DESIGN, CONSTRUCTION AND TESTING OF A SINGLE-PHASE AND TWO-PHASE FLUID FLOW SYSTEM IN A HORIZONTAL CIRCULAR TUBE WITH CONSTANT HEAT FLUX

By

VENKATA K. RYALI

Bachelor of Science Andhra University Visakhapatnam, India 1995

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 1999

OKLAHOMA STATE UNIVERSITY

DESIGN, CONSTRUCTION AND TESTING OF A SINGLE-PHASE AND TWO-PHASE FLUID FLOW SYSTEM IN A HORIZONTAL CIRCULAR TUBE WITH CONSTANT HEAT FLUX

Thesis Approved:

Du Thesis Advisor Wa

Dean of the Graduate College

ACKNOWLEDGEMENTS

I would like to express to my sincere appreciation to my advisors, Dr. Ronald L. Dougherty and Dr. Afshin J. Ghajar for their incredible support throughout the process of this research. I would like to thank Mr. Dongwoo Kim for his support throughout the process of design and construction of the experimental setup for this research. I would also like to thank my third committee member Dr. F. W. Chambers. I want to thank Mr. James Davis for his technical support during the construction of the experimental setup.

I would like to express my sincere gratitude to my fiancée Ms. Vijaya for her support, understanding, and sacrifices throughout this whole process. I deeply appreciate the encouragement and financial support given by my parents, Mr. Syamsundar Ryali, and Mrs. Sakuntala Ryali. I once again thank Dr. Ronald L. Dougherty and Dr. Afshin J. Ghajar for their support and understanding throughout my MS program. I want to thank my very best friend P. V. S. R. Sudharshan and my younger brother Ganesh Ryali for sharing valuable ideas.

TABLE OF CONTENTS

Chapter	Page
I. INTRODUCTION	1
1.1 Background	2
1.2 Objectives	3
1.2.1 Prospects of the Work	3
1.2.2 Database	5
1.2.3 Correlation Comparison	5
1.3 Literature Survey	6
II. EXPERIMENTAL SETUP	18
2.1 Description of the Apparatus	18
2.1.1 Test Section	20
2.1.2 DC Arc Welder	22
2.1.3 Calming Inlet Section	25
2.1.4 Thermocouples	28
2.1.5 Mixing Well	31
2.1.6 Mixing Chamber	31
2.1.7 Constant Heat Source	33
2.1.8 Voltmeter	35
2.1.9 DC Ammeter	36
2.1.10 Heat Exchanger	36
2.1.11 Void Fraction Measurement Section with Quick Closing Valves	36
2.1.12 Water/Air Separator	40
2.1.13 Water Reservoir	40
2.1.14 Pumps	41
2.1.15 Turbine Meter	43
2.1.16 Frequency Meter	43
2.1.17 Testing Fluids	43
2.1.18 Fluid Return	43
2.1.19 Data Acquisition System	45
2.1.20 Supplemental Data Acquisition	47
III. EXPERIMENTAL CALIBRATION	48
3.1 Thermocouples	48
3.2 Turbine Meter	58

Chapter	Page
3.3 Model 5100 Data Logger 3.4 Experimental Procedure	59 62
3 4 2 Warm Un	62
3.4.3 Data Collection and Shut Down	64
3.5 Data Reduction	65
3.6 Two-Phase Flow Patterns	68
IV. HEAT TRANSFER RESULTS AND DISCUSSION	73
4.1 Factors Affecting the Heat Balance Errors	77
4.2 Identifying Good Test Runs	79
4.3 Trend of Nusselt Number Along the Test Section	89
4.4 Comparison of Available Correlations with Experimental Data	89
4.5 Best-Fit Correlation	104
4.6 Problems	106
V. CONCLUSIONS AND RECOMMENDATIONS	110
5.1 Conclusion	110
5.1.1 Experimental Apparatus	110
5.1.2 Nusselt Numbers	111
5.1.3 Calibration Runs	111
5.2 Recommendations	112
REFERENCES	116
APPENDICES	
APPENDIX A – EQUIPMENT SPECIFICATIONS	122
APPENDIX B – EXPERIMENTAL DATA	128
	1.00
B.1 Summary of Test Runs	129
B.2 Sample Input/Output Data File for Program RHt98F	135
B.3 Equation for Power input/Flow Rate	140
B.4 Test Rull Outputs	141
APPENDIX C – COMPUTER PROGRAMS	184
C.1 Program Datared98F	185
C.2 Program RHt98F	188
C.3 Program PhaseI	209

Chapter	Page
APPENDIX D – CALIBRATION CURVES FOR WALL THERMCOUPLES AND BULK TEMPERATURE PROBES	247
APPENDIX E – SAMPLE CALCULATION AND ANALYSIS	254
APPENDIX F – STEADY STATE CRITERION	259
APPENDIX G – UNCERTAINTY ANALYSIS	273

LIST OF TABLES

Tab	le		Page
	I.	Single-Phase Heat Transfer Correlations for Laminar Pipe Flow	14
	П.	Single-Phase Heat Transfer Correlations for Turbulent Pipe Flow	16
	Ш.	Identified Flow Patterns with their Flow Rates	69
	IV.	Classification of the Test Runs Based on Heat Input, Flow Rate,	
		and Ranges Covered	74
	V.	Ranges of Reynolds Number, Prandtl Number, Grashof Number,	
		Nusselt Number and Viscosity Ratio for 43 Test Runs	91
	VI.	Ranges of Reynolds, Prandtl, and Nusselt Numbers, and % Error for	
		Sieder and Tate (1936) Correlation	92
	VII.	Ranges of Reynolds, Prandtl, and Nusselt Numbers, and % Error for	
		Colburn (1933) Correlation	94
	VШ.	Ranges of Reynolds, Prandtl, and Nusselt Numbers, and % Error for	
		Ghajar and Tam (1994) Correlation	96
	IX.	Ranges of Reynolds, Prandtl, and Nusselt Numbers, and % Error for	
		Gnielinski [1] Correlation	97
	X.	Ranges of Reynolds, Prandtl, and Nusselt Numbers, and % Error for	
		Gnielinski [2] Correlation	99
	XI.	Ranges of Reynolds, Prandtl, and Nusselt Numbers, and % Error for	
		Gnielinski [3] Correlation	102

XII. Ranges of Reynolds, Prandtl, and Nusselt Numbers, and % Error for	
Modified Gnielinski [3] Correlation	106
XIII. Effect of Amplified Ammeter Reading on the Heat Balance Errors	113
XIV. Summary of Test Runs Ordered by Case Number	131
XV. Summary of Good Test Runs	133
XVI. Correlation Comparisons with Good Test Runs	134
XVII. Sample Input Data File (m1114.DAT) for RHt98F Program	137
XVIII. Sample Output File (rn1114.HTI) from RHt98F Program	138
XIX. MEAN and RMS Values for hTP, the Number of Data Points for the	
Specified Flow Pattern and Regime (L/T) Combination	214
XX. Number of Points within the Author Specified Range for VsG/VsL	
Parameter with Respect to hTP Differences	214
XXI. Number of Points that Fall within the Author [of Correlation]	
Specified Range for that Column Parameter (ReSL, PrL, ReSG,	
VsL/VsG, and Mg/Ml)	215
XXII. Number of Points for ReSL, PrL, ReSG, VsG/VsL, and Mg/Ml	
within ±15% of the Author Specified Range	216
XXIII. Number of Points for ReSL, PrL, ReSG, VsG/VsL, and Mg/Ml	
within $\pm 30\%$ of the Author Specified Range	215

LIST OF FIGURES

-			
	2	~	0
	a	ν	-

Figure		Page
2.1	Schematic Diagram of the Experimental Setup	19
2.2	Pressure Tap Locations Along the Test Section	21
2.3	Copper Plate and Electrode Cables	23
2.4	Thermocouple Locations Along the Test Section	24
2.5	Stainless Steel Pipe and Calming Section	26
2.6	Flange Connection, Calming Section, and Mixing Chamber	27
2.7	Inlet Thermocouple Probe Placement	30
2.8	Mixing Well and Outlet Thermocouple Probe	32
2.9	Mixing Chamber	34
2.10	Void Fraction Measurement Setup	38
2.11	One Quarter Inch Teflon-PFA Type Drain	39
2.12	Water/Air Separator-Trap (Cast Iron)	41
2.13	Pumps and Feedback Line Design	44
2.14	Return Line Configuration	46
3.1	Calibration Equation for Thermocouple 1	50
3.2	Trend of Difference Between Thermocouples and Bath Temeperature	
	vs. Bath Temperature	50
3.3	Calibration Equation for Bulk Inlet Thermocouple Probe	52

Figure	Page
3.4 Calibration Equation for Bulk Outlet Thermocouple Probe	52
3.5 Corrected/Uncorrected Thermocouple Temperature Readings for an	
Isothermal Test Run (Medium Flow Rate)	53
3.6 Corrected/Uncorrected Thermocouple Temperature Readings for an	
Isothermal Run (# 8) [TC 7 and TC 40 Replaced] with Medium Flow	Rate 54
3.7 Corrected/Uncorrected Thermocouple Readings for Test Run 138	
with a Constant Heat Flux/2.0 gpm Flow Rate	56
3.8 Average Thermocouple Readings vs. Test Station Number for Test	
Run 138 with Constant Heat Flux/2.0 gpm Flow Rate	57
3.9 Small Turbine Meter Flow Rate Calibration Curve Using	
HP 5314A Meter	60
3.10 Calibration Flow Rate Difference vs. Average Frequency for the	
Small Turbine Meter	61
4.1 Trend of Inlet Bulk Temperature vs. Heat Balance Error	
for Case 1 (Low Power/Low Flow Rate) Test Runs	78
4.2 Effect of Bulk Temperature on Heat Balance Error for	
Case 1 (Low Power/Low Flow Rate) Test Runs	80
4.3 Effect of Flow Rate on the Heat Balance Error for	
Case 1 (Low Power/Low Flow Rate) Test Runs	81
4.4 Trend of Heat Transfer Coefficient Ratio vs. Dimensionless	
Axial Distance	85

Figure	Page
4.5 Peripheral Inside Wall Temperature Distribution for Mixed	
Convection in Run 1117	87
4.6 Peripheral Inside Wall Temperature Distribution for Forced	
Mixed Convection in Run 4103	88
4.7 Experimental Nusselt Number vs. Dimensionless Axial Distance	
for All Types of Test Runs	90
4.8 Comparison of Experimental Nusselt Number to Calculated Using	
Sieder and Tate (1936) Correlation	93
4.9 Comparison of Experimental Nusselt Number to Calculated Using	
Colburn (1933) Correlation	95
4.10 Comparison of Experimental Nusselt Number to Calculated Using	
Ghajar and Tam (1994) Correlation	98
4.11 Comparison of Experimental Nusselt Number to Calculated Using	
Gnielinksi [1] Correlation	100
4.12 Comparison of Experimental Nusselt Number to Calculated Using	
Gnielinksi [2] Correlation	101
4.13 Comparison of Experimental Nusselt Number to Calculated Using	
Gnielinksi [3] Correlation	103
4.14 Comparison of Experimental Nusselt Number to Calculated Using	
Modified Gnielinski [3] Correlation	107
D.1 Trend of Difference Between Thermocouples (11-20) and	
Bath Temperature vs. Bath Temperature	250

Figure		Page
D.2	Trend of Difference Between Thermocouples (21-30) and	
	Bath Temperature vs. Bath Temperature	251
D.3	Trend of Difference Between Thermocouples (31-40) and	
	Bath Temperature vs. Bath Temperature	252
D.4	Trend of Difference Between Bulk Temperature (Inlet and Exit)	
	and Bath Temperature vs. Bath Temperature	253
F.1	Steady State Criterion for Test Run 4103	271
F.2	Steady State Criterion for Test Run 1161	272

LIST OF PHOTOGRAPHS

Photograph	Page
3.1 Plug, Water: 4.00 gpm (15.14 lpm)/Air: 0.793 gpm (3.0 lpm)	70
3.2 Slug, Water: 3.78 gpm (14.3 lpm)/Air: 3.17 gpm (12.0 lpm)	70
3.3 Stratified/Slug Transition, Water: 3.43 gpm (12.99 lpm)/Air: 10.8 gpm	n
(40.88 lpm)	70
3.4 Wavy, Water: 2.71 gpm (10.25 lpm)/Air: 21.1 gpm (80.0 lpm)	71
3.5 Stratified/Wavy Transition-1, Water: 2.05 gpm (7.76 lpm)/Air: 2.11 g	,pm
(8.0 lpm)	71
3.6 Stratified/Wavy Transition-2, Water: 1.16 gpm (4.39 lpm)/Air: 2.37 g	,pm
(9.0 lpm)	71
3.7 Stratified, Water: 0.63 gpm (2.38 lpm)/Air: 1.58 gpm (6.00 lpm)	72
3.8 Slug/Bubbly Transition, Water: 3.43 gpm (12.98 lpm)/Air: 11.8 gpm	
(45.00 lpm)	72
3.9 Slug/Bubbly Transition, Water: 3.43 gpm (12.98 lpm)/Air: 11.8 gpm	
45.0 lpm)	72

NOMENCLATURE

Α	area, ft ² or m ²
C _{PL}	specific heat of the liquid evaluated at the bulk temperature, Btu/lbm-°F or J/kg-K
C _{PG}	specific heat of the gas evaluated at the bulk temperature, Btu/lbm-°F or J/kg-K
d, D	inside diameter of the test section, 1.097 inches (2.7863 cm)
DeltaTB	difference in exit and inlet bulk temperatures, °F or °C
DeltaTBin	difference in inlet bulk temperatures for one minute, °F/min or °C/min
DeltaTBot	difference in exit bulk temperatures for one minute, °F/min or °C/min
f	friction factor coefficient
F. R .	flow rate, gpm or lpm
Frq	frequency, Hz
Gr	Grashof number
h, h _{tP}	heat transfer coefficient, Btu/hr ² - °F or W/m ² - °K
Hbal	heat balance error
Hin	heat input to the system, W or Btu/hr
Hout	heat carried by the water, W or Btu/hr
h₄⁄h₀	ratio of heat transfer coefficient at the top to the bottom of the test section
Ι	current carried by the test section, amperes
k,	thermal conductivity of the stainless steel test section, Btu/hr-ft- $^{\circ}F$ or W/m- $^{\circ}K$
k _L	thermal conductivity of the water, Btu/hr-ft-°F or W/m-°K

k _G	thermal conductivity of air, Btu/hr-ft-°F or W/m-°K
L	length of the stainless steel test section, ft or m
m _L	mass flow rate of water, lbm/s or kg/s
ṁ _G	mass flow rate of air, lbm/s or kg/s
Nu	local circumferentially averaged Nusselt number, hd/k, dimensionless
PrL	Prandtl number of water, $C_{PL} \mu_L / k$, dimensionless
Pr _G	Prandtl number of air, $C_{PG} \mu_G / k$, dimensionless
q"	heat flux, Btu/hr-ft ² or W/m ²
QL	volume flow rate of the water, $gpm \text{ or } m^3/s$
Q _G	volume flow rate of the air, ft ³ /min or m ³ /s
R ²	regression coefficient
Ra	Rayleigh number, (Gr Pr), dimensionless
Re _{SL}	local Reynolds number of the water, $(\rho_L V_L d/\mu_L)$, dimensionless
Re _{sG}	local Reynolds number of the air, $(\rho_{_G}V_{_G}d/\mu_{_G})$, dimensionless
Т	temperature, °F or °C
TBATH	temperature of the bath, °F or °C
TC	temperature reading of the thermocouple, °F or °C
Tbulkin	inlet bulk temperature, °F or °C
Tbulkout	exit bulk temperature, °F or °C
Ttank	temperature of the water in the storage tank, °F or °C
Tamb	ambient temperature in the experimental setup room, °F or °C
Ть	bulk temperature, °F or °C

T₩	tube outside wall temperature, °F or °C
Tw _A	inside wall temperature at station-A (top of the test section) thermocouple, $^{\circ}F$ or $^{\circ}C$
Twc	inside wall temperature at station-C (bottom of the test section) thermocouple, $^{\circ}F$ or $^{\circ}C$
T _{wi}	tube inside wall temperature, °F or °C
v	voltage drop across the test section, volts
V _G	actual flow velocity of the air, ft/hr or m/s
VL	actual flow velocity of the water, ft/hr or m/s
V_{SG}	superficial flow velocity of the gas, ft/hr or m/s
V _{SL}	superficial flow velocity of the liquid, ft/hr or m/s
x	distance from the entrance of the test section, inches or cm
x	thermocouple reading in °C or °F
Y	temperature of the bath in °C or °F

GREEK SYMBOLS

- α void fraction ratio
- β coefficient of volume expansion, 1/°F or 1/°C
- μ viscosity, lbm/hr-ft or kg/m-sec
- ρ density, lbm/ft³ or kg/ m³

SUBSCRIPTS

- avg average
- B bulk
- b refers to bottom of tube

Cal	calculated
Exp	experimental
G	gas (air)
GX	theoretical local Nusselt number
L	liquid (water)
MIX	water-air mixture
SL	superficial liquid (water)
SG	superficial gas (air)
t	refers to top of tube
wall	refers to wall
w	wall

CHAPTER I

INTRODUCTION

This Chapter will discuss the background of the study of single-phase and twophase flows in horizontal circular cross-section tubes. The basic necessity of the study and its applications were also presented in this chapter. Some experimental work done by previous investigators has been compared with this study. Much study has been done to estimate the heat transfer coefficient in two-phase flow. Limited success has been achieved in building a setup that can be used to produce all kinds of flow patterns and identify them. One of the major applications is to study the behavior of combined gas/liquid flow in oil and gas pipelines. Also two-phase flow occurs in many industrial applications, such as in chemical processing.

Whether laminar or turbulent, two-phase flows are dependent on the flow pattern. The ability to predict flow regimes is essential for proper flow modeling and correlation development, as well as for successful selection of heat transfer enhancement techniques. Depending upon the identified flow pattern, a certain correlation can be used to predict the heat transfer coefficient. Therefore identifying the flow pattern itself plays a major role in predicting heat transfer effects in two-phase flow. The main flow patterns that might exist in two-phase gas-liquid flow in horizontal tubes can be classified as bubbly, froth, stratified, annular, wavy, slug, and

mist. The variety of flow patterns reflects the different ways that the gas and liquid phases are distributed within a pipe. This causes the heat transfer mechanism to be different for different flow patterns.

1.1 Background

The expression "two-phase" flow is used to describe the simultaneous flow, usually in a closed channel, pipe or conduit, of a gas and a liquid, a gas and a solid, or a liquid and a solid. All three of these types of two-phase flows occur in practical engineering systems.

The two phases may be formed from the same chemical species, as in the twophase flows formed from water and steam or from water and ice, in which case the flow is a one-component two-phase flow; or, the two phases may be formed from several chemical species and be referred to as a multi-component flow. That is, each phase may be a solution (or mixture).

The system which was the subject of the present investigation was of the gasliquid multi-component type formed with water and air. It is common in this situation to associate a single chemical identity to dry air and to refer to this system as a twocomponent system even though in the true chemical sense, the number of components is much greater. Numerous flow patterns can be observed in two-phase flows, and all authors do not agree on the names of these patterns. The major flow patterns encountered in water/air flow in horizontal tubes are: bubbly, froth, stratified, wavy, annular, mist, and slug flow.

1.2 Objectives

The main object of this study was to design and build a test loop that can handle two-phase flow. Initially the setup has been run and tested for single-phase flow, the fluid used in this case was distilled water. The long-range goal of this investigation was to study heat transfer to/from a two-phase flow in tubes under the constant wall heat flux condition. The test loop was very carefully designed to handle water-air fluids. The test flow was so designed that it can safely handle all types of flow patterns and flow regimes. Variations in temperature along the test section were carefully recorded via a data acquisition system. This test section can handle pressure up to 120 psi (84500 kg/m²) and temperature up to 110 °F (43.05 °C). Calibration of the thermocouples, the flow rate measurement device (turbine meter), and thermocouple bulk temperature probes has been performed carefully and accurately. The last step is to find the efficiency of the test loop (heat balance error), and compare the Nusselt number from the experimental data with that of available correlations.

1.2.1 Prospects of the Work

This study details the preparation of a suitable experimental apparatus having the inherent versatility to fulfill all long-term objectives. This required the ability to handle all types of flow patterns and flow regimes, as well as having a quick reliable approximate method for measuring void fraction ratio without the necessity of taking the apparatus apart. To deliver this ability, a unique mixing chamber, a calming

section, a mixing well, and a void fraction measurement section were designed, constructed and tested (detailed in Chapter II).

Special containment housings were constructed to suppress the noise and vibration produced by the pump and the welder (used to supply the electricity for the wall heat flux). Rubber damping materials were used to reduce the vibration from the pump. The welder was located near an external wall so that exhaust noise could be removed from the lab. Rubber hoses were used at some locations in order to reduce the vibration transmitted by the pump to the test section. The rubber hoses were designed to also help with any future modification on the test loop, since they could be easily removed and re-connected. These rubber hoses, along with damping materials, were used mainly on the return lines. The test section was supported on a wooden bridge, and it was fully insulated with fiberglass insulation material. A fluid filter was used in the return loop to remove particles above five microns in diameter. All of these components are described in detail in Chapter II.

Clear polyvinyl carbonate (PVC) tubes were used in some locations upstream and downstream of the test section in order to visualize the flow. A special support was constructed to hold the mixing chamber. The mixing chamber was made out of clear PVC, which will help to clearly visualize the type of flow pattern that the fluid will take in future two-phase testing. A clear calming section of 110 inches (279.40 cm) was placed just before the test section. This will help the fluids to mix thoroughly before they actually entered the test section. In order to help maintain consistent behavior of the flow, the entire test loop had a 1.097 inch (2.786 cm) internal diameter. A separator was placed at the end of the test section to separate water from air for two-phase flow.

Water will be re-circulated and the air will be returned to the atmosphere. The water was recycled through a heat exchanger in order to maintain a steady state.

To facilitate massive and accurate data accumulation, digital acquisition systems were employed with fast sampling capability. When used in tandem with a personal computer, labor and data collection periods were reduced and accuracy was increased. (See Chapter II for details on these systems.)

1.2.2 Database

This thesis discusses the design, construction, calibration, and testing for singlephase fluid flow in a circular horizontal electrically heated straight tube with constant heat flux. The fluid used for single-phase flow was distilled water. The heat transfer data was taken over a wide range of Reynolds (2800 to 17000), Prandtl (4.0 to 6.5), and Nusselt (15 to 115) numbers. About 120 shake down runs were conducted, after which 43 were performed in order to validate the proper working of the test loop.

1.2.3 Correlation Comparison

Using the results obtained from the data of the test runs, several correlations were used to predict the Nusselt number. A listing of all of the correlations used is given in Tables I and II. Of these correlations, only a few seem to accurately predict the single-phase data from this test setup. These correlation comparisons are reported in Chapter IV. Three correlations accurately predicted Nusselt number for this test setup. They were the correlations developed by Sieder and Tate (1936), Colburn (1933), and Gnielinski (1976). By modifying these pre-existing correlation, a good correlation equation was formulated which better matched the data presented in this thesis.

1.3 Literature Survey

Experimental investigation of two-phase flows in a horizontal circular tube under constant heat flux is limited, considering the wide range of conditions under which these flows may occur and be of engineering interest. In this section, a brief review of successful work related to horizontal, constant heat flux single-phase and two-phase pipe flow is given. At the end of this section, a table is provided for ease in comparing of the correlations.

Shannon and Depew (1968 and 1969) investigated natural convection effects for a resistance (DC current) heated stainless steel tube that also incorporated an unheated calming section. They used water and ethylene glycol to cover a Reynolds number range of 6 to 2300. Their results showed the influence of free convection and were correlated using the parameter ((GrPr)^{1/4}/Nu_{GX}), where Nu_{GX} is the theoretical local Nusselt number found from Siegel et al. (1958). They concluded that when ((GrPr)^{1/4}/Nu_{GX}) was less than 2, the free convection effect was unimportant.

Siegwarth et al. (1969) analyzed the effect of secondary flow on the temperature field and primary flow at the outlet of a long electrically heated tube. They developed a model for the flow field by dimensional reasoning and found that secondary flow controls the rate of heat transfer. Their model showed good agreement with the data measured by Readal (1969).

Petukov and Polyakov (1967) used distilled water in a tube, heated by electrical resistance (using AC current), to study local heat transfer coefficient. By measuring the temperature at both axial and radial locations, they plotted average Nusselt number

versus the reduced parameter (x/D)/(RePr), and showed that the local Nusselt number was a strong function of Rayleigh number. They also observed that the thermal entry length decreased when Rayleigh number increased.

Using flow visualization techniques, Bergles and Simonds (1971) studied the effects of free convection on laminar water flow in horizontal circular tubes with constant heat flux. The tubes were Pyrex E-C coated tube with four thermocouples placed 90 degrees apart in the circumferential direction. A DC arc welder was used as a heat source for the test section. Heat was generated in the Pyrex E-C coating to provide constant heat flux with nearly zero radial conduction, and their results were similar to Petukhov and Polyakov (1967).

Ede (1961) used water and air under constant heat flux. He studied the free convection on fluid flow at Reynolds numbers from 300 to 100,000 in electrically heated aluminum-brass pipes with varying inside diameter and wall thickness for abruptly converging and diverging inlet geometries. He found that there was no consistent variation in Nusselt number with Grashof number (for Grashof number less than 100,000) in the laminar region (Re <2300). He presented no correlations for transition or turbulent flows, and his laminar equation for Re < 2300 in fact had no Reynolds number dependency.

Seigel et al. (1958) proposed an analytical solution for laminar heat transfer without natural convection. They developed an equation for local Nusselt number with a fully developed velocity profile and uniform heat flux boundary condition. Petukhov and Polyakov (1967), Bergles and Simonds (1971), and Hong and Bergles (1976) used the Seigel et al. (1958) correlation as a basic solution for laminar forced convection

heat transfer. But their pure forced convection equation gave lower predictions for heat transfer coefficients than the experimental data showed, as found by Petukhov and Polyakov (1967). They observed that, with increased heat flux, higher deviations from the forced convection prediction and increased density variation (represented by Rayleigh number) occurred.

Ghajar and Tam (1994) studied the heat transfer effects in an electrically heated horizontal circular tube. The heat transfer section they used was an 316 stainless steel circular tube with an inside diameter of 0.624 inch (1.63 cm) and an outside diameter of 0.748 inch (1.89 cm). The total length of the test section was 20 feet (6.096 m) with an L/D equal to 385. The authors used finite difference formulations to find the local inside wall temperature, local peripheral heat transfer coefficient, and other pertinent information such as local outside-wall temperature at different axial locations along the test section. Ghajar and Zurigat (1991) developed an interactive computer program to calculate the local inside wall temperatures and local peripheral heat transfer coefficients from local outside wall temperatures. The program also calculated the pertinent fluid flow and heat transfer dimensionless parameters. One of the interesting results was the ratio of top to bottom peripheral heat transfer coefficients. If this ratio was close to 1.0, forced convection dominated and heat transfer was primarily dependent on the Reynolds and Prandtl numbers. However, if the ratio was less than 1.0, natural convection existed and heat transfer was by mixed convection. In this case, secondary flow caused by the difference between the fluid density at the wall and at the pipe center also affected the temperature profile. For mixed convection, the heat

transfer was dependent on the Grashof number (which accounts for variation in the density of the test fluid) in addition to Reynolds and Prandtl numbers.

The design and experimental results on two-phase test loops by various researchers is briefly discussed herein.

Johnson (1955) investigated heat transfer and pressure drop in the horizontal flow of oil-air mixtures. This was an example of two-phase two-component system, which differs greatly from the air-water system with respect to heat transfer, due to the difference in properties of the fluids.

Aggour (1978) used a 0.46 inch (1.168 cm) diameter test section made of stainless steel, with an L/D (the test section length to inside diameter) equal to 52.1. He used this test loop to run four different sets of fluid combinations. They were air-water, helium-water, freon-12-water, and air-glycerin. He used 47 thermocouples at 16 positions along the test section, both axially and circumferentially. The orientation of the pipe was vertical. He used a by-pass line, made of 1.5 inch (3.81 cm) copper tubing, with a control valve to set the required flow rate. While applying a constant wall heat flux, he considered that the temperature difference between the tube wall and the bulk of the fluid should be small in order to minimize the circumferential variation in fluid properties. He made sure that this temperature difference would be large enough to accurately determine the heat transfer coefficients. An estimated temperature difference (T_W-T_B) of 15 °F was considered adequate to meet these requirements. Aggour (1978) proposed that the knowledge of the flow patterns is important in two-phase flow, as it might affect the heat transfer. The flow patterns

were classified on the evidence provided by the naked eye and taking short exposure still photographs.

Pletcher (1966) used a horizontal circular pipe made of 15 feet (4.572 m) galvanized steel with 1 inch (2.54 cm) internal diameter. He used a water-air mixture to study the heat transfer effects. He passed air through a 2 inch (5.08 cm) pipe, and used a compressor capable of delivering air at the rate of 1 lb/sec (2.2 kg/sec) at 100 psig (7.045 kg/cm²). The air he used had a relative humidity of 10%. The compressor was capable of operating at 0, 25, 50, 75 and 100% of rated capacity. Water was injected through the tube walls in a mixing section, which allowed the water to join the air stream in an annular pattern and with an axial velocity at the point of contact with the air stream. The heat transfer section was fabricated from a 60 inch (152.4 cm) length of type 304 stainless steel with an inside diameter of 1 inch (2.54 cm) and outside diameter of 2 inches (5.08 cm). Pletcher (1966) used pressure taps at seven different locations along the stainless steel pipe, and he placed 58 thermocouples at thirteen different locations (axially and circumferentially) along the pipe. He heated the test section with 13 gage Nichrome V heating wire. The wire was electrically insulated with a double wrapping on unimpregnated fiberglass. It could dissipate up to 25 kW with a maximum voltage drop of 250 V. Pletcher (1966) found that the pressure drop measurements for the heat transfer runs agreed well with those of other investigators, both isothermal and with heat transfer. In comparing the theory with data, 85% of the predictions fell within \pm 60% (almost all high) of the data and 33% of the predictions came within \pm 20% of the data. Pletcher (1966) covered $\dot{m}_{\rm L}$ between 0.0694 and 0.3876 lbm/sec, \dot{m}_{g} between 0.03 and 0.2568 lbm/sec, q" between 7372 and 11077

Btu/hr- ft², h between 433 and 1043.8 Btu/hr-ft² °F, mixture temperature between 64.9 and 99.4 °F, and wall temperature between 73.6 and 107.1 °F.

King (1952) used a horizontal copper pipe with an internal diameter of 0.7357 inches (1.872 cm) to study the heat transfer and pressure drop characteristics for twophase, two-component, non-isothermal flow of an air-water mixture. He found that the two-phase heat transfer coefficient, when calculated for a given liquid rate, was found to increase greatly upon the addition of small amounts of gas until it reached a maximum, substantiating the results of Abou-Sabe (1951) investigation. He investigated flow patterns for various combinations of flow rates. King covered $\dot{m}_{\rm L}$ between 1375 and 6410 lbm/hr, \dot{m}_0 between 0.82 and 43.7 lbm/sec, Re_{SL} between 22500 and 119000, Re_{SG} between 1570 and 84200, two-phase heat transfer coefficient between 1462 and 4415 Btu/hr-ft² °F, mixture temperature between 136.8 and 144.85 °F, wall temperature between 184.3 and 211.3 °F, mixture pressure between 15.8 and 55.0 lbf/in², V_{SG}/V_{SL} between 1.08 and 6.94, and pressure difference between 147.9 and 3226 lbf/ ft².

Davis (1960) studied heat transfer and pressure drop for steam-water mixture flowing in a rectangular, stainless steel, horizontal duct, with inside dimensions of 0.769 inches (1.953 cm), in height and 0.260 inches (0.66 cm) in width. The duct was heated electrically on one vertical face over a short distance so as to provide essentially point heat transfer coefficient. He investigated two-phase heat transfer mainly in the region of high vapor mass velocities, where forced convection-controlled heat transfer was found to occur. His setup pressures varied from 25 to 150 psia, heat fluxes ranged from 60,000 to 260,000 Btu/hr-ft2, and steam mass fractions from 0.50 to 0.90. The

wall temperatures were measured by thermocouples inserted into a thick copper plate electroplated onto the thin-walled duct, and the inside wall temperature was determined from calculations of the temperature drop through the copper plate and duct wall. The bulk temperature of the stream was determined form measurement of the saturation pressure, and the heat input by electrical measurements. He found that the maximum heat transfer coefficients were found to occur at qualities from 80% to 90% steam, and at that point liquid deficiency was observed to occur at the wall.

The need for this experimental study is due to the fact that there have not been significant experimental studies of two-phase flows in a horizontal circular tube with uniform heat flux. Although other work may exist, only data of Pletcher (1966) and King (1952) have been found accessible in the open literature. So a horizontal tube of 1.097 inches (2.786 cm) internal diameter experimental setup was designed that could handle a wide range of flow regimes and a variety of flow patterns. A mixing chamber was uniquely designed to produce various flow patterns. A clear calming section of eight foot long was used to visualize the flow pattern. Void fraction measurement setup was designed to measure the accurate value of void-fraction ratio for the two-phase flows. These features are an added advantage in studying the two-phase flow for water/air combination, over previous researchers. This thesis discusses how the design and construction of every component of the setup was accomplished. While designing this setup, the experimental setups used by Pletcher (1966), Strickland (1990), and Tam (1995) have been carefully studied. Several ideas on the design of the mixing chamber have been borrowed from Pletcher (1966). Some of the test equipment used by Strickland (1990) and Tam (1995) were utilized for this experimental setup.

After the test setup was designed and constructed, calibrations of thermocouples, flow meter (turbine meter), and thermocouple probes were carefully done. To validate the proper working of the test setup, single-phase test runs were made using water as the fluid. From the data obtained from these test runs, comparisons with single-phase correlations were done (see Table I for single-phase correlations). A literature survey of twenty two-phase correlations using seven two-phase data sets was made [Kim et al. (1997), and Kim et al. (1999)] and a Fortran code (PHASEI program) was written to calculate the heat transfer coefficient, error in heat transfer coefficient prediction, Re_{SL}, Re_{SG}, and V_{SL}/V_{SG}. Kim et al. [(1997) and (1999)] briefly discuss the work of Davis and David, Hughmark, Martins and Sims, Oliver and Wright, and Shah in two-phase horizontal flow. The PHASEI program is briefly discussed in Appendix C. For the single-phase testing, Reynolds number range of 2800 to 17000, Prandtl number range of 4.0 to 6.5, and Nusselt number range of 15 to 115 were covered to validate the proper working of the test loop.

The correlations provided in the Tables's I and II were taken from Kakac et al. (1987) handbook, except for Ghajar and Tam (1994).

TABLE I

SINGLE-PHASE HEAT TRANSFER CORRELATIONS FOR

INVESTIGATO	R CORRELATION	CONDITIONS
Hausen (1943) [Horizontal]	$\overline{Nu} = 3.66 + \frac{0.668(D/L) \operatorname{Re}\operatorname{Pr}}{1 + 0.04[(D/L) \operatorname{Re}\operatorname{Pr}]^{2/3}} \left(\frac{\mu}{\mu_W}\right)^{0.14}$	Uniform wall temperature
	$\overline{Nu} = 4.36 + \frac{\left[(0.045 \text{Re} \text{Pr} D/I) + 0.00356(\text{Re} \text{Pr} D/L)^{5/3}\right]}{\left[1 + 0.04(\text{Re} \text{Pr} D/L)^{2/3}\right]^2} (\frac{\mu}{\mu})^{0.14}$	Local Nusselt value derived from average value and accounting for constant heat flux
		$0.48 < \Pr < 16700$ $0.0044 < (\mu / \mu_W) < 9.75$
Sieder & Tate (1936)	$\overline{Nu} = 1.86(\text{RePr}D/L)^{1/3}(\frac{\mu}{\mu_w})^{0.14}$	Correlation recommended for Values of
[Horizontal]	<i>P</i> -W	$(\text{RePr}D/L)^{1/3} (\frac{\mu}{\mu_{W}})^{0.14} \ge 2$
	$Nu = 1.24 (\text{RePr}D/L)^{1/3} (\frac{\mu}{\mu_w})^{0.14}$	Local Nusselt value derived from average value.
Mori et al. (1966) [Horizontal]	$\overline{Nu} = 0.6(Gr \Pr Re)^{0.2} [1 + \frac{1.8}{(Gr \Pr Re)^{0.2}}]$	Constant heat flux Re=100 to 13000

LAMINAR PIPE FLOW

TABLE I (Cont'd)

-

SINGLE-PHASE HEAT TRANSFER CORRELATIONS FOR

LAMINAR PIPE FLOW

INVESTIGATO	OR CORRELATION	CONDITIONS
Colburn (1933) [Horizontal]	$\overline{Nu} = 1.5(\operatorname{Re}\operatorname{Pr} D/L)^{1/3} (\frac{\mu}{\mu_{W}})^{1/3} (1 + 0.015Gr^{1/3})$ $\overline{Nu} = (\operatorname{Re}\operatorname{Pr} D/L)^{1/3} (\frac{\mu}{\mu_{W}})^{1/3} (1 + 0.015Gr^{1/3})$	Local Nusselt value derived from average value.
Ghajar and Tam (1994) [Horizontal]	$Nu = 1.24 [(\text{Re} \text{Pr} D/x) + 0.025 (Gr \text{Pr})^{0.75}]^{1/3} (\frac{\mu_b}{\mu_w})^{0.14}$	$3 \le x/D \le 192 280 \le Re \le 3800 40 \le Pr \le 160 1000 \le Gr \le 2.8 x 10^4 1.2 \le \frac{\mu_b}{\mu_w} \le 3.8$

TABLE II

-

SINGLE-PHASE HEAT TRANSFER CORRELATIONS FOR TURBULENT

INVESTIGATO	R CORRELATION	CONDITIONS
Sieder & Tate (1936) [Horizontal]	$\overline{Nu} = 0.023 \mathrm{Re}^{0.8} \mathrm{Pr}^{1/3} (\frac{\mu}{\mu_w})^{0.14}$	0.7≤Pr≤16700 Re≥10000 L/D≥60
Colburn (1933) [Horizontal]	$\overline{Nu} = 0.023 \mathrm{Re}^{0.8} \mathrm{Pr}^{1/3}$	0.6≤Pr≤160 Re≥10000 This relation can be used only in cases for small to moderate temperature differences.
Dittus- Boelter (1930) [Horizontal]	$\overline{Nu} = 0.023 \mathrm{Re}^{0.8} \mathrm{Pr}^{0.4}$ (heating) $\overline{Nu} = 0.023 \mathrm{Re}^{0.8} \mathrm{Pr}^{0.3}$ (cooling)	0.7≤Pr≤120 Re≥10000 L/D≥60 To be used for small to moderate temperature differences.
Petukhov & Popov (1963) [Horizontal]	$\overline{Nu} = \frac{\text{Re Pr}}{a} (\frac{f}{8}) (\frac{\mu}{\mu_w})^n$ where $a = 1.07 + 12.7(\text{Pr}^{2/3} - 1)(f/8)^{0.5}$ $n = 0.11$ for heating $(T_{wall} > T_{bulk})$ $f = (1.82\log \text{Re} - 1.64)^{-2}$	$10^4 < \text{Re} < 5 \times 10^6$ 0.5 < Pr < 2000 $0.08 < \frac{\mu}{\mu_w} < 40$

PIPE FLOW

TABLE II (Cont'd)

SINGLE-PHASE HEAT TRANSFER CORRELATIONS FOR TURBULENT

-

INVESTIGAT	OR CORRELATION	CONDITIONS
Gnielinski (1976) [Horizontal]	a) $\overline{Nu} = \frac{(f/2)(\text{Re}-1000)\text{Pr}}{1+12.7(f/2)^{1/2}(\text{Pr}^{2/3}-1)}$	2300 <re<5x10<sup>6 0.5<pr<2000< td=""></pr<2000<></re<5x10<sup>
	b) $\overline{Nu} = 0.0214 (\text{Re}^{0.8} - 100) \text{Pr}^{0.4}$	10000< R e<5x10 ⁶ 0.5< P r<1.5
	c) $Nu = 0.012(\text{Re}^{.0.87} - 280) \text{Pr}^{0.4}$	3000 <re<1x10<sup>6 1.5<pr<500< td=""></pr<500<></re<1x10<sup>
Ghajar and Tam (1994) [Horizontal]	$Nu = 0.023 \mathrm{Re}^{0.8} \mathrm{Pr}^{0.385} (x/D)^{-0.0054} (\frac{\mu_b}{\mu_w})^{0.14}$	$7000 \le \text{Re} \le 49000$ $4 \le \text{Pr} \le 34$ $3 \le x/D \le 192$ $1.1 \le \frac{\mu_b}{\mu_w} \le 1.7$

PIPE FLOW

CHAPTER II

EXPERIMENTAL SETUP

2.1 Description of the Apparatus

Presented in this chapter is a description of the experimental apparatus used, including the necessary instrumentation details. Following the apparatus description is an explanation of all necessary calibration procedures, which are designed to insure the accuracy of the apparatus and instrumentation elements. The design and machining of all of the experimental setup components explained in this chapter were a joint effort of Mr. Dongwoo Kim and this author. The DC arc welder, turbine meter, small motor pump and heat exchanger were borrowed from the Strickland (1990) and Tam (1995) experimental setup. A schematic diagram of the heat transfer experimental apparatus is shown in Fig. 2.1. Care has been taken while designing this setup in order to meet the foreseeable future needs. If any part is worn out or damaged, that part can be replaced without any problem, because, in this design, each section is easy to take out and replace without much difficulty. Every part of this apparatus has been carefully machined and assembled.

Several previous researchers' experimental setups (Chapter I) have been carefully studied to gain knowledge of the procedures they have employed while designing a test loop for single-phase and two-phase setups. Ideas have been borrowed from previous studies also. To achieve the required versatility, several unique features like the design of the mixing chamber, the length of the clear calming section, and installation of the separator, to name a few, were incorporated into the system. The

Figure 2.1: Schematic Diagram of the Experimental Setup
final coverage of this chapter will detail the data reduction techniques and the software assisting in this task. This section will introduce all of the equipment used to handle the heat transfer measurements. It will clearly explain all of the components, their design and function in detail. All equipment specifications are given in Appendix A.

2.1.1 Test Section

The test section was a horizontal seamless 316, #40 stainless steel circular tube with an average inside diameter of 1.097 ± 0.001 inches $(2.7863\pm0.00254$ cm) and an average outside diameter of 1.316 ± 0.001 inches $(3.3426\pm0.00254$ cm). The total length of the test section was 110 inches (279.40 cm), providing a maximum length to diameter ratio (L/D) of 94.804. The stainless steel tube was procured from Stillwater Steel and Supply, Stillwater, OK.

Eleven pressure tap holes were drilled along the test section (see Fig. 2.2). The tap diameter was 0.06811 inches (0.173 cm). These taps were drilled with an R18C cobalt bit. In order to ensure proper flow without any disturbance, the pressure tap holes were de-burred with a 1/16 inch (0.15875 cm) ridge reamer. Pressures were not measured in the shakedown runs presented herein.

A ¹/₄ inch (0.635 cm) thick, 5 inch (12.7 cm) wide, 7 inch (17.78 cm) long copper plate was silver soldered to the two ends of the test section. Supporting copper material was bolted to the end plates such that bus bars (2 inch x 7 inch) could be dropped into position for attachment to welding cables for heat addition. These bus bars were then bolted to phenolic plates [5 inch (12.7 cm) x 7 inch (17.78 cm) x .5 inch (1.27 cm)]. The phenolic plates were used to insulate the electrodes and to

Tap Diameter = 0.06811 inch (0.0173 cm)

Figure 2.2: Pressure Tap Locations Along the Test Section

minimize heat loss beyond the electrode region (see Fig. 2.3) and also worked as supports for the electrode plates.

The entire test section was surrounded with fiberglass pipe wrap insulation (5 inch (12.7 cm) x 0.25 inch (0.635 cm)), followed by a thin polymer vapor seal to prevent moisture penetration. An approximate total thickness of the insulation materials was 2.5 inches (6.35 cm). When the test section was completed, it was leveled (within $\pm 0.5^{\circ}$) using a level gauge.

Forty thermocouples were placed at ten axial locations along the test section. Four thermocouples were placed circumferentially at each section. Making and calibrating these thermocouples is explained briefly in Experimental Calibration (Chapter III). The position of these thermocouples is clearly shown in Fig. 2.4.

2.1.2 DC Arc Welder

The heat source was a Lincoln Idealarc DC-600 three-phase rectified electric welder, and was used with variable voltage to produce a DC electric current through the test section. The welder was rated for 100% duty cycle at 600 amps and 44 volts at either 50/60 Hz, giving a maximum power output of 24.6 kW. A General Electric dropping resistor was used when the experiments were conducted with the current below 150 amps. This resistor was placed in series with the electric welder. To ensure minimal room heating and vibrational effects from the motor, pump, and air conditioning system, the arc welder was located at an external wall where it exhausted hot air (outside the room) through a square duct, and took in cooler air through a duct protected by a steel grate. Much of these systems' noise was alleviated in this manner.

Figure 2.3: Copper Plate and Electrode Cables

Figure 2.4: Thermocouple Locations Along the Test Section

A plywood box fitting flush with the external wall and layered on all sides with duct insulation helped to eliminate the noise due to the welder's operation. To control transmission of vibration through the floor, the welder was placed on rubber damping pads.

2.1.3 Calming Inlet Section

The calming section served as a flow straightening and turbulence reduction device. The calming section was 8 feet (2.438 m) long, 1.0 inch (2.54 cm) internal diameter, and 1.25 inch (3.175 cm) outside diameter clear polycarbonate pipe (refer to Appendix A). One end of the calming section was connected to the test section with a PVC type flange, which is clearly shown in Fig. 2.5, the other end of the calming section was connected to the mixing chamber (see Fig. 2.6)

The CPVC flange was glued to the calming section with clear solvent cement from Weldon #3. This flange was 1/2 inch (12.7 mm) thick by 5 inches (12.7 cm) in diameter, with a 1.25 inch (3.175 cm) internal diameter hole carefully drilled so that the calming section was glued into it. After gluing the two, the resulting piece was left undisturbed for 24 hours so that the glue could harden completely.

Eight quarter inch (0.635 cm) holes were drilled in the CPVC flange, so that it could be easily bolted to the PVC flange, which was screwed to the test section. A small groove of 1/10 depth was cut in the CPVC flange, and a sealing gasket was placed in the groove (refer Fig. 2.6). This gasket seal helped to stop any leaks at the flange connection. The two flanges were bolted together very carefully so that the heated test section never touched the polycarbonate tube. This was done so that the polycarbonate tube wouldn't melt while applying heat to the test section.

Figure 2.5: Stainless Steel Pipe and Calming Section

COLUMN TWO IS NOT

Figure 2.6: Flange Connection, Calming Section and Mixing Chamber

2.1.4 Thermocouples

The thermocouples were placed on the outer surface of the heat transfer test section. There were 40 thermocouples used, and they were placed at ten positions on the test section. Ten stations used four thermocouples per station. At each station, the four thermocouples were placed peripherally at 90 degree intervals. Starting from the top at a particular section, the top position was designated as 'A', the next position at the same section as 'B', and so on (see Fig. 2.4). This was done so that it was easy to identify the thermocouples while plotting graphs. Omega TT-T-30 Copper-Constantan insulated T-type thermocouple wire was used with Omega extension wire (see Appendix A) for relay to the data acquisition system. The thermocouple beads were fabricated using a Tigtech Inc. thermocouple welder. Fig. 2.4 shows the positioning of the thermocouples. Twenty extra thermocouples were made in case they were needed in the future due to breakage, malfunctioning, additional thermocouple stations needed, etc. All thermocouples were calibrated between 10° C (50.5° F) to 65° C (149.5° F) at intervals of 5° C using a constant temperature bath. (See Appendix A for name, company, and specifications.) The calibration procedure is carefully outlined in the next chapter, Experimental Calibration (Chapter III).

Each thermocouple was labeled (refer Fig. 2.4) with a two digit identification number (TC 01,TC 02, etc.). Two additional thermocouples were used to measure the room temperature (near the test section) and temperature of the water in the storage tank. Also, two thermocouple probes were used to measure the inlet bulk temperature and the outlet bulk temperature. These probes were procured from Omega (see Appendix A). The inlet thermocouple probe was placed just after the mixing chamber

as shown in Fig. 2.6. The manner in which the probe was inserted into the fluid is clearly shown in Fig. 2.7. The thermocouple probe tip was positioned at the center of the pipe to take the bulk temperature at precisely that location. The temperature was measured only at the tip of the thermocouple probe.

The outlet bulk temperature probe was placed after the mixing well, this was to make sure that the fluid really mixes well before the bulk temperature reading was taken. The thermocouple probes were placed in a special housing, and were properly inserted into the flow pipe to get an accurate bulk temperature measurement (very similar to the inlet configuration of Fig. 2.7). All of the thermocouples were monitored with a Cole-Palmer MAC-14 data logger. The thermocouple readings were averaged over a user chosen length of time (typically 50 seconds) before the heat transfer measurements were actually recorded. The average system stabilization time period was from 30 to 60 minutes after the system attained steady-state. Calibration curves for all of the thermocouples were produced using an MS-Excel spreadsheet. (See Appendix E for calibration curve equations for all the thermocouples.) This is explained in section one of Chapter III (Section 3.1).

Thermocouple beads were attached to the outside of the tube wall using Omegabond 101 epoxy adhesive (see Appendix A), a two-part adhesive providing a high thermal conductivity (0.6 Btu/hr-ft- $^{\circ}$ F), and a very high electrical resistivity of 1×10^{15} ohm-m. An initial drop of epoxy (approximately 1 mm in radius), was placed at each thermocouple location and allowed to cure for twenty four hours. Each thermocouple was then placed on the hardened Omegabond surface (preventing direct contact with the tube surface and providing electrical insulation), held in place with a

Figure 2.7: Inlet Thermocouple Probe Placement

strip of electrical tape such that the bead and hardened surface were exposed, and then coated with another drop of Omegabond to ensure permanent positioning. The thermocouple extension wires were then bundled in groups of four, fastened to the wood channels supporting the test section using wiring bundle rings, and connected to the data acquisition system.

2.1.5 Mixing Well

To ensure a uniform fluid bulk temperature at the exit of the test section, a mixing well was utilized. The mixing well (see Fig. 2.8) was a 22 inch (55.88 cm) long 1.0 inch (2.54 cm) internal diameter clear polycarbonate tube. The mixing well was placed after the void fraction measurement section. The purpose of the mixing well was to mix the fluid properly and obtain a good bulk temperature measurement.

The mixing well had four Omega static mixers (see Appendix A), each having a length of 5.3 inches (134.62 cm) and a diameter of 0.906 inches (2.30 cm). The outlet bulk temperature measurement was performed immediately after the mixing well section, as shown in Fig. 2.8.

2.1.6 Mixing Chamber

The mixing chamber was carefully designed to handle high pressures (150 psig) of both air and water. It was a clear section that was 17.5 inch (44.45 cm) long. The mixing chamber consisted of a 16 inch (40.64 cm) long, 6.5 inch (16.51 cm) inside diameter clear polycarbonate section, two porous bronze tubes, two circular steel plates of ³/₄ inch (1.905 cm) thickness and 11 inch (27.94 cm) diameter, and two CPVC circular plates of 11 inch (27.94 cm) outside diameter and 7 inch (17.78 cm) inside

Figure 2.8: Mixing Well and Outlet Thermocouple Probe

diameter (see Fig. 2.9). The porous bronze tubes were procured from Capstone Permaflow (see Appendix A). They were 8 inches (20.32 cm) in length, had an inside diameter of 0.8 inches (2.03 cm), and an outside diameter of 1 inch (2.54 cm).

The two porous bronze tubes were welded into one longer tube with an arc welder. The arc welding was done by North Lab Manager, Mr. James Davis. The arc welding was carefully done without destroying the properties of the tubes. The steel plates and CPVC plates were drilled with 12 quarter inch (0.635 cm) holes. At the exit end of the steel plates, a central hole was drilled and tapped with internal threads at 1 1/4 inch diameter (12 NPT). This was done to connect a steel pipe (1ft long, this is not the test section), which in turn was joined to the inlet thermocouple probe measuring section. A collar that was 1 inch (2.54 cm) diameter and 1/10 inch (0.254 cm) thick was drilled on the inside of the two steel plates. This was done to hold the welded bronze tube. The inlet end of the mixing section had a 1 ¼ inch (3.18 cm) threaded (12 NPT) hole for the entry of the water. The water entered the test loop here. The water then flowed through the porous bronze tube. The inlet end of the test section also had 4 one-half inch (1.27 cm) threaded holes for the entry of air. In the mixing chamber, air entered through these four inlets, and, due to the porosity of the bronze tube, the air entered the tube and mixed well with the water. The four inlets for the air could be controlled with $\frac{1}{2}$ inch (1.27 cm) ball valves.

2.1.7 Constant Heat Source

A variable voltage Lincoln Idealarc DC-600 three phase rectified type electric welder was used to produce DC current. The current was delivered to the test section through Radaflex AWG 4/0 welding cable attached to the copper bus bars located at the

Figure 2.9: Mixing Chamber

inlet and exit flanges (see Fig. 2.3). Heat was generated internally in the steel tube wall due to its electrical resistivity. The DC-600 was rated for 100% duty cycle at 600 amperes and 44 volts for either 60 or 50 Hertz. But while actually applying the heat, the welder was not able to give 100% of the output it was supposed to give. This might have been due to the Radaflex 4/0 AWG being shortened to meet the required length; so we used a connector to increase its length. The place near the connector might have been losing heat, or the stainless steel pipe had a high resistance which might decrease the output.

To insure minimal room heating and vibrational effects from the welder, it was located at an external wall where it exhausted any hot air (outside the room). The hot air was exhausted through a custom made plenum to a 12.25 inch (31.11 cm) square duct, and cooler air was brought in through a 7.25 inch (18.42 cm) wide by 18.25 inch (46.36 cm) tall duct protected by a steel grate. Much of the exhaust noise was also rejected in this manner. A large 37 inch (94.0 cm) tall by 41 inch (104.14 cm) wide by 57 inch (144.78 cm) deep plywood box fitting flush with the external wall and layered on all internal sides with approximately 2 inches (5.08 cm) of duct insulation muffled the noise due to the welder's operation. To control transmission of vibration through the floor, the welder was placed on approximately 10 refrigerator type rubber damping pads.

2.1.8 Voltmeter

A Hewlett-Packard model 3468B digital multimeter (see Appendix A) was used to measure the actual voltage drop across the test section.

2.1.9 DC Ammeter

The current passing through the test section wall was measured with a Weston Instruments Division ammeter (see Appendix A) placed in parallel with a 50 millivolt shunt. It was calibrated by Mr. Gerald Stotts, manager of the Electronics Laboratory, Electrical and Computer Engineering at Oklahoma State University.

2.1.10 Heat Exchanger

An ITT standard one shell and two pass tube heat exchanger (see Appendix A) was used to cool the test fluid to an allowable and steady-state inlet bulk temperature. The shell had an effective surface area of $21.2 \text{ ft}^2 (1.97 \text{ m}^2)$ and a maximum duty of 67190 Btu/hr (19.7 kW). The cooling water was provided from a city water tap through an Omega FL-9028 rotameter. A Teek Water Systems double cartridge filter (see Appendix A) removed impurities, and 1.25 inch (3.175 cm) schedule 40 poly-vinyl-chloride (PVC) tubing carried the coolant to the heat exchanger, exiting to a waste water trough. The heat exchanger was 39.625 inches in length (1.0 m), and was mounted on a wooden saw horse for stability.

2.1.11 Void Fraction Measurement Section with Quick Closing Valves

For two-phase fluid flow, it was necessary to prepare for measuring the void fraction of the mixture in order to insure accurate experimental reporting and correlation calculation of the heat transfer coefficient. Calculation of the void fraction is always critical, since it is very hard to predict exactly (based on input flow rates for air and water) the ratio of volume of the liquid to volume of the gas in the mixture at any moment of time.

