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PREFACE

The purpose of this study was to describe and interpret the interaction between

fluvial and aeolian processes that are responsible for creating landfonns on the terraces of

the Cimarron River in Major County, Oklahoma. The landscape on the Pleistocene

terraces of the Cimarron River was developed under fluctuating fluvial and aeolian

processes. Aeolian processes have modified the fluvial landforms by depositing dune

fields and sand sheets on the terraces. Episodes of aeolian activity have occurred

throughout the Holocene. Detailed soil-stratigraphic studies and radiocarbon dating were

conducted at two sites to establish the chronology of landscape fonnation during the

Holocene on the Qt2 terrace of the Cimarron River. Radiocarbon dating of soil humates

shows significant sand mobilization over the last 2,000 years. Regional geomorphic

mapping and was conducted and relative dating techniques were used to assess

geomorphic processes that have been active throughout the Quaternary.

I sincerely thank my masters committee-Drs. John D. Vitek (chair), Carolyn G.

Olson (USDA-NRCS, Lincoln, Nebraska), Brian 1. Carter, and Michael J. Nicholl-for

support and guidance during this research. I also thank the USDA-Natural Resources

Conservation Service for supporting and funding this research. I especially extend my

thanks to my wife, Becky, for her support, understanding, and patience during this time.
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CHAPTER I

INTRODUCTION

Landscapes on the surface of Earth are shaped by geomOJl'hic agents, with the

dominant agent of geomorphic change being water. Wind also contributes to surficial

change. The action of these two agents and the landscapes formed by them are usually

recognized as being distinct and separate. Landscapes are usually described as being

developed by wind or water, but rarely both.

Most geomorphology textbooks treat the various geomorphic processes and

landforms as isolated from each other (Ritter, et aI., 1995; Thornbury, 1954). They

discuss only briefly the interplay between various forces and processes. Landscapes in

much of Oklahoma are the result of fluvial and aeolian processes that vary in intensity

and alternate dominance as the climate varies over time. During dry periods, aeolian

processes dominate; during relatively wet periods, fluvial processes dominate. Each

process, therefore, operates on a landscape developed during the preceding period. The

landscape is a product of the alternating forces that shape it.

Wide Pleistocene terraces flank the Cimarron River in northwest Oklahoma

(Morton, 1980). In Major County, the terrace system on the north side of the river is 16

to 24 km wide and is continuous from Woods County into Payne County, about 160 kIn

from west to east (Morton, 1980). Most ofthe tread surfaces of this terrace complex are

nearly level; some surfaces are gently rolling with complex slopes and have the



appearance of a sand sheet. Dune fields are also commo~ and large dunes have buried

and masked the major escarpments of this terrace complex. The drainage pattern on the

terrace surface is coarse and poorly developed. Only the largest streams have sufficient

competence to flow through the sand dunes on the margin of the lowest terrace level

(Morton, 1980).

Hypothesis

Descriptions and interpretations of the fluvial-aeolian interactions that occurred

on the terraces along the Cimarron River will be the focus oftms study. How sediments

and processes correlate with the climatic regimes during the Late Pleistocene and

Holocene will be assessed. This work will assist in understanding conditions that will

mobilize sand deposits.

The primary hypothesis to be tested: during arid times, wind-blown sand moved

from the southwest and blocked small consequent streams that developed on the

Cimarron River terrace surface during previous wet periods. Modern wetlands on the

terrace surface occupy the abandoned stream channels. This hypothesis emphasizes that

climate controls the aeolian processes which build and modify sand dunes on the

escarpments and on the terraces. The alternate hypothesis: no correlation exists between

the sediments and climatic regime; the dunes were active because of other factors such as

sand supply, and no relationship exists between the modem landscape and drainage on

the old surface.

This study requires a combination of several methods to establish the processes,

timing, and intensity. Stratigraphy, relative and absolute dating, soil profile development,
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and sediment weathering characteristics will show that this landscape developed under

fluctuating geomorphic processes. This is primarily designed as a field study, with

laboratory analysis as needed.

Combining several methods in the study of landscape is appropriate. Daniels and

Hammer (1992) emphasize the utility, even the necessity, of integrating soil science and

geomorphology. They noted that "the landscape and soils have coevolved over time.

Investigation of multiple profiles in the landscape helps one to appreciate current and past

dynamics of the soil system." (Daniels and Hammer, 1992, p. xvi.). They also

recognized that "soils are good integrators of several factors in their past and present

environments" (Daniels and Hammer, 1992, p. 1).

Geomorphologists recognize the value of an interdisciplinary approach, while

admitting it is not always welcome (Butzer, in Vitek, 1989). John Hack's lifelong

association with soil scientists John Cady and Constantine Nikiforoff dated from World

War II (Osterkamp and Hupp, 1996; Osterkamp, 1989). Robert Ruhe worked closely

with Ray Daniels to interpret the landscapes of Iowa (Olson, 1989).

The complexity of the natural world requires an interdisciplinary approach.

Osterkamp and Hupp (1996) recognized complexity as a basic characteristic of

geomorphology, and Vitek (1989) concluded that "The complex environment requires

interdisciplinary efforts to find solutions to problems that impact human utilization of the

surface."
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Study Site

The study site is located in Major and Kingfisher Counties, Oklahoma, on the

northeast side of the Cimarron River (Figure 1.). This location was chosen based on the

complex landscape observed during preparation ofwetland delineations. Specifically, the

area is located in the SE/4, section 20, T. 20 N., R. 9 W., Major County (Hanor farm);

and the NW/4 NW/4 section 10, T. 19 N., R. 9 W., Kingfisher County (Hajek ranch);

Ames Quadrangle (Figure 2). The regional geomorphic mapping covers Major County

east of Indian Creek and the Cimarron River, south ofU.S. highway 412; and that part of

Kingfisher County north of Oklahoma highway 51 and east of the Major County-Garfield

County line (Figure 3).

Geomorphic Issues

An understanding of certain geomorphic concepts is essential to this thesis.

Geomorphic thresholds, physiography and processes geomorphology, and relative dating

are important concepts; they have great utility in the consideration of the landscape as a

system (Ritter, et a1., 1995, p. 5-8).

Geomorphic Thresholds

The dictionary definition of threshold is "a piece ofwood or stone beneath a door,

hence an entrance or beginning point" (Friend and Guralnik, 1957). A geomorphic

threshold is a geomorphic boundary condition or limiting value in the geomorphic system

(Ritter, et aI., 1995, p. 18). A threshold is crossed when an event causes the system to

enter into, or cross over into a new condition, and a new equilibrium must be established.
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The concept of scale is important in defining a threshold crossing event. Ritter. et

at (1999) notes that these events are irreversible on a graded-time scale. a period of about

100 to 1,000 years (Ritter. et al.. 1995). Aeolian deposition may be a threshold crossing

event to a small area, but may not, considering a whole basin. If the deposition of sand in

the river valley is a process that has operated episodically for many millennia, it is a

regular basin process. It would not be a threshold crossing. On a smaller scale, perhaps a

portion of a terrace. aeolian deposition may be a threshold crossing event. A portion of

this study will be to evaluate these events in the study area, and determine if they are true

threshold crossings (Ritter. et al., 1999).

Physiography and Process Geomorphology

Early geomorphology developed out of the fields of geography and physiography.

The discipline focused more on landfonns than root processes. Those who wrote of

process (Thornbury, 1954) used the tenn historically and qualitatively. He concentrated

on the landfonn and the broad process (i.e., glaciation).

As the discipline developed, a quantitative focus on rate., force, and threshold

became important to understanding the intensity of processes (Vitek and Ritter, 1993).

Ritter et al. (1995, p. 3) emphasized the importance of maintaining a balance between

historical and applied geomorphology. The predictive aspect of the science has become

more important as geomorphologists investigate landforms and the processes that

operated to fonn them (Ritter, et aI., 1995, p. 5-7).

This study will attempt to balance the necessity ofdescribing the landfonn with

quantifying the processes that develop it and correlate the processes with the driving
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forces. Landscape physiology must be described, bllt a complete study must also define

the processes as driving forces. In this manner we develop a predictive model ofhow the

landscape may change as driving forces vary.

Relative Dating

Relative dating techniques establish the relative ages of, and discriminate

between, various sediments and landforms. In the study area, sediment weathering, soil

development, and vegetation will correlate to delineate older dunes from younger.

Soils on dunes in the study area show distinctions in weathering based on the

distance from the river. Many weathering and soil development processes operate to

develop soil horizons and profiles. Translocation of calcium and bases, lowering ofpH,

formation and translocation of clay, destruction ofthe sedimentary structure,

development of soil structure, and increase in soil organic matter are processes that

develop aeolian sediment into soil and give a basis for differentiating the ages of specific

fields of dunes. The duration and intensity ofthe processes create differences in soil

characteristics, and help set apart the various ages of dunes. This study presumes that the

source material for the dunes is sand blown from the channel of the Cimarron River, and

that the characteristics of the source sand is constant. This allows comparison between

ages of dunes based on weathering. If the parent material changes across the study area,

these comparisons will not be as reliable.

The various plants common to the region have preferences for particular soils and

sites. In general, plants are more able to compete with other species on sites that meet the

plants' biological requirements. Thus, specific species discriminate between the various
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soils and are more abundant on the soils that give them a competitive edge. In the study

area, parallel belts ofdifferent vegetative communities appear to develop on particular

groups of dunes, based on site preferences. Dune age will be shown to be positively

correlated with distance from the river, based on soil development, weathering, and

vegetative communities.

Site Characterization

Physiography and Drainage

Physiography. The study area is located in the Osage Section of the Central

Lowlands Province (Thornbury, 1965), and is in the valley of the Cimarron River. The

Cimarron River basin extends from the east flank of the Rocky Mountains near Raton,

New Mexico to its junction with the Arkansas River. The valley floor in the study area is

almost entirely mantled with fluvial terraces, including treads and risers (escarpments).

The elevation of the river channel at the study site is about 335 meters msl, the study site

is about 365 meters msl, and the divide between the Cimarron River and the Salt Fork of

the Arkansas River to the north is about 411 meters msl. Local reliefis commonly less

than 6 meters but ranges up to 30 meters.

The divides on the north and south sides of the river are capped with early

Pleistocene fluvial terraces (Morton, 1980). Deep, sandy alluvium from the North

Canadian River mantles the divide between the North Canadian and Cimarron Rivers

(Fay, 1962). Loamy and silty alluvium (with possible loess influence) mantles the divide

between the Cimarron and Salt Fork of the Arkansas Rivers. The gradient of the highest
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terrace on this divide is not the same ,as the gradien of the Cimarron River or its other

terraces. They slope to the east, and are not parallel to the modem Cimarron River.

On the south side of the river, the Permian Dog Creek, Blaine, and Flowerpot

Formations are exposed on the escarpment below the divide. Terrace alluvium Plantles

the floor ofthe valley below this large escarpment. Permian rocks, or soils developed

from Permian rocks, are exposed at some of the minor escarpments separating terraces on

the south side of the river.

On the north side of the river, the valley side is almost completely covered with

alluvium. Terraces step down from the divide to the valley floor. Most of the

escarpments are covered with aeolian sands, and sand sheets are present on many of the

terrace treads. Permian rocks, or soils developed from Permian rocks, are exposed at a

few of the escarpments. The two study sites (Hanor farm and Hajek ranch) are on the

Qt2 terrace on the north side of the river.

Drainage. The Cimarron River, the primary control for drainage through the area,

has a slope of about 0.87 meters per km. The river valley is over 50 km wide in the study

area. Most of the tributary streams flow from the west and south. Springs flowing from

gypsum in the Blaine Formation feed perennial stre:pns that flow north from the

escarpment on the south side oft,he river valley. Larger streams, such as Deep Creek,

Cottonwood Creek, and Gypsum Creek occupy abandoned channels of the Cimarron

River. Eagle Chief Creek flows as an underfit stream in the abandoned channel of the

Salt Fork of the Arkansas River (Fay, 1965).

Few streams flow across the terraces on the north side of the river (Adams and

Bergman, 1995). Most of the streams have low competence, and failed to maintain a
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channel during the episodes when the dunes Were built. The streams that have sufficient

competence to reach the river drain at least 8,000 hectares. The drainage area for these

streams includes areas of soils that have rapid runoff.

Drainage Density. The drainage d.ensity of an area is related to the age of the

terrace deposit (May, 1985). Younger areas have a very low drainage density, and older

areas have medium drainage density. The texture of the sediments also influences the

drainage density. Rapidly permeable sediments have less runoff and develop a less dense

drainage network than less permeable sediments. The study area on the Hanor farm has

no defined drainage. The Hajek ranch site has a small perennial stream draining the

terrace tread and flowing through the dune field.

Geology

Penman rocks underlie all of Major and Kingfisher Counties. The Cedar Hills

sandstone, Flowerpot shale, Blaine Formation, Dog Creek shale, and Marlow Formation

are exposed in the Cimarron River valley. Quaternary deposits overly the Permian rocks

unconformably in most parts of the valley. The study area is underlain by the Cedar Hills

member ofthe Hennessey Formation (Adams and Bergman, 1995).

The Cedar Hills sandstone is orange-brown sandstone and siltstone with some

reddish brown shale. The Flowerpot shale is mostly reddish brown. shale with thin lenses

of gypsum and dolomite. West of Major County along the Cimarron River, halite is a

component of the Flowerpot shale. The Blaine Formation consists of reddish-brown and

red shale with several thick (up to 6 meters) gypsum members, and several thin

dolomites. The Dog Creek shale is reddish-brown shale with thin gypsum, dolomite, and
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sandstone members. The Marlow Formation is dominantly orange-brown fine-grained

sandstone and siltstone. A few thin beds of dolomite and gypsum are present (Morton,

1980). All the Permian fonnations dip to the southwest, toward the axis of the Anadarko

Basin (Fay, 1962).

One important feature of the two study areas is that they are underlain entirely by

the Cedar Hills member. This unit lacks the karst features that are occasionally

associated with the gypsum and halite of the upper Permian formations. This establishes

that dissolution of gypsum or halite is not involved in the development of the landscape

at the study sites.

The Quaternary deposits overlying the Cedar Hills membeI are heterogeneous.

Fluvial sediments ranging from gravel to clay are present. Aeolian deposits of sands are

common, and range from Pleistocene to Recent in age. The active flood plain deposits of

the Cimarron River are mostly sand, silt, and gravel, and range from 0 to 30 meters thick.

The Penman Cedar Hills and Flowerpot Fonnations are also exposed in the river channel

in several places (Adams and Bergman, 1995).

Climate

The climate of the study area - warm, temperate, and subhumid - has strong

seasonal variation in temperature, precipitation, and wind direction and speed. The mean

annual temperature at Fairview is 16.40 C. (Figure 1). The average temperature in

January is 3.40 c., and the average temperature in July is 28.6° C. Extreme temperatures

for the year may range from below _170 C. to over 380 C. (Allgood, et aI., 1968).
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Precipitation averages 71 cm per year, but has varied from 30 to 127 cm in the

20th century (Allgood, et aL, 1968). The month of May has the highest average

precipitation, 12 cm, and January the lowest, 2.2 cm. Sixty percent of the annual rainfall

comes between May and September. Drought is a common occurrence and is cyclical.

Cycles of drought, including the 18905, 1930s, 1950s, and 1970s, have been observed

during historical times (Muhs, et aI., 1995).

Prevailing winds are from the south and southwest. Strong winds from the north

and northwest occur when strong Arctic high-pressure systems move through the plains

in winter. Brady (1989) examined dunes in Major and Alfalfa Counties for paleowind

orientation and velocity. From his examination of slipfaces in the dunes, he concluded

that the prevailing effective wind direction was south-southwest, but that northwest winds

were important in the formation of some dunes. He concluded that paleowind directions

and velocities for about the last 10,000 years are comparable to modem values.

Soils

Soils in the study area are developed from alluvium of Pleistocene age and

aeolian sand, presumably of Recent age. Most, if not all, of the soils in the study area

have a complex history. Soil profiles at the study site record several cycles of

sedimentation, soil development, and erosion.

Soil Surveys. The soil surveys for Major and Kingfisher Counties have

characteristics that limit their utility for tbis study. The two surveys contain soil maps at

a scale of 1:20,000 (Allgood, et aI., 1968; Fisher, et aI., 1962). The smallest soil

delineation is about 2 hectares, but most are considerably larger. Rangeland areas are
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mapped more generally, with some delineations larger than 400 hectares. The Kingfisher

County Soil Survey was completed using the 1938 system of soil classification (Baldwin,

et aI., 1938). The Major County Soil Survey was completed just as the modem system

was being adopted (Soil Survey Staff, 1975).

The two surveys were made under a system of constraints that produced a

published survey in a relatively short time and with many generalizations. For example,

soil scientists could establish no new series unless they proved a particular soil was more

than 800 hectares in extent and materially different from all other existing series. They

could not have a map unit of an existing series unless they proved the unit was over 80

hectares in extent and was materially different from other map units in the county. The

system was subjective, and the correlator had much control over the definition of a

materially different soil. Map units in the two counties were generalized and grouped

with soils that are found up to 160 km east or west.

The classification system itself continues to undergo change, as the National

Cooperative Soil Survey (NCSS) strives to incorporate changes that will make the system

useful internationally (Soil Survey Staff, 1998). Generalization in soil surveys, and

changes in the classification system itself result in soil surveys that are useful for the

intended purpose, but lack the detail necessary for specific geomorphic studies. Soil

survey maps do, however, record distinct combinations of soil, vegetation, and landscape

position. The mapping gives enough information to produce a rough correlation between

vegetation, soil development, relative age, and distance from the Cimarron River.

Soil Classification. In the current system, soils are classified by the presence or

absence of certain diagnostic horizons, and by the degree or intensity of their expression.
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The classification system does not address, per se, the genesis of the soil. Landscape

position also is not a factor in the classification system. Characteristics that have a. major

impact on how people use the soil figure prominently in the system. Cllinate, parent

material, fertility, weathering, and engineering response figure prominently in the system.

The diagnostic horizons chosen to define the classes reflect the importance to people. In

essence, the system is merely a communication tool invented to share information about

soils for a specific objective (Cline, 1949).

The highest category in the system is the order. Orders are differentiated by "the

presence or absence of diagnostic horizons". The differences among orders reflect the

dominant soil-forming processes and the degree of soil formation. For instance,

Mollisols have a surface horizon that is dark brown or black, are high in organic matter,

high base saturation, a dominance of crystalline clay minerals. By interpretation, these

are primarily prairie soils with high natural fertility and productivity. Currently, twelve

orders are recognized by Soil Taxonomy (Soil Survey Staff, 1998).

The lower categories in the system differentiate between properties that influence

soil genesis and are important to plant growth. Soil moisture and temperature regime,

base status, physical and chemical properties, depth and texture are some of the

properties and characteristics that are considered. Soil Taxonomy, 2nd. Edition (Soil

Survey Staff, 1999) gives an overview of the levels of the system and the criteria for

classification at all levels.

Soil Weathering Processes. Several weathering processes operate to form soils

from aeolian and fluvial sediment. The driving forces in the environment are the

seasonal fluctuations in temperature and moisture. Plants and animals participate in the
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weathering process physically and chemically. Several processes may operate at the

same time throughout the soil profile. For example, eluviation operates on the surface

horizon to remove clay, but illuviation operates to deposit clay in the argillic horizon.

Leaching is the removal of soluble material from the solum by rainwater moving

down through the soil. Leaching of calcium carbonate is one of the first processes to

begin. Young dunes usually have free calcium carbonate in the matrix and pH's of7.5 to

8.2. Nobscot soils are leached of calcium carbonate and pH's of 5.5 to 6.0.

Illuviation is movement ofmaterial into a horizon. Argillic horizons are horizons

where clay accumulates as it is carried down into the profile by water. Melanization is

darkening of the surface horizon as organic matter from plant and animal residue

accumulates. Eluviation is movement of material out of a horizon, for example, the

movement of clay out of the surface horizon and into the subsoil.

Pedoturbation is a broad term denoting mixing in the soil. In sandy soils, most

mixing is accomplished by plant roots and animal activity. This mixing destroys the

original cross-bedding of the dune sediment.

No specific term exists for the process of development of soil structure. Structure

is developed by wetting and drying cycles, pressure from plant roots, swelling and

shrinking ofclay minerals, and burrowing and ingestion by animals. Because

development of structure is a process, individual soils reflect differences in the intensity

of the process and the length of interval since development started.
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Vegetation

Climate, fire, and human activities are the major influences on the vegetation in

Major and Kingfisher Counti,es. A mosaic of tall grass prairie mixed with oak savannah

was the original vegetation before the Cherokee Strip land run in 1893. Appendix A

gives a list of common plants in the study area. Currently, the vegetation on individual

sites is a product ofcultivation, revegetation, grazing, and brush control practices. Even

though people have greatly modified the plant composition, several trends are apparent.

Some plants prefer certain soils. For example, oaks prefer sandy soils with a low

pH. The acidic residue and coarse, woody root mass promote lower soil pH and the

accumulation of organic matter in the upper few centimeters of the soil. Grasses and

forbs dominate loamy prairie sites that have medium textured soils with neutral or basic

pH. Sedges, forbs, and trees that tolerate anaerobic conditions dominate wet sites.
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CHAPTER II

REVIEW OF THE LITERATURE

The System Concept

Friend and Guralnik (1957) define a system as "a set or arrangement of things so

related or connected as to form a unity or organic whole". Ritter et al. (1995) defines a

system as "simply a collection of related components". In a geomorphic context, the

system concept suggests that landfonns are not isolated, geographically or temporally. A

fluvial system requires us to study the whole system, ifwe are going to understand its

complex response to a stressor (Arbogast and Johnson, 1993). This concept provides us

an approach to incorporate all the processes in an area and formulate an understanding of

development over time. To study a landfonn as an isolated entity may result in a faulty

view of the processes that created it, the response of the landform to use by people, or the

response of the landscape to climate change.

Chorley (1962) discussed geomorphology in the framework of general systems

theory. He examined the advantages ofviewing landscapes as open systems, and listed

the benefits of viewing geomorphic systems as open systems. Two key elements in his

study helped prepare the discipline for the concepts of threshold, process linkage,

complex response, and, in general, an acceptance ofcomplexity in the natural system.

These two points are that an open system concept "directs investigation toward ... the
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essentially multivariate character of geomorphic phenomena" and "encourages rigorous

geomorphic studies ... in those regions - and perhaps these are in the majority - where the

evidence for a previous protracted erosional history is blurred, or has been removed

altogether. "

Any landscape system is the product ofseveral episodes ofdifferent intensities in

the driving forces. The interplay of these intensities on process makes each landscape

area unique in its development. To understand the system, the effect each process has

had on the landscape must be assessed. The system concept has been incorporated as an

essential element into the analysis of the sites.

