monitoring Data Player can b improved. The

main window and the window displaying operating states (the Taskbar) can b made us r­

friendlier while requiring less CPU time. One improvement that can make the GRTMM

more convenient to the user is adding alann notifications for each monitored process (if a

monitored condition is classified as abnormal the GRTMM would op n a window

explaining what is wrong and use alarm multimedia). The window that displays monitored

variable trends (the Trendpad) can also be improved. Each strip chart can have axes with

date and monitored variable value labels. The Trendpad of the Monitoring Data Player can

display two monitored conditions: the actual one and the diagnosed one. With the proposed

interface improvements, it will be easier to operate the GRTMM and evaluate the

performance of monitoring applications tested with the Monitoring Data Player.
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