We have installed three quick-closing solenoid valves, two manually operated valves and a 24 inch (60.96 cm) long, 1 inch (2.54 cm) inside diameter clear polycarbonate tube to measure the void fraction ratio in two-phase fluid flow (see Figs. 2.10 and 2.1 for overall location of this section). The two quick-closing solenoid valves were procured from W&W International (see Appendix A). These two solenoid valves were in line with the test loop. They were designed to be always open except when measuring the void fraction. Another solenoid which was procured from Automatic Switch Co. (see Appendix A) was placed in the by-pass line.

Two manually operated Teflon-PFA type (see Appendix A), ¼ inch (0.635 cm) valves were procured from Omega Engineering, Inc. These valves can withstand pressures up to 40 psi, and temperatures up to 300 °F (148.6 °C). Two quarter inch (0.635 cm) clear tubes were connected to these valves to allow draining of the liquid trapped between the two quick-closing solenoid valves (see Fig. 2.11).

To measure the void fraction ratio, the two solenoid valves (A and B) could be closed instantaneously, and valve C opened simultaneously to by-pass the fluid. Then the two Teflon type valves could be opened to drain the fluid into a measuring container. The weight of the fluid could then be measured carefully using any accurate weighing device, and the density of the water at the measured room exit test section conditions could be used to compute the drained liquid volume. Knowing the total volume of the section of tube between two quick-closing valves would allow computation of void fraction. For the valves of Teflon, a saddle of 1.25 inch (3.175 cm) diameter and 2.0 inch (5.08 cm) external diameter was machined from a solid cylindrical clear piece of polycarbonate. A ¼ inch (0.635 cm) (NPT 12) threaded hole was drilled and tappped in

1.0 inch (2.54 cm) Diameter PVC Tube

Figure 2.10: Void Fraction Measurement Setup

Figure 2.11: One Quarter Inch Teflon-PFA Type Drain

the top of each saddle. This was done in order to allow pressurization of the inside of the tube to drive the fluid out when measuring the void fraction ratio.

2.1.12 Water/Air Separator

A water/air separator was procured from Hayward Industrial Products Inc. (see Appendix A), and was designed to separate water and air from the fluid. This separator could handle a pressure of 160 psi at 450 °F.

The separator was placed in line with the test loop (see Fig. 2.1). This was made possible by mounting the separator on a specially constructed wooden stand. The inlet orifice was 1 $\frac{1}{2}$ inches (3.81 cm) and the outlet was $\frac{3}{4}$ inch (1.905 cm) through which the water was driven out; and the air was exhausted to the room through a 1 $\frac{1}{2}$ inch (3.81 cm) outlet orifice. The water was then sent to the heat exchanger and then to the storage tank.

The separator was made of cast iron, and some of the internal parts were rust proof stainless steel. To insure a rust free environment inside the separator, it was painted with rust proof paint. Water would be trapped inside the separator by the vortex motion of the fluid as it came inside. The trapped water would settle down and then drain out to the heat exchanger. The separator was not able to handle the designed flow rate range: 1.5 gpm to 4.5 gpm. In order to make it work over this range of flow rates, a ball valve inside the separator was removed. The approximate shape and dimensions of the separator are shown in Fig. 2.12.

2.1.13 Water Reservoir

A 35 gallon (132.44 liters) cylindrical polyethylene tank was used to store and supply water to the test section.

Figure 2.12: Water/Air Separator-Trap (Cast Iron)

2.1.14 Pumps

For low flow rates, a pump manufactured by Oberdorfer Pumps (see Appendix A) was used. It produced a flow rate of 4.8 gpm at 3450 rpm using a General Electric 1/3 hp (245.66 watts) motor.

For high flow rates, a Westinghouse pump (see Appendix A) was used. The motor was rated at 1.5 HP, which produced a flow rate of 35 gpm at 3535 rpm. To minimize the noise and vibrational effects of the large pump during operation, it was mounted inside a plywood box using rubber damping material approximately 3/8 inches (0.95 cm) thick. The box had dimensions of 57 inches (144.78 cm) wide, 30 inches (70.62) high, and 16 inches (40.64 cm) deep. On all interior walls of the box, approximately 1 inch (2.54 cm) of duct insulation material was placed, providing acoustic absorption. The whole pump containment box was isolated from the floor with 12 refrigerator type rubber dampers, in order to reduce vibration transmission. For the single-phase test runs, only the small pump was used.

In addition, to help prevent vibration transmission through the fluid return tubing, flexible hoses connected the pump box at both upstream and downstream locations. The pumps operated at a constant rpm. Therefore, to minimize cavitation and potential lack of water in the pumps at low flow rates, a separate by-pass line was placed just after the pumps and before the filter. To regulate the flow rate, the valve at the bypass line was opened or closed, and the pumps were always operated under full load. A schematic view of how these pumps were connected to the test loop is shown in Fig. 2.13.

2.1.15 Turbine Meter

For flow rates up to approximately 10.5 gpm (39.73 liters/min), a Halliburton 1 inch (2.54 cm) turbine meter (see Appendix A) was used over a frequency range from 50 to 150 Hertz. The turbine meter was calibrated on several occasions, and details of the procedure are outlined in Experimental Calibration (Chapter III).

2.1.16 Frequency Meter

A Hewlett-Packard universal counter (see Appendix A) was used to measure the frequency of the turbine meter during data collection. During operation of the turbine meters at low frequency, frequency instability problems were observed. To counter this problem, a variable amplifier was constructed by Mr. Pinit Ngamsom, an electrician for the School of Mechanical and Aerospace Engineering. It had a variable gain from 1 to 20, to produce a stable signal for the HP universal counter under the previously mentioned conditions.

2.1.17 Test Fluids

The liquid used was distilled water. Distilled water was obtained from the Chemical lab in room 311 of the Physical Science building at Oklahoma State University.

2.1.18 Fluid Return

After the liquid exited out of the mixing well (see Fig. 2.1), it flowed through high temperature 1.5 inch (3.81 cm) schedule 40 CPVC tubing. The return tubing began there and took the hot fluid to the heat exchanger. Exiting the heat exchanger, standard 1 inch (2.54 cm) schedule 40 PVC allowed the system to drain or return to the storage tank via 1 inch (2.54 cm) PVC ball valves. Leaving the storage tank, ¹/₂ inch

10

Ball Valves

(1.27 cm) schedule 40 PVC tubing carried the fluid to the pump box assembly described earlier (see Fig. 2.14). Upon exiting the pump assembly, a ½ inch (1.27 cm) stainless steel ball valve was used for flow control, and an Aqua-Pure Water filter model AP12T double cartridge filter system (see Appendix A) removed impurities as small as 5 microns in diameter from the flow. Next, the liquid traveled via 1.5 inch (3.81 cm) PVC schedule 40 tubing to the turbine meter assembly previously described (in section 2.1.14). The liquid then traveled through the mixing chamber, then through the flow visualizing section, and then to the test section (see Fig. 2.1). The flow visualizing section was a 1.25 inch (3.18 cm) internal diameter, clear polycarbonate tube as shown in Fig. 2.6.

2.1.19 Data Acquisition System

A Cole-Palmer ninety-six input MAC-14 data logger was interfaced with an AT (808386) personal computer to provide digital data acquisition for the temperature measurements. It accepted input voltages from 0.3 microvolts to 10 volts, had an accuracy of \pm 0.02% of full scale range, and had 16 bit resolution. The operation manual had information regarding specific parameters associated with the MAC-14 data logger.

Connection to the computer was through a shielded cable to an RS232 port, and to the printer via the printer port. Menu-driven software (MS), was used in conjunction with signal conditioning (SC), real time graphics (RTG), and printer driver (PD) software to handle data input. The MS software allowed each channel to be tagged with the thermocouple identification labels and gave the user the ability to specify logging interval, disk storage, or screen only monitoring. The SC software provided

Figure 2.14: Return Line Configuration

additional columns on each channel for scale factors and units. It also performed the thermocouple conversions for all channels (volts to degrees). The RTG was a much expanded version of the MS which gave real time graphic display in scientific graph or industrial strip chart format. RTG required both MS and SC options for its use. The MAC-14 data logger was entirely self-contained requiring no special mounting. Additional software was required for post-experimental data reduction and was not available with the data logger (see Experimental Procedure in Chapter III for software discussion).

The IBM compatible AT (80386) personal computer had a 40 MB hard drive, dual floppy disk drives, EGA monitor, and an 80386 coprocessor. The computer was for data logging and data storage only. A Gateway 2000 computer with a Pentium II 266 MHz processor was used for data reduction and heat transfer calculations.

2.1.20 Supplemental Data Acquisition

An Electronic Controls Design (ECD) digital data logger (see Appendix A) with forty channel capacity was used to calibrate the thermocouples. The data logger was connected to the FTS system, which was a constant temperature bath, while calibrating the thermocouples. The model ECD had a resolution of 0.1 °F, over a temperature range from 158 to 752 °F and a \pm 0.1 °F conformity error over a range from -105 to 400 °F. Using PC-TALK, the model ECD could interface with a personal computer through a shielded cable to a second RS232 port. The data logger memory was transferable to the computer hard disk or floppy diskette via PC-TALK, and it incorporated a strip chart recorder for instant data access.

CHAPTER III

EXPERIMENTAL CALIBRATION

Upon completing the experimental setup construction and acquiring the monitoring equipment, calibration of all equipment and much of the apparatus was required. The accompanying manuals gave instructions for calibration of the off-the-shelf equipment, while existing standard procedures were used for calibrating various components of the apparatus. The following sections outline the details of calibration.

3.1 Thermocouples

For the MAC-14 data acquisition system, no calibration was required. However the thermocouples connected to the system were calibrated by means of a constant temperature bath. The constant temperature bath system used was an FTS system, which uses HT-30 fluid to maintain a constant temperature. For this experiment, we made 56 thermocouples, out of which 44 were used during the actual experimental test. The 56 thermocouples were tested on the FTS system initially to check that they worked properly.

A Model 5100 data logger was used to take temperature readings while calibrating the thermocouples. The 56 thermocouples were tested for a temperature range from 10 °C to 65 °C at 5 °C intervals. Two sets of thermocouples were used while testing, since the maximum input for the 5100 data logger was only 40. The first set contained 32 thermocouples, and the second set contained 24 thermocouples. After collecting the data for the two sets of thermocouples for the temperature range from 10

°C to 65 °C, the data sets were then used to determine the maximum, minimum, and average temperatures for each thermocouple using a Fortran program called RED50.FOR. This program was written by Mahesh Rajagopalan. The program and sample input/output files are given in Appendix B. There has not been any change in temperature readings when the thermocouples were used with MAC-14 and Model 5100 data logger. Therefore the thermocouples were not re-calibrated with MAC-14.

It was observed that almost all thermocouples behaved well (within ± 0.4 °C), before they were actually placed on the test section. Defective thermocouples were removed during the calibration runs. Two thermocouples (# 7 at station 2, and # 40 at station 10) were found to be operating defectively after they were placed on the test section. They were then replaced by well-behaved thermocouples. Calibration curves for each thermocouple were plotted using MS-Excel-97. A sample calibration curve for thermocouple 1 is shown in Fig. 3.1. (See Appendix D for calibration curves for all of the other thermocouples used for this test setup.)

To study the behavior of how the difference between the thermocouple readings and bath temperature changed as the temperature of the bath changed, Fig. 3.2 was plotted. From this graph, it is evident that, although there was a bias in the temperature calibration as temperature increased, the thermocouples were working well enough to carry out the experiment.

The calibration was performed with respect to the standard bath temperature. Although there are slight deviations in the standard bath temperatures (\pm .1 °C), the bath

10

Figure 3.1: Calibration Equation for Thermocouple 1

Figure 3.2: Trend of Difference Between Thermocouples and Bath Temperature

vs. Bath Temperature

temperature was assumed to be accurate. The calibration was done at several values of temperature as explained above (10 °C to 65 °C). These calibration curves are straight lines, which clearly showed that the thermocouples behaved well at all of the temperatures ranging from 10 °C to 65 °C. Calibration curves, showing the deviation of the thermocouple vs. bath temperatures for the first 10 thermocouples are shown in Fig. 3.2. Similar plots like Fig. 3.2 for all of the other 30 thermocouples and the bulk temperature probes are given in Appendix D.

Similarly the probes measuring the bulk temperatures were also calibrated in the same way, with the help of the temperature bath. The calibration curves for both of the probes are shown in Fig. 3.3 (inlet bulk temperature probe) and Fig. 3.4 (outlet bulk temperature probe).

Fig. 3.5 shows the uncorrected and corrected (calibrated) temperatures for an isothermal run taken during the test runs. More than ten isothermal test runs were conducted to check the proper working of the thermocouples. These isothermal runs were made without any heat added to the test section, and at an average flow rate of 2.0 gpm. These test run temperatures were averaged over 50 minute run times. From each run, we learned how these thermocouples behaved and could see their relative accuracy. These test runs have been very informative and helped to remove the defective thermocouples in the initial stages of the test runs. From Fig. 3.5, it is possible to see that thermocouples 7 and 40 were defective, and they were replaced with new ones. Figure 3.6 shows an isothermal run (#8) with thermocouples 7 and 40 replaced. This figure also shows that the inlet bulk temperature and the outlet bulk temperature were approximately equal, which should be true for an isothermal case.

Figure 3.3: Calibration Equation for Bulk Inlet Thermocouple Probe

Figure 3.4: Calibration Equation for Bulk Outlet Thermocouple Probe

Figure 3.5: Corrected/Uncorrected Thermocouple Temperature Readings for an Isothermal Test Run (Medium Flow Rate)

Figure 3.6: Corrected/Uncorrected Thermocouple Temperature Readings for an Isothermal Test Run (#8) [TC 7 and TC 40 Replaced] with Medium Flow Rate

After the isothermal runs, test runs were done with some uniform heat flux applied to the section. At least 50 such runs were done to see how the thermocouples responded with heat on the test section. Figure 3.7 (test run 138) shows how the thermocouples behaved with constant heat flux on the test section. Each thermocouple location on the test section was carefully studied during these test runs. It was found that the thermocouples needed no further calibration or replacements. Although the thermocouples worked well over 100 °C, it was made sure that the temperatures were not raised above 100 °C, since the water would start boiling. The test section pressure was not measured for single-phase flows, but the pressure information is needed in the future for two-phase flows.

ľ

Figure 3.8 shows the thermocouple readings at axial locations along the test section. The test section had ten stations with four thermocouples placed circumferentailly at each station. At uniform heat flux, the temperatures at the upper part of the test section may heat up more than the rest of the test section. Location A (top location), showed the maximum temperature reading over the rest of the locations, i.e., B, C, D, which should be true for a uniform heat flux over the test section (see Fig. 2.4 for circumferential thermocouple locations on the test section). Figure 3.7 also indicates the ambient temperature (Tamb), the temperature of the water in the water tank (Ttank), and the inlet and exit bulk temperatures (stations 0 and 41 on the x-axis). We see that the bulk temperatures read 6 to 7 °C low as compared to the thermocouple readings on the outside of the stainless steel test section. This was because the thermocouples were the temperatures on the outside of the test section, whereas the

Figure 3.7: Corrected/Uncorrected Thermocouple Readings for Test Run 138 with a Uniform Heat Flux/2.0 gpm Flow Rate

Figure 3.8: Average Thermocouple Readings vs. Test Station Number for Test Run 138 with Uniform Heat Flux/2.0 gpm Flow Rate

bulk temperatures were the temperatures of the water inside. During calculation of the physical properties of water, the bulk temperature of the water inside the test section was calculated using the inlet and exit bulk temperatures. For this calculation, the bulk temperature along the test section was assumed to vary linearly along the length of the test section

T

3.2 Turbine Meter

The flow rate through the turbine meters was calibrated against the frequency of impeller rotation. Correctly performing the calibration required a stopwatch, a frequency meter (HP 5314A), a calibrated cylinder, and at least two people. The calibration was done without any heat addition to the test section. The pump was switched on and allowed to run for a few seconds until normal pump operation occurred and to allow the water to reach steady-state flow conditions. At pre-selected time increments (typically 5 seconds) during the fluid collection, the frequency indicated by the meter was recorded. The flow was switched to the measuring cylinder [5 gallons (18.927 liters)], and time was recorded for it to fill. By operating the flow control valve, flow rate was measured with the help of the stop watch and measuring cylinder at various flow rates; and simultaneously the frequency on the meter was recorded at these various flow rates. For the temperature ranges of interest in this experimental setup, there should not be any significant change in the density of the water as temperature varies.

For the small motor, the maximum flow rate reached was 4.4 gpm, and the minimum was 0.72 gpm. The large pump hasn't been tested, since the small pump met

the requirements (to achieve laminar/turbulent flow) to safely run the single-phase experiments. The flow rate obtained from the stop watch/graduated cylinder method was then plotted against the frequency indicated on the meter. This data was then correlated using a linear least squares curve fit (see Fig. 3.9). A total of 25 data points were taken at two different time intervals. Figure 3.9 illustrates the data collected and the curve fits for water (including the regression coefficients). Figure 3.10 shows the difference in actual and predicted (from calibration curve) flow rate versus the frequency. It shows that, at high flow rates (for frequency greater than 600 Hz), the flow measurement might be inaccurate to ± 0.03 gpm.

3.3 Model 5100 Data Logger

The model 5100 data logger required a calibration procedure outlined in its operation manual. To perform the calibration, a DC voltage supply standard model MV116, made by Electronic Development Corporation was used (see Appendix A). It had an accuracy of ± 1 microvolt. To begin the calibration, the setup procedure described in the manual was performed. With the data logger held on channel number one, a 2.0 volt ± 10 microvolts standard signal was applied to the channel. On the accessory card, the R32 unit was adjusted until the main frame display indicated exactly 2.0 volts. This calibration was done for all the channels. The calibration of all of the thermocouples was performed only once. After they were placed on the test section, they were not replaced unless the thermocouples showed a faulty reading, which happened for thermocouples 7 and 40. All the other thermocouples behaved well after replacing thermocouples 7 and 40, so it was not required to re-calibrate them.

Figure 3.9: Small Turbine Meter Flow Rate Calibration Curve Using HP 5314A Meter

Figure 3.10: Calibration Flow Rate Difference vs. Average Frequency for the Small Turbine Meter

3.4 Experimental Procedure

The system warm up, data collection, and shut off procedures were conceived with consideration for accuracy, repeatability, safety, and ease of performance. Throughout the wide ranges of Reynolds number, Prandtl number, bulk temperature difference, etc. that were covered, the data collection procedures were consistent.

3.4.1 Testing the Loop

Before each data collection experiment occurred, a quick check of the apparatus and all equipment was performed to ensure that there were no leaks nor failed components present in the system. When a decision about the desired flow rate and heat input had been made, the warm up procedure was instituted.

3.4.2 Warm Up

The warm up procedure is as follows:

- Set the inlet and exit control valves such that the desired flow is provided to the heat transfer test section.
- 2. Open the turbine meter assembly control valves.
- 3. Connect the shielded coaxial cable from the turbine meter to either the amplifier or the frequency meter depending upon the frequency of operation. For low flow rates (0.70 to 1.5 gpm), the frequency meter couldn't pick up the frequency, so it is advisable to use the amplifier along with the frequency meter.
- 4. Turn on the frequency meter.

- 5. Set the control valves of the pump box assembly in the correct position such that the correct pump will provide flow to the system. (For this thesis, the larger motor was never used, but I always made sure that small pump was open for the water.)
- Open the flow control valves to the full open position; and provided that all valves are in the correct position, switch on the pump.
- Determine the necessary frequency to attain the desired flow rate and adjust the flow accordingly with the flow control valve.
- Check the welder cable and all connections to ensure their integrity and proper fitting. Turn on the voltmeter and the MAC-14 data logger.
- 9. Switch the welder on and adjust the current output near to the desired value on the welder ammeter. Check the DC ammeter in the test section circuit and re-adjust the welder current until this meter is reading the desired value. (Note: Do not turn on the welder with no flow in the system.)
- 10. After approximately 15 minutes of operation (depending on the type of heat input), switch on the reservoir mixer and the heat exchanger coolant. The coolant through the heat exchanger is set such that the inlet bulk temperature for steady-state operation is in the desired vicinity to carry out the experimental run.

3.4.3 Data Collection and Shut Down

When the test section reaches steady-state conditions, the initiation of data collection begins. A brief procedure on how to attain steady-state and how to regulate the inlet bulk temperature and the maximum difference in bulk temperature for all the nine cases of test runs is given in Appendix F. The data collection procedure and shutdown is common for all types of experimental test runs. By monitoring the inlet bulk temperature, exit bulk temperature, the first thermocouple station temperature, and the last thermocouple station temperature, a decision as to when steady-state conditions are reached can be made. The procedure is as follows:

- On the AT computer, bring up the RTG software monitoring the MAC-14 data logger output. Set the data logger to print data on the screen every minute.
- Readjust the heat exchanger coolant flow such that inlet bulk temperature is in the desired vicinity (within ± 0.5° F).
- 3. When the first thermocouple station, the last thermocouple station, and the inlet and the exit bulk temperatures all indicate less than 0.3° F deviation over one minute, assume that steady-state conditions are present.
- 4. Record the frequency of the flow meter (at least 50 readings for each run and then average them), the voltage at the digital voltmeter, and amperage on the ammeter.
- 5. Set a 10 second dwell on the MAC-14 data logger, and start taking the data.
- 6. Set the MAC-14 logging parameters through the RTG such that disk storage of data occurs for all of the channels. Monitor all equipment during

operation and discontinue data collection on the MAC-14 until the desired number of samples (75-100) is stored. The program RHt98F which reduces this data can take only 100 samples (explained in data reduction section of this chapter.)

- When the data collection period is complete, repeat step 4 in order to obtain all final values. Disable all data recording devices.
- 8. Turn off the DC welder, voltmeter, amplifier, and/or frequency meter. When the inlet and exit bulk temperatures approach room temperature, shut off the coolant water to the heat exchanger and the reservoir mixer.
- Turn off the pump, and close the flow control valve as well as the inlet and exit test section valves. Switch off the MAC-14, and the AT computer.
- Inspect the test section apparatus and insure that no leaks have become evident.
- 11. It is always advisable not to take two runs sequentially, as it may built up considerable heat in the welder.
- 12. Provide at least a gap of 2 hours between any two consecutive test runs. This will also help to return the bulk temperatures to room temperature.

3.5 Data Reduction

A computer program called RHt98F (see Appendix C) was the major data reduction tool. Initially MS-Excel had been used to calculate the heat balance errors for the test runs. The RHt98F program calculates the heat transfer coefficient, Reynolds

number, Prandtl number, Nusselt number, Grashof number, inside bulk temperatures, and several other heat transfer parameters (see Appendix B.2 for a sample input/output file for this program). In order to validate the proper working of this computer program, the heat transfer parameters were also calculated using the MS-Excel spread sheet. The results of heat transfer parameters were same from both of these methods. After the results obtained from the MS-Excel spreadsheet compared well with the results from the computer program RHt98F, the program RHt98F was used from there on.

A sample hand calculation was performed initially to see that the program RHt98F is giving accurate results, and this is given in Appendix E for test run 0172.

The program inputs include the fluid used (here water), the voltage drop across the tube, the current carried by the tube, the volume flow rate, the bulk temperatures at the inlet and exit, and the outside wall temperature data for all stations (a sample input file is included as Table XVII of Appendix B). The program then uses a finitedifference technique [Ghajar and Zurigat (1991)] to calculate the inside wall temperature taking into account heat conduction in both the longitudinal, peripheral and radial directions. Fluid bulk temperatures from inlet to exit were assumed to vary linearly along the axial direction and were used to calculate heat transfer parameters like Reynolds number, Prandtl number, Grashof number, viscosity ratios, density, etc. for water. The program automatically generates an output file, which has the extension HTI and gives a complete listing of all of the output calculations. A sample output file is given in Table XVIII of Appendix B. Outputs for all 41 good test runs are also

provided in Appendix B. The following steps provide the data input and data reduction procedure:

- Obtain the data of the thermocouple readings from the 96 channel data logger, through the MAC-14 software.
- 2. Input the voltage drop across the test section, current carried through the test section, and the volume flow rate, along with the thermocouple data obtained from the data 96 channel data logger to the program Datared98F. The program Datared98F creates a formatted output file (Table XVII of Appendix B), which is used as an input data file for program RHt98F.
- 3. Run the program RHt98F to get the output of all of the experimental calculations (Table XVIII of Appendix B). The program RHt98F calculates the inside local temperatures and heat transfer coefficients, mass flow rate of test fluid, local heat fluxes, heat balance error, local and average Reynolds, Prandtl, Nusselt, and Grashof numbers, local ratios of absolute viscosities (bulk to wall), heat transfer coefficients at top and bottom of the test section, and finally local bulk fluid temperatures. Other miscellaneous calculations are given by RHt98F but those listed above are of primary interest.
- 4. Use the output data files from RHt98F to generate further reduced data which is input to MS-Excel and Sigma Plot 4.0 graphics software to produce the figures to be analyzed and presented in this thesis.

3.6 Two-Phase Flow Patterns

In order to insure that the test setup was able to handle two-phase flow patterns, various combinations of water and air were used to produce some of the major flow patterns. The air was injected into the mixing chamber along with water (see Fig. 2.9). The flow rate (in liters per minute, lpm) of the air was monitored by a Cole-Parmer digital gas flow meter (see Appendix A). This section presents some flow patterns produced for different amounts of water and air flow rates. The pictures presented in this section were taken with a Pentax IQZoomEZY camera.

Several patterns may occur when gas and liquid flow cocurrently inside a horizontal tubular channel. Six general flow pattern descriptors are stratified, wavy, plug, slug, bubbly, and annular. In order to model the transport characteristics, flow patterns might be combined into basic regimes in which the mechanism are expected to be similar. The following four groups provide such classification:

- 1. shear controlled separated flows, such as the annular regime;
- 2. intermittent flows, such as plug and slug regimes (see Photos. 3.1 and 3.2);
- gravity controlled separated flows, such as the stratified and wavy regimes (see Photos. 3.3, 3.4, 3.5, 3.6, and 3.7);
- dispersed flows, such as the bubble regime (see Photos. 3.8 and 3.9 for slug/bubbly transitional.);

The various flow rates of water/air which produced these flow patterns are given below each picture. It is evident that the mixing chamber is producing identifiable flow patterns to carry out two-phase experiments. Table III shows the flow rate ranges for water and air and the corresponding flow patterns generated with these

flow rates. The following flow measurements were taken at room temperature (24 °C). The pressure for air was not measured, but the air pressure is estimated to be between 25 and 100 psia.

TABLE III

Flow Pattern	Flow Rate		
riow rattern	Water (gpm)	Air (gpm)	
Plug	4.00	0.793	
Slug	3.78	3.17	
Stratified/Slug Transition	3.43	10.8	
Wavy	2.71	21.1	
Stratified/Wavy Transition-1	2.05	2.11	
Stratified/Wavy Transition-2	1.16	2.37	
Stratified	0.63	1.58	
Slug/Bubbly Transition	3.43	11.8	

Identified Flow Patterns with their Flow Rates

The schematic representation of flow patterns observed in horizontal, co-current water/air flows are shown below. The flow patterns observed in the experimental two-phase flows (see Photographs 3.1 to 3.9) fairly coincide with schematic flow representations given in Van (1992).

Photograph 3.1: Plug Water: 4.00 gpm (15.14 lpm)/Air: 0.793 gpm (3.0 lpm)

Photograph 3.2: Slug Water: 3.78 gpm (14.3 lpm)/Air: 3.17 gpm (12.0 lpm)

Photograph 3.3: Stratified/Slug Transition Water: 3.43 gpm (12.99 lpm)/Air: 10.8 gpm (40.88 lpm)

Photograph 3.4: Wavy Water: 2.71 gpm (10.25 lpm)/Air: 21.1 gpm (80.0 lpm)

Photograph 3.5: Stratified/Wavy Transition-1 Water: 2.05 gpm (7.76 lpm)/Air: 2.11 gpm (8.0 lpm)

Photograph 3.6: Stratified/Wavy Transition-2 Water: 1.16 gpm (4.39 lpm)/Air: 2.37 gpm (9.0 lpm)

Photograph 3.7: Stratified Water: 0.630 gpm (2.38 lpm)/Air: 1.58 gpm (6.0 lpm)

Photograph 3.8: Slug/Bubbly Transition Water: 3.43 gpm (12.98 lpm)/Air: 11.8 gpm (45 lpm)

Photograph 3.9: Slug/Bubbly Transition Water: 3.43 gpm (12.98 lpm)/Air: 11.8 gpm (45 lpm)

CHAPTER IV

HEAT TRANSFER RESULTS AND DISCUSSION

To help in determining whether the test setup was working well enough to carry out two-phase experiments in the future, single-phase heat transfer data was taken and compared with predictions of established correlations. The test section was operated at steady-state to carry out the experimental runs. Based on the heat input, flow rate, Reynolds number, and Prandtl number, the calibration runs were divided into 9 type of runs. The Table IV shows all of the types of runs.

Since we had identified the types of test runs that we had to make, the next step was to compare the accuracy of the measured Nusselt number from the test section to that predicted by established correlations. It was always necessary to bring the fluid to steady-state before taking any data. Heat addition was accomplished in the form of uniform heat flux with the DC welder. When the first and the last test section thermocouple stations, and the two bulk fluid temperatures no longer indicated temperature deviations (for 1 minute) greater than 0.25 °F, a steady-state condition was assumed to be present. Data collection was performed (see the Experimental Procedure section 3.4 of Chapter III), and the resulting Nusselt numbers were compared with those predicted by the accepted single-phase correlations outlined in the literature survey section of Chapter I. The fully turbulent forced convection uniform heat flux correlations of Sieder and Tate (1936), Gnielinski [Kakac et al. (1987)], Colburn (1933), and Ghajar and Tam (1994) were used to predict the validity of the experimental data. Only these correlations were compared with the experimental data.

TABLE IV

Classification of the Test Runs Based on Heat Input,						
Flow Rate, and Ranges Covered						
	Low Flow Rate (0.78 gpm-1.2 gpm)	Medium Flow Rate (2.0 gpm-3.0 gpm)	High Flow Rate (3.5 gpm-4.5 gpm)			
	CASE: 1 CASE: 2		CASE: 3			
Low Power Supply 818 Btu/hr- 857 Btu/hr (239.5 W – 251 W)	2500 <re<3500 4.75<pr<6.40 1.80 < ΔT < 2.2 (°F)</pr<6.40 </re<3500 	8500< Re <10000 4.80< Pr <5.50 0.65 < ΔT < 0.80 (°F)	14500 <re<17500 5.00<pr<5.90 0.35 < ΔT < 0.45 (°F)</pr<5.90 </re<17500 			
	Low Flow Rate (0.78 gpm-1.2 gpm)	Medium Flow Rate (2.0 gpm-3.0 gpm)	High Flow Rate (3.5 gpm-4.5 gpm)			
Medium Power Supply 2851 Btu/hr-3196 Btu/hr (835 W – 936 W)	CASE: 4	CASE: 5	CASE: 6			
	2500< Re <3500 4.75< Pr <6.40 6.5 < ΔT < 8.0 (°F)	8500< Re <10000 4.80< Pr <5.50 2.2 < ΔT < 3.0 (°F)	14500 <re<17500 5.00<pr<5.90 1.2 < ΔT < 1.75 (°F)</pr<5.90 </re<17500 			
	Low Flow Rate (0.78 gpm-1.2 gpm)	Medium Flow Rate (2.0 gpm-3.0 gpm)	High Flow Rate (3.5 gpm-4.5 gpm)			
	CASE: 7	CASE: 8	CASE: 9			
High Power Supply 5968 Btu/hr-6560 Btu/hr (1748 W- 1921 W)	2500< Re <3500 4.75< Pr <6.40 10.0 < Δ <i>T</i> < 15.0 (°F)	8500< Re <10000 4.80< P r<5.50 5.0 < Δ <i>T</i> < 5.7 (°F)	14500< Re <17500 5.00< Pr <5.90 5.5<ΔT<6.0 (°F)			

The reason why the test runs were divided into the nine types was to check how the test setup responded to different levels of heat input and flow rate. After experimenting with the nine cases of test runs listed in Table IV, it was found that, for some cases, the test setup provided promising Nusselt number comparison with the correlations. From these nine types of test runs, it was found that the heat input and flow rate are inter-dependent in finding values that will produce a reasonable Nusselt number comparison $(\pm 30\%$ error) with the correlations. For example, for medium power, the setup provided good Nusselt number comparison (±30% error) using low to medium flow rates; and for low power, the setup provided good Nusselt number comparison using low flow rates. For high power input, the setup provided good Nusselt number comparison with correlations. Using these nine test run cases, a suitable procedure was found to get a good Nusselt number comparison. This procedure is discussed in Section 4.2 of this chapter. Test runs 134 through 1184, in Table XV of Appendix B, were made based on this classification. After studying these test cases, runs 1186 through 4143 were conducted.

From forty-three test runs, which were mainly transitional and turbulent flow, heat transfer results will be discussed briefly in this chapter. There were several parameters which influenced the heat balance of the test setup. The major parameters include the difference between inlet and exit bulk temperatures, the flow rate, and the heat input. The difference between inlet and exit bulk temperature depended upon the heat input and the flow rate. These effects on the heat balance errors will be discussed briefly in this chapter, and finally comparison of heat transfer data with existing correlations will be presented. Then one existing equation will be modified to predict the Nusselt number data over all of the flow regimes represented by the data.

Heat balance errors were calculated for all experimental runs by taking a percent difference between two methods of calculating the heat addition. The product of voltage drop across the test section and the current carried by the tube was the primary method, while the fluid enthalpy rise from inlet to exit was the second method. The algorithm to calculate the heat balance error is given below:

Method 1:

Hin = I (amps) V (Volts)(4.1)

Method 2:

$$Hout = \dot{m} \left(C_{p} \right) \Delta T \tag{4.2}$$

where: \dot{m} is the mass flow rate of water

 C_p is the specific heat capacity of water

 ΔT is the difference in exit and inlet bulk temperature of water

Then:

The primary method (Method 1) was the one used in the RHt98F Program for all the heat flux and heat transfer coefficient calculations. The heat balance errors ranged from -5.30% to 12.50%. A complete listing of all of the experimental runs is given in Tables XIV, XV, and XVI of Appendix B. This data given in Appendix B is for all the runs taken for water, regardless of flow regime.

4.1 Factors Affecting the Heat Balance Errors

The heat balance errors directly depended on the difference in the inlet and exit bulk temperatures. Identifying the proper conditions, under which the bulk temperatures behaved properly to give a good heat balance error, increased the probability of getting a good heat balance error, and of good heat transfer measurements along the test section. This also helped to foresee the heat transfer effects even before the actual data was taken.

The inlet bulk temperature depended upon the tank temperature and the ambient temperature of the room, the heat input to the test section, and the exit temperature from the heat exchanger. Before the heat input was applied to the test section, the water was cycled in the system continuously until the inlet bulk temperature and the tank temperature were approximately the same. This was made possible with the help of the heat exchanger which maintained a constant tank temperature. Figure 4.1 shows the range of values of inlet bulk temperature for which the heat balance errors were reasonable (±5.0%) for some experimental runs, applying case 1 conditions (low power/low flow rate, see Table IV). From the experimental runs shown in Fig. 4.1, it is highly advisable to run the setup with inlet bulk temperature greater than 80° F. Figure 4.1 indicates that, if the inlet bulk temperature is below 80° F, the heat balance errors were not as good as for the runs with the inlet bulk temperature greater than 80° F. We cannot conclude from this graph how cases for runs with inlet bulk temperature greater than 90° F will perform with respect to the heat balance error. But maintaining the inlet bulk temperature below 90° F was good enough to carry out the runs.

Figure 4.1: Trend of Inlet Bulk Temperature vs. Heat Balance Error

for Case 1 (Low Power/Low Flow Rate) Test Runs

Once the inlet bulk temperature was maintained within this range, then the water was run through the test section for additional time until the exit bulk temperature become equal to the inlet bulk temperature. Once the inlet and exit bulk temperatures showed approximately the same value, then heat was applied to the test section.

The difference between inlet and exit bulk temperatures had a much greater effect on the heat balance error. For case 1 conditions (low power/low flow rate, see Table II), Fig. 4.2 shows the effect of this difference on heat balance error. As we can see, the greater the difference in inlet and exit bulk temperatures, the better the heat balance errors.

Finally the flow rate under which a given run was made also affected the heat balance error. Figure 4.3 shows how the heat balance error was affected by the flow rate for case 1 (low power/low flow rate, see Table IV) types of runs. From this figure, we can conclude that the heat balance errors were agreeable for flow rates within the range of 0.8 gpm to 1.4 gpm.

4.2 Identifying Good Test Runs

Test runs were made for Reynolds number ranging from 2000 to 17000, Prandtl number range from 4.5 to 6.5, and for power input ranging from 818.0 Btu/hr (239.5 W) to 6560.0 Btu/hr (1921.0 W). The local bulk Nusselt number ranged from 12.0 to 100.0. The experimental numbers were achieved using a uniform wall heat flux ranging from 330.0 Btu/hr-ft² (1.071 kW/m²) to 2647 Btu/hr-ft² (8.598 kW/m²).

To avoid mixed convection, the heat input was increased, as the flow rate was increased. Runs 192, 196, 1116, 1117, 1118, 1119, 1124, 1132 in Appendix B are examples.

Figure 4.2: Effect of Bulk Temperature on Heat Balance Error for

Case 1 (Low Power/Low Flow Rate) Test Runs

Figure 4.3: Effect of Flow Rate on the Heat Balance Error for

Case 1 (Low Power/Low Flow Rate) Test Runs

These runs showed a ratio of temperature for top to the bottom thermocouples at section 6 to be much greater than 1.00 (see Tables IV and XV). This indicated that mixed convection effects were taking place for this kind of power input/flow rate. This type of the test run has been considered to be "bad," since only forced convection conditions were desired, in order to compare with established correlation predictions. Thus further test runs were not made in this range of power input/flow rate combination.

In addition to the low power/medium flow rate cases, test run case 3 (low power/high flow rate) results were never accurately predicted by Nusselt number correlations. This appeared to be due to non-uniform temperatures around the circumference (see runs 133 and 172 in Appendix B, Table XIV) at a specific location along the test section, which appeared to affect the Nusselt number calculation. The non-uniform temperatures could be due to partial filling of water in the test section and boiling of water at high power inputs. So test runs operating in this power input/flow rate range were also not advisable, if steady state laminar or turbulent fully developed heat transfer conditions were desired.

Test runs representing case 4 (see Table XIV) also showed poor heat balance errors, and also non-uniform temperature conditions throughout the test section (see runs 138, 194, 180, and 183 in Appendix B, Table XIV). Further test runs were not carried out in this power input/flow rate range. For low power input, it was observed that low flow rate test runs gave good heat transfer results as compared to those of medium and high flow rates for that particular heat input. This was found after a series of test runs (runs 2105 thru 4105 in Table XV) were made over a wide range of power and flow rates.

From the nine test cases (see Table IV) it was observed that the test section should be operated only in certain ranges of flow rate and power input. After a series of test runs were made over all of the flow rate ranges and power inputs, runs with good heat balance errors and Nusselt number prediction were studied further. They showed that the power input and flow rate are interdependent upon each other if good heat balance error and Nusselt number prediction are desired.

From these runs, a simple equation has been developed to estimate the power input needed for a particular flow rate. The equation was based on a linear curve fit applied to some of the very best test runs. That equation is:

Hin (watts) = (F.R. (gpm)+0.6686)/0.0068
$$(4.4)$$

The use of this equation helped get a good heat balance error. It was also observed that a consistent difference in inlet and exit bulk temperature of 2.0 °F was maintained for all of the test runs carried out using this equation. Run 2103 and there on were performed based on this equation. For power input of 433.06 W (1478.5 Btu/hr²) to 485.125 W (1656.2 Btu/hr²), a flow rate range of 1.91 to 2.2 gpm yielded a good heat balance error (see Table XV for runs 2103 to 4105). We can see (from Appendix B) that the heat balance errors were brought to within $\pm 2.0\%$ for these runs. A data sheet has been provided in Appendix B.3, which gives the power input to be used for any flow rate. This data sheet also shows how much current should be supplied to attain that power. Therefore, with increased flow rate, the amount of heat addition could also be increased without the onset of mixed convection.

The heat transfer coefficient (h) is defined as:

$$h = q'' (T_{wi} - T_b)$$
 (4.5)

The average wall heat flux, q", was obtained from the electric power input to the tube from the welder. The wall temperature (T_w) was measured on the outside of the tube,

and, using a finite difference technique, the inside wall temperature T_{wi} was calculated. The bulk temperature was measured at the tube inlet and exit, and was assumed to vary in a linear fashion such that bulk fluid temperature (T_b) calculations at all locations could be made. The RHt98F program performed all of the bulk fluid temperature and heat transfer coefficient calculations.

To illustrate the different trends in heat transfer coefficient ratio for flows dominated by forced convection and mixed convection heat transfer, Fig. 4.4 is presented. The figure includes representative Reynolds number ranges from lower transitional (2612 to 7789) to fully turbulent (8790 and above) flow. As the figure demonstrates, the higher Reynolds number flows are dominated by forced convection heat transfer, because the heat transfer ratio (for top to bottom of the tube) does not fall below 0.90. The flows dominated by mixed convection heat transfer have heat transfer coefficient ratios beginning near 1.0 but dropping off rapidly as the length to diameter ratio increases. Beyond 30 diameters, the ratio tended to stabilize to an approximate value of 0.30, indicating a much less dominant heat transfer role for forced convection [Ghajar and Tam (1994)] and increased natural convection activity.

Since convection heat transfer depends upon temperature differences, the change in heat transfer coefficient can be related to temperature. For fluid heated by ideal forced convection, the peripheral inside wall temperatures are constant, resulting in uniform local heat transfer and near constant local heat transfer coefficient with respect to the periphery. As the flow rate is decreased for the heated case, the fluid encounters a longer contact residence time with the surface causing the fluid nearer the wall to become warmer and less dense than that near the center.

Figure 4.4: Trend of Heat Transfer Coefficient Ratio vs. Dimensionless Axial Distance

Due to buoyant forces the less dense fluid rises along the fluid wall and the denser fluid flows down near the center. This produces a temperature difference along the periphery of the tube wall as shown here:

Because of this effect there is a maximum temperature at the tube top and a minimum at the tube bottom. The temperature difference along the periphery drives a secondary flow pattern at right angles to the primary (forced flow) direction consisting of two vertically symmetrical vortices. These temperature differences also lead to free convection heat transfer occurring simultaneously with forced convection, resulting in a non-uniform heat transfer coefficient with respect to the peripheral location. Figure 4.5 demonstrates how these temperatures behaved for test run 1117, which was driven by both free and forced convection type of heat transfer. From this figure, it is evident that the test section is not uniformly heated, and that thermocouple location A (see Fig. 2.4) always showed a very high temperature when compared to the other three thermocouple temperatures at that station.

Figure 4.6 show the peripheral temperature distribution for steady-state run 4103. This figure demonstrates that all four peripheral thermocouple locations at each station yielded almost the same temperature reading. This shows that the test section was uniformly heated for that particular flow rate, and the system was in steady-state.

Figure 4.5: Peripheral Inside Wall Temperature Distribution for Mixed Convection in Run 1117

Figure 4.6: Peripheral Inside Wall Temperature Distribution for Forced Convection in Run 4103

the second s

4.3 Trend of Nusselt Number Along the Test Section

After the flow had traveled through the tube to a point far from the inlet, the velocity and thermal profiles became fully developed. The distance from the inlet to this fully developed point is known as the entrance length. Siegel et al. (1958) defined the thermal entrance region as the length required for the local heat transfer coefficient to approach to within a few percent of the fully developed value of the coefficient. Others such as Shah (1978) defined thermal entry length as it related to Nusselt number; and because the Nusselt number is a function of the heat transfer coefficient, the criteria for thermal entrance effect can be related to heat transfer coefficient [or the Nusselt number] deviation equally well. Figure 4.7 shows an example of Nusselt number variation with dimensionless axial distance for test runs which covered a wide range of Reynolds number. This figure demonstrates that the Nusselt number over all of the Reynolds number range (2600 to 16400) showed a steady decrease from the inlet of the test section, and gradually became constant after x/D was 40. This indicated that the fluid attained a fully developed flow after x/D equal to 40. Hence station 6 (x/D=52.0) was considered to be an ideal station where the fluid was said to be fully developed; and thus all of the Nusselt number comparison with selected correlations has been performed at this station.

4.4 Comparison of Available Correlations with Experimental Data

Using the data accumulated throughout this study, it was desirable to consider how accurately the data could be predicted by conventional correlations.

Figure 4.7 Experimental Nusselt Number vs. Dimensionless Axial Distance for All Types of Test Runs

To accomplish this goal, some of the correlations provided in Table II were compared with the data conforming to the respective correlation limitations (and sometimes outside of the ranges of those correlations in order to see the robustness of data vs. correlation). The Nusselt number was calculated using data at station 6, at which the flow was considered to be fully developed. From Figure 4.6, it is evident that the temperatures at station 6 were uniform among all peripheral locations. From Fig. 4.7, we observe that the Nusselt number at station 6 (x/D=52.0) appeared to be steady. An error of ± 30 % between experimental and prediction was considered to be a good test run, and all of the following graphs have been drawn with ± 30 % reference lines.

The table given below shows the ranges, minimum and maximum values for Reynolds, Prandtl, and Grashof numbers, and viscosity ratio (ratio of viscosity at bulk temperature to viscosity at the wall temperature, μ_b/μ_w) at station 6. Determining the right correlation to be used for the test runs required attention to the ranges of Reynolds number, Prandtl number, and viscosity ratio. A total of 43 test runs were used to predict the Nusselt numbers (Nu_{CAL}).

TABLE V

Ranges of Reynolds Number, Prandtl Number, Grashof Number, Nusselt Number, and

	Reynolds	Prandtl	Grashof	Viscosity	Experimental
	Number	Number	Number	Ratio	Nusselt Number
Minimum	2954.5	4.91	115319.2	1.0231	17.48
Maximum	16286.4	6.3	1389900	1.3841	83.37
Average	7942.6	5.8105	325033.6	1.0863	45.29

Viscosity	Ratio	for 43	Test	Runs
-----------	-------	--------	------	------
A total of four different correlations were used to compare the data with the experimental Nusselt number. Sieder and Tate (1936), Colburn (1933), Gnielinski [Kakac et al. (1987)], and Ghajar and Tam (1994) were used. Gnielinski has given three correlations for different parameter ranges, and these were also compared with each other.

A total of 32 data sets were used to predict the Sieder and Tate (1936) turbulent correlation. The following table shows experimental ranges, comparison (experimental and prediction), their maximum and minimum values from Sieder and Tate (turbulent) correlation

$$Nu = 0.023 \operatorname{Re}^{0.8} \operatorname{Pr}^{1/3} \left(\frac{\mu_{b}}{\mu_{a}}\right)^{0.14}$$
(4.6)

where

 $Re \ge 10000, 0.7 \le Pr \le 16700$

TABLE VI

Ranges of Reynolds, Prandtl, and Nusselt Numbers, and % Error for

Siede	r and	Tate	(1936)	Correlation
			()	

	Reynolds	Prandtl	Nusselt Number	Nusselt Number	% Error	% Error (Re> 10000)
	Number	Number	Experimental	Calculated	(Nuca/Nu _{Exp} -1)x100	(Nuce/Nuexp -1)x100
Minimum	5630.5	4.91	33.79	42.3	0.576	8.11
Maximum	16286.4	6.3	83.37	92.75	36.78	23.03
Mean	9370.89	5.8197	53.26	62.42	17.73	18.78

Figure 4.8 shows the Nusselt number comparison for this correlation. We see from the table and the graph, that, for higher Reynolds number (>8000 in this case), the Sieder and Tate correlation (turbulent) shows better results than for low Reynolds number. The recommended Reynolds number range for the Sieder and Tate turbulent correlation

Figure 4.8: Comparison of Experimental Nusselt Number to Calculated Using Sieder and Tate (1936) Correlation

is 10000 and above. A maximum error of 36.78% and a minimum error of 0.576% is achieved by using the Sieder and Tate (1936) correlation. From the 32 test runs, 30 runs fall within the $\pm 30\%$ error band, which showed a good Nusselt number comparison.

The Colburn (1933) correlation for turbulent flow was used to compare 29 sets of data, since only 29 data sets reasonably met this correlation's parameter ranges. The table below shows the experimental ranges, Nusselts number comparison (experimental and correlation), and their maximum and minimum values. The correlation is:

$$N u = 0.023 \,\mathrm{Re}^{0.8} \,\mathrm{Pr}^{1/3} \tag{4.7}$$

where

 $Re \ge 10000, 0.6 \le Pr \le 160$

TABLE VII

Ranges of Reynolds, Prandtl, and Nusselt Numbers, and % Error for

	Reynolds	Prandti	Nusselt Number	Nusselt Number	% Error	% Error (Re> 10000)
	Number	Number	Experimental	Calculated	(Nu _{Cal} /Nu _{Exp} -1)x100	(Nuce/Nuexp -1)x100
Minimum	5630.5	4.91	33.79	42.04	-1.47	-1.47
Maximum	16286.4	6.3	83.37	92.2	36.35	22.13
Mean	9436.67	5.8069	53.26	61.72	16.22	16.11

Colburn (1933) Correlation

Figure 4.9 shows the Nusselt number comparison for this correlation. The recommended Reynolds number range for the Colburn (1933) turbulent correlation is 10000 and above, and Prandtl number range is 0.6 to 160. We see from the table and the graph that, even for Reynolds number less than 10000, the Colburn (1933) correlation predicted results well for these 29 runs.

Figure 4.9: Comparison of Experimental Nusselt Number to Calculated Using Colburn (1933) Correlation

This Correlation showed a maximum error of 36.35% a minimum of -1.47%, and a mean error of 16.22, which were better than the results from the Sieder and Tate (1936) correlation. We see from the graph that almost all the test runs (except for 2) fell within the $\pm 30\%$ error band.

The Ghajar and Tam (1994) correlation was used for viscosity ratios $(\frac{\mu}{\mu_{u}})$ greater than 1.1. It became practically difficult to obtain such a high viscosity ratio, because this required high power input. But quite a few runs (24 data sets) were achieved which had viscosity ratios greater than 1.1. These runs and other runs which had viscosity ratios greater than 1.044 were employed to test the validity of the test setup and of the correlation. The table below shows some of these runs which were used to predict Nusselt number with the Ghajar and Tam (1994) correlation, which is:

$$Nu = 0.023 \operatorname{Re}^{0.1} \operatorname{Pr}^{0.315} (x/D)^{-0.0054} (\mu_{\mu}/\mu_{\mu})^{0.14}$$
(4.8)

where

t:

 $3 \le x/D \le 192,7000 \le \text{Re} \le 49,000$ $4 \le \text{Pr} \le 34, 1.1 \le (\frac{\mu_{\mu}}{\mu_{\mu}}) \le 1.7$

TABLE VIII

Ranges of Reynolds, Prandtl, and Nusselt Numbers, and % Error for

	Reynolds	Prandtl	Nusselt Number	Nusselt Number	% Error	Viscosity	% Error (Re> 7000)
	Number	Number	Experimental	Calculated	(Nuce/Nuexp -1)x100	Ratio	(Nuc /NuExp -1)x100
Min	6212.9	4.91	36.26	49.15	15.15	1.041	15.01
Max	16286.4	6.2	83.37	96.68	35.56	1.175	32.01
Mean	9547.5	5.765	54.44	67.65	24.52	1.097	23.46

Ghajar and Tam (1994) Correlation

Figure 4.10 shows the correlation comparison for Ghajar and Tam (1994) predictions. We see that, except for 2 runs (out of 24), the rest of the test data falls in the $\pm 30\%$ error band; and showed good Nusselt number comparison. It can be concluded that the current data is reasonably accurate since the proven Ghajar and Tam (1994) predictions agree reasonably well with the data presented herein.

Gnielinski proposed three correlations for different parameter ranges, these three correlations were taken from Kakac et al. (1987). The first correlation employs the friction factor (f) and is used for transitional and turbulent flows. The second and third correlations do not require friction factor. The second correlation is used for low Prandtl number and fully turbulent flows. The third correlation is used for transitional and turbulent flow. The first correlation and its parameter ranges are:

Gnielinski [1]

-

$$Nu = \frac{(f/2)(\text{Re}-1000)\text{Pr}}{1+12.7(f/2)^{1/2}(\text{Pr}^{2/3}-1)}$$
(4.9)

$$\frac{1}{\sqrt{f}} = 1.58 \ln \text{Re} - 3.28 \qquad \text{Filonenko Correlation} \qquad (4.10)$$

 $0.5 \le Pr \le 2000, 2300 \le Re \le 5x10^6$

TABLE IX

Ranges of Reynolds, Prandtl, and Nusselt Numbers, and % Error for

Gnielinski [1] Correlation

	Reynolds	Prandti	Nusselt Number	Nusselt Number	% Error
	Number	Number	Experimental	Calculated	(Nuca/NuExp -1)x100
Minimum	2954.5	4.91	17.48	20.19	1.43
Maximum	16286.4	6.3	83.37	108.39	50.94
Mean	7948.4	5.8076	45.07	58.56	28 82

Figure 4.10: Comparison of Experimental Nusselt Number to Calculated Using Ghajar and Tam (1994) Correlation

Figure 4.11 shows the Nusselt number comparison with the Gnielinski [1] correlation. Figure 4.11 clearly shows that the Nusselt number comparison is not very good with the first Gnielinski correlation. This may be due to the fact that the friction factor in this correlation plays an important role in estimating the Nusselt number and that the friction factor correlation may have been inaccurate. Of the 43 test data points, only 22 fell within the $\pm 30\%$ error band.

The use of second Gnielinksi correlation showed a better comparison for the Nusselt number. The correlation is:

Gnielinski [2]

$$Nu = 0.0214 (\text{Re}^{0.1} - 100) \text{Pr}^{0.4}$$
(4.11)

where

 $0.5 \le Pr \le 1.5, 10^4 \le Re \le 5x10^6$

TABLE X

Ranges of Reynolds, Prandtl, and Nusselt Numbers, and % Error for

Gnielinski [2] Correlation

	Reynoids	Prandit	Nusselt Number	Nusselt Number	% Error	% Error (Re> 10000)
	Number	Number	Experimental	Calculated	(Nu _{Cat} /Nu _{Exp} -1)x100	(Nuce/NuExp -1)x100
Minimum,	2954.5	4.91	17.48	20.95	3.11	6.47
Maximum	16286.4	6.3	83.37	91.45	34.09	22.03
Mean	7948.4	5.8076	45.07	58.56	16.12	16.79

This correlation has shown a very good Nusselt number comparison. Figure 4.12 shows the Nusselt number comparison with this correlation. Out of the 43 test data points, only 3 fell outside of the $\pm 30\%$ error band, and the average error was better

P

Figure 4.11: Comparison of Experimental Nusselt Number to Calculated Using Gnielinski [1] Correlation

P.

Figure 4.12: Comparison of Experimental Nusselt Number to Calculated Using

Gnielinski [2] Correlation

than that for the Sieder and Tate correlation (1936) and the Colburn correlation (1933). We see from the figure that, even for Reynolds number less than 10000 (the recommended range is > 10000), the correlation provided very good Nusselt number predictions. But for Reynolds number greater than 9000, all of the test data fell within the $\pm 30\%$ error band.

The third Gnielinski correlation covers the Reynolds number range from 3000 to 1×10^6 . This correlation covered the entire test data range for this setup. The correlation is:

$$Nu = 0.012 (\text{Re}^{0.17} - 280) \text{Pr}^{0.4}$$
(4.12)

where

C ' 1' 1' [2]

 $1.5 \le Pr \le 500, 3000 \le Re \le 1x10^6$

The table below shows an overall view of the results for the 43 test runs used to predict the Nusselt number for this correlation.

TABLE XI

Ranges of Reynolds, Prandtl, and Nusselt Numbers, and % Error for

	Reynolds	Prandtl	Nusselt Number	Nusselt Number	% Error
	Number	Number	Experimental	Calculated	(Nuca/NuExp -1)x100
Minimum	2954.5	4.91	17.48	18.07	-9.37
Maximum	16286.4	6.3	83.37	99.21	34.53
Mean	7948.4	5.8076	45.07	52.45	15.03

Gnielinski [3] Correlation

Figure 4.13 shows the data comparison with this correlation. This correlation gave an average error of 15.03%, which is better than that of Sieder and Tate (1936),

Figure 4.13: Comparison of Experimental Nusselt Number to Calculated Using Gnielinski [3] Correlation

Colburn (1933), and the first and second Gnielinski correlations. From the graph, it is evident that this correlation predicted the data well for the transitional region and turbulent region. Of the 43 test data points, 15 data points fell within the ± 10 % error band, 30 fell within the $\pm 20\%$ error band, and 40 fell within the $\pm 30\%$ error band.