Most research on sand dunes has been conducted on landforms and deposits in

semi-arid areas (Muhs, 1985; Wells, et aI., 1990). This reflects the relative ease of study

in dry areas compared to subhumid regions. Well-developed landfonns, the relative

simplicity of the systems, sparser vegetative cover, and less interaction with fluvial

processes make the arid region studies easier, and more appealing to researchers.

This literature review is arranged by subjects pertinent to the topic: fluvial-aeolian

interaction, Holocene climate and climate change, geomorphic thresholds, soil

development, soil and sediment dating techniques, and aeolian landfonns.

Fluvial-Aeolian Interaction

Climate is one of the forces driving processes that produce a landscape. If a

particular climate persists over time (and other forces such as tectonic remain constant),

eventually the landscape will be almost completely composed oflandforms reflecting that

climate (Ritter et aI., 1995). It is improbable that a landscape exists where fluvial,
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aeolian, glacial, or tectonic processes operate exclusi~ely, but it is possible to find

landscapes where the landfonns reflect the dominance of a single driving force. Western

Oklahoma has many landscapes whose form suggests that aeolian and flu~ial processes

ha~e operated to produce the present-day landscape. Landscapes with forms suggesting

flu~ial and aeolian influences are present throughout the Great Plains. This interaction

between fluvial and aeolian processes in the landscape is an emerging topic in

geomorphic research (Loope, et aI., 1995).

In a system dominated by aeolian processes, wind energy works to dislodge

material and deposit the sand down-wind as dunes or sand sheets. The fluvial system

interacts with the aeolian system as the fluvial processes operate on aeolian sediment that

may be deposited in a stream. If the intensity of the aeolian processes exceed the fluvial

processes (A> F), the sand buries the channel. If the intensity ofthe fluvial processes

exceed the aeolian processes (F > A), the channel is maintained. Thus, the landscape

bears the marks of several different processes, and it follows that the driving forces must

have fluctuated, or some intrinsic thresholds are present in the system.

Studies in print have focused on the effects of sand dunes that have dammed

stream systems (Loope, et aI., 1995; Knapp, 1985). Loope refers to these as "dune

dams", and accepts them as such without further investigation. In the Nebraska Sand

Hills, Loope, et al. (1995) found evidence for multiple episodes of blockage in large

stream systems from dune dams. Their study of lacustrine sediments showed at least two

episodes of dam building. They concluded that from a geomorphic perspective, these

events have a climatic correlation. They also presented evidence for intrinsic control of

the ground-water chemistry and water tables associated with the dune dams.
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Knapp (1985) reported that some wetlands in Iowa were created by aeolian sand

accumulating on uplands. One scenario was of existing watersheds blocked by linear

dunes. Wetlands formed in the channels and valleys blocked by dunes.

Recently, Maxwell, et a1. (1997) presented evidence from the Sahara that entire

fluvial systems had been engulfed with sand during aeolian episodes. They used Shuttle

Imaging Radar (SIR) to detect dendritic channel systems buried by sand. They

hypothesize that a late Pleistocene/Holocene fluvial basin is now infilled with aeolian

sediments.

Evidence is accumulating that aeolian and fluvial processes have interacted in the

current century (Porter, 1997; Porter, et aI., 1999). Aerial photographs from southwest

Kansas show stream channels in the 1930s becoming engulfed with sand. A study of

recent aerial photographs showed that in less than SO years, some stream channels have

been obliterated by aeolian sand (Olson and Porter, 1999). Current interaction includes

instances where fluvial processes are also reestablishing the stream system in an aeolian

landscape. In Alfalfa County, Oklahoma, (section 18, T. 23 N., R. 12 W.) fluvial

processes are reestablishing a stream channel through an area of dunes probably

mobilized in the 1930s and 1950s.

Soil Formation

A traditional study of soil genesis centers on the processes of soil formation

(Simonson, 1959) and the five lIsoil fonning factors" oftime, parent material,

topography, climate, and flora and fauna (Jenny, 1941; Buol, et aI., 1973). For the most

part, pedogenesis and soil forming processes are treated qualitatively. The soils and
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horizons are then described quantitatively by the properties of the various horizons. The

factor of time is treated qualitatively, if at alL Even though soil is stated to be a dynamic

system (Buol, et aI., 1973, p. 13), soil science and soil classification in the United States

strongly emphasizes the physical properties identified as being important to people. Most

soil scientists do not have quantitative data about the time that it takes to form soil

horizons. In addition, wide variations in climate affect the rate and intensity of the

various processes (Simonson, 1959), making the time and rate of formation a formidable

subject.

As the technologies develop to provide dates, more researchers are studying the

absolute ages of soils and soil horizons. Absolute age data for specific features and

horizons are more common, and cause soil scientists to re-calibrate their ideas of rates of

processes and landscape stability.

Several researchers have used soil characteristics along with dating technologies

to support hypotheses for sand movement during the Holocene. Arbogast (1997) showed

that dunes in Michigan were of the same age by comparing soil development on the

dunes. He correlated the development of the Spodosols on dunes with dated organic

matter in peat underlying the dune.

Holliday (1985) studied the development of soil in mostly fine-grained aeolian

sediments at the Lubbock Lake site. Of the late Holocene deposits, the youngest is <100

years old, the middle is about 450 years old, and the oldest is about 4,500 years old. The

soils show a definite progression in development from younger to older. The youngest

have slight additions of organic matter, little translocation of calcium carbonate, and little

pedogenic development. The moderate age soils have well-developed B horizons, with
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strong structure and an accumulation of illuvial clay. The older soils have pachic or

cumulic surfaces, weak, argillic B horizons, and significant calcium carbonate illuviation

in the lower subsoil.

Gile (1981) studied sandhill soils in Bailey County, Texas. He separated 15

different 'soils' based on weathering and profile differences. The soils tbat developed in

Holocene sediments were primarily divided on the basis of lamellae development:

abundance, thickness, and depth. He also noted that "sandy C horizons between sets of

genetic horizons demonstrate both the episodes of sedimentation and soil burial" (Gile,

1981). He based his relative age determinations on correlations with radiocarbon dates in

the Texas panhandle.

Soil development and geomorphic position are two methods that have been used

to establish relative age relationships between Quaternary deposits. Robbins (1976) used

structural development, depth of calcium carbonate leaching, and geomorphic position to

separate the terraces of the Cimarron River in Payne County, Oklahoma.

Muhs (1985) used soil-stratigraphic methods to derive relative age estimates. He

compared soil development in the Colorado dune fields with the Nebraska Sand Hills and

found similar soil development. Radiocarbon dates from the Nebraska soils had a

maximum-limiting age of around 3,000 years, which led him to conclude that the

Colorado sands were active from about 3,000-] ,500 years BP. He also concluded that the

dunes stabilized around 1,500 years BP, with pedogenesis commencing at that time.
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Holocene Climate and Climate Change

An overview of research on climate change is important to this study because soil

development is a function of climate, as are landforms. Widespread interest in climate

change is fueled by speculation relating to global warming. There is speculation that

wanning on a global scale will increase temperatures in the Great Plains and have a

negative effect on vegetative cover and landscape stability. Since historical records for

the study area were not kept until after 1890, researchers use climatic modeling and the

sedimentary record as proxies for Holocene climate and geomorphic processes.

The term 'climate change' itself is subject to misinterpretation - namely that

climate is naturally stable, and any variation is 'unnatural' and hazardous. A review of

climatic variability in the United States over the past 2,000 years gives evidence that the

climate naturally varies, including drought of varying length, geography, and intensity

(Woodhouse and Overpeck, 1998b). Emerging research from western Oklahoma

indicates a 400-year cycle ofmesic and xeric episodes during the last 2,000 years

(Thurmond and Wyckoff, unpublished data, 1999). The concept of 'climate change' may

stem from humans' limited life span and inability to perceive the natural variability ofthe

climate.

Several researchers have concluded that significant variations in climate occurred

in the Southern plains during the Late Pleistocene and Holocene (Hall, 1982, 1988, 1990;

Humphrey and Ferring, 1994). Dates for large geomorphic events (i.e. paleofloods)

correlate with these climatic variations in the Great Plains (Ely, 1997; McQueen, et a1.,

1993). It may be that periods of dune construction are associated with the system

instability during these climatic shifts.
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Kibler (1998) studied aeolian sediments in a rock shelter in Garza County, Texas.

His analysis showed a marked increase in aeolian sediment between 900 and 700 years

BP. Three separate aeolian events were recorded in the sediments in the shelter. He

concluded that aeolian deposition marked a shift to a climate that was drier and more

variable, and "increasingly arid in the second millennium".

Swinehart (1995) argued that the sands overlying peat in localities covering

15,000 km2 of the Nebraska Sand Hills indicate extended drought conditions with

regional mobilization of sands. Madole (1994) indicated that aeolian sand deposits in

northeastern Colorado record depositional periods in the early, middle, and late

Holocene. Archaeological evidence, soil development, and dune topography indicate the

youngest deposits may be less than 1,000 years old.

Arbogast and Johnson (1998; Arbogast, 1994) found episodic sand mobilization

throughout the last 10,000 years and significant activation in the last 2,500 years near

Great Bend, Kansas. The sand sheets and dunes were mobile from about 5,700-4,800,

2,300-1,700, 1,600-800, and less than 200 years BP. Mineralogical studies of the Great

Bend sand plain showed that the dunes are little weathered and are similar in composition

to the source sediments from the Arkansas River (Arbogast and Muhs, 1998). They

concluded that the Great Bend dunes could have formed in the last few thousand years.

Swinehart (1991) studied dunes in the Nebraska Sand Hills that gave evidence of

significant migration between 9,000 and 3,000 years BP, and reactivation after 2,000

years BP.

Recently published studies by Muhs, et al. (1996) gives additional evidence for

deposition between 4,000-1,500 years BP and additional periods of deposition around
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1,000 years BP. He concluded that northeastern Colorado is very near a climatic

boundary that separates active from stable sand. This evidence from Muhs, et al. (1997)

agrees with Arbogast (1993, 1994) that significant aeolian activity has taken place within

the last 800 years.

The widespread deposits of aeolian sand in Colorado led Madole (1995, 1994) to

conclude that the climate has been dry enough to cause regional sand mobilization in the

last 1,000 years. Even though model simulations show minimal climatic variability, the

stratigraphic and soils evidence supports an arid period around 1,000 years BP in eastern

Colorado.

Evidence exists for severe drought on the Great Plains in the 18th century (Meko,

1992). Meko's analysis of dendrochronological data indicates that the droughts of the

1800s were more severe than the historical droughts of the 1930s and 1950s. Explorer's

diaries and other written evidence (Mubs and Holliday, 1995) corroborate Meko's

analysis.

Ahlbrandt, et al. (1983) collected much of the research on dune fields of the

northern Great Plains. They concluded that several episodes of aeolian activity occurred

in the Holocene. They used evidence from several disciplines to reinforce their

hypothesis, including radiocarbon dates, archaeological evidence, and palynology. Hall

(1990) studied stream channels in the southern Great Plains and developed a chronology

ofHolocene climate based on rates of alluviation and channel trenching.

If aeolian activity affected sandy sediments during the Holocene, fmer-grained

materials should also have been mobilized. Willey and Johnson (1998) studied the

Bignell loess in Kansas and Nebraska. They reported soil development in the loess
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deposits at about 7,500, 6,000, and 3,000 years BP, with deposition in the intervening

intervals. The lack of soil development between 3,000 and 6,000 years BP indicates

relative instability during the middle Holocene. Olson, et a1. (1997), however reported

middle Holocene soils developed in the loess ofwestern Kansas. Mason and Kuzila

(1998) reported. a four meter thick Holocene loess sequence in central Nebraska. Three

paleosols are present in the loess, dated at 9,330, 8,790, and 3,010 years BP. The

paleosol dates represent stable periods, and the periods of loess deposition should

correspond with arid climatic episodes.

Other measures are also a proxy for climate. The MglCa ratio ofostracode shell

is a proxy for salinity and aridity. Yu and Ito (1999) examined MglCa ratios in

ostracodes from Rice Lake, North Dakota. Their data shows a climatic periodicity of

about 400,200, 130, and 100 years. The drought history at Rice Lake correlates with

principle solar oscillations of Stuiver and Braziunas (1989). They suggested that solar

forcing is the dominant factor in drought frequency in North America. The 400 year

cycle also correlates with data from Roger Mills County, Oklahoma (Thurmond and

Wyckoff, unpublished data, 1999). Their data indicates a 400 year cycle of occupation

and abandonment by native peoples, with aeolian deposition during periods of

abandonment.

Sediment Dating

Radiocarbon techniques may be used to date sediments, soil organic matter, bone,

charcoal, and wood. Soil humus is an important source of datable carbon on the Great

Plains. Madole (1994) studied recent «1,000 years BP) aeolian sands in Colorado.
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Preliminary correlations with archaeological dates indicate the dates from total soil

humate samples appear to be reliable. He argued that dates from soils in arid areas do not

have the problems associated with humate samples in humid regions. Lichter (1997)

used AMS 14C dates to establish the chronology of beach-ridge formation on Michigan.

By careful sampling of buried plant remains, he found that the dates reliably estimated

the timing of ridge development. Bartlein, et al. (1995) demonstrated the importance of

calibrating radiocarbon ages. A calibration program (Stuiver and Reimer, 1993) adjusts

radiocarbon dates for the fluctuating production of radiocarbon in the atmosphere.

Others are more pessimistic that the dates for soil organic carbon are reliable.

Martin and Johnson (1995) split a variety of soil samples and submitted them to two

laboratories for dating. They dated total, residue, and humic acid fractions, and found

that dating results may vary widely between laboratories. Of 21 samples, only seven had

2-sigma (two standard deviation) ranges that overlapped. Of these seven, five were late

Holocene samples. Older samples showed more variation between laboratories and

methods.

Wang, et al. (1996) evaluated radiocarbon ages of soils with a mathematical

model that incorporated the carbon dynamics of the system. They cautioned that dating

buried horizons over-estimates the true age ofburial. There are continuous additions and

removal of organic matter from a soil. The age of a soil humus sample will be an average

of the time since soil development began, or since a steady state was reached.
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Aeolian Landforms

Brady (1989) concluded that the paleowind speed and direction that emplaced

dunes in Major and Alfalfa Counties, Oklahoma were similar to the modem prevailing

winds. He showed that several periods of aeolian activity occurred in the Late

Pleistocene and Holocene, reporting radiocarbon dates of paleosols beneath dunes

ranging from 1,200 years BP to 11,345 years SP. The correlation between dune age and

the mapped soil series was low. Less developed soils sometimes occupied dunes with old

radiocarbon dates.

Kocurek and Nielson (1986) and Fryberger, et a1. (1979) describe factors that

influence the formation of sand sheets. Wells, et al. (1990) summarized the factors that

affect the fonnation of sand sheets. He noted that vegetation, grain size, high water

tables, and surface cementation promote the formation of sand sheets. In addition,

undulating topography can affect the flow of wind over the land surface and promote the

formation of sand sheets. The development of sand sheets is related to relatively moister

conditions than other aeolian landforms.

The most common dune form in the Chaco dune field (northwestern New

Mexico) is the detached parabolic dune. Blowouts have destroyed the noses of these

parabolic dunes, and they are often misidentified as parallellinear dunes (Wells, 1990).

Ridge dunes also occur in the Chaco dune field on the edge of upland pediments. They

are most extensive adjacent to thick fluvial deposits in paleochannels. He found a wide

variety of aeolian landforms associated with late-Holocene activity. The late-Holocene

landforms are the most variable of all the aeolian Landforms developed during the
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Quaternary. Also, the widespread sand deposits have such high infiltration rates: that they

restrict the development of fluvial drainage networks.

Lancaster (1997) studied dune systems in southern California from a system

perspective. He showed that precipitation is the major factor in aeolian activity at a

decadal to century scale. The system perspective allowed him to relate dune activity in

the Coachella valley to sediment supply. The sediment supply is controlled by fluvial

activity (episodic valley dissection and sediment delivery), and is related to precipitation

patterns and amounts.

Fluvial Landforms

Arbogast (1994) worked to correlate events such as soil development (an

indication of stability), aggradation, and channel trenching in river basins in Kansas. He

found a broad correlation for Holocene climate change across the region, based on

radiocarbon dates of floodplain soils and chamtel cuts and fills. In the Wolf Creek basin

of Kansas, he found that the variation between tributaries and segments of the main

channel support the ideas of complex response and process linkage in geomorphic

systems.

Mandel (1998) made an extensive investigation of geomorphic processes in the

Kansas and Arkansas River systems. He found that erosion, alluviation, and soil

development were diachronous through a basin, but were synchronous between large

basins. Small, low order tributaries reacted differently to external climatic controls than

the large, high order main streams.
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Ward and Carter (1999) calculated the incision rates for rivers in the middle

Arkansas River basin. They used volcanic ash beds as markers and estimated incision

rates slnce placement of the ash. As part of this study, they measured the stream gradient

at locations in the study. In tenns of absolute slope, the gradients varied from 0.0006 to

0.0025. Gradients vary between streams and along individual streams.

The number of terrace levels along the rivers of westem Oklahoma depends on

the researcher and the size of area studied. Most theses and small studies report four

terraces along the Cimarron River (Nayyeri, 1975; Meyer, 1973). Carter, et al. (1990)

correlated stream terraces with soil series and elevation in western Oklahoma. He

identified five or six terrace levels on the south side of the Cimarron River, but made

only limited investigations on the north side ofthe Cimarron River.

Schumm and Lichty (1963) studied the flood plain and channel of the Cimarron

River in southwest Kansas. They found that channel processes on this type of riv r are

dependent on climatic factors. Periods oflow precipitation had the largest runoff

producing events and largest floods. This is consistent with James' (1823, in Muhs and

Holliday, 1995) observation on the Canadian River and with Bryan (1940) and Antevs

(1952).

Geomorphic Issues

Intrinsic and Extrinsic Factors

Arbogast and Johnson (1998) concluded that the development of dunes and other

aeolian features in Kansas were in response to climate change. Pedogenesis occurred
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during moist intervals. and aeolian activity. including truncation and deposition occurr d

during relatively dry periods.

Loope, et al. (1995) made the point that once a dune dam is in place. the

hydrology of the area is controlled by intrinsic factors of the dam - hydraulic

conductivity. height, and location. The initial development of the dam is controlled by

the climate. an extrinsic factor.

Fonnan. et al. (1995) inferred that the dry middle Holocene was the result of a

shift of the Bennuda high to the east of its nonnal position. They maintained that the

aeolian activity was a response to extrinsic forcing by the climatic factors.

Lemmen (1998) studied geomorphic response to climate change on the southern

Canadian prairies. He found that aeolian activity shows the "most direct and predicable

response to climate change", and that widespread aeolian activity was present as recently

as 150 years BP. The fluvial response is the least predictable, and that poor correlations

between valleys are the result of intrinsic factors. He also concluded that dunes on the

Canadian plains are close to threshold conditions for mobilization.

Complex Response

Maxson and Walby (1998) described geomorphic processes and landscape in

Minnesota in the 1930s. Aeolian deposition in Lake Ann resulted from dune denudation

and mobilization. At the same time, tributaries of the Mississippi River aggraded when

large precipitation events eroded valleys and silty plateaus. The valleys and plateaus had

low vegetative cover due to the drought.
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In a study from San Diego County, California, Kochel, et al. (1997) demonstrated

complex response by a landscape system to minor climatic changes. During a six year

wet period (1978-1983), the landscape response varied according to the plant community.

Mountain slopes experienced an increase in vegetation cover, and a low sediment yield.

The desert shrub community yielded the most sediment with no increase in vegetative

cover. Along the San Felipe River, aggradation and downcutting occurred

simultaneously on different reaches. Aggradation began at different times on different

reaches. The upper reach began to aggrade in 1983 at the end of the wet period, and

continued for several years.
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CHAPTER III

METHODS AND MATERIALS

Several methodologies were employed to investigate the geomorphic processes

that have been, and are active at this site. The first action was interpretation of aerial

photographs and soil maps. A regional geomorphic surface map of the region was

prepared, covering about 390 krn2
. Soil development and sedimentology ofthe site were

inferred from 22 cores taken from the two sites on the Qt2 terrace (Figure 4). Selected

horizons were sampled for radiocarbon dating. A total station survey of the Hanor farm

site provided accurate vertical control for correlation of the profiles. Finally, gradients of

the terrace levels and streams in the region were used to correlate the terrace surfaces.

Photo Interpretation

Aerial photos of the site were obtained from the Natural Resources Conservation

Service. Standard monochrome coverage at 1:7920 scale (12.6 em per km) is usually

flown during the winter (leaf-off) to obtain the best image of the ground and topography.

Several different years, 1997, 1990, and 1982 were available at the offiee at Fairview,

Oklahoma. Older aerial photos dating back to 1937 were obtained from Felder

Surveying, Okeene, Oklahoma and examined.
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Dune shapes and sizes are easily delineated with stereo coverage on aerial photos.

Dune fields were identified in various locations on the flood plain and terrace levels QU

through Qt8. Land use and vegetation are easily discriminated on the photos, and many

individual species of trees can be identified on the photos. An analysis of land use,

vegetation, relief, slope, dune form, and direction gives a qualitative evaluation of the

changes in morphology since dune emplacement.

The relative sand supply and duration of arid episodes can be inferred from the

dune morphology. Younger groups of dunes (near the river) can also be separated based

on morphological differences that appear on the photographs. The width of the dune

fields and appearance ofclimbing dunes were also inventoried.

Surface Mapping

Geomorphic surfaces and landforms of the region surrounding the study sites

were mapped to place the study sites in a regional perspective. The geomorphic surface

map covers approximately 390 km2 in Major and Kingfisher Counties (Figure 3). The

common landforms in the mapped area include dunes, sand sheets, fluvial stream terrace

treads, flood plains, terrace escarpments, and stream valleys. Defmitions for each

landfonn encountered are listed below.

1. Valley - "low-lying land bounded by higher ground, usually traversed

by a stream or river. .." (Bates and Jackson, 1984, p. 550).

2. Flood plain - "the relatively flat surface occupying a valley bottom,

underlain by unconsolidated sediment ... and subject to periodic flooding"

(Ritter, et aI., 1995, p. 231).
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3. Terrace - "abandoned floodplains ... fonned when the river flowed at a

higher level than at present"(Ritter, et al., 1995, p. 240). It is interesting to

note that Ritter links landform to process with the following: lithe

presence of a terrace demands an episode of downcutting" (Ritter, et aI.,

1995, p. 241). The relatively flat upper surface of the terrace is the tread.

4. Escarpment - "the steep slope connecting the tread" of a terrace "to any

surface standing lower in the valley" (Ritter, et aI., 1995, p. 240).

5. Dune - "a mound, ridge, or hill of wind-blown sand..." (Bates and

Jackson, 1984, p. 154).

6. Sand sheets - "tabular bodies of sand ." often marginal to dune fields"

(Ritter, et aI., 1995, p. 282).