The Gnielinksi [3] correlation is in fact very good predictor for this test setup for transitional and turbulent flow, as it should be, since it has fit the range of test parameters (Re and Pr). From these correlation comparisons, it is clear that the test data is good enough to prove that the test setup can properly handle single-phase flows. The data obtained from this test setup compared well with these single-phase correlations. The experimental Nusselt number showed lower values as compared to those of the correlation predictions. This may be due to the fact that the power input (on which the heat flux depends) is improperly measured. This improper measurement of the power input may have resulted in a lower heat flux and hence a lower Nusselt experimental value. Therefore recalibration of the ammeter is very much desired in the future. Another possibility is the heat loss from the test section through insulation wrapped (2 inch thick) around the test section. However if this is an error the heat balance gets worse.

4.5 Best-Fit Correlation

From the comparison of experimental data with the author specified correlations, it has been demonstrated that the data obtained from this test setup is reasonably accurate and the test setup is ready for two-phase flow experiments. From Chapter III, it is evident that the mixing chamber was able to produce different flow patterns. With the single-phase data found herein, a best-fit correlation was developed to obtain better Nusselt number prediction. The third Gnielinski correlation, which predicted for the test run data very well, was used as a base correlation to obtain a bestfit correlation.

The versatility of the Gnielinski [3] equation is that it covers both the transitional and turbulent regions. Since the calculated Nusselt numbers always seemed to be higher values than the experimental Nusselt numbers, a change in constants in the this correlation may bring the Nusselt number to a reasonable value. But this correlation does not account for free convection effects in the transitional flow regime.

Since we know that Reynolds and Prandtl number are the key parameters in predicting Nusselt number, changing the constant (280 in Eq. (4.12)), or the power on the Reynolds number and Prandtl number required considerable attention. But changing the power of the Prandtl number did not bring any better change in Nusselt number prediction, since the Prandtl number range was from 4.91 and 6.30. When the power on the Prandtl number was increased to 0.44, the mean error on the Nusselt number for the 43 test runs increased to 23.41 %, which is 8% greater than that of the original Gnielinksi equation. When the power on the Pr was dropped to 0.38, the mean error changed to 11.06%, which did not improve the fit of correlation. Changing the power and the constant (280) on the Reynolds number gave a better prediction of Nusselt number for the experimental data. When the constant was changed from 280 to 430, the mean error dropped to 0.537 %, and the minimum error to -26.05 %. But a change in the power on the Reynolds number to 0.866 changed the mean error to 0.072919%, with a minimum of -29.90% and a maximum of 20.96%.

The modified correlation is therefore:

$$Nu = 0.012 \left(\text{Re}^{0.366} - 430 \right) \text{Pr}^{0.4}$$
(4.13)

The table below shows the Reynolds and Prandtl number ranges and the Nusselt number comparison for this modified correlation.

TABLE XII

Ranges of Reynolds, Prandtl, and Nusselt Numbers, and % Error for

	Reynolds	Prandtl	Nusselt Number	Nusselt Number	% Error
	Number	Number	Experimental	Calculated	(Nu _{Cal} /Nu _{Exp} -1)x100
Minimum	2954.5	4.91	17.48	13.75	-29.90
Maximum	16286.4	6.3	83.37	91.76	20.96
Mean	7948.4	5.8076	45.07	46.76	0.0729

Modified Correlation

Figure 4.14 shows the Nusselt number comparison with this modified correlation. Out of the 43 test data points, 34 points fell within the $\pm 15\%$ error band, 39 within the $\pm 20\%$ error band, and all of the 43 data points were within the $\pm 30\%$ error band. This correlation shows a very good experimental Nusselt number comparison.

4.6 Problems

It was discovered that, during the initial test runs, two thermocouples (TC 7 and TC 40) were dysfunctional. They were removed and replaced with new calibrated thermocouples. Several test runs were done to insure that all of the thermocouples were functioning properly in the defined vicinity of operation.

Figure 4.14: Comparison of Experimental Nusselt Number to Calculated Using Modified Gnielinski [3] Correlation

Since a comparatively low power is required in order to get a good bulk temperature difference (see, for instance, run 164 and run 1117), the test section was heated for a long time before the actual data was taken. For low flow rate test runs, the test section was heated for a long time (at least 25 minutes) to get good bulk temperature difference. The procedures followed to get good bulk temperature differences for low flow rates is described in Appendix F.

While making the flow rate measurements, reading the frequency of the frequency meter required experience in understanding the frequency meter. It is advisable to take as many readings as possible from the frequency meter. While repeating the test runs, every possible detail was looked into to produce the same conditions, like inlet bulk temperature, heat input, and flow rate, in order to provide good repeatability for this test setup.

For all of the types of test runs listed in Table IV, there were many factors which influenced obtaining good bulk temperature difference, and good heat balance errors. Maintaining the system at steady-state, getting a good bulk temperature difference and a good heat balance error were the three most essential conditions, in order to then carryout the experiment. Since the power input is low for cases 1, 2 and 3, the heat exchanger was used to insure that a reasonable temperature difference was produced in order to carry out the heat balance error calculations and correlation comparison. Many parameters influenced the temperature difference (for example, both inlet and exit bulk temperatures) which ultimately affected the heat balance error calculation and the correlation comparison. These trends are clearly shown at the beginning of this chapter.

For low flow rates and high power input, it was observed that the flow was not completely filling the tube cross-section. This caused the station A thermocouple (see Fig. 2.4 for the thermocouple locations) temperatures at several stations to rise above 100° C, and made the water boil. This happened in almost all of the test runs for case 7. It was necessary to insure that either the test section was not heated over a certain limit (for case 7, an amperage of 450 or less was good), or the flow rate was not below 0.92 gpm. For low flow rates, it was observed that the flow was not fully developed initially. To avoid this, the water is allowed to run for at least 30 minutes before the actual data was taken. Bubble formation in the tube was observed for all kinds of flow regimes. To avoid this, water was run for a longer time, until the flow was fully developed. The clear calming section and clear mixing section helped to visualize the flow in the tube.

Mixed convection effects were observed after station 3 (see Fig. 4.4). Attaining steady-state was easier for low power and medium power input test runs, since these test conditions could be achieved by allowing the fluid to run for a longer time to reach the steady-state without overheating the test section. For high power input test runs, careful observation was made to identify steady-state, and data was collected before any natural convection heat transfer occurred throughout the test section (by monitoring the temperatures at the top [station-A thermocouple] and bottom [station-C thermocouple]). The data acquisition system MAC-14 has a graphic option (Real Time Graphics), which helped to track the inlet and exit bulk temperatures graphically. Appendix F discusses the procedures to obtain a steady-state and a good bulk temperature difference for all of the test run cases. Appendix F also discusses how the MAC-14 used to identify the steady-state.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusion

The goals of this thesis as set forth in Chapter I was successfully achieved. Construction of a versatile test setup was completed, the effects of heat flux on flow rates and heat balance errors were carefully studied. The versatile design of the mixing chamber and flow-visualizing section helped to identify various kinds of flow patterns. The test setup demonstrated single-phase data that fit the applicable correlation predictions. A complete heat transfer database for the transitional and turbulent flow ranges has been assimilated. The test setup has been constructed carefully, and the data taken for the single-phase appears to be accurate.

5.1.1 Experiment Apparatus

With the completion of the setup and instrumentation, planned single-phase and two-phase (water/air) fluid flow experiments are possible to perform. This includes the study of pressure drop measurement, void fraction measurement, and recalibration of the ammeter. The versatile design of the mixing chamber and flowvisualization section should help to further identify various kinds of flow patterns beyond those found in this study. Stratified, slug, slug/bubbly transitional, plug, and wavy flow patterns have been identified for various flow rates of water and air. All of the apparatus problems have been solved, and trouble-free experimentation should occur with its use.

5.1.2 Nusselt Numbers

The test run data covered the transitional and turbulent flow. The third Gnielinksi correlation predicted the data very well for this test setup data. For all of the types of test runs, a careful selection of the correlation has been made to fit the data even outside of the author specified ranges. The Colburn (1933), Sieder and Tate (1936), and Gnielinski's [Kakac et al. (1987)] second and third correlations predicted the test data reasonably well. A complete summary of all nine test run cases (refer to Table III) is given in Table IV of Appendix B. The Nusselt number calculations for all of the good test runs are briefly explained in Table XVI of Appendix B.

5.1.3 Calibration Runs

During the initial test runs, several problems were encountered, the majority having to do with a few faulty thermocouples. These thermocouples have been removed and replaced with good ones. During the calibration runs, it was found that the flow rate and heat fluxes have a strong influence on the heat balance errors and Nusselt number comparison. Eventually, a reliable procedure for setting the flow rate with respect to heat flux was developed (refer to Chapter IV). The heat exchanger has helped the system to attain a steady-state and it has worked well enough to keep the system at steady-state for long time periods.

5.2 Recommendations

Due to uneven distribution of heat inside the test section for low flow rates, mixed convection effects takes place under these conditions. As discussed in Chapter IV, it is believed that the heat flux could be responsible for the mixed convection effects at low flow rates. Even before starting a test run, it is advised that the experimentalist carefully verify what heat input is needed for a particular type of flow rate (refer to Chapter IV). Any slight change in the flow rate of the heat exchanger fluid will result in slight cooling or non steady-state conditions for the test setup. So it is always advisable to use the heat exchanger at full maximum flow for flow rates below 1.5 gpm, at one-half of maximum for flow rates ranging from 1.5 to 2.5 gpm, and one-quarter of maximum for flow rates ranging from 2.5 to 4.4 gpm.

Obtaining high viscosity ratios was rather difficult with this setup, because this required a high power input. At the same time, it was difficult to attain steady-state conditions for high power input.

From the correlation comparison in Chapter IV, we observed that the calculated Nusselt number was always higher than the experimental value for almost all of the correlations. This may be due to an under-estimation of the power input, which decreased the heat flux, thus increasing the Nusselt number calculated. One of the reasons for this happening is due to a slightly inaccurate calibration of the ammeter. Although this may not be critical, a slight increase of 20 amperes can improve the heat balance error. In some cases where such an amperage was applied, the heat balance

errors were brought down from -6.69% to -0.89%. To solve this problem, recalibrating the ammeter is recommended.

The Table XIII shows the heat balance errors for some of the high power runs, with the original ammeter readings and with arbitrarily modified (+20 amps to the original reading) ammeter readings.

TABLE XIII

	Flow Rate	Voltage	Current	Heat balance	New Current	New Heat balance
Run#	(gpm)	(v)	(amps)	Error	(amps)	Error
4115	2.2817	3.78	480	-3.76%	500	0.39%
4117	2.1037	3.79	480	-8.02%	500	-1.86%
4119	2.2553	3.8	481	-8.32%	501	-2.29%
4121	2.3089	3.81	483	-8.22%	503	-2.26%
4123	2.3981	3.81	483	-6.69%	503	-0.89%
4128	2.4204	3.72	474	-7.66%	494	-1.75%
4130	2.389	3.9	490	-9.81%	510	-3.89%
4132	3.3751	3	380	-5.75%	400	0.52%
4134	3.3795	3.07	390	-7.91%	410	-1.64%

Effect of Amplified Ammeter Reading on the Heat Balance Errors

The other important parameter to be taken into consideration is the measurement of flow rate. The turbine meter measures the flow rate (gpm) as a function of frequency. The frequency reading (in Hz) was taken at several intervals of time while a given test run was conducted. At least 50 readings were taken and then averaged to substitute into the calibration equation. It is advisable to take as many frequency readings as possible to get a good flow rate measurement. The frequency meter, which gives out a digital output of the frequency, was not very consistent, and it also depended upon the experimentalist's intuition as how to take the readings over a certain length of time. It may be recommended that the data acquisition system should

be used to take the frequency readings automatically from the turbine meter and average them.

To obtain better heat balance errors and Nusselt number comparisons, it is advisable to use the Eq. (4.4) described in Chapter IV. The use of this equation increased the accuracy of Nusselt number performance of the test setup.

For two-phase flows, flow rate of air ranged from 0.52 gpm to 19.5 gpm, but it is advisable to limit the flow rate to 10 gpm, because flow rates higher than this may result in excessive vibration in the test loop and may also lead to leakage. For the twophase flow experiments, the pressure taps need to be connected to a scanivalve, which could measure the pressure at all the eleven locations (see Fig. 2.2) on the test section. Then the test runs should be made with pressure taps and compare to existing data/correlations for single-phase flows. It has to be made sure that the air should be free from dust particles before it mixes with the water. Passing the air through an airfilter can do this. The water filters should be changed for every 100 hours of operation. It is always advisable to run the two-phase flows with low power inputs, because bubbles in two-phase flow may over heat the test section.

The pressure and temperatures should be monitored for air flow rates. The electrical resistivity of the stainless steel test section vs. temperature should be determined. The heat loss from the test section (with the insulation on) should be calculated in order to see whether this calculated value could affect the over prediction of Nusselt number shown in the 43 test runs. The resistance of the stainless steel test section varies with temperature, so it is necessary to know how this effect may influence the heat balance errors and Nusselt number comparison. The ammeter should

be re-calibrated. The uncertainty analysis in the prediction of heat transfer coefficient is given in Appendix G

For future two-phase flow experiments, test runs should be conducted starting with a very low flow rate of water. It would be better to divide the two-phase flows in to different categories based on the flow rates of water and air, and power input. An initial study of these specific test runs may help eliminate some cases which do not give good heat balance errors. An accurate weighing device should be used to measure the volume of water in the void-fraction measurement setup. Thermocouples placed on the inlet and exit of the heat exchanger may also provide valuable information in maintaining a steady-state. The model 5100 data logger and MAC-14 data logger should be used to compare the calibrated thermocouple temperatures.

REFERENCES

-

REFERENCES

- Abou-Sabe, A. H. (1951), "Heat Transfer and Pressure Drop During Two-Phase Two-Component Flow in a Horizontal Tube," Ph.D. Thesis, University of California, June.
- Aggour, M. A. (1978), "Hydrodynamics and Heat Transfer in Two-Phase Twocomponent Flow," Ph.D. Thesis, University of Manitoba, Canada.
- Bergles, A. E. and Simonds, R. R. (1971), "Combined Forced and Free Convection for Laminar Flow in Horizontal Tubes with Uniform Heat Flux," <u>Int. J. Heat Mass Transfer</u>, v. 14, pp. 1989-2000.
- Chu, Y-C. (1980), "Studies of Convective Heat Transfer Coefficient Enhancements in Two-Phase Non-Boiling Flow," Ph.D. Thesis, Nuclear Engineering Program, U. of Illinois at Urbana-Champaign.
- Chu, Y-C. and Jones, B. G. (1980), "Convective Heat Transfer Coefficient Studies in Upward and Downward, Vertical, Two-Phase, Non-Boiling Flows," <u>AIChE</u> <u>Symp Series</u>, v. 76, pp. 79-90.
- Churchill, S. W. (1977), "Comprehensive Correlating Equations for Heat, Mass Momentum Transfer in Fully Developed Flow in Smooth Tubes," <u>Ind. Eng.</u> <u>Chem. Fundam.</u>, v. 16, pp. 109-115.
- Colburn, A. P. (1933), "A Method of Correlating Forced Convection Heat Transfer Data and a Comparison with Liquid Friction," <u>Trans. Am. Inst. Chem. Engrs.</u>, V. 29, pp. 174-210.
- Davis, E. J. and David, M. M. (1964), "Two-Phase Gas-Liquid Convection Heat Transfer," <u>I&EC Fundamentals</u>, v. 3, No. 2, pp. 111-118.
- Dittus, P. W. and L. M. K. Boelter (1930), "Heat Transfer in Automobile Radiators of the Tubular Type," Univ. Calif. Pub. Eng., V. 2, No. 13, pp. 443-461.
- Dorresteijn, W. R. (1970), "Experimental Study of Heat Transfer in Upward and Downward Two-Phase Flow of Air and Oil Through 70 mm Tubes," Proc. 4th Int. Heat Transfer Conf., v. 5, B 5.9, pp. 1-10
- Dusseau, W. T. (1968), "Overall Heat Transfer Coefficient for Air-Water Froth in a Vertical Pipe," M. S. Thesis, Chemical Engineering, Vanderbilt University.
- Eckert, E. R. G. and Diaguila, A. J. (1954), "Convective Heat Transfer for Mixed, Free and Forced Flow Through Tubes," <u>Trans. ASME</u>, v. 76, pp. 497-504.

- Ede, A. J. (1961), "The Heat Transfer for Flow in a Pipe," Int. J. Heat Mass Transfer, v. 4, pp. 105-110.
- Elamavaluthi, G. and Srinivas N. S. (1984), "Two-Phase Heat Transfer in Two-Component Vertical Flows," Int. J. Multiphase Flow, v. 10, No. 2, pp. 237-242.
- Ghajar, A. J. and Tam, T. M. (1994), "Heat Transfer Measurements and Correlation's in the Transition Region for a Circular Tube with Three Different Inlet Configurations," <u>Experimental Thermal and Fluid Science</u>, v. 8, pp. 79-90.
- Ghajar, A. J. and Zurigat, Y. H. (1991), "Microcomputer-Assisted Heat Transfer Measurement/Analysis in a Circular Tube," Int. J. Appl. Engg. Ed., V. 7, No. 2, pp. 125-134.
- Groothuis, H. and Hendal, W. P. (1959), "Heat Transfer in Two-Phase Flow," Chemical Engineering Science, v. 11, pp. 211-220.
- Hausen (1943), "Laminar Flow in a Horizontal with Constant Heat Flux," <u>Appl. Sci.</u> <u>Res., Sec. A</u>, v. 11, pp. 126-138.
- Heuss, J. M., C. J. King and C. R. Wilke (1965), "Gas-Liquid Mass Transfer in Cocurrent Froth Flow," <u>AICHE Journal</u>, v. 11, No. 5, pp. 866-873.
- Hong, S. W. and Bergles, A. E. (1976), "Laminar Flow Heat Transfer in the Entrance Region of Semi-Circular Tubes with Uniform Heat Flux," <u>Int. J. Heat Mass</u> <u>Transfer</u>, v. 19, pp. 123-124.
- Hughmark, G. A. (1965), "Holdup and Heat Transfer in Two-Phase Flow," Chemical Engineering Science, v. 20, pp. 1007-1010.
- Hussain, N. A. and McComas, S. T. (1970), "Experimental Investigation of Combined Convection in a Horizontal Tube with Uniform Heat Flux," <u>Proceeding of the</u> <u>Int. Heat and Mass Transfer Conf.</u>, Paris, France, v. 4, paper no. NC3.4.
- Johnson, H. A. (1955), "Heat Transfer and Pressure Drop for Viscous-Turbulent Flow of Oil-Air Mixtures in a Horizontal Pipe," <u>ASME Trans.</u>, v. 77, pp. 1257-1264.
- Kakac, S., Shah, R. K. and Aung, W. (1987), <u>Handbook of Single-Phase Convective</u> <u>Heat Transfer</u>, Bhatti, M. S., Shah, R. K., Chapter IV, pp. 4.1-4.58, Wiley, New York.
- Khoze, A. N., Dunayev, S. V. and Sparin, V. A. (1976), "Heat And Mass Transfer in Rising Two-Phase Flows in Rectangular Channels," <u>Heat Transfer Soviet</u> Research, v. 8, No. 3, pp. 87-90.

Kim, D., Sofyan, Y., Ghajar, A. J., and Dougherty, R. L. (1997), "An Evaluation of Several Heat Transfer Correlations for Two-Phase Flow with Different Flow Patterns in Vertical and Horizontal Tubes," <u>Fundamentals of Bubble and Droplet Dynamics; Phase Change and Two-Phase Flow</u>, S. G. Kandlikar, C. H. Amon, M. E. Ulucakali, J. O'Brien, eds., HTD-v. 342 ASME, New York, pp. 119-130.

- Kim, D., Ghajar, A. J., Dougherty, R. L., Ryali, V. K. (1999), "Comparison of Twenty Two-Phase Heat Transfer Correlation's with Seven Sets of Experimental Data, Including Flow Pattern and Tube Inclination Effects," <u>Heat Transfer</u> Engineering, v. 20, #1, Jan-Mar.
- King, C. D. G. (1952), "Heat Transfer and Pressure Drop for an Air-Water Mixture Flowing in a 0.737 Inch I.D. Horizontal Tube," M.S. Thesis, University of California.
- Knott, R. F., Anderson, R. N., Acrivos, A. and Petersen, E. E. (1959), "An Experimental Study of Heat Transfer to Nitrogen-Oil Mixtures," <u>Ind. and</u> Engineering Chemistry, v. 51, No. 11, pp. 1369-1372.
- Kudirka, A. A. (1964), "Two-Phase Heat Transfer with Gas Injection Through a Porous Boundary Surface," ANL-6862, Argonne National Laboratory, Argonne, Illinois.
- Kudirka, A. A., Grosh, R. J. and McFadden, P. W. (1965), "Heat Transfer in Two-Phase Flow of Gas-Liquid Mixtures," <u>I & EC Fundamentals</u>, v. 4, No. 3, pp. 339-344.
- Martin, B. W. and Sims, G. E. (1971), "Forced Convection Heat Transfer to Water with Air-Injection in a Rectangular Duct," <u>Int. J. Heat Mass Transfer</u>, v. 14, pp. 339-344.
- Morcos, S. M. and Bergles, A. E. (1975), "Experimental Investigation of Combined Forced and Free Laminar Convection in Horizontal Tubes," Int. J. Heat Mass Transfer, v. 91, pp. 212-219.
- Oliver, D. R. and Wright, S. J. (1964), "Pressure Drop and Heat Transfer in Gas-Liquid Slug Flow in Horizontal Tubes," <u>British Chemical Engineering</u>, v. 9, No. 9, pp. 590-596.
- Petukhov, B. S. and Popov, V. N. (1963), "Theoretical Calculation of Heat Exchange and Frictional Resistance with Variable Physical Properties," <u>Teplifiz. Vys.</u> Temp, v. 1, pp. 85-101.

Petukhov, B. S. and Polyakov, V. N. (1967), "Effect of Free Convection on Heat Transfer During Forced Flow in Horizontal Pipe," <u>High Temperature</u>, v. 5, pp. 75-81.

T.

- Pletcher, R. H. (1966), "An Experimental and Analytical Study of Heat Transfer and Pressure Drop in Horizontal Annular Two-Phase, Two-Component Flow," Ph.D. Thesis, Cornell University.
- Ravipudi, S. R. and Godbold, T. M. (1978), "The Effect of Mass Transfer Rates for Two-Phase Flow in a Vertical Pipe," <u>Proc. 6th Int. Heat Transfer Conf.</u>, Toronto, v. 1, pp. 505-510.
- Readal, T. C. (1969), "Effect of Density Gradients on the Rate of Heat Transfer for Flow Through a Horizontal Pipe," M.S. Thesis, University of Illinois, Urbana.
- Rezkallah, K. S. and Sims, G. E. (1987), "An Examination of Correlations of Mean Heat Transfer Coefficients in Two-Phase and Two-Component Flow in Vertical Tubes," <u>AIChE Symp. Series</u>, v. 83, pp. 109-114.
- Seigel, R., Sparrow, E. M. and Hallman, T. M. (1958), "Steady Laminar Heat Transfer in a Circular Tube with Prescribed Wall Heat Flux," <u>Appl. Sci. Res., Sec. A</u>, v. 7, pp. 386-392.
- Serizawa, A., Kataoka, I. And Michiyoshi, I. (1975), "Turbulence Structure of Air-Water Bubbly Flow-III. Transport Properties," <u>Int. J. Multiphase Flow</u>, v. 2, pp. 247-259.
- Shah, R. K. (1978), "A Correlation for Laminar Hydrodynamic Entry Length Solutions for Circular and Non-Circular Ducts," <u>J. of Fluids Engineering, Trans. ASME</u>, v. 100, pp. 177-179.
- Shanon, R. L. and Depew, C. A. (1968), "Combined Free and Forced Laminar Convection in a Horizontal Tube with Variable Viscosity and Free Convection Effect," J. Heat Transfer, Trans. ASME, v. 90, pp. 353-357.
- Shanon, R. L. and Depew, C. A. (1969), "Forced Laminar Flow Convection in a Horizontal Tube with Variable Viscosity and Free Convection Effect," J. Heat <u>Transfer, Trans. ASME</u>, v. 91, pp. 251-258.
- Sieder, E, N., and Tate, G. E. (1936), "Heat Transfer and Pressure Drop in Liquids in Tube," Ind. Eng. Chem., v. 29, pp. 1429-1435.
- Siegwarth, D. P., Mikesell, R. D. Readal, T. C. and Hanratty, T. J. (1969), "Effect of Secondary Flow on Temperature Field and Primary Flow in a Heated Horizontal Tube," <u>Int. Heat Mass Transfer</u>, v. 12, pp. 1535-1552.

Strickland, D. T. (1990), "Heat Transfer Measurement in the Transition Region for a Horizontal Circular Tube with a Square-Edged Entrance," M.S. Thesis, Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, Oklahoma, May.

- Tam, L. M. (1995), "An Experimental Investigation of Heat Transfer and Pressure Drop in the Transitional Region for a Horizontal Tube With Different Inlets and Uniform Wall Heat Flux," Ph.D. Thesis, Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, Oklahoma., December.
- Ueda, T. and Hanaoka, M. (1967), "On Upward Flow of Gas-Liquid Mixtures in Vertical Tubes: 3rd Report, Heat Transfer Results and Analysis," <u>Bull. JSME</u>, v. 10, pp. 1008-1015.
- Van, P. C. (1992), "Liquid-Vapor Phase-Change Phenomena," <u>Series in Chemical and</u> <u>Mechanical Engineering</u>, Hewitt, G. F., and Tein, C. L., eds., pp. 405.
- Vijay, M. M. (1978), "A Study of Heat Transfer in Two-Phase Two-Component Flow in a Vertical Tube," Ph.D. Thesis, University of Manitoba, Canada.
- Vijay, M. M., Aggour, M. A. and Sims, G. E. (1982), "A Correlation of Mean Heat Transfer Coefficients for Two-Phase Two-Component Flow in a Vertical Tube," Proceedings of 7th Int. Heat Transfer Conference, v. 5, pp. 367-372.

APPENDIX A

EQUIPMENT SPECIFICATIONS

APPENDIX A

EQUIPMENT SPECIFICATIONS

In this Appendix, a listing of all of the equipment (and their specifications) used in this experimental project has been given.

- Test Section: A 316, #40 stainless steel circular pipe ID=1.097±0.001 inches (2.7863±0.00254 cm), OD=1.316±0.001 inches (3.3426±0.00254 cm), and 110" (9.167 ft); ordered from Stillwater Steel and Supply, Stillwater, OK.
- D.C. Arc Welder: Lincoln Idealarc DC-600, 3-phase rectified electric welder, 100% duty cycle @ 600 amps and 44 volts at 50/60 Hz; for a maximum power of 24.6 kW.
- Calming Section: Clear polyvinyl carbonate pipe (part number: Lextube 1.000X1.25), ID=1.0" (2.54 cm), OD=1.25" (3.175 cm). Procured from Cope Plastics Inc., Oklahoma City, OK.
- Solvent Cement: Weldon #3, Clear Solvent Cement used to glue plastic material.
- 5. Thermocouple: Omega TT-T-30 copper-constantan insulated T-type thermocouple wire was used with Omega EXPP-T-20-TWSH-UL extension wire for relay to the data acquisition system. The thermocouple beads were fabricated using a Tigtech Inc. model 116SRL thermocouple welder.

- Temperature Bath: FTS Systems, Inc. New York 12484 (model number: RC-00180-A, serial number: RC109410) used as a temperature bath for calibrating the thermocouples and bulk temperature probes.
- Termocouple Probes: These probes were procured from OMEGA (type # TJ36-CPSS-14U-12).
- Thermocouple Glue: Omegabond 101 epoxy adhesive (catalog # OB-101-1/2), a two-part adhesive providing a high thermal conductivity (0.6 Btu/hrft-F) and very high electrical resistivity of 1x10¹⁵ ohm-m.
- 9. Data Logger: A Cole-Palmer ninety-six input MAC-14 data logger was interfaced with an AT 80386 personal computer to provide digital data acquisition for the temperature measurements. It accepts input voltages from 0.3 microvolts to 10 volts, has an accuracy of ± 0.02% of range, and has 16 bit resolution.
- 10. Data Logger for Calibration: Electronic Controls Design (ECD) model 5100 digital data logger. The model 5100 has a resolution of 0.1 °F, over a temperature range of 158 to 752 °F and a ± 0.1 °F conformity error over the range of -105 to 400 °F.
- 11. Porous Bronze Tube (for mixing chamber): The porous bronze tubes (grade F100, part number 1 inch-1 ½ x 8 inch x 3/32 inch) were procured from Capstone Permaflow, CA. The porous bronze tube has a particle removal size of 15-25 microns, and maximum pore size of 45-72 microns. It has a maximum operating temperature of 900 °F, a minimum operating temperature of -452 °F, an oxidizing temperature of 400 °F, and a tensile

strength of 3000-7000 psi. The chemical composition of the porous bronze tube was 89-96% copper, and the remainder was tin.

- 12. Voltmeter: A Hewlett-Packard model 3468B digital multimeter was used to measure the actual voltage drop across the test section. The range available for DC voltage measurement is 1 microvolt to 300 volts. An accuracy of 1% of the reading, and a resolution of 10 microvolts are possible with this model.
- 13. D C Ammeter: Weston Instruments Division model 931 ammeter placed in parallel with a 50 millivolt shunt. The shunt was made and calibrated by Mr. Gerald Stotts, manager of the Electronics Laboratory, Electrical and Computer Engineering at Oklahoma State University.
- Heat Exchanger: ITT Standard model BCF 4036 one shell and two-pass tube heat exchanger purchased from Thermal Engineering Company, Tulsa, OK.
- 15. Rotameter: Omega FL-9028, maximum range of 4 to 28 gpm, an accuracy of ±5% of full scale, and repeatability of ±1% of full scale.
- 16. Quick Closing Valves (for void fraction measurement): The two quick closing solenoid valves were procured from W&W International, model number RD 222DVYD and operate on 110V/50 Hz and 120V/60 Hz. Another solenoid valve which was procured from Automatic Switch Co. (ASCO, catalog no: 826820, serial no: 23779N2) operates on 100V/60HZ, and was placed in the by-pass line.
- 17. Manually Operated Valves (for void fraction measurement): Two manually operated Teflon-PFA type (model no: E-06373-25 (M)), ¼ inch valves were

procured from Omega Engineering, Inc. These valves can withstand pressures up to 40 psi, and temperatures up to 300 °F.

- 18. Separator: A water/air separator was procured from Hayward Industrial Products, Inc., and will be used to separate water and air from each other. The separator (type: ST-separator trap, model number: TB-534L) was a product of Wright-Austin Co. This separator can handle a maximum pressure of 160 psi at 450 °F
- Water Tank: A 35 gallon cylindrical polyethelene tank was purchased from Atwoods of Stillwater. The approximate tank dimensions are: 18 inches (45.72 cm) in diameter, and 24 inches (60.96 cm) in height.
- 20. Pumps: [1]. For low flow rates, a pump manufactured by Oberdorfer Pumps, model SKH35FN193T, was used. It produces a flow rate of 4.8 gpm at 3450 rpm using a General Electric 1/3 hp motor. [2]. For high flow rates, a Westinghouse (S# 1442131, Ser. 5301) 3-phase (220/440 volts) pump was installed. The motor is rated at 1.5 HP, which should produce a flow rate of 35 gpm at 3535 rpm and 60 hz.
- 21. Turbine Meter: A Halliburton 1 inch turbine meter was used over a frequency range of 50 to 150 Hertz. This turbine meter had a linear accuracy of $\pm 0.5\%$ of full scale reading, and a repeatability of less than $\pm 0.10\%$ of full scale reading. This turbine meter can be used for flow rates up to 10.5 gpm.
- 22. Frequency Meter: A Hewlett-Packard model 5314A universal counter was used to measure the frequency of the turbine meter during data collection.

Input frequency range for the 5314A is 10 Hz to 100 MHz, with a sensitivity of 25 millivolts rms at 100 MHz, and 0.075 volts peak-to-peak at a minimum pulse of 5 nanoseconds.

- 23. Water Filter: [1]. An Aqua-Pure water filter model AP12T double cartridge filter system used two model AP110 H/C cartridges, which can remove 5 micron diameter dust particles. Procured from Aqua-Pure water filters, Oklahoma 73118. [2]. Teek Water Systems double cartridge filter (used before the heat exchnager).
- 24. Gas Flow Meter: Cole-Parmer gas flow meter model 32915 was used to measure the flow rate of air, it can withstand pressures up to 100 psig. It can measure flow rates of air from 0.26 gpm (1 lpm) to 26.15 gpm (99 lpm).
APPENDIX B

EXPERIMENTAL DATA

- B.1 Summary of Test Runs
- B.2 Sample Input/Output Data File for Program RHt98F
- B.3 Equation for Power Input/Flow Rate
- B.4 Test Run Outputs

APPENDIX B

Πr.

B.1 Summary of Test Runs

In this Appendix, the results from all of the test runs are presented. Table XIV gives all pertinent findings and the nature of the initial nine test run cases (i.e., power input and flow rate). Column 1 identifies the run number. The results consist mostly of dimensionless parameters (Reynolds, Prandtl, and Nusselt numbers), flow rates, and power inputs. The results were shown for stations 5, 6, and 7 (see Fig. 2.4), where the flow was considered fully developed; but station 6 was used for all "in-depth" analysis. Other information includes the average heat flux, ratio of heat transfer coefficient at the top to that at the bottom of the pipe (h_t/h_b), ratio of temperature at the top (TC at station A) to that at the bottom (TC at station C), and the heat balance errors (explained in the Chapter IV).

Table XV gives all of the pertinent findings and nature of the "good" test runs selected from the nine test cases and these runs made by using the Eq. (4.5). (Refer to section B.3 in this appendix for a brief explanation of this equation.)

The results shown in Table XIV and Table XV are for station 6 (see Fig. 2.4), where the flow was considered fully developed, but these tables also provide the h_t/h_b values for stations 5 and 7. Table XVI provides the calculated Nusselt numbers from the Sieder and Tate (1936), Colburn (1933), Gnielinski [kakac et al. (1987)], and Ghajar and Tam (1994) correlations, and their fractional differences as compared to experimental values (Nu_{Cal}/Nu_{Exp}-1). These correlation values are calculated at station 6 as mentioned in Chapter IV. Since the Datared98F and RHt98F programs were used

to calculate the results, sample input/output files for both of the programs are included in this appendix. The sample is for run 1114 only. Listings of these codes are given in Appendix C. The complete outputs for all of the 43 "good" runs are given in Appendix B.4.

10

TABLE XIV

Summary of Test Runs Ordered by Case Number

CASE 1: LOW	POWER/LO	W FLOW RAT	E														
RUN	Current (A)	Voltage (V)	Power (W)	F.R. (gpm)	Hbel Error	Toulkin (F)	Deita TB	Res	Pr,	Gr	yy,	Nu _{Eq}	Twa	Tw./Twc	h/h (@ 6)	h/h_(@ 5)	h/h (@ 7)
135	178	1.405	250.09	0.83	-1.92%	88.82	2.1	3127.2	5.16	311107.8	1.0554	17.48	95.657	1.016588	0.6431	0.6741	0.7697
164	175	1.37	239.75	0.84	3.06%	73 92	1 89	2642.9	6.33	206827	1.0776	13.7	83.289	1.046482	0.404	0.4845	0.4504
1109	175	1.385	242.375	0.92	2.73%	83.14	1.75	3238.3	6.58	307895.4	1.0721	13.66	93.579	1.058954	0.2766	0.7454	0.2668
1111	175	1.38	241.5	0.89	5.27%	78.64	1.76	2967.6	5.93	244664.6	1.0716	14.27	87 251	1.036232	0.4648	0.51	0 5532
1112	175	1.39	243.25	0.89	1.24%	82.19	1.85	3126.3	5.59	282905.3	1.0668	14.76	91.117	1.030727	0.4966	0.5453	0.6045
1113	175	1.4	245	0.82	0.44%	85.84	2.04	2984.7	5.37	314660.6	1.0643	14.94	94.056	1.02951	0.496	0.532	0.6102
1114	175	1.405	245.875	0.82	0.95%	86.82	2.03	3018.5	6.3	404183.1	1.0793	12.08	99.155	1.073167	0.2042	0.5634	0.7792
1115	178	1.4	249.2	0.82	1.62%	84.96	2.05	2954.5	5.43	253682.5	1.0539	18.52	90.918	1.006622	0.8368	1.3982	0.7441
1155	175	1.38	241.5	0.959	4.92%	80.15	1.64	3254.4	6.81	195665.3	1.053	18.95	85.461	1.003332	0.915	1.149	1.0997
1159	175	1.39	243.25	1.0044	2.96%	80.66	1.61	3428.9	5.77	194144	1.0513	19.5	85.791	1.002131	0.9434	1.2194	1.0934
1167	175	1.395	244.125	1.2428	3.67%	80.09	1.3	4181.8	5.83	164813.1	1.0452	22.26	84.531	1.001922	0.9445	1.0474	1.0568
1169	190	1.52	288.8	1 3012	5.28%	80.33	1.44	4419.4	5.81	183739.9	1.0496	23.85	85.199	1.00143	0.9622	1.046	1.0741
1173	215	1.72	369.8	1.5093	8.81%	79.16	1.53	5053.5	5.9	186200.1	1.0532	28.75	84.258	1	1	1.1019	1.1149
1175	218	1.72	374.96	1.5173	6.64%	79.5	1.58	5106.5	5.87	192733.2	1.0541	29.01	84.721	0.9997609	1.0056	1.0809	1.1073
CASE 2: LON	N POWER/ME	DIUM FLOW	ATE														
RUN#	Current (A)	Vollage (V)	Power (W)	F.R. (gpm)	Hbel Error	Toulkin (°F)	Delta TB	Res	Pr	Gr	4,44	NUES	TwA	Tw,/Twc	h/h (@ 6)	h/h_(@ 5)	hyh. (@ 7)
134	178	1.405	250.09	2.37	1.17%	88.5	0.73	8820.3	5.24	124269.8	1.0231	42	90.863	0.9998882	1.006	1 2105	1.2422
170	175	1.4	245	2.4	2.75%	88.03	0.68	8881.2	5.27	104343.7	1.0198	47.45	90 428	1.000898	0.9534	1 2267	1.2155
1177	178	1.42	252.76	2.14	11.03%	78.9	0.72	7103.2	5.95	100279.5	1.0296	35.45	81 644	0.999379	1.0259	1.1065	1.2153
1179	205	1.64	336.2	2.38	6.88%	78.71	09	7901.9	5.96	115319.2	1.0342	40.74	81.872	0.9977759	1.0798	1.1476	1.2338
	the first sector and the state of																1
CASE 3: LON	N POWER/HIC	SH FLOW RAT	E														
CASE 3: LON RUN#	Current (A)	Vollage (V)	E Power (W)	F.R. (gpm)	Hbel Error	Tbulkin (°F)	Delta TB	Res	Pri	Gr	u.u.	Nu _{Eq}	Twa	Tw _a /Tw _c	h/h (@ 6)	h/h.(@ 5)	h/h=(@ 7)
CASE 3: LOW RUN# 133	V POWER/Hid Current (A) 178	Vollage (V) 1.405	E Power (W) 250.09	F.R. (gpm) 4.22	Hbel Error 8.60%	Tbulkin (*F) 84	Delta TB 0.37	Re _{5k} 14870.5	Pr. 5.57	Gr 72275	4.44 1.0167	Nu _{E.q} 60.26	Tw ₄ 85.583	Tw _e /Tw _c 1.00012	h √h ₅(@ 6) 0.9914	h/h.(@ 5) 1.2311	h/h=(@ 7) 1.3048
CASE 3: LOW RUN# 133 172	V POWER/HIC Current (A) 178 175	H FLOW RAT Vollage (V) 1.405 1.415	E Power (W) 250.09 247.625	F.R. (gpm) 4.22 4.42	Hbel Error 8.60% -1.93%	Tbulkin (*F) 84 90.96	Delta TB 0.37 0.39	Re _{5.} 14870.5 16877.9	Pr. 5.57 5.08	Gr 72275 91414.7	44L 1.0167 1.0153	Nu _{E-p} 60.26 59.94	Tw₄ 85.583 92.519	Tw ₄ /Tw ₀ 1.00012 1.000328	h/h (@ 6) 0.9914 0.9753	h/h.(@ 5) 1.2311 1.3073	hyh _e (@ 7) 1.3048 1.2751
CASE 3: LON RUN# 133 172 1163	V POWER/HK Current (A) 178 175 175	H FLOW RAT Vollage (V) 1.405 1.415 1.39	E Power (W) 250.09 247.625 243.25	F.R. (gpm) 4.22 4.42 4.47	Hbel Error 8.60% -1.93% 24.87%	Tbulkin (*F) 84 90.96 79.72	Delta T8 0.37 0.39 0.28	Res. 14870.5 16877.9 14952	Pr. 5.57 5.08 5.91	Gr 72275 91414.7 71081.6	444 1.0167 1.0153 1.0203	Nu _{k.9} 60.25 59.94 49.54	Tw _A 85 583 92 519 81 48	Tw _A /Tw _c 1.00012 1.000328 0.9987587	hyh ₆ (2) 6) 0.9914 0.9753 1.0712	hyh ₆ (@ 5) 1.2311 1.3073 1.1989	hyh _e (@ 7) 1.3048 1.2751 1.2534
CASE 3: LON RUN# 133 172 1163 1181	V POWER/HIC Current (A) 178 175 175 185	AH FLOW RAT Voltage (V) 1.405 1.415 1.39 1.479	E Power (W) 250.09 247.625 243.25 273.615	F.R. (gpm) 4.22 4.42 4.47 4.43	Hbel Error 8.60% -1.93% 24.87% 19.64%	Tbulkin (*F) 84 90.96 79.72 78.3	Defa TB 0.37 0.39 0.28 0.34	Res. 14870.5 16877.9 14952 14569.2	Pr. 5.57 5.08 5.91 6.02	Gr 72275 91414.7 71081.6 65791	1,0167 1,0153 1,0203 1,0202	Nu _{E-p} 60.26 59.94 49.54 56.33	Tw _A 85 583 92 519 81 48 80 049	Tw,/Twc 1.00012 1.000328 0.9987587 0.9982309	h/h (@ 6) 0.9914 0.9753 1.0712 1.1017	h/h ₂ (@ 5) 1.2311 1.3073 1.1989 1.1846	hyte(@ 7) 1.3048 1.2751 1.2534 1.2726
CASE 3: LOA RUN# 133 172 1163 1181 CASE 4: ME	V POWERUHIK Current (A) 178 175 175 185 DIUM POWER	H FLOW RAT Voltage (V) 1.405 1.415 1.39 1.479 VLOW FLOW I	E Power (W) 250.09 247.625 243.25 273.615 2ATE	F.R. (gpm) 4.22 4.42 4.47 4.43	Hbel Error 8.60% -1.93% 24.87% 19.64%	Tbulkin (*F) 84 90.96 79.72 78.3	Delta TB 0.37 0.39 0.28 0.34	Res. 14870.5 16877.9 14952 14569.2	Pr. 5.57 6.08 5.91 6.02	Gr 72275 91414.7 71081.6 65791	4,44_ 1.0167 1.0153 1.0203 1.0202	Nu _{Eq} 60.26 69.94 49.54 56.33	Tw _A 85 583 92 519 81 48 80 049	Tw ₄ /Tw ₅ 1.00012 1.000328 0.9987587 0.9982309	h/h (@ 6) 0.9914 0.9753 1.0712 1.1017	h/h _c (@ 5) 1.2311 1.3073 1.1989 1.1846	h/h.(@ 7) 1.3048 1.2751 1.2534 1.2726
CASE 3: LOA RUN# 133 172 1163 1181 CASE 4: ME RUN#	V POWERUHK Current (A) 178 175 175 185 DIUM POWER Current (A)	H FLOW RAT Voltage (V) 1.405 1.415 1.39 1.479 VLOW FLOW I Voltage (V)	E Power (W) 250 09 247 625 243 25 273 615 XATE Power (W)	F.R. (gpm) 4.22 4.42 4.47 4.43 F.R. (gpm)	Hbel Error 8 60% -1 93% 24.87% 19.64% Hbel Error	Tbuilkin (*F) 84 90.96 79.72 78.3 Tbuilkin (*F)	Delta TB 0.37 0.39 0.28 0.34 Delta TB	Res. 14870.5 16877.9 14952 14569.2 Res.	Pr. 5.57 5.08 5.91 6.02 Pr.	Gr 72275 91414.7 71081.6 65791 Gr	4,44 1,0167 1,0153 1,0203 1,0202 4,44	Nu _{Eq} 60.26 59.94 49.54 56.33 Nu _{Ep}	Tw _A 85 583 92 519 81 45 80 049 Tw _A	Tw ₄ /Tw _c 1.00012 1.000328 0.9987587 0.9982309 Tw ₄ /Tw _c	hyfu(@ 6) 0.9914 0.9753 1.0712 1.1017 hyfu(@ 6)	h/h _e (@ 5) 1.2311 1.3073 1.1989 1.1846 h/h _e (@ 5)	hyh ₄ (@ 7) 1.3048 1.2751 1.2534 1.2726 hyh ₄ (@ 7)
CASE 3: LOA RUNI 133 172 1163 1181 CASE 4: ME RUNI 138	V POWER/HK Current (A) 178 175 175 185 DIUM POWER Current (A) 340	H FLOW RAT Voltage (V) 1.405 1.415 1.39 1.479 VLOW FLOW I Voltage (V) 2.67	E Power (W) 250 09 247 625 243 25 273 615 XATE Power (W) 907 8	F.R. (gpm) 4.22 4.42 4.47 4.43 F.R. (gpm) 0.82	Hbel Error 8.60% -1.93% 24.87% 19.64% Hbel Error -1.54%	Tbuilkin (*F) 84 90.96 79.72 78.3 Tbuilkin (*F) 91.8	Delta T8 0 37 0 39 0 28 0 34 0 34 Delta T8 7.72	Res. 14870.5 16877.9 14952 14569.2 Res. 3305.9	PrL 5.57 6.08 5.91 6.02 PrL 4.78	Gr 72275 91414.7 71081.6 65791 Gr 1220175	44L 1.0167 1.0153 1.0203 1.0202 44L 1.171	Nu _{Eq} 60.26 59.94 49.54 56.33 Nu _{Eq} 20.28	Tw _A 85 583 92 519 81 48 80 049 Tw _A 121 507	Tw ₄ /Tw _c 1.00012 1.000328 0.9987587 0.9982309 Tw ₄ /Tw _c 1.141801	hyfhy(@ 6) 0.9914 0.9753 1.0712 1.1017 hyfhy(@ 6) 0.2827	h/h.(@ 5) 12311 1.3073 1.1989 1.1846 h/h.(@ 5) 0.331	hyh.(@ 7) 1.3048 1.2751 1.2534 1.2726 hyh.(@ 7) 0.2915
CASE 3: LON RUNI 133 172 1163 1181 CASE 4: ME RUNI 138 194	V POWER/HK Current (A) 178 175 175 185 DIUM POWER Current (A) 340 344	H FLOW RAT Voltage (V) 1.405 1.415 1.39 1.479 VLOW FLOW I Voltage (V) 2.67 2.72	E Power (W) 250 09 247 625 243 25 273 615 EATE Power (W) 907 8 935 68	F.R. (gpm) 4.22 4.42 4.47 4.43 F.R. (gpm) 0.82 0.61	Hbel Error 8.60% -1.93% 24.87% 19.64% Hbel Error -1.54% 7.29%	Tbulkin (*F) 84 90.96 79.72 78.3 Tbulkin (*F) 91.8 78.45	Delta TB 0 37 0 39 0 28 0 34 Delta TB 7.72 9.74	Res. 14870.5 16877.9 14952 14569.2 Res. 3305.9 2140.7	PrL 5.57 6.08 5.91 6.02 PrL 4.78 5.6	Gr 72275 91414.7 71081.6 65791 Gr 1220175 904194.4	44L 1.0167 1.0153 1.0203 1.0202 44L 1.171 1.2205	Nu _{E-p} 60.26 59.94 49.54 56.33 Nu _{E-p} 20.28 17.9	Tw _A 85 583 92 519 81 48 80 049 Tw _A 121 507 115 412	Tw,/Tw; 1.00012 1.000328 0.9987587 0.9982309 Tw,/Tw; 1.141801 1.220107	hyfts(@ 6) 0.9914 0.9753 1.0712 1.1017 hyfts(@ 6) 0.2827 0.2038	hyh _e (@ 5) 12311 1.3073 1.1989 1.1845 hyh _e (@ 5) 0.331 0.2548	h/h.(@ 7) 1.3048 1.2751 1.2534 1.2726 h/h.(@ 7) 0.2915 0.1141
CASE 3: LOA RUNN 133 172 1163 1181 CASE 4: MEI RUNN 138 194 180	V POWER/HK Current (A) 178 175 175 185 DIUM POWER Current (A) 340 344 325	H FLOW RAT Vollage (V) 1.405 1.415 1.479 VLOW FLOW I Voltage (V) 2.67 2.72 2.6	E Power (M) 250 09 247 625 243 25 273 615 EATE Power (M) 907 8 935 68 845	FR (gpm) 422 442 447 443 FR (gpm) 082 0.61 0.72	Hbel Error 8 60% -1 93% 24 87% 19 64% 19 64% Hbel Error -1 54% 7 29% 8 77%	Tbulkin (°F) 84 90.96 79.72 78.3 Tbulkin (°F) 91.8 78.45 96.45	Delta TB 0 37 0 39 0 28 0 34 Delta TB 7.72 9.74 7.36	Re _% 14870.5 16877.9 14952 14952 14559.2 Re _% 3305.9 2140.7 3043.8	PrL 5.57 6.08 5.91 6.02 PrL 4.78 5.6 4.53	Gr 72275 91414.7 71081.6 65791 Gr 1220175 904194.4 1348410	44L 1.0167 1.0153 1.0203 1.0202 44L 1.171 1.2205 1.1575	Nu _{E-p} 60.26 59.94 49.54 56.33 Nu _{E-p} 20.28 17.9 19.41	Tw _A 85 583 92 519 81 48 80 049 Tw _A 121 507 115 412 124 999	Tw,/Tw; 1.00012 1.000328 0.9987587 0.9982309 Tw,/Tw; 1.141801 1.220107 1.136132	hyh ₆ (@ 6) 0.9914 0.9753 1.0712 1.1017 hyh ₆ (@ 6) 0.2827 0.2038 0.2612	hyh _e (@ 5) 12311 1.3073 1.1989 1.1845 hyh _e (@ 5) 0.331 0.2648 0.3195	h/h.(@ 7) 1.3048 1.2751 1.2534 1.2726 h/h.(@ 7) 0.2915 0.1141 0.268
CASE 3: LOA RUNN 133 172 1163 1181 CASE 4: MEI RUNN 138 194 180	V POWER/HK Current (A) 178 175 185 01UM POWER Current (A) 340 344 325 325	H FLOW RAT Vollage (V) 1.405 1.415 1.479 1.479 VLOW FLOW I Vollage (V) 2.67 2.72 2.68 2.08	E Power (W) 250 09 247 625 243 25 273 615 XATE Power (W) 907 8 935.68 845 838.5	FR (gpm) 422 442 447 443 FR (gpm) 0.82 0.61 0.72 0.69	Hbel Error 8 60% -1 93% 24 87% 19 64% 19 64% Hbel Error -1 54% 7 29% 8 77% 8 93%	Tbulkin (°F) 84 90.96 79.72 78.3 Tbulkin (°F) 91.8 78.45 96.45 94.64	Delta 78 0 37 0 39 0 28 0 34 0 34 Delta 78 7 72 9 74 7 36 7 76	Res. 14870.5 16877.9 14952 14569.2 Res. 3305.9 2140.7 3043.8 2846.1	PrL 5.57 5.08 5.91 6.02 PrL 4.78 5.6 4.53 4.62	Gr 72275 91414.7 71081.6 65791 Gr 1220175 904194.4 1348410 1280594	44L 1.0167 1.0153 1.0203 1.0202 44L 1.171 1.2205 1.1575 1.1598	Nu _{E-p} 60.25 59.94 49.54 56.33 Nu _{E-p} 20.28 17.9 19.41 19.38	Tw _A 85 583 92 519 81 48 80 049 Tw _A 121 507 115 412 124 999 123 949	Tw,/Twc 1.00012 1.000328 0.9987587 0.9982309 Tw,/Twc 1.141801 1.220107 1.136132 1.146406	hyh ₆ (@ 6) 0 9914 0 9753 1 0712 1 1017 hyh ₆ (@ 6) 0 2827 0 2038 0 2612 0 2417	hyh _e (@ 5) 1.2311 1.3073 1.1989 1.1846 hyh _e (@ 5) 0.331 0.2648 0.3195 0.3211	h/h.(@ 7) 1.3048 1.2751 1.2534 1.2726 h/h.(@ 7) 0.2915 0.1141 0.268 0.233
CASE 3: LOA RUNN 133 172 1163 1181 CASE 4: ME RUNN 138 194 180 183 CABE 5: ME	V POWER/HK Current (A) 178 175 185 DIUM POWER Current (A) 340 344 325 325 DIUM POWER	H FLOW RAT Vollage (V) 1.405 1.415 1.39 1.479 VLOW FLOW V.COW FLOW V.COW FLOW 2.67 2.72 2.68 2.58 VMEDIUM FLO	E Power (W) 250 09 247 625 243 25 273 615 RATE Power (W) 907 8 935 68 845 838 5 XW RATE	FR (gpm) 422 442 447 443 FR (gpm) 0.82 0.61 0.72 0.69	Hbel Error 8 60% -1 93% 24 87% 19 64% Hbel Error -1 54% 7 29% 8 77% 8 93%	Tbulkin (°F) 84 90.96 79.72 78.3 Tbulkin (°F) 91.8 78.45 96.45 94.64	Delta 78 0 37 0 39 0 28 0 34 Delta 78 7 72 9 74 7 36 7 66	Res. 14870.5 16877.9 14952 14569.2 Res. 3305.9 2140.7 3043.8 2846.1	PrL 5.57 6.08 5.91 6.02 PrL 4.78 5.6 4.53 4.62	Gr 72275 91414.7 71081.6 65791 Gr 1220175 904194.4 1348410 1280594	44L 1.0167 1.0153 1.0203 1.0202 444L 1.171 1.2205 1.1575 1.1598	Nu _{E-p} 60.26 59.94 49.54 56.33 Nu _{E-p} 20.28 17.9 19.41 19.38	Tw _A 85 583 92 519 81 48 80 049 Tw _A 121 507 115 412 124 999 123 949	Tw,/Twc 1.00012 1.000328 0.9987587 0.9982309 Tw,/Twc 1.141801 1.220107 1.136132 1.146406	hyh ₆ (@ 6) 0.9914 0.9753 1.0712 1.1017 hyh ₆ (@ 6) 0.2827 0.2038 0.2612 0.2417	hyh ₄ (@ 5) 12311 1.3073 1.1989 1.1846 hyh ₄ (@ 5) 0.331 0.2648 0.3195 0.3211	h/h.(@ 7) 1.3048 1.2751 1.2534 1.2726 h/h.(@ 7) 0.2915 0.1141 0.268 0.233
CASE 3: LOA RUNN 133 172 1163 1181 CASE 4: ME RUNN 138 194 180 183 CASE 5: ME RUNN	V POWER/HK Current (A) 178 175 185 DIUM POWER Current (A) 340 344 325 325 DIUM POWER Current (A)	H FLOW RAT Vollage (V) 1.405 1.415 1.39 1.479 VLOW FLOW I Vollage (V) 2.67 2.72 2.68 2.58 VMEDIUM FLO Vollage (V)	E Power (W) 250 09 247 625 243 25 273 615 EATE Power (W) 907 8 935 68 845 838 5 XW RATE Power (W)	FR (gpm) 422 442 447 443 FR (gpm) 0.82 0.61 0.72 0.69 FR (gpm)	Hbel Error 8 60% -1 93% 24 87% 19 64% 19 64% Hbel Error 7 29% 8 77% 8 93% Hbel Error	Tbulkin (°F) 84 90.96 79.72 78.3 Tbulkin (°F) 91.8 78.45 94.64 94.64 Tbulkin (°F)	Delta T8 0 37 0 39 0 28 0 34 Delta T8 7 72 9 74 7 36 7 66 Delta T8	Res. 14870.5 16877.9 14952 14952 14569.2 Res. 3305.9 2140.7 3043.8 2846.1 Res.	PrL 5.57 6.08 5.91 6.02 PrL 4.78 5.6 4.53 4.62 PrL	Gr 72275 91414.7 71081.6 65791 Gr 1220175 904194.4 1348410 1280594 Gr	44L 1.0167 1.0153 1.0203 1.0202 44L 1.171 1.2205 1.1575 1.1598 44L	Νυ _{Εφ} 60.26 59.94 49.54 56.33 Νυ _{Εφ} 20.28 17.9 19.41 19.38 Νυ _{Εφ}	Tw _A 85 583 92 519 81 48 80 049 Tw _A 121 507 115 412 124 999 123 949 Tw _A	Tw,/Twc 1.00012 1.000328 0.9987587 0.9982309 Tw,/Twc 1.141801 1.220107 1.136132 1.146406 Tw,/Twc	hyh ₆ (@ 6) 0.9914 0.9753 1.0712 1.1017 hyh ₆ (@ 6) 0.2827 0.2038 0.2612 0.2417 hyh ₆ (@ 6)	hyh ₄ (@ 5) 12311 1.3073 1.1989 1.1846 hyh ₄ (@ 5) 0.331 0.2648 0.3195 0.3211 hyh ₄ (@ 5)	h/h.(@ 7) 1.3048 1.2751 1.2534 1.2726 h/h.(@ 7) 0.2915 0.1141 0.268 0.233 h/h.(@ 7)
CASE 3: LOA RUNN 133 172 1163 1181 CASE 4: ME RUNN 138 194 180 183 CABE 5: ME RUNN 137	V POWER/HK Current (A) 178 175 185 DIUM POWER Current (A) 344 325 325 DIUM POWER Current (A) 340 344 344 325 325 DIUM POWER Current (A) 340	H FLOW RAT Vollage (V) 1.405 1.415 1.39 1.479 VLOW FLOW VLOW FLOW VOllage (V) 2.67 2.72 2.68 2.58 VMEDIUM FLC Vollage (V) 2.67	E Power (W) 250 09 247 625 243 25 273 615 XATE Power (W) 907 8 835.68 845 838.5 XW RATE Power (M) 907.8	F.R. (gpm) 4.22 4.42 4.47 4.43 F.R. (gpm) 0.82 0.61 0.72 0.69 F.R. (gpm) 2.37	Hbel Error 8 60% -1 93% 24 87% 19 64% Hbel Error -1 54% 8 77% 8 93% Hbel Error -5 30%	Tbulkin (°F) 84 90.96 79.72 78.3 Tbulkin (°F) 91.8 78.45 94.64 94.64 Tbulkin (°F) 92.25	Delta T8 0 37 0 39 0 28 0 34 Delta T8 7 72 9 74 7 36 7 766 7 66 Cotta T8 2 77	Res. 14870.5 16877.9 14952 14569.2 Res. 3305.9 2140.7 3043.8 2846.1 Res. 9316.9	PrL 5.57 6.08 5.91 6.02 PrL 4.78 5.6 4.53 4.62 PrL 4.92	Gr 72275 91414.7 71081.6 65791 Gr 1220175 904194.4 1345410 1280594 Gr 442842.5	44L 1.0167 1.0153 1.0203 1.0202 44L 1.171 1.2205 1.1575 1.1598 44L 1.0671	Νυ _{E-φ} 60.26 59.94 49.54 56.33 Νυ _{E-φ} 20.28 17.9 19.41 19.38 Νυ _{E-φ} 51.38	Tw _A 85 583 92 519 81 48 80 049 Tw _A 121 507 115 412 124 999 123 949 Tw _A 99 506	Tw,/Twc 1.00012 1.000328 0.9987587 0.9982309 Tw,/Twc 1.14801 1.220107 1.136132 1.146406 Tw,/Twc 0.994325	hyhy(@ 6) 0.9914 0.9753 1.0712 1.1017 hyhy(@ 6) 0.2827 0.2038 0.2612 0.2417 hyhy(@ 6) 1.1124	hyh ₄ (@ 5) 12311 1.3073 1.1969 1.1846 hyh ₄ (@ 5) 0.331 0.2648 0.3211 hyh ₄ (@ 5) 1.1933	h/h.(@ 7) 1.3048 1.2751 1.2534 1.2726 h/h.(@ 7) 0.2915 0.1141 0.268 0.233 h/h.(@ 7) 1.2666
CASE 3: LOA RUN# 133 172 1163 1181 CASE 4: ME RUN# 138 194 183 CASE 5: ME RUN# 137 137 176	V POWER/HK Current (A) 178 175 185 185 DIUM POWER Current (A) 340 344 325 325 DIUM POWER Current (A) 340 340 340 340 340 340 340 340	H FLOW RAT Vollage (V) 1.405 1.415 1.39 1.479 VLOW FLOW VLOW FLOW V.COMPC (V) 2.67 2.72 2.68 2.58 VMEDIUM FLC Vollage (V) 2.67 2.58	E Power (W) 250 09 247 625 243 25 273 615 XATE Power (W) 907 8 835 65 845 838 5 XW RATE Power (M) 907 8 838 5	F.R. (gpm) 4.22 4.42 4.47 4.43 F.R. (gpm) 0.82 0.61 0.72 0.69 F.R. (gpm) 2.37 2.49	Hbel Error 8 60% -1 93% 24 87% 19 64% Hbel Error -1 54% 8 77% 8 93% Hbel Error -5 30% -1 64%	Tbulkin (°F) 84 90.96 79.72 78.3 Tbulkin (°F) 91.8 78.45 96.45 94.64 Tbulkin (°F) 92.25 90.99	Delta T8 0 37 0 39 0 28 0 34 Delta T8 7 72 9 74 7 36 7 766 Delta T8 2 77 2 35	Res. 14870.5 16877.9 14952 14569.2 Res. 3305.9 2140.7 3043.8 2848.1 Res. 9316.9 9628.1	PrL 5.57 6.08 5.91 6.02 PrL 4.78 5.6 4.53 4.62 PrL 4.92 5.01	Gr 72275 91414.7 71081.6 65791 Gr 1220175 904194.4 1348410 1280594 Gr 442842.5 385625.2	44L 1.0167 1.0153 1.0203 1.0202 444 1.171 1.2205 1.1575 1.1598 444 1.0671 1.0671 1.0622	Νυ _{E-φ} 60.25 59.94 49.54 56.33 Νυ _{E-φ} 20.28 17.9 19.41 19.38 Νυ _{E-φ} 51.38 51.14	Tw _A 85 583 92 519 81 48 80 049 Tw _A 121 507 115 412 124 999 123 949 Tw _A 99 506 97 525	Tw,/Twc 1.00012 1.000328 0.9987587 0.9982309 Tw,/Twc 1.141801 1.220107 1.138132 1.146406 Tw,/Twc 0.994325 0.9947262	hyh ₆ (@ 6) 0.9914 0.9753 1.0712 1.1017 hyh ₆ (@ 6) 0.2827 0.2038 0.2612 0.2417 hyh ₆ (@ 6) 1.1124 1.1116	hyh ₄ (@ 5) 12311 1.3073 1.1969 1.1846 1.1846 0.331 0.2648 0.3195 0.3211 hyh ₄ (@ 5) 1.1933 1.2075	h/h.(@ 7) 1.3048 1.2751 1.2534 1.2726 N/h.(@ 7) 0.2915 0.1141 0.268 0.233 h/h.(@ 7) 1.2666 1.2656
CASE 3: LOA RUN# 133 172 1163 1181 CASE 4: ME RUN# 138 194 180 183 CASE 5: ME RUN# 137 138 137 138 138 138 138 138 149 149 150 150 150 150 150 150 150 150	V POWER/HK Current (A) 178 175 185 DIUM POWER Current (A) 340 344 325 DIUM POWER Current (A) 340 344 325 325 DIUM POWER Current (A) 340 340 340 340 340 340 340 340 340 340	H FLOW RAT Vollage (V) 1.405 1.415 1.39 1.479 VLOW FLOW I Voltage (V) 2.67 2.72 2.6 2.58 VMEDIUM FLC Voltage (V) 2.67 2.58 2.58 2.58 2.8 2.8 2.8 2.58 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.	E Power (W) 250 09 247 625 243 25 273 615 CATE Power (W) 907 8 935 68 845 838 5 XW RATE Power (W) 907 8 838 5 907 8 838 5 994	FR (gpm) 4.22 4.42 4.47 4.43 FR (gpm) 0.82 0.81 0.72 0.69 FR (gpm) 2.37 2.49 2.36	Hbel Error 8.60% -1.93% 24.87% 19.64% Hbel Error -1.54% 8.77% 8.93% Hbel Error -5.30% -1.64% -2.29%	Tbuildin (°F) 84 90.96 79.72 78.3 Tbuildin (°F) 91.8 78.45 96.45 94.64 Tbuildin (°F) 92.25 90.99 78.51	Deta 78 0 37 0 28 0 28 0 34 Deta 78 7 72 9 74 7 36 7 66 0 0 7 66 0 0 7 72 2 35 2 35 2 95	Res. 14870.5 16877.9 14952 14569.2 Res. 3305.9 2140.7 3043.8 2846.1 Res. 9316.9 9628.1 7920.3	PrL 5.57 6.08 5.91 6.02 PrL 4.78 5.6 4.53 4.62 PrL 4.92 5.01 5.89	Gr 72275 91414.7 71081.6 65791 Gr 1220175 904194.4 1348410 1280594 Gr 6 442842.5 385625.2 305847.1	44L 1 0167 1 0153 1 0203 1 0202 44L 1 171 1 2205 1 1575 1 1575 1 1588 44L 1.0671 1 0622 1 0874	Nu _{Eq} 60.25 59.94 49.54 56.33 Nu _{Eq} 20.28 17.9 19.41 19.38 Nu _{Eq} 51.38 51.38 51.14 48.09	Tw _A 85 583 92 519 81 48 80 049 Tw _A 121 507 115 412 124 999 123 949 Tw _A 99 506 97 525 86 877	Tw,/Twc 1.00012 1.000328 0.9987587 0.9982309 Tw,/Twc 1.141801 1.220107 1.136132 1.146406 Tw,/Twc 0.994325 0.994325 0.9947262 0.9917784	hyh.(@ 6) 0.9914 0.9753 1.0712 1.1017 hyh.(@ 6) 0.2827 0.2038 0.2612 0.2417 hyh.(@ 6) 1.1124 1.1116 1.1226	h/h.(@ 5) 1 2311 1.3073 1.1989 1.1846 h/h.(@ 5) 0.331 0.2648 0.3195 0.3211 h/h.(@ 5) 1.1933 1.2075 1.1579	hyh.(@ 7) 1.3048 1.2751 1.2534 1.2726 hyh.(@ 7) 0.2915 0.1141 0.266 0.233 hyh.(@ 7) 1.2666 1.263 1.2133
CASE 3: LOA RUN# 133 172 1163 1181 CASE 4: ME RUN# 138 194 180 183 CASE 5: ME RUN# 137 137 138 138 2101	V POWER/HK Current (A) 178 175 185 DIUM POWER Current (A) 340 344 325 DIUM POWER Current (A) 340 345 325 DIUM POWER Current (A) 340 345 345	H FLOW RAT Vollage (V) 1.405 1.415 1.39 1.479 VLOW FLOW I Voltage (V) 2.67 2.72 2.6 2.58 VMEDIUM FLC Voltage (V) 2.57 2.58 2.58 2.58 2.69	E Power (W) 250 09 247 625 243 25 273 615 RATE Power (W) 907 8 935.68 845 838 5 XW RATE Power (W) 907 8 838 5 SW RATE Power (W) 907 8 838 5 994 928 05	FR (gpm) 4.22 4.42 4.47 4.43 FR (gpm) 0.82 0.61 0.72 0.69 FR (gpm) 2.37 2.49 2.36 1.9495	Hbel Error 8.60% -1.93% 24.87% 19.64% Hbel Error -1.54% 8.77% 8.93% Hbel Error -5.30% -1.64% -2.29% -8.93%	Tbulkin (°F) 84 90.96 79.72 78.3 Tbulkin (°F) 91.8 78.45 96.45 94.64 Tbulkin (°F) 92.25 90.99 78.51 77.37	Deta 78 0 37 0 28 0 28 0 34 Deta 78 7 72 9 74 7 36 7 66 7 66 Deta 78 2 77 2 35 2 95 3 355	Res. 14870.5 16877.9 14952 14569.2 Res. 3305.9 2140.7 3043.8 2846.1 Res. 9316.9 9628.1 7920.3 6478.3	PrL 5.57 6.08 5.91 6.02 PrL 4.78 5.6 4.53 4.62 PrL 4.92 5.01 5.89 5.95	Gr 72275 91414.7 71081.6 65791 Gr 1220175 904194.4 1348410 1280594 Gr 442842.5 385625.2 305647.1 342967.2	444 1 0167 1 0163 1 0203 1 0202 444 1 171 1 2205 1 1575 1 1575 1 1575 1 1588 444 1 0671 1 0672 1 0874 1 1024	Nu _{Eq} 60.25 59.94 49.54 56.33 Nu _{Eq} 20.28 17.9 19.41 19.38 Nu _{Eq} 51.38 51.18 48.09 39.15	Tw _A 85 583 92 519 81 48 80 049 Tw _A 121 507 115 412 124 999 123 949 Tw _A 99 506 97 525 86 877 87 37	Tw,/Twc 1.00012 1.000328 0.9987587 0.9982309 Tw,/Twc 1.141801 1.220107 1.136132 1.146406 Tw,/Twc 0.994325 0.9947262 0.9917784 0.996414	hyh ₄ (@ 6) 0.9914 0.9753 1.0712 1.1017 hyh ₄ (@ 6) 0.2827 0.2038 0.2612 0.2417 hyh ₄ (@ 6) 1.1124 1.1116 1.1226 1.0459	hyh _e (@ 5) 1 2311 1 3073 1 1989 1 1845 hyh _e (@ 5) 0 3311 0 2648 0 3195 0 3211 hyh _e (@ 5) 1 1933 1 2075 1 1579 1 1102	h/h.(@ 7) 1.3048 1.2751 1.2534 1.2726 h/h.(@ 7) 0.2915 0.1141 0.266 0.233 h/h.(@ 7) 1.2666 1.263 1.263 1.2133 1.1432
CASE 3: LOA RUNN 133 172 1163 1181 CASE 4: ME RUNN 138 194 180 183 CASE 5: ME RUNN 137 176 1186 2101 CASE 6: ME	V POWER/HK Current (A) 178 175 185 DIUM POWER Current (A) 340 344 325 325 DIUM POWER Current (A) 340 340 345 355 355	H FLOW RAT Vollage (V) 1.405 1.415 1.39 1.479 VLOW FLOW I Voltage (V) 2.67 2.72 2.6 2.58 VMEDIUM FLO Voltage (V) 2.67 2.58 2.68 2.68 2.69 VMEDIUM FLOW	E Power (W) 250 09 247 625 243 25 273 615 SATE Power (M) 907 8 935.68 845 638 5 XW RATE Power (M) 907 8 638 5 994 928.05 RATE	FR (gpm) 4.22 4.42 4.47 4.43 FR (gpm) 0.82 0.61 0.72 0.69 FR (gpm) 2.37 2.49 2.36 1.9495	Hbel Error 8.60% -1.93% 24.87% 19.64% Hbel Error -1.54% 8.93% Hbel Error -5.30% -1.64% -2.29% -8.93%	Tbulkin (°F) 84 90.96 79.72 78.3 Tbulkin (°F) 91.8 78.45 96.45 94.64 Tbulkin (°F) 92.25 90.99 78.51 77.37	Delta 78 0 37 0 28 0 28 0 34 Delta 78 7 72 9 74 7 36 7 66 7 66 2 77 2 35 2 95 3 355	Res. 14870.5 16877.9 14952 14559.2 Res. 3305.9 2140.7 3043.8 2848.1 Res. 9316.9 9628.1 7920.3 6478.3	PrL 5.57 5.08 5.91 6.02 PrL 4.78 5.6 4.53 4.62 PrL 4.92 5.01 5.89 5.95	Gr 72275 91414.7 71081.6 65791 Gr 1220175 904194.4 1348410 1280594 Gr 442842.5 385625.2 305647.1 342987.2	444 1 0167 1 0153 1 0203 1 0202 444 1 171 1 2205 1 1575 1 1598 444 1 0671 1 0622 1 0874 1 1024	Νυ _{Eφ} 60.26 59.94 49.64 56.33 Νυ _{Eφ} 20.28 17.9 19.41 19.38 Νυ _{Eφ} 51.38 51.14 46.09 39.15	Tw _A 85 583 92 519 81 48 80 049 Tw _A 121 507 115 412 124 999 123 949 Tw _A 99 506 97 525 86 877 87 37	Tw,/Twc 1.00012 1.000328 0.9987587 0.9982309 Tw,/Twc 1.141801 1.220107 1.136132 1.146406 Tw,/Twc 0.994325 0.9947262 0.9947262 0.9947784 0.996414	hyh ₄ (@ 6) 0.9914 0.9753 1.0712 1.1017 hyh ₄ (@ 6) 0.2827 0.2038 0.2612 0.2417 hyh ₆ (@ 6) 1.1124 1.1126 1.1226	hyh _e (@ 5) 1 2311 1 3073 1 1989 1 1846 hyh _e (@ 5) 0 3311 0 2648 0 3195 0 3211 hyh _e (@ 5) 1 1933 1 2075 1 1679 1 .1102	hyh.(@ 7) 1.3048 1.2751 1.2534 1.2726 hyh.(@ 7) 0.2915 0.1141 0.266 0.233 hyh.(@ 7) 1.2666 1.263 1.2133 1.1432
CASE 3: LOA RUNN 133 172 1163 1181 CASE 4: ME RUNN 138 194 180 183 CASE 5: ME RUNN 137 176 1186 2101 CASE 6: ME	V POWER/HK Current (A) 178 175 185 0IUM POWER Current (A) 340 344 325 325 0IUM POWER Current (A) 340 345 355 345	H FLOW RAT Vollage (V) 1.405 1.415 1.39 1.479 VLOW FLOW I Voltage (V) 2.67 2.72 2.6 2.58 VMEDIUM FLO Voltage (V) 2.67 2.58 2.69 Voltage (V) 2.67 2.58 2.69 Voltage (V) 2.67 2.58 2.69 Voltage (V) 2.67 2.58 2.69 Voltage (V) 2.67 2.58 2.69 Voltage (V) 2.67 2.58 VMEDIUM FLOW I Voltage (V) 2.67 2.58 2.69 Voltage (V) 2.67 2.69	E Power (M) 250 09 247 625 243 25 273 615 243 25 273 615 243 25 273 65 845 838 5 845 838 5 207 8 838 5 207 8 845 838 5 207 8 845 838 5 207 8 845 838 5 207 8 845 838 5 207 8 845 838 5 207 8 845 845 838 5 207 8 845 845 845 845 845 845 845 84	FR (gpm) 4.22 4.42 4.47 4.43 FR (gpm) 0.82 0.61 0.72 0.69 FR (gpm) 2.37 2.49 2.36 1.9495 FR (gpm)	Hbel Error 8.60% -1.93% 24.87% 19.64% Hbel Error -1.54% 7.29% 8.77% 8.93% Hbel Error -5.30% -1.64% -8.93% Hbel Error	Tbulkin (°F) 84 90.96 79.72 78.3 Tbulkin (°F) 91.8 78.45 96.45 94.64 Tbulkin (°F) 92.25 90.99 78.51 77.37 Tbulkin (°F)	Delta T8 0 37 0 28 0 28 0 34 Delta T8 7 72 9 74 7 36 7 76 7 76 7 76 7 76 7 76 7 76 7 76	Res. 14870.5 16877.9 14952 14952 14569.2 Res. 3305.9 2140.7 3043.8 2846.1 Res. 9316.9 9628.1 7920.3 6478.3 Res.	PrL 5.57 5.08 5.91 6.02 PrL 4.78 5.6 4.53 4.62 PrL 4.92 5.01 5.89 5.95 PrL	Gr 72275 91414.7 71081.6 65791 Gr 1220175 904194.4 1348410 1280594 Gr 442842.5 385625.2 305847.1 342987.2 Gr	44 1 0167 1 0153 1 0203 1 0202 444 1 171 1 2205 1 1575 1 1598 444 1 0671 1 0671 1 0874 1 1024 444 444 1 1024	Νυ _{Eφ} 60.26 59.94 49.64 56.33 Νυ _{Eφ} 20.28 17.9 19.41 19.38 Νυ _{Eφ} 51.38 51.38 51.38 39.15 Νυ _{Eφ}	Tw _A 85 583 92 519 81 48 80 049 Tw _A 121 507 115 412 124 999 123 949 Tw _A 99 506 97 525 86 877 87 37 Tw _A	Tw,/Twc 1.00012 1.000328 0.9987587 0.9982309 Tw,/Twc 1.141801 1.220107 1.136132 1.146406 Tw,/Twc 0.994325 0.9947262 0.9947264 0.9947264 0.996414 Tw,/Twc	h/h.(@ 6) 0.9914 0.9753 1.0712 1.1017 h/h.(@ 6) 0.2827 0.2038 0.2612 0.2417 0.2417 h/h.(@ 6) 1.1124 1.1116 1.1259 h/h.(@ 6)	hyh _e (@ 5) 1 2311 1 3073 1 1989 1 1989 1 1846 hyh _e (@ 5) 0 3311 0 2548 0 3195 0 3211 hyh _e (@ 5) 1 1933 1 2075 1 1679 1 .1102 hyh _e (@ 5)	hyh.(@ 7) 1.3048 1.2751 1.2534 1.2726 hyh.(@ 7) 0.2915 0.1141 0.266 0.233 hyh.(@ 7) 1.2666 1.2633 1.2133 1.11432 hyh.(@ 7)
CASE 3: LOA RUNN 133 172 1163 1181 CASE 4: MEI RUNN 138 194 180 183 CASE 5: MEI RUNN 137 176 1186 2101 CASE 6: MEI RUNN 138 2101 CASE 6: MEI 1180 2101 CASE 6: MEI 1180 2101 CASE 6: MEI 1180 2101 CASE 6: MEI 1180 2101 1181 1181 1181 138 138 138 138	V POWER/HK Current (A) 178 175 185 DIUM POWER Current (A) 340 344 325 325 DIUM POWER Current (A) 340 326 345 DIUM POWER Current (A) 340 345 345 345 345 345 345 345 345	H FLOW RAT Vollage (V) 1.405 1.415 1.415 1.49 VLOW FLOW I Voltage (V) 2.67 2.58 VMEDIUM FLO Voltage (V) 2.67 2.58 2.68 2.68 2.69 Voltage (V) 2.67 2.58 2.69 Voltage (V) 2.67 2.58 2.69 Voltage (V) 2.67 2.58 2.69 Voltage (V) 2.67 2.58 2.69 Voltage (V) 2.67 2.58 2.68 2.69 Voltage (V) 2.67 2.58 2.68 2.69 Voltage (V) 2.67 2.58 2.68 2.69 Voltage (V) 2.67 2.58 2.69 Voltage (V) 2.67 2.58 2.68 2.69 Voltage (V) 2.67 2.58 2.68 2.69 Voltage (V) 2.67 2.58 2.69 2.69 2.67 2.58 2.69 2.69 2.67 2.58 2.69 2.67 2.58 2.69 2.67 2.58 2.69 2.67 2.58 2.69 2.67 2.58 2.69 2.67 2.58 2.69 2.67 2.58 2.69 2.67 2.58 2.69 2.69 2.69 2.69 2.67 2.58 2.69 2.69 2.69 2.69 2.67 2.58 2.69 2.67 2.69 2.67 2.69 2.69 2.67 2.69 2.67 2.69 2.67 2.69 2.67 2.69 2.67 2.67 2.68 2.69 2.69 2.67 2.67 2.69 2.67 2.67 2.68 2.69 2.67 2.68 2.69 2.69 2.67 2.68 2.69 2.69 2.67 2.67 2.68 2.69 2.67 2.68 2.69 2.67 2.68 2.69 2.69 2.67 2.68 2.69 2.69 2.69 2.67 2.68 2.69 2.69 2.67 2.68 2.69 2.67 2.68 2.69 2.67 2.68 2.69 2.67 2.68 2.69 2.67 2.68 2.69 2.67 2.67 2.68 2.69 2.67 2.68 2.69 2.67 2.68 2.69 2.67 2.68 2.69 2.67 2.68 2.69 2.67 2.67 2.68 2.69 2.67 2.68 2.69 2.67 2.68 2.69 2.67 2.68 2.69 2.67 2.68 2.69 2.67 2.68 2.69 2.67 2.67 2.68 2.67 2.68 2.69 2.67 2.68 2.69 2.67 2.67 2.68 2.67	E Power (M) 250 09 247 625 243 25 273 615 243 25 273 615 243 25 273 615 243 25 273 615 243 25 273 615 243 25 207 8 838 5 208 RATE Power (M) 907 8 838 5 994 928 05 RATE Power (M) 907 8	FR (gpm) 4.22 4.42 4.47 4.43 FR (gpm) 0.82 0.61 0.72 0.69 FR (gpm) 2.37 2.49 2.36 1.9495 FR (gpm) 4.22	Hbel Error 8.60% -1.93% 24.87% 19.64% Hbel Error -1.54% 7.29% 8.77% 8.93% Hbel Error -5.30% -1.64% -8.93% Hbel Error -4.26%	Tbulkin (°F) 84 90.96 79.72 78.3 Tbulkin (°F) 91.8 78.45 96.45 94.64 Tbulkin (°F) 92.25 90.99 78.51 77.37 Tbulkin (°F) 91.27	Delta T8 0 37 0 39 0 28 0 34 Delta T8 7 72 9 74 7 36 7 66 2 77 2 35 2 95 2 95 2 95 3 55 3 55 Delta T8 1 54	Res. 14870.5 16877.9 14952 14569.2 Res. 3305.9 2140.7 3043.8 2846.1 Res. 9316.9 9628.1 7920.3 6478.3 Res. 16286.4	PrL 5.57 5.08 5.91 6.02 PrL 4.78 5.6 4.53 4.62 PrL 4.92 5.01 5.89 5.95 PrL 5.95	Gr 72275 91414.7 71081.6 65791 Gr 1220175 904194.4 1348410 1280594 Gr 442842.5 385625.2 305847.1 342967.2 Gr 267314.9	44 1 0167 1 0153 1 0203 1 0202 444 1 171 1 2205 1 1575 1 1598 444 1 0671 1 0672 1 0874 1 1024 444 1 1024	Νυ _{Eφ} 60.26 59.94 49.54 56.33 Νυ _{Eφ} 20.28 17.9 19.41 19.38 Νυ _{Eφ} 51.38 51.38 51.14 48.09 39.15 Νυ _{Eφ} 80.18	Tw _A 85 583 92 519 81 48 80 049 Tw _A 121 507 115 412 124 999 123 949 Tw _A 99 506 97 525 86 877 87 37 Tw _A 95 656	Tw,/Twc 1.00012 1.000328 0.9987587 0.9982309 Tw,/Twc 1.141801 1.220107 1.136132 1.148406 Tw,/Twc 0.994325 0.9947262 0.9947262 0.9947264 0.9947265 0.9947265 0.9947265 0.9947264 0.9947264 0.9947264 0.9947264 0.9947264 0.9947264 0.9947264 0.9947265 0.9947264 0.9947264 0.9947264 0.9947264 0.9947264 0.9947264 0.9947265 0.9947264 0.9947264 0.9947264 0.9947265 0.9947264 0.9954746 0.9954746 0.9954746 0.9954746 0.9954746 0.9954746 0.9954746 0.9954746 0.9954746 0.9954746 0.9954746 0.9954746 0.9954746 0.9954746 0.9954746 0.9954746 0.9954746 0.9954746 0.9954765 0.995578 0.99557	h/h.(@ 6) 0.9914 0.9753 1.0712 1.1017 h/h.(@ 6) 0.2827 0.2038 0.2612 0.2417 0.2038 0.2612 0.2417 h/h.(@ 6) 1.1124 1.1116 1.1226 1.0459 h/h.(@ 6)	h/h.(@ 5) 1 2311 1 3073 1 1989 1 1989 1 1846 h/h.(@ 5) 0 331 0 2548 0 3195 0 3211 h/h.(@ 5) 1 1933 1 2075 1 1579 1 1102 h/h.(@ 5) 1 329	hyh.(@ 7) 1.3048 1.2751 1.2534 1.2726 hyh.(@ 7) 0.2915 0.1141 0.266 0.233 hyh.(@ 7) 1.2666 1.2633 1.2133 1.1432 hyh.(@ 7) 1.4513
CASE 3: LOA RUNN 133 172 1163 1181 CASE 4: MEI RUNN 138 194 138 194 138 CASE 5: MEI RUNN 137 178 1186 2101 CASE 6: MEI RUNN 138 2101 CASE 6: MEI RUNN 138 1186 174 137 175 1187 172 172 172 172 172 172 172 17	V POWER/HK Current (A) 178 175 185 185 DIUM POWER Current (A) 340 344 325 325 DIUM POWER Current (A) 340 325 345 DIUM POWER Current (A) 340 345 345 DIUM POWER Current (A) 340 345 345 DIUM POWER Current (A) 340 345 345 DIUM POWER Current (A) 340 345 345 DIUM POWER Current (A) 340 345 345 DIUM POWER Current (A) 340 345 345 345 345 345 345 345 345	H FLOW RAT Vollage (V) 1.405 1.415 1.415 1.479 VLOW FLOW I Voltage (V) 2.67 2.58 2.68 VMEDIUM FLO Voltage (V) 2.67 2.58 2.68 2.69 VMEDIUM FLOW Voltage (V) 2.67 2.58 2.69	E Power (W) 250 09 247 625 243 25 273 615 243 25 273 615 243 25 273 616 845 838 5 997 8 838 5 994 907 8 838 5 994 928 05 RATE Power (W) 907 8 838 7.75	FR (gpm) 4.22 4.42 4.43 FR (gpm) 0.82 0.61 0.72 0.69 FR (gpm) 2.37 2.49 2.36 1.9495 FR (gpm) 4.22 4.33	Hbel Error 8.60% -1.93% 24.87% 19.64% 19.64% 19.64% 7.29% 8.77% 8.93% Hbel Error -5.30% -1.64% -2.29% -8.93% Hbel Error -4.26% -0.99%	Tbulkin (°F) 84 90.96 79.72 78.3 Tbulkin (°F) 91.8 78.45 96.45 94.64 Tbulkin (°F) 92.25 90.99 78.51 77.37 Tbulkin (°F) 91.27 85.64	Delta T8 0 37 0 39 0 28 0 34 Delta T8 7 72 9 74 7 36 7 66 2 97 2 35 2 95 3 55 Delta T8 1 54 1 54 1 42	Res. 14870.5 16877.9 14952 14952 14952 214052 21407 3043.6 2846.1 Res. 9316.9 9628.1 7920.3 6478.3 Res. 16286.4 15661.4	PrL 5.57 6.08 5.91 6.02 PrL 4.78 5.6 4.53 4.62 PrL 5.99 5.95 PrL 5.92 5.02 5.41	Gr 72275 91414.7 71081.6 65791 Gr 1220175 904194.4 1348410 1280594 Gr 442842.5 385625.2 305847.1 342967.2 Gr 267314.9 223460.7	44L 1.0167 1.0163 1.0203 1.0202 44L 1.171 1.2205 1.1575 1.1598 44L 1.0671 1.0622 1.0874 1.1024 44L 1.0433 1.0467	Nu _{E-p} 60.25 59.94 49.54 56.33 Nu _{E-p} 20.28 17.9 19.41 19.38 51.38 51.14 48.09 39.15 Nu _{E-p} 80.18 75.44	Tw _A 85 583 92 519 81 48 80 049 Tw _A 121 507 115 412 124 999 123 949 Tw _A 99 506 97 525 86 877 87 37 Tw _A 95 656 90 127	Tw,/Twc 1.00012 1.000328 0.9987587 0.9982309 Tw,/Twc 1.141801 1.220107 1.136132 1.146406 Tw,/Twc 0.994325 0.9947262 0.9947262 0.9947784 0.996414 Tw,/Twc 0.9925278 0.9931827	hyh ₂ (@ 6) 0.9914 0.9753 1.0712 1.1017 hyh ₂ (@ 6) 0.2827 0.2038 0.2612 0.2417 0.2038 0.2612 0.2417 hyh ₂ (@ 6) 1.1124 1.1126 1.0459 hyh ₂ (@ 6) 1.222 1.1628	hyh ₄ (@ 5) 1 2311 1 3073 1 1989 1 1989 1 1846 hyh ₄ (@ 5) 0 331 0 2548 0 3195 0 3211 hyh ₆ (@ 5) 1 1933 1 2075 1 1579 1 1102 hyh ₆ (@ 5) 1 329 1 3217	hyh.(@ 7) 1.3048 1.2751 1.2534 1.2726 hyh.(@ 7) 0.2915 0.1141 0.266 0.233 hyh.(@ 7) 1.2666 1.2633 1.2133 1.1432 hyh.(@ 7) 1.4513 1.3901

.

TABLE XIV (Continued)

Summary of Test Runs Ordered by Case Number

CASE 7: HIG	H POWER/LO	W FLOW RAT	E														
RUN#	Current (A)	Vollage (V)	Power (M)	F.R. (gpm)	Hbel Error	Toulkin (°F)	Delta TB	Rest	Pr	Gr	use .	NUEP	TWA	Tw,/Twc	h√h₀(@ 6)	h/h (@ 5)	h/h (@ 7)
192	488	3.9	1903.2	0.91	2.75%	74.11	13.92	3117.1	5.76	1389924	1.3841	21.75	133.754	1.313446	0.2597	0.306	0.2524
196	488	3.92	1912.96	0.54	12.50%	82.17	21.12	2126	4.92	2107439	1.3331	22.3	149.788	1.376267	0 1583	0.1902	0.0872
1116	488	3.9	1903.2	0.83	3.18%	81.08	16 16	3121.6	5.2	1849314	1.3547	22.03	142.428	1.319377	0.2272	0.2745	0.22
1117	481	3.87	1861.47	0.82	1.86%	91.46	15.02	3446.9	4.67	2484096	1.304	22.83	150.324	1.290134	0.2139	0.263	0.211
1118	489	3.93	1921.77	0.76	0.75%	79.02	17.2	2818	6.27	2188130	1.4433	18.13	165 923	1.545824	0.1001	0.1418	0.0441
1119	485	3.915	1898.775	0.72	0.98%	85.33	17.9	2972.4	4.66	3111049	1.4143	17.62	179.472	1.56115	0.0731	0.1049	0.0299
1124	465	3.76	1748.4	0.84	1.09%	88.16	14 13	3384	4.79	4365050	1.6566	10.85	220.635	1.9973	0.001	0.0258	0.0065
1132	469	3.74	1754.08	0.82	0.42%	81.71	14.6	3084	5.18	1752949	1 3 3 0 2	21.69	139.599	1.305986	0.2211	0.2677	0.1939
CASE 8: HIG	H POWER/ME	DIUM FLOW	RATE														
RUN#	Current (A)	Voltage (V)	Power (W)	F.R. (gpm)	Hbei Error	Tbuikin (*F)	Delta TB	Res	Pr	Gr	use.	NUEP	Twa	Tw,/Twc	h/h_(@ 6)	n/h_(@ 5)	h.h.(@ 7)
188	485	3.81	1847.85	2.47	-0.39%	84.69	5.15	9051	5.33	682513.1	1.1378	54.29	98.771	0.9899283	1 1012	1.1715	1.2557
190	490	3.89	1906 1	2.51	-0.11%	91.16	5.22	9897.2	4.91	829130.3	1 1255	57.73	104.78	0.990786	1.1018	1.1789	1 2582
CASE : HIG	H POWER/HK	H FLOW RAT	TE														
RUN#	Current (A)	Voltage (V)	Power (W)	F.R. (gpm)	Hbel Error	Tbuildin (*F)	Detta TB	Res	PTL	Gr	u.u.	NUEq	Twa	Tw./Twc	h.h.(@ 6)	h/h_(@ 5)	h/h (@ 7)
185	490	3.64	1881.6	4.31	-5.01%	73.98	5.64	14680	5.79	354050.7	1.0953	83.37	88.431	0.9809593	1.2649	1.3536	1.4445
199	485	3.83	1857.55	43	-4.90%	88.88	3 11	16315.6	5.12	493873.4	1.0861	83.84	97.447	0.9833049	1 2635	1 3507	1.4477

TABLE XV

Summary of Good Test Runs

RUN#	Current (A)	Voltage (V)	Power (W)	F.R. (gpm)	Hbal Error	Tbulkin (°F)	Delta TB	ResL	Pr	Gr	u ₀ /u,,	Nu _{Exp}	Twa	Tw,/Twc	h/h ₀ (@ 6)	h/h.(@ 5)	h/h _c (@ 7)
134	178	1.405	250.09	2.37	1.17%	88.5	0.73	8820.3	5.24	124269.8	1.0231	42	90.863	0.9998882	1.006	1.2105	1.2422
135	178	1.405	250.09	0.83	-1.92%	88.82	2.1	3127.2	5.16	311107.8	1.0554	17.48	95.657	1.016588	0.6431	0.6741	0.7697
138	340	2.67	907.8	4.22	-4.26%	91 27	1.54	16286.4	5.02	267314.9	1.0433	80.18	95.656	0.9925278	1.222	1.329	1.4513
137	340	2.67	907.8	2.37	-5.30%	92.25	2.77	9316.9	4.92	442842.5	1.0671	51.38	99.506	0.994325	1.1124	1.1933	1.2668
174	335	2 65	887.75	4.33	-0.99%	85.64	1.42	15661.4	5.41	223460.7	1.0467	75.44	90.127	0.9931827	1.1828	1.3217	1.3901
178	325	2.58	838.5	2.49	-1.64%	90.99	2.35	9628.1	5.01	385625.2	1.0622	51.14	97.525	0.9947262	1.1116	1.2075	1.263
185	490	3.84	1881.6	4.31	-5.01%	73.98	5.64	14680	5.79	354050.7	1.0953	83.37	88.431	0.9809693	1.2649	1.3536	1.4445
188	485	3.81	1847.85	2.47	-0.39%	84.69	5.15	9051	5.33	682513.1	1.1378	54.29	98.771	0.9899283	1.1012	1.1715	1.2557
190	490	3.89	1906.1	2.51	-0.11%	91.16	5.22	9897.2	4.91	829130.3	1.1255	57.73	104.78	0.990786	1.1018	1.1789	1.2582
1115	178	1.4	249.2	0.82	1.62%	84.96	2.05	2954.5	5.43	253682.5	1.0539	18.52	90.918	1.006622	0.8368	1.3982	0.7441
1155	175	1.38	241.5	0.959	4.92%	80 15	1.64	3254.4	5.81	195665.3	1.053	18.95	85.461	1.003332	0.915	1.149	1.0997
1159	175	1.39	243.25	1 0044	2.96%	80.66	1.61	3428.9	5.77	194144	1.0513	19.5	85.791	1.002131	0.9434	1.2194	1.0934
1167	175	1.395	244.125	1.2428	3.57%	80.09	1.3	4181.8	5.83	164813.1	1.0452	22.26	84.531	1.001922	0.9445	1.0474	1.0568
1169	190	1.52	288.8	1.3012	5.28%	80.33	1.44	4419.4	5.81	183739.9	1.0496	23.85	85.199	1.00143	0.9622	1.046	1.0741
1173	215	1.72	369.8	1.5093	8.81%	79 18	1.53	5053.5	5.9	186200.1	1.0532	28.75	84.258	1	1	1.1019	1.1149
1175	218	1.72	374.96	1 5173	8.64%	79.5	1.58	5106.5	5.87	192733.2	1.0541	29.01	84.721	0.9997609	1.0056	1.0809	1.1073
1177	178	1.42	252.76	2.14	11.03%	78.9	0.72	7103.2	5.95	100279.5	1.0296	35.45	81.644	0.999379	1.0259	1.1065	1.2153
1179	205	1.64	336.2	2.38	6.88%	78.71	0.9	7901.9	5.96	115319.2	1.0342	40.74	81.872	0.9977759	1.0798	1.1476	1.2338
1184	345	2.7	931.5	4.428	-4.08%	78.96	15	14789.8	5.91	185128.3	1.0535	73.8	83.767	0.989578	1.2439	1.2454	1.3615
1188	355	2.8	994	2 36	-2.29%	78.51	2.95	7920.3	5.89	305847.1	1.0874	48.09	86.877	0.9917784	1.1226	1.1579	1.2133
1191	180	1.422	255.96	2.3638	0.03%	77.96	0.74	7761.7	6.03	90842.3	1.0281	38.43	80.559	0.9989954	1.0427	1.1713	1.1934
1193	180	1.417	255.06	2.3908	2.99%	77 84	0.71	7837.1	6.04	90955.4	1.0283	38.16	80.459	0.9993711	1.0263	1.1636	1.1772
2101	345	2.69	928.05	1.9495	-8.93%	77.37	3.55	6478.3	5.95	342987.2	1.1024	39.15	87.37	0.996414	1.0459	1.1102	1.1432
2103	236	1.835	433.08	1.91	-1.31%	77.03	1.57	6245	6.07	155603.8	1.0496	37.81	81.772	0.9987625	1.0305	1.1287	1.1689
2105	220	1 718	377.96	1.9045	0.00%	77.09	1.38	6212.9	6.08	140629.5	1.0449	36.26	81.365	0.9995025	1.0134	1.1323	1.1654
2111	205	1.585	324.925	1 5487	0.76%	76.29	1.43	5002.2	6.14	139951.2	1.0465	30.58	80.733	1.000628	0.9835	1.1026	1.1174
4101	178	1.4	249.2	1.06702	0.52%	76.16	0.99	3446.1	6.15	154940.9	1.0517	20.79	81.216	1.003506	0.9124	1.0264	1.0425
4103	209	1.6355	341.8195	1.7289	0.51%	76.98	1.35	5630.5	6.09	135358.5	1.0435	33.79	81.123	0.9998752	1.0034	1.1124	1.1334
4105	233	1.82	424.08	2 2075	1.90%	77.31	1.29	7217.6	6.06	136622	1.0432	42.2	81.36	0.9975127	1.0707	1.1503	1.1822
4107	250	1.9405	485.125	2 8005	-1.23%	77 12	12	9129.2	6.08	129548.6	1.0414	50.7	80.932	0.9957597	1.1242	1.1423	1.2219
4109	270	2 118	571.88	3.27551	3.01%	76.78	1.16	10629.5	6.11	129037.5	1.0421	58.42	80.6	0.9953678	1.1318	1.1942	1.2681
4115	480	3.78	1814.4	3.2817	-3.76%	78.07	5.41	7888.4	5.98	513590.6	1.1571	50.16	91.093	0.9885443	1.1004	1.1297	1.1818
4117	480	3 79	1819.2	2 1037	-8.10%	78	6.28	7003	5.94	581666.9	1.1748	45.12	93.208	0.9957708	1.0333	1.0633	1.1103
4119	481	3.8	1827 8	2.2553	-8.54%	76 05	5.91	7493.4	5.96	542370.6	1.164	48.24	92.019	0.9919035	1.0678	1.101	1.1545
4121	483	3.81	1840.23	2.3089	-6.50%	76.48	5.81	7705	5.93	539382.4	1.16	49.66	92.037	0.9903883	1.0826	1.1073	1.1606
4123	483	3.81	1840.23	2.3981	-5.07%	77 54	5.52	8093	5.85	542991.7	1.1535	51.29	92.506	0.9895763	1.0932	1.1244	1.1786
4128	474	3.72	1763.28	2 4204	-6.05%	78.17	5.29	8218.3	5.81	541271.1	1.1491	50.6	92.716	0.9897072	1.0947	1.14	1.1788
4130	490	3.9	1911	2.389	-8 13%	76.02	5.92	7935.2	5.96	555041.3	1.1681	48.88	92.236	0.9901932	1.0809	1.1263	1.1932
4132	380	3	1140	3.3751	-4 71%	75.21	2.42	10833.5	6.19	237237.3	1.0817	60.64	82.528	0.9868988	1.2055	1.2198	1.2908
4134	390	3 07	1197.3	3 3795	-6.85%	74 97	2.59	10828.1	6.2	242665.4	1.0843	62.04	82.583	0.9872658	1.1927	1.2087	1.2928
4138	265	2.05	543.25	3.2368	-1 89%	75.14	1.17	10290.5	6.26	117065.8	1.0417	57.59	78.906	0.9957787	1.1198	1.187	1.2578
4138	275	2.15	591 25	3.2368	-2 14%	74 59	1 28	10224.5	6.3	125203.7	1.0458	56.69	78.715	0.9953847	1.1198	1.1845	1.2628
4141	280	22	616	3 397	-3 18%	74 96	1.28	10783.6	6.27	126363.7	1.0453	59.25	79.028	0.9946408	1.1414	1.207	1.2731

TABLE XVI

Correlation Comparison with Good Test Runs

		Gnjelinski [3]	Fractional	Gnielinski	Gnielinski [1]	Fractional	Gnielinski [2]	Fractional	Colburn	Fractional	Sieder & Tate	Fractional	Ghajar et al.	Fractional
RUN#	NUE®	Nuca	Difference	t	Nucai	Difference	Nuce	Difference	Nu _{ce}	Difference	Nuca	Difference	Nucat	Difference
134	42	56.5034924	0.3453212	0.0081544	63.39392115	0.5093791	55.35125478	0.317887	57.26531	0.3634598	57.4486925	0.367826	61.260563	0.4585848
135	17.48	18.9339037	0.0831753	0.0112319	21.32813714	0.2201451	21.67324915	0.2398884	24.854342	0.4218731	25.0426714	0.4326471	26.6831	0.5264931
136	80.18	99.2145721	0.237398	0.006895	108.399919	0.3519571	91.45309301	0.1405973	92.205286	0.1499786	92.7540984	0.1568234	98.68963	0.230851
137	51.38	58.0964173	0.1307205	0.0080284	65.10454779	0.2671185	56.57252298	0.1010612	58.586832	0.1402653	59.1219479	0.1506802	62.839924	0.2230425
174	75.44	98.5860385	0.3068139	0.0069663	107.9065343	0.4303623	91.19763638	0.2088764	91.620233	0.2144782	92.2075539	0.2222634	98.488097	0.3055156
178	51.14	60.4017142	0.1811051	0.0079542	67.5751287	0.3213752	58.61047936	0.146079	60.511728	0.1832563	61.0250907	0.1932947	64.923527	0.2695254
185	83.37	95.3826913	0.1440889	0.0070868	104.6606243	0.2553751	88.76205782	0.0646762	88.988701	0.0673948	90.1300269	0.0810846	96.6073	0.1587777
188	54.29	58.3311348	0.0744361	0.0080946	65.35728689	0.203855	56.97990522	0.049547	58.793253	0.0829481	59.8655147	0.1026987	63.893942	0.1769007
190	57.73	61.5249867	0.0657368	0.0078928	68.76890496	0.1912161	59.52626276	0.0311149	61.44665	0.0643799	62.4721684	0.0821439	66.393849	0.1500753
1115	18.52	18.0735027	-0.024109	0.0114487	20.19955483	0.0906887	20.9500943	0.1312146	24.157295	0.3043896	24.3354972	0.3140117	25.99802	0.4037808
1155	18.95	20.7946168	0.0973413	0.0110834	23.33920505	0.2316203	23.60338198	0.2455611	26.695002	0.4087072	26.8887077	0.4189292	28.826224	0.5211727
1159	19.5	22.0161971	0.1290357	0.0108933	24.80021674	0.271806	24.72671912	0.2680369	27.770069	0.4241061	27.9652493	0.4341154	29.969638	0.5369045
1167	22.26	27.5570089	0.2379609	0.0102137	31.24099946	0.4034591	29.84805216	0.3408828	32.661889	0.4672906	32.864665	0.4764	35.239046	0.5830658
1169	23.85	29.2090781	0.2246993	0.0100358	33.14315178	0.38965	31.34991766	0.314462	34.099174	0.4297348	34.3310588	0.4394574	36.804847	0.5431802
1173	28.75	33.870879	0.1781175	0.009623	38.41523549	0.3361821	35.60760983	0.2385256	38.155076	0.3271331	38.4329607	0.3367986	41.235055	0.4342628
1175	29.01	34.1722825	0.1779484	0.009592	38.76247917	0.3361765	35.86932002	0.2364467	38.409549	0.3240106	38.6939138	0.333813	41.504101	0.4306826
1177	35.45	48.0656599	0.3558719	0.0086825	54.15921273	0.5277634	48.28085654	0.3619424	50.241592	0.4172522	50.4471908	0.4230519	54.148831	0.5274705
1179	40.74	53.4366588	0.3116509	0.0084164	60.0152448	0.4731282	53.00136085	0.3009661	54.742986	0.3437159	55.0013202	0.350057	59.042249	0.4492452
1184	73.8	96.8385318	0.3121752	0.0070727	106.211903	0.4391857	90.0545246	0.220251	90.135008	0.2213416	90.795085	0.2302857	97.423355	0.3200997
1186	48.09	53.3062848	0.1084692	0.0084107	59.88255538	0.2452185	52.85782409	0.0991438	54.629376	0.135982	55.2739811	0.1493862	59.298734	0.2330783
1191	38.43	52.7506122	0.3726415	0.0084602	59.25995473	0.5420233	52.42987765	0.3642955	54.175021	0.4097065	54.3856144	0.4151864	58.416539	0.5200765
1193	38.16	53.2896895	0.3964803	0.0084365	59.84484973	0.5682613	52.90608619	0.3864278	54.625798	0.4314937	54.8396368	0.4370974	58.909255	0.5437436
2101	39.15	43.8371142	0.1197219	0.0089228	49.51266087	0.2646912	44.54169416	0.1377189	46.673353	0.1921674	47.3147436	0.2085503	50.786535	0.2972295
2103	37.81	42.5838068	0.1262578	0.0090213	48.1046552	0.2722733	43.47330992	0.1497834	45.626451	0.2067297	45.9367242	0.2149358	49.358296	0.3054297
2105	36.26	42.3902939	0.1690649	0.0090353	47.88849281	0.3206975	43.30484342	0.1942869	45.463673	0.2538244	45.7440889	0.2615579	49.155493	0.3556396
2111	30.58	34.0498995	0.1134696	0.0096535	38.55744042	0.2608712	35.84999209	0.1723346	38.351245	0.2541284	38.5960589	0.262134	41.495441	0.356947
4101	20.79	22.7139454	0.0925419	0.0108754	25.50655753	0.2268666	25.48515352	0.2258371	28.480559	0.3699163	28.6822602	0.3796181	30.839498	0.4833814
4103	33.79	38.3689009	0.1355105	0.0093085	43.4169291	0.2849047	39.71818202	0.1754419	42.044046	0.2442748	42.2954303	0.2517144	45.453507	0.3451763
4105	42.2	49.1935675	0.1657243	0.0086418	55.37553734	0.3122165	49.31816317	0.1686769	51.199567	0.2132599	51.5036197	0.2204649	55.335125	0.3112589
4107	50.7	61.9991263	0.2228625	0.0080749	69.25979377	0.3660709	60.50616361	0.1934155	61.855056	0.2200208	62.2073451	0.2269693	66.84651	0.3184716
4109	58.42	71.8946257	0.2306509	0.007737	79.85988076	0.3669956	69.04426235	0.18186	69.97644	0.1978165	70.3816035	0.2047519	75.649606	0.2949265
4115	50.16	53.4185589	0.0649633	0.0084205	59.99296417	0.196032	52.99390026	0.0564972	54.729234	0.0910932	55.8587606	0.1136117	59.973065	0.1956353
4117	45.12	47.3591225	0.0496259	0.0087189	53.38682254	0.1832186	47.65380157	0.0561569	49.645964	0.1003095	50.7783873	0.1254075	54.499593	0.207881
4119	48.24	50.7153865	0.051314	0.0085474	57.05313579	0.1826935	50.61610524	0.0492559	52.467019	0.0876248	53.5944485	0.110996	57.532015	0.1926205
4121	49.66	52.0222154	0.0475678	0.0084783	58.48116885	0.1776313	51.75024601	0.0420911	53.558801	0.0785099	54.6833317	0.1011545	58.685595	0.1817478
4123	51.29	54.2972609	0.0586325	0.0083584	60.96291752	0.1885927	53.70699199	0.047124	55.454155	0.0811884	56.5739568	0.1030212	60.672002	0.1829207
4128	50.6	54.9684861	0.0863337	0.0083214	61.69490129	0.2192668	54.27566937	0.0726417	56.011707	0.1069507	57.1122015	0.1286996	61.227527	0.2100302
4130	48.88	53.6576725	0.0977429	0.0084061	60.25533262	0.2327196	53.19489895	0.0882713	54.927465	0.1237206	56.1353922	0.1484327	60.259641	0.2328077
4132	60.64	73.5910544	0.2135728	0.0076963	81.66719938	0.3467546	70.53602384	0.163193	71.35752	0.1767401	72.1464066	0.1897494	77.59864	0.2796609
4134	62.04	73.6036283	0.1863899	0.0076973	81.68039186	0.3165763	70.55166512	0.1371964	71.367454	0.1503458	72.1807067	0.1634543	77.642007	0.251483
4136	57.59	70.3824338	0.2221294	0.0078072	78.23953325	0.3585611	67.81875456	0.1776134	68.738776	0.1935888	69.1330581	0.2004351	74.400781	0.2919045
4138	56.69	70.128924	0.2370599	0.0078212	77.96636565	0.3753107	67.61973394	0.1927983	68.531202	0.2088764	68.9622081	0.2164792	74.241341	0.3096021
4141	59.25	73.6454504	0.2429612	0.0077061	81.72318734	0.3792943	70.6214483	0.1919232	71.399422	0.2050535	71.8436572	0.2125512	77.324296	0.3050514

B.2 Sample Input/Output Data File for Program RHt98F

A sample input/output file is given in this appendix. All of the data in the input/output file is explained carefully in this appendix. The sample input/output file discussed here is for run 1114. The complete data set and results for all the good test runs are given in section B.4 of this appendix, further information about these test runs can be obtained from:

Dr. R. L. Dougherty or Dr. Afshin J. Ghajar

School of Mechanical and Aerospace Engineering

Oklahoma State University

218 Engineering North

Phone: (405) 744 5900

Email: dougher@master.ceat.okstate.edu, ghajar@master.ceat.okstate.edu

Stillwater, Oklahoma 74078

The files output by Datared98F are an essential input for the RHt98F program. Table XVII illustrates the input in its raw form, and lines one and two appear as follows:

1114 10 1 .00 .8200 175.00 1.40 86.82 88.85 80.54

where the above numbers correspond to the following:

Run	1114
Total number of thermocouple stations used	10
Fluid index (1=water, 2=ethylene glycol)	1
Mass concentration of ethylene glycol (not used in this case)	0.00

Flow rate in gpm	0.8200
Current carried by the test section (amps)	175
Voltage drop across the test tube (volts)	1.40
Inlet bulk temperature (°F)	86.82
Exit bulk temperature (°F)	88.85
Room temperature (°F)	80.54

The origin of the above numbers is described in the Data Reduction section of Chapter III. All subsequent lines appear as below:

1	4	7.00	90.36	90.28	90.30	90.25
2	4	17.00	92.39	91.64	91.20	91.72
3	4	27.00	93.96	92.26	91.95	92.36
4	4	37.00	94.70	92.55	91.99	92.78
5	4	47.00	94.75	92.91	92.56	93.21
6	4	57.00	99.26	93.50	92.59	93.87
7	4	67.00	94.16	93.51	93.23	93.57
8	4	77.00	93.33	92.79	92.59	93.25
9	4	87.00	92.62	93.74	93.86	93.59
10	4	97.00	93.66	93.77	94.34	92.92

The first column designates the station number. Column two indicates the number of thermocouple locations used at the designated station. Column three gives the length (in inches) from the beginning of the test section at each station, and columns four through seven are the outside wall thermocouple readings (at A, B, C, and D stations, respectively) for run 1114 in this example. They correspond to the thermocouple locations as illustrated in Fig. 2.4.