The geomorphic surface map (Figure 3) was prepared using field examination, the

published soil surveys, and USGS 7.5' topographic quadrangles. Observations were

made along section line roads and field roads including the soils and landscape features.

Features are separated based on shape, elevation, slope, vegetation, soils, and gradient

direction. Most of the area is cultivated, and entire sections are usually visible.

Escarpments were located visually, and confirmed on the topographic maps. Many of the

terrace treads are covered with sand sheets. Relatively thin sand sheet mantles are

mapped as an inclusion on the terrace surfaces. Less than about one meter of sand, slope

less than 3 percent, and mostly cultivated land use were the criteria for choosing to

include thin sand sheets with the terrace surface. Terrace escarpments obscured by sand

dunes are not shown. Inadequate information usually did not allow accurate placement of

buried escarpments.
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Stream and Surface Gradients

Gradients ofthe streams were taken from USGS topographic maps, 7.5 minute

series provided the gradients of the streams, valleys, and terraces in the region. To assess

the validity of the geomorphic surface mapping, cross-sections of the topography across

the terrace system were prepared. The cross-sections show the elevations from the west

side of the Cimarron River to the uppermost terrace level (Figure 3). Section A-A'

(Figure 5) shows elevations from the river, northeast through the Hanor farm site, to the

divide west of Ames. Section 8-8' (Figure 6) shows elevations from the river south of

the confluence with Indian Creek, northeast to a point 1.61 km west of Meno, Oklahoma.

Section C-C' (Figure 7), running east to the Garfield County line shows the surface

slightly to the south ofthe Hanor site.

Soil Profile Coring, Description, and Sampling

A truck-mounted Giddings probe was used to procure soil cores at the study sites.

The Giddings probe is a hydraulic, power take-off operated machine capable of taking

undisturbed soil cores up to 12 meters deep. Actual depth achieved depended on soil

texture and groundwater conditions. Augur samples can be taken with the Giddings

probe up to 15 meters deep. Most cores recovered were 7.62 cm in diameter. Some of

the deeper cores were 5 em in diameter. Occasionally, soft sediments or groundwater

prevented acquisition of suitable core sample. In those instances, the augur was used to

obtain samples, but augur samples are well mixed, structure is destroyed, and actual

depth of the sample is questionable.
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Sample tubes for the Giddings can collect up to one meter of undisturbed sample

per push. On obtaining a core sample, it was removed out the top of the tube, and laid

out on a tarpaulin for examination. A detailed description of each core was prepared

(Appendix B). Descriptions comply with the standards of Schoenberger, et al. (1998).

Compressibility of soil samples is a concern. Surface layers tend to compress

more than subsoil horizons, but vertical accuracy is maintained by careful measurement.

Surface thickness measurements from satellite samples provide a check on surface layers.

Calibrated probe tubes and extension bars helped to maintain accurate depth

measurements of deeper samples.

The topographic map ofthe Hanor farm shows a wide, shallow depression

running north-south through the middle of the farm (Figure 8, 9, 10). To investigate the

site, a transect was made in a north-south direction through the depression, and transects

on the adjacent dunes were aligned in the same directions. Three to four cores were

taken in each transect. Additional cores on other parts of the landscape were taken to

confirm the evidence from the primary cores (Table I).

On the Hajek ranch, the windward side of the dune field is expressed in a complex

field of dunes. A small perennial stream flows southwest through the dunes at this site

(Figure 4, 11, 12). Eight cores were taken and described on the Hajek ranch, and the

landscape on both sides of the perennial stream was examined. Two cores were taken on

dune summits to examine the highest dunes, look for the depositional episodes, and

describe the underlying terrace. Four interdune locations were cored to examine the sand

sheet stratigraphy and the terrace surface. Two locations were cored along the stream

channel and valley to examine the sediments and processes along the stream. The cores
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Figure 9.
Portion of Ames Quadrangle,

.• showing Hanor farm site.
Scale = 1:24,350.
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Figure 10. Aerial Photograph
of the Hanor Farm.
Scale=l:lO,500.
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Figure II.
Part of Ames Quadrangle,
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Scale = 1:24,550.

ARDS

~ O:lA:O-:A-\

CJ
(JADRANGlE LOCATtON

45

Primary hl~hway, '.
hard surface .

S€condarytllghway,
hard surface

G Interstate Rou!e



.s:.
0\

Figure 12. Aerial
Photo of Hajek
Ranch Site.
Scale = 1:6,300.



on the Hajek ranch also were taken to locate the buried terrace surface and the buried

escarpment at the proximal edge of the terrace (Table I).

Thirteen profiles on the Hanor farm and eight profiles on the Hajek ranch were

cored and described, and selected profiles and horizons were sampled for radiocarbon

dating. Radiocarbon samples were inspected for contamination from other horizons and

any soil or dust that could contaminate the sample was removed.

TABLE I

Landscape Positions Of Described Pro.files

Pedon
number

98-0K-093-1
98-0K-093-2
98-0K-093-3
98-0K-093-4
98-0K-093-5
98-0K-093-6
98-0K-093-7
98-0K-093-8
98-0K-093-9
98-0K-093-10
98-0K-093-11
98-0K-093 -12
98-0K-093-13
98-0K-073-1
98-0K-073-2
98-0K-073-3
98-0K-073-4
98-0K-073-S
98-0K-073-6
98-0K-073-7
98-0K-073-8

Site

Hanor
Hanor
Hanor
Hanor
Hanor
Hanor
Hanor
Hanor
Hanor
Hanor
Hanor
Hanor
Hanor
Hajek
Hajek
Hajek
Hajek
Hajek
Hajek
Hajek
Hajek

Position

depression
summit of longitudinal dune
depression
depression
summit of blowout dune
dune summit
sandsheet
sandsheet
summit of longitudinal dune
depression
depression
summit of ridge dune
depression
i.nterdune
dune summit
dune summit
stream valley
interdune
stream floodplain
interdune
interdune
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The large dune field that partially covers the Qt2 surface runs for more than 16

km along the terrace. The slip face, or lee edge, of the dune field is present on the Hanor

fann. The windward proximal slope is present on the Hajek ranch.

Soil Profile Interpretation, Stratigraphic Methods

Texture, horizon development, presence or absence (truncation) of horizons, clay

illuviation, buried surfaces, structure, and relationship to the su.rface topography provide

evidence to establish the processes and stratigraphic relationships. Other soil

characteristics such as color, pH, calcium carbonate content, roots, pores, and other

mineral concentrations preserve relict evidence of the soil environment before burial.

Each profile was examined to establish the stratigraphy and depositional

framework. The soil texture, grading, and depositional structure establish whether the

sediment is aeolian or fluvial. For aeolian sands, the depth of weathering establishes the

length oftime since emplacement. Destruction of cross-bedding and development of soil

structure is a primary measure ofweathering. Buried surface horizons define the end of

stable periods and the beginning of aeolian depositional events. Truncated profiles in the

section are evidence of erosional events preceding subsequent deposition. Features such

as illuvial clay, concretions, redoximorphic features, strong structure, and biological

relicts are evidence for stable soil-forming intervals. The thickness of buried solurns is

evidence for the intensity and duration of soil forming intervals.
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Relative Dating Methods

Relative dating methods rank a group of features, in this case, dunes from

youngest to oldest. Relative dating does not provide absolute dates for deposits or

processes, but establishes age relationships between features. It provides additional or

corollary evidence for absolute dates and a quick way to examine large geographic areas.

Relative dating methods have been used on the Cimarron River by other researchers

(Robbins, 1976; Brady, 1989).

In the study area, several characteristics associated with the dunes provide

information to rank the dune formations from youngest to oldest. Vegetation, depth of

weathering, development of the soil profile, dune pattern, position, distance to the sand

source, and dune morphology all give clues to the relative age and relationships of the

major dune fields. During preparation of the geomorphic surface map, these

characteristics were inventoried and used to support the correlation. The types of dunes,

abundance of each type, slope, shape, and height were noted. Percentage of ground cover

and percentage of the dune field cultivated, estimated from aerial photos was inventoried.

Radiocarbon Dating

Three samples were selected for radiocarbon dating and sent to Beta Analytic labs

in Miami, Florida. The samples were selected to provide delimiting dates for the aeolian

processes. The sample from pedon 98-0K-093-3 on the Hajek ranch is the Ab horizon,

at 457 to 495 em. This horizon was the surface of the soil that developed on a sand dune,

later buried by the last aeolian episode.
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The two samples from pedon 98-0K-093-6 are two buried surface soils in the

high dune that is part of the eastern group of dunes on the Hanor farm. The upper sample

is from the Ab horizon, at 307 to 337 cm. It is also the surface horizon of a buri.ed dune,

and stratigraphically at the same position as sample 98-0K-073-3. The lower sample is

from the 4Ab horizon at 665 to 693 cm, the surface horizon of the Qt2 surface.

Sample Treatments

The amount of soil for analysis was limited to the amount from the core. About

500 grams of each sample was submitted to Beta Analytic. Pretreatments were applied to

isolate the 14C that best represents the time event of interest. The pretreatment regimen

depends on the material submitted and its context in the environment. Oklahoma soils

are generally high in carbonates, and the pretreatment to remove them is intense (Beta

Analytic, 1999). The sample was subjected to repeated acid (Hel) washes to remove

carbonates. The treated sample did not have enough carbon for conventional analysis.

The remaining carbon was reduced to graphite and sent to one of the collaborating

facilities for accelerator-mass-spectrometer (AMS) l4C measurement. Beta Analytic

prepared the calendar calibration and isotopic correction, and delivered the final results

(Beta Analytic, 1999).
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CHAPTER IV

RESULTS AND DISCUSSION

The sections of this chapter give the results of the different segments of this study.

The sections are arranged by regional surface mapping, radiocarbon dating, soil­

stratigraphic studies, and relative dating studies. The results of these analyses are used as

appropriate to discuss the major points listed in the introduction and hypothesis.

Regional Surface Mapping

The surface map covers 390 k:m2
, and includes the Hanor farm and Hajek ranch.

The boundaries of the mapped area are, on the south, Oklahoma state highway 51, on the

east, the Major County line, and on the west, Indian Creek and the Cimarron River. The

north boundary is the section line 1.6 km south of highway US 412.

The geomorphic surface map (Figure 3) shows eight major terraces (Qt1 thru Qt8)

in the mapped area. Each terrace has a field of sand dunes associated with it. Ridge

dunes are parallel with the terrace and are usually located on, or adjacent to, the

escarpment. At least part of each escarpment is mantled by sand dunes. Subsequent

remobilization has modified the dunes, spreading dunes and sand sheets onto terrace

surfaces. A wide range of aeolian landforms is present on the terraces.

This is the first detailed mapping of the terraces on the Cimarron River in western

Oklahoma. Previous work (Ward and Carter, 1999; Nayyeri, 1975; Meyer, 1973)
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identified 4 to 6 or more- terraces. The eight terraces identified in this report define the

alluvial sequence from the flood plain up to the elevation between Ringwood and Meno,

Oklahoma. Additional terraces north ofthe mapped area are not included in this study.

Two or three higher terraces are on the divide between the Cimarron River and Salt Fork

of the Arkansas River, between 408 and 442 meters MSL. The highest terrace in this

study has an elevation of 399 to 405 meters MSL. The elevation change between terraces

is generally 3 to 6 meters.

The Qt1 terrace is an average of 17 meters above the Cimarron River. The Hanor

fann and Hajek ranch sites are located on the Qt2 terrace, about 27 meters above the

river. The Hanor farm is on a narrow part of the Qt2 terrace, and occupies the levee,

valley flat, and backswamp positions on the terrace. The Hajek ranch site is on the

proximal portion of the Qt2 terrace and occupies the levee and valley flat positions. On

the Hajek ranch, dunes and the sand sheet accompanying them mask the terrace

escarpment.

Several features have geomorphic significance. The terraces vary in width. Qt3,

Qt5, Qt6, and Qt8 are the widest terraces. Qt I is present at the junction of Indian Creek

and the river, and a small area south along the river. Qt2 is present, but is narrower than

the older terraces, and is mostly covered with dunes. Qt6 and Qt7 are associated with

Turkey Creek. Qt4 is present only sporadically, but it is normal that terraces are not

equally preserved. Sand is present in different abundance on each terrace. The size of an

individual dune field is a relative measure of the duration and intensity of the depositional

processes.
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The pattern of older dunes (on the Qt4-Qt8 terraces) is more complex because of

repeated mobilization. Dunes cover the terrace surfaces and join deposits ofdifferent

age. Sand sheets ofvarying thickness mantle much of the terraces. This complex of sand

hills isolates some terrace surfaces, both longitudinally and across the gradient. Surfaces

are correlated based on the elevation, gradient, and relation to higher and lower terrace

remnants. The cross-sections provide a test and correlation for the surface mapping.

Legend

The terrace levels are mapped from youngest (Qtl) to oldest (Qt8). One isolated

area of a small terrace is designated as QtO.5, lying below the Qtl terrace but above the

flood plain. The abundance of sand masks any other evidence ofthe QtO.5 terrace. A

boundary separating two terrace units indicates an escarpment.

The dune fields are mapped as Quaternary sandhills, Qsd, with the exception of

the young sands mapped in the Tivoli series, Hsd. The Tivoli unit is a wide dune field

occurring between the flood plain and stream terraces. It was completely deposited

during the Holocene, but some of the younger Qsd dunes were possibly deposited or

extensively modified during the Holocene. Multiple episodes of local and regional

reactivation makes mapping divisions in the older sand deposits less meaningful at the

intensity and scale ofthis map. The flood plain, Qal, includes all frequencies of flooding.

The modem dunes on the flood plain are an inclusion in the flood plain map unit.

53



Cross-sections

Three cross-sections of the surface topography were prepared to test the surface

mapping. Terrace treads, ridge dunes, depressions, escarpments, and sandhills are shown

on cross-sections. Depressions in the landscape represent the backswamp positions. The

ridge dunes appear at the escarpments, and the newest ridge dune shows up at the

riverbank on section B-B' (Figure 6). The cross-sections show the relationships between

the terraces and the sandhills.

Section A-A' (Figure 5) shows the topography from the river northeast through

the Hanor site, to the Garfield County line. The highest terraces are absent in this

transect, not extending down the interfluve between the Cimarron River and Turkey

Creek. This transect shows the terraces descending towards Turkey Creek. The terraces

that grade to Turkey Creek have only minor areas of sand, and the escarpments are more

evident. The Qt2 and Qt3 terraces have backswamp positions that were presumably

consequent streams until the aeolian sand blocked the flow, The Qt4 and Qt5 terraces are

poorly represented on this transect. The sand hills have almost obscured these terraces.

Section B-B' (Figure 6) shows seven terraces from the confluence of Indian Creek

and the Cimarron River to a point 1.6 k.m west of Meno. Ridge dunes are adjacent to the

flood plain, Qt1, Qt2, and Qt6. Depressions on Qt2, Qt4, and Qt8 indicate backswamps

with possible consequent streams.

Section C-C' (Figure 7) shows the surface slightly to the south of the Hanor site,

running east to the Garfield County line. The ridge dunes at Qt2 and Qt3 are clearly

seen. Qt4 and Qt5 are evident in this transect, but terrace Qt6 does not come this far

down the interfluve. Cross-sections A-A' and C-C' clearly show the wide dune field that
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accompanies the Qt2 terrace. This event was clearly longer and/or more intense than

some other events.

Stream and Terrace Correlation

The stream terraces appear to be related to the modem Cimarron River, although

the study area includes portions of the basins of Indian Creek, Hoyle Creek, and Turkey

Creek. The terrace gradient and direction are indicative of the stream that produced the

terrace. Terrace Qt6 is mostly associated with Turkey Creek, but portions ofQt4 and Qt5

grade to Turkey Creek (Table II). Terraces that may be associated with Indian Creek are

too small to measure gradient or direction.

TABLE II

Gradient of Streams and Terrace Surfaces

Cimarron
River
River
Flood plain
Qt1
Qt2
Qt3
Qt4
Qt5
Qt7
Qt8

absolute
slope
0.00089
0.00100
0.00055
0.00114
0.00100
0.00097
0.00066
0.00063
0.00126

meters/km

0.89
1.0
0.55
1.14
1.00
0.97
0.66
0.63
1.26

grading towards:
direction
SE
SE
SW, to Cimarron River
SW, to Cimarron River
SW, to Cimarron River
SW, to Cimarron River
SW, to Cimarron River
SSW, to Cimarron River
ESE

Turkey Creek Terraces
Stream 0.0006
Flood plain 0.0009
Qt4 0.0007
Qt5 0.0005
Qt6 0.0004

0.6
0.9
0.7
0.5
0.4

ss

S
S
E, to Turkey Creek
E, to Turkey Creek
E, to Turkey Creek



Results of Radiocarbon Dating

Radiocarbon dates from three samples are reported. Two samples from profile

98-0K-093-6 on the Hanor farm and one sample from profile 98-0K-073-3 on the Hajek

ranch provide absolute dates for the soil organic matter in buried surface horizons (Table

Ill, IV).

Dating soil organic matter is considered problematic by some researchers (Wang,

et aI., 1996). They argue that the age of the stable organic carbon can not possibly be the

same as the surface. The age of a fresh surface at 0 years will have zero organic content

derived from plant/animal remains. A surface 100 years old will have an organic carbon

content that has accumulated for 100 years, and will have a radiocarbon date somewhere

between 0 and 100 years, younger than the true age of the surface. The radiocarbon date

for organic matter in a surface horizon will be younger than the surface because of the

length of time organic carbon has been accumulating. The offset between the surface age

and the organic matter age is not stable; it will vary, based on rates of mineralization and

formation. At some point in soil development, a steady state will result, when the rate of

formation of stable organic matter balances with the rate of mineralization. Experimental

evidence for the time to reach this steady state is lacking, and is considered to be climate­

specific (Wang, et aI., 1996). Wang et al. present a method to correlate the soil organic

carbon dates, however, they admit to using assumptions because of the lack of

experimental data.

The radiocarbon date of a buried soil, at the time ofburial will be older than the

burial date, probably about 100-300 years. As the deposit ages, the difference between

the age of the surface and the radiocarbon age of the organic carbon is preserved as an
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offset. This offset is not easy to determine, and may require research that is specific to

one climate, soil, and vegetation combination. For the samples analyzed, no method is

available that can assess if the steady state in soil organic matter was reached.

The small sample size recovered from the 7.62 cm diameter core was not

adequate for conventional radiometric dating, and had to be AMS dated. The depth of

the samples did avoid problems commonly associated with shallow depth. Post­

depositional processes often modify the organic matter in shallow samples. Modem plant

roots, animal activity, soluble organic matter contamination, and carbonates all contribute

to uncertainty in age determinations (Martin and Johnson, 1995). Deeper samples are

less likely to be contaminated by any of these processes.

The data do not establish with certainty whether burial was rapid or slow.

Deposition certainly overwhelmed the soil melanization process. No evidence was found

of any modem roots or post-depositional burrowing that would affect the radiocarbon

dates. No burrows or worm casts are present of younger sediment, indicating that

biological activity ceased relatively quickly following the onset of deposition. The 2Ab

horizon in 98-0K-093-8 (not sampled) is an example of bioturbation during slow burial.

Animals brought material down into a buried horizon from fresh deposits above.

Since the reported date is a maximum limiting date, deposition did not begin

before the radiocarbon age, and may have begun up to several hundred years later than

the organic matter age. This would be a larger problem in younger sediments, because

the error becomes more significant when we are considering a shorter time span.

Samples Beta-131206 and Beta-131207 are from stratigraphically equivalent

positions. Both were taken below the dune summit and represent a stable period prior to
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a depositional event. The two profiles are, however, from different positions in the dune

field. Profile 98-0K-073-3 is located near the proximal edge of the dune field, relative to

the river, and has a conventional C14 age of 1,110 years BP. Profile 98-0K-093-6 is

located near the distal edge ofthe dune field (away from the river), and has a

conventional C14 age of 1,570 years BP. Aeolian processes last affected the ridge dune

at the distal edge sometime after 1,570 years BP, but the proximal edge of the terrace

sometime after 1,110 years BP. This implies more than two episodes of aeolian activity

affecting different areas of this dune field.

Sample Beta-131208 is from the buri ed surface horizon of the soil that formed on

the Qt2 terrace prior to the beginning of Holocene activity (profile 98-0K-093-6). The 2­

sigma calibrated range of radiocarbon dates is 11,950 to 12,800 years BP (Figure 13).

The buried surface and upper argillic horizon are and very dark grayish brown (1 OYR

3/2, moist) and very dark brown (lOYR 2/2, moist). The dark color and the depth of dark

colors indicate a pachic epipedon had developed in the soil prior to burial. The

implication is that the moisture relations at the site were sufficient to grow large amounts

of vegetation, leading to high levels of soil organic matter. Because not all of the buried

terrace soils have this mollic epipedon, topographic relationships are indicated, similar to

soil catenas seen on modern river terraces.

The 2-sigma range of 12,800 to 11,950 years BP for the bottom sample in profile

98-0K-093-6 gives a maximum limiting date for the onset of deposition. The terrace is

older than the organic matter in the surface horizon, but the exact age is unknown. The

well-developed argillic horizon indicates that this is a mature soil. The presence of
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TABLE III

Reported Radiocarbon Dates.

Profile # Sample # Sample 1D Horizon Depth Measured C14 C13/CI2 Conventional
cm Age, years BP Ratio C14 Age, years BP

98-0K-073-3 99-0K-073-1 Beta-131206 Ab 457-495 1,110 +/- 40 BP -16.60/00 1,250 +/- 40 BP
98-0K-093-6 99-0K-093-1 Beta-131207 2Ab 307-338 1,570 +/- 40 BP -15.60/00 1,730 +/- 40 BP
98-0K-093-6 99-0K-093-2 Beta-131208 4Ab 665-693 10,207 +/- 40 BP -16.80/00 10,410 +/- 40 BP

TABLE IV

Calibration of Radiocarbon Age to Calendar Years

Profile # Sample # Sample ill Horizon Depth Conventional 2 Sigma Calibrated Result,
em. C14 Age, years years BP

98-0K-073-3 99-0K-073-1 Beta-131206 Ab 457-495 1,250 +/- 40 BP 1,275 to 1,070 BP
98-0K-093-6 99-0K-093-1 Beta-131207 2Ab 307-338 1,730 +/- 40 BP 1,720 to 1,540 BP
98-0K-093-6 99-0K-093-2 Beta-131208 4Ab 665-693 10,410 +/- 40 SP 12,800 to 11,950 BP
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argillic horizons in all the soils on the Qt2 surface supports the evidence that the terrace

was in place prior to the Holocene.

Soil-Stratigraphic Analysis

The soil profiles described at the Hanor fann and Hajek ranch provide evidence

for the fluvial terrace and eolian deposition on the terrace. In addition, the profiles

provide evidence that most of the two sites were on a stable terrace surface with strongly

developed soils prior to burial (Table V).