The data in Table XVII is the only input necessary for executing RHt98F. This input file is created by Datared98F, and is given the name rn1114.DAT by the same program automatically. A sample output for this run is given in Table XVIII. RHt98F creates the output file named rn1114.HTI. Complete listings of the programs Datared98F and RHt98F are given in Appendix C.

TABLE XVII

114	1 10						
1	.00	.8200	175.00	1.40	86.82	88.85	80.54
1	4	7.00	90.36	90.28	90.30	90.25	
2	4	17.00	92.39	91.64	91.20	91.72	
3	4	27.00	93.96	92.26	91.95	92.36	
4	4	37.00	94.70	92.55	91.99	92.78	
5	4	47.00	94.75	92.91	92.56	93.21	
6	4	57.00	99.26	93.50	92.59	93.87	
7	4	67.00	94.16	93.51	93.23	93.57	
8	4	77.00	93.33	92.79	92.59	93.25	
9	4	87.00	92.62	93.74	93.86	93.59	
10	4	97.00	93.66	93.77	94.34	92.92	

Sample Input Data File (m1114.DAT) for RHt98F Program

TABLE XVIII

100

Sample Output File (m1114.HTI) from RHt98F Program

		*							*			
				RUN NUN	IBER	1114						
			TEST F	LUID IS	DIST	ILLED	WATE	R				
		•							•			
		VOLUM	ETRIC FL	OW RATE	=	. 82	G	PM				
		MASS	FLOW RAT	E	=	408.7	L	BM/HR				
		MASS	FLUX		=	62265	5 L	BM/ (SQ.	FT-HR)		
		FLUID	VELOCIT	Y	=	. 28	8 F	T/S				
		ROOM	TEMPERAT	URE	=	80.54	F					
		INLET	TEMPERA	TURE	=	86.82	2 F	· · · · ·				
		OUTLE	T TEMPER	ATURE	=	88.85	5 E	Ś.,				
		AVERA	GE RE NU	MBER	=	301	5					
		AVERA	GE PR NU	MBER	=	5.3	L					
		CURRE	INT TO TU	BE	=	175.0) A	MPS				
		VOLTA	GE DROP	IN TUBE	-	1.4	v v	OLTS				
		AVERA	GE HEAT	FLUX	=	33	7 В	TU/ (SQ.	FT-HR)		
		Q=AME	*VOLT		=	83	5 B	TU/HR				
		Q=M*C	C* (T2-T1)		=	82	в в	TU/HR				
		HEAT	BALANCE	ERROR	=	. 9	5 %					
		OUT	SIDE SUF	RFACE TE	MPERA	ATURES	- DE	GREES H	F			
	1	2	3	4	5	5	6	7		8	9	10
1	90.36	92.39	93.96	94.70	94.	.75	99.26	5 94.1	16 9	3.33	92.62	93.66
2	90.28	91.64	92.26	92.55	92.	. 91	93.50	93.5	51 9	2.79	93.74	93.77
3	90.30	91.20	91.95	91.99	92.	.56	92.59	93.2	23 9	2.59	93.86	94.34
4	90.25	91.72	92.36	92.78	93.	.21	93.87	93.5	57 9	3.25	93.59	92.92

INSIDE SURFACE TEMPERATURES - DEGREES F

1 2 3

	1	2	з	4	5	6	7	8	9	10
1	90.18	92.22	93.80	94.55	94.59	99.15	93.99	93.15	92.43	93.48
2	90.10	91.46	92.07	92.36	92.72	93.29	93.33	92.61	93.57	93.59
3	90.12	91.01	91.76	91.80	92.37	92.39	93.05	92.40	93.68	94.17
4	90.07	91.54	92.17	92.59	93.02	93.66	93.39	93.07	93.41	92.72

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	3	4	5	6	7	9	9	10
1	3098	3170	3227	3254	3256	3423	3234	3204	3178	3216
2	3095	3143	3165	3175	3188	3209	3210	3184	3219	3220
3	3095	3127	3154	3155	3176	3177	3200	3177	3223	3241
4	3094	3146	3169	3184	3199	3222	3212	3201	3213	3189

INSIDE SURFACE HEAT FLUXES BTU/HR/FT2

	1	2	3	4	5	6	7	8	9	10
1	310	295	272	262	271	175	298	305	339	305
2	314	317	330	333	332	374	318	317	301	319
3	312	325	322	330	325	341	321	324	308	288
4	314	315	328	327	324	365	316	306	304	340

TABLE XVIII (Continued)

----- RUN NUMBER 1114

•----*

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ.FT-HR-F)

	1	2	3	4	5	6	7	8	9	10
1	96	58	42	37	39	15	50	63	86	64
2	99	73	69	69	66	69	61	74	59	65
3	98	84	72	77	70	76	65	79	59	52
4	101	71	68	64	61	63	60	64	62	84

RUN NUMBER 1114 SUMMARY

ST	RE	PR	X/D	MUB	MUW	TB	TW	DENS	NU
1	2984.17	5.37	6.4	1.907	1.839	86.96	90.12	62.14	25.53
2	2991.02	5.36	15.5	1.903	1.809	87.15	91.56	62.14	18.33
3	2997.88	5.34	24.6	1.899	1.790	87.35	92.45	62.14	15.82
4	3004.74	5.33	33.7	1.894	1.783	87.54	92.82	62.14	15.29
5	3011 61	5.31	42.8	1.890	1.776	87.74	93.18	62.13	14.85
6	3018.48	5.30	52.0	1.886	1.747	87.93	94.62	62.13	12.08
7	3025 36	5.29	61.1	1.881	1.771	88.13	93.44	62.13	15.21
8	3032 24	5.27	70.2	1.877	1.783	88.32	92.81	62.13	17.98
à	3039 14	5 26	79.3	1.873	1.774	88.52	93.27	62.13	16.97
10	3046 03	5.25	88.4	1.869	1.770	88.71	93.49	62.12	16.88

NOTE: TBULK IS GIVEN IN DEGREES FAHRENHEIT MUB AND MUW ARE GIVEN IN LBM/(FT*HR)

APPENDIX B

B.3 Equation for Power Input/Flow Rate

The equation given in this appendix helps to identify the kind of power input (watts) to be used for a particular flow rate (gpm). Here only two parameters are controllable, they are flow rate and current input. So, for a specific flow rate, the necessary operating power input is taken from Eq. (4.4). Based on the power input, the current is adjusted to get the desired power. The following equations were developed based on the heat balance error and flow rates from runs 2103, 2105, 2111, and 4101. The power input for any flow rate is calculated based on the equation:

Hin (watts)= (F.R. (in gpm)+
$$0.6686$$
)/ 0.0068 (B.1)

The frequency is adjusted in order to obtain a particular flow rate based on the calibration equation:

Frq (Hz)= (F.R. (in gpm) +
$$0.0091064$$
)/ 0.0045026 (B.2)

m

This appendix presents the output files from program RHt98F of the all of the 43 good test runs discussed in Appendix B.1. Each output file was compressed to fit on a single page.

************************		*******	
RUN NU	BER	134	
TEST FLUID IS	DIS	TILLED W	TER
•			••••••
VOLUMETRIC FLOW RATE	-	2.37	GPM
MASS FLOW RATE	-	1180.9	LBM/ER
MASS FLUX	-	179910	LEM/ (SO. FT-ER)
FLUID VELOCITY	-	.80	FT/S
ROOM TEMPERATURE	-	82.10	F
INLET TEMPERATURE	-	88.50	Ŧ
OUTLET TEMPERATURE	-	89.23	F
AVERAGE RE NUMBER	-	8816	

.....

.

AVERAGE RE NUMBER	-	8816	
AVERAGE PR NUMBER	-	5.24	
CURRENT TO TUBE	-	178.0	AMPS
VOLTAGE DROP IN TUBE	-	1.40	VOLTS
AVERAGE HEAT FLUX	-	343	BTU/ (SQ. FT-ER)
2-AMP*VOLT	-	850	BTU/HR
Q-H*C* (T2-71)	-	860	BTU/ER
HEAT BALANCE ERROR	-	-1.17	•

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	90.44	90.63	90.66	90.81	90.81	91.05	91.08	91.28	91.72	91.88
2	90.31	90.65	90.71	90.75	90.91	91.08	91.18	91.29	91.84	92.06
3	90.44	90.50	90.80	90.65	91.13	91.06	91.47	91.54	92.34	92.71
4	90.33	90.60	90.65	90.86	90.96	91.09	91.13	91.70	91.80	91.08

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	90.25	90.44	90.47	90.62	90.62	90.86	90.89	91.09	91.53	91.70
2	90.12	90.46	90.52	90.56	90.72	90.89	90.99	91.10	91.65	91.87
3	90.25	90.31	90.61	90.46	90.95	90.87	91.29	91.35	92.16	92.54
4	90.14	90.41	90.46	90.68	90.77	90.90	90.94	91.52	91.61	90.88

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	3	4	5	6	7	8	9	10
1	8959	8978	8981	8997	8996	9021	9024	9045	9090	9108
2	8945	8980	8986	8990	9007	9024	9035	9046	9103	9125
3	8959	8965	8996	8980	9030	9022	9065	9072	9155	9195
4	8947	8975	8980	9002	9012	9026	9029	908.9	9098	9023

INSIDE SURFACE HEAT FLUXES BTU/BE/FT2

	1	2	з	4	5	6	7	8	9	10
1	320	323	32.4	323	326	324	325	329	326	316
2	326	321	32.4	323	325	323	326	326	328	329
3	320	326	320	327	319	32.4	316	322	311	295
4	326	322	325	320	324	323	327	316	329	354

RUN NUMBER 134

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ. FT-HR-T)

	1	2	3	4	5	6	7	8	9	10
1	188	177	181	173	182	165	169	160	134	125
2	207	174	176	179	171	162	161	158	129	122
3	188	193	166	192	150	164	136	139	102	88
	204	179	183	167	166	161	166	127	131	208

•----• RUN NUNBER 134 SUMMARY

ST	RE	PR	X/D	NUTB	MUW	TB	TW	DENS	NU
1	8784.44	5.26	6.4	1.872	1.837	88.55	90.19	62.13	50.66
2	8791.61	5.25	15.5	1.871	1.833	88.62	90.41	62.13	46.56
3	8798.78	5.25	24.6	1.869	1.830	88.69	90.52	62.12	45.54
4	8805.95	5.24	33.7	1.868	1.829	88.76	90.58	62.12	45.74
5	8813.12	5.24	42.8	1.866	1.825	88.83	90.77	62.12	43.03
6	8820.29	5.24	52.0	1.865	1.823	88.90	90.68	62.12	42.00
7	8827.47	5.23	61.1	1.863	1.820	88.97	91.03	62.12	40.47
	8834 65	5.23	70.2	1.862	1.815	89.04	91.27	62.12	37.43
ġ.	8841 83	5.22	79.3	1.860	1.805	89.11	91.74	62.12	31.71
10	8849.01	5.22	88.4	1.859	1.805	89.18	91.75	62.12	32.48

NOTE: TBULK IS GIVEN IN DEGREES FAHRENHEIT MUB AND MUW ARE GIVEN IN LEM/(FT*HR)

		•					•			
			TEST I	RUN NUN	DISTILL	D WATER				
		•					•			
		VOLUE	ETRIC FI	ON BATE	-	97 68				
		HASS	FLOW RAT	E	- 413	3.5 LB	M/HR			
		MASS	FLUX		- 630	003 LB	M/ ISQ. FT-	HR)		
		ROOM	TEMPERAT	118 F	- 82	.28 FT	/5			
		INLET	TEMPER	TURE	- 88.	.82 F				
		OUTLE	T TEMPER	ATURE	- 90.	.92 F				
		AVER	GE RE NU	MBER	- 31	123				
		CURRE	NT TO TH	BE	- 176	.0 AM	PS			
		VOLT	GE DROP	IN TUBE	- 1.	40 VO	LTS	14111		
		Q-AH	VOLT	FLUX	2 8	343 BT	U/(SQ.FT- U/HR	-HR)		
		Q-H+Q	· (T2-T1)		- 6	66 BT	U/HR			
		HEAT	BALANCE	ERROR	1.	.92 1				
		our	SIDE SUP	WACE TE	PERATURI	69 - DEG	REES F			
	1	2	з	4	5	6	7	8	9	10
1	92.41	94.06	95.36	95.99	95.80	95.83	95.59	95 93	96 65	96.92
2	92.21	93.50	94.02	94.31	94.57	94.74	94.85	95.08	95.81	96.13
3	92.27	93.13	93.78	93.83	94.38	94.29	94.69	94.82	95.89	96.53
	36.22	93.54	24.10	94.94	94.03	94.85	94.88	95.55	95.94	95.39
		INS	SIDE SUR	FACE TEN	PERATURE	S - DEGP	EES F			
	1	2	3	4	5	6	7	8	9	10
1	92.23	93.88	95.19	95.82	95.63	95.66	95.41	95.75	96.47	96.75
2	92.02	93.31	93.83	94.12	94.38	94.55	94.66	94.89	95.62	95.94
3	92.08	92.94	93.59	93.64	94.19	94.10	94.50	94.63	95.70	96.35
		RE	NOLDS N	MBER AT	THE INS	IDE TUBI	WALL			
	1	2	3	4	5	6	7	8	3	10
1	3208	3269	3317	3340	3333	3334	3325	3337	3364	3374
2	3201	3248	3267	3217	3287	3293	3297	3305	3332	3344
4	3201	3249	3272	3286	3296	3297	3298	3323	3337	3316
		3	INSIDE S	JR.FACE E	EAT FLUX	ES BTU/S	BK/ FT2			
	1	2	з	4	5	6	7	8	9	10
				-		200		-	-	
2	319	326	338	339	337	332	331	332	336	339
3	322	334	332	339	332	337	329	337	324	305
4	327	325	334	333	331	329	331	320	333	358
				•		-•				
				RUN NU	MBER 13	5 _•				
		PERIPHER	L HEAT	TRANSFER	COEFFIC	1 ENT BT	J/ (SQ. FT-	HR-7)		
	1	2	3	4	5	6	7	8	9	10
1	97	65	50	45	50	52	58	57	51	49
2	107	78	75	74	73	72	74	73	66	65
3	103	88	78	83	68	70	73	64	64	81
27.1		545	1.00	56	100		1000	1000	262	
				RUN NU SU	MBER 13 MMARY	5				
-	-	_		•		-•		DEME	171	
31	N.	PR	ND	HUB	AD.			0.010	10	

1	3090.98	5.23	6.4	1.863	1.798	88.96	92.09	62.12	26.64
2	3098.22	5.22	15.5	1.859	1.772	89.16	93.37	62.12	19.82
3	3105.46	5.20	24.6	1.855	1.757	89.37	94.14	62.12	17.46
4	3112.70	5.19	33.7	1.850	1.750	89.57	94.48	62.11	16.98
5	3119.96	5.18	42.8	1.846	1.746	89.77	94.71	62.11	16.89
6	3127.22	5.16	52.0	1.842	1.745	89.97	94.74	62.11	17.48
7	3134.48	5.15	61.1	1.837	1.744	90.17	94.82	62.11	17.96
8	3141.76	5.14	70.2	1.833	1.737	90.37	95.16	62.11	17.43
	3149.04	5.12	79.3	1.829	1.723	90.58	95.89	62.10	15.71
10	3156.32	5.11	88.4	1.825	1.720	90.78	96.06	62.10	15.80

NOTE: THULK IS GIVEN IN DEGREES FAHRENEEIT MUB AND MUW ARE GIVEN IN LBM/(FT*HR)

RUN NU	BE	R 136	
TEST FLUID IS	DI.	STILLED W	TER
•			••••••
VOLUMETRIC FLOW RATE	-	4.22	GPN
MASS FLOW RATE	-	2101.6	LEM/HR
MASS FLUX	-	320187	LEM/ (SO. FT-HR)
FLUID VELOCITY	-	1.42	FT/S
ROOM TEMPERATURE	-	82.92	7
INLET TEMPERATURE	-	91.27	T
OUTLET TEMPERATURE	-	92.81	7
AVERAGE RE NUMBER	-	16272	
AVERAGE PR NUMBER	•	5.03	
CURRENT TO TUBE		340.0	AMPS
VOLTAGE DROP IN TUBE	-	2.67	VOLTS
AVERAGE BEAT FLUX	-	1250	BTU/ (SO. FT-HR)
Q-AMP*VOLT	-	3097	BTU/HR
Q-H*C* (T2-T1)	-	3229	BTU/HR
REAT BALANCE ERROR	-	-4.26	1

1

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	95.33	95.56	95.75	95.97	95.99	96.34	96.43	96.70	97 26	97 52
2	95.05	95.62	95.74	95.90	96.17	96.44	96.66	96.92	97.70	98 09
3	95.74	96.07	96.27	96.18	96.98	97.05	97.83	98.11	99.05	99.57
4	95.09	95.50	95.60	95.96	96.10	96.51	96.56	97.31	97.35	96 91

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	94.65	94.88	95.07	95.29	95.31	95.66	95.74	96.01	96.57	96.84
2	94.36	94.94	95.05	95.22	95.48	95.75	95.97	96.23	97.01	97 40
3	95.07	95.40	95.60	95.50	96.31	96.38	97.16	97.44	98.39	98.88
4	94.40	94.81	94.91	95.28	95.41	95.83	95.87	96.63	96.66	96.21

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	3	4	5	6	7	8	9	10
1	16757	16799	16834	16875	16879	16944	16961	17011	17116	17166
2	16702	16810	16832	16862	16912	16963	17003	17052	17199	17272
з	16834	16895	16933	16915	17067	17079	17228	17280	17459	17551
4	16710	16787	16805	16873	16899	16976	16984	17126	17132	17047

INSIDE SURFACE HEAT FLUXES BTU/HR/FT2

	1	2	3	4	5	6	7	8	9	10
1	1178	1185	1183	1184	1189	1189	1191	1197	1194	1187
2	1197	1190	1192	1190	1193	1192	1198	1198	1196	1198
з	1168	1172	1170	1179	1164	1171	1155	1161	1148	1135
4	1196	1193	1195	1189	1195	1190	1200	1189	1207	1228

•----• RUN NUMBER 136

PERIPERRAL HEAT TRANSFER COEFFICIENT BTU/ (SQ. FT-HR-F)

	1	2	3	4	5	6	7	8	9	10
1	359	353	348	341	356	335	342	332	297	287
2	400	348	352	350	339	327	323	313	269	255
3	316	302	298	320	268	274	235	230	196	184
4	195	362	368	743	346	320	332	282	294	351

RUN NUKBER 136 SUMMARY

ST	RE	PR	X/D	MUB	MUW	TB	TW	DENS	NU
1	16150.01	5.07	6.4	1.812	1.747	91.37	94.62	62.09	93.57
2	16177.25	5.06	15.5	1.809	1.740	91.52	95.01	62.09	87.21
3	16204.51	5.05	24.6	1.806	1.737	91.67	95.16	62.09	87.10
4	16231.79	5.04	33.7	1.803	1.734	91.82	95.32	62.09	86.73
5	16259.08	5.03	42.8	1.800	1.728	91.97	95.63	62.09	82.96
6	16286.39	5.02	52.0	1.797	1.723	92.11	95.90	62.09	80.18
7	16313.72	5.01	61.1	1.794	1.717	92.26	96.19	62.08	77.39
8	16341.07	5.01	70.2	1.791	1.710	92.41	96.58	62.08	72.90
9	16368.43	5.00	79.3	1.788	1.699	92.56	97.16	62.08	66.07
10	16395.81	4.99	88.4	1.785	1.696	92.71	97.33	62.08	65.72

NOTE: TBULK IS GIVEN IN DEGREES FAHRENHEIT MUB AND MUW ARE GIVEN IN LBM/ (FT*HR)

•-----RUN NUMBER 137 TEST FLUID IS DISTILLED WATER

VOLUMETRIC FLOW RATE	-	2.37	GPM
MASS FLOW RATE	-	1180.1	LBM/HR
MASS FLUX	-	179788	LBM/ (SO. FT-HR)
FLUID VELOCITY	-	.80	FT/S
ROOM TEMPERATURE	-	83.24	F
INLET TEMPERATURE	-	92.25	F
OUTLET TEMPERATURE	-	95.02	F
AVERAGE RE NUMBER	-	9303	
AVERAGE PR NUMBER		4.93	
CURRENT TO TUBE	-	340.0	AMPS
VOLTAGE DROP IN TUBE	-	2.67	VOLTS
AVERAGE HEAT FLUX	-	1250	BTU/ (SQ.FT-HR)
Q-AMP VOLT	-	3097	BTU/HR
Q-M*C* (T2-T1)	-	3261	BTU/HR
HEAT BALANCE ERROR	-	-5.30	•

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	98.19	98.80	99.23	99.60	99.68	100.19	100.42	100.83	101.46	101.81
2	97.93	99.01	99.26	99.49	99.83	100.23	100.61	101.00	101.96	102.41
3	98.60	99.47	99.77	99.72	100.60	100.75	101.72	102.31	103.59	104.08
4	98.02	98.79	99.09	99.52	99.79	100.30	100.51	101.30	101.54	101.19

INSIDE SURFACE TEMPERATURES - DEGREES F

1	2	з	4	5	6	7	а	.4	10
97.5	.51 98.12	98.55	98.92	99.00	99.51	99.73	100.14	100.77	101.13
97.2	.24 98.33	98.57	98.81	99.14	99.54	99.92	100.31	101.27	101.72
97.9	.93 98.80	99.10	99.04	99.93	100.07	101.05	101.64	102.93	103.43
97.3	.33 98.10	98.40	98.84	99.10	99.61	99.82	100.61	100.84	100.48
97.9 97.3	.93 98.80 .33 98.10	99.10 98.40	99.04 98.84	99.93 99.10	100.07 99.61	101.05 99.82	101.64	102.93	111

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	3	4	5	6	7	8	9	10
1	9710	9774	9820	9859	9868	9922	9947	9990	10058	10096
2	9681	9796	9823	9847	9883	9926	9966	10008	10111	10160
3	9754	9846	9878	9872	9967	9983	10066	10151	10290	10344
4	9691	9773	9804	9851	9879	9934	9956	10041	10065	10027

INSIDE SURFACE HEAT FLUXES BTU/ER/FT2

	1	2	з	4	5	6	7	8	9	10
1	1182	1190	1187	1186	1192	1191	1193	1198	1198	1191
2	1199	1191	1194	1193	1196	1195	1201	1204	1205	1204
3	1171	1173	1173	1183	1168	1177	1160	1160	1144	1133
4	1196	1197	1198	1192	1197	1193	1203	1197	1215	1235

·----* RUN NUMBER 137

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ.FT-HR-F)

	1	z	3	4	5	6	7	8	9	10
1	232	219	212	208	217	207	209	205	193	189
2	249	211	213	214	212	206	204	200	179	174
3	213	192	191	203	181	186	165	158	136	131
4	244	221	220	212	213	204	208	189	193	218

RUN NUMBER 137 SUMMARY

ST	R.B.	PR	X/D	MUB	HUW	TB	TW	DENS	NU
1	9178.39	5.00	6.4	1.791	1.693	92.44	97.50	62.08	60.01
2	9206.04	4.99	15.5	1.785	1.677	92.70	98.33	62.08	53.99
3	9233.71	4.97	24.6	1.780	1.672	92.97	98.65	62.08	53.48
4	9261.42	4.95	33.7	1.775	1.667	93.24	98.90	62.07	53.67
5	9289.16	4.94	42.8	1.769	1,660	93.50	99.29	62.07	52.50
6	9316.93	4.92	52.0	1.764	1.653	93.77	99.68	62.07	51.38
7	9344.73	4.90	61.1	1.759	1.645	94.03	100.13	62.06	49.85
8	9372 56	4.89	70.2	1.754	1.636	94.30	100.68	62.06	47.68
	9400 42	4.87	79.3	1.748	1.622	94.57	101.45	62.06	44.15
10	9428.32	4.86	88.4	1.743	1.618	94.83	101.69	62.05	44.34

NOTE: TBULK IS GIVEN IN DEGREES FAHRENHEIT MUB AND MUN ARE GIVEN IN LEMY (FT*ER)

•----RUN NUMBER 174 TEST FLUID IS DISTILLED WATER •

OLUNETRIC FLOW RATE	-	4.33	GPM
ASS FLOW RATE	-	2158.5	LBM/ HR
ASS FLUX	-	328859	LEM/ (SQ. FT-HR)
FLUID VELOCITY	-	1.46	FT/S
ROOH TEMPERATURE	-	79.46	F
INLET TEMPERATURE	-	85.64	F
OUTLET TEMPERATURE	-	87.06	Ŧ
AVERAGE RE NUMBER	-	15648	
AVERAGE PR NUMBER	-	5.41	
TURNENT TO TUBE	-	335.0	AMPS
VOLTAGE DROP IN TUBE	-	2.65	VOLTS
AVERAGE HEAT FLUX	-	1222	BTU/ (SQ. FT-HR
-AND VOLT	-	3029	BTU/HR
-H+C+ (T2-T1)	-	3059	BTU/ER
HEAT BALANCE ERROR	-	99	

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	89.27	89.68	90.02	90.33	90.45	90.79	90.92	91.17	91.77	91.91
2	89.51	90.07	90.20	90.33	90.67	90.88	91.07	91.44	92.26	92.54
3	89.91	90.39	90.71	90.60	91.46	91.40	92.20	92.37	93.57	94.07
4	89.31	89.85	90.04	90.44	90.60	90.94	91.15	91.79	91.93	91.25

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	88.61	89.01	89.36	89.67	89.79	90.13	90.26	90.50	91.10	91.25
2	88.85	89.41	89.54	89.67	90.00	90.22	90.40	90.77	91.59	91.87
3	89.26	89.73	90.06	89.94	90.81	90.75	91.55	91.72	92.93	93.44
4	88.64	89.19	89.37	89.78	89.93	90.28	90.48	91.13	91.26	90.56

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	3	4	5	6	7	8	9	10
1	16067	16144	16208	16266	16288	16352	16376	16423	16536	16563
2	16112	16217	16241	16266	16329	16369	16404	16474	16628	16681
3	16189	16278	16339	16317	16481	16468	16621	16652	16882	16979
4	16074	16176	16211	16287	16316	16380	16419	16541	16565	16434

INSIDE SURFACE HEAT FLUXES BTU/HR/ FT2

	1	2	3	•	5	6	7	8	9	10
1	1149	1153	1148	1147	1151	1150	1152	1158	1156	1148
2	1147	1145	1150	1149	1153	1152	1159	1155	1158	1159
3	1133	1135	1131	1141	1125	1134	1119	1128	1110	1093
4	1152	1150	1154	1147	1155	1150	1157	1146	1166	1192

•-----• RUN NUNBER 174

PERIPHERAL BEAT TRANSFER COEFFICIENT BTU/ (SQ. FT-HR-T)

	1	2	3	4	5	6	7	8	9	10
1	400	366	343	325	328	310	311	304	270	268
2	368	323	326	326	309	303	301	283	243	236
3	321	293	279	300	248	262	223	224	182	168
4	396	347	343	315	316	298	294	258	263	331

RUN NUMBER 174 SUNMARY

ST	RE	PR	X/D	MUB	HUW	TB	TW	DENS	נוא
1	15535.43	5.46	6.4	1.935	1.866	85.74	88.84	62.16	95.35
2	15560.60	5.45	15.5	1.932	1.855	85.87	89.34	62.15	85.43
3	15585.78	5.44	24.6	1.929	1.850	86.01	89.58	62.15	82.84
4	15610.97	5.43	33.7	1.926	1.846	86.15	89.76	62.15	81.78
5	15636.18	5.42	42.8	1.923	1.838	86.28	90.13	62.15	76.83
6	15661.41	5.41	52.0	1.920	1.834	86.42	90.34	62.15	75.44
7	15686.65	5.40	61.1	1.916	1.827	86.55	90.67	62.15	71.85
8	15711.91	5.39	70.2	1.913	1.820	86.69	91.03	62.15	58.20
9	15737.18	5.38	79.3	1,910	1.805	66.83	91.72	62.14	60.51
10	15762.47	5.37	88.4	1.907	1.804	86.96	91.78	62.14	61.46

NOTE: TBULK IS GIVEN IN DEGREES FARRENBEIT MUB AND MUW ARE GIVEN IN LON/(FT*HR)

	RUN	NUN	GER	178	
TEST	FLUID	IS	DISTI	LLED	WATER

_

VOLUMETRIC FLOW RATE	-	2.49	GPM
MASS FLOW RATE	-	1240.1	LBM/HR
MASS FLUX	-	188935	LBM/ (SQ.FT-RR)
FLUID VELOCITY		.84	FT/S
ROOM TEMPERATURE	-	81.41	F
INLET TEMPERATURE	-	90.99	F
OUTLET TEMPERATURE		93.34	F
AVERAGE RE NUMBER	-	9615	
AVERAGE PR NUMBER	-	5.02	
CURRENT TO TUBE	-	325.0	AMPS
VOLTAGE DROP IN TUBE	-	2.58	VOLTS
AVERAGE HEAT FLUX	-	1155	BTU/ (SQ. FT-RR)
-AMP-VOLT	-	2861	BTU/HR
Q-H*C* (T2-T1)	-	2907	BTU/HR
HEAT BALANCE ERROR	-	-1.64	•

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	96.29	96.82	97.28	97.60	97.69	98.15	98.38	98.77	99.37	99.60
2	96.03	97.07	97.33	97.53	97.89	98.24	98.56	98.97	99.91	100.26
3	96.58	97.35	97.77	97.69	98.59	98.66	99.56	99.90	101.16	101.70
4	96.16	96.90	97.15	97.59	97.85	98.29	98.54	99.28	99.53	99.01

INSIDE SURFACE TEMPERATURES - DEGREES F

	7	2	3	4	5	6	7	B	9	10
1	95.67	96.19	96.66	96.98	97.06	97.52	97.75	98.14	98.74	98.98
2	95.40	96.45	96.70	96.90	97.26	97.61	97.93	98.34	99.28	99.63
3	95.96	96.73	97.15	97.07	97.98	98.04	98.95	99.29	100.56	101.11
4	95.53	96.27	96.52	96.97	97.22	97.66	97.91	98.66	98.90	98.36

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	3	4	5	6	7	8	9	10
1	10000	10058	10109	10145	10154	10205	10231	10274	10341	10367
2	9970	10086	10114	10137	10176	10215	10251	10297	10402	10441
3	10032	10117	10164	10155	10256	10263	10365	10402	10545	10607
4	9985	10067	10094	10143	10172	10221	10248	10332	10359	10299

INSIDE SURFACE HEAT FLUXES BTU/HR/FT2

	1	2	3	•	5	6	7	8	9	10
1	1078	1088	1083	1083	1089	1088	1090	1095	1095	1087
2	1093	1084	1089	1087	1091	1089	1095	1095	1095	1096
3	1071	1074	1071	1081	1066	1075	1059	1066	1049	1034
4	1090	1088	1093	1086	1092	1088	1096	1087	1105	1128

RUN NUMBER 178

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ. FT-HR-F)

	1	2	3	4	5	e	7	К	9	10
1	238	225	214	210	217	207	207	202	189	187
2	257	213	213	214	209	204	201	195	173	169
3	222	200	192	206	180	186	164	162	138	130
4	248	222	222	211	211	201	202	183	186	217

RUN NUMBER 178 SUMMARY

ST	R.S	PR	X/D	NUB	MUW	TB	TW	DENS	NU
1	9505.30	5.09	6.4	1.817	1.728	91.15	95.64	62.10	61.84
2	9529.81	5.07	15.5	1.812	1.713	91.37	96.41	62.09	55.17
3	9554.35	5.06	24.6	1.808	1.707	91.60	96.76	62.09	53.87
4	9578.91	5.04	33.7	1.803	1.702	91.83	96.98	62.09	53.93
5	9603.49	5.03	42.8	1.798	1.695	92.05	97.38	62.09	52.14
6	9628.09	5.01	52.0	1.794	1.689	92.28	97.71	62.08	51.14
7	9652.72	5.00	61.1	1.789	1.681	92.50	98.14	62.08	49.33
8	9677.37	4.99	70.2	1.785	1.673	92.73	98.61	62.08	47.29
	9702.05	4.97	79.3	1.780	1.659	92.96	99.37	62.08	43.34
10	9726.75	4.96	68.4	1.776	1.656	93.18	99.52	62.07	43.86

NOTE: TBULK IS GIVEN IN DEGREES FAHRENEEIT MUB AND MUW ARE GIVEN IN LBM/(FT*HR)

RUN NUR	(BE)	R 185	
TEST FLUID IS	DIS	STILLED W	TER
•			
VOLUNETRIC FLOW RATE	-	4.31	GPN
MASS FLOW RATE	-	2150.6	LBM/HR
MASS FLUX	-	327655	LBM/ (SQ.FT-HR)
FLUID VELOCITY	-	1.45	FT/S
ROOM TEMPERATURE	-	73.98	F
INLET TEMPERATURE	-	79.62	F
OUTLET TEMPERATURE		82.76	E
AVERAGE RE NUMBER	-	14652	
AVERAGE PR NUMBER	-	5.80	
CURRENT TO TUBE	-	490.0	AMPS
VOLTAGE DROP IN TUBE	-	3.84	VOLTS
AVERAGE BEAT FLUX	-	2591	BTU/ (SO.FT-HR)
Q-AMP VOLT	-	6420	BTU/HR
Q-H+C+ (T2-T1)	-	6742	BTU/HR
HEAT BALANCE ERROR	-	-5.01	

1

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	z	3	4	5	6	7	8	9	10
1	87.31	87.91	88.52	89.11	89.16	89.85	90.15	90.69	91.38	91.87
2	87.80	88.79	88.90	89.13	89.66	90.04	90.53	91.21	92.50	93.14
3	88.76	90.01	90.18	90.07	91.29	91.54	92.95	93.79	95.48	96.20
4	87.35	88.11	88.63	89.12	89.51	90.16	90.47	91.39	91.79	91.54

INSIDE SURFACE TEMPERATURES - DEGREES F

1	2	3		5	6	7	8	9	10
85.89	86.49	87.10	87.70	87.74	88.43	88.73	89.26	89.95	90.45
86.38	87.37	87.48	87.71	88.24	88.62	89.10	89.78	91.07	91.71
87.36	88.62	88.79	88.67	89.90	90.15	91.57	92.41	94.11	94.84
85.93	86.68	87.21	87.70	88.09	88.74	89.04	89.96	90.35	90.09
	1 85.89 86.38 87.36 85.93	1 2 85.89 86.49 86.38 87.37 87.36 88.62 85.93 86.68	1 2 3 85.89 86.49 87.10 86.38 87.37 87.48 87.36 88.62 88.79 85.93 86.68 87.21	1 2 3 4 85.89 86.49 87.10 87.70 86.38 87.37 87.48 87.71 87.36 88.62 88.79 98.67 85.93 86.68 87.21 67.70	1 2 3 4 5 85.09 86.49 87.10 87.70 87.74 86.38 87.37 87.48 87.71 88.24 87.36 88.62 88.79 98.67 89.90 85.93 86.68 87.21 87.70 88.09	1 2 3 4 5 6 85.89 86.49 87.10 87.70 87.74 88.43 86.38 87.37 87.48 87.71 88.24 88.62 87.36 88.62 88.79 88.67 89.90 90.15 85.93 86.68 87.21 87.70 88.09 88.74	1 2 3 4 5 6 7 85.89 86.49 87.10 87.70 87.74 98.43 88.73 86.38 87.37 87.48 87.71 86.24 89.62 89.10 87.36 88.62 88.79 98.67 89.90 90.15 91.57 85.93 86.68 87.21 87.70 88.09 88.74 89.04	1 2 3 4 5 6 7 8 85.89 86.49 87.10 87.70 87.74 98.43 88.73 89.26 86.38 87.37 87.48 87.71 88.24 88.62 89.10 89.78 87.36 88.62 98.79 80.67 89.90 90.15 91.57 92.41 85.93 86.68 87.21 87.70 88.09 88.74 89.04 89.54	1 2 3 4 5 6 7 8 9 85.89 86.49 87.10 87.70 87.74 88.43 88.73 89.26 89.95 86.38 87.37 87.48 87.71 88.62 89.10 89.78 91.07 87.36 88.62 88.79 88.67 89.90 90.15 91.57 92.41 94.11 85.93 86.66 87.21 87.70 89.90 80.15 91.57 92.41 94.11

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	l	z	Э	4	5	6	7	8	9	10
1	15507	15616	15730	15839	15847	15976	16031	16131	16259	16352
2	15597	15780	15799	15842	15940	16010	16100	16227	16469	16590
3	15778	16011	16042	16020	16250	16296	16563	16722	17045	17184
4	15513	15652	15749	15840	15912	16033	16089	16261	16334	16285

INSIDE SURFACE HEAT FLUXES BTU/ER/FT2

	1	2	3	4	5	6	7	а	•	10
1	2455	2463	2456	2451	2463	2459	2463	2471	2477	2471
2	2453	2453	2461	2462	2465	2469	2479	2481	2480	2479
3	2417	2408	2413	2426	2407	2414	2389	2389	2369	2356
4	2465	2471	2468	2462	2469	2465	2481	2476	2498	2521

•----.... RUN NUMBER 185

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ. FT-HR-F)

	1	2	3	4	5	6	7	8	9	10
1	405	387	368	352	367	346	347	337	321	312
2	374	338	349	353	342	339	332	316	281	270
3	320	283	288	305	271	274	240	228	199	191
4	404	377	364	353	350	333	335	308	308	334

RUN NUMBER 185 SUMMART

•

ST	RE	PR	X/D	MUB	NUW	тB	TW	DENS	NU
1	14409.50	5.91	6.4	2.079	1.920	79.83	86.39	62.21	97.14
2	14463.45	5.89	15.5	2.071	1.900	80.13	87.29	62.21	89.05
3	14517.47	5.86	24.6	2.063	1.892	80.44	87.64	62.21	88.41
4	14571.57	5.64	33.7	2.056	1.886	80.74	87.94	62.21	88.42
5	14625.75	5.81	42.8	2.048	1.874	81.04	88.49	62.20	85.51
6	14680.02	5.79	52.0	2.040	1.863	81.34	88.98	62.20	83.37
7	14734.35	5.77	61.1	2.033	1.849	81.64	89.61	62.20	79.97
8	14788.77	5.74	70.2	2.025	1.834	81.94	90.35	62.19	75.77
9	14843.26	5.72	79.3	2.018	1.812	82.25	91.37	62.19	69.85
10	14897.84	5.69	88.4	2.011	1.804	82.55	91.77	62.19	69.10

NOTE: TBULK IS GIVEN IN DEGREES FAHRENHEIT MUB AND MUW ARE GIVEN IN LEM/(FT*HR)

	RUN	NUN	BER	188	
TEST	FLUID	IS	DISTI	LLED	WATER

2

VOLUMETRIC FLOW RATE	-	2.47	GPM
HASS FLOW RATE	-	1231.5	LEM/HR
MASS FLUX	-	187623	LBM/ (SQ.FT-HR)
FLUID VELOCITY		.83	FT/S
ROOM TEMPERATURE	-	73.40	F
INLET TEMPERATURE	-	84.69	F
OUTLET TEMPERATURE	-	89.84	F
AVERAGE RE NUMBER	-	9024	
AVERAGE PR NUMBER	-	5.35	
CURRENT TO TUBE	-	485.0	AMPS
VOLTAGE DROP IN TUBE	-	3.81	VOLTS
AVERAGE HEAT FLUX	-	2545	BTU/ (SQ.FT-HR)
-AHP VOLT	-	6305	BTU/HR
Q-H*C* (T2-T1)	-	6329	BTU/HR
HEAT BALANCE ERROR		39	•

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	96.21	97.51	98.44	99.18	99.16	100.16	100.49	101.20	102.02	102.56
2	95.93	98.03	98.53	98.83	99.43	100.04	100.73	101.60	103.22	103.88
3	97.14	98.92	99.41	99.38	100.76	101.15	102.92	103.96	105.92	106.77
4	95.98	97.54	98.14	98.79	99.35	100.19	100.65	101.81	102.38	102.31

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	94.83	96.12	97.05	97.80	97.77	98.77	99.10	99.80	100.62	101.16
2	94.53	96.64	97.14	97.43	98.03	98.64	99.33	100.20	101.82	102.48
3	95.77	97.55	98.04	98.00	99.39	99.78	101.56	102.60	104.58	105.43
4	94.58	96.14	96.74	97.39	97.95	98.79	99.25	100.41	100.97	100.85

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	3	4	5	6	7	8	9	10
1	9838	9979	10082	10165	10161	10273	10309	10388	10479	10539
2	9806	10037	10092	10125	10191	10258	10335	10432	10614	10688
3	9941	10137	10191	10187	10342	10385	10585	10702	10925	11023
4	9811	9982	10048	10120	10182	10275	10326	10455	10518	10509

INSIDE SURFACE HEAT FLUXES BTU/ER/FT2

	1	2	3	4	5	6	7	8	9	10
1	2406	2423	2414	2408	2425	2419	2427	2436	2446	2941
2	2432	2420	2426	2429	2432	2435	2446	2448	2444	2445
3	2381	2386	2 388	2402	2382	2392	2363	2363	2343	2329
4	2430	2433	2437	2430	2434	2431	2448	2442	2466	2487

RUN NUMBER 188

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ. FT-HR-F)

	1	2	3	4	5	6	7	8	9	10
1	245	22B	218	213	225	214	218	215	210	209
2	256	217	218	222	220	218	216	209	190	188
3	221	198	198	209	192	195	174	167	150	146
4	254	229	227	223	222	215	217	205	206	218

·----· RUN NUMBER 188 SUMMARY

ST	P.E	PR	X/D	млв	MUW	TB	TW	DENS	NU
1	8790.07	5.51	6.4	1.951	1.741	85.04	94.93	62.16	63.06
2	8842.01	5.47	15.5	1.940	1.709	85.53	96.61	62.16	56.32
3	8894.08	5.44	24.6	1.928	1.698	86.03	97.24	62.15	55.63
4	8946.26	5.40	33.7	1.917	1.690	86.52	97.66	62.15	56.02
5	8998.56	5.37	42.8	1.906	1.678	87.02	98.29	62.14	55.34
6	9050.97	5.33	52.0	1.895	1.666	87.51	99.00	62.14	54.29
7	9103.50	5.30	61.1	1.884	1.651	88.01	99.81	62.13	52.83
8	9156.14	5.26	70.2	1.873	1.634	88.50	100.75	62.13	50.89
9	9208.91	5.23	79.3	1.863	1.613	89.00	101.99	62.12	47.98
10	9261.78	5.20	88.4	1.852	1.605	89.49	102.49	62.12	47.97

NOTE: TBULK IS GIVEN IN DEGREES FAHRENREIT MUB AND MUW ARE GIVEN IN LEW/ (FT*ER)

PIN NT		1 1 9 0	
KON NO	D.T.	170	
TEST FLOID IS	DI	STILLED W	ATER
			••••••
VOLUMETRIC FLOW RATE	-	2.51	GPM
MASS FLOW RATE		1250.0	LBM/HR
HASS FLUX	-	190447	LBM/ (SQ. FT-HR)
FLUID VELOCITY	-	.85	FT/S
ROOM TEMPERATURE	-	75.42	1
INLET TEMPERATURE	-	91.16	7
OUTLET TEMPERATURE	-	96.38	F
AVERAGE RE NUMBER	-	9869	
AVERAGE PR NUMBER	-	4.92	
CURRENT TO TUBE	-	490.0	AMPS
VOLTAGE DROP IN TUBE	-	3.89	VOLTS
AVERAGE HEAT FLUX	-	2625	BTU/ (SQ.FT-HR)
Q-AMP*VOLT	-	6503	BTU/HR
Q-H*C* (T2-T1)		6510	BTU/HR
HEAT BALANCE ERBOR		11	

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	з	4	5	6	7	8	9	10
1	102.47	103.61	104.46	105.27	105.17	106.20	106.58	107.33	108.17	108.62
2	102.07	104.01	104.53	104.87	105.42	106.06	106.74	107.58	109.13	109.90
3	103.25	104.89	105.40	105.37	106.77	107.16	108.95	109.95	111.86	112.82
4	102.07	103.56	104.15	104.84	105.34	106.26	106.64	107.83	108.39	108.36

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	•	5	6	,	8	9	10
1	101.06	102.19	103.04	103.86	103.75	104.78	105.16	105.90	106.74	107.19
2	100.64	102.59	103.11	103.44	103.99	104.63	105.31	106.14	107.70	108.47
3	101.85	103.49	104.00	103.96	105.37	105.75	107.56	108.56	110.48	111.45
4	100.64	102.13	102.72	103.41	103.91	104.83	105.20	106.40	106.95	106.90

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	3	4	5	6	7	8	9	10
1	10686	10815	10913	11007	10994	11113	11157	11243	11340	11392
2	10639	10861	10920	10959	11022	11096	11174	11271	11452	11542
3	10777	10964	11023	11018	11181	11226	11436	11553	11778	11893
4	10639	10809	10876	10956	11013	11119	11162	11300	11364	11359

INSIDE SURFACE HEAT FLUXES BTU/ER/FT2

1	2	3	4	5	6	7	в	9	10
2463	2481	2474	2467	2485	2479	2485	2494	2502	2501
2493	2482	2487	2490	2493	2496	2508	2511	2508	2507
2443	2447	2449	2464	2442	2454	2422	2424	2404	2389
2493	2494	2497	2490	2495	2491	2511	2504	2528	2548
	1 2463 2493 2443 2493	1 2 2463 2481 2493 2482 2443 2447 2493 2494	1 2 3 2463 2481 2474 2493 2482 2487 2443 2447 2449 2493 2494 2497	1 2 3 4 2463 2481 2474 2467 2493 2482 2487 2490 2443 2447 2449 2464 2493 2497 2490 2491	1 2 3 4 5 2463 2481 2474 2467 2485 2493 2482 2487 2490 2493 2443 2447 2449 2464 2442 2493 2494 2497 2490 2495	1 2 3 4 5 6 2463 2481 2474 2467 2485 2479 2493 2482 2487 2490 2493 2496 2433 2447 2449 2464 2442 2456 2493 2494 2497 2494 2455 2491	1 2 3 4 5 6 7 2463 2481 2474 2467 2485 2479 2485 2493 2482 2487 2490 2493 2496 2508 2493 2447 2449 2464 2442 2454 2422 2493 2494 2497 2490 2495 2491 2511	1 2 3 4 5 6 7 B 2463 2481 2474 2467 2485 2479 2485 2494 2493 2482 2487 2490 2493 2496 2508 2511 2493 2447 2449 2464 2442 2454 2422 2424 2493 2494 2497 2490 2495 2491 2511 2508	1 2 3 4 5 6 7 8 9 2463 2481 2474 2467 2485 2479 2485 2494 2502 2493 2482 2487 2490 2493 2496 2508 2511 2508 2493 2447 2449 2464 2442 2454 2404 2493 2494 2497 2455 2491 2511 2508 2433 2447 2497 2454 2491 2511 2528 2493 2494 2497 2495 2491 2511 2528

•----• RUN NUMBER 190

PERIPHERAL MEAT TRANSFER COEFFICIENT BTU/ (SQ.FT-MR-F)

	1	2	3	4	5	6	7	8	9	10
1	258	243	235	227	242	230	233	229	223	224
2	273	234	234	238	238	235	232	225	206	201
3	236	213	213	225	206	209	185	179	160	154
4	273	246	244	239	240	230	235	220	221	234

·----· RUN NUMBER 190 SUMMARY

ST	RE	PR	X/D	MUB	MUW	TB	TM	DENS	NU
1	9621.08	5.06	6.4	1.810	1.629	91.51	101.05	62.09	66.49
2	9676.07	5.03	15.5	1.799	1.603	92.01	102.60	62.09	59.92
3	9731.19	5.00	24.6	1.789	1.592	92.52	103.22	62.08	59.27
	9786.42	4.97	33.7	1.779	1.585	93.02	103.67	62.08	59.52
5	9841.77	4.94	42.8	1.769	1.575	93.52	104.26	62.07	59.04
6	9897.23	4.91	52.0	1.759	1.563	94.02	105.00	62.06	57.73
7	9952 82	4.87	61.1	1.749	1.550	94.52	105.81	62.06	56.16
	10008 51	4 84	70.2	1.740	1.535	95.02	106.75	62.05	54.04
9	10064 33	4.81	79.3	1.730	1.516	95.53	107.97	62.05	50.96
10	10120.25	4.79	88.4	1.720	1.508	96.03	108.50	62.04	50.80

NOTE: THULK IS GIVEN IN DEGREES FARRENHEIT MUB AND MUW ARE GIVEN IN LEN/ (FT*MR)

RUM NUMBER 1115 TEST FLUID IS DISTILLED WATER VOLUMETRIC FLOW RATE - .82 GPM

MASS FLOW RATE	-	408.8	LBM/HR
MASS FLUX	-	62285	LBM/ (SQ.FT-HR)
FLUID VELOCITY	-	.28	FT/S
ROCH TEMPERATURE	-	80.35	F
INLET TEMPERATURE	-	84.96	7
OUTLET TEMPERATURE	-	87.01	r
AVERAGE RE NUMBER	-	2951	
AVERAGE PR NUMBER	-	5.44	
CURRENT TO TUBE	-	178.0	AMPS
VOLTAGE DROP IN TUBE	-	1.40	VOLTS
AVERAGE HEAT FLUX	-	343	BTU/ (SQ. FT-HR)
Q-AMP*VOLT	-	850	BTU/HR
Q-H*C* (T2-T1)	-	836	BTU/HR
HEAT BALANCE ERROR	-	1.62	•

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	з	4	5	6	7	8	9	10
1	88.32	89.12	89.25	90.52	89.62	91.10	92.24	92.05	91.69	92.45
2	88.29	89.73	90.06	90.23	90.55	90.76	91.28	91,66	92.28	92.19
3	88.42	89.45	90.12	90.02	90.65	90.51	91.16	91.39	92.51	92.54
4	88.33	89.73	90.01	90.40	90.43	90.76	91.28	92.06	92.19	91.33

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	88.13	88.93	89.05	90.34	89.42	90.92	92.07	91.87	91.50	92.27
2	38.10	89.55	89.88	90.04	90.37	90.57	91.09	91.47	92.10	92.00
3	88.23	89.26	89.93	89.83	90.47	90.32	90.97	91.20	92.33	92.36
4	88.14	89.55	89.83	90.22	90.25	90.57	91.09	91.88	92.00	91.13

RETNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	з	4	5	6	7	8	9	10
1	3026	3054	3058	3104	3072	3125	3166	3159	3145	3173
2	3025	3076	3088	3094	3105	3113	3131	3145	3167	3164
3	3030	3066	3090	3086	3109	3104	3127	3135	3175	3177
4	3026	3076	3086	3100	3101	3113	3131	3159	3164	3132

INSIDE SURFACE REAT FLUXES BTU/ER/FT2

	1	2	3	4	5	6	7	8	9	10
1	323	338	343	318	345	315	300	319	337	301
2	325	312	314	324	313	324	334	325	319	331
3	320	330	321	330	319	330	326	335	317	304
4	324	312	315	320	316	324	334	315	321	35:

RUN NUMBER 1115

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ.FT-HR-F)

	1	2	з	4	5	6	7	8	9	3	10
ı	106	93	96	68	97	65	51	59	70		56
2	108	73	71	74	69	72	69	65	58		64
3	102	83	72	79	69	77	69	71	56	1.5	55
4	106	73	72	70	72	72	69	58	60		82

RUN NUMBER 1115 SUMMARY

	•												
ST	RE	PR	X/D	мив	MUW	тв	TM	DENS	NU				
1	2920.16	5.50	6.4	1.950	1.881	85.10	88.15	62.16	27.35				
2	2927.02	5.49	15.5	1.945	1.856	85.30	89.32	62.16	20.77				
3	2933.89	5.47	24.6	1.941	1.648	85.49	89.67	62.16	20.00				
4	2940.77	5.46	33.7	1.936	1.839	85.69	90.11	62.16	18.93				
5	2947.65	5.45	42.8	1.932	1.838	85.89	90.13	62.15	19.71				
6	2954.53	5.43	52.0	1.927	1.829	86.08	90.60	62.15	18.52				
7	2961.42	5.42	61.1	1.923	1.814	86.28	91.30	62.15	16.64				
8	2968.32	5.40	70.2	1.918	1.808	86.48	91.60	62.15	16.31				
9	2975.23	5.39	79.3	1.914	1.800	86.67	91.98	62.15	15.75				
10	2982.14	5.38	88.4	1.909	1.801	86.87	91.94	62.14	16.49				

NOTE: TBULK IS GIVEN IN DEGREES FARRENBEIT NUB AND NUW ARE GIVEN IN LBN/(FT*HR)

-	478.5 72899 .32	LBM/HR LBM/(SQ.FT-HR) FT/S
-	72899	LBM/(SQ.FT-HR) FT/S
2	. 32	FT/S
-		
	79.52	F
-	80.15	F
-	81.79	F
-	3251	
-	5.82	
-	175.0	AMPS
-	1.38	VOLTS
-	332	BTU/ (SQ. FT-HR)
-	824	BTU/HR
-	783	BTU/HR
-	4.92	•
		81.79 3251 5.82 175.0 1.38 332 824 783 4.92

........ RUN NUMBER 1155

......

•----

	-	2	3	4	5	6	7	8	9	10
1	83.41	84.94	85.51	86.01	85.12	85.64	85.50	86.18	86.44	86.73
2	83.37	84.63	85.15	85.31	85.54	85.49	85.69	85.96	86.73	86.88
3	83.45	84.30	84.98	85.00	85.56	85.36	85.80	85.88	86.95	87.39
4	83.35	84.65	85.22	85.56	85.54	85.53	85.64	86.37	86.62	85.91

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	83.23	84.76	65.33	85.84	84.93	85.46	85.32	86.00	86.26	86.55
2	83.19	84.45	84.97	85.13	85.36	85.31	85.51	85.78	86.55	86.70
3	83.27	84.12	84.80	84.81	85.38	85.18	85.62	85.70	86.77	87.22
4	83.17	84.47	85.04	85.38	85.36	85.35	85.46	86.19	86.44	85.71

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	з	4	5	6	7	8	9	10
1	3342	3404	3427	3447	3411	3432	3426	3454	3465	3477
2	3340	3391	3412	3418	3428	3426	3434	3445	3477	3483
3	3343	3377	3405	3406	3429	3421	3439	3442	3486	3504
4	3339	3392	3415	3429	3428	3428	3432	3462	3472	3442

INSIDE SURFACE HEAT FLUXES BTU/HR/FT2

	1	2	3	4	5	e	7	a	9	10
1	309	304	303	297	322	308	315	311	317	303
2	312	311	314	316	306	311	310	313	311	316
3	309	320	316	322	311	315	308	318	305	287
4	313	310	312	310	306	311	311	303	313	340

•------+ RUN NUMBER 1155

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ. FT-HR-F)

	1	2	3	4	5	6	7	8	9	10
1	104	69	63	58	79	69	76	67	67	62
2	106	77	71	72	68	73	72	71	61	63
3	102	86	75	79	69	76	69	73	58	51
4	107	76	69	66	68	72	73	62	63	84

...... RUN NUMBER 1155 SUMMARY

·-----

ST	RE	PR	X/D	NUB	HUW	тв	71	DENS	NU
1	3223.00	5.88	6.4	2.068	1.994	80.26	83.21	62.21	27.41
2	3229.28	5.86	15.5	2.064	1.965	80.42	84.45	62.21	20.10
3	3235.56	5.85	24.6	2.060	1.951	80.58	85.03	62.21	18.18
4	3241.85	5.84	33.7	2.056	1.945	80.73	85.29	62.21	17.79
5	3248.15	5.83	42.8	2.052	1.946	80.89	85.26	62.20	18.55
6	3254.44	5.81	52.0	2.048	1.945	81.05	85.32	62.20	18.95
7	3260.75	5.80	61.1	2.044	1.941	81.21	85.48	62.20	18.97
8	3267.05	5.79	70.2	2.040	1.931	81.36	85.92	62.20	17.80
9	3273 37	5.77	79.3	2.036	1.918	81.52	86.50	62.20	16.26
10	3279 69	5.76	88.4	2.032	1.917	81.68	86.55	62.20	16.65

NOTE: TBULK IS GIVEN IN DEGREES FARRENBEIT MUB AND MUM ARE GIVEN IN LBM/(FT*HR)

•-----RUN NUNBER 1159 TEST FLUID IS DISTILLED WATER

VOLUMETRIC FLOW RATE	-	1.00	GPM
HASS FLOW RATE		501.1	LBM/ER
HASS FLUX	-	76344	LEM/ (SQ. FT-HR)
FLUID VELOCITY	-	.34	FT/S
ROOM TEMPERATURE		81.34	F
INLET TEMPERATURE	-	80.66	Ŧ
OUTLET TEMPERATURE	-	82.27	F
AVERAGE RE NUMBER	•	3425	
AVERAGE PR NUMBER	-	5.78	
CURRENT TO TUBE	-	175.0	AMPS
VOLTAGE DROP IN TUBE	-	1.39	VOLTS
AVERAGE HEAT FLUX	-	335	BTU/ (SQ. FT-HR)
Q-AND VOLT	-	830	BTU/HR
Q-N*C* (T2-T1)	•	805	BTU/ER
HEAT BALANCE ERROR	-	2.96	•

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	83.79	85.21	85.69	85.96	85.30	85.97	96.00	86.52	86.71	86.99
2	83.87	85.02	85.49	85.58	85.80	85.86	86.14	86.33	87.01	87.17
3	83.99	84.77	85.40	85.37	85.90	85.79	86.28	86.31	87.31	87.67
4	83.76	85.05	85.50	85.80	85.76	85.89	86.07	86.74	86.90	86.15

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	83.61	85.03	85.51	85.78	85.11	85.79	85.82	86.34	86.53	86.81
2	83.69	84.84	85.31	85.40	85.62	85.68	85.96	86.15	86.83	86.99
3	83.81	84.59	85.22	85.19	85.72	95.61	86.10	86.13	87.13	87.50
4	83.58	84.87	85.32	85.62	85.58	85.71	85.89	86.56	86.72	85.95

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	3	4	5	6	7	8	9	10
1	3516	3576	3597	3608	3579	3608	3610	3632	3640	3652
2	3519	3568	3588	3592	3601	3604	3616	3624	3653	3660
3	3524	3557	3584	3583	3605	3601	3622	3623	3666	3582
4	3514	3569	1588	3601	3599	3605	3613	3642	3648	3615

INSIDE SURFACE HEAT FLUXES BTU/HR/ FT2

1	2	3	4	5	6	7	8	9	10
312	307	306	305	323	309	314	312	318	303
311	310	313	313	306	312	311	314	312	316
307	318	314	319	308	314	307	317	303	287
314	310	312	308	307	311	313	303	314	341
	1 312 311 307 314	1 2 312 307 311 310 307 318 314 310	1 2 3 312 307 306 311 310 313 307 318 314 314 310 312	1 2 3 4 312 307 306 305 311 310 313 313 307 318 314 319 314 310 312 308	1 2 3 4 5 312 307 306 305 323 311 310 313 313 306 307 318 314 319 308 314 310 312 308 307	1 2 3 4 5 6 312 307 306 305 323 309 311 310 313 313 306 312 307 318 314 319 308 314 314 310 312 308 307 311	1 2 3 4 5 6 7 312 307 306 305 323 309 314 311 310 313 313 306 312 311 307 318 314 319 308 314 307 314 310 312 308 307 313 313 313	1 2 3 4 5 6 7 8 312 307 306 305 323 309 314 312 311 310 313 313 306 312 311 314 307 318 314 319 308 314 307 317 314 310 312 308 307 311 313 303	1 2 3 4 5 6 7 8 9 312 307 306 305 323 309 314 312 318 311 310 313 313 306 312 311 314 312 307 318 314 319 308 314 307 317 303 314 310 312 308 307 311 313 303 314

·----_. RUN NUMBER 1159

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ. FT-HR-F)

	1	2	э	4	5	6	7	8	9	10
1	109	74	69	67	86	72	76	69	70	65
2	106	79	74	75	72	75	73	73	64	65
3	100	86	75	80	71	77	69	74	59	53
4	111	78	73	70	73	74	74	64	66	90

RUN NUMBER 1159 SUNMARY

5 T	RE	PR	X/D	млв	MUW	тв	TW	DENS	NU
1	3396.52	5.83	6.4	2.055	1.983	80.77	83.67	62.21	27.89
2	3402.99	5.82	15.5	2.051	1.956	80.92	84.83	62.20	20.72
3	3409.47	5.81	24.6	2.047	1.944	81.08	85.34	62.20	19.01
4	3415.95	5.80	33.7	2.043	1.941	81.23	85.50	62.20	19.00
5	3422.43	5.79	42.8	2.039	1.940	81.39	85.51	62.20	19.65
6	3428.92	5.77	52.0	2.035	1.936	81.54	85.70	62.20	19.50
7	3435 42	5.76	61.1	2.032	1,930	81.70	85.94	62.20	19.08
	3441 92	5.75	70.2	2.028	1.922	81.85	86.29	62.20	18.23
9	3448 42	5.74	79.3	2.024	1.911	82.01	86.80	62.19	16.89
10	3454.93	5.72	88.4	2.020	1.911	82.16	86.81	62.19	17.41

NOTE: TBULK IS GIVEN IN DEGREES FAHRENBEIT NUB AND HUW ARE GIVEN IN LBH/(FT*HR)

RUN NU	BER	1167	
TEST FLUID IS	DIS	TILLED W	ATER
•			•••••
VOLUMETRIC FLOW RATE		1.24	GPM
MASS FLOW RATE	-	616.6	LEN/HR
MASS FLUX	-	93949	LBM/ (SQ. FT-HR)
FLUID VELOCITY	-	- 42	FT/S
ROOM TEMPERATURE	-	81.42	F
INLET TEMPERATURE	•	80.09	
OUTLET TEMPERATURE	-	81.39	F
AVERAGE RE NUMBER	-	4178	
AVERAGE PR NUMBER	-	5.84	
CURRENT TO TUBE	-	175.0	AMPS
VOLTAGE DROP IN TUBE	-	1.39	VOLTS
AVERAGE HEAT FLUX	-	335	BTU/ (SQ.FT-HR)
Q-AND VOLT	-	830	BTU/HR
Q-M*C* (T2-T1)	-	800	BTU/ER
BEAT BALANCE ERROR	-	3.57	

1

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	82.84	83.75	84.14	84.24	84.38	84.71	84.82	85.04	85.53	85.67
2	82.98	83.78	84.04	84.10	84.44	84.60	84.79	84.93	85.55	85.74
3	82.92	83.64	84.06	83.96	84.51	84.55	84.98	84.95	85.88	86.28
4	82.78	83.77	84.03	84.25	84.44	84.63	84.74	85.32	85.46	84.76

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	э	10
1	82.66	83.57	83.96	84.06	84.20	84.53	84.64	84.86	85.35	85.50
2	82.70	83.60	83.86	83.92	84.26	84.42	84.61	84.75	85.37	85.56
3	82.74	83.46	83.88	83.78	84.33	84.37	84.80	84.77	85.70	86.11
4	82.60	83.59	83.85	84.07	84.26	84.45	84.56	85.14	85.28	84.56

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	ĩ	3	4	5	6	7	8	9	10
1	4277	4324	4345	4350	4357	4374	4380	4392	4417	4425
2	4279	4326	4339	4343	4360	4369	4379	4386	4418	4428
з	4281	4318	4340	4335	4364	4366	4389	4387	4436	4458
4	4274	4325	4339	4350	4360	4370	4376	4407	4414	4376

INSIDE SURFACE HEAT FLUXES BTU/HR/FT2

	1	2	з	4	5	6	7	8	9	10
1	311	312	308	309	312	309	310	313	311	301
2	311	309	312	311	311	312	314	313	315	317
3	309	314	310	316	309	313	306	316	302	286
4	313	309	313	307	311	311	315	303	317	341

RUN NUMBER 1167

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ.FT-HR-F)

	1	2	3	4	5	6	7	8	9	10
1	125	95	87	88	88	82	83	82	74	71
2	123	93	91	92	87	86	85	84	75	74
3	120	99	90	98	84	87	79	85	66	59
4	129	94	91	87	87	85	86	74	77	104

RUN NUMBER 1167 SUNDARY

ST	P.E	PR	X/D	MUB	MUW	тв	TW	DENS	NU
1	4149.39	5.88	6.4	2.070	2.007	80.18	82.67	62.21	32.43
2	4155.80	5.87	15.5	2.067	1.986	80.30	83.55	62.21	24.91
3	4162.22	5.86	24.6	2.063	1.978	80.43	83.89	62.21	23.42
4	4168.64	5.85	33.7	2.060	1.977	80.55	83.96	62.21	23.79
5	4175.06	5.84	42.8	2.057	1.969	80.68	84.26	62.21	22.60
6	4181.49	5.83	52.0	2.054	1.965	80.80	84.44	62.21	22.26
7	4187.92	5.82	61.1	2.051	1.960	80.93	84.65	62.20	21.75
8	4194.35	5.81	70.2	2.048	1.955	81.05	84.86	62.20	21.17
9	4200.79	5.80	79.3	2.044	1.942	81.18	85.42	62.20	19.08
10	4207.23	5.79	88.4	2.041	1.942	81.30	85.43	62.20	19.62

NOTE: TBULK IS GIVEN IN DEGREES FARRENHEIT MUB AND MUM ARE GIVEN IN LEW/(FT*HR)

		*******	· · · · · · · · · · · · · · · · · · ·
RUN NUR	GER	1169	
TEST FLUID IS	DIS	TILLED W	TER
•			••••••
VOLUMETRIC FLOW RATE	-	1.30	GPM
MASS FLOW RATE	-	649.2	LBM/HR
HASS FLUX	-	98909	LEM/ (SQ.FT-HR)
FLUID VELOCITY	-	. 44	FT/S
ROOM TEMPERATURE	-	82.30	8
INLET TEMPERATURE	-	80.33	F
OUTLET TEMPERATURE	-	81.77	F
AVERAGE RE NUMBER	-	4415	
AVERAGE PR NUMBER	-	5.81	
CURRENT TO TUBE	-	190.0	AMPS
VOLTAGE DROP IN TUBE	-	1.52	VOLTS
AVERAGE HEAT FLUX	-	397	BTU/ (SQ. FT-HR)
Q-AMP VOLT		985	BTU/HR
Q-H+C* (T2-T1)	-	933	BTU/HR
HEAT BALANCE ERROR	-	5.28	

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	9	9	10
1	83.49	84.41	84.77	84.92	85.09	85.41	85.53	85.76	86.28	86.44
2	83.51	84.44	84.72	84.79	85.14	85.31	85.52	85.66	86.33	86.54
3	83.51	84.33	84.72	84.65	85.23	85.29	85.76	85.76	86.72	87.13
4	83.41	84.39	84.65	84.90	85.13	85.33	85.44	86.03	86.22	85.53

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	83.28	84.20	84.56	84.71	84.88	85.20	85.32	85.55	86.07	86.23
2	83.30	84.23	84.51	84.58	84.93	85.10	85.31	85.45	86.12	86.32
з	83.30	84.12	84.51	84.43	85.02	85.08	85.55	85.55	86.51	86.93
4	83.20	84.18	84.44	84.69	84.92	85.12	85.22	85.82	86.00	85.30

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	ı	2	3	4	5	6	7	8	9	10
1	4537	4587	4607	4615	4625	4642	4649	4662	4690	4700
Z	4538	4589	4604	4608	4627	4637	4648	4656	4693	4705
3	4538	4583	4604	4600	4632	4636	4662	4662	4715	4739
4	4532	4586	4600	4614	4627	4638	4644	4677	4687	4648

INSIDE SURFACE HEAT FLUXES BTU/HR/FT2

	1	z	3	4	5	6	7	8	9	10
1	366	367	365	365	368	365	366	369	367	357
2	366	365	367	367	367	368	370	370	371	373
3	365	369	366	372	365	368	360	369	356	340
4	369	366	369	364	368	367	372	360	374	398

•---------AUN NUMBER 1169

PERIPHERAL HEAT TRANSFER CONFFICIENT BTU/ (SQ.FT-HR-F)

	1	2	3	4	5	6	7	8	9	10
1	128	101	94	94	94	89	90	89	81	78
2	127	99	96	98	93	92	91	91	81	80
3	127	104	96	103	90	93	83	89	71	64
4	133	101	99	94	93	92	93	81	83	109

---• ·----RUN NUMBER 1169 SUMMARY

· ----......

ST	RE	PR	X/D	HUB	HUW	TB	TN	DENS	NU
1	4381.94	5.86	6.4	2.063	1.993	80.43	83.27	62.21	33.61
2	4389.43	5.85	15.5	2.060	1.971	80.57	84.18	62.21	26.42
3	4396.92	5.84	24.6	2.056	1.964	80.70	84.50	62.21	25.14
4	4404.41	5.83	33.7	2.053	1.961	80.84	84.60	62.21	25.40
5	4411.92	5.82	42.8	2.049	1.954	80.98	84.94	62.20	24.15
6	4419.42	5.81	52.0	2.046	1.949	81.12	85.12	62.20	23.85
7	4426.93	5.80	61.1	2.042	1.944	81.26	85.35	62.20	23.33
8	4434.45	5.78	70.2	2.039	1.938	81.40	85.59	62.20	22.77
9	4441.97	5.77	79.3	2.036	1,925	81.53	86.17	62.20	20.58
10	4449.50	5.76	88.4	2.032	1,925	81.67	86.20	62.20	21.11

NOTE: TBULK IS GIVEN IN DEGREES FARRENHEIT MUB AND MUW ARE GIVEN IN LONY (FT*HR)

••••••••••••••••••••••			
RUN NU	GE	1173	
TEST FLUID IS	DI	TILLED W	ATER
•			••••••
VOLUMETRIC FLOW RATE	-	1.51	GPM
MASS FLOW RATE	-	753.2	LBM/HR
MASS FLUX	-	114748	LBM/ (SO.FT-HR)
FLUID VELOCITY	-	.51	FT/S
ROOM TEMPERATURE	-	80.32	r
INLET TEMPERATURE	-	79.16	F
OUTLET TEMPERATURE	-	80.69	F
AVERAGE RE NUMBER	-	5052	
AVERAGE PR NUMBER	-	5.90	
CURRENT TO TUBE	-	215.0	AMPS
VOLTAGE DROP IN TUBE	-	1.72	VOLTS
AVERAGE HEAT FLUX	-	509	BTU/ (SQ.FT-HR)
Q-AMP VOLT	-	1261	BTU/HR
Q-N*C* (T2-T1)	-	1150	STU/HR
HEAT BALANCE ERROR	-	8.81	1

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	82.54	83.43	83.84	84.02	84.15	84.53	84.72	85.00	85.55	85.72
z	82.59	83.51	83.81	83.92	84.31	84.51	84.75	84.94	85.71	85.94
3	82.78	83.39	83.86	83.79	84.48	84.53	85.11	85.07	86.23	86.72
4	82.44	83.46	83.75	84.03	84.29	84.54	84.69	85.34	85.55	84.88

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	82.27	83.16	83.57	83.75	83.88	84.26	84.45	84.73	85.28	85.45
2	62.32	83.24	83.54	83.65	84.04	84.24	84.48	84.67	85.44	85.66
3	82.51	83.12	83.59	83.52	84.21	84.26	84.84	84.80	85.97	86.47
4	82.17	83.19	83.48	83.76	84.02	84.27	84.41	85.07	85.27	84.59

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	3	4	5	6	7	8	9	10
1	5199	5255	5282	5293	5301	5326	5338	5355	5391	5402
2	5202	5261	5280	5287	5312	5324	5339	5352	5401	5416
3	5215	5253	5283	5278	5323	5326	5363	5360	5435	5467
4	5193	5257	5276	5294	5310	5326	5336	5378	5391	5347

INSIDE SURFACE HEAT FLUXES BTU/ER/FT2

	1	2	3	•	5	6	7	8	9	10
1	468	471	468	468	473	470	470	473	472	463
2	471	467	470	469	470	470	474	472	475	477
3	462	472	468	474	465	470	460	472	455	438
4	475	468	472	466	470	470	475	462	479	503

•----RUN NUMBER 1173

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ.FT-HR-F)

	1	2	3	4	5	6	7	8	9	10
1	156	125	116	115	117	110	109	106	97	95
2	154	122	118	119	112	111	109	108	95	94
3	142	127	116	124	106	110	98	104	82	74
4	163	124	120	115	112	110	111	96	99	125

•-----..... RUN NUMBER 1173 SUNMARY

ST	RE	PR	x/D	MUB	HUW	TB	TW	DENS	NU
1	5010.86	5.96	6.4	2.093	2.016	79.26	82.32	62.22	40.08
2	5020.04	5.95	15.5	2.090	1.995	79.41	83.18	62.22	32.51
3	5029.22	5.93	24.6	2.086	1.987	79.56	83.54	62.22	30.71
4	5038.41	5.92	33.7	2.082	1.984	79.70	83.67	62.22	30.88
5	5047.61	5.91	42.8	2.078	1.975	79.85	84.04	62.21	29.25
6	5056.81	5.90	52.0	2.074	1.970	80.00	84.26	62.21	28.75
7	5066.02	5.89	61.1	2.071	1.963	80.15	84.55	62.21	27.81
8	5075.24	5.87	70.2	2.067	1.956	80.29	84.82	62.21	27.06
9	5084.46	5.86	79.3	2.063	1.941	80.44	85.49	62.21	24.25
10	5093.69	5.85	88.4	2.059	1.940	80.59	85.54	62.21	24.70

NOTE: TBULK IS GIVEN IN DEGREES FAHRENHEIT MUB AND MUW ARE GIVEN IN LBM/(FT*HR)

		*					•••••			
			TEST F	RUN NUN	DISTILL	5 ED WATE	P			
		•								
		VOLUN	ETRIC FI	OW PATE	- 1	.52 G	PM			
		MASS	FLOW RAT	E	- 75	7.1 LI	BM/HR			
		FLUI	FLUX VELOCIT	TY .	- 115	51 E	BM/ (SQ.FT-	-HR)		
		ROOM	TEMPERAT	URE	- 81.	.59 F				
		OUTL	TEMPERA	TURE	- 79.	.50 F				
		AVER	GE RE M	THE ER	- 5	101				
		CURRI	GE PR M	MBER	- 5	.87	where a			
		VOLT	GE DROP	IN TUBE	- 1	.72 V	OLTS			
		AVERJ O-AM	GE HEAT	FLUX	2 .	516 B'	TU/ (SQ. FT-	-HR)		
		Q-N*0	T2-T1	i.	- 1	194 B	TU/HR			
		REAT	BALANCE	ERROR	- 6	. 64 %				
		our	SIDE SUR	FACE TO	PERATUR	ES - DE	GREES F			
	1	2	3	4	5	6	7	8	9	10
1	82.99	83.67	84.19	84.43	84.65	85.00	85.16	85.41	85.97	86.14
2	82.94	83.88	84.19	84.34	84.74	84.94	85.19	85.34	86.07	86.32
4	82.90	83.81	84.12	84.42	84.92	85.02	85.09	85.53	86.60	87.06
		IN	SIDE SUR	ACE TEN	PERATURE	S - DEG	REES F			
	1	2	3	4	5	6	7	8	9	10
1	82.71	83.39	83.91	84.15	84.37	84.72	84.88	85.13	85.69	85.86
3	82.75	83.60	83.98	63.98	84.64	84.74	85.26	85.25	86.33	86.80
4	82.62	83.53	83.84	84.14	84.43	84.69	84.81	85.43	85.65	84.99
		RE	NOLDS N	MBER AT	THE INS	IDE TUB	E WALL			
	1	z	3	4	5	6	7	8	9	10
1	5255	5298	5331	5347	5361	5383	5394	5410	5446	5457
2	5251	5311	5331	5341	5366	5379	5395	5405	5452	5468
4	5249	5307	5327	5346	5365	5381	5389	5429	5443	5401
		5		BEACE IN		FC 0771/	um / 1777?			
							-			10
	1	-		•			'	8	,	10
1	481	487	482	482	485	482	483	486	484	475
Ĵ	480	482	480	486	478	482	473	483	469	452
4	485	482	485	481	485	484	490	477	492	516
					DE0 117					
				•		•				
	P	ERIPHER	L HEAT 1	RANSFER	COEFFIC	IENT BT	U/ (SQ. FT-	HR-F)		
	1	2	3	4	5	6	7	8	9	10
1	154	134	120	117	116	110	110	109	99	97
3	152	125	118	124	108	110	100	105	85	77
4	161	127	123	118	115	112	114	100	102	128
				•						
				RUN NUN SUN	MBER 117	5 -•				
т	RE	PR	X/D	MUB	NUM	тв	TH	DENS	NU	
	5058 70	5.97	6.4	2 085	2.007	79.61	82.59	62.22	40.84	

ST	RE	PR	K/D	NUB	NUW	тв	TH	DENS	NU
1	5058.70	5.93	6.4	2.085	2.007	79.61	82.69	62.22	40.84
2	5068.25	5.92	15.5	2.081	1.987	79.76	83.53	62.22	33.36
3	5077.80	5.90	24.6	2.077	1.978	79.91	83.91	62.21	31.46
4	5087.35	5.89	33.7	2.073	1.974	80.06	84.08	62.21	31.29
5	5096.92	5.88	42.8	2.069	1.964	80.21	84.48	62.21	29.52
6	5106.49	5.87	52.0	2.065	1,959	80.37	84.70	62.21	29.01
7	5116.06	5.85	61.1	2.061	1.953	80.52	84.95	62.21	28.30
8	5125.65	5.84	70.2	2.057	1.947	80.67	85.22	62.21	27.66
	5135.24	5.87	79.3	2.053	1.932	80.82	85.86	62.21	24.96
10	5144.84	5.82	88.4	2.050	1.931	80.97	85.92	62.20	25.43

NOTE: TBULK IS GIVEN IN DEGREES FAHRENBEIT MUB AND MUM ARE GIVEN IN LBM/(FT*HR)

	RUN	NUN	GER	1179	
TEST	FLUTD	IS	DIST	ILLED	WATER

1

OLUMETRIC FLOW RATE	÷.	2.38	GPM
CASS FLOW RATE	-	1188.6	LBM/HR
CASS FLUX	-	181086	LBM/ (SQ.FT-HR)
LUID VELOCITY	-	.80	FT/S
COON TEMPERATURE	-	80.38	F
NLET TEMPERATURE	-	78.71	F
OUTLET TEMPERATURE	-	79.61	F
VERAGE RE NUMBER	-	7897	
VERAGE PR NUMBER	-	5.97	
URRENT TO TUBE	-	205.0	AMPS
OLTAGE DROP IN TUBE	-	1.64	VOLTS
VERAGE HEAT FLUX	-	463	BTU/ (SQ.FT-HR)
-AMP* VOLT	-	1147	BTU/HR
-H*C* (T2-T1)	-	1068	BTU/HR
TEAT BALANCE ERROR	-	6.88	•

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3		5	6	7	8	9	10
1	80.83	81.29	81.48	81.66	81.93	82.12	82.22	82.49	83.39	83.44
2	80.95	81.41	81.54	81.68	82.03	82.14	82.29	82.44	83.43	83.59
3	81.17	81.55	81.69	81.68	82.25	82.30	82.74	82.65	83.76	84.04
4	80.92	81.41	81.49	81.75	81.97	82.16	82.27	83.14	83.18	82.20

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	80.58	81.04	81.23	81.41	81.68	81.87	81.97	82.24	83.14	83.20
2	80.70	81.16	81.29	81.43	81.78	81.89	82.04	82.19	83.18	83.34
3	80.93	81.30	81.45	81.43	82.01	82.05	82.50	82.40	83.52	83.81
4	80.67	81.16	81.24	81.50	81.72	81.91	82.02	82.90	82.93	81.93

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	з	4	5	6	7	8	9	10
1	8037	8083	8102	8120	8147	8166	8176	8202	8293	8298
2	8049	8095	8108	8122	8157	8168	8182	8197	8296	8312
3	8072	8109	8123	8122	8179	8184	8228	8218	8330	8359
4	8046	8095	8103	8129	8151	8170	8180	8268	8271	8172

INSIDE SURFACE HEAT FLUXES BTU/ER/FT2

	1	2	3	4	5	6	7	8	9	10
1	429	429	427	428	428	427	428	434	425	413
2	427	426	427	426	428	428	431	430	430	430
3	420	423	422	427	420	423	415	430	415	398
4	428	426	429	424	429	428	432	412	436	465

----RUN NUMBER 1179

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (50. FT-BR-F)

	1	2	3	4	5	6	7	8	9	10
E.	236	196	186	179	167	160	159	151	115	113
è -	221	185	182	177	160	159	156	152	115	113
3	195	172	168	178	145	148	129	142	102	93
1	225	185	186	171	165	158	158	117	126	195

RUN NUMBER 1179 SUMMARY

ST	RE	PR	X/D	MUB	MUW	TB	TW	DENS	NU
1	7859.36	6.00	6.4	2.106	2.056	78.77	80.72	62.22	57.01
2	7867.86	5.99	15.5	2.104	2.045	78.86	81.17	62.22	48.13
3	7876.36	5.98	24.6	2.102	2.041	78.94	81.30	62.22	47.14
4	7884.86	5.98	33.7	2.100	2.038	79.03	81.45	62.22	46.05
5	7893.37	5.97	42.8	2.097	2.029	79.12	81.80	62.22	41.49
6	7901.88	5.96	52.0	2.095	2.026	79.20	81.93	62.22	40.74
7	7910.40	5.96	61.1	2.093	2.021	79.29	82.13	62.22	39.12
8	7918.91	5.95	70.2	2.090	2.013	79.38	82.43	62.22	36.39
9	7927.44	5.94	79.3	2.088	1.995	79.46	83.19	62.22	29.83
10	7935.96	5.93	88.4	2.086	1.998	79.55	83.07	62.22	31.60

NOTE: TBULK IS GIVEN IN DEGREES FAHRENBEIT MUB AND MUW ARE GIVEN IN LBM/(FT*ER)

------RUN NUMBER 1177 TEST FLUID IS DISTILLED WATER

ľ

•----

-	2.14	GPN
-	1067.2	LBM/HR
-	162598	LBM/ (30.FT-HR)
-	.72	FT/S
-	80.91	F
-	78.90	E
•	79.62	F
-	7100	
-	5.96	
-	178.0	AMPS
-	1.42	VOLTS
-	348	BTU/ (SQ. FT-HR)
-	862	BTU/HR
-	767	BTU/HR
-	11.03	•
		- 2.14 - 1067.2 - 162598 72 - 80.91 - 78.90 - 79.62 - 7100 - 5.96 - 178.0 - 1.42 - 348 - 862 - 767 - 11.03

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	80.83	81.15	81.37	81.40	81.67	81.83	81.90	82.15	84.62	84.53
2	80.84	81.19	81.31	81.40	81.72	81.82	81.97	82.07	62.89	82.94
3	81.01	81.38	81.39	81.31	81.87	81.88	82.31	82.13	83.18	83.39
4	80.81	81.22	81.25	81.49	81.69	81.85	81.96	82.70	82.76	81.80

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	•	5	6	7	8	9	10
1	80.64	80.96	81.18	81.21	81.48	81.64	81.71	81.96	84.46	84.37
2	80.65	81.00	81.12	81.21	81.53	81.63	81.78	81.88	82.69	82.74
3	80.83	81.20	81.21	81.12	81.69	81.69	82.13	81.94	83.00	83.22
4	80.62	81.03	81.06	81.31	81.50	81.66	81.77	82.52	82.56	81.58

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	3	4	5	6	7	8	9	10
1	7222	7251	7271	7273	7297	7311	7318	7340	75 65	7557
2	7223	7254	7265	7273	7302	7311	7324	7333	7405	7410
3	7239	7272	7272	7265	7315	7316	7355	7338	7433	7453
4	7220	7257	7260	7281	7299	7313	7323	7390	7393	7306

INSIDE SURFACE HEAT FLUXES BTU/HR/ET2

	:	2	з	4	5	6	7	8	9	10
1	321	322	319	322	322	321	323	327	277	268
2	323	323	323	320	322	322	325	323	346	347
3	316	317	318	324	317	320	313	328	313	296
4	324	322	324	318	323	321	325	307	350	375

•-----RUN NUMBER 1177

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ. FT-HR-F)

	1	2	3	4	5	6	7	8	9	10
1	189	165	152	156	142	137	137	129	56	55
2	189	162	158	155	139	137	134	132	108	109
3	168	145	150	165	129	133	113	130	89	81
4	193	160	164	148	142	135	135	99	114	186

•-----... RUN NUMBER 1177 SUNMARY

ST	RE	PR	X/D	MUB	HUW	TB	TW	DENS	NU
1	7072.64	5.98	6.4	2.102	2.057	78.95	80.69	62.22	48.23
2	7078.75	5.98	15.5	2.100	2.048	79.02	81.05	62.22	41.26
3	7084.86	5.97	24.6	2.098	2.045	79.09	81.14	62.22	40.75
4	7090.97	5.97	33.7	2.096	2.044	79.16	81.21	62.22	40.73
5	7097.09	5.96	42.8	2.094	2.035	79.23	81.55	62.22	36.03
6	7103.20	5.95	52.0	2.093	2.032	79.29	81.66	62.22	35.45
7	7109.32	5.95	61.1	2.091	2.028	79.36	81.85	62.22	33.74
8	7115.44	5.94	70.2	2.089	2.022	79.43	82.08	62.22	31.72
9	7121.57	5.94	79.3	2.087	1.995	79.50	83.18	62.22	22.83
10	7127.69	5.93	88.4	2.085	2.000	79.57	82.98	62.22	24.62

NOTE: TBULK IS GIVEN IN DEGREES FARRENHEIT MUB AND MUW ARE GIVEN IN LEN/(FT*RR)

•-----RUN NUNGER 1184 TEST FLUID IS DISTILLED WATER 4.42

-	4.43	GPM
-	2208.7	LEM/HR
-	336507	LBM/ (SQ. FT-HR)
-	1.49	FT/S
-	81.44	F
-	78.96	F
-	80.46	F
-	14776	
-	5.92	
-	345.0	AMPS
-	2.70	VOLTS
•	1283	BTU/ (SQ.FT-HR)
-	3178	BTU/ER
-	3308	BTU/HR
-	-4.08	•
		 4.43 2208.73 336507 1.49 81.44 78.96 80.46 14776 5.92 345.0 2.70 1283 3178 -4.08

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	83.23	83.51	83.91	84.05	84.30	84.47	84.66	84.93	85.50	85.67
2	83.20	83.72	83.88	84.09	84.45	84.59	84.80	84.99	85.95	86.34
3	83.82	84.45	84.26	84.33	85.17	85.34	85.95	85.95	87.32	87.95
4	83.22	83.69	83.73	84.07	84.30	84.62	84.73	85.46	85.66	84.95

INSIDE SURFACE TEMPERATURES - DEGREES P

	1	2	3	4	5	6		8	2	10
1	82.53	82.81	83.21	83.35	83.60	83.77	83.96	84.23	84.79	84.97
2	82.50	83.02	83.18	83.39	83.75	83.89	84.09	84.28	85.24	85.63
3	83.13	83.76	83.57	83.63	84.48	84.65	85.27	85.26	86.64	87.28
4	82.52	82.99	83.02	83.37	83.59	83.92	84.02	84.76	84.95	84.22

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	3	4	5	6	7	8	9	10
1	15296	15348	15423	15449	15495	15527	15562	15612	15719	15752
2	15290	15387	15417	15456	15523	15549	15588	15623	15803	15877
3	15408	15525	15489	15502	15660	15692	15808	15807	16067	16189
4	15294	15381	15388	15452	15494	15555	15574	15713	15748	15612

TASIDE SURFACE HEAT FLUXES BTU/HE/FT2

	1	2	3	4	5	6	7	8	9	10
1	1209	1215	1207	1211	1212	1214	1214	1218	1220	1212
2	1217	1216	1215	1212	1217	1218	1223	1222	1223	1223
3	1194	1191	1198	1204	1190	1192	1181	1193	1173	1154
4	1217	1217	1219	1213	1221	1218	1225	1210	1230	1259

...... RUN NUMBER 1184

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ.FT-HR-F)

	1	2	3	4	5	6	7	н	9	10
1	348	337	312	314	306	304	301	293	266	262
2	354	319	317	311	296	297	293	290	243	232
3	293	261	284	290	245	245	221	229	182	166
4	352	322	331	313	308	294	299	258	260	325

RUN NUNBER 1184 SUNMARY

ST	RE	PR	x/p	млв	мли	тв	TM	DENS	NU
1	14657.80	5.97	6.4	2.099	2.008	79.06	82.67	62.22	87.42
ž	14684.16	5.96	15.5	2.095	1.996	79.21	83.14	62.22	80.09
3	14710.53	5.95	24.6	2.091	1.994	79.35	83.24	62.22	80.94
4	14736.93	5.94	33.7	2.087	1.989	79.49	83.43	62.22	80.00
5	14763.34	5.97	42.8	2.084	1.979	79.64	83.85	62.22	74.77
6	14789.77	5 91	52.0	2.080	1.974	79.78	84.05	62.22	73.80
7	14816.22	5.90	61.1	2.076	1.968	79.93	84.33	62.21	71.52
	14842 69	5 89	70.2	2.073	1.961	80.07	84.63	62.21	69.12
õ	14869 17	5 88	79 3	2 069	1.943	80.21	85.41	62.21	60.74
10	14895.68	5.87	68.4	2.065	1.940	80.36	85.53	62.21	61.03

NOTE: TBULK IS GIVEN IN DEGREES FARRENHEIT MUB AND MUM ARE GIVEN IN LBM/(FT*HR)

..... . RUN NUMBER 1186 TEST FLUID IS DISTILLED WATER

-

VOLUMETRIC FLOW RATE	-	2.36	GPN
MASS FLOW RATE	-	1177.8	LBM/HR
MASS FLUX	-	179442	LBM/ (SQ. FT-HR)
FLUID VELOCITY	-	.80	FT/S
ROOM TEMPERATURE	-	83.07	T
INLET TEMPERATURE	-	78.51	F
OUTLET TEMPERATURE	-	81.46	F
AVERAGE RE NUMBER	-	7906	
AVERAGE PR NUMBER	-	5.90	
CURRENT TO TUBE	-	355.0	AMPS
VOLTAGE DROP IN TUBE	-	2.80	VOLTS
AVERAGE HEAT FLUX	-	1369	BTU/ (SO. FT-HR)
Q-AHP VOLT	-	3391	BTU/HR
Q=N*C* (T2-T1)	-	3469	BTU/HR
BEAT BALANCE ERROR	-	-2.29	۱.

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	2	2	3	4	5	6	7	8	9	10
1	85.03	85.77	86.54	86.87	87.15	87.62	87.94	88.29	88.99	89.28
2	85.09	86.17	86.56	86.84	87.36	87.65	88.07	88.39	89.43	89.92
3	85.61	86.80	86.81	87.04	88.04	88.33	89.17	89.31	90.83	91.64
4	85.00	86.03	86.36	86.76	87.25	87.69	87.90	88.69	89.06	88.59

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	э	4	5	6	7	8	9	10
1	84.29	85.02	85.80	86.13	86.41	86.88	87.20	87.54	88.24	88.54
2	84.35	85.43	85.82	86.10	86.61	86.90	87.32	87.64	88.68	89.17
3	84.88	86.07	86.07	86.30	87.31	87.60	88.44	88.58	90.11	90.93
4	84.25	85.28	85.61	86.02	86.50	86.94	87.15	87.95	88.31	87.82

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	3	4	5	6	7	8	9	10
1	8331	8405	8483	8516	8544	8591	8624	8659	8730	8760
2	8337	8445	8485	8513	8565	8594	8636	8669	8774	8624
3	8390	8510	8510	8533	8635	8664	8750	8764	8921	9005
4	8328	8431	8464	8505	8554	8598	8619	8700	8736	8687

INSIDE SURFACE HEAT FLUXES BTU/HR/FT2

	1	2	з	4	5	6	7	8	9	10
1	1283	1292	1281	1282	1288	1286	1286	1292	1293	1286
2	1288	1286	1286	1286	1290	1293	1297	1296	1298	1300
3	1268	1265	1275	1278	1266	1268	1255	1266	1246	1226
4	1290	1289	1291	1289	1293	1292	1301	1288	1308	1334

•----• RUN NUMBER 1186

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ. FT-HR-F)

	1	z	з	4	5	6	7	8	9	10
1	229	214	196	195	196	190	189	188	178	176
2	228	199	196	196	190	190	187	186	168	164
3	205	178	187	189	169	169	156	160	136	126
4	232	205	203	199	194	189	193	177	178	201

..... RUN NUMBER 1186 SUMMARY

37	RE	PR	X/D	NUTB	HUW	тв	TW	DENS	NU
1	7781.95	6.00	6.4	2.108	1.965	78.71	84.44	62.23	58.34
2	7809.55	5.98	15.5	2.101	1.942	78.99	85.45	62.22	51.80
3	7837.19	5.96	24.6	2.093	1.933	79.28	85.83	62.22	51.07
4	7864.87	5.93	33.7	2.086	1.926	79.56	86.14	62.22	50.86
4	7892.59	5.91	42.8	2.078	1.913	79.84	86.71	62.21	48.72
6	7920.35	5.89	52.0	2.071	1,905	80.13	87.08	62.21	48.09
7	7948 14	5 86	61.1	2.064	1.895	80.41	87.53	62.21	46.98
a	7975 97	5.84	70.2	2.057	1.886	80.69	87.93	62.21	46.22
	8002 84	5 82	79 3	2 050	1.866	80.98	88.83	62.20	42.56
10	8031.75	5.80	88.4	2.042	1.860	81.26	89.11	62.20	42.57

NOTE: TBULK IS GIVEN IN DEGREES FABRENEEIT MUB AND MUW ARE GIVEN IN LBM/(FT*HR)

RUN NUNBER 1191 TEST FLUID IS DISTILLED WATER

VOLUMETRIC FLOW RATE	-	2.36	GPM
WASS FLOW RATE	-	1179.8	LEN/ER
MASS FLUX	-	179745	LBM/ (SQ.FT-HR)
FLUID VELOCITY	-	.80	FT/S
ROOM TEMPERATURE	-	75.72	T
INLET TEMPERATURE	-	77.96	r
OUTLET TEMPERATURE	-	78.70	F
AVERAGE RE NUMBER	-	7758	
AVERAGE PR NUMBER		6.04	
CURRENT TO TUBE	-	180.0	AMPS
VOLTAGE DROP IN TUBE	-	1.42	VOLTS
AVERAGE HEAT FLUX	-	352	BTU/ (SQ.FT-HR)
Q-AMP VOLT	-	872	BTU/HR
Q-M*C* (T2-T1)	-	871	STU/HR
HEAT BALANCE ERROR	-	.03	•

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	80.02	80.10	80.36	80.52	80.58	80.75	80.81	80.90	81.40	81.49
2	80.01	80.33	80.42	80.50	80.71	80.77	80.87	80.90	81.54	81.66
3	80.09	80.44	80.42	80.43	80.88	80.83	81.16	80.98	81.96	82.27
4	79.99	80.32	80.35	80.57	80.63	80.80	80.74	81.33	81.40	80.65

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	79.83	79.91	80.17	80.33	80.39	80.56	80.62	80.71	81.21	81.30
2	79.82	80.14	80.23	80.31	80.52	80.58	80.68	80.71	81.35	81.47
3	79.90	80.25	80.23	80.24	80.69	80.64	80.97	80.79	81.78	82.09
4	79.80	80.13	80.16	80.38	80.44	80.61	80.55	81.14	81.21	80.44

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	3	4	5	6	7	8	9	10
1	7904	7912	7937	7953	7959	7976	7982	7990	8040	8049
2	7903	7935	7943	7951	7972	7978	7987	7990	8053	8065
3	7911	7945	7943	7944	7989	7984	8017	7998	8096	8127
4	7901	7934	7936	7958	7964	7981	7974	8033	8039	7964

INSIDE SURFACE BEAT FLUXES BTU/ER/FT2

	1	2	Э	4	5	6	7	8	9	10
1	328	334	329	329	330	329	328	334	330	320
2	329	327	327	328	329	329	331	329	332	334
3	326	325	327	331	323	327	320	332	316	301
4	330	327	329	326	331	328	334	319	335	359

..... •-----RUN NUMBER 1191

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ. FT-HR-F)

	1	2	3	- 4	5	6	7	8	9	10
1	180	183	163	156	158	150	150	151	125	120
2	182	158	157	157	147	148	147	149	120	118
3	172	150	157	164	134	144	126	145	99	87
4	184	159	164	151	154	146	158	121	127	200

_. -----RUN NUMBER 1191 SUMMARY

ST	RE	PR	X/D	MUB	HUW	тв	TW	DENS	NU
1	7727.17	6.06	6.4	2.126	2.079	78.01	79.84	62.23	46.94
2	7734.08	6.06	15.5	2.125	2.072	78.08	80.11	62.23	42.33
1	7740.99	6.05	24.6	2.123	2.069	78.15	80.20	62.23	41.93
4	7747.90	6.04	33.7	2,121	2.066	78.22	80.31	62.23	41.01
5	7754 81	6.04	42.8	2,119	2.061	78.29	80.51	62.23	38.72
6	7761 73	6.03	52.0	2.117	2.059	78.37	80.60	62.23	38.43
7	7769 65	6.03	61 1	2.115	2.056	78.44	80.70	62.23	37.82
	7775 57	6 02	70.2	2.113	2.053	78.51	80.84	62.23	36.82
0	7792.50	6 01	79 3	2 111	2 039	78.58	81.38	62.23	30.58
10	7789.43	6.01	88.4	2.109	2.041	78.65	81.33	62.23	32.05

NOTE: TBULK IS GIVEN IN DEGREES FARRENBEIT MUB AND MUW ARE GIVEN IN LBN/(FT*HR)

RUN NUMBER 1193 TEST FLUID IS DISTILLED WATER

TEST FLOID IS DISTILLED WATER

VOLUMETRIC FLOW RATE	-	2.39	GPM
HASS FLOW RATE	-	1193.3	LBM/HR
MASS FLUX	-	181801	LBM/ (SO.FT-HR)
FLUID VELOCITY	-	.81	FT/S
ROOM TEMPERATURE	-	75.16	F
INLET TEMPERATURE	-	77.84	F
OUTLET TEMPERATURE	-	78.55	F
AVERAGE RE NUMBER	-	7833	
AVERAGE PR. NUMBER		6.05	
CURRENT TO TUBE	-	180.0	AMPS
VOLTAGE DROP IN TUBE	-	1.42	VOLTS
AVERAGE BEAT FLUX	-	352	BTU/ (SO. FT-HR)
Q-AMP*VOLT	-	672	BTU/HR
Q-M*C* (T2-T1)	-	846	BTU/HR
BEAT BALANCE ERROR	-	2.99	•

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	80.01	80.25	80.29	80.43	80.48	80.65	80.67	80.78	81.22	81.33
2	80.01	80.32	80.38	80.41	80.61	80.65	80.73	80.76	81.37	81.50
з	80.17	80.24	80.44	80.33	80.77	80.70	80.99	80.89	81.82	82.12
4	79.88	80.31	80.27	80.49	80.54	80.67	80.62	81.16	81.26	80.52

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	79.82	80.06	80.10	80.24	80.29	80.46	80.48	80.59	81.03	81.14
2	79.82	80.13	80.19	80.22	80.42	80.46	80.54	80.57	81.18	81.31
3	79.98	80.05	80.25	80.14	80.58	80.51	80.80	80.70	81.64	81.94
4	79.69	80.12	80.08	80.30	80.35	80.48	80.43	80.97	81.07	80.31

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	3	4	5	6	7	8	9	10
1	7994	8017	8021	8035	8040	8057	8059	8070	8114	8125
2	7993	8024	8030	8033	8053	8057	8065	8068	8126	8141
3	8010	8016	8036	8025	8069	8062	8091	8081	8174	8205
4	7960	8023	8019	B041	8046	8059	B054	8108	8117	8042

INSIDE SURFACE HEAT FLUXES BTU/HR/FT2

	1	2	3	4	5	6	7	8	9	10
1	326	330	329	32.9	331	328	328	333	331	320
2	330	326	328	327	329	329	331	330	332	334
3	32.3	330	325	331	323	327	320	330	316	301
4	333	327	330	325	330	328	333	320	335	358

RUN NUMBER 1193

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ. FT-HR-F)

	1	z	3		5	6	7	8	9	10
1	169	157	158	153	155	147	150	149	127	121
2	171	150	151	154	145	147	147	150	121	119
3	154	157	146	162	133	143	128	141	98	87
4	185	151	161	147	151	146	156	123	127	198

RUN NUMBER 1193 SUMMARY

ST RE PR X/D MUB MUW TB TW DENS NU 2.079 2.072 2.070 2.069 2.064 2.062 2.060 2.056 2.043 2.045 77.89 77.96 78.02 78.09 78.16 78.23 78.30 78.30 78.37 78.43 78.43 2.130 2.128 2.126 2.124 2.122 2.121 2.119 2.117 2.115 2.113 6.4 15.5 24.6 33.7 42.8 52.0 61.1 70.2 79.3 88.4 79.83 62.23 44.23 7803.59 6.07 6.06 6.06 6.05 6.04 6.04 6.03 6.03 6.03 1234567 79.83 80.09 80.15 80.22 80.41 80.48 80.56 62.23 62.23 62.23 62.23 62.23 40.20 7810.29 7816.99 7823.70 40.22 38.14 7823.70 7830.40 7837.11 7843.82 7850.54 7857.25 7863.97 30.14 30.16 37.87 36.63 30.71 32.07 62.23 8 9 10 80.71 81.23 62.23 62.23 62.23 81.18

NOTE: TBULK IS GIVEN IN DEGREES FAHRENHEIT MUB AND MUW ARE GIVEN IN LBM/ (FT*RR)
RUN NUMBER 2101 TEST FLUID IS DISTILLED WATER VOLUMETRIC FLOW RATE - 1.95 GFM MASS FLOW RATE - 973.1 LEM/HR HASS FLOX - 148254 LEM/(RQ.FT-HR) FLUID VELOCITT - 66 F7/S RCOM TEMPERATURE - 68.28 F INLET TEMPERATURE - 77.37 F GUTLET TEMPERATURE - 80.92 F AVERAGE RE NURBER - 6464 AVERAGE RE NURBER - 5.97 VOLTAGE DROP IN TUBE - 2.69 VOLTS AVERAGE HEAT FLUX - 1278 BTU/(SQ.FT-HR) Q-MC*(VOLT - 3166 BTU/HR HEAT BALANCE ERROR - -8.93 V

.......

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	85.06	86.24	86.97	87.36	87.47	88.07	88.36	88.75	89.48	89.78
2	84.97	86.62	86.94	87.16	87.58	87.95	88.35	88.70	89.83	90.28
3	85.45	86.94	87.25	87.27	88.19	88.38	89.31	89.37	91.01	91.90
4	84.92	86.39	86.72	87.17	87.51	87.98	88.20	88.97	89.43	89.07

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	84.36	85.54	86.27	86.66	86.77	87.37	87.66	88.05	88.78	89.08
2	84.27	85.92	86.24	86.46	86.88	87.25	87.64	87.99	89.12	89.57
3	84.76	86.25	86.56	86.57	87.50	87.68	88.62	88.68	90.33	91.23
4	84.21	85.69	86.01	86.47	86.80	87.28	87.49	88.27	88.72	88.34

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	3	4	5	6	7	8	9	10
1	6889	6986	7048	7080	7089	7139	7164	7196	7257	7283
2	6881	7018	7045	7063	7098	7129	7162	7192	7287	7324
3	6922	7045	7071	7073	7150	7166	7245	7249	7389	7465
4	6877	6999	7026	7064	7092	7131	7149	7215	7252	7221

INSIDE SURFACE HEAT FLUXES BTU/ER/FT2

	1	2	3	4	5	6	7	8	9	10
1	1208	1219	1209	1208	1215	1211	1212	1216	1219	1213
2	1218	1211	1217	1217	1219	1220	1226	1223	1225	1229
э	1198	1201	1202	1210	1197	1203	1188	1201	1180	1159
4	1219	1217	1222	1216	1221	1220	1230	1216	1236	1260

...... RUN NUMBER 2101

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ.FT-HR-F)

	2	2	3	4	5	6	7	8	9	10
1	178	160	151	150	155	150	151	151	144	144
2	183	152	153	155	154	153	153	153	139	138
3	167	144	145	152	140	143	132	138	118	109
4	194	157	158	155	156	153	157	147	147	164

......