TABLE V

Argillic Characteristics of Qt2 Terrace Soils, Hanor Farm

Pedon
number

98-0K-093-1
98-0K-093-2
98-0K-093-3
98-0K-093-4
98-0K-093-5
98-0K-093-6
98-0K-093-7
98-0K-093-8
98-0K-093-9
98-0K-093-10
98-0K-093-11
98-0K-093-12
98-0K-093-13

Subsoil
Texture

sel/se
scI
c]

c
sel
SiC

fsI/sel
fsl
sel
el
fsl
s
fsl/scl

Subsoil
Color

IOYR 5/1
5YR 4/6
2.5Y 5/1
IOYR4/2
7.5YR 5/8
lOYR 5/2
5YR 4/4
5YR4/6
7.5YR4/3
5YR4/6
5YR4/6
7.5YR 5/6
2.5YR 5/6

Drainage
Class

poorly drained
well drained
poorly drained
poorly drained
well drained
poorly drained
well drained
well drained
well drained
well drained
well drained
excessively drained
well drained

1. Scl: sandy clay loam, Sc: sandyelay, C: clay,
FsI: fine sandy loam; S: sand, Cl: clay loam
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Evidence for the Fluvial Terrace

The Pleistocene terraces of the Cimarron River have been previously recognized

and mapped (Adams and Bergman, 1995; Carter, et aI., 1990). Sediments and structures

identified in this study verify this is a fluvial constructional terrace. In pedon 98-0K­

093-8, the 2BCb horizon has strata of stratified fine sandy loam, silt loam, and coarse

sandy loam. Fine stratification in the deposit shows it is a fluvial deposit. In pedon 98­

OK-073-5, the 2C2 horizon has about five percent siliceous gravel, is stratified loamy

coarse sand and clay, and has fragments of locally derived shale gravel. In pedon 98­

OK-073-1, the 2C horizon is stratified sand and fine sand with clay balls. An older

buried profile (horizons 3A to 3BC2) underlies the 2C horizon. In pedon 98-0K-073-3,

siliceous gravel is present in the 2Btb and 2Btkb horizons (Table VI). Stratified sand,

clay, and silt preserved in lower horizons of the described profiles are evidence of fluvial

deposition. Most of the fluvial sediments are fine sandy loam or loam, except for argillic

horizons of clay loam or sandy clay loam. The alluvial gravel and fining-upward

sequences are also evidence of alluvial deposition.

The profiles from the Hanor fann identify the common landforms and positions

on floodplains, inherited by the terrace (Table VII). The levee is described in pedon 98­

OK-093-8. The well-drained, valley flat position is the most common, and is found in

profiles 98-0K-093-2, 5, 9,10,11, and 13. Two profiles, 98-0K-093-6 and 7, describe

the somewhat poorly drained position on the surface, and profiles 98-0K-093-1, 3, and 4

are in the backswamp position, along with a consequent stream. Pedon 98-0K-093-12 is

on the ridge dune burying the escarpment, and is off the Qt2 terrace. Figure 14 is a cross-
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section of the landforms on the Hanor fann. It shows the relationship between the

modern surface and the buried Qt2 surface.

TABLEVr

Stratigraphic Characteristics of Described Profiles

Pedon
number
98-0K-093-6
98-0K-093-8
98-0K-093-12
98-0K-073-1
98-0K-073-2
98-0K-073-3
98-0K-073-5

Soil Classification

Site

Hanor
Han.or
Hanor
Hajek
Hajek
Hajek
Hajek

Diagnostic Characteristic

aeolian cross-bedding, buried truncated profile
fluvial stratification
aeolian cross-bedding
fluvial stratification, clay balls
aeolian cross-bedding
siliceous gravel, aeolian cross-bedding
fluvial stratification, siliceous gravel, aeolian cross-bedding

Table VIII shows the classification of the mapped soils and described. profiles.

Following the criteria of Soil Taxonomy, the classification is based on the uppennost

deposits of each pedon. Soil Taxonomy concentrates on the latest deposit if it is at least

50 cm. thick. Thus, the classifications are remarkably similar, regardless of position or

age. Because Soil Taxonomy classifies the uppennost deposits and ignores buried soils,

it is not an appropriate tool for geomorphic investigation. The classification of these

profiles separates only the oldest and youngest soils.
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TABLE VII

Buried Qt2 Terrace Soils, Position And Drainage Class

Pedon
number
98-0K-093-1
98-0K-093-2
98-0K-093-3
98-0K-093-4
98-0K-093-5
98-0K-093-6
98-0K-093-7
98-0K-093-8
98-0K-093-9
98-0K-093-10
98-0K-093-11
98-0K-093-12
98-0K-093-13
98-0K-073-1
98-0K-073-2
98-0K-073-3
98-0K-073-4
98-0K-073-5
98-0K-073-6
98-0K-073-7
98-0K-073-8

Site

Hanor
Hanor
Hanor
Hanor
Hanor
Hanor
Hanor
Hanor
Hanor
Hanor
Hanor
Hanor
Hanor
Hajek
Hajek
Hajek
Hajek
Hajek
Hajek
Hajek
Hajek

Qt2 Position

backswamp
valley flat
backswamp
backswamp
levee
valley flat
valley flat
levee
valley flat
valley flat
valley flat
off-terrace
valley flat
valley flat
valley flat
vaney flat
valley flat
valley flat
valley flat
valley flat
valley flat
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drainage class

poorly
moderately well
somewhat poorly
poorly
well
moderately well
well
well
well
well
well
excessively
well
well
well
moderately well
moderately well
moderately wen
moderately wen
moderately well
moderately well



103

Figure 14. RELATIONSHIP BETWEEN

PRESENT AND BURIED SURFACE,

HANORFARM
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Stable Terrace Surface

The buried, stable surface of the Qt2 terrace is represented in all the profiles from

the Hanor fann, except for pedon 98-0K-093-12, west of the escarpment of terrace Qt2.

Table IX shows the elevation of the buried terrace surface. It is undulating with a

depression running north-south through the middle, and has a slight rise at the south end.

Elevations shown are for the surface horizons of the terrace prior to aeolian activity.

Every profile on the Qt2 terrace has a buried solum with an argillic horizon (Table

V). The texture ranges from sandy clay loam to clay loam in the well drained position,

and heavy sandy clay loam, to clay in the poorly drained position. Soil structure, pores,

wonn casts, and root channels indicate a well-developed soil on the terrace surface.

The 4Ab horizon ofpedon 98-0K-093-6 has a 2-sigma calibrated age of 12,800­

11,950 years BP (Beta Analytic # 131208). Evidence for a stable surface is indicated by

the soil characteristics. The significant accumulation of organic carbon from plant

decomposition (denoted by the very dark brown color) indicates long-tenn stability. The

argillic horizon below the dated layer is high in organic matter and clay. These

characteristics indicate that soil had been developing for a significant length of time prior

to burial.
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TABLE VIII

Classification of Mapped Series and Described Profiles

Series or Profile

Nobscot
Meno
Shellabarger
Pratt
Lincoln
Eufaula
Carwile
Tivoli
98-0K-093-1 to 12
98-0K-073-1 to 8

Classification

loamy, mixed, superactive, thermic Arenic Paleustolls
loamy, mixed, superactive, thermic, Aquic Arenic Haplustalfs
fine-loamy, mixed, superactive, mesic Udic Argiustolls
sandy, mixed, mesic Lamellic Haplustalfs
sandy, mixed, thermic Typic Ustifluvents
sandy, siliceous, thennic Psarnmentic Paleustalfs
fine, mixed, thermic Typic Argiaquolls
mixed, thermic Typic Ustipsamments
mixed, thermic Typic Ustipsamments
mixed, thennic Typic Ustipsamments

Classifications of Named Series are the latest, based on information from the National
Soil Survey Center, Lincoln, Nebraska.

TABLE IX

Fluvial Terrace Elevations, Hanor Farm

Pedon elevation, Depth to Qt2 Elevation of Qt2
number meters surface, meters surface, meters

1 96 0.99 95.01
2 98.3 3.15 95.15
3 96.6 0.85 95.75
4 97.1 2.44 94.66
5 98.0 3.29 94.71
6 102.1 6.64 95.46
7 97.0 1.04 95.96
8 98.6 1.92 96.68
9 98.7 1.92 96.78
10 97.2 0.91 96.29
11 97.2 1.04 96.16
12 100.3 na na
13 96.6 0.67 95.93
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Aeolian Deposition

Every pedon described has aeolian sand ranging from one to over 6 meters thick

(Table X). Surface morphology (Table I), sediment characteristics, and sedimentary

structures (Table VI) are adequate evidence of aeolian deposition.

Surface morphology indicates that aeolian deposition has occurred all across both

study sites. The landfonns are a mixture of ridge, parabolic, blowout, and longitudinal

dunes. Sand sheets occupy the surface downwind from the dunes. Drainage density of

the sites is low. The only defined drainage feature is a small perennial stream that drains

the Hajek ranch. The lack of drainage features indicates a combination of young surfaces

and rapidly permeable, sandy soils with a low runoff potential. The sandy sediments are

well sorted, and most of the sand sizes are characteristic of aeolian deposits.

At least seven profiles -- 98-0K-093-6 and 12; 99-0K-073-1; 98-0K-073-2, 3,

and 5 -- have distinct cross-bedding (Table VI). Six of these profiles, except 98-0K-073­

5, are on the highest dunes and have deep accumulation of sand. In each case, the

modem solum is developed in a sand deposit at least three meters thick, and cross­

bedding structures are preserved in the C horizon of each. Pedon 98-0K-073-5 is in an

interdune position, but is well drained, and cross-bedding is preserved between 96 and

157 em.

Truncated paleosols within some profiles indicate that erosion preceded or

accompanied an event. Truncation may have removed an entire solum, or only a portion.

The preserved horizons show that at least three aeolian episodes are recorded for this site

since the end of the Wisconsin age.
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TABLE X

Aeolian Features of Described Profiles

Pedon Site Depth of Number of
number Aeolian Aeolian events

sediment, em.
98-0K-093-1 Hanor 99 1
98-0K-093-2 Hanor 315 3
98-0K-093-3 Hanor 86 1
98-0K-093-4 Hanor 240 2
98-0K-093-5 Hanor 330 I
98-0K-093-6 Hanor 665 3
98-0K-093-7 Hanor 231 2
98-0K-093-8 Hanor 191 1
98-0K-093-9 Hanor 190 I
98-0K-093-10 Hanor 91 2
98-0K-093-11 Hanor 104 1
98-0K-093-12 Hanor na 3+
98-0K-093-13 Hanor 66 1
98-0K-073-1 Hajek 335 2
98-0K-073-2 Hajek 335 2
98-0K-073-3 Hajek 614 2
98-0K-073-4 Hajek 254 2
98-0K-073-5 Hajek 157 1
98-0K-073-6 Hajek 69 1
98-0K-073-7 Hajek 160 2
98-0K-073-8 Hajek 254 2

Number and Timing of Aeolian Events

The number of aeolian events in the region is established by the number of

aeolian units preserved, and the timing is established by radiocarbon dating. Several

profiles have more than one solum developed in aeolian sediments. Profiles 98-0K-093-

6 and 98-0K-073-3 are examples of dunes that record more than one aeolian depositional

event. At 98-0K-093-6, a total of five profiles are preserved. The upper three are clearly
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aeolian, the fourth is mixed fluvial/aeolian, and the lowest solum is developed on the Qt2

terrace surface (Figure 13).

Some depositional events are local; others are regional. The mixture of regional

and local sand deposits in the Great Plains create a complex landscape (Arbogast, 1996).

Because paleosols may be destroyed by erosion, the described profiles do not necessarily

preserve evidence of every event. An event preserved at one location may not be

preserved at another, or an event may have been local in extent. Some of the described

profiles have truncated buried soils from erosion at the beginning of an aeolian event.

Field examination reveals that variations exist in the depth to cross-bedding. The

youngest dunes have cross-bedding immediately below the surface. whereas slightly

older dunes have cross-bedding at about 1.2 meters, and the cross-bedding in the next

older dunes begins at about 2.4 meters.

Evidence is mounting that arid episodes are a regular occurrence in the Great

Plains. Thunnond and Wyckoff (unpublished data, 1999) have documented a 2,000 year

record of aeolian deposition, soil development, and human occupation in Roger Mills

County, Oklahoma. The Dempsey Divide Site records paired mesic/xeric episodes

averaging 392 years in length, with an average xeric episode of 197 years and an average

mesic episode of 195 years. Arbogast (1996) identified five soil fonning intervals

bracketing aeolian episodes in the Great Bend Sand Prairie of Kansas. He identified

stable periods at approximately 2,300, 1,400, 1,100 to 900, 700 to 500. and 300 calibrated

years BP. Earlier work by Arbogast (1994) identified episodes of aeolian activity at

2,300-1,700 and 1,600-800 years BP.
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The radiocarbon dates from this study indicates that sand on the Hanor farm and

Hajek ranch was most recently mobilized after 1,620 years BP and again after 1,180

years BP. These dates are maximum limiting ages for the sand deposited above the dated

layer. These dates also represent the times of stability when soils formed. As such, these

dates intercept the mesic episodes identified by Thurmond and Wyckoff (unpublished

data, 1999). The younger date (Hajek ranch) intercepts with Arbogast's data from the

Great Bend Sand Plain. The older date identifies a period of stability not identified in the

Great Bend Sand Plain. The dates in this study do, however, correlate with earlier work

by Arbogast and Johnson (1993; Arbogast, 1994).

An assumption that periods of stability and aeolian activity should correlate

perfectly across the Great Plains is probably invalid. The drought database prepared by

the National Geographic Data CenterlNational Climatic Data Center (NGDCINCDC)

shows that the spatial extent and severity of drought varies greatly from year to year

(Woodhouse and Overpeck, 1998a). Aeolian activity may be dominant in one area, but it

may be absent in another at the same time.

Relative Dating

A correlation exists between dune age, the present soil, and the plant community.

The combination of soil, vegetation, and surface morphology on a dune is related to the

age of the dune and distance the river. In general, the more well-developed soils

(considered older) occur on dunes farther from the river. Various plant species dominate

particular sites and correlate with the soil and weathering regime of the dune.
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Soils

Soil profile development is associated with weathering. Leaching of calciwn

carbonate, melanization of the surface horizon; and creation, eluviation, and illuviation of

clays in the profile are processes that proceed with time, and the degree of expression of

each establishes relative age relationships. Destruction of cross-bedding and

development of soil structure are concurrent processes that differentiate soils based on

relative age. The results of these processes, operating for various time spans, can be seen

in the area.

Depth of weathering separates the younger dune fields. During pedogenesis,

cross-bedding of aeolian sands is replaced by prismatic soil structure. Wetting/drying

cycles, root growth, and animal activity destroy the cross-bedding and replace it with soil

structure. The youngest dunes have cross-bedding just below the surface horizon.

Progressively older dunes have cross-bedding at progressively deeper depths. The

youngest dunes also show the least chemical and biological weathering. They have free

calcium carbonate near the surface. The surface horizon is poorly developed, and has a

low content of organic matter.

The medium-aged dunes are in a belt parallel to, but farther from the river. They

are leached of calcium carbonate, and prismatic soil structure is developed to a depth of

one to 1.5 meters. Cross-bedding has been destroyed by plant and animal activity, and

pH is neutral. Slightly older dunes have soil structure developed to depths of two to 2.5

meters, and cross-bedding is present below 2.5 meters. The dunes on the Hanor farm are

part ofth1s group.
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The oldest dunes have argillic horizons developed at depths of 0.5 to 1.5 meters.

Iron and clay have been translocated from the surface to the argillic horizon. The pH of

the surface horizon may be as low as 5.5. In addition, the organic acid residue from the

deciduous woody vegetation has bleached the subsurface horizon. Table XI gives an

overview and comparison of characteristics of different ages of dune fields.

Vegetation

Plants common to the region have preferences for particular soils and sites.

Generally, plants are better able to compete with other species on sites that meet the

biological requirements of the plants. Thus, specific species discriminate between the

various soils and are more abundant on the soils that give them a competitive edge. In

the study area, different vegetative communities develop on particular groups of dunes,

based on site preferences. Because plants tend to colonize preferred sites where they

have a competitive edge, succession is a process that leads to unique plant communities

on soils and surfaces of different ages. Based on vegetative communities, the age of

dunes is positively correlated with distance from the river.

On the youngest dunes - represented by the Tivoli and Jester soil series ­

pioneering plants are more prevalent. Little bluestem prefers soils that have free calcium

carbonate and will colonize new deposits that are not leached of lime. Plum, elm,

hackberry, and skunkbush sumac are the dominant woody species on the youngest dunes.

Sand sagebrush is found on medium age dunes (mapped as the Eda soil series)

that are leached of calcium carbonate but have a neutral pH. Tall grasses such as sand
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bluestem and lndiangrass are abundant. Woody species such as eastern redcedar, red

sumac, and elm also will colonize the medium aged sites.

Blackjack oak and post oak are present on the oldest dunes. These species prefer

soils that are sandy and have low pH. The oaks are attracted to acid soils and in turn

drive these soils to a more acid condition, which accelerates weathering of clays. In

virgin condition, the Nobscot and Eufaula soils support a savannah of widely spaced

large oaks with tall grass in between. Thus, woody vegetation correlates with the relative

age of the dunes.

This broad correlation is subject to anomalies. Plants do not have an absolute

preference for particular soiL Moreover, human activity has radically affected the plant

communities since settlement. The natural variability of plant communities prevents a

perfect correlation of a specific plant with a specific age ofdune. Little bluestem

colonizes dunes with abundant calcium carbonate, but persists in lesser amounts in all the

plant communities. Blackjack oak, an indicator species for the Nobscot soil, begins to

colonize dunes as the pH begins to fall. It is an important species on all the dunes from

terrace level Qt2 to Qt8. Trees increase on sites deprived of fire, but are subject to

periodic removal by humans, and re-colonize sites at different rates. Recruitment of

some species is dependent on infrequent weather conditions.

Surface Morphology

Surface morphology of the dunes changes regularly with distance from the river.

Differences noted while preparing the surface map were confirmed by examining aerial

photographs. Selected dune fields on the margins of terraces were examined for slope,
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relief, vegetation, land use, and type ofdune. Table XI shows the differences between

dune fields. Changes are apparent from photo interpretation ofdune fOnTIs. Weathering

and aging features result from alteration of the landform after deposition. Dunes are also

subject to pedogenesis and additions of dust.

Eight general trends are apparent from examination of the photos

1. Younger dunes have steeper slopes than older dunes.

2. Younger dunes have more recognizable dune fOnTIS (ie. parabolic, ridge,

barchanoid, star, and climbing) than older dunes.

3. Younger dunes have narrower summits than older dunes.

4. Younger dunes have greater local relief than older dunes.

5. Younger dunes have lower percentage ofnatural vegetative cover than old dunes.

6. Older dunes have a higher percentage of the area cultivated than younger dunes.

7. Lee faces are more recognizable on younger dunes than older dunes.

8. Individual dunes in older deposits have a larger footprint, that is, cover more area,

than individual dunes in younger dune fields.

Surface Morphology, Young Dunes

Examination of photographs close to the Cimarron River indicates several very

recent aeolian episodes. Soil development and surface morphology indicate that two of

these deposits are younger than the modem soils in the dated profiles on the Hanor farm

and Hajek ranch. Dune morphology in these more recent deposits is distinctive,

compared with older dunes. Figure 15 is a photograph of section 5, T. 19. N., R. 9 W.

This section joins the flood plain, and illustrates the young dunes resulting from recent
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TABLE XI
Comparison of Dune Morphology and Features

Position Relief Slope Vegetation Dune Soil
(meters) Type Type Series

TO (flood plain) 3 5-10% ridge dunes (3) Jester

TO/QTl 15 10-30% sagebrush young ridge dune climbing on Jester,
woody veg. compound parabolic dunes with blowout Tivoli
tall grass features. the compound parabolic dunes

are climbing on the QT1 sandsheet
which is blown out compound parabolic dunes

QTl/Qt2 23 20-40% oak savannah ridge dune Eda
tall grass with superimposed Eufaula

-...J sagebrush blowout dunes
0-

Qt4/Qt5 <8 3-5% oak savannah chaotic Nobscot
cultivated blow-out, 100%

Qt5/Qt6 <5 3-5% oak savannah low relief Nobscot
60% cultivated blow-out dunes

Qt5/Qt6 <5 <5% oak savannah low relief Nobscot
60% cultivated blow-out dunes

Qt7 1.5-5 3-8% cultivated sand sheet, Nobscot
tame pasture blowout dunes
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activity. Stereo photography reveals that two recent events have emplaced two deposits

ofclimbing dunes upon the sand sheet that covers the QO/Qt1 escarpment.

Variations in dune type, vegetation, percent of ground cover, slope, and height are

evidence for the delineation of the two younger dune fields. The slip face of each

climbing dune is clearly revealed using stereo pairs. The youngest climbing dune rests

on the second field of dunes. The slip faces of the forward parabolic dunes rest on the

undulating surface of the sandsheet. The youngest dune has an estimated 60 percent

cover, most of which is shrubs. The second field is composed of compound parabolic

dunes, with blowouts fonning on some of the noses and anns. Vegetative cover is

higher, with more trees on the north sides of dunes. The oldest field ofdunes in this

photo is composed of low-relief blowout dunes with a few modified parabolic dunes.

Difficulties

Three difficulties are associated with relative dating techniques: rejuvenation of

the landscape during arid periods, human modification of vegetation and landscape, and

natural variability in the plant communities and succession. Rejuvenation occurs when

periodic aridity facilitates aeolian processes on an aeolian landscape. Rejuvenation may

destroy or truncate soil profiles. The resulting deposit has all the marks of a new dune

deposit. The source (ie. a blowout) may have a truncated argillic horizon or fresh, un­

weathered, parent material at the surface. The resulting landscape is extremely complex,

and presents a challenge to an investigator (Gile, 1980). Brady (1989) noted

inconsistencies in soil profile development in Major and Alfalfa Counties, Oklahoma.
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Figure 15: Climbing Dunes on the Hajek Ranch. Scale = 1:7920.
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The effect of human activity on the native vegetation is variable. In places,

people have removed the native vegetation and planted crops or introduced grasses.

Periodic brush control and overgrazing have changed the composition of native

rangeland. In addition, plant succession follows any disturbance, and sites in various

stages of succession are present. Other human activity - fire prevention - has had a major

effect on plant community structure. The species composltion ofrangeland changes

where fire is prevented. Rangeland areas have more woody species than before

statehood. People also modify the landscape by diverting streams, building darns,

fencing, building drainage ditches, and smoothing dunes with large earth moving

equipment. All these activities are present in the study area, and affect the landscape.

Several lines of evidence support the relative dating scheme presented above.

The combination of features less likely to be affected by humans -- dune morphology and

spatial arrangement -- provides a reliable correlation ofthe dunes. In the mapped area,

the older dunes have been deposited as ridge dunes, then modified and weathered without

being transported long distances.

Geomorphic Issues

Climatic Control of Aeolian Processes

The evidence shows that the landforms in this study had to fonn under a different

climate than is currently present, because a different set of soil-geomorphic processes are

currently operating. The evidence supports a rapid deposition of aeolian sand, which is

not occurring in the present climate. In the absence of other evidence, many other studies

have concluded that climate is the main control of aeolian processes. Climate operates as
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an extrinsic control and is currently contributing stability. The landscape is passive;

unless acted upon, sediment will remain in place.

Evidence From Active Sand Bodies. Five areas of active sand dunes (three along

the Cimarron River in Woods Co., Ok., and two along the North Canadian River in

Beaver Co., Ok.) are present in northwestern Oklahoma. Aerial photographs of these five

areas were examined to look for trends in size. Photos from 1952 and 1997 were

available from the USDA-Natural Resources Conservation Service. The comparison of

old and new photographs shows that the active dune areas are smaller now than 50 years

ago. Each area is smaller now than in 1952. The loss ofbare areas is evidence that the

forces responsible for the instability are weaker than the stabilizing forces. Recreation

and overgrazing are anthropogenic inputs that contribute to instability and are active on

the areas, but not enough to maintain the active dunes.

If dune mobilization is an intrinsic process, it should exist randomly throughout

the region. Instances of events in early, middle, and late stages of occurrence should be

detected. The only active areas are growing smaller and support the hypothesis that the

present climate favors stability. The present activity appears to be the last vestige of the

previous mobilization.

The current lack of activity does not prove climatic forcing of aeolian processes,

It does establish that the current climate favors stability in the sand dunes. Relatively

little sediment is moving at this time, even in locations that are cultivated. The

development of modem A horizons in the described profiles indicates stability, and

compare with the buried A horizons in the dunes. The presence of aeolian sand deposits
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is evidence for periodic instability. When periods of aeolian activity correspond with

periods of aridity, it is easy to ascribe the activity to climatic forcing.

Correlation With Other Studies. Several researchers have made a correlation

between climate and aeolian activity (Muhs, 1985; Muhs, et aI., 1996; Arbogast, 1996;

Arbogast and Johnson, 1998; Forman, et ai., 1995). Most of these have concluded that

climate is the major factor in aeolian activity in the Great Plains.

Data from this study does establish a correlation between aeolian activity and

climate in western Oklahoma. The delta 13C values from the buried Ab horizons are

consistent with aridity, but the delta 13C value from the terrace surface is not consistent

with the cooler and wetter conditions that characterized the late Wisconsin age.

The dates for late Holocene soil development in Major County are consistent with

data from the Great Bend Sand Plain in Kansas (Arbogast, 1996) and north-eastern

Colorado (Madole, 1995). Their studies agree that arid episodes demonstrate climatic

forcing.

Limited data supports a high-resolution picture of the climate for the past 2,000

years. Thurmond and Wyckoffs unpublished data (1999) from Roger Mills County,

Oklahoma supports a high-resolution picture of climate over the last 2,000 years. Their

studies generally show a 400 year cycle, roughly split between 200 year mesic periods

and 200 year xeric periods. Radiocarbon dates for the buried soils in this study (Table

Ill, IV) correspond with the mesic, or stable, periods in Roger Mills, County.

This study brackets the timing of change in the landscape, the geomorphic

response. It does not establish, at high resolution, the exact dates of the response, if it

was rapid and step-like, or gradual (depending on the time scale), how rapidly the
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environment changes, or how rapidly the geomorphic processes respond. The climate

changed, and geomorphic processes responded, but this study does not establish

quantitatively the rate and date of the response. Qualitative measurements, such as rate

of deposition exceeding rate of melanization, are possible with this study.

Twidale (1999) cautions that the interpretation of recent landforms is complex.

Climate may be only one of several factors involved in landscape change. Arbogast

(1996) recognizes this when he discusses the need for additional research into the

influence of migratory bison herds. The role of fire in landscape change is also a factor

that needs research in the Great Plains.

Wetlands on Terrace Surfaces

Wetlands are common on the terrace surfaces in the study area. Regional water

tables are rising, and wetlands occupy most of the concave landscape positions on the

Cimarron River terraces. Examination of wetlands on aerial photos and in the field

reveals that the pattern ofwetlands is not random. They form linear groups, and these

linear groups of wetlands are parallel to each other.

Topographic and Soil Evidence. The wetland areas usually occur in the Carwile

soil series. This soil has redoximorphic features in the surface and subsoil that indicate

periodic ponding or saturation by water. Delineations of Carwile soil are separated by

Meno or Shellabarger soils that developed on low dunes or sand sheets. Sand sheets or

dunes isolate individual wetlands.

The cross-sections of the surface topography (Figure 5, 6, and 7) show concave

depressions mostly on the distal side of each terrace, next to the escarpment.
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Backswamps occupy the lowest elevations of a terrace, and usually have the most clayey

soils on the terrace. Wetlands are present in these backswamps.

Photo interpretation of the area reveals many linear wetlands crossing the terraces

from north to south. These wetlands appear to occupy old stream channels that were

blocked by dunes advancing from the proximal margin (toward the stream) of the terrace

tread. An examination ofthe streams in the area reveals that only streams having a

drainage area greater than 8,000 hectares presently maintain a flow through the dunes.

Most of the small streams fail to maintain a channel and are blocked entirely by sand

dunes on the terraces. Others show evidence ofpast blockage and breech episodes.

The Hanor farm includes an area of wetland that occupies the backswamp

position of the terrace. It is at the southern end of a linear group of wetlands following

the backswamp position of the terrace. The terminus of this wetland is the dune front.

Soil profile descriptions support the interpretation of a backswamp. Profiles 98­

OK-093-1, 3, and 4 are located along the north/south axis of the depression (Figure 4,8).

Aeolian sand buries the soil that developed in the backswamp. Typically, the buried soil

has a strongly developed argillic horizon with texture ranging from heavy sandy clay

loam, clay loam, or clay. The argil ic horizon has moderate to strong prismatic and

subangular blocky structure. The colors are IOYR 4/1 to 5/2 and are strongly gleyed,

indicating poorly drained conditions. Still, the presence of the argillic horizon indicates

that the soil dried occasionally.
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Consequent Stream

The surface morphology of the region suggests that the linear groupings of

wetlands were intermittent streams draining the backswamps before the aeolian

deposition. Profile descriptions of the soils and sediments in the backswamp positions

were examined for evidence of a stream.

Textural Evidence. The particle size dominant in the soil is the primary evidence

for the depositional envirorunent. In addition, the particle size reflects the parent material

available for transport. The profiles in the depression contain the most clay of any on the

terrace. The texture is consistent with deposition in a backswamp, where clays and silt

settle out of slowly moving water. Channel or bed load deposits, such as coarse sand and

gravel, were not found, as would be expected in a typical stream. Coarse sand and gravel

are rare in the current Cimarron River channel. A very small amount of coarse material

occurs in the terrace, and overbank flooding would not deliver coarse sediments to this

position on the surface. The lack of coarse channel deposits, then, does not rule out the

existence of a consequent stream in this position, and the texture supports deposition by

slowly moving water. The buried backswamp soil and topography correlates with

modern flood plains in the region.

Surface Gradient Evidence. The gradient of the buried surface provides

additional information about the previous landscape. Figure 16 shows the gradient of the

buried soil surface along the axis of the backswamp. Sites 3, 1, and 4 are described

profiles. South of the Hanor fann, the terrace surface is exposed. The last two points are

elevations along the surface to the south. The slope is 0.6 meters per kIn in the measured

section, and about 1.1 meters per km in the north section.
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This data supports the existence of a backswamp, most likely with an intermittent,

low-velocity stream. The sediments are consistent with low velocity fluvial depos·ts.

This is not conclusive proof because the entire terrace is composed of fluvial deposits.

The exposed backswamp to the south has a comparable soil and gradient. This drainage

becomes an intennittent stream with a defined channel about 1 km south in section 33, T.

20N.,R.9W.

The modern day landscape does provide some other information to the operation ofthese

streams. Two small backswamp streams do currently exit the terrace system to the south.

The gradient ofthese streams, shown on Figure 11 is 3.4 (west) and 4.0 (east) meters per

lan, respectively. These streams currently exit through the sand dunes and reach the

river. They have a greater slope than the buried channel, but the aerial photographs show

that these streams are also affected by aeolian action. In addition, these streams get

steeper as they near the edge of the terrace and breach the escarpment.

Coincidence ofBuried and Modern Topography. A possible objection to the

concept of a buried backswamp stream is as follows. The gleyed layers and heavy

argillic horizons could develop merely from the position in a current topographic

depression. The excess water from overland flow and interflow could produce the

features in the buried soils.
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To test this possibility, two other profiles were cored in topographic lows. Pedon

98-0K-093-10 is in a small circular depression at the east edge ofthe Hanor [ann. This

depression holds water enough of the time to be bare ofvegetation. The soil has

redoximorphic depletions at 17 to 40 cm, but overlies the well-drained terrace soil. The

modem depression did not cause the strongly gleyed features in the backswamp. Pedon

98-0K-093-13 is in a large depression south of the buried backswamp area. The soil at

the surface is well drained. The buried argillic horizon of sandy clay loam is moderately

well drained, and has a moist color of 2.5YR 4/6. A few redoximorphic depletions in this

horizon indicate current periodic wetness. The presence of a modem depression alone is

not the cause of the strong gleying and high clay content in the backswamp. These two

locations show that the location of the buried backswamp in a topographic low is

coincidence.

Stream Competence

The implication from the buried backswamp is that the intermittent streams in the

backswamp position of these terraces have low competence. The intennittent nature of

the stream, low gradient, and small drainage area together affect the competence. The

result is that the stream could not maintain a channel during the periods of aeolian

deposition. When the aeolian processes exceed the fluvial processes (A > F), the stream

fails because it can not remove the aeolian material.

Soil Profile Evidence. In Pedon 98-0K-093-6, depositional layers at the contact

with the terrace surface provide evidence of changing environmental conditions. This
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pedo~ prior to burial, was on a somewhat poorly drained position, less than 1 meter

above the low backswamp.

The buried terrace surface horizon (4Ab) is easily recognized. It is very dark

grayish brown silt loam (1 OYR 3/2 moist) with granular structure, pores, old root

channels and worm casts. The 3C2 horizon above is stratified light yellowish brown

(10YR 6/4 moist) loamy fine sand and very dark grayish brown (10YR 3/2 moist) loam.

Individual strata are 0.5 to 1.25 cm thick. The 3C2 horizon rests abruptly on the 4Ab

horizon. The 3Cl horizon is yellowish red (5YR 5/6 moist) loamy fine sand. The

interpretation is that a blockage by sand deposits to the south first caused overflow and

deposition on the 4Ab horizon. Continued aeolian activity deposited the 3Cl horizon as

a layer of sand that may have been reworked. A total of 137 em ofmixed fluvial and

aeolian material was deposited before the site was buried, eventually, by another 528 em

of aeolian sand.

The surface topography shows that channel blocks occur north of the large dune

dam, pedon 98-0K-093-6. The surface has many small, isolated depressions. Low dunes

separate these depressions, creating many wetlands of varying size in sections 21 and 17.

The U.S.G.S. topographic map, Ames Quadrangle (Figure 9), shows the depressions, but

without much detail. The stream is blocked, and aeolian sand deposits fragment the

drainage basin.

The effect is a complete blockage ofthe stream system on the backswamp. On

the Hanor farm, the large dune is the landform designated a "dune dam" by Loope, et al.

(1995). Aerial photos of the Hajek ranch site show this process of blockage has been

active in more recent times. Photos from the 1930s to the 19905 reveal that a dune
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dammed the stream, but the dam was breached during the 1950s. The site on the Hanor

[ann never was never breached and is currently blocked.

Overview and Summary of Landscape Formation

Ridge Dune Formation. A ridge dune is the sand deposit that forms at the edge of

a braided river channeL During times oflow flow, wide areas of bare sand are subject to

detachment by wind. The resulting dune is linear, parallel to the river channel, and

usually covers the escarpment and portions ofthe adjacent flood plain. This initial sand

deposit may be modified by subsequent aeolian episodes.

The author has observed this process ofridge dune development in the late 1970s.

Other historical accounts collected by Moos and Holliday (1995) also indicate this

process was observed on the Great Plains by explorers and travelers during the 1820s and

1850s. The historical accounts indicate that during major droughts enough sand is moved

to create the dune fields present today.

The initial ridge dune is present on aerial photographs of the Cimarron River.

Figure 17 shows one ridge dune along the bank, and several others on the flood plain,

isolated from the bank by channel migration. These are shown as white streaks running

parallel to the channel. If the river downcuts, the flood plain and ridge dune will become

a terrace. Migration and down cutting by the Cimarron River has isolated previous ridge

dunes and flood plains. The resulting terraces often have remnant ridge dunes. The

cross-sections of the landscape derived from the surface mapping (Figures 5, 6, 7)

identifY ridge dunes that remain on the terraces, although they are rnodifi.ed by

geomorphic processes after fonnation.
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Processes Creating TerracelDune Pairs. The landscape evidence supports the

following sequence of landscape evolution. When the river downcut to a new elevation,

the flood plain with ridge dunes became a stream terrace with ridge dunes on the levee

position and on the terrace surface. The ridge dunes and terrace were then isolated and

preserved. Aeolian episodes modified the original dunes, and subsequent downcutting

episodes created a series of terrace/sandhill pairs. These are generally parallel to the

river. Sandsheets are often deposited in the lee of the dunes, modifying the terrace

surfaces.

One objection to this process is that the sediment source for the sand hills is the

stable river channel. The sandhill/terrace landscape is built as the sediments move away

from the source. The surface mapping, cross-sections, surface morphology, and relative

dating relationships, support the process described above.

Soil development on the higher and more distal dunes provides substantial

evidence that these deposits are older than dunes near the river. The Nobscot series that

dominates the older dunes is well developed. A Nobscot soil has a well-developed

argillic horizon. The texture is commonly fine sandy loam. Because the parent material

had very few weatherable minerals, the texture is significant. The base saturation of this

soil is low, calcium carbonate is not present in the soil, and the native pH is usually 5.5 or

less. Post-depositional morphological changes in the shape, type, and slope oftbe dunes

also evidence a long period of weathering in place.
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Landscape Response to Climate Change

At first glance, the concept -- landscape response to climate change -- might infer

that landscapes only respond to change, and are little affected by the antecedent climate

condition and forces. This would be quite false, akin to an illustration that only

acceleration by an automobile is important, whereas the initial speed or direction is not.

The antecedent climate is driving particular processes at some given rate, leading to

landforms in balance with the geology, vegetation, and intrinsic thresholds. A major or

minor change of climate drives processes in a different direction and rate, acting on the

pre-developed landscape. New landfonns are imposed on the old, and a variety of

complex landforms are produced. A geographical region subject to frequent climate

change will have a wide variety of landforms. In very few instances will the previous

landscape be obliterated before the climate shifts again.

Local Site Response. Driving forces always act on the product of a previous

episode. Currently, driving forces that act on sandy sediments are facilitating soil

development and enriching ground water rather than producing fluvial sediment.

Evidence of fluvial activity is minimal. Aerial photos indicate that additional ground

water aids spring activity and ground water sapping at sites below the Qt2 terrace. At the

Hanor farm, in response to arid episodes, sand is detached, moved, and deposited by wind

in dunes or sand sheets. The response of older dunes is to change shape and relief as

wind modifies the dune.

The response will be buffered by other factors. The duration and intensity of the

arid episode will determine the extent of activity. Conditions in the river (braided
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condition, sediment load, and width) will affect the sand supply. Vegetation, animals,

and fire will have a screening effect (Ritter, et aI., 1995, p.44) on the processes.

Late-Wisconsin and Holocene activity at the site began sometime after 12,800

years BP. Assuming an average age of200 years for the soil organic matter at the time of

burial, deposition on the Qt2 surface (at 98-0K-093-6) began between 12,600 and 11,700

years BP. The first deposits above the dated Qt2 surface are fluvial grading to

fluvial/aeolian and imply fluctuating processes. The altithermal interval appears to be

poorly represented at the site. It could be represented by the third and fourth solum

buried in profile 98-0K-093-6. These profiles record fluvial/aeolian deposition, soil

development, truncation, and another aeolian deposition. Because these layers were not

radiocarbon dated, no absolute evidence indicates a precise time.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The data from the profile descriptions, photo interpretations, radiocarbon dating,

and field mapping support the hypothesis that landforms in the study area developed

under alternating fluvial and aeolian geomorphic processes. Prior to the Holocene, the

dominant landforms on the Qt2 terrace were fluvial. The levee, well drained terrace

tread, and backswamp positions were all present on the terrace. The ridge dune was

present on the western edge of the terrace. Holocene aeolian activity buri.ed the terrace

surface with dunes and sand sheets. Aeolian sand engulfed the low-energy stream on the

backswamp and created a series of depressions that periodically become wetlands.

Pleistocene aeolian landforms present on higher terraces were also modified during the

Holocene.

Ridge dunes are the initial deposition of sand from the Cimarron River at the edge

of the floodplain. When the river downcuts and creates a terrace, the ridge dunes are

preserved along the terrace escarpment and on the terrace tread. Subsequent

remobilization during later arid periods modifies the dune forms. This conclusion is

supported by analysis ofthe dune forms, topography, and relative dating techniques.
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This report contains the first detailed mapping of terraces along the Cimarron

River in western Oklahoma. The Cimarron River has numerous terraces, but reports

from eastern and central Oklahoma indicate the Cimarron River has four to six terraces.

This research establishes that the Cimarron River has eight terraces in the study area, and

several more at higher elevations. Each of the terraces has sandhills associated with it on

the proximal side. The presence of these sandhills shows that the process of sand

blowing out of the channel onto the flood plain has been one of the normal processes in

this basin for a large part of its history.

Soil development and weathering are important indicators of age. Proper

recognition of these indicators requires careful examination of aeolian sediments. In

western Oklahoma, leaching of calcium carbonate, development of structure, and

destruction of cross-bedding are indicators of the weathering interval in recent aeolian

sands. The modem classification system, Soil Taxonomy, fails to discriminate between

these young soils. In buried soils, biological indicators such as color, structure, pores,

root channels, fungal mycelia, and worm casts must be described to establish past

relationships.

The relative dating scheme developed in this study establishes the age

relationships between the terraces and sand dunes. The changes in weathering, soils, and

surface morphology are sufficient evidence to delineate groups of dunes based on age.

The two study sites have received a mantle of aeolian sand, over at least three

depositional events. Radiocarbon dates bracket times of stability in the landscape. The

surface of the Qt2 terrace at the Hanor farm has a conventional C14 age of 10,410 years

BP. The date signifies the earliest aeolian deposition could begin. Buried surface
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horizons in the dunes record two late-Holocene events on the Qt2 terrace. Sand was

mobilized after stable periods dated at 1,730 years BP and 1,250 years BP.

Recommendations

The relative age relationships of the dunes and sandhills, even though supported

by the evidence presented, needs to be established by quantitative studies that will

corroborate the evidence and establish absolute dates for the deposition of dunes and

terraces. Studies of resistant minerals that weather slowly could provide data for these

sediments that may range in age to mid-Pleistocene. The older and higher dunes are the

most problematic, because they have undergone rejuvenation several times at least, and

weathered under several climates. This research could accompany studies of the

adjoining terrace surfaces. The older terrace surfaces also appear to be altered by loess

deposition.

This study establishes a partial chronology for the mobilization of sand in the

Holocene. The radiocarbon dates on buried soil horizons establish maximum limiting

dates for aeolian activity. The limited number of dates leaves gaps in the chronology.

Using another technique, such as optically stimulated luminescence to date the aeolian

sands directly, would provide a higher resolution of the dates of aeolian activity. The

younger sands could also be dated to develop the chronology of the last few hundred

years. These dates will also allow a correlation between soil development and absolute

dates in this geographic region on Holocene aeolian sands. This correlation would be

useful on the Canadian and Salt Fork of the Arkansas Rivers, where similar landforms

and soils are present.
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Additional mapping of Cimarron River terraces is needed to establish the total

number ofterraces on the north side of the river. The terraces need to be dated and

correlated with other drainage systems, if possible. Several of the terraces may reflect a

decay function in the basin following a major event. The higher terraces may have

volcanic ash deposits that might correlate with the time markers of Carter, et a1. (1990).
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APPENDIX A.

Scientific and Common Names of Plants in the Study Area
SCIENTIFIC NAME COMMON NAME
Andropogon gerardii Big bluestem
Andropogon hallii Sand bluestem
Aristida purpurascens Arrowfeather threeawn
Artemisia Filifolia Sand sagebrush
Aster ericoides Heath aster
Bouteloua curtipendula sideoats grama
Bouteloua gracilis Blue grama
Calamovilfa gigantea Big sandreed
Celtis occidentalis hackberry
Celtis reticulata netleaf hackberry
Cephalanthus occidentalis Buttonbush
Comus drummondi Roughleaf dogwood
Cyperus schweinitzii Schweinitz flatsedge
Dalea enneandra Bigtop dalea
Desmanthus illinoensis Illinois bundleflower
Echinochloa crus-galli Bamyardgrass
Eragrostis Trichodes Sand lovegrass
Juniperus virginiana red cedar
Lespedeza spp. Lespedeza
Panicum Anceps Beaked panicum
Panicum capillare witchgrass
Panicum scribnerium Scribner panicum
Panicum virgatum Switchgrass
Poa Arachnifera Texas bluegrass
Polygonum pensylvanicum Pennsylvania smartweed
Populus deltoidies Eastern cottonwood
Prunus angustifolia Chickasha plum
Quercus havardii Havard oak
Quercus marilandica blackjack oak
Quercus stellata post oak
Rhus Trilobata Skunkbush sumac
Salix negra black willow
Schizachyrium scoparium Little bluestem
Silphium laciniatum Compassplant
Sorghastrum Nutans Indiangrass
Spartina pectinata Prairie cordgrass
Sporobolus asper Tall dropseed
Sporobolus cryptandrus Sand dropseed
Stillingia sylvatica Queensdelight
Tamarix chinensis Tamarisk
Tridens Flavus Purpletop
Tripsacum dactyloides Eastern gamagrass
Ulmus americana American elm
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APPENDIX B-SOIL PROFILE DESCRIPTIONS.

Descriptions of soil profiles.
All colors moist Munsell notation.

98-0K-093-1
Hanor Farm
Oct. 28, 1998
N 36° 11 t 32.15"
W 0980 10' 42.77"
Water table-312 cm

A--O to 20 cm~ dark brown (7.5YR 3/2) loamy fine sand~ moderate fine granular
structure; pH 7.5; non-effervescent; clear smooth boundary.