1

RUN NUMBER 2101 SUMMARY ·----

•---

ST	RE	PR	X/D	MUB	MUW	TB	TW	DENS	NU
1	6341.32	6.10	6.4	2.137	1.966	77.61	84.40	62.24	46.58
2	6368.62	6.07	15.5	2.128	1.933	77.95	85.85	62.23	40.08
3	6395.97	6.04	24.6	2.119	1.923	78.29	86.27	62.23	39.67
4	6423.36	6.01	33.7	2.110	1.917	78.63	86.54	62.23	40.01
5	6450.79	5.98	42.8	2.101	1.907	78.97	86.99	62.22	39.48
6	6478.28	5.95	52.0	2.092	1.898	79.32	87.39	62.22	39.15
7	6505.81	5.93	61.1	2.083	1.687	79.66	87.85	62.22	38.58
8	6573.38	5.90	70.2	2.074	1.879	80.00	88.25	62.21	38.33
9	6561.00	5.87	79.3	2.066	1.857	80.34	89.24	62.21	35.54
10	6588.67	5.84	88.4	2.057	1.851	80.68	89.56	62.21	35.62

NOTE: TBULK IS GIVEN IN DEGREES FAHRENHEIT MUB AND MUW ARE GIVEN IN LBM/(FT*HR)

		•		RUN NU	MBER 210		••••••			
		•	TEST I	FLUID IS	DISTILL	D WATER				
							••••••			
		MASS	FLOW RAT	LOW PATE	- 1.	.91 GP	M M/RR			
		MASS	FLUX		- 1454	185 LB	W/ (SQ. FT	-RR)		
		ROOM	TEMPERA	TURE	- 69	.65 FT. .93 F	/S			
		INLET	TEMPER	TURE	- 77.	03 F				
		AVER	GE RE N	MBER	- 63	.60 F 239				
		AVERU	GE PR N	MBER	- 6.	.08				
		VOLT	GE DROP	IN TUBE	- 1.	.84 Vot	LTS			
		Q-AM	GE HEAT	FLUX	- 1	598 BT	U/ (SQ. FT-	-BR)		
		Q-H-C	* (T2-T1)	FRROR	- 1	197 BT	J/HR			
		a sol	DA LANC L	SKRUK	1.	.05 1				
		our	SIDE SU	REACE TE	MPERATURI	ES - DEG	REES F			
	1	2	3	4	5	6	7	8	9	10
1	80.78	81.26	81.57	81.72	81.79	82.10	82.17	82.38	82.96	83.10
2	80.70	81.44	81.58	81.65	81.59	82.09	82.27	62.37	83.15	83.36
4	80.65	81.38	81.45	81.73	81.86	82.10	82.13	82.75	82.98	84.23
		(2.0)	2022-0-0022							
	2.5	INS	SIDE SUR	FACE TEM	PERATURE	S - DEGR	KES F			
	1	2	3	4	5	6	7	8	9	10
1	80.45	80.93	81.24	81.39	81.46	81.77	81.84	82.05	82.63	82.78
3	80.59	81.09	81.40	81.29	81.87	81.87	82.38	82.32	92.82	83.92
4	80.32	81.05	81.12	81.40	81.53	81.77	81.80	62.43	82.65	82.00
		RE	NOLDS N	MBER AT	THE INS	DE TUBE	WALL			
	1	2	3	4	5	6	7	8	9	10
	6447	6485	6510	6522	6527	6557		6674	6623	
2	6440	6500	6511	6516	6535	6551	6566	6574	6636	6653
3	6458 6436	6498 6495	6522 6500	6514 6523	6560 6533	6560 6552	6601	6596 6605	6688 6622	6725 6571
								2,622		
		1	INSIDE ST	TREACE E	EAT FLUX	ES BTU/H	R/FT2			
	1	2	э	4	5	6	7	в	9	10
1	562	569	564	564	567	565	566	570	568	560
2	568	562	567	565	567	567	569 553	569	571	573 531
4	569	564	570	564	568	566	573	559	575	598
				RUN NU	MBER 210					
	P	ERIPEER	L BEAT	TRANSFER	CONTIC	I ENT BTU	/ (SQ. FT-)	ER-17)		
	1	2	3	4	5	6	7	8	9	10
1	169	156	148	148	152	145	149	147	132	130
ż	175	147	148	151	148	146	146	147	127	126
3	162	148	141	153 147	135	141	127	136	107	98 170
				RUN NU	NBER 210	3				
				5U	MARY					
ST	RE	PR	X/D	нля	NUW	тв	TW	DENS	NU	
1	6185.84	6.14	6.4	2.150	2.063	77.14	80.43	62.24	44.79	
3	6197.65 6209.47	6.12	24.6	2.146	2.048	77.44	81.05	62.24	39.28	
4	6221.30	6.10	33.7	2.138	2.040	77.59	81.35	62.24	39.23	
6	6244.99	6.07	52.0	2.134	2.029	77.89	81.79	62.23	37.81	
7	6256.85	6.06	61.1	2.126	2.024	78.04	81.99	62.23	37.39	
9	6280.60	6.03	79.3	2.118	2.002	78.34	82.89	62.23	32.48	
10	6292.48	6.02	88.4	2.114	2.001	78.49	82.93	62.23	33.27	

-

21

NOTE: TBULK IS GIVEN IN DEGREES FAHRENHEIT MUB AND MUW ARE GIVEN IN LBH/(FT*RR)

..... -----RUN NUNBER 2105 TEST FLUID IS DISTILLED WATER

VOLUMETRIC FLOW RATE	-	1.90	GPM
MASS FLOW RATE	-	950.7	LBM/HR
MASS FLUX	-	144838	LBM/ (SQ.FT-HR)
FLUID VELOCITY	-	. 64	FT/S
ROOH TEMPERATURE	-	70.54	F
INLET TEMPERATURE	-	77.09	F
OUTLET TEMPERATURE	-	78.45	F
AVERAGE RE NUMBER	-	6207	
AVERAGE PR NUMBER	-	6.08	
CURRENT TO TUBE	-	220.0	AMPS
VOLTAGE DROP IN TUBE	-	1.72	VOLTS
AVERAGE HEAT FLUX	-	521	BTU/ (SQ.FT-HR)
Q-AND VOLT	-	1291	BTU/HR
Q-H*C* (T2-T1)	-	1291	BTU/HR
BEAT BALANCE ERROR	-	.00	•

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	•	2	3	4	5	6	7	8	9	10
1	80.52	80.93	81.19	81.31	81.36	81.65	81.71	81.89	82.44	82.56
2	80.44	81.08	81.21	81.24	81.48	81.63	81.80	81.88	82.58	82.81
3	80.63	80.99	81.28	81.18	81.73	81.69	82.18	82.10	83.16	83.58
4	80.38	81.02	81.08	81.33	81.45	81.66	81.66	82.28	82.43	81.77

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	80.24	80.64	80.91	81.03	81.07	81.37	81.42	81.60	82.15	82.28
2	80.15	80.80	80.93	80.96	81.19	81.34	81.51	81.59	82.29	82.52
3	80.35	80.70	81.00	80.89	81.45	81.41	81.90	81.82	82.88	83.31
4	80.09	80.74	80.79	81.05	81.16	81.38	81.37	82.00	82.14	81.47

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	3	4	5	6	7	8	9	10
1	6401	6433	6454	6464	6468	6491	6495	6510	6554	6563
2	6395	6446	6456	6458	6477	6489	6502	6509	6565	6583
3	6410	6438	6461	6453	6497	6494	6533	6526	6612	6646
4	6390	6441	6445	6465	6475	6491	6491	6541	6552	6499

INSIDE SURFACE HEAT FLUXES BTU/HR/FT2

	1	2	3	4	5	6	7	8	9	10
1	488	494	490	490	493	491	491	496	493	485
2	494	488	491	491	492	492	495	494	497	498
3	485	492	487	493	484	490	480	490	475	459
4	495	489	695	48.9	493	491	498	484	500	523

•----• RUN NUMBER 2105

PERIPHERAL BEAT TRANSFER COEFFICIENT BTU/ (SQ. FT-HR-F)

	1	2	3	4	5	6	7	8	9	10
1	159	148	141	142	146	139	142	141	125	123
2	166	140	141	145	141	140	139	141	122	119
3	153	145	137	148	129	137	122	132	102	92
4	170	143	147	140	142	138	146	124	128	168

•----• RUN NUMBER 2105 SUMMARY

3 T	RE	PR	X/D	MUB	HUW	тв	TW	DENS	NU
1	6161.87	6.13	6.4	2.149	2.069	77.18	80.21	62.24	42.39
2	6172.06	6.12	15.5	2.145	2.056	77.31	80.72	62.24	37.65
3	6182.26	6.11	24.6	2.142	2.051	77.44	80.91	62.24	37.06
4	6192.46	6.10	33.7	2.138	2.049	77.57	80.98	62.24	37.66
5	6202.67	6.09	42.8	2.135	2.043	77.70	81.22	62.23	36.49
6	6212.88	6.08	52.0	2.131	2.040	77.84	81.37	62.23	36.26
7	6223.11	6.07	61.1	2.128	2.035	77.97	81.55	62.23	35.76
8	6233.34	6.06	70.2	2.124	2.030	78.10	81.75	62.23	35.08
9	6243.57	6.04	79.3	2.121	2.015	78.23	82.37	62.23	30.99
10	6253.82	6.03	88.4	2.117	2.014	78.36	82.40	62.23	31.78

NOTE: TBULK IS GIVEN IN DEGREES FARENHEIT MUB AND MUW ARE GIVEN IN LBM/ (FT*ER)

-

							······			
			2004-01-01-04	RUN NUN	(BER 2111					
			TEST F	LUID IS	DISTILLE	D WATER				
		VOLUN	ETRIC FL	ON RATE	- 1.	55 69	~			
		MASS	FLOW RAT	E	- 772	.8 LB	M/HDR			
		MASS	FLUX		- 1177	39 LB	H/ (SQ. FT-	HR)		
		FLUID	VELOCIT	T	52 FT/S					
		ROOM	TEMPERAT	URE	- 70.	40 F				
		INLET	TEMPERA	TURE	- 76.	29 F				
		AVERS	OF DE M	ATUKS		12 E				
		AVER	CE PR MI	MBER	2 2	15				
		CURR	NT TO TU	BE	- 205	.0 AM	PS			
		VOLTA	GE DROP	IN TUBE	- 1.	59 VO	LTS			
		AVERA	GE HEAT	FLUX	- 4	48 BT	U/ (SQ.FT-	HRI		
		Q-AM	P.VOLT		- 11	12 BT	U/HR			
		Della.C	(T2-T1)	FRECE	- 11	03 BT	U/HR			
			enter to a	ELLEN A	-					
		007	SIDE SUP	FACE TE	PERATURE	S - DEG	REES F			
	1	2	3	4	5	6	7	8	9	10
	79 65	80.20	90.52	80.64	80 68	80.08	A1 08	01.00	01 05	01 07
2	79.60	80.31	80.51	80.55	80.80	80.96	81.15	81.25	81.96	82.16
3	79.73	80.17	80.53	80.41	80.97	80.93	81.42	81.33	82.41	82.82
4	79.52	80.26	80.40	80.64	80.76	80.99	81.04	81.63	81.81	81.14
		IN	SIDE SUR	ACK TEM	PERATURES	- DEGR	CEES F			
	1	2	3	4	5	6	7	8	9	10
	-	100						1999 L		
1	79.40	79.95	80.28	80.39	80.43	80.73	80.83	81.03	81.60	81.73
2	79.35	80.06	80.26	80.30	80.55	80.71	80.90	81.00	81.71	81.91
3	79.49	79.92	80.28	80.16	80.73	80.68	81.18	81.08	82.17	82.59
4	79.27	80.01	80.15	80.39	80.51	80.74	80.79	81.39	81.56	80.88
		RE	NOLDS M	MBER AT	THE INSI	DE TUBI	WALL			
	1	2	3	4	5	6	7	8	9	10
12.1					1000					
1	5150	5185	5206	5214	5216	5235	5242	5255	5292	5300
2	5155	5192	5205	5199	5235	5232	5264	5258	5328	5355
4	5141	5189	5198	5214	5221	5236	5239	5278	5289	5245
12.0	0.000	202200	10,000,000	(9770)		22222544	1.0973-001			
		9	INSIDE 5	JRFACE H	EAT FLUX	ES BTU/I	ER/FT2			
	1.0		2	<u>.</u>		6	7		9	10
	1	2	3	3		•			· ·	10
1	423	428	424	425	428	426	426	430	427	418
2	428	423	426	425	426	426	429	427	4 30	432
3	421	428	424	430	421	427	418	429	413	397
4	430	424	429	423	428	425	431	418	434	457
				•						
				RUN NU	MBER 211	1				
				·						
			THE CONCERNEN					120 (120 A)		
	P	SRIPHER	AL HEAT	TRANSFER	COEFFIC	IENT BT	U/ (SQ. FT-)	(R-F)		
		2	2			6	7	8	9	10
		2	5						17	
1	140	124	117	118	122	116	117	116	103	102
2	144	119	118	121	118	117	116	117	102	100
3	136	126	117	128	111	118	105	114	88	80
4	149	121	123	117	119	115	120	103	106	140
				•						
				RUN NU	MBER 211	1				
				SU	MMARY					
						- • ·				
		-	*/0	Marta	-	770	714	DINS	NU	
51	N.K	PR	10	HU B					0.5	
1	4958.75	6.20	6.4	2.171	2.090	76.39	79.38	62.25	37.24	
2	4967.43	6.19	15.5	2.167	2.075	76.52	79.99	62.25	32.17	
3	4976.11	6.18	24.6	2.163	2.068	76.66	80.25	62.24	31.10	
4	4984.80	6.17	33.7	2.159	2.066	76.80	80.31	62.24	31.72	
5	4993.49	6.16	42.8	2.155	2.060	77 07	80.72	62.24	30.58	
6	5002.19	6.17	52.0	2.152	2.051	77.21	80.93	62.24	30.00	
8	5019.60	6.12	70.2	2.144	2.046	77.35	81.13	62.24	29.50	
9	5028.32	6.11	79.3	2.141	2.030	77.49	81.76	62.24	26.08	
10	5037.04	6.10	88.4	2.137	2.030	77.62	81.78	62.24	26.84	

NOTE: TBULK IS GIVEN IN DEGREES FARMEMELT MUB AND MUW ARE GIVEN IN LEM/ (FT*BR)

RUN NUMBER 4101 TEST FLUID IS DISTILLED WATER

11

VOLUMETRIC FLOW RATE	-	1.07	GPM
MASS FLOW PATE	-	532.7	LEM/ER
MASS FLUX	-	81156	LBM/ (SQ.FT-HR)
FLUID VELOCITY	-	. 36	FT/S
ROOM TEMPERATURE	-	69.52	F
INLET TEMPERATURE	-	76.16	F
OUTLET TEMPERATURE	-	77.75	T
AVERAGE RE NUMBER	-	3442	
AVERAGE PR NUMBER	-	6.15	
CURRENT TO TUBE	-	178.0	AHPS
VOLTAGE DROP IN TUBE	-	1.40	VOLTS
AVERAGE HEAT FLUX	-	343	BTU/ (SQ.FT-HR)
Q-AMP VOLT	-	850	BTU/HR
Q=H*C* (T2-T1)	-	845	BTU/ER
HEAT BALANCE ERROR	-	.52	•

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	79.08	80.26	80.96	81.23	81.08	81.40	81.44	81.78	82.40	82.58
2	79.03	80.19	BO.69	80.87	81.09	81.22	81.42	81.62	82.33	82.57
3	79.13	79.96	80.67	80.66	B1.16	81.12	81.57	81.52	82.56	82.99
4	78.98	80.14	80.72	81.08	B1.14	81.30	81.42	82.03	82.27	81.68

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	78.89	80.08	80.78	81.05	80.89	81.22	81.25	81.59	82.22	82.40
2	78.84	80.00	80.50	80.68	80.90	81.03	81.23	81.43	82.14	82.38
3	78.95	79.77	80.48	80.47	80.97	60.93	81.39	81.33	82.38	82.82
4	78.79	79.95	80.53	80.90	80.95	81.11	81.23	81.85	82.08	81.48

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	з	4	5	6	7	8	9	10
1	3527	3579	3611	3623	3616	3630	3632	3647	3675	3683
2	3525	3576	3598	3606	3616	3622	3631	3640	3671	3682
з	3529	3566	3597	3597	3619	3617	3638	3635	3682	3701
4	3523	3574	3600	3616	3618	3625	3631	3658	3669	3642

INSIDE SURFACE HEAT FLUXES STU/HR/FT2

	1	2	з	•	5	6	,	8	9	10
1	319	318	315	315	322	318	321	322	319	310
2	322	319	324	323	322	322	323	322	325	327
3	317	326	322	329	320	325	317	329	315	300
4	324	320	323	318	321	320	323	312	327	349

•... ----RUN NUNBER 4101

PERIPHERAL MEAT TRANSFER COEFFICIENT BTU/ (SQ. FT-HA-F)

	1	2	3	4	5	6	7	8	9	10
1	121	87	74	72	80	76	78	75	67	65
2	125	89	82	81	80	80	79	78	69	69
3	118	97	82	87	78	83	75	82	64	58
4	128	90	81	76	78	78	79	69	71	91

RUN NUMBER 4101 SUMMARY

ST	RE	PR	X/D	MUB	MUW	TB	TW	DENS	NU
1	3412.83	6.21	6.4	2.174	2.104	76.27	78.87	62.25	32.29
2	3419.48	6.20	15.5	2.170	2.076	76.42	79.95	62.25	23.80
3	3426.13	6.19	24.6	2.165	2.060	76.57	80.57	62.24	21.01
4	3432.78	6.17	33.7	2.161	2.055	76.73	80.77	62.24	20.77
5	3439.44	6.16	42.8	2.157	2.051	76.88	80.93	62.24	20.74
6	3446.11	6.15	52.0	2.153	2.047	77.03	81.07	62.24	20.79
7	3452.78	6.13	61.1	2.149	2.042	77.18	81.28	62.24	20.54
8	3459.46	6.12	70.2	2.145	2.035	77.34	81.55	62.24	19.94
Ğ	3466.14	6.11	79.3	2.140	2.019	77.49	82.20	62.24	17.83
10	3472 82	6.09	88.4	2,136	2.017	77.64	82.27	62.24	18.17

NOTE: TBULK IS GIVEN IN DEGREES FARRENHEIT MUB AND MUW ARE GIVEN IN LBM/ (FT*BR)

		•			BEB 4103		• • • • • •			
		÷	TEST F	LUID IS	DISTILLE	D WATER				
							•••••			
		VOLUN	ETRIC FL	OW RATE	- 1.	73 GP	(WD			
		KASS	FLUX	•	- 1314	86 LB	V (SQ.FT-	HR)		
		FLUID	VELOCIT	Y	- 72	58 FT/	s			
		INLET	TEMPERA	TURE	- 76.	96 F				
		OUTLE	T TEMPER	ATURE	- 78.	31 F				
		AVERA	GE PR NU	MBER	- 56	09				
		CURRI	NT TO TU	BE	- 209	.0 AM	PS			
		AVER	GE HEAT	IN TUBE	- 1.	64 VOI	LTS	HRI		
		Q-AH	VOLT		- 11	69 BT	J/HR			
		Q-H+C HEAT	BALANCE	ERROR	- 11	63 BT	J/HR			
		our	SIDE SUR	FACE TE	PERATURI	S - DEG	NEES 7			
	1	2	з	4	5	6	7	8	9	10
,	79.80	80 45	80.74	80.93	81 08	81 78	61 49	81 70	82 30	82.46
ź	79.78	80.55	80.76	80.86	81.19	81.38	81.55	81.69	82.44	82.64
3	79.96	80.45	80.85	80.76	81.36	81.39	81.86	81.79	82.92	83.38
3	13.11	80.55	80.71	80.90	01.19	61.36	91.50	82.09	82.32	01.01
		INS	SIDE SUR	ACE TEN	PERATURES	S - DEGRU	EES F			
	1	2	э	•	5	6	٦	8	4	10
1	79.54	80.19	80.48	80.67	80.82	81.12	81.23	81.44	82.04	82.21
2	79.52	80.29	80.50	80.60	80.93	81.12	81.29	81.43	82.18	82.38
4	79.51	80.29	80.45	80.72	80.93	81.12	81.24	81.84	82.06	81.34
		RE	NOLDS M	MBER AT	THE INS	IDE TUBE	WALL			
	1	2	3	4	5	6	7	8	9	10
1	5761	5808	5829	5842	5853	5875	5883	5898	5941	5953
2	5760	5815	5830	5837	5861	5875	5887	5897	5951	5966
4	5759	5815	5837	5846	5861	5875	5883	5926	5942	5890
		2	INSTDE S	URFACE R	EAT FLUX	ES BTU/H	R/FT2			
	1	2	3	4	5	6	7	8	9	10
				442		447		448	445	425
2	445	440	444	442	444	443	446	444	448	450
3	438	445	440	447	438	443	435	446	430	412
4	445	440	445	439	444	443	447	435	450	4/6
				•		-•				
				*	ABER 410	-•				
	1	ERIPHER	AL HEAT	TRANSFER	COFFFIC	IENT BTU	/ (3 0. FT -)	HR-7)		
	1	2	3	4	5	6	7	8	9	10
1	177	147	139	137	137	129	130	128	112	109
2	180	141	139	140	132	129	129	128	109	108
Å	181	141	141	133	132	129	131	112	113	152
				•		-•				
				RUN NU SU	MBER 410	3 _•				
ST	RE	PR	x/D	нила	MUW	тв	TW	DENS	NU	
1	5584.60	6.15	6.4	2.152	2.085	77.05	79.57	62.24	45.93	
2	5593.77	6.13	15.5	2.149	2.068	77.31	80.51	62.24	36.21	
4	5612.14	6.11	33.7	2.142	2.058	77.44	80.63	62.24	36.35	
5	5621.34	6.10	42.8	2.138	2.050	77.70	81.13	62.23	33.79	
7	5639.74	6.08	61.1	2.131	2.040	77.83	81.34	62.23	32.96	
8	5648.96	6.07	70.2	2.128	2.035	77.96	82.24	62.23	27.91	
10	5667.40	6.05	88.4	2.121	2.018	78.22	82.27	62.23	28.61	
		NO	TE: TBUL	K IS GIV	TEN IN DE	GREES FA	RENHEIT			

-

MUB AND MUW ARE GIVEN IN LBM/ (FT'HR)

---------------RUN NUMBER 4105 TEST FLUID IS DISTILLED WATER

1

VOLUMETRIC FLOW RATE	-	2.21	GPN
MASS FLOW PATE	-	1101.9	LEN/HR
HASS FLUX	-	167876	LBM/ (SQ.FT-HR)
FLUID VELOCITY	-	.74	FT/S
ROOM TEMPERATURE	-	76.09	F
INLET TEMPERATURE	-	77.31	F
OUTLET TEMPERATURE	-	78.60	7
AVERAGE RE NUMBER	-	7211	
AVERAGE PR NUMBER		6.07	
CURRENT TO TUBE	-	233.0	AMPS
VOLTAGE DROP IN TUBE	-	1.82	VOLTS
AVERAGE HEAT FLUX	-	584	BTU/ (SQ.FT-HR)
Q-AMP VOLT	-	1446	BTU/HR
Q-H*C* (T2-T1)	-	1419	BTU/HR
HEAT BALANCE ERROR	-	1.90	•

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	з	4	5	6	7	8	9	10
1	80.26	80.82	81.03	81.26	81.43	81.68	81.80	82.00	82.53	82.68
2	80.29	80.93	81.11	81.25	81.55	81.71	81.88	82.03	82.72	82.94
3	80.56	80.99	81.24	81.24	81.84	81.88	82.31	82.29	83.32	83.82
4	80.13	80.92	81.02	81.30	81.51	81.71	81.82	82.38	82.57	81.93

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	6	9	10
1	79.94	80.50	80.71	80.94	91.11	91.36	81.48	81.68	82.21	82.36
2	79.97	80.61	80.79	80.93	81.23	81.39	81.56	81.71	82.40	82.62
3	80.25	80.67	80.92	80.92	81.52	81.56	82.00	81.97	83.01	83.52
4	79.81	80.60	80.70	80.98	81.19	81.39	81.50	82.06	82.25	81.59

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	э	4	5	6	7	8	9	10
1	7392	7443	7463	7484	7500	7523	7534	7552	7601	7615
2	7395	7454	7470	7483	7511	7525	7541	7555	7619	7639
з	7420	7459	7482	7482	7538	7541	7581	7579	7675	7723
4	7380	7453	7462	7488	7507	7525	7535	7588	7604	7544

INSIDE SURFACE HEAT FLUXES BTU/HR/FT2

	1	2	3	4	5	6	7	9	9	10
1	549	553	551	551	553	552	552	556	554	545
2	553	550	551	550	553	552	555	554	556	559
3	541	549	546	551	543	546	539	549	534	517
4	557	550	553	549	554	552	557	545	560	584

...... RUN NUMBER 4105

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ. FT-HR-F)

	1	2	з	4	5	6	7	8	9	10
1	215	185	180	173	172	165	165	163	145	141
2	215	178	175	174	165	163	162	160	138	136
3	190	174	166	175	149	154	140	148	115	103
4	231	178	181	171	168	163	165	143	145	189

.....

-• ·----RUN NUMBER 4105 SUNMARY

......

ST	RE	PR	x/D	нив	HUW	TB	TW	DENS	NU
1	7161.43	6.12	6.4	2.143	2.075	77.40	79.99	62.24	55.44
2	7172.64	6.10	15.5	2.140	2.059	77.52	80.60	62.24	46.79
ã	7183.86	6.09	24.6	2.136	2.054	77.64	80.78	62.24	45.88
	7195.09	5.08	33.7	2,133	2.050	77.77	80.94	62.23	45.32
-	7206.33	6.07	42.8	2.130	2.042	77.89	91.26	62.23	42.69
é	7217 57	6.06	52.0	2.126	2.038	78.02	81.43	62.23	42.20
2	7228 87	6.05	61.1	2.123	2.033	78.14	81.63	62.23	41.20
	7240.07	6.04	70.2	2.120	2.028	78.27	81.86	62.23	40.07
9	7251 34	6.03	79.3	2,116	2.013	78.39	82.47	62.23	35.30
10	7262 61	6.02	88.4	2.113	2.011	78.51	82.52	62.23	35.88

NOTE: TBULK IS GIVEN IN DEGREES FARRENBEIT MUB AND MUW ARE GIVEN IN LBM/(FT*HR)

..... RUN NUMBER 4107 TEST FLUID IS DISTILLED WATER

....

VOLUNETRIC FLOW RATE	-	2.80	GPN
MASS FLOW RATE	-	1397.9	LEM/HR
HASS FLUX	-	212978	LEM/ (SO. FT-ER)
FLUID VELOCITY	÷.	. 95	FT/S
ROOM TEMPERATURE	-	76.12	r
INLET TEMPERATURE	-	77.12	F
OUTLET TEMPERATURE	-	78.32	T
AVERAGE R.S MUNBER	-	9122	
AVERAGE PR NUMBER	-	6.09	
CURRENT TO TUBE	-	250.0	AMPS
VOLTAGE DROP IN TUBE	-	1.94	VOLTS
AVERAGE REAT FLUX	-	668	BTU/ (SO. FT-HR)
Q-AMP VOLT	-	1654	BTU/HR
Q-H*C* (T2-T1)	-	1675	BTU/HR
BEAT BALANCE ERROR	-	-1.23	1

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	,		7	8	9	10
1	80.26	80.68	80.87	81.02	81.20	81.30	81.41	81.54	82.01	62.14
2	80.36	80.80	80.90	81.03	81.26	81.35	81.48	81.58	82.21	82.48
3	80.63	80.96	81.07	81.09	81.59	81.64	82.01	81.94	82.95	63.41
4	80.21	80.72	80.78	81.02	81.13	81.36	81.39	81.91	82.03	81.48

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	79.89	80.31	80.50	80.65	80.83	80.93	81.04	81.17	81.64	81.77
2	79.99	80.43	80.53	80.66	80.89	80.98	81.11	81.21	81.84	82.11
3	80.27	80.60	80.71	80.72	81.23	81.28	81.65	81.58	82.59	83.06
4	79.84	80.35	80.41	80.65	80.76	80.99	81.02	81.54	81.66	81.09

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	3	4	5	6	7	8	9	10
1	9373	9422	9444	9461	9482	9494	9507	9522	9577	9592
2	9384	9436	9447	9462	9489	9500	9515	9526	9600	9632
3	9416	9455	9467	9470	9528	9534	9578	9569	9688	9744
4	9367	9426	9433	9461	9474	9501	9504	9565	9579	9513

INSIDE SURFACE REAT FLUXES BTU/HR/FT2

	1	2	3	4	5	6	7	8	9	10
1	634	636	633	634	634	635	635	639	637	630
2	636	634	635	634	637	637	640	638	641	642
3	625	629	628	632	624	627	620	629	614	599
4	639	636	638	635	640	637	642	630	645	667

...... ... RUN NUMBER 4107 ۰.

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ.FT-HR-F)

	1	2	3	4	5	6	7	8	9	10
1	235	212	206	204	200	201	201	202	181	178
2	227	203	205	203	197	199	199	199	172	165
3	203	191	191	199	175	179	165	176	137	124
4	242	209	214	204	206	198	205	178	182	233

RUN NUNBER 4107 SUPPLARY

NUTR NUV TR

.

ST	RE	PR	X/D	MUTB	NUW	TB	TW	DENS	NU	
1	9062.98	6.13	6.4	2.148	2.074	77.20	80.00	62.24	59.23	
2	9076.20	6.12	15.5	2.145	2.064	77.32	80.42	62.24	53.33	
3	9089.43	6.11	24.6	2.142	2.061	77.43	80.54	62.24	53.33	
4	9102.67	6.10	33.7	2.139	2.057	77.55	80.67	62.24	52.99	
5	9115.91	6.09	42.8	2.136	2.051	77.66	80.93	62.24	50.72	
6	9129.16	6.08	52.0	2.133	2.048	77.78	81.04	62.23	50.70	
7	9142.42	6.07	61.1	2.130	2.044	77.89	81.20	62.23	50.01	
8	9155.69	6.06	70.2	2.127	2.040	78.01	81.37	62.23	49.19	
9	9168.96	6.05	79.3	2.123	2.026	78.12	81.93	62.23	43.50	
10	9182.25	6.04	88.4	2.120	2.024	78.24	82.01	62.23	43.93	

NOTE: TBULK IS GIVEN IN DEGREES FARENHEIT MUB AND MUW ARE GIVEN IN LEM/ (FT*ER)

·-----RUN NUMBER 4109 TEST FLUID IS DISTILLED WATER

...

UNINEERIC FLOW DIER	23	7 20	6 mai
CONSTRUCTION KAIL	-	3.20	UTA .
ASS FLOW FATE	-	1635.1	LBM/HR
MASS FLUX	-	249114	LBM/ (SQ. FT-HR)
FLUID VELOCITY	-	1.11	FT/S
ROOM TEMPERATURE	-	74.13	F
INLET TEMPERATURE	-	76.78	F
OUTLET TEMPERATURE	-	77.94	T
AVERAGE RE NUMBER	-	10622	
AVERAGE PR. NUMBER	-	6.12	
CURRENT TO TUBE	-	270.0	AMPS
VOLTAGE DROP IN TUBE	-	2.12	VOLTS
AVERAGE HEAT FLUX	-	788	BTU/ (SQ. FT-HR)
-AMP VOLT	-	1953	BTU/HR
0-H*C* (T2-T1)	-	1894	BTU/ER
HEAT BALANCE ERROR	-	3.01	•

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	80.05	80.36	80.58	80.73	80.84	81.03	81.13	81.32	81.80	81.98
2	80.05	80.49	80.60	80.71	80.95	81.07	81.24	81.34	82.06	82.33
3	80.42	80.62	80.77	80.74	81.37	81.40	81.87	81.80	82.98	83.41
4	79.96	80.42	80.46	80.74	80.86	81.11	81.12	81.67	81.87	81.25

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	79.62	79.93	80.15	80.30	80.41	80.60	80.70	80.89	81.37	81.55
2	79.62	80.06	80.17	80.28	80.52	80.64	80.81	80.91	81.63	81.90
3	80.00	80.19	80.34	80.31	80.95	80.98	81.45	81.38	82.57	83.00
4	79.53	79.99	80.03	80.31	80.43	80.68	80.69	81.24	81.43	80.80

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	з	4		6	7	8	9	10
1	10927	10968	10999	11019	11034	11060	11073	11099	11164	11190
2	10926	10986	11001	11016	11048	11065	11088	11102	11200	11237
3	10977	11004	11025	11020	11107	11111	11176	11165	11329	11389
4	10914	10977	10982	11020	11036	11070	11071	11147	11173	11087

INSIDE SURFACE REAT FLUXES BTU/ER/FT2

	1	2	3	4	5	6	7	8	9	10
1	738	741	738	739	741	741	741	744	744	735
2	743	739	741	740	743	743	746	745	748	749
з	728	735	733	739	728	732	722	732	714	700
4	746	741	744	739	745	742	749	737	753	776

..... RUN NUMBER 4109

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ.FT-HR-F)

	1	2	3	4	5	6	7	8	9	10
1	267	250	240	237	238	232	233	229	205	199
2	269	239	239	239	231	230	227	228	193	185
з	232	228	224	237	199	205	184	196	148	136
4	279	245	252	237	238	227	237	204	204	264

RUN NUMBER 4109 SUDGAAY

ST	RE	PR	X/D	NUB	NUW	TB	TW	DENS	NU
1	10554.81	6.16	6.4	2.158	2.082	76.86	79.69	62.24	68.20
2	10569.73	6.15	15.5	2.155	2.073	76.97	80.04	62.24	62.87
3	10584.67	6.14	24.6	2.152	2.070	77.08	80.17	62.24	62.48
4	10599.61	6.13	33.7	2.148	2.067	77.19	80.30	62.24	62.17
5	10614.56	6.12	42.8	2.145	2.060	77.30	80.58	62.24	59.06
6	10629.51	6.11	52.0	2.142	2.056	77.42	80.72	62.24	58.42
7	10644.48	6.10	61.1	2.139	2.051	77.53	80.91	62.24	57.10
8	10659.45	6.09	70.2	2.136	2.046	77.64	81.10	62.24	55.77
9	10674.44	6.08	79.3	2.133	2.030	77.75	81.75	62.23	48.34
10	10689.43	6.08	88.4	2.130	2.029	77.86	81.81	62.23	48.91

NOTE: TBULK IS GIVEN IN DEGREES FAHRENHEIT MUB AND MUW ARE GIVEN IN LEN/ (FT*ER)

-

-----RUN NUMBER 4115 TEST FLUID IS DISTILLED WATER

.

-

VOLUMETRIC FLOW RATE	-	3,28	GPN
HASS FLOW RATE	-	1638.3	LBM/HR
HASS FLOX	-	249611	LBM/ (SD.FT-HR)
FLUID VELOCITY	-	1.11	IT/S
ROOM TEMPERATURE	-	74.36	F
INLET TEMPERATURE	-	76.07	F
OUTLET TEMPERATURE	-	81.48	F
AVERAGE RE NUMBER	•	10834	
AVERAGE PR NUMBER	-	6.00	
CURRENT TO TUBE	-	480.0	AMPS
VOLTAGE DROP IN TUBE	-	3.78	VOLTS
AVERAGE BEAT FLUX	-	2499	BTU/ (SQ. FT-HR)
Q-AMP VOLT	-	6190	BTU/HR
Q-H*C* (T2-T1)	•	8851	BTU/HR
HEAT BALANCE ERROR	-	-42.97	

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	9	9	10
1	88.53	89.92	90.86	91.51	91.63	92.45	92.85	93.49	94.31	94.76
2	88.38	90.39	90.87	91.22	91.75	92.25	92.89	93.35	94.89	95.74
3	89.43	91.30	91.41	91.70	92.94	93.49	94.70	95.00	97.12	98.50
4	88.20	89.99	90.50	91.05	91.60	92.37	92.51	93.57	94.23	94.25

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	•	5	6	7	θ	9	10
1	87.18	88.56	89.50	90.16	90.27	91.09	91.49	92.13	92.95	93.40
2	87.01	89.03	89.51	89.86	90.38	90.88	91.52	91.98	93.52	94.37
3	88.09	89.96	90.06	90.35	91.60	92.15	93.37	93.66	95.80	97.19
4	86.83	88.62	89.13	89.68	90.23	91.00	91.13	92.20	92.85	92.86

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	3	4	5	6	7	8	9	10
1	11993	12188	12323	12416	12432	12550	12607	12698	12816	12681
2	11971	12255	12323	12373	12448	12519	12611	12677	12899	13022
3	12122	12387	12402	12443	12622	12701	12877	12920	13230	13434
4	11945	12198	12270	12348	12426	12537	12555	12709	12802	12803

INSIDE SURFACE HEAT FLUXES BTU/ER/FT2

	1	2	3		5	6	7	8	9	10
1	2344	2360	2349	2345	2357	2353	2355	2359	2368	2369
2	2365	2358	2360	2364	2369	2375	2380	2382	2382	2384
3	2320	2324	2335	2340	2323	2326	2306	2319	2294	2271
4	2370	2369	2370	2369	2373	2372	2390	2376	2399	2423

RUN NUMBER 4115

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ. FT-HR-F)

	1	2	3	4	5	6	7	8	9	10
1	218	203	195	192	200	195	197	195	191	192
2	223	195	196	199	199	200	198	200	184	179
3	199	178	185	189	177	177	166	170	150	141
4	227	203	203	202	202	198	206	195	195	206

.....

RUN NUMBER 4115 SUMMARY

ST	RE	PR	X/D	HUB	NUW	тв	TW	DENS	NU
1	10519.10	6.20	6.4	2.169	1.900	76.43	87.28	62.25	56.69
2	10588.76	6.15	15.5	2.155	1.862	76.95	89.04	62.24	50.88
3	10658.60	6.11	24.6	2.141	1.851	77.47	89.55	62.24	50.91
4	10728.63	6.06	33.7	2.127	1.841	77.99	90.01	62.23	51.15
5	10798.84	6.02	42.8	2.113	1.828	78.51	90.62	62.23	50.75
6	10869.22	5.98	52.0	2.099	1.814	79.04	91.28	62.22	50.16
7	10939.79	5.93	61.1	2.086	1.802	79.56	91.88	62.22	49.83
8	11010 54	5.89	70.2	2.077	1.790	80.08	92.49	62.21	49.44
9	11081 47	5.85	79.3	2.059	1.764	80.60	93.78	62.21	46.58
10	11152.57	5.81	88.4	2.046	1.751	81.12	94.45	62.20	46.03

NOTE: TBULK IS GIVEN IN DEGREES FAHRENHEIT MUB AND MUW ARE GIVEN IN LON/(FT*HR)

RUN NUMBER 4117

TEST FLUID IS DISTILLED WATER

VOLUMETRIC FLOW RATE	-	2.10	GPM
MASS FLOW PATE	-	1050.3	LBM/HR
MASS FLUX	-	160012	LEM/ (SQ.FT-ID)
FLUID VELOCITY	-	.71	IT/S
ROOM TEMPERATURE	-	73.68	T
INLET TEMPERATURS	-	76.00	7
OUTLET TEMPERATURE	-	82.28	F
AVERAGE RE NUMBER	-	6976	
AVERAGE PR NUMBER	-	5.97	
CURRENT TO TUBE	-	480.0	AMPS
VOLTAGE DROP IN TUBE	-	3.79	VOLTS
AVERAGE HEAT FLUX	-	2505	BTU/ (SQ. FT-HR)
Q-ARP VOLT	-	6207	BTU/HR
Q-M*C* (T2-T1)	-	6586	BTU/HR
HEAT BALANCE ERROR	-	-6.10	

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	z	3	4	5	6	7	8	9	10
1	89.61	91.60	92.92	93.58	93.76	94.56	95.04	95.70	96.50	97.25
2	89.47	91.86	92.54	92.94	93.45	94.05	94.74	95.37	96.92	97.78
3	90.40	92.52	92.91	93.13	94.49	94.95	96.31	96.65	99.00	100.62
4	89.16	91.47	92.21	92.76	93.41	94.14	94.52	95.54	96.43	96.40

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	з	4	5	6	7	8	9	10
1	88.26	90.24	91.57	92.23	92.41	93.21	93.69	94.34	95.14	95.89
2	88.11	90.50	91.18	91.58	92.08	92.68	93.37	94.00	95.55	96.40
3	89.06	91.17	91.56	91.78	93.15	93.60	94.98	95.31	97.67	99.31
4	87.79	90.10	90.84	91.39	92.04	92.77	93.14	94.17	95.05	95.00

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	3	4	5	6	7	8	9	10
1	7786	7967	8088	8149	8165	8240	8284	8345	8419	8490
2	7772	7990	8052	8089	8136	8191	8254	8313	8458	8538
3	7859	8052	8087	8107	8234	8276	8404	8435	8657	8812
4	7744	7954	8022	8072	8132	8199	8234	8329	8411	8407

INSIDE SURFACE HEAT FLUXES BTU/HR/FT2

	1	2	3	4	5	6	7	8	9	10
1	2344	2357	2343	2339	2350	2348	2351	2356	2370	2363
2	2365	2360	2366	2368	2376	2378	2385	2383	2386	2395
3	2323	2333	2343	2350	2331	2338	2317	2331	2304	2274
4	2373	2370	2375	2373	2377	2375	2391	2378	2398	2431

RUN NUMBER 4117

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ.FT-HR-F)

	1	2	3	4	5	6	7	8	9	10
1	198	178	168	167	173	170	172	172	170	168
2	202	175	174	177	179	179	179	178	166	164
3	183	164	168	173	162	165	155	159	140	130
4	208	181	179	180	180	178	182	175	173	184

RUN NUMBER 4117 SUMMARY

RE X/D HUB HUW тв TW DENS NU ST PR 88.30 90.50 91.29 91.74 92.42 93.07 93.79 94.46 95.85 96.65 2.170 2.153 2.137 2.121 2.105 2.089 2.073 2.058 2.043 2.029 51.79 45.68 45.07 45.54 45.28 62.25 62.24 62.24 62.23 62.23 62.22 1.878 1.830 1.814 1.805 1.791 1.778 1.764 1.751 1.724 1.709 76.42 77.03 77.63 78.23 78.84 79.44 80.05 80.65 81.25 81.86 1 6742.24 6.20 6.15 6.10 6.04 5.99 5.94 5.89 5.84 5.80 5.75 6.4 15.5 24.6 33.7 42.8 52.0 61.1 70.2 79.3 88.4 6742.24 6794.09 6846.09 6898.25 6950.57 7003.04 23456789 45.28 45.12 44.70 44.50 42.09 41.52 62.22 7055.67 7108.45 7161.38 62.21 62.20 62.20 10 7214.47 2.028

NOTE: TBULK IS GIVEN IN DEGREES FARRENHEI? MUB AND MUW ARE GIVEN IN LBN/(FT*HR)

RUN NUMBER 4119 TEST FLUID IS DISTILLED WATER

.

VOLUMETRIC FLOW RATE	-	2.26	GPM
MASS FLOW RATE	-	1125.9	LBM/HR
MASS FLUX	-	171542	LEM/ (SQ. FT-HR)
FLUID VELOCITY	-	.76	FT/S
ROOM TEMPERATURE	-	74.64	T
INLET TEMPERATURE	-	76.05	T
OUTLET TEMPERATURE	-	81.96	F
AVERAGE RE NUMBER	-	7466	
AVERAGE PR NUMBER	-	5.98	
CURRENT TO TUBE		481.0	AMPS
VOLTAGE DROP IN TUBE	-	3.80	VOLTS
AVERAGE HEAT FLUX		2517	BTU/ (SQ.FT-HR)
Q-AMP*VOLT	-	6236	BTU/HR
Q-N*C* (T2-T1)	-	6644	BTU/HR
HEAT BALANCE ERROR		-6.54	

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	88.82	90.66	91.81	92.44	92.58	93.38	93.87	94.60	95.61	96.17
2	88.80	90.99	91.65	91.96	92.57	93.08	93.79	94.42	96.03	96.92
3	89.80	91.71	92.04	92.23	93.66	94.12	95.53	95.87	98.17	99.65
4	88.61	90.65	91.27	91.83	92.50	93.19	93.59	94.64	95.50	95.38

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	э	4	5	6	7	8	9	10
1	87.46	89.29	90.45	91.08	91.22	92.02	92.51	93.24	94.24	94.80
2	87.43	89.62	90.28	90.59	91.20	91.71	92.41	93.04	94.65	95.54
3	88.45	90.36	90.68	90.87	92.31	92.77	94.19	94.52	96.84	98.34
4	87.24	89.28	89.90	90.46	91.13	91.82	92.21	93.27	94.11	93.98

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	3	4	5	6	7	8	9	10
1	8269	8448	8561	8623	8636	8716	8764	8836	8936	8992
2	8267	8480	8545	8575	8635	8685	8755	8817	8977	9066
3	8366	8552	8584	8602	8745	8790	8931	8965	9197	9348
4	8248	8446	8507	8562	8628	8696	8734	8839	8924	8910

INSIDE SURFACE HEAT FLUXES BTU/HR/FT2

	1	2	з	4	5	6	7	8	9	10
1	2358	2368	2356	2352	2366	2362	2365	2369	2378	2375
2	2373	2369	2372	2375	2381	2385	2392	2391	2395	2399
3	2332	2341	2350	2357	2338	2342	2321	2336	2310	2283
4	2378	2378	2382	2379	2383	2382	2398	2385	2409	2439

•----• RUN NUMBER 4119

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ.FT-HR-F)

	1	2	3	4	5	6	7	a	9	10
1	214	192	193	181	189	185	187	184	179	179
2	216	187	186	190	190	192	190	189	175	171
3	194	175	179	185	172	173	161	165	145	136
4	220	193	193	193	192	190	194	185	183	196

•----• RUN NUMBER 4119 SUMMARY

ST	RE	PR	X/D	MUB	NUW	тв	TW	DENS	NU
1	7230.37	6.20	6.4	2.169	1.892	76.45	87.64	62.25	55.15
2	7282.68	6.15	15.5	2.153	1.849	77.02	89.64	62.24	48.95
3	7335.14	6.10	24.6	2.138	1.834	77.58	90.33	62.24	48.47
4	7387.74	6.05	33.7	2.123	1.825	78.15	90.75	62.23	49.01
5	7440.50	6.00	42.8	2,108	1.811	78.72	91.46	62.23	48.44
6	7493.40	5.96	52.0	2.093	1.798	79.29	92.08	62.22	48.24
7	7546.45	5.91	61.1	2.078	1.783	79.86	92.83	62.21	47.55
	7599 65	5 86	70.2	2.063	1.769	80.43	93.52	62.21	47.10
ä	7652 99	5.82	79.3	2.049	1.741	80.99	94.96	62.20	44.16
10	7706.48	5.77	88.4	2.035	1.727	81.56	95.66	62.20	43.73

NOTE: TBULK IS GIVEN IN DEGREES FAHRENHEIT MUB AND MUW ARE GIVEN IN LBM/ (FT*HR)

RUN NUMBER 4121 TEST FLUID IS DISTILLED WATER

-

VOLUMETRIC FLOW RATE	-	2.31	GPM
MASS FLOW RATE	-	1152.6	LBM/ HR
HASS FLUX	-	175608	LBM/ (SQ.FT-HR)
FLUID VELOCITY	-	.78	FT/S
ROOM TEMPERATURE	-	77.29	F
INLET TEMPERATURE		76.46	F
OUTLET TEMPERATURE	-	82.27	Ŧ
AVERAGE RE NUMBER	-	7678	
AVERAGE PR NUMBER	-	5.95	
CURRENT TO TUBE	-	483.0	AMPS
VOLTAGE DROP IN TUBE	-	3.81	VOLTS
AVERAGE HEAT FLUX	-	2534	BTU/ (SQ.FT-HR)
Q-AMP VOLT	-	6279	BTU/HR
Q-M*C* (T2-T1)	-	6687	BTU/HR
BEAT BALANCE ERROR	-	-6.50	•

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	88.64	90.53	91.70	92.33	92.61	93.41	94.00	94.67	95.76	96.28
2	88.73	90.90	91.55	91.93	92.59	93.17	93.93	94.58	96.21	97.08
3	89.74	91.70	91.98	92.27	93.73	94.29	95.70	96.08	98.45	99.85
4	88.49	90.57	91.18	91.79	92.51	93.30	93.79	94.80	95.71	95.56

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	в	9	10
1	87.27	89.15	90.33	90.96	91.24	92.04	92.63	93.29	94.38	94.90
2	87.35	89.52	90.17	90.55	91.21	91.78	92.54	93.19	94.82	95.69
3	88.38	90.34	90.61	90.90	92.37	92.93	94.35	94.72	97.11	98.52
4	87.11	89.19	89.80	90.41	91.13	91.92	92.40	93.42	94.31	94.15

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	3	4	5	6	7	8	9	10
1	8446	8634	8752	8816	8843	8924	8964	9051	9162	9216
2	8455	8671	8736	8774	8840	8899	8975	9041	9207	9296
3	8557	8753	8781	8809	8958	9015	9159	9197	9443	9589
4	8431	8638	8698	8760	8832	8912	8961	9064	9155	9138

INSIDE SURFACE HEAT FLUXES BTU/HR/FT2

	1	2	3	4	5	6	7	8	9	10
1	2379	2389	2376	2373	2385	2384	2386	2391	2399	2396
2	2391	2389	2392	2395	2401	2405	2413	2411	2416	2419
3	2350	2358	2369	2375	2356	2360	2341	2354	2328	2302
4	2398	2397	2401	2398	2404	2402	2416	2405	2429	2459

•----... RUN NUMBER 4121

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ. FT-HR-F)

	1	2	3	4	5	6	7	8	9	10
1	228	203	192	190	196	192	192	190	183	184
2	227	197	196	199	198	198	195	193	178	175
3	203	182	187	191	177	177	165	168	147	138
4	233	203	203	201	199	195	198	190	186	200

•----RUN NUMBER 4121 SUMMARY

ST	RE	PR	X/D	MUB	HUW	тв	TW	DENS	NU
1	7439.76	6.16	6.4	2.158	1.895	76.85	87.53	62.24	58.29
2	7492.51	6.11	15.5	2.143	1.851	77.41	89.55	62.24	51.29
3	7545.41	6.07	24.6	2.128	1.836	77.97	90.23	62.23	50.78
4	7598.45	6.02	33.7	2.113	1.826	78.53	90.70	62.23	51.09
5	7651.64	5.97	42.8	2.098	1.810	79.09	91.48	62.22	50.17
6	7704.98	5.93	52.0	2.084	1.796	79.64	92.17	62.22	49.66
7	7758.46	5.88	61.1	2.069	1.780	80.20	92.98	62.21	48.67
8	7812.08	5.84	70.2	2.055	1.766	80.76	93.66	62.21	48.21
9	7865.85	5.79	79.3	2.041	1.737	81.32	95.16	62.20	44.94
10	7919.77	5.75	88.4	2.027	1.724	81.88	95.82	62.20	44.60

NOTE: TBULK IS GIVEN IN DEGREES FARRENHEIT MUB AND MUW ARE GIVEN IN LBM/ (FT+HR)

RUN NUMBER 4123 TEST FLUID IS DISTILLED WATER

VOLUMETRIC FLOW RATE	-	2.40	GPK
MASS FLOW RATE	-	1197.0	LBM/HR
KASS FLUX	-	182364	LEM/ (SQ. FT-HR)
FLUID VELOCITY	-	.81	TT/S
ROCH TEMPERATURE	-	77.57	F
INLET TEMPERATURE	-	77.54	7
OUTLET TEMPERATURE	-	83.06	F
AVERAGE RE NUMBER	-	8066	
AVERAGE PR NUMBER	-	5.87	
CURRENT TO TUBE	-	483.0	AMPS
VOLTAGE DROP IN TUBE	-	3.81	VOLTS
AVERAGE HEAT FLUX	-	2534	BTU/ (SQ. FT-HR)
Q-AMP VOLT	-	6279	BTU/HR
Q-H*C* (T2-T1)	-	6597	BTU/HR
HEAT BALANCE ERROR	-	-5.07	

OUTSIDE SURFACE TEMPERATURES - DEGREES F

3 96.56
6 97.43
5 100.31
1 95.88
0 5 8 0

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	88.06	89.76	90.85	91.45	91.69	92.51	93.01	93.66	94.65	95.18
2	88.15	90.15	90.75	91.11	91.76	92.29	93.03	93.63	95.17	96.04
з	89.21	90.90	91.22	91.49	92.96	93.48	94.86	95.17	97.51	98.99
4	87.92	89.78	90.43	90.99	91.70	92.44	92.78	93.87	94.61	94.47

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	z	3	4	5	6	7	8	9	10
1	8853	9030	9143	9206	9231	9317	9370	9439	9543	9600
2	8862	9070	9133	9170	9238	9295	9372	9436	9599	9691
3	8973	9148	9182	9210	9365	9419	9566	9599	9849	10008
4	8838	9031	9099	9157	9232	9309	9345	9460	9539	9524

INSIDE SURFACE HEAT FLUXES BTU/ER/FT2

	1	2	3	4	5	6	7	8	9	10
1	2381	2390	2379	2376	2389	2386	2388	2394	2401	2398
2	2393	2388	2392	2395	2402	2406	2412	2411	2416	2420
3	2351	2360	2369	2375	2356	2360	2340	2355	2327	2299
4	2399	2 398	2401	2398	2403	2402	2419	2405	2430	2461

RUN NUMBER 4123

PERIPHERAL HEAT TRANSFER COEFFICIENT BTO/ (SQ.FT-HR-F)

	1	2	3	1	5	6	7	8	9	10
1	234	211	200	198	204	199	200	198	192	192
2	233	203	203	206	204	205	202	200	185	181
3	208	189	193	198	182	182	170	173	151	141
4	239	211	209	208	206	202	207	196	195	208

RUN NUKBER 4123 SUMMARY

ST	RE	PR	X/D	HUB	HUW	TB	TW	DENS	NU
1	7830.10	6.07	6.4	2.129	1.877	77.91	88.33	62.23	59.65
2	7882.41	6.03	15.5	2.115	1.838	78.44	90.15	62.23	53.14
3	7934.87	5.98	24.6	2.101	1.824	78.97	90.81	62.22	52.52
4	7987.46	5.94	33.7	2.087	1.815	79.50	91.26	62.22	52.88
5	8040.18	5.89	42.8	2.073	1.799	80.03	92.03	62.21	51.82
6	8093.05	5.85	52.0	2.060	1.786	80.57	92.68	62.21	51.29
7	8146.04	5.81	61.1	2.047	1.771	81.10	93.42	62.20	50.40
8	8199.18	5.77	70.2	2.033	1.758	81.63	94.08	62.20	49.85
9	8252.44	5.73	79.3	2.020	1.731	82.16	95.49	62.19	46.61
10	8305.85	5.68	88.4	2.007	1.718	82.69	96.17	62.19	46.07

NOTE: TBULK IS GIVEN IN DEGREES FAERENBEIT NUB AND NUW ARE GIVEN IN LBW/(FT*ER)

...... RUN NUMBER 4128 TEST FLUID IS DISTILLED WATER

1

...

VOLUMETRIC FLOW RATE	-	2.42	GPM
MASS FLOW RATE	-	1208.0	LBM/ HR
MASS FLUX	-	184043	LBM/ (90. FT-HR)
FLUID VELOCITY	-	.82	FT/S
ROOM TEMPERATURE	-	75.95	F
INLET TEMPERATURE	-	78.17	T
OUTLET TEMPERATURE	-	83.46	r
AVERAGE RE NUMBER	-	8192	
AVERAGE PR NUMBER	-	5.83	
CURRENT TO TUBE	-	474.0	AMPS
VOLTAGE DROP IN TUBE	-	3.72	VOLTS
AVERAGE BEAT FLUX	-	2428	BTU/ (SQ.FT-HR)
Q-AMP*VOLT	-	6016	BTU/HR
Q-H*C* (T2-T1)	-	6380	BTU/HR
HEAT BALANCE ERROR	-	-6.05	•

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	•	5	6	7	8	9	10
1	89.89	91.42	92.36	92.98	93.17	94.04	94.50	95.07	96.01	96.59
2	89.65	91.80	92.34	92.70	93.33	93.89	94.54	95.15	96.67	97.51
3	90.78	92.59	92.88	93.15	94.53	94.99	96.27	96.64	98.90	100.32
4	89.52	91.49	92.01	92.54	93.20	93.93	94.29	95.28	96.12	96.03

INSIDE SURFACE TEMPERATURES - DEGREES F

1	2	з	•	5	6	7	8	9	10
88.57	90.09	91.04	91.66	91.84	92.72	93.18	93.74	94.68	95.26
88.32	90.47	91.01	91.37	92.00	92.56	93.20	93.81	95.33	96.17
89.47	91.28	91.57	91.83	93.22	93.68	94.97	95.34	97.61	99.05
88.18	90.16	90.68	91.21	91.87	92.60	92.95	93.95	94.78	94.67
	1 88.57 89.32 89.47 88.18	1 2 88.57 90.09 88.32 90.47 89.47 91.28 88.18 90.16	1 2 3 88.57 90.09 91.04 88.32 90.47 91.01 89.47 91.28 91.57 88.18 90.16 90.68	1 2 3 4 88.57 90.09 91.04 91.66 88.32 90.47 91.01 91.37 89.47 91.28 91.57 91.83 88.18 90.16 90.66 91.21	1 2 3 4 5 88.57 90.09 91.04 91.66 91.84 88.52 90.47 91.01 91.37 92.00 89.47 91.26 91.57 91.83 93.22 88.18 90.16 90.66 91.21 91.87	1 2 3 4 5 6 88.57 90.09 91.04 91.66 91.84 92.72 88.32 90.47 91.01 91.37 92.00 92.56 89.47 91.28 91.57 91.83 93.22 93.68 88.18 90.16 90.68 91.21 91.87 92.60	1 2 3 4 5 6 7 88.57 90.09 91.04 91.66 91.84 92.72 93.18 88.52 90.47 91.01 91.37 92.00 92.56 93.20 89.47 91.28 91.57 91.83 93.22 93.68 94.97 88.18 90.16 90.66 91.21 91.87 92.60 92.95	1 2 3 4 5 6 7 8 88.57 90.09 91.04 91.66 91.84 92.72 93.18 93.74 88.52 90.47 91.01 91.37 92.00 92.56 93.20 93.81 89.47 91.28 91.57 91.83 93.22 93.68 94.97 95.34 88.18 90.16 90.68 91.21 91.87 92.60 92.95 93.95	1 2 3 4 5 6 7 8 9 88.57 90.09 91.04 91.66 91.84 92.72 93.18 93.74 94.68 88.52 90.47 91.01 91.37 92.00 92.56 93.20 93.81 95.33 89.47 91.28 91.57 91.83 93.22 93.68 94.97 95.34 97.61 88.18 90.16 90.68 91.21 91.87 92.60 92.95 93.95 94.78

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	z	3	4	5	6	7	8	9	10
1	8988	9147	9247	9313	9332	9425	9474	9534	9634	9697
2	8961	9187	9244	9282	9349	9408	9477	9542	9705	9795
3	9082	9273	9303	9331	9479	9528	9666	9705	9951	10107
4	8948	9154	9209	9265	9335	9412	9450	9556	9645	9633

INSIDE SURFACE HEAT FLUXES BTU/ER/FT2

	1	2	3	4	5	6	7	8	9	10
1	2286	2303	2293	2289	2303	2298	2300	2307	2316	2312
2	2311	2302	2305	2308	2313	2317	2323	2321	2325	2330
3	2263	2272	2279	2285	2267	2273	2254	2266	2240	2214
4	2315	2310	2313	2312	2316	2316	2330	2318	2340	2369

·-----RUN NUMBER 4128

PERIPHERAL HEAT TRANSFER CONFFICIENT BTU/ (SQ. FT-HR-F)

	1	2	3	4	5	6	7	8	9	10
1	227	208	199	197	204	197	198	197	191	190
2	236	201	201	203	202	201	199	197	182	178
3	206	185	189	193	179	180	168	171	149	138
4	239	207	207	207	204	200	204	195	192	204

RUN NUMBER 4128 SUMMARY . . .