Bl--20 to 45 cm~ brown (7.5YR 5/3) loamy fine sand~ moderate medium prismatic
structure parting to moderate fine subangular structure; common fine roots;
common fine distinct strong brown 7.5YR 5/6 redox concentrations; pH 7.8; clear
smooth boundary.

B2--45 to 99 cm~ 10YR 6/4 loamy fine sand; common fine distinct 10YR 5/8 redox
concentrations~ moderate coarse prismatic structure parting to moderate fine
subangular structure; pH 8.0; abrupt smooth boundary.

2Ab--99 to 109 cm; 10YR 4/2 loamy fine sand; moderate fine subangular structure;
common fine roots; abrupt smooth boundary; seems to be a truncated horizon,
only 10 cm of the surface remains.

2Btl b--1 09 to 129 cm; 10YR 5/1 sandy clay loam; strong medium prismatic structure
parting to strong fine and medium subangular structure; many fine distinct 7.5YR
4/6 redox concentrations; common fine roots; 10YR 3/1 redox depletions in root
channels; few fine black bodies; many distinct clay films on ped faces; pH 8.0;
clear smooth boundary.

2Bt2b--129 to 231 em; 10YR 4/1 sandy clay loam to sandy clay; strong medium
prismatic structure parting to strong fine blocky structure; few fine black bodies;
many fine pores; 10YR 3/1 streaks of redox depletions in root channels; few fine
calcium carbonate concretions; pH 8.2; few films of calcium carbonate in old root
channels; few slickensides; many distinct clay films on ped faces; faces of the
coarse prisms have film of clean sand grains along faces, very compact, 2mrn
thick; clear smooth boundary.

2Btk1b--231 to 279 em; 1OYR 4/1 sandy clay; strong medium and coarse prismatic
structure; many fine calcium carbonate threads; thick sand films on large prism
faces; common fine distinct 5Y 4/3 redox accumulations; pH 8.2; non­
effervescent; few fine pores; clear smooth boundary.

2Btk2b--279 to 325 em; 1OYR 5/1 sandy clay loam; strong coarse prismatic structure
parting to moderate medium subangular blocky structure; few medium distinct
2.5Y 4/6 redox accumulations; few distinct clay films; common very fine pores;
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common very fine soft bodies of calcium carbonate; pH 8.2; clear smooth
boundary.

2Bt3b--325 to 378 cm; 10YR 7/2 sandy clay loam; moderate coarse prismatic structure
parting to moderate fine and medium subangular blocky structure; few fine
distinct redox depletions; common distinct clay films on vertical ped faces; few
medium distinct 10YR 6/6 redox accumulations; few 7.5YR 5/6 rhizospheres in
old root channels; few very fine pores; pH 8.2; clear smooth boundary.

3BCl--378 to 472 cm; 2.5Y 7/2 loamy fine sand; weak coarse prismatic structure;
common very fine pores; common fine faint IOYR 7/4 redox accumulations; few
thin layers of fine sandy loam, 1.25 cm thick; pH 8.2; clear smooth boundary.

3C--472 to 610 cm; 2.5Y 7/2 stratified loamy fine sand; weak coarse prismatic structure;
few strata of 10YR 6/6 fine sandy loam; very few effervescent spots; pH 8.2;
includes a few strata of sandy clay loam 10 cm thick, 2.5Y 7/2, with common fine
distinct 10YR 5/6 redox accumulations.
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98-0K-093-2
Oct. 29, 1998
HanorFarm
W 360 11' 34.97"
N 0980 10' 37.86"
Water table--556 em

A--O to 10 em; 10YR 4/2 loamy fine sand; moderate fine platy structure parting to weak
fine granular structure; many fine roots; pH 8.0; few large pores; clear smooth
boundary.

AC--l0 to 46 em; 10YR 5/3 loamy fine sand; moderate medium prismatic structure
parting to weak: medium subangular blocky structure; common fine roots; pH 8.0;
abrupt smooth boundary.

Ab--46 to 56 em; dark brown (7.5YR 3/2) loamy fine sand; moderate fine and medium
subangular blocky structure; common fine roots; pH 7.3; abrupt smooth boundary.

AClb--56 to 102 em; 7.5YR 4/3 loamy fine sand; moderate coarse prismatic structure
parting to moderate medium subangular blocky structure; common fine roots;
krotovina filled with dark brown (7.5YR 3/2) loamy fine sand from above; pH
7.5; few medium pores; clear smooth boundary.

AC2b--l02 to 142 em; 7.5YR 5/410amy fine sand; moderate coarse prismatic structure
parting to moderate fine and medium subangular blocky structure; few fine roots;
common fine pores; slightly hard, soft; slightly brittle when dry; pH 7.0; abrupt
smooth boundary.

E & Btb--142 to 193 em; 7.5YR 5/4 loamy fine sand; 7.5YR 4/4 lamellae of fine sandy
loam; weak coarse prismatic structure parting to moderate fine and medium
subangular blocky structure; few fine roots; soft, loose; common fine pores; pH
7.0; clear smooth boundary.

Bwb--193 to 224 em; 7.5YR 4/6 loamy very fine sand; moderate coarse prismatic
structure parting to moderate fine subangular blocky structure; few fine roots;
slightly hard, very friable; many very fine worm casts; common fine pores; pH
7.3; clear smooth boundary.

BCb--224 to 315 em; 7.5YR 6/6 fine sand; moderate fine and medium subangular blocky
structure; soft, loose; few fine faint 5YR 4/6 redox accumulations; few very fine
pores; pH 7.3; few lamellae in lower part. The lower 10 em is a boundary
transition to a buried A horizon. It is stratified 7.5YR 4/6 loamy fine sand, dark
brown (7.5YR 3/2) loamy fine sand, and 7.5YR 5/4 loamy fine sand; abrupt
smooth boundary.

2Alb--315 to 340 em; 7.5YR 4/2 loamy fine sand; moderate medium prismatic structure
parting to moderate fine subangular blocky structure; slightly hard, very friable;
pH 7.5; clear smooth boundary.
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2A2b--340 to 358 cm; dark brown (7.5YR 3/2) loamy fine sand; moderate medium
prismatic structure parting to moderate fine subangular blocky structure; slightly
hard, very friable; pH 7.5; clear smooth boundary.

2ABt--358 to 368 cm; dark brown (7.5YR 3/2) fine sandy loam; moderate medium
prismatic structure parting to moderate fine subangular blocky structure; hard,
friable; few distinct clay films; some medium and coarse sand; few fine distinct
5YR 4/6 redox accumulations; few very fme pores; pH 7.5; clear smooth
boundary.

2Btkl b--368 to 452 cm; 5YR 4/6 sandy clay loam; strong medium prismatic structure
parting to moderate fine subangular blocky structure; common distinct 7.5YR 5/2
clay films; common fine soft bodies ofcalcium carbonate; few fine distinct 7.5YR
5/1 redox depletions in old root channels; pH 7.8; effervescent in spots; gradual
smooth boundary.

2Btk2b--452 to 478 cm; 5YR 5/6 light sandy clay loam; moderate medium prismatic
structure parting to moderate fine subangular blocky structure; hard, friable;
common very coarse sand grains; common fine pores; common medium distinct
7.5YR 5/1 redox depletions; non-effervescent.

2BC--478 to 599 cm; 5YR 5/6 fine sandy loam; moderate medium prismatic structure
parting to moderate fine subangular blocky structure; hard, friable; few distinct
clay films; many fine pores; few very fine pores; common fine distinct 7.5YR 6/1
and 5YR 5/2 redox depletions in old root chaIUlels; pH 7.5; grading to fme sandy
loam at about 559 cm and then to massive fine sandy loam at 599 cm.

3CI--599 to 747 cm; 5YR 4/6 loamy fine sand; massive; few medium distinct 7.5YR 6/2
redox depletions; pH 8.0; abrupt smooth boundary.

3C2--747 to 792 cm; 2.5Y 7/2 fine sandy loam; massive; common fine distinct 7.5YR 5/6
redox accumulations; noneffervescent; pH 8.0.
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98-0K-093-3
Oct. 30, 1998
Hanor Fann
W 360 II' 43.63"
N 0980 10' 44.15"
Water table-270 cm

A--O to 25 cm; 10YR 4/2 loamy fine sand; weak medium subangular blocky structure
parting to weak fine granular structure; soft, loose; many fine roots; pH 7.5; clear
smooth boundary.

Bw--25 to 86 em; 7.5YR 4/2 loamy fine sand; moderate coarse prismatic structure parting
to weak fine and medium subangular blocky structure; few fine distinct 7.5YR 5/8
redox concentrations; soft, loose; common fine roots; few medium pores;
common fine pores; pH 7.5; abrupt smooth boundary.

2A--86 to 97 cm; lOYR 3/2 fine sandy loam; hard, friable; moderate fine subangular
blocky structure; many fine pores; few fine roots; pH 7.8; clear smooth boundary.

2Btl--97 to 109 em; coarsely mottled 7.5YR 4/6, 5YR 4/4, and 7.5YR 5/2 sandy clay
loam; strong medium prismatic structure parting to moderate fine subangular
blocky structure; hard, firm; many distinct dark brown (7.5YR 3/2) clay films on
ped faces; common very fme black bodies; pH 7.5; clear smooth boundary.

2Bt2--109 to 178 em; 10YR 5/2 sandy clay loam; strong medium and coarse prismatic
structure parting to strong fine and medium subangular structure; many medium
distinct 1. OYR 5/6 redox concentrations; many distinct 10YR 5/2 clay films on
prism faces, thick with some clean sand grains; common medium and coarse sand
grains, few fine calcium carbonate concretions; pH 8.0; clear smooth boundary.

2Btk--178 to 279 em; 2.5Y 5/1 clay loam; strong medium prismatic structure parting to
moderate fine subangular blocky structure; common medium distinct 10YR 5/4
redox concentrations; hard, firm; common films and a few concretions of calcium
carbonate; many distinct N 7/0 clay films on ped faces; common fine pores; few
medium pores; effervescent in spots; raining like hell; few fine black bodies;
common intersecting slickensides; clear smooth boundary.

2BC--279 to 373 em; 2.5Y 6/2 loam; weak medium prismatic structure parting to weak
medium subangular blocky structure; hard, friable; few fine roots; many fine
pores; few fine distinct 2.5Y 5/4 redox concentrations; few medium pores; few
fine black bodies; non-effervescent; no clay films; few clean medium sand grains;
still raining; pH 8.0.
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98-0K-093-4
Oct. 11, 1998
HanorFann
N 360 II' 28.98"
W 0980 10' 42.72"
Water table--168 em.

Notes: This site is in a depression about 300' south of site 10-28-98. A small dune runs
E-W between these sites.

The site has typical cover sands, described often, grading into coarsely mottled (7. 5YR
5/6 & 5YR 5/2) sandy clay loam at 2.4 meters.

At 274 em, encountered 2Ab.

2Ab--274 to 315 em; 10YR 4/2 clay; saturated; very plastic, slightly sticky, extremely
firm; difficult to remove from tube; structure not determined; sampled; common
fine soft bodies of calcium carbonate; few medium calcium carbonate
concretions; few medium roots; common slickensides; few fine distinct 10YR 4/6
redox concentrations; as the soil dries, strong very fine angular blocky structure is
apparent; non-effervescent.

2Bw--315 to 376 em; lOYR 6/2 sandy clay loam grading to fine sandy loam; non­
effervescent.
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11-16-98
98-0K-093-5
Hanor Fann
N 360 II' 35.65"
W 0980 10' 46.70"

This position is on the summit of a blowout rim on fore-dune oflarge ridge to the west.
This site is on a longitudinal dune, west side ofN-S depression. This dune runs N-S and

is about 2.4 meters above the low area. It has very complex slopes, and blowouts
are common.

Bearings; to inigation well 1, 540 magnetic north.
to irrigation well 2, by center pivot, 1930 magnetic north.
to pivot, 2130 magnetic north.

Profile:

A,A2,AC--0 to 165 cm; 7.5YR 4/2-5/4-6/410amy fine sand.

C--135 to 330 cm; 7.5YR 6/610amy fine sand with lamellae (that could be developed on
cross-bedding, but sample is too small to tell) of 5YR 6/4 loamy flne sand; weak
coarse prismatic structure; weak fine subangular blocky structure in lamellae;
lamellae are slightly brittle.

2Ab--330 to 356 cm; 7.5YR 4/4 loamy fine sand; pH 7.5; non-effervescent.

2Btlb--356 to 381 cm; 7.5YR 5/8 sandy clay loam; moderate medium prismatic structure
parting to moderate fine subangular blocky structure; few distinct clay films; few
pockets of clean sand; pH 7.5.

2Bt2b--381 to 419 crn; (auger samples only from here on down); 2.5Y 5/2 sandy clay
loam; common medium distinct 10YR 5/8 redox concentrations; few fine black
bodies; few pockets of clean sand; non-effervescent; pH 7.5;

2Bt3b--419 to 584 cm; stratified 2.5Y 5/2 sandy clay loam and fme sandy loam; non­
effervescent; pH 7.5.

2BC--584 to 762 cm; lOYR 7/4 fine sandy loam; massive; pH 7.8; non-effervescent.
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98-0K-093-6
HanorFann
Nov. 20, 1998
N 360 11' 23.16"
W 0980 10' 36.96"
On large dune as southeast edge of quarter, 75' W of northern-most blackjack oak on east

side of dune.

A--O to 25 cm; dark brown (7.5YR 3/2) loamy fine sand; moderate medium subangular
blocky structure parting to weak fine granular structure; slightly hard, very
friable; many fine roots; few medium pores; few fine pores; pH 7.5; clear smooth
boundary.

ACl--25 to 40 cm; brown (7.5YR 4/3) loamy fine sand; moderate medium and fine
subangular blocky structure; slightly hard, very friable; common fme roots; few
fine pores; pH 7.5; clear smooth boundary.

AC2--40 to 142 cm; strong brown (7.5YR 5/6) loamy fine sand; moderate medium
prismatic structure parting to weak fine and medium subangular blocky structure;
slightly hard, very friable; few fine roots; few medium roots; few fine pores; few
medium pores; pH 7.8; clear smooth boundary.

C--142 to 307 cm; brown (7.5YR 5/4) fine sand; weak coarse prismatic structure parting
to weak fine platy structure; soft, loose; few fine roots; few medium roots; few
fme pores; few brown (7.5YR 5/4) lamellae 0.3 to 0.6 cm thick; below 203 cm
many very fine cross-bedding that appear as the soil dries; cross-bedding has
color value ranging from 4 to 7 common pockets of clean sand; pH 7.8; clear
smooth boundary.

2Ab--307 to 338 cm; brown (7.5YR 4/4) loamy fme sand; moderate medium subangular
blocky structure parting to moderate medium platy structure; soft, very friable; no
roots; common fine pores; common very fine pores; common pockets of clean
sand grains; pH 7.8; clear smooth boundary.

2Btb--338 to 411 em; yellowish red (5YR 4/6) heavy loamy fine sand; strong medium
prismatic structure parting to moderate fine and medium subangular blocky
structure; slightly hard, very friable; few medium roots, dead and partially
decayed; many fine pores; few distinct clay films; common clay bridging between
sand grains; few yellowish red (5YR 3/4) lamellae; few old worm casts; non­
effervescent; pH 8.0; abrupt smooth boundary.

2BCb--411 to 475 em; strong brown (7.5YR 4/6) loamy fine sand; moderate coarse
prismatic structure parting to weak medium subangular blocky structure; slightly
hard, very friable; no roots; few lamellae 0.6 em thick of yellowish red (5YR 4/6)
heavy loamy fine sand, having weak medium platy structure; common fine pores;
non-effervescent; pH 8.0; abrupt smooth boundary.

3Btb--475 to 528 em; brown (7.5YR 4/4) fine sandy loam; moderate coarse prismatic
structure parting to moderate medium subangular blocky structure; slightly hard,
very friable; no roots; many fine pores; few medium pores; common very fine
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pores; few clean sand grains; few distinct clay films; common clay bridging
between sand grains; few darker lamellae 1.25 em thick of dark brown (7.5YR
3/4) fine sandy loam; non-effervescent; pH 8.0; clear smooth boundary.

4Ab--528 to 559 em; brown (7.5YR 4/3) loam; moderate fine and medium subangular
blocky structure parting to weak medium granular structure; slightly hard, friable;
no roots; common fme pores; many very fine pores; few clean sand grains;
common old root channels; few old wormcasts; few strata of dark brown (7.5YR
3/2) loam; pH 8.0; non-effervescent; abrupt smooth boundary.

4AC--559 to 591 ern; stratified brown (7.5YR 5/4), dark brown (7.5YR 3/4), and strong
brown (7.5YR 4/6) fine sandy loam; weak medium prismatic structure parting to
weak medium subangular blocky structure; slightly hard, very friable; no roots;
strata are 0.2 to 0.4 em thick; many fine pores; few medium pores; common
medium and coarse sand grains; few old worm casts; (layers in '4') this is a
combination eolian/alluvial deposit; clear smooth boundary.

4CI--591 to 645 em; yellowish red (5YR 5/6) loamy fine sand; weak coarse prismatic
structure parting to weak medium subangular blocky structure grading to massive;
soft, loose; no roots; few fine pores; non-effervescent; pH 8.0; clear smooth
boundary.

4C2--645 to 665 em; light yellowish brown (lOYR 6/4) loamy fine sand; massive;
stratified with very dark grayish brown (10YR 3/2) loam; massive; non­
effervescent; pH 8.0; abrupt smooth boundary.

5Ab--665 to 693 em; very dark grayish brown (10YR 3/2) silt loam; moderate medium
and fine subangular blocky structure parting to weak medium granular structure;
hard, friable; no roots; many fine pores; few medium pores; many old root
channels; common wonn casts; non-effervescent; pH 8.0; clear smooth boundary.

5Btl--693 to 732 em; very dark brown (10YR 212) silty clay; strong medium prismatic
structure parting to strong fine subangular blocky structure; very hard, very finn;
no roots; many fine root channels; common fme pores; few medium pores; few
white fungal threads; common distinct clay films; non-effervescent; pH 8.0; clear
smooth boundary.

5Bt2--732 to 782 em; grayish brown (I OYR 5/2) sandy clay loam; common medium
distinct strong brown (7.5YR 5/8) redox accumulations; strong medium prismatic
structure parting to moderate fine subangular blocky structure; hard, firm;
common distinct clay films; few very dark grayish brown (10YR 3/2) ped faces;
common fine pores; few medium pores; non-effervescent; pH 8.0; gradual smooth
boundary.

5BC--782 to 817 em; pinkish gray (I OYR 6/2) fine sandy loam; slightly brittle; weak
medium subangular blocky structure; hard, friable; few fine distinct strong brown
(7.5YR 5/6) redox accumulations; few strong brown (7.5YR 5/8) rhizospheres in
old root channels; few faint clay films; common fine pores; few very fine pores;
many old root channels; non-effervescent; pH 8.0.
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98-0K-093-7
Nov. 23, 1998
Hanor Farm
in NE corner of quarter
79 meters @334 0 north to pipeline crossing
58 0 bearing to the northeast corner of the quarter.
Notes: This profile is intended to represent the sand sheet mantled surface. It is about 2.4

meters above the low N-S depression. None of this area is without some sand
sheet and this profile is no exception.

A--O to 30 cm; dark grayish brown (10YR 4/2) loamy fine sand.

Bw--30 to 104 cm; yellowish brown (lOYR 5/4) loamy fine sand.

2Ab--104 to 119 cm; brown (7.5YR 4/4) fine sandy loam; moderate fine subangular
blocky structure parting to moderate very fine subangular blocky structure; few
faces ofdark brown (7.5YR 3/4) color; many fine pores; few worm casts.

2Btlb--119 to 155 cm; reddish brown (5YR 4/4) fine sandy loam/sandy clay loam; strong
medium prismatic structure parting to moderate medium and fine subangular
blocky structure; common distinct clay films.

2Bt2b--155 to 193 cm; brown (7.5YR 5/4) loam; moderate medium prismatic structure
parting to moderate fine subangular blocky structure; common mediwn distinct
yellowish red (5YR 5/6) redox accumulations; few distinct clay films; common
fine roots.

2BCb--193 to 231 cm; brown (7.5YR 4/4) loamy fine sand; weak medium prismatic
structure; common fine distinct yellowish red (5YR 516) redox accumulations;
common fine black bodies; few fine distinct pinkish gray (7.SYR 6/2) redox
depletions.

3Ab--231 to 249 cm; dark grayish brown (10YR 412) silt loam; common fine distinct
pinkish gray (10YR 6/2) redox depletions; common fine distinct yellowish brown
(10YR 5/6) redox concentrations; few silt films; many fine pores...

3Btlb--249 to 305 cm; very dark brown (lOYR 2/2) silty clay; strong medium prismatic
structure parting to strong mediwn and fine subangular blocky structure; many
distinct clay films on ped faces; many fine pores...

3Bt2b--305 to 368 cm; dark gray (lOYR 4/1) sandy clay loam; moderate medium
prismatic structure parting to moderate fine subangular blocky structure; few
distinct clay films; few medium distinct strong brown (7.SYR 5/6) redox
accumulations...

3BC--368 to 508 cm; gray (10YR 51}) fine sandy loam; few strata of sandy clay loam.
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98-0K-093-8
Hanor Farm
Dec. 3,1998
Site is in wheat field south of gravel road to the gene transfer center.
30 meters south of the center of the road.

17 0 bearing to telephone pole.
This site is straight south of the low area in section 20.

Ap--O to 25 em; dark brown (7.5YR 4/2) loamy fine sand; weak fine granular structure;
soft, loose; common fine pores; pH 8.0; clear smooth boundary.

AC--25 to 191 em; strong brown (7.5YR 5/6) loamy fine sand; weak medium prismatic
structure parting to weak medium subangular blocky structure; at 76 em is a zone
of platy structure, it may be cross-bedding; few fine roots; few lamellae 0.3 em to
0.6 em thick, yellowish red (5YR 4/6); many fine pores; soft, loose; pH 8.0;
abrupt smooth boundary.

2Ab--19l to 201 em; brown (7.5YR 4/3) fine sandy loam; moderate medium prismatic
structure parting to moderate fine subangular blocky structure; slightly hard, very
friable; degraded-mixed with loamy fine sand from above, possibly by worms,
bioturbation; many fingers of loamy fme sand; few fine faint yellowish red (5YR
4/6) redox accumulations; few fine black stains; many fine pores; few fme black
bodies; pH 7.5; clear smooth boundary.

2Bt1 b--20l to 244 em; yellowish red (5YR 4/6) fine sandy loam; moderate medium
prismatic structure parting to moderate fine subangular blocky structure; hard,
friable; many distinct clay films on ped faces; many fine pores; few medium
roots; few worm casts; few medium pores; pH 7.5; clear smooth boundary.

2Bt2b--244 to 363 em; coarsely mottled strong brown (7.5YR 5/6) and yeHowish red
(5YR 4/6) fine sandy loam; moderate medium prismatic structure parting to
moderate fine subangular blocky structure; hard, friable; common distinct clay
films on faces of peds; common clean sand grains; many fine pores; common
medium pores; common worm casts; slightly brittle; pH 7.5; clear smooth
boundary.

2BCb--363 to 508 em; strong brown (7 .5YR 4/6) fine sandy loam, stratified with loamy
fine sand; some stratifications are strong brown (7.5YR 4/6), a few are dark
brown (7.5YR 3/2); water table at 394 em; hole caved in below that; poor core
below 4.6 meters, one strata of silt loam 15 em thick, a few of coarse sandy loam;
few old root channels in the form of rhizospheres; many fine stratifications.

3Bwl--508 to 731 em; yellowish red (5YR 4/6) very fine sandy loam; weak fine
subangular blocky structure; common fine pores; common fine black bodies; few
medium sand grains.

3BW2--73l to 762 em; yellowish red (5YR 4/6) loam; moderate fine subangular blocky
structure; many fine pores that are old root channels; few distinct clay films.
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3BC--762 to 884 cm; yellowish red (5YR 5/6) sandy clay loam; moderate medium
prismatic structure parting to weak fine and medium subangular blocky structure;
few strata of fine sandy loam; common medium distinct pinkish gray (7.5YR 6/2)
redox depletions; common fine distinct yellowish brown (10YR 5/6) redox
accumulations, mostly as vertical streaks; common fme pores.
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98-0K-093-9
Hanor Fann
Dec. 9, 1998
It is 10.6 meters west of a mineral feeder and 100' at 218 0 bearing to the green water tank

we located on the total station survey. This core has a well drained soil over fme
sandy loarn/sandy clay loam. No sign of any buried, wet areas, but a lot ofburied
surfaces nevertheless.

Ap--O to 15 em; dark brown (7.5YR 4/2) loamy fine sand; weak fine granular structure;
clear smooth boundary.

AI--15 to 43 em; dark brown (7.5YR 3/2) loamy fine sand; moderate medium subangular
blocky structure parting to weak fme granular structure; clear smooth boundary.

Bw--43 to 107 em; brown (7.5YR 5/4) loamy fine sand; moderate medium prismatic
structure parting to moderate fine subangular blocky structure; many fine roots;
soft, loose; many fine pores; clear smooth boundary.

BCI--107 to 150 em; strong brown (7.5YR 5/6) loamy fine sand; moderate medium
prismatic structure parting to weak fine subangular blocky structure; few fine
roots; common fine pores; abrupt smooth boundary.

BC2--150 to 190 em; strong brown (7.5YR 5/6) loamy fine sand; moderate medium
prismatic structure parting to moderate medium subangular blocky structure;
common fine pores; slightly brittle; common fine roots; common fine worm casts
from horizon below (darker), I think that this horizon was bioturbated, worked by
worms, after commencement of sand deposition.

2Ab1--190 to 218 em; brown (7.5YR 4/4) fine sandy loam; moderate medium subangular
blocky structure; has faces of brown (7.5YR 4/3); many fine pores; common
worm casts; from 190 em down medium and coarse sand grains are common;
clear smooth boundary.

2Bt Ib--218 to 246 em; brown (7.5YR 4/3) sandy clay loam; moderate fine and med ium
subangular blocky structure; few distinct clay films on faces of peds; clay
bridging between sand grains; common fine pores; common medium and coarse
sand grains; clear smooth boundary.

2Bt2b--246 to 267 em; brown (7.5YR 4/3) sandy clay loam; strong medium prismatic
structure parting to moderate medium subangular blocky structure; many distinct
clay films on ped faces; many fine pores, which are old root channels; few
rhizospheres; few red mottles, and a moderately well drained appearance; gradual
smooth boundary.

2Bt3b--267 to 335 em; strong brown (7.5YR 4/6) fine sandy loam; strong medium
prismatic structure parting to moderate medium subangular blocky structure; few
fine roots; common distinct clay films on faces of peds, brown (7.5YR 4/3); many
fine pores; few medium pores; common worm casts; abrupt smooth boundary.

3Ab--335 to 356 em; strong brown (7.5YR 5/6) loamy fine sand; moderate medium
prismatic structure parting to moderate fine and medium subangular blocky
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structure; common distinct clay films on faces ofpeds, few darker faces; many
fine pores; common medium pores; few coarse pores, which are old root
channels; this horizon is slightly brittle; has a few clean sand grains; clear smooth
boundary.

3Btb--356 to 376 cm; yellowish red (5YR 4/6) heavy fine sandy loam; moderate medium
prismatic structure parting to moderate medium subangular blocky structure;
common distinct clay films on faces of peds, faces are darker; clay bridging
between sand grains; old root channels have black, decayed roots; many fine
pores; abrupt smooth boundary.

4Ab--376 to 396 ern; strong brown (7.5YR 4/6) loamy fine sand; moderate medium
prismatic structure parting to moderate medium subangular blocky structure;
many fine pores; many medium pores; many coarse pores; many old root
channels; clear smooth boundary.

4Btl--396 to 422 cm; red (2.5YR 4/6) crushed, red (2.5YR 5/6) cut face, sandy clay
loam; still has coarse sand grains; many fine pores; many distinct clay films on
ped faces; old root channels; common worm casts; clear smooth boundary.

4Bt2--422 to 508 cm; yellowish red (5YR 5/8) sandy clay loam; strong coarse prismatic
structure parting to moderate fine and medium subangular blocky structure; many
distinct clay films on ped faces, faces are darker; pockets of clean sand grains on
ped faces and in oM root channels; some old root channels have decayed roots.

4BC--508 to 569 cm; yellowish red (5YR 5/8) fme sandy loam; moderate medium
prismatic structure parting to weak fine and medium subangular blocky structure;
few fine pores; common old root channels.

4C--569 to 914 cm; yellowish red (5YR 4/6) fine sandy loam; water table at 584 cm;
nearly massive weak fine subangular blocky structure; common fine black stains;
a few strata of silty clay loam; this horizon was augured.
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98-0K-093-10
HanorFann
Jan. 20, 1999
On east edge of farm, 11.5 paces west of fence, 11.5 paces at 332 0 to a bare depression,

which is about 152 meters north of the main gate. This location is about 0.5
meters higher than the lowest part of the nearby depression, on the south side of
the depression. If the low, buried stream channel is here, the sediments below
should show it.

Water table--175 cm

AI--0 to 18 cm; very dark grayish brown (1 OYR 3/2) loamy fine sand; moderate fme
granular structure; many fine roots; clear smooth boundary.

A2--18 to 41 cm; very dark grayish brown (10YR 3/2) loamy fine sand; weak medium
subangular blocky structure; common fine roots; few fine redox depletions; clear
smooth boundary.

2AI--41 to 53 cm; yellowish brown (10YR 5/4) loamy fine sand; clear smooth boundary.

2Bt--53 to 91 cm; yellowish red (5YR 5/6) fine sandy loam; moderate medium
subangular blocky structure; common distinct clay films on faces of peds; few
fine roots; gradual smooth boundary.

3A--91 to 117 cm; brown (7.5YR 5/4) loamy fine sand; weak medium subangular blocky
structure; few fine roots; clear smooth boundary.

3Bt--117 to 173 cm; yellowish red (5YR 4/6) clay loam; moderate medium prismatic
structure parting to moderate fine subangular blocky structure; few fine roots;
many distinct clay films on ped faces; clear smooth boundary.

4A--173 to 213 cm; yellowish red (5YR 5/6) fine sandy loam; moderate fine and medium
subangular blocky structure; few rhizospheres; many fine pores; clear smooth
boundary.

4Bt--213 to 264 cm; yellowish red (5YR 4/6) sandy clay loam; moderate medium
prismatic structure parting to moderate fine and medium subangular blocky
structure; many fine pores; common distinct clay films on faces ofpeds; gradual
smooth boundary.

4BC--264 to 304 cm; yellowish red (5YR 4/6) loam and very fine sandy loam.

4C--304 to 610 cm; very saturated, unable to get a good sample, but texture is loam and
fine sandy loam, yellowish red (5YR 5/6); comparable to commonly seen terrace
material in lower parts of terrace, correlates.

This is a well-drained profile with the exception of the 33-66 cm layer, and the sediments
here do not correlate with the surface topography, even though this is a
depression, it is not a part of the terrace backswamp.
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January 27, 1999
98-0K-093-11
Hanor Fann.
Location 33.5 meters at 38 0 to the south end of the cattle guard of the main gate.
The site is an interdune position, just east of a longitudinal dune that runs N-S.
The aeolian sand sheet here is only 104 cm thick, overlying well drained profile of fine

sandy loam, loam, and very fine sandy loam.
Water table at about 3.6 meters. The underlying material from 3.6 to 4.9 meters is

saturated fine sandy loam and loamy fine sand.

98-0K-093-12
Feb. 8, 1999
HanorFarm.
Location: 204 0 bearing to the high hill, 840 bearing to the irrigation well. About 183

meters south of the north fence, on high N-S ridge on west side of the study site.
North and a little west of the pig house.

Here I am looking for continuation of terrace surface, and any cross-bedded sands.
This dune was mapped Nobscot, but only because it had oak savannah vegetation. This

is part ofthe terminal dune (apparently proximal to the river) covering the Qt2
terrace.

A--O to 10 cm; dark brown (7.5YR 4/2) fine sand; weak fine granular structure; loose,
loose; many fine roots; clear smooth boundary.

E--I0 to 51 cm; light yellowish brown (I OYR 6/4) fine sand; weak coarse subangular
blocky structure; loose, loose; common fine roots; gradual smooth boundary.

E&Bt--51 to 152 em; 90 percent light yellowish brown (lOYR 6/4) fine sand, and 10
percent strong brown (7.5YR 5/6) loamy fine sand in the form oflamel1as 0.3 to
1.25 cm thick; weak fine platy structure and weak coarse subangular blocky
structure; soft, loose; few coarse bedding planes; the Bt lamellae decrease with
depth; as soil dries the cross-bedding and platy structure becomes evident; diffuse
smooth boundary.

CI--152 to 366 cm; reddish yellow (7.5YR 6/6) fine sand; massive, single grained; loose,
loose; all is bedded, some evident cross-bedding; very low angle dune here, but
very regular bedding, same thickness, 0.2 cm; the last core depth is 365 em;
augured to 1280 cm.

C2--366 to 609 cm; reddish yellow (7.5YR 6/6) fine sand; same as above.

C3--609 to 670 em; light brown (7.5YR 6/4) fine sand; about 10 percent streaks of
yellowish brown (lOYR 5/6) fine sand.

C4--670 to 731 ern; strong brown (7.5YR 5/6) fine sandy loam.

C5--731 to 914 em; coarsely mottled yellowish brown (1 OYR 5/6), very pale brown
(10YR 7/4), and light gray (10YR 712) fine sandy loam; water table at about 792
cm.
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C6--914 to 1158 em; coarsely mottled, 70 percent yellowish red (5YR 5/6) and 30
percent very pale brown (lOYR 7/3) fine sandy loam; yellowish red (5YR 5/6)
color increasing with depth.

C7--1158 to 1250 em; coarsely mottled, 70 percent yellowish red (5YR 5/6) and 30
percent very pale brown (lOYR 7/3) sandy clay loam.

C8--1250 to 1280 em; dark grayish brown (lOYR 412) clay loam; common fine distinct
strong brown (7.5YR 5/8) redox accumulations; common medium distinct pinkish
gray (lOYR 6/2) redox depletions.
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98-0K-093-13
HanorFarm
Feb. 10, 1999
Location: south of entrance road, about 244 meters, 240 0 to south center pivot, 62 0 to

green tank on ridge south of lone oak tree.
Only went 305 em deep.
This site is lower topographically, but was in the well drained position on the stream

terrace. No clearly defined surface horizon buried at this spot, but may have been
destroyed; it would not have had to have been, by ne<:essity, preserved.

A--O to 38 em; dark grayish brown (10YR 4/2) loamy fine sand; weak fine granular
structure; soft, loose; many fine roots; clear smooth boundary.

AC--38 to 66 ern; brown (7.5YR 5/4) loamy fme sand; weak medium subangular blocky
structure; common fine roots; common fine pores; abrupt smooth boundary.

Abt--66 to 94 em; brown (7.5YR 4/4) fine sandy loam; moderate medium prismatic
structure parting to moderate fine subangular blocky structure; common fine
roots; common fine pores; (could this be a Bt horizon?) clear smooth boundary.

Eb&Btb--94 to 157 ern; 70 percent yellowish brown (10YR 5/4) loamy fme sand, and 30
percent strong brown (7.5YR 5/6) fine sandy loam; the Bt material is in irregular
chunks; moderate medium prismatic structure parting to weak medium subangular
blocky structure; many fine pores; gradual smooth boundary.

Btbl--157 to 213 em; red (2.5YR 5/6) heavy fine sandy loam; common medium distinct
very pale brown (10YR 7/3) redox depletions as vertical streaks along ped faces;
moderate medium prismatic structure parting to moderate fine subangular blocky
structure; hard, friable; many fine pores; few black bodies; few distinct clay films
on faces ofpeds; gradual smooth boundary.

Btb2--213 to 249 cm; red (2.5YR 4/6) sandy clay loam; common fine distinct light brown
(7.5YR 6/4) redox depletions as vertical streaks along ped faces; moderate
medium prismatic structure parting to moderate fme and medium subangular
blocky structure; hard, firm; few fine black bodies; few distinct clay films on
faces of peds; common old root channels; many fine pores; gradual smooth
boundary.

Bb--249 to 330 em; red (2.5YR 5/6) fine sandy loam to loam; few fine distinct pale
brown (1 OYR 6/3) redox depletions; weak coarse prismatic structure parting to
moderate fine subangular blocky structure; saturated; hard, friable; common black
stains; few fine black bodies; many fine pores; lower part breaks out in bedding
planes 0.6 em to 1.25 em thick like platy structure; many old root channels 0.2 to
0.4 em diameter.
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98-0K-073-1
Hajak Ranch
Sept. 14, 1998
N 360 08' 31.54"
W 0980 09' 19.75"
Water table--9l ern

A--O to 33 crn; dark brown (7.5YR 3/3) loamy fine sand; weak medium subangular
blocky structure parting to weak fine granular structure; clear smooth boundary.

AC--33 to 79 em; brown (7.5YR 4/4) loamy fine sand; moderate medium subangular
blocky structure; clear smooth boundary.

Ab--79 to 127 cm; dark brown (7.5YR 3/3) loamy fine sand; moderate medium
subangular blocky structure parting to moderate fine subangular blocky structure;
common worm casts; common fine pores; gradual smooth boundary.

ABb--127 to 152 cm; light brown (7.5YR 6/4) loamy fine sand; few fine distinct strong
brown (7.5YR 5/6) redox accumulations; moderate medium subangular blocky
structure; common .fine pores; gradual smooth boundary.

Cl--152 to 203 em; reddish yellow (lOYR 6/6) fine sand; common fine distinct reddish
yellow (5YR 6/6) redox accumulations; weak medium subangular blocky
structure parting to single grained; common fine black bodies; common medium
black bodies; few fine soft bodies of calcium carbonate; gradual smooth
boundary.

C2--203 to 269 cm; reddish brown (5YR 5/4) loam; common medium distinct pinkish
gray (lOYR 6/2) redox depletions; moderate medium prismatic structure parting
to moderate fine and medium subangular blocky structure; common fine pores;
gradual smooth boundary.

C3--269 to 335 cm; stratified very pale brown (lOYR 7/4) fine sand and brown (7.5YR
4/4) very fine sandy loam; few fine faint pinkish gray (I OYR 6/2) redox
depletions; common medium black bodies; gradual smooth boundary.

2Ab--335 to 427 em; dark grayish brown (1 OYR 412) clay loam; common medium
distinct strong brown (7.5YR 5/6) redox accumulations; moderate medium
prismatic structure parting to moderate fine subangular blocky structure; few fine
pores; common very fine pores, some partially filled with calcium carbonate; few
fine black bodies; clear smooth boundary.

2Btb--427 to 533 em; yellowish red (5YR 5/6) sandy clay loam; many medium distinct
pinkish gray (1 OYR 6/2) redox depletions; weak coarse prismatic structure parting
to weak medium subangular blocky structure; common fine pores; clear smooth
boundary.

2C--533 to 579 cm; strong brown (7.5YR 5/6) stratified sand and fine sand; common
medium distinct pinkish gray (lOYR 6/2) redox depletions; massive; few clay
balls; clear smooth boundary.
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3A--579 to 610 cm; yellowish red (5YR 4/6) fme sandy loam; common medium distinct
gray (10YR 6/1) redox depletions; moderate medium prismatic structure parting
to weak medium subangular blocky structure; few medium pores; few fine black
bodies; clear smooth boundary.

3Btl--6l0 to 671 cm; pinkish gray (lOYR 6/2) sandy clay loam; common medium
distinct brown (7.5YR 5/4) redox accumulations; weak medium prismatic
structure parting to weak fine subangular blocky structure; many fine black
bodies; gradual smooth boundary.

3Bt2--671 to 762 cm; yellowish red (5YR 5/6) sandy clay loam; pinkish gray (7.5YR 6/2)
redox depletions; weak medium prismatic structure parting to weak fine
subangular blocky structure; black stains in old root channels; common fine black
bodies in lower part; gradual smooth boundary.

3BCl--762 to 792 cm; brown (7.5YR 5/4) fine sandy loam; few medium distinct
yellowish red (5YR 5/6) redox accumulations; gradual smooth boundary.

3BC2--792 to 884 cm; yellowish red (5YR 5/6) loam; common medium distinct pinkish
gray (lOYR 6/2) redox depletions; massive; few old roots; few black stains in oJd
root channels; common very fine pores; few fine pores.
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98-0K-073-2
Hajek Ranch
Sept. 20, 1998"
N 36 0 08' 38.81"
W098 0 09' 15.52
Water table--427 em

AI--O to 30 em; dark brown (7.5YR 3/2) loamy fme sand; moderate fine platy structure
parting to moderate fine subangular blocky structure; many fine roots; clear
smooth boundary.

A2--30 to 61 em; dark brown (7.5YR 4/2) loamy fine sand; moderate medium subangular
blocky structure parting to single grained; common fine roots; gradual smooth
boundary.

AC--61 to 107 em; brown (7.5YR 4/4) loamy fine sand; moderate medium subangular
blocky structure; common fine roots; common fme pores; gradual smooth
boundary.

C--I07 to 137 em; yellowish brown (1OYR 5/4) loamy fine sand; weak medium
subangular blocky structure parting to massive; few fine pores; clear smooth
boundary.

Bb--B7 to 213 em; strong brown (7.5YR 4/6) loamy fine sand; moderate coarse
prismatic structure parting to moderate medium prismatic structure; common fine
pores; gradual smooth boundary.

Cl--213 to 305 em; light yellowish brown (10YR 6/4) fme sand; massive; faint cross­
bedding; gradual smooth boundary.

C2--305 to 335 em; pale brown (I OYR 6/3) fine sand; massive.

2Ab--335 to 351 em; reddish brown (5YR 4/3) fine sandy loam; moderate medium
prismatic structure parting to moderate fine subangular blocky structure; clear
smooth boundary.

2Btb1--351 to 427 em; yellowish red (5YR 4/6) sandy clay loam; moderate medium
prismatic structure parting to moderate fine subangular blocky structure; common
fine pores; few fine calcium carbonate films in pores; many distinct reddish
brown (5YR 4/3) clay films on ped faces; gradual smooth boundary.

2Btb2--427 to 488 em; strong brown (7.5YR 5/6) sandy clay loam; common fine distinct
brown (lOYR 5/3) redox depletions; moderate fine prismatic structure parting to
moderate fine and medium subangular blocky structure; many distinct dark brown
(7.5YR 4/2) clay films on ped faces; few calcium carbonate films in pores; many
fine pores; few coarse pores; gradual smooth boundary.

2Cl--488 to 610 em; yellowish red (5YR 4/6) loam; massive; few fme concretions of
calcium carbonate; common black streaks; gradual smooth boundary.

2C2--610 to 701 em; brown (7.5YR 4/4) loam; moderate coarse prismatic structure;
many very fine black bodies; clear smooth boundary.
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3Ab--70l to 732 cm; dark grayish brown (lOYR 4/2) clay loam; many fine and medium
concretions of calcium carbonate.

3B--732 to 914 cm; yellowish red (5YR 5/6) loam; few fine concretions ofcalcium
carbonate.

3C--914 to 1097 cm; yellowish red (5YR 4/6) loam; massive.
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98-0K-073-3
HajakRanch
Sept. 17, 1998
N 36 0 08' 36.21"
W 98 0 09' 19.01"

A--O to 30 cm; dark brown (7.5YR 3/4) loamy fine sand; weak medium subangular
blocky structure parting to weak very fme granular structure; many fine roots; few
worm casts; few fine pores; pH 6.8; clear smooth boundary.

ACl--30 to 91 em; brown (7.5YR 5/4) fine sand; moderate coarse prismatic structure
parting to weak medium subangular blocky structure; common fine roots; few
worm casts; few very fine pores; few fine pores; pH 7.5; gradual smooth
boundary.

AC2--91 to 254 cm; brown (7.5YR 5/4) fine sand; weak coarse prismatic structure
parting to weak medium subangular blocky structure; few fine roots; many clean
sand grains; common very fine pores; pH 7.5; diffuse smooth boundary.

Cl--254 to 330 cm; strong brown (7.5YR 5/6) fine sand; weak coarse prismatic structure
parting to single grained; few fine roots; faint cross-bedding; pH 8.0; non­
effervescent; leached; diffuse smooth boundary.

C2--330 to 457 cm; strong brown (7.5YR 5/6) fine sand; single grained; many very fine
cross-bedding; photo at 417 cm; pH 8.0; clear smooth boundary.

Ab--457 to 495 cm; dark brown (7.5YR 412) loamy fine sand; common medium faint
strong brown (7.5YR 4/6) redox accumulations; weak medium subangular blocky
structure parting to weak fine subangular blocky structure; soft, very friable;
common fine pores; few clean sand grains; few old wonn casts; few medium
pores; few dark organic streaks-old roots; horizon sampled; pH 7.5; non­
effervescent; clear smooth boundary. SAMPLE 99-0K-073-l

B1b--495 to 554 cm; brown (7.5YR 5/4) fine sand; few fine distinct strong brown (7.5YR
5/6) rhizospheres; weak medium subangular blocky structure parting to weak fine
subangular blocky structure; slight platy structure that may be weathered cross­
bedding, tilted; common clean sand grains; common fine pores; few medium
pores; pH 7.5; non-effervescent; gradual smooth boundary.

B2b--554 to 589 cm; light brown (7.5YR 6/4) [me sand; common fine faint pink (7.5YR
7/4) vertical streaks of bleached sand grains; few fine distinct yellowish red (5YR
5/6) redox concentrations; weak medium subangular blocky structure parting to
weak fine subangular blocky structure; many fine pores; cornmon medium pores;
few coarse pores; few old root channels; pH 7.5; non-effervescent; gradual
smooth boundary.

B3b--589 to 614 cm; yellowish red (5YR 5/6) loamy fine sand; common medium distinct
pinkish gray (5YR 7/2) vertical redox depletions, that are old root channels;
moderate coarse prismatic structure parting to moderate medium subangular
blocky structure; soft, very friable; many fine pores; common medium pores;
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common coarse pores; slightly brittle; common clean sand grains; pH 7.5; non­
effervescent; gradual smooth boundary, grading through fine sandy loam.

2Btb--614 to 655 cm; coarsely mottled brown (7.5YR 4/4) and light gray (lOYR 7/2) clay
loam; hard, firm; moderate medium prismatic structure parting to moderate fine
subangular blocky structure; many distinct clay films on ped faces; few fine black
bodies; many fine pores; many medium pores; few very fine concretions of
calcium carbonate; few fine gravel; many old root channels; pH 7.8; non­
effervescent; clear smooth boundary.

2Btkb--655 to 711 cm; coarsely mottled brown (7.5YR 4/4) and light gray (lOYR 7/2)
clay loam; hard, firm; moderate medium prismatic structure parting to moderate
fine subangular blocky structure; many distinct clay films on ped faces; few fine
black bodies; many fine pores; many medium pores; many very fine concretions
of calcium carbonate; few fine concretions of calcium carbonate; common pores
filled with films of calcium carbonate; few fine gravel; many old root channels;
pH 8.0; non-effervescent.
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98-0K-073-4
Hajek Ranch
Sept. 25, 1998
Pit on stream bank.
Water table--325 cm
N 360 08' 36.50"
W 0980 09' 20.26"
Notes: Profile has overblown A, AI, AC, Ab, Cbl, Cb2.

AI--0 to 10 cm; very dark grayish brown (IOYR 3/2) loamy fine sand; strong medium
subangular blocky structure parting to moderate fine platy structure; hard, very
friable; many fine roots; common fine wonn casts; repels water for a time; pH
7.0; non-effervescent; clear smooth boundary.

A2--10 to 46 cm; dark brown (7.5YR 4/2) fine sand; strong coarse prismatic structure
parting to moderate coarse subangular blocky structure; hard, very friable; many
fine roots; common wonn casts; few fine concretions of calcium carbonate; few
snail shells; pH 7.0; non-effervescent; gradual wavy boundary.

AC--46 to 91 em; brown (7.5YR 4/4) fine sand; moderate coarse prismatic structure
parting to moderate coarse subangular blocky structure; slightly hard, very friable;
few fine roots; few medium roots; few fme pores; few medium pores; many wonn
casts fi.ned with A material; common fine concretions of calcium carbonate, few
snail shens; pH 7.8; non-effervescent; clear smooth boundary.

Ab--91 to 112 em; brown (7.5YR 4/3) fine sand; weak coarse subangular blocky structure
parting to single grained; slightly hard, very friable; common fine pores; few
medium pores; common fine roots; common inclusions of above horizon mixed
in; few krotovina; pH 7.8; non-effervescent; clear wavy boundary.

ACb--112 to 198 em; reddish yellow (7.5YR 6/6) fine sand; weak coarse prismatic
structure parting to single grained; soft, loose; few fine roots; common [me pores;
few medium pores; few fine black streaks of organic matter (old roots); pH 8.0;
non-effervescent; gradual wavy boundary.

Cb--198 to 254 cm; very pale brown (10YR 7/3) fine sand; few fine distinct strong brown
(7.5YR 5/8) redox accumulations and rhizospheres; few fine distinct yellowish
red (5YR 5/8) rhizospheres; weak coarse prismatic structure parting to single
grained; slightly hard, very friable; few krotovina of mixed material, 8 em in
diameter, averaging fine sandy loam, with some dark grayish brown (lOYR 4/2)
material; no visible cross-bedding in pit, could be weathered out; few medium
root channels filled with dark brown (7.5YR 4/2) loamy fine sand; few very fine
black bodies; pH 8.0; non-effervescent; abrupt wavy boundary.

2Ab--254 to 264 em; reddish brown (5YR 4/4) fine sandy loam; few medium distinct
brown (7.5YR 5/2) redox depletions; weak medium subangular blocky structure
parting to weak fine subangular blocky structure; slightly hard, very friable; few
medium pores; common fine pores; common worm casts or old root channels
filled with material from above; pH 8.0; non-effervescent; clear wavy boundary.
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2Btlb--264 to 287 em; dark grayish brown (lOYR 412) heavy sandy clay loam; common
fine distinct strong brown (7.5YR 5/6) redox accumulations; common medium
faint grayish brown (1OYR 5/2) redox depletions; few medium distinct gray
(10YR 611) redox depletions only along root channels; moderate medium
subangular blocky structure parting to strong fine subangular blocky structure;
hard, firm; common fine black bodies; horizon is slightly brittle; few roots; many
fine pores; few very fine pores; common distinct clay films on faces ofpeds; few
clean sand grains; pH 8.0; non-effervescent; clear smooth boundary.

2Bt2b--287 to 310 em; brown (7.5YR 5/4) fine sandy loam; moderate medium
subangular blocky structure parting to moderate fine subangular blocky structure;
common fine faint strong brown (7.5YR 5/8) redox accumulations; common fine
distinct yellowish red (5YR 4/6) redox accumulations; common medium distinct
grayish brown (10YR 512) redox depletions; few distinct clay films on faces of
peds; many fine pores; few medium pores; few very fine black bodies; pH 8.0;
non-effervescent; clear smooth boundary.

2Cb--310 to 340 cm; brown (7.5YR 5/4) loamy fine sand; massive; pH 8.0; non­
effervescent; water table in this horizon.

340 to 417 cm; coarsely mottled gray (lOYR 6/1), grayish brown (lOYR 5/2), and strong
brown (7.5YR 4/6) fme sandy loam.

417 to 457 em; coarsely mottled grayish brown (lOYR 5/2) and brown (7.5YR 4/4) sandy
clay loam.

457 to 610 em; grayish brown (10YR 5/2) sandy clay loam; total depth 610 em.
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98-0K-073-5
Hajek Ranch
Sept. 30, 1998
N 36 0 08' 39.23"
W 098 0 09' 19.01"
Water table--356 em
Notes: Interdune position just west of site 8-20-98.

A--O to 20 em; dark brown (7.5YR 3/2) loamy [me sand; moderate fine platy structure in
the upper 8 em, moderate fine subangular blocky structure below; hard, very
friable; common fine roots; poorly sorted, mostly fine sand, some very fine sand
few medium sand grains, no coarse, pH 7.5; non-effervescent; clear smooth
boundary.

ACI--20 to 76 cm; dark brown (7.5YR 3/3) loamy fine sand; moderate coarse prismatic
structure parting to moderate coarse and mediwn subangular blocky structure;
hard, very friable; common fine roots; common fme pores; few worm casts;
poorly sorted, mostly fine sand, some very fine sand few medium sand grains, no
coarse, pH 7.5; non-effervescent; clear smooth boundary.

AC2--76 to 97 em; brown (1 OYR 4/3) loamy fine sand; weak coarse prismatic structure
parting to weak coarse subangular blocky structure; slightly hard, loose; few fine
roots; common very fine pores; few worm casts; few poorly sorted, mostly fine
sand, some very fine sand few mediwn sand grains, no coarse, clean sand grains;
pH 7.5; non-effervescent; clear smooth boundary.

C--97 to 157 cm; light yellowish brown (lOYR 6/4) fine sand; soft, loose; few fine roots;
few very fine pores; poorly sorted, mostly fine sand, some very fine sand few
medium sand grains, no coarse; few faint cross-bedding observed in fresh sample;
pH 7.5; non-effervescent; clear smooth boundary.

2Ab--157 to 175 cm; reddish brown (5YR 4/4) fine sandy loam; moderate fine and
medium subangular blocky structure; hard, friable; no roots; common worm casts,
filled with lighter material from above; few faint clay films (could be a remnant of
AB horizon); common very fine pores; pH 7.5; non-effervescent; clear smooth
boundary.

2B11 b--175 to 203 em; brown (7.5YR 5/4) sandy clay loam; common fine distinct pinkish
gray (7.5YR 6/2) redox depletions; common fine distinct reddish yellow (7.5YR
6/6) redox accumulations; moderate medium prismatic structure parting to strong
medium and fine subangular blocky structure; hard, firm; many distinct dark
brown (7.5YR 4/2) clay films on ped faces; common fine black stains in old root
channels; common fine pores; pH 8.0; non-effervescent; gradual smooth
boundary.

2Bt2b--203 to 229 cm; brown (7.5YR 4/4) loam; common fine distinct brown (7.5YR
5/2) redox depletions along root channels; moderate medium prismatic structure
parting to moderate medium and fine subangular blocky structure; hard, friable;
common distinct brown (7.5YR 5/4) clay films on faces of peds; few clean sand
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grains in old root channels; few black stains; common fme pores; few medium
pores; common coarse pores; pH 8.0; non-effervescent; gradual smooth boundary.

2Bt3b--229 to 305 cm; brown (7.5YR 4/4) loam; common fine distinct pinkish gray
(7.5YR 6/2) redox depletions along root channels; moderate medium prismatic
structure parting to moderate fine subangular blocky structure; hard, friable; few
distinct brown (7.5YR 4/4) clay films on faces of peds; common very fine pores;
common fine pores; less clay than above; pH 7.8; non-effervescent; gradual
smooth boundary.

2BC--305 to 518 cm; yellowish red (5YR 4/6) fine sandy loam; common fine distinct
pink (7.5YR 7/3) redox depletions; moderate medium prismatic structure parting
to moderate fine and medium subangular blocky structure; slightly hard, friable;
few fine roots; few very fine pores; few rme pores; structure becomes obscure
below water table; mottles tend to run along ped faces and old root channels; pH
8.0; effervescent in spots at the top, becoming effervescent continuous and
strongly effervescent below 396 cm; clear smooth boundary.

2C--518 to 548 cm; yellowish red (5YR 4/6) loam to sandy clay loam; few medium
distinct pinkish gray (7.5YR 6/2) redox depletions; massive (from augur); few
fine roots; few fine gravels; few medium concretions of calcium carbonate;
common fine concretions of calcium carbonate; pH 8.0; strongly effervescent;
clear smooth boundary.

2C2--548 to 914 cm; stratified yellowish red (5YR 4/6) 75% coarse loamy sand and 25%
clay; the clay strata are up to 25 cm thick, and have a few soft shale fragments
(local origin); coarse loamy sand has up to 5% fine gravel; clay has a few medium
concretions of calcium carbonate; at 914 em formation became too coarse to get a
sample; strongly effervescent; pH 8.0.
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98-0K-073-6
Sept. 1, 1998
Hajek Ranch
N 36 0 08' 39.96"
W 098 0 09' 13.21"
Water table--175 cm
Next to creek at north boundary of section 10.

Profile:

A--O to 15 em; very dark grayish brown (1 OYR 3/2) loam; common fine distinct pinkish
gray (1 OYR 612) redox depletions; moderate fine subangular blocky structure
parting to moderate medium granular structure; hard, friable; many fine roots;
common fine pores; pH 8.0; effervescent; clear smooth boundary.

Cl--15 to 41 cm; brown (10YR 5/3) loamy fine sand; few fme distinct yellowish brown
(10YR 5/6) redox accumulations; moderate medium and fine subangular blocky
structure; many fine bedding planes; many fme roots; common wonn casts; pH
8.0; effervescent; clear smooth boundary.

C2--41 to 69 cm; brown (lOYR 5/3) fine sand; common medium distinct yellowish
brown (10YR 5/6) redox accumulations; single grained; common fine roots;
common worm casts; faint stratifications; pH 8.0; effervescent; abrupt smooth
boundary.

2Ab--69 to 97 em; very dark grayish brown (10YR 3/2) loamy fine sand; common fine
distinct yellowish brown (lOYR 5/6) redox accumulations; moderate medium
prismatic structure parting to moderate medium subangular blocky structure;
common wonn casts, some filled with lighter material from above; common fine
pores; pH 8.0; effervescent; clear smooth boundary.

2Btk1b--97 to 155 cm; strong brown (7.5YR 4/6) clay loam; few fine faint grayish brown
(10YR 5/2) redox depletions; few medium distinct strong brown (7.5YR 5/8)
redox accumulations in lower part; strong medium prismatic structure parting to
strong .fine subangular blocky structure; hard, firm; many distinct dark brown
(7.5YR 4/2) clay films on ped faces; common fine roots; common fine pores; few
very fine pores; common fine concretions of calcium carbonate; pH 8.0;
effervescent in spots; gradual smooth boundary.

2Btkb2--155 to 206 em; brown (7.5YR 4/3) clay loam; many coarse distinct gray (lOYR
5/1) redox depletions, vertically aligned; common fine distinct yellowish brown
(10YR 5/6) redox accumulations; moderate medium prismatic structure parting to
moderate medium and fine subangular blocky structure; hard, firm; common fine
roots; common distinct dark brown (7.5YR 412) clay films on faces of peds; few
fine pores; few very fine pores; few medium pores; common medium black
bodies; common fine concretions ofcalcium carbonate; pH 8.0; effervescent in
spots; clear smooth boundary.

2BC1 b--206 to 254 cm; coarsely mottled brown (7.5YR 4/3) and yellowish red (5YR 4/6)
loam; very soft, poor sample; pH 8.0; effervescent in spots.
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2BC2b--254 to 335 cm; yellowish red (5YR 4/6) loam; common fine distinct gray (1 OYR
5/1) redox depletions in old root channels; moderate medium prismatic structure
parting to moderate coarse subangular blocky structure; hard, friable; few very
fine pores; common black streaks; few worm casts; pH 8.0; non-effervescent; at
this depth core is lost and have to augur - will describe samples at specific depths.

366 cm; yellowish red (5YR 5/6) fine sandy loam; pH 8.0.

465 cm; yellowish red (5YR 5/6) loamy fine sand; pH 8.0.

488 em; yellowish red (5YR 5/6) loamy fine sand; common medium distinct pinkish gray
(5YR 6/2) redox depletions; pH 8.0.

610 em; yellowish red (5YR 4/6) fine sandy loam and very fine sandy loam; pH 8.0;
strongly effervescent.

640 to 701 cm; yellowish red (5YR 4/6) clay loam and silty clay loam; common very fine
concretions of calcium carbonate; pH 8.0; strongly effervescent.

853 em; yellowish red (5YR 4/6) very fine sandy loam; pH 8.0; non-effervescent.

945 em; yellowish red (5YR 4/6) fine sandy loam; many coarse sand grains; pH 8.0; non­
effervescent.

1113 em; reddish brown (5YR 4/3) fine sandy loam; pH 8.0; effervescent.

1158 cm; grayish brown (lOYR 512) fme sandy loam; pH 8.0; non-effervescent.
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98-0K-073-7
Hajek Ranch
Sept. 30, 1998
N 36 0 08' 39.23"
W 098 0 09' 16.81"
Water table--284 cm
Interdune, west side ofcreek.

A--O to 25 cm; dark brown (7.5YR 3/2) heavy loamy fine sand; moderate fine subangular
blocky structure parting to weak medium granular structure; slightly hard, very
friable; many fine roots; common very fine pores; common wonn casts; clear
smooth boundary.

Bwl--25 to 56 cm; brown (7.5YR 4/3) loamy fine sand; few medium faint strong brown
(7.5YR 5/6) redox accumulations; weak medium prismatic structure parting to
moderate fine subangular blocky structure; slightly hard, very friable; common
very rme pores; few medium pores; few worm casts; clear smooth boundary.

Bw2--56 to 97 cm; brown (7.5YR 4/3) loamy fine sand; common fine faint strong brown
(7.5YR 5/6) redox accumulations; moderate coarse prismatic structure parting to
moderate medium and fine subangular blocky structure; hard, very friable; brittle
when dry; few fine roots; common fine pores; common medium pores; few very
fi.ne pores; few clean sand grains;

Ab--97 to 132 cm; brown (10YR 5/3) fine sand to loamy fine sand; few fine faint strong
brown (7.5YR 5/6) redox accumulations; weak medium and fine subangular
blocky structure; hard, very friable; brittle when dry; few fine roots; few fine
pores; few very fine pores; clear smooth boundary.

Bwb--132 to 160 cm; yellowish brown (lOYR 5/4) loamy fine sand; common medium
faint grayish brown (10YR 5/2) redox depletions; moderate medium prismatic
structure parting to moderate fi.ne subangular blocky structure; some clay
bridging; few faint clay films on faces of peds; common fine pores; few very fine
pores; few clean sand grains; clear smooth boundary.

2Ab--160 to 173 cm; brown (7.5YR 5/4) fine sandy loam; common fine faint brown
(7.5YR 5/2) redox depletions; moderate coarse prismatic structure parting to
moderate medium and fine subangular blocky structure; hard, friable; few fine
roots; common fine pores; few medium pores; few worm casts; few very fine
concretions of calcium carbonate; few very fine black bodies; pH 7.8;
effervescent; clear smooth boundary.

2Btl b--173 to 188 cm; brown (7.5YR 4/4) fine sandy loam; moderate coarse prismatic
structure parting to moderate fine and medium subangular blocky structure; hard,
friable; common coarse sand grains; few fine roots; few wonn casts; common fine
pores; cornman very fine pores; few medium pores; few distinct dark brown
(7.5YR 4/2) clay films on faces of peds; common fine concretions of calcium
carbonate; pH 8.0; effervescent; clear smooth boundary.
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2Bt2b--188 to 213 cm; finely mottled brown (7.5YR 5/4), brown (7.5YR 5/3), and strong
brown (7.5YR 5/6) sandy clay loam; few fine distinct grayish brown (1 OYR 5/2)
redox depletions on ped faces; moderate coarse prismatic structure parting to
moderate [me subangular blocky structure; hard, friable; few worm casts; few
medium pores; common fine pores; common very fine pores; common distinct
clay films on faces of peds; few clean sand grains; pH 8.0; effervescent; gradual
smooth boundary.

2Bt3b--213 to 279 em; brown (lOYR 4/3) clay loam; common medium distinct yellowish
brown (l OYR 5/6) redox accumulations; strong coarse prismatic structure parting
to strong fine subangular blocky structure; hard, firm; few fine roots; few medium
roots; common fine pores; common very fine pores; common medium pores;
many distinct grayish brown (lOYR 5/2) clay films on ped faces; few medium
concretions of calcium carbonate; common very [me soft bodies of calcium
carbonate; discontinuously effervescent, ranging from non-effervescent to
strongly effervescent; gradual smooth boundary.

2Bt4b--279 to 345 em; brown (7.5YR 5/4) clay loam; common medium distinct reddish
yellow (7.5YR 6/6) redox accumulations; strong coarse prismatic structure parting
to strong medium subangular blocky structure; hard, firm; few medium pores; few
very fine pores; many fine pores; common distinct clay films on faces of peds;
many old root channels, most coated with films of calcium carbonate; patchy
strongly effervescent on faces of peds; non-effervescent with few effervescent
spots in interior of peds; few medium black bodies; pH 8.0; gradual smooth
boundary.

2Bt5b--345 to 424 em; brown (7.5YR 4/4) loam; common medium faint brown (7.5YR
5/3) redox depletions; moderate coarse prismatic structure parting to moderate
medium and fine subangular blocky structure; hard, friable; few medium pores;
many fine pores; common very fine pores; common films of calcium carbonate in
pores; strongly effervescent in pores; few distinct clay films on faces of peds; ,
effervescent in spots; common coarse sand grains; one 5 em krotovina of dark
grayish brown (lOYR 4/2) clay loam.

424 to 470 em; sample very soft, ruined and lost.

2BClb--470 to 508 em; yellowish red (5YR 5/6) sandy clay loam; few fine distinct
brown (7.5YR 5/2) redox depletions; moderate coarse prismatic structure parting
to moderate medium subangular blocky structure; hard, firm; common fine pores;
common very fine pores; common fine black bodies; pH 8.0; non-effervescent;
clear smooth boundary.

2BC2b--508 to 541 em; yellowish red (5YR 5/6) fine sandy loam; common medium
distinct pinkish gray (7.5YR 6/2) redox depletions; moderate coarse prismatic
structure parting to moderate medium subangular blocky structure; hard, friable;
common medium black bodies; few old roots; common fine pores; few very fine
pores; pH 8.0; non-effervescent; abrupt smooth boundary.

3BCl--541 to 609 em; light yellowish brown (2.5Y 6/3) sandy clay loam; common
medium distinct light brown (7.5YR 6/4) redox accumulations; weak coarse
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prismatic structure parting to moderate medium subangular blocky structure; hard,
finn; many fine pores; few medium pores; common fine black bodies, some
spherical, some dendritic; few reddish yellow (5YR 6/6) bodies up to 5 cm
diameter; at 582 cm a zone of many fine concretions of calcium carbonate, and
violently effervescent in this zone; no visible clay films; common coarse sand
grains; pH 8.0; non-effervescent; clear smooth boundary.

3BC2--609 to 693 cm; pale brown (10YR 6/3) fine sandy loam; few fine distinct strong
brown (7.5YR 4/6) redox accumulations; moderate coarse prismatic structure
parting to moderate medium subangular blocky structure; hard, friable; few fme
black bodies; few old roots that are black and rotten; common fine pores;
common very fine pores; pH 8.0; non-effervescent; gradual smooth boundary.

3BC3--693 to 746 cm; yellowish red (5YR 4/6) heavy fine sandy loam; 5 percent fine
gravel; common medium distinct light brown (7.5YR 6/3) redox depletions;
moderate coarse prismatic structure parting to moderate medium subangular
blocky structure; few medium concretions of calcium carbonate; few bedding
planes of lighter fine sandy loam; pH 8.0; effervescent in spots; clear smooth
boundary.

3BC4--746 to 782 cm; yellowish red (5YR 5/6) fine sandy loam; moderate coarse
prismatic structure parting to moderate fine suhangular blocky structure; few large
concretions of calcium carbonate; few large disseminated masses of soft calcium
carbonate; common fine pores; few fine black bodies; few quartz gravels.
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98-0K-073-8
Hajek Ranch
Oct. 6, 1998
N 36 0 08' 30.11 "
W 098 0 09' 24.05"
Water table--290 cm

Core, south of last site.
15 meters east of section line, 30 meters north of creek.
Notes: Across creek from 8-25-98 creek bank. location, almost identical to 8-25-98

location. Horizon sequence and depth to buried A is within 10 cm of
correspondence. At depths below 6 meters yellowish red (5YR 4/6) fine sandy
loam is encountered, similar to other sites.

At 12 meters, red (2.5YR 5/6) silty clay is encountered.

No other remarkable features.
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