ST	RS	PR	X/D	MUB	HUW	тв	TW	DENS	NU
1	7963.32	6.02	6.4	2.113	1.870	78.53	88.64	62.23	59.18
2	8014.07	5.98	15.5	2.099	1.831	79.03	90.50	62.22	52.22
3	8064.95	5.93	24.6	2.086	1.819	79.54	91.07	62.22	51.91
4	8115.95	5.89	33.7	2.073	1.809	80.05	91.52	62.21	52.18
5	8167 08	5.85	42.8	2.060	1.795	80.56	92.23	62.21	51.25
2	8218.33	5.61	52.0	2.047	1.782	81.07	92.89	62.20	50.60
2	8269.71	5.77	61.1	2.034	1.768	81.58	93.57	62.20	49.84
	8321 21	5.73	70.2	2.022	1.755	82.09	94.21	62.19	49.31
9	8377 84	5 69	79 3	2.009	1.728	82.60	95.60	62.19	45.98
10	8424.59	5.65	88.4	1.997	1.715	83.10	96.29	62.18	45.35

NOTE: TBULK IS GIVEN IN DEGREES FAHRENHEIT MUB AND NUW ARE GIVEN IN LBM/(FT*HR)

RUN NUMBER 4132 TEST FLUID IS DISTILLED WATER

-

VOLUMETRIC FLOW RATE	-	3.38	GPM
WASS FLOW RATE	-	1685.2	LEM/HR
ASS FLUX	-	256746	LBM/ (SQ.FT-ER)
FLUID VELOCITY	-	1.14	FT/S
ROOM TEMPERATURE	-	77.10	F
INLET TEMPERATURE	-	75.21	7
OUTLET TEMPERATURE	-	77.63	F
AVERAGE RE NUMBER	-	10817	
AVERAGE PR NUMBER	-	6.20	
CURRENT TO TUBE		380.0	AMPS
VOLTAGE DROP IN TUBE	-	3.00	VOLTS
AVERAGE HEAT FLUX	-	1570	BTU/ (SO. FT-HR)
-ANP VOLT	-	3889	BTU/HR
-H+C+ (T2-T1)	-	4073	BTU/RR
HEAT BALANCE ERROR	-	-4.71	•

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	81.47	82.11	82.49	82.81	83.01	83.38	83.63	84.00	84.55	84.79
2	81.40	82.37	82.58	82.82	83.25	83.51	83.84	84.17	85.06	85.51
3	82.33	83.04	83.06	83.20	84.14	84.46	85.15	85.34	86.72	87.68
4	81.39	82.06	82.36	82.71	83.07	83.52	83.73	84.36	84.68	84.27

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	80.62	81.26	81.64	81.96	82.16	82.53	82.78	83.15	83.70	83.94
2	80.54	81.52	81.73	81.97	82.40	82.65	82.98	83.31	84.20	84.65
3	81.49	82.20	82.22	82.36	83.30	83.62	84.32	84.51	85.90	86.87
4	80.53	81.20	81.50	81.86	82.21	82.66	82.87	83.51	83.82	83.39

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	3	4	5	6	7	8	9	10
1	11401	11491	11545	11590	11618	11670	11706	11758	11836	11871
2	11390	11528	11557	11591	11652	11688	11735	11782	11909	11973
3	11524	11624	11627	11646	11781	11826	11925	11952	12151	12292
4	11389	11483	11526	11575	11626	11690	11719	11809	11854	11793

INSIDE SURFACE HEAT FLUXES BTU/ER/FT2

	1	2	3	4	5	6	7	8	9	10
1	1464	1469	1466	1466	1471	1471	1472	1475	1478	1472
2	1478	1471	1471	1471	1475	1478	1482	1481	1484	1487
3	1442	1445	1451	1456	1442	1443	1433	1441	1422	1399
4	1478	1479	1477	1474	1480	1478	1484	1476	1493	1519

RUN NUNBER 4132

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ.FT-HR-F)

	1	2	з	4	5	6	7	8	9	10
1	278	259	252	248	251	245	245	240	228	227
2	285	248	249	249	242	241	238	234	212	207
3	235	219	227	231	206	203	189	192	164	148
4	286	264	260	254	250	241	243	227	226	256

RUN NUMBER 4132 SUMMARY

.... ----

ST	RE	PR	X/D	MUB	MUW	тв	T₩	DENS	NU
1	10674.18	6.29	6.4	2.199	2.054	75.37	80.80	62.26	70.77
2	10706.04	6.27	15.5	2.192	2.035	75.61	81.55	62.25	64.65
ã	10737.93	6.25	24.6	2.186	2.030	75.84	81.77	62.25	64.71
	10769.87	6.23	33.7	2.179	2.023	76.07	82.04	62.25	64.37
5	10801.83	6.21	42.8	2.173	2.011	76.30	82.52	62.25	61.79
6	10933 84	6.19	52.0	2.166	2.003	76.54	82.87	62.25	60.64
7	10865 89	6.17	61.1	2.160	1.994	76.77	83.24	62.24	59.34
à	10897 97	6.15	70.2	2.154	1.985	77.00	83.62	62.24	58.02
ä	10930 09	6.13	79.7	2.147	1.966	77.23	84.40	62.24	53.57
10	10962.25	6.11	88.4	2.141	1.959	77.47	84.71	62.24	52.99

NOTE: TBULK IS GIVEN IN DEGREES FARRENHEIT MUB AND MUW ARE GIVEN IN LBM/(FT*HR)

RUN NUMBER 4134 TEST FLUID IS DISTILLED WATER

TEST FLUID IS DISTILLED WATER

VOLUMETRIC FLOW RATE	-	3.38	GPN
MASS FLOW RATE	-	1687.4	LBM/ ER
MASS FLUX	-	257089	LBM/ (SQ.FT-HR)
FLUID VELOCITY	-	1.14	FT/S
ROOM TEMPERATURE	-	73.26	T
INLET TEMPERATURE	-	74.97	T
OUTLET TEMPERATURE	-	77.56	ĩ
AVERAGE RE NUMBER	•	10810	
AVERAGE PR NUMBER	-	6.21	
CURRENT TO TUBE	-	390.0	AMPS
VOLTAGE DROP IN TUBE	-	3.07	VOLTS
AVERAGE HEAT FLUX	-	1649	BTU/ (SQ. FT-HR)
Q-AMP*VOLT	-	4085	BTU/HR
Q-H*C* (72-T1)	-	4365	BTU/HR
HEAT BALANCE ERROR	-	-6.85	•

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	81.75	82.32	82.77	83.04	83.14	83.48	83.68	83.99	84.53	84.83
2	81.76	82.61	82.82	83.04	83.35	83.58	83.90	84.12	85.09	85.63
3	82.57	83.26	83.27	83.40	84.26	84.53	85.25	85.34	86.85	87.78
4	81.65	82.38	82.55	82.92	83.14	83.63	83.67	84.34	84.70	84.39

INSIDE SURFACE TEMPERATURES - DEGREES F

1	2	з	4	5	6	7	8	9	10
80.86	81.42	81.88	82.15	82.24	82.58	82.78	83.09	83.63	83.93
80.86	81.71	81.92	82.14	82.45	82.68	83.00	83.22	84.19	84.73
81.69	82.38	82.38	82.51	83.38	83.65	84.38	84.46	85.98	86.92
80.75	81.48	81.65	82.02	82.24	82.73	82.76	83.44	83.79	83.47
	1 80.86 80.86 81.69 80.75	1 2 80.86 31.42 80.86 81.71 81.69 82.38 80.75 81.48	1 2 3 80.86 81.42 81.88 80.86 81.71 81.92 81.69 92.38 82.38 80.75 81.48 81.65	1 2 3 4 80.86 81.42 81.88 82.15 80.86 81.71 81.92 82.14 81.69 82.38 82.51 80.75 80.75 81.48 81.65 82.02	1 2 3 4 5 80.86 81.42 81.88 82.15 82.24 80.86 81.71 81.92 82.14 82.45 81.69 82.38 82.51 83.38 80.75 81.48 81.65 82.02 82.24	1 2 3 4 5 6 80.86 81.42 81.98 82.15 82.24 82.58 80.86 81.71 81.92 82.14 82.45 82.68 81.69 82.38 82.38 82.51 83.38 83.65 80.75 81.48 81.65 82.02 82.24 82.73	1 2 3 4 5 6 7 80.86 81.42 81.88 82.15 82.24 82.58 82.78 80.86 61.71 81.92 82.14 82.45 82.68 83.00 81.69 82.38 82.51 83.36 84.38 80.75 81.48 81.65 82.02 82.24 82.73 82.76	1 2 3 4 5 6 7 8 80.86 81.42 81.88 82.15 82.24 82.58 82.78 83.09 80.86 81.71 81.92 82.14 82.45 82.68 83.00 83.22 81.69 82.38 82.51 83.38 83.65 84.38 84.46 80.75 81.48 81.65 82.24 82.73 82.76 83.44	1 2 3 4 5 6 7 8 9 80.86 81.42 81.88 82.15 82.24 82.58 82.78 83.09 83.63 80.86 81.71 81.92 82.14 82.45 82.68 83.00 83.22 84.19 81.69 82.38 82.51 83.38 83.65 84.38 84.46 85.98 80.75 81.48 81.65 82.24 82.76 83.44 83.79

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	z	з	4	5	6	7	8	3	10
1	11450	11529	11594	11632	11646	11694	11722	11766	11843	11886
2	11450	11570	11600	11631	11675	11707	11753	11784	11922	11999
3	11567	11664	11665	11684	11807	11845	11949	11961	12180	12316
4	11434	11537	11561	11614	11645	11715	11719	11816	11866	11820

INSIDE SURFACE HEAT FLOXES BTU/HR/FT2

	1	2	3	4	5	6	٦	8	9	10
1	1543	1549	1543	1544	1548	1549	1549	1553	1557	1553
2	1554	1549	1550	1550	1554	1556	1560	1560	1562	1565
3	1522	1525	1530	1534	1520	1522	1509	1518	1498	1478
4	1557	1555	1557	1553	1560	1555	1566	1555	1573	1596

RUN NUMBER 4134

PERIPHERAL BEAT TRANSFER COEFFICIENT BTU/ (SQ. FT-ER-F)

	1	2	3	4	5	6	7	8	9	10
1	270	257	247	246	253	250	252	250	239	237
2	271	245	246	247	246	247	245	246	221	213
3	232	218	227	231	209	209	195	200	169	154
4	277	255	259	253	255	245	255	237	236	262

RUN NUMBER 4134 SUMMARY

·----TW DENS NU MUB тв 7/D MUW ST RE PR 2.205 2.198 2.191 2.184 2.177 2.170 2.164 2.157 2.150 2.143 2.048 2.030 2.025 2.019 2.010 2.002 1.994 1.986 1.966 1.958 75.14 75.39 75.64 75.89 76.14 76.39 76.64 76.89 77.14 77.39 81.04 81.75 81.96 82.21 82.58 82.91 83.23 83.55 84.40 84.76 68.66 63.69 64.08 64.08 62.85 62.26 10657.16 6.31 6.29 6.27 6.25 6.23 6.20 6.18 6.16 6.14 6.12 6.4 15.5 24.6 33.7 42.8 52.0 61.1 70.2 79.3 88.4 12 62.26 62.25 62.25 62.25 62.25 10657.16 10691.26 10725.40 10759.59 10793.82 345 62.25 62.25 62.24 62.24 62.24 62.24 62.04 61.36 60.68 55.71 54.83 10793.62 10828.10 10862.42 10896.78 10931.18 10965.63 67 8 9 10

NOTE: TBULK IS GIVEN IN DEGREES FARRENEEIT MUB AND NUW ARE GIVEN IN LBN/ (FT*ER)

•-----.... RUN NUMBER 4136 TEST FLUID IS DISTILLED WATER

VOLUMETRIC FLOW RATE	-	3.24	GPM
MASS FLOW RATE		1616.1	LBM/HR
HASS FLUX	-	246228	LBM/ (SQ.FT-HR)
FLUID VELOCITY	-	1.09	FT/S
ROON TEMPERATURE	-	71.42	7
INLET TEMPERATURE	-	75.14	F
OUTLET TEMPERATURE	-	76.31	Ŧ
AVERAGE RE NUMBER	-	10283	
AVERAGE PR NUMBER	-	6.26	
CURRENT TO TUBE	-	265.0	AMPS
VOLTAGE DROP IN TUBE	-	2.05	VOLTS
AVERAGE HEAT FLUX	-	748	BTU/ (SQ.FT-HR)
Q-AMP*VOLT	-	1853	BTU/HR
Q-H*C* (T2-T1)	-	1888	BTU/RR
HEAT BALANCE ERROR	-	-1.89	•

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	78.51	78.77	78.95	79.07	79.13	79.32	79.38	79.55	80.03	80.16
2	78.50	78.90	78.97	79.04	79.25	79.36	79.51	79.58	80.26	80.51
3	78.83	78.98	79.13	79.06	79.63	79.65	80.07	80.00	81.07	81.59
4	78.46	78.79	78.83	79.07	79.17	79.39	79.38	79.94	80.04	79.46

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3		5	6	7	8		10
1	78.10	78.36	78.54	78.66	78.72	78.91	78.97	79.13	79.62	79.75
2	78.08	78.49	78.56	78.63	78.84	78.95	79.09	79.16	79.84	80.09
3	78.42	78.57	78.72	78.65	79.22	79.24	79.67	79.59	80.67	81.20
4	78.04	78.38	78.41	78.66	78.75	78.98	78.96	79.53	79.62	79.03

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	L	2	3	٩	5	6	7	8	9	10
1	10596	10631	10655	10671	10679	10704	10712	10735	10799	10817
2	10595	10648	10657	10667	10695	10709	10729	10739	10830	10863
3	10640	10659	10679	10670	10747	10749	10806	10796	10941	11012
4	10589	10633	10639	10671	10684	10713	10712	10788	10800	10720

INSIDE SURFACE HEAT FLUXES BTU/HR/FT2

	1	÷	3	4	5	6	7	8	9	10
1	710	713	710	711	713	713	713	717	715	707
2	715	710	713	712	714	714	717	716	719	721
3	702	708	705	711	701	705	696	705	689	672
4	716	713	716	711	716	714	720	707	724	747

...... ----RUN NUMBER 4136

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ. FT-HR-F)

	1	2	3	4	5	5	7	8	9	10
1	246	235	229	229	234	228	232	229	204	201
2	249	225	229	231	225	225	224	226	193	186
3	219	218	215	230	197	203	184	196	151	135
4	253	234	241	229	232	223	234	200	207	267

·----RUN NUNBER 4136 SUNKARY

ST	RE	PR	X/D	MUB	HUW	TB	TW	DENS	NU
1	10216.67	6.31	6.4	2.203	2.122	75.22	78.16	62.26	63.32
2	10231 43	5 30	15.5	2.200	2.115	75.33	78.45	62.26	59.82
5	10246 19	6.29	24.6	2.197	2.112	75.44	78.56	62.25	59.86
÷.	10240.15	6 28	33.7	2.194	2.110	75.56	78.65	62.25	60.29
2	10275 74	6 27	42 B	2.191	2,103	75.67	78.88	62.25	57.99
2	10275.74	6.26	52.0	2 197	2 100	75.78	79.02	62.25	57.59
5	10290.53	6.20	51 1	2 184	2.096	75.89	79.17	62.25	56.84
2	10305.33	6.25	70.7	2 101	7 091	76.01	79,35	62.25	55.65
8	10320.14	6.24	70.2	2.101	2.076	76 17	79.94	62.25	48.81
9	10334.95	6.23	79.3	2.178	2.076	76 23	80.02	67.25	49.22
10	10349.77	6.22	88.4	2.1/5	2.0/4	10.23	00.01		

NOTE: TBULK IS GIVEN IN DEGREES FARRENTEIT MUB AND MUW ARE GIVEN IN LBM/(FT*HR)

181

,

RUN NUMBER 4138 TEST FLUID IS DISTILLED WATER

VOLUMETRIC FLOW RATE	-	3.24	GPM
MASS FLOW RATE	-	1616.3	LEM/HR
MASS FLUX	-	246246	LBM/ (SO.FT-HR)
FLUID VELOCITY	-	1.09	FT/S
ROOM TEMPERATURE	-	70.69	T
INLET TEMPERATURE	-	74.59	F
OUTLET TEMPERATURE	-	75.87	F
AVERAGE RE NUMBER	-	10218	
AVERAGE PR. NUMBER	-	6.31	
CURRENT TO TUBS	-	275.0	AMPS
VOLTAGE DROP IN TUBE	-	2.15	VOLTS
AVERAGE HEAT FLUX	-	814	BTU/ (50. FT-HR)
-AMP VOLT	-	2017	BTU/HR
Q-M*C* (T2-T1)	-	2066	BTU/HR
HEAT BALANCE ERROR	-	-2.44	

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	78.28	78.56	78.78	78.89	78.96	79.16	79.24	79.44	79.92	80.07
2	78.24	78.70	78.78	78.86	79.09	79.20	79.36	79.47	80.19	80.43
3	78.60	78.83	78.96	78.90	79.50	79.52	80.01	79.95	81.09	81.61
4	78.19	78.57	78.63	78.89	79.00	79.23	79.25	79.80	79.99	79.39

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	77.84	78.11	78.34	78.45	78.51	78.71	78.79	78.99	79.47	79.63
2	77.79	78.26	78.33	78.41	78.64	78.75	78.91	79.02	79.74	79.98
3	78.16	78.39	78.52	78.46	79.06	79.08	79.58	79.51	80.66	81.19
4	77.74	78.12	78.18	78.45	78.55	78.78	78.80	79.36	79.54	78.93

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	z	з	•	5	6	7	8	9	10
1	10562	10599	10629	10644	10653	10679	10690	10717	10781	10801
z	10557	10618	10629	10639	10670	10685	10706	10721	10817	10849
з	10606	10636	10653	10645	10726	10728	10794	10786	10940	11012
4	10550	10601	10608	10644	10658	10689	10691	10765	10790	10708

INSIDE SURFACE EEAT FLUXES BTU/ER/FT2

	1	2	3	4	5	6	7	8	9	10
1	764	767	764	765	768	767	768	771	771	763
2	770	765	768	767	769	769	773	772	774	777
з	756	761	759	765	754	758	748	758	741	724
4	772	769	772	766	772	769	775	764	779	803

...... RUN NUMBER 4138

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ. FT-ER-F)

	1	2	з	4	5	6	7	в	9	10
1	241	231	223	225	229	224	227	223	202	198
z	247	221	225	227	221	222	221	221	189	185
3	216	212	211	224	193	200	179	191	148	134
4	251	231	236	225	228	220	229	200	201	255

---- RUN NUMBER 4138 SUMMARY

ST	RE	PR	X/D	NUB	MOW	TB	TW	DENS	NU
1	10146.40	6.36	6.4	2.219	2.130	74.68	77.88	62.26	62.62
2	10162.49	6.35	15.5	2.215	2.121	74.80	78.22	62.26	58.70
3	10178.60	6.33	24.6	2.212	2.118	74.92	78.34	62.26	58.70
4	10194.72	6.32	33.7	2.208	2.115	75.05	78.44	62.26	59.14
5	10210.85	6.31	42.8	2.205	2.108	75.17	78.69	62.26	56.97
6	10226.99	6.30	52.0	2,201	2,105	75.29	78.83	62.26	56.69
7	10243.14	6.29	61.1	2.198	2.100	75.41	79.02	62.25	55.68
	10259 30	6.28	70.2	2.194	2.095	75.54	79.22	62.25	54.52
9	10275.47	6.27	79.3	2.191	2.078	75.66	79.85	62.25	47.91
10	10291.65	6.26	88.4	2.187	2.076	75.78	79.93	62.25	48.43

NOTE: TBULK IS GIVEN IN DEGREES FARRENBEIT MUB AND NUW ARE GIVEN IN LBM/(FT*HR)

•----RUN NUMBER 4141 TEST FLUID IS DISTILLED WATER -----

....

VOLUMETRIC FLOW RATE	-	3.40	GPM
HASS FLOW RATE	-	1696.2	LBM/HR
MASS FLUX	-	258421	LBM/ (SQ.FT-HR)
FLUID VELOCITY	-	1.15	FT/S
ROOM TEMPERATURE	-	70.77	F
INLET TEMPERATURE	•	74.96	F
OUTLET TEMPERATURE	-	76.24	Ŧ
AVERAGE RE NUMBER	-	10775	
AVERAGE PR NUMBER	-	6.27	
CURRENT TO TUBE	-	280.0	AMPS
VOLTAGE DROP IN TUBE	-	2.20	VOLTS
AVERAGE HEAT FLUX	-	848	BTU/ (SQ. FT-HR)
Q-AND VOLT	-	2101	BTU/ER
Q-H*C* (T2-T1)	-	2168	BTU/HR
HEAT BALANCE ERROR	-	-3.18	•

OUTSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	з	4	5	6		8	9	10
1	78.30	78.67	78.94	79.12	79.24	79.49	79.61	79.84	80.33	80.48
2	78.27	78.80	78.95	79.09	79.39	79.56	79.73	79.88	80.62	60.88
3	78.69	78.98	79.16	79.15	79.83	79.91	80.41	80.36	81.53	82.07
4	78.31	78.72	78.85	79.14	79.34	79.58	79.67	80.21	80.41	79.78

INSIDE SURFACE TEMPERATURES - DEGREES F

	1	2	3	4	5	6	7	8	9	10
1	77.84	78.21	78.48	78.66	78.78	79.03	79.15	79.38	79.87	80.02
2	77.81	78.34	78.49	78.63	78.93	79.10	79.27	79.42	80.15	80.41
3	78.23	78.52	78.70	78.69	79.38	79.45	79.96	79.90	81.08	81.63
4	77.85	78.26	78.39	78.68	78.88	79.12	79.20	79.75	79.94	79.30

REYNOLDS NUMBER AT THE INSIDE TUBE WALL

	1	2	3	4	5	6	7	8	9	10
1	11085	11137	11175	11200	11216	11251	11268	11300	11369	11391
2	11080	11155	11176	11195	11237	11261	11285	11306	11410	11446
3	11140	11180	11206	11204	11300	11311	11382	11374	11541	11619
4	11086	11144	11162	11202	11230	11264	11276	11353	11380	11289

INSIDE SURFACE HEAT FLUXES BTU/HR/FT2

	1	2	3	4	5	6	7	8	9	10
1	793	796	793	794	797	796	797	800	800	791
2	799	794	796	795	798	798	801	800	803	805
3	783	788	787	793	783	786	777	787	770	752
4	798	796	799	794	799	797	803	792	808	832

•----• RUN NUMBER 4141

PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/ (SQ. FT-HR-1)

	1	2	3	4	5	6	7	8	9	10
1	284	262	248	244	246	236	237	230	208	204
2	289	250	249	247	235	232	230	228	194	189
3	245	235	230	242	204	207	186	197	152	137
4	285	257	258	243	239	230	234	206	206	264

---- RUN NUNBER 4141 SUNNARY

ST	RE	PR	x/D	MUB	MUW	тв	TW	DENS	NU
1	10698.86	6.32	6.4	2.208	2.129	75.05	77.93	62.26	72.12
2	10715.78	6.31	15.5	2.205	2.118	75.17	78.33	62.26	65.81
3	10732.72	6.30	24.6	2.201	2.113	75.29	78.51	62.26	64.59
4	10749.67	6.29	33.7	2.198	2.109	75.42	78.66	62.25	64.06
5	10766.63	6.28	42.8	2.194	2.101	75.54	78.99	62.25	60.31
6	10783.60	6.27	52.0	2.191	2.096	75.66	79.17	62.25	59.25
7	10800.58	6.26	61.1	2.187	2.090	75.78	79.39	62.25	57.65
8	10817.57	6.25	70.2	2.184	2.084	75.91	79.61	62.25	56.19
9	10834.57	6.24	79.3	2.180	2.068	76.03	80.26	62.25	49.21
10	10851.58	6.22	88.4	2.177	2.066	76.15	80.34	62.25	49.70

NOTE: TBULK IS GIVEN IN DEGREES FARRENBEIT MUB AND NUN ARE GIVEN IN LBM/ (FT*ER) 5

-

APPENDIX C

COMPUTER PROGRAMS

- C.1 Program Datared98F
- C.2 Program RHt98F
- C.3 Program Phasel

APPENDIX C

COMPUTER PROGRAMS

In this Appendix, a listing of all of the computer programs (Datared98F, RHt98, and PhaseI) are presented.

C.1 Program Datared98F

As mentioned in Chapter III, Datared98F reduces the data obtained from the data logger (MAC-14), and creates an output file which will be used as an input file for the program RHt98 for the calculation of heat balance error, Nusselt number, heat transfer coefficient, and several other flow parameters. The original code was developed in 1989 by Mr. Y. H. Zurigat and modified by Mr. Dongwoo Kim and this author for specific application to the test runs presented in Appendix B. The following is a complete listing of this modified program.

C C DATARED98F.FOR С THIS PROGRAM TAKES A DATA FILE FROM THE DATA LOGGER AND CONVERTS С С IT TO A FORM THAT THE RHT98 PROGRAM CAN READ. C C This Program has been Modified by DongWoo Kim, and Venkata Ryali С August'98 С C***** CHARACTER FNAME*10, ONAME*10, JUNK*4, RUN*4 DIMENSION T(45), SUM(45), x(10) PRINT*, " PRINT*." PRINT*, ENTER THE RUN NUMBER (4 digits)' READ(*,10) RUN 10 FORMAT(A4) FNAME='RN'//RUN//'.TMP'

```
OPEN (UNIT=5, FILE=FNAME, STATUS='OLD')
    DO 20 I=1,45
     SUM(I) = 0.0
20 CONTINUE
    READ(5,30) JUNK
30 FORMAT(4(/),A4)
   NPTS=0
    DO 60 WHILE(.NOT.EOF(5))
      READ(5,40) (T(1),I=1,45)
40
     FORMAT(11X,45(F10.5,1x))
     DO 50 I=1,45
      SUM(I)=SUM(I)+T(I)
50
      CONTINUE
     NPTS=NPTS+1
      Write(*,*) 'Reading Line =',NPTS
60 CONTINUE
      WRITE(*,*) T(2)
      pause
    DO 70 I = 1,45
     T(I) = SUM(I)/NPTS
70 CONTINUE
kdw convert temp's from 'C to 'F
   Do k=1,45
       T(K)=1.8*T(k)+32.0
   enddo
80 PRINT*."
   PRINT*. "
   PRINT*, FLUID INDEX (1 = water, 2 = ethylene glycol)'
   READ*, IFLUID
    IF (IFLUID.EQ.1) THEN
     ETH = 0.0
    ELSEIF (IFLUID.EQ.2) THEN
     PRINT*, "
     PRINT.
     PRINT*, 'MASS CONCENTRATION OF ETHYLENE GLYCOL (0 < X <= 1)'
     READ*, ETH
                                                                    4
   ELSE
     PRINT*. "
     PRINT*, ''
PRINT*, 'MUST ENTER EITHER 1 OR 2'
     GOTO 80
   ENDIF
   PRINT*, "
   PRINT* .''
   PRINT*, FLOW RATE (gal/min)'
   READ*, FLOW
   PRINT*. "
   PRINT*."
   PRINT*, 'CURRENT (amps)'
```

```
READ*, CURR
```

1000

```
PRINT*, ''
PRINT*, ''
PRINT*, 'VOLTAGE DROP ACROSS TEST SECTION (volts)'
READ*, VOLT
```

ONAME='RN'//RUN//'.DAT' OPEN (UNIT=3,FILE=ONAME)

```
WRITE (3,100) RUN, IFLUID, ETH, FLOW, CURR, VOLT, T(42), T(43), T(44)
90 FORMAT(3(/), 1X, A4, 1X, '03', /, 2X, 11, 2X, F6.4, 2X, F6.4, 2X, F6.2, 2X,
```

- + F6.2,2X,F6.2,2X,F6.2,2X,F6.2)
- 100 FORMAT(A4,1X,'10',/,1X,11,2X,F3.2,2X,F6.4,2X,F6.2,2X,F6.2, + 2X,F6.2,2X,F6.2,2X,F6.2)

x(1)=7.0

Do J=2,10

x(J)=x(j-1)+10.0

Write(*,*) x(j)

Enddo Initial=2 Do J=1,10

WRITE (3,120) J,X(J),(T(I), I=Initial,Initial+3) Initial=Initial+4 Enddo Write(3,123) 123 FORmat(2x,'0)

- 110 FORMAT(2X,'16',2X,'4',3X,'144.00',2X,4(F6.2,2X))
- 120 FORMAT(1X,12,2X,'4',3X,F6.2,2X,4(F6.2,2X))

STOP End

C.2 Program RHt98F

Program RHt98 takes the output file obtained from program Datared98F, and then calculates the heat balance error, Nusselt number, and several other flow parameters as explained in Chapter III. This code was first developed by the students of Dr. J. D. Parker and Dr. K. J. Bell. It was later modified by Mr. Y. H. Zurigat and Mr. Mailello in 1989. It has been modified for the test cases presented herein by Mr. Dongwoo Kim and this author. The following is complete listing of this modified program.

C	**	***************************************
с	•	" RHt98F " *
с	•	*
С	•	A PROGRAM TO CALCULATE THE INSIDE WALL TEMPERATURES AND
C		LOCAL HEAT TRANSFER COEFFICIENTS FOR GIVEN OUTSIDE WALL
C		TEMPERATURES FOR SINGLE PHASE HEAT TRANSFER STODIES IN
C		HORIZONTAL TUBES. THE PROGRAM ALSO CALCULATES THE FERTILENT
C	1	FLUE FLOW & HEAT TRANSFER DIMENSIONLESS NOWBERS.
C		THE MATICAL ALCORETINA OF THIS PROGRAM HAS BEEN DEVELOPED
C	1	THE MATHEMATICAL ALGORITHM OF THIS PROGRAM THE DEEK DE VERSTER
C	•	BY THE STUDENTS OF DR. J.D. PARKER & DR. R.J. BEEL OF
C	•	OKLAHOMA STATE UNIVERSITT.
C	1	TTE PROCE ANA WAR MODELED BY
C		THE PROGRAM WAS MODIFIED BT.
C		THE THE AT (ADDIN 1080)
C	*	Y. H. ZURIGAT (APRIL 1989)
C		THE ACTIVE LISE ON PC'S BY
c	*	AND REMODIFIED FOR INTERACTIVE USE ON TOSDI.
C	•	P P MATTI LO (DECE) (DEP 1090)
С	*	D. K. MAIELLU (DECEMBER 1909)
С		*
C		AND REMODIFIED FOR A SPECIFIC FOR OSE DT.
C	1	*
C	*	DAKKEN WAKNECKEK (NOVENDER 1994)
C	٠	AND REMODIFIED BY DONGWOO KIM, AND REPAIR THE TOTAL THE

C * C * UNDER THE SUPERVISION OF: DR. A.J. GHAJAR C * SCHOOL OF MECHANICAL & с • AEROSPACE ENGINEERING С* OKLAHOMA STATE UNIVERSITY C * STILLWATER, OK 74078 C * C **** ************ С C *** с • C * SUBROUTINE LISTING . С ٠ С NAME FUNCTION ٠ С C * GEOM Prompts for pipe dimensions and с • calculates geometry for finite с • differencing ٠ С с • BET Calculates fluid Thermal Expansion Coefficient * . С C * CONDFL Calculates fluid Thermal Conductivity с • C * DENS Calculates fluid Density C * C * MEW Calculates fluid Viscosity . С с • Calculates fluid Prandtl Number PRNUM . С C * Calculates fluid Specific Heat SPHEAT С * с * PRNT Prints calculated data to output files С* * ** ************ С С C С С . С MAIN PROGRAM . C C CHARACTER INFILE*36,SUMFILE*11,FNAME*4,RUN*4 DIMENSION TCHCK1(8), TCHCK2(8), QAVG(31), DELX(10), CONDK(31,8), RSVTY(31,8) INTEGER RSWT,STN COMMON/STATION/STN COMMON /PRINT/ IPICK, REN(31,8), TBULK(31), VEL, REYNO, PRNO, GW, HTCOFF(31,8),H(31),RENO(31),GRNO(31),PR(31), + SNUS(31), VISBW(31), SHTHB(32), QFLXID(31,8), QFLXAV, + QGEXPT, QBALC, QPCT, IPMAX, TAVG(31), VISCA(31), + VISWLA(31), ROWA(31) + /INPUT/ TROOM, VOLTS, TAMPS, RMFL, MFLUID, X2, FLOWRT, NRUN, VFLOW, + TIN, TOUT, TOSURF(31,8), TISURF(31,8), P(32), KST(32) + /TEMP1/TWALL(31,8),AMPS(31,8),RESIS(31,8),POWERS(32), + TPOWER ÷ /MAIN1/ IST,KOUNT,NSTN + /GEOM1/ XAREA(31),R(31),LTP(32),LTH(32),DELZ(31),LHEAT, ÷

+ LTEST,LOD(31),DOUT,DIN,DELR,NODES,NSLICE,PI

REAL*4 LTH,LTP,LTEST,LHEAT,H,HTCOFF,LOD,LENGTH DATA DELX/7.0,17.0,27.0,37.0,47.0,57.0,67.0,77.0,87.0,97.0/

C DELX, LENGTH WERE CREATED BY RYALI TO CALCULATE THE TBULK FOR HIS C SETUP

LENGTH=104.D0

C ----- INITIALIZE OUTPUT DATA ARRAYS TO ZERO -----

C -----

1200 WRITE(*,*)

C --

.....

1 DO 101 I=1,8 DO 101 J=1,31 TOSURF(J,I)=0. TISURF(J,I)=0. REN(J,I)=0. QFLXID(J,I)=0. 101 HTCOFF(J,I)=0.

G=32.174

C -----C ---- ASSIGN FOR INPUT DATA FILE NAME ----C -----

PRINT*, '' PRINT*, '' PRINT*, 'Enter the file mmber.' READ(*,1003) RUN

DO 2 J=1,18 2 INFILE="RN"//RUN//".DAT" OPEN(5,FILE=INFILE)

READ(5,1003)FNAME REWIND 5

C ----- ASSIGN FILE NAMES TO VARIABLES AND OPEN OUTPUT FILES -----

C _____

SUMFILE='RN'/FNAME//.HTT OPEN(6,FILE=SUMFILE)

C ----- ASSIGN FOR UNITS INPUT -----C ------

7 IPICK = 1

С -----

C ----- READ RUN NUMBER AND # STATIONS FROM INPUT FILE -----

8 READ(5,1004) NRUN, NSTN

С _____

```
C ---- CHECK FOR END OF FILE ----
C ---
   IF (NRUN .EQ. 0) GO TO 99
C -----
C ---- READ DATA FROM INPUT FILE -----
C ----
   X2=0.0
   IPMAX=0
   READ(5,1005)MFLUID,X2,FLOWRT,TAMPS,VOLTS,TIN,TOUT,TROOM
       Write(*,*) 'Tin =', Tin
       Pause
   IF(X2.LT.0.0.OR.X2.GT.1.0)THEN
       WRITE(*,*)' WARNING : MASS CONCENTRATION IS OUT OF RANGE'
       STOP
   END IF
   DO 9 IST=1,NSTN
   READ(5,1006)KST(IST), IP(IST), LTH(IST),
  + (TOSURF(IST, IPR), IPR=1, IP(IST))
   IF(IST.NE.1)THEN
        IF(IP(IST).GE.IPMAX)IPMAX=IP(IST)
   ELSE
  9 ENDIF
   VFLOW=FLOWRT
C ---
C ----- CALCULATION OF MASS FLOW RATE IN LBM/HR -----
C _____
   CALL DENS(TIN, MFLUID, X2, ROW)
   RMFL=VFLOW*0.133666*60.0*ROW
C -----
      CALL GEOM
C ---
       -----
  NNODE=NODES-1
C --
C ---- START SOLUTION WITH STATION 1 ----
C -----
  DO 30 IST=1,NSTN
       IPP = IP(IST)
       DO 10 IPR=1, IPP
 10
     TCHCK1(IPR)=0.0
C ----
C ---- SET ALL RADIAL TEMPERATURES EQUAL ----
C ---- TO THE OUTSIDE SURFACE TEMPERATURES -----
C ---
       DO 11 ISL=1,NODES
        DO 11 IPR=1, IPP
        TWALL(ISL, IPR)=TOSURF(IST, IPR)
 11
```

KOUNT=1

225

```
C ---
C ----- CALCULATE THERMAL CONDUCTIVITY OF STAINLESS STEEL -----
C ----- FOR EACH NODE IN BTU/(HR-FT-DEGF)
C ----
 12 DO 13 ISL=1,NODES
      DO 13 IPR=1.IPP
        CONDK(ISL, IPR)=7.27+0.0038*TWALL(ISL, IPR)
 13 CONTINUE
C ----
C ---- CALCULATE ELECTRICAL RESISTIVITY OF STAINLESS STEEL ----
C ---- FOR EACH NODE IN OHMS-SQIN/IN
C -----
   DO 14 ISL=1,NODES
       IPP = IP(IST)
       DO 14 IPR=1, IPP
       RSVTY(ISL,IPR)=(27.67+0.0213*TWALL(ISL,IPR))/1.E6
  14 CONTINUE
C -----
C --- CALCULATE RESISTANCE FOR EACH SEGMENT, ALSO
C ---- CALCULATE EQUIVALENT RESISTANCE FOR PARALLEL CIRCUITS ----
C _____
   DELR = (DOUT-DIN)/2.0/NSLICE
   R(1) = DOUT/2.0
   DO 15 I=1,NSLICE
  15 R(I+1)=R(I)-DELR
   IPP = IP(IST)
      XAREA(1)=(R(1)-DELR/4.0)*PI*DELR/IPP
   XAREA(NODES)=(R(NODES)+DELR/4.0) *PI*DELR/IPP
   DO 16 I=2,NSLICE
  16 XAREA (D= 2.0*R(D*PI*DELR/IPP
   RINV = 0.0
   DO 17 ISL=1,NODES
       DO 17 IPR=1, IPP
        RESIS(ISL, IPR) = RSVTY(ISL, IPR)*DELZ(IST)/XAREA(ISL)
        RINV = RINV + 1.0/RESIS(ISL, IPR)
  17 CONTINUE
C -----
C ---- CALCULATE CURRENT FOR EACH SEGMENT ----
 C -----
   OHMS = 1.0/RINV
   AMP=0.0
   DO 18 ISL=1,NODES
       DO 18 IPR=1, IPP
         AMPS(ISL, IPR) = TAMPS*OHMS/RESIS(ISL, IPR)
         AMP=AMP+AMPS(ISL, IPR)
  18 CONTINUE
 C -----
 C ---- CALCULATE TEMPERATURES AT NODE 2
 C ---- TEMPERATURES AT NODE 1 ARE OUTSIDE WALL TEMPERATURES -----
                             _____
 C ------
        ISL=1
        DO 20 IPR=1, IPP
```

```
192
```

ITHCTL=IPP IMINS=IPR-1 IPLUS=IPR+1 NMINS = ISL - 1NPLUS = ISL + 1IF(IMINS.EQ.0 .AND. IPP.EQ. ITHCTL) IMINS=ITHCTL IF(PLUS.EQ.(ITHCTL+1) AND. IPP.EQ. ITHCTL) PLUS=1 A= 3.41214*12.0*AMPS(ISL, IPR)*AMPS(ISL, IPR) *RSVTY(ISL, IPR)/XAREA(ISL) B = IPP*DELR*(CONDK(ISL, IPR)+CONDK(ISL, IPLUS)) *(TWALL(ISL, IPR)-TWALL(ISL, IPLUS))/(8.0*PI*R(ISL)) + C = IPP*DELR*(CONDK(ISL, IPR)+CONDK(ISL, IMINS)) *(TWALL(ISL, IPR)-TWALL(ISL, IMINS))/(8.0*PI*R(ISL)) + $X = PI^{\bullet}(R(ISL)-DELR/2.0)^{\bullet}(CONDK(ISL, IPR)+CONDK(NPLUS, IPR))$ /(IPP*DELR) TWALL(NPLUS, IPR) = TWALL(ISL, IPR)-(A-B-C)/X 20 C -C ----- CALCULATE REMAINING NODAL TEMPERATURES -----C---DO 21 ISL=2,NNODE DO 21 IPR=1, IPP ITHCTL=IPP IMINS=IPR-1 IPLUS=IPR+1 NMINS=ISL-1 NPLUS=ISL+1 IF(IMINS.EQ.0 .AND. IPP .EQ. ITHCTL) IMINS=ITHCTL IF(PLUS.EQ.(ITHCTL+1) AND. PP .EQ. ITHCTL) PLUS=1 A= 3.41214*12.0*AMPS(ISL, IPR)*AMPS(ISL, IPR) *RSVTY(ISL, IPR)/XAREA(ISL) 1.1 B =PI*(R(ISL)+DELR/2.)*(CONDK(ISL, IPR)+CONDK(NMINS, IPR)) *(TWALL(ISL, IPR)-TWALL(NMINS, IPR))/(IPP*DELR) C = IPP*DELR*(CONDK(ISL, IPR)+CONDK(ISL, IPLUS)) *(TWALL(ISL, IPR)-TWALL(ISL, IPLUS))/(4.0*PI*R(ISL)) D = IPP*DELR*(CONDK(ISL, IPR)+CONDK(ISL, IMINS)) *(TWALL(ISL, IPR)-TWALL(ISL, IMINS))/(4.0*PI*R(ISL)) + $X = PI^{*}(R(ISL)-DELR/2.)^{*}(CONDK(ISL, \mathbb{P}R)+CONDK(NPLUS, \mathbb{P}R))$ /(IPP*DELR) TWALL(NPLUS, IPR) = TWALL(ISL, IPR)- (A-B-C-D)/X 21 C. C ---- CHECK FOR THE CONVERGENCE OF THE WALL TEMPERATURES ----C -TCHCK = 0.0DO 22 IPR=1.IPP TCHCK2(IPR)=TWALL(NODES,IPR) TCHCK = TCHCK + ABS(TCHCK2(PR)-TCHCK1(PR)) 22 IF (TCHCK .GT. 0.001) GO TO 23 GO TO 26 23 DO 24 IPR=1, IPP TCHCK1(IPR) = TCHCK2(IPR) 24 KOUNT = KOUNT+1**GO TO 12** WRITE(6,1007) IST, KOUNT 26 DO 27 IPR=1, IPP TISURF(IST , PR)=TWALL(NODES, PR) 27

-

C ---- CALCULATE POWER GENERATED IN EACH SEGMENT IN BTU/HOUR ----

POWER =0.0	
DO 28 ISL=1,NODES	
DO 28 IPR=1, IPP	
POWER=POWER+AMPS(ISL, PR)*AMPS(ISL, PR)*RESIS(ISL, IPR)	
28 CONTINUE	
POWERS(IST)-POWER \$2 41214	
10WER3(151)-FOWER-3.41214	
C	
C CALCULATE HEAT FLUX AT INSIDE SURFACE	
C	
ISL=NODES	
IPP = IP(IST)	
IF (MINS FOO AND IPP FO THATI) MINS-THAT	
IF (IPLUS FO (ITHCTI + 1) AND IPP FO ITHCTI) IPLUS=1	
$OI = PI^{\bullet}(CONDK(ISI - 1)PR) + CONDK(ISI PR))^{\bullet}(R(ISI - 1)PEIR/20)^{\bullet}$	
+ $(TWALL(ISL PR)-TWALL(ISL-LPR))/(PP*DELR)$	
$O2 = IPP^*(CONDK(ISL, IPLUS)+CONDK(ISL, IPR))^*DELR$	
+ *(TWALL(ISL, IPR)-TWALL(ISL, IPLUS))/(PI*R(ISL)*8.0)	
Q4 = IPP*(CONDK(ISL,IPR)+CONDK(ISL,IMINS))*DELR	
+ *(TWALL(ISL, PR)-TWALL(ISL, IMINS))/(PI*R(ISL)*8.0)	
QGEN=3.41214*12.0*AMPS(ISL,IPR)*AMPS(ISL,IPR)	
+ *RSVTY(ISL,IPR)/XAREA(ISL)	
29 QFLXID(IST,IPR) =(QGEN-Q1-Q2-Q4)*IPP*12.0/(2.0*PI*R(ISL))	
30 CONTINUE	
C	
C	
DO 40 IST=1,NSTN	
$\mathbf{PP} = \mathbf{P}(\mathbf{IST})$	
DO 40 IPR=1, IPP	
TR=TISURF(IST,IPR)	
CALL MEW(TR, MFLUID, X2, VISS)	
REN(IST,IPR)=RMFL*48.0/(PI*DIN*VISS)	
40 CONTINUE	
C	
CCALCUL ATE TOTAL POWER GENERATED IN BTI/HOUR	
C CALCULATE TOTAL FOWER GENERATED IN BTOMOOR	
C	
TPOWER=0.0	
DO 45 IST=1 NSTN	
45 TPOWER=TPOWER+POWERS(IST)	
C	
C CALCULATE BULK FLUID TEMPERATURE AT EACH STATION, DEG.F -	
C	
TBULK(I)=TIN+(TOUT-TIN)*LIP(I)/LIESI	
DO 50 IST =2,NSTN	
S(1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	

10-

194

C CHANGED HERE BY RYALI

C DO 50 IST =1,NSTN

C 50 TBULK(IST)=TIN+(TOUT-TIN)*DELX(IST)/LENGTH C50 TBULK(IST) = TBULK(IST-1) + (TOUT-TIN)*LTP(IST)/LTEST

C ----C ---- CALCULATION OF INPUT AND OUTPUT HEAT TRANSFER RATE, BTU/HR -----C ----- AND OVERALL AVERAGE REYNOLDS AND PRANDTL NUMBERS C -----_____ QGCALC=TPOWER QGEXPT =TAMPS*VOLTS*3.41214 QIN=QGEXPT QFLXAV=QIN/(3.1416*DIN/12.0*(LHEAT/12.0)) C ----- CALCULATE FLUID PROPERTIES AT TAVE -----T=(TOUT+TIN)/2.0 CALL SPHEAT(T,MFLUID, X2,SPHT) CALL MEW(T, MFLUID, X2, VISC) CALL CONDFL(T,MFLUID, X2, COND) QBALC=RMFL*SPHT*(TOUT-TIN) QPCT=(QIN-QBALC)*100.0/QIN AID=PI*DIN*DIN/4.0/144.0 GW=RMFL/AID REYNO-GW*DIN/12.0/VISC PRNO=VISC*SPHT/COND C -----C ---- CALCULATION OF PERIPHERAL HEAT TRANSFER COEFFICIENT ----C ----- FROM EXPERIMENTAL DATA BTU/(HR-SQ.FT-DEG.F) -----C _____ DO 55 IST=1,NSTN IPP = IP(IST)DO 55 IPR=1.IPP HTCOFF(IST, IPR) =QFLXID(IST, IPR)/(TISURF(IST, IPR)-TBULK(IST)) 55 CONTINUE C -----C ---- CALCULATE RATIO OF TOP/BOTTOM HEAT TRANSFER COEFFICIENTS -----C ------DO 65 IST=1,NSTN IPP = IP(IST)IF (IPP.EQ. 4) GO TO 60 SHTHB(IST)=HTCOFF(IST,1)/HTCOFF(IST,2) GO TO 65 60 SHTHB(IST)=HTCOFF(IST,1)/HTCOFF(IST,3) 65 CONTINUE C ------C ---- CALCULATION OF OVERALL HEAT TRANSFER COEFFICIENT ----C -----DO 75 IST=1,NSTN

QQ=0.0

TT=0.0 IPP=IP(IST) DO 70 J=1,IPP TT=TT+TISURF(IST,J) QQ=QQ+QFLXID(IST,J) 70 CONTINUE TAVG(IST)=TT/IPP QAVG(IST)=QQ/IPP H(IST)=QAVG(IST)/(TAVG(IST)-TBULK(IST)) **75 CONTINUE** C -C ---- CALCULATE FLUID PROPERTIES -----C ---DO 85 IST=1,NSTN T=TBULK(IST) CALL MEW(T, MFLUID, X2, VISC) IF(IST.EQ.6)PRINT*,IST,T,(T-32)/1.8,VISC CALL SPHEAT(T,MFLUID, X2, SPHT) С IF(IST.EQ.6)PRINT*,IST,T,SPHT CALL CONDFL(T,MFLUID,X2,COND) С IF(IST.EQ.6)PRINT*, IST, TCOND CALL DENS(T, MFLUID, X2, ROW) С IF(IST.EQ.6)PRINT*,IST,T,ROW CALL BET(T,MFLUID, X2, BETA) С IF(IST.EQ.6)PRINT*, IST, T, BETA С PAUSE VISCA(IST)=VISC ROWA(IST) =ROW PR(IST) = VISC*SPHT/COND RENO(IST) = GW*DIN/(12.0*VISC)GRNO(IST)=G*BETA*ROW**2*(DIN/12)**3*(TAVG(IST)-TBULK(IST)) /VISC**2 *3600.0**2 + TIS=0.0 IPP= IP(IST) С IF(IST.EQ.6)PRINT*, IST, T, PR(IST), RENO(IST), GW, GRNO(IST) DO 80 IPR=1, IPP 80 TIS=TIS+TISURF(IST, IPR) T=TIS/IPP CALL MEW(T, MFLUID, X2, VISWL) VISWLA(IST)= VISWL VISBW(IST) = VISC/VISWL IF(IST.EQ.6)PRINT*,IST,T,(T-32)/1.8 SNUS(IST)=H(IST)*DIN/(12.0*COND) IF(IST.EQ.6)PRINT*, H(IST), SNUS(IST), DIN, COND TWALL(IST,1)=TAVG(IST) **85 CONTINUE** C -C ---- CALCULATE FLUID VELOCITY IN FT/SEC ----C _____ VEL = VFLOW/(2.462557*DIN*DIN) C _____ C --- PRODUCE OUTPUT ----C ------CALL PRNT

C ---- PROMPT USER FOR PROGRAM TERMINATION OR CONTINUATION ----

C -----

 $\begin{array}{l} \text{KEEP} = 2\\ \text{GO TO 8} \end{array}$

99 STOP

C

1

```
1002 FORMAT(A36)
1003 FORMAT(A4)
1004 FORMAT(14,13)
1005 FORMAT(12,F5.2,F8.4,5F8.2)
1006 FORMAT(13,13,F9.2,8F8.2)
1007 FORMAT(//5X, TEMPERATURES AT STATION', 13,' DO NOT CONVERGE AFTER',
    13,' ITERATIONS. JUMP TO NEXT STATION')
+ ///////)
    CLOSE(6)
END
C *
                     .
C *
        SUBROUTINE GEOM
                            .
С*
с •
       ALL LENGTH IN INCHES
C *
SUBROUTINE GEOM
```

COMMON /MAIN1/ IST,KOUNT,NSTN + /GEOM1/ XAREA(31),R(31),LTP(32),LTH(32),DELZ(31),LHEAT, + LTEST,LOD(31),DOUT,DIN,DELR,NODES,NSLICE,PI

```
REAL*4 LTH, LTP, LTEST, LHEAT, LOD
```

NSLICE=10 NODES= NSLICE + 1

C ----- PROMPT FOR PIPE SIZE ----C ------

1 IPSO = 2

DOUT=1.315

DIN=1.097 CC DIN=.621

C CHANGED LHEAT (LENGTH OF THE HEATING SECTION TO 104in)

- C LHEAT=230.75
- C BY RYALI
- LHEAT=104

C ----- CALCULATE GEOMETRY FOR FINITE DIFFERENCING -----

C ------

2 PI = 3.141592654 LTEST = LHEAT+0.5

DO 3 I=1,NSTN

```
3 LOD(I)=LTH(I)/DIN
  LTH(NSTN+1)=LHEAT
  LTP(1)=LTH(1)
      SUM=LTP(1)
  DO 4 I=2,NSTN
      LTP(I) = LTH(I)-LTH(I-1)
 4 SUM=SUM+LTP(I)
      LTP(NSTN+1)=LHEAT-SUM
  DELZ(1) = LTH(1) + (LTH(2) - LTH(1))/2.0
  DO 5 I=2,NSTN
 5 DELZ(I) = ( LTH(I+1)-LTH(I-1))/2.0
  RETURN
  END
C *****************************
                                  *****************************
C*
                             .
C *
           SUBROUTINE BET
                                     .
C *
C* CALCULATES THE THERMAL EXPANSION COEFFICIENT (BETA) FOR PURE *
C * WATER AND ANY CONCENTRATION OF ETHYLENE GLYCOL/WATER SOLUTION. *
C* THE INPUT IS TEMPERATURE IN DEGREES F AND THE OUTPUT IS 1/F. *
C *
                             .
SUBROUTINE BET(TF,MFLUID,X,BETA)
  T = (TF-32.0)/1.8
C ---- PURE WATER -----
  IF(MFLUID.GT.1)GO TO 1
   PDRT=0.0615-0.01693*T+2.06E-4*T**2-1.77E-6*T**3+6.3E-9*T**4
      GO TO 2
C ---- ETHYLENE GLYCOL ----
  1 PDRTA = -1.2379*1.E-4 - 9.9189*1.E-4*X +4.1024*1.E-4*X*X
   PDRTB = 2.*((-2.9837E-06*T+2.4614E-06*X*T -9.5278E-8*X*X*T))
   PDRT=(PDRTA+PDRTB)*1000.
  2 CALL DENS(TF, MFLUID, X, ROW)
   ROW=ROW/.062427
  BETAC= -(1.0/ROW)*(PDRT)
  BETAF =(1.0/BETAC)*1.8
  BETA = 1.0/BETAF
   RETURN
   END
C *
                                        .
C *
            SUBROUTINE CONDFL
С*
    CALCULATES THE THERMAL CONDUCTIVITY (COND) FOR PURE WATER
с•
     AND ANY CONCENTRATION OF ETHYLENE GLYCOL/WATER SOLUTION.
С*
        THE INPUT IS TEMPERATURE IN DEGREES F
                                                 .
C *
        AND THE OUTPUT IS IN BTU/HR-FT-F
C *
C*
       TEMPERATURE RANGE:
C*
         PURE WATER 0 - 100 C
с•
                       0 - 150 C
C *
         E.G. MIXTURES
C *
```

100

```
SUBROUTINE CONDFL(TF,MFLUID,X,COND)
  T=(TF-32.0)/1.8
  CONW=0.56276+1.874E-3*T-6.8E-6*T**2
  IF(MFLUID.GT.1) GO TO 1
C ----- PURE WATER -----
  IF(T.LT.0.0.OR.T.GT.100.0)THEN
   WRITE(*,*)' TEMPERATURE IS OUT OF RANGE IN SUBROUTINE CONDFL'
   STOP
  END IF
   COND=CONW*0.5778
     GO TO 2
C ---- ETHYLENE GLYCOL ----
  1 IF(T.LT.0.0.OR.T.GT.150.0)THEN
   WRITE(*,*)' TEMPERATURE IS OUT OF RANGE IN SUBROUTINE CONDFL'
   STOP
  END IF
   CETH=0.24511+0.0001755*T-8.52E-7*T*T
   CF=0.6635-0.3698*X-0.000885*T
   COND=(1.0-X)*CONW+X*CETH-CF*(CONW-CETH)*(1.0-X)*X
  COND=COND*0.5778
 2 RETURN
  END
C *
                              .
C *
           SUBROUTINE DENS
C *
                              .
C *
     CALCULATES THE FLUID DENSITY (ROW) FOR PURE WATER
C *
    AND ANY CONCENTRATION OF ETHYLENE GLYCOL/WATER SOLUTION.
C * THE INPUT IS TEMPERATURE IN DEGREES F AND THE OUTPUT IS LB/FT**3. *
C *
C *
       TEMPERATURE RANGE:
C *
                                        .
        PURE WATER 0 - 100 C
C*
                       0 - 150 C
                                        .
        E.G. MIXTURES
C *
SUBROUTINE DENS(TF, MFLUID, X, ROW)
  DIMENSION D(3,3), AD(3,3)
  T=(TF-32.0)/1.8
  IF(MFLUID.GT.1) GO TO 1
C ---- PURE WATER ----
  IF(T.LT.0..OR.T.GT.100.0)THEN
     WRITE(*,*)' TEMPERATURE IS OUT OF RANGE IN SUBROUTINE DENS'
     STOP
  END IF
  ROWSI=999.86+.061464*T-.0084648*T**2+6.8794E-5*T**3-4.4214E-7
     *T**4+1.2505E-9*T**5
```

```
199
```

ROW=ROWSI*0.062427
```
С
   CALCULATING THE ROW WITH T IF DEGREE F
С
   BY RYALI
C
   ROW=1/(2.101E-8*TF**2-1.303E-6*TF+0.01602)
  GO TO 4
C ---- ETHYLENE GLYCOL ----
  1 F(T.LT.0.0.OR.T.GT.150.0)THEN
      WRITE(*,*)' TEMPERATURE IS OUT OF RANGE IN SUBROUTINE DENS'
      STOP
   END IF
  AD(1,1)=1.0004
   AD(1,2)=0.17659
   AD(1,3)=-0.049214
   AD(2,1)=-1.2379E-04
   AD(2,2)=-9.9189E-04
  AD(2,3)= 4.1024E-04
  AD(3,1)=-2.9837E-06
  AD(3,2)= 2.4614E-06
  AD(3,3)= -9.5278E-08
  DO 2 I=1,3
   DO 2 J=1.3
  2 D(LJ)=AD(LJ)*X**(J-1)*T**(I-1)
  SUM=0.0
  DO 3 I=1,3
   DO 3 J=1,3
  3 SUM=SUM+D(LJ)
  SUM=SUM*1.E6/1000.0
  ROW=SUM*0.062427
  4 RETURN
  END
C*
                               .
C *
                                         .
            SUBROUTINE MEW
C *
                               .
C *
     CALCULATES THE DYNAMIC VISCOSITY (VISC) FOR PURE WATER
C *
    AND ANY CONCENTRATION OF ETHYLENE GLYCOL/WATER SOLUTION.
C * THE INPUT IS TEMPERATURE IN DEGREES F AND THE OUTPUT IS LB/HR.FT. *
C *
C *
       TEMPERATURE RANGE:
C *
                        10 - 100 C
                                         .
         PURE WATER
C *
                                         .
         E.G. MIXTURES
                         0 - 150 C
C *
SUBROUTINE MEW(TF, MFLUID, X, VISC)
  DIMENSION V(3,3), AV(3,3), V2(3)
  T=(TF-32.0)/1.8
  IF(MFLUID.GT.1) GO TO 1
C ----- PURE WATER -----
  IF(T.LT.10..OR.T.GT.100.0)THEN
   WRITE(*,*)' TEMPERATURE IS OUT OF RANGE IN SUBROUTINE MEW'
   STOP
  END F
```

```
VISC=2.4189*1.0019*10.0**((1.3272*(20.0-T)-0.001053*(20-T)
     **2)/(T+105.0))
      GO TO 4
C ---- ETHYLENE GLYCOL ----
  1 F(T.LT.0..OR.T.GT.150.0)THEN
   WRITE(*,*)' TEMPERATURE IS OUT OF RANGE IN SUBROUTINE MEW'
   STOP
   END IF
   AV(1,1)=0.55164
   AV(1,2)=2.6492
   AV(1,3)=0.82935
   AV(2,1)-0.027633
   AV(2,2)=-0.031496
   AV(2,3)= 0.0048136
   AV(3,1)= 6.0629E-17
   AV(3,2)= 2.2389E-15
   AV(3,3)= 5.879E-16
   DO 2 I=1.2
      DO 2 J=1.3
       V(I,J)=AV(I,J)*X**(J-1)*T**(I-1)
  2 V2(J)=AV(3,J)*X**(J-1)
       SUM=0.0
   DO 3 I=1,3
  3 SUM=SUM+V2(D
   V3=SUM**0.25*T*T
   VISC=V3 + V(1,1)+V(1,2)+V(1,3)+V(2,1)+V(2,2)+V(2,3)
   VISC=EXP(VISC)*2.4189
  4 RETURN
   END
с •
                                .
с •
                                           .
            SUBROUTINE PRNUM
C *
C *
      CALCULATES THE PRANDTL NO.(PRN) FOR PURE WATER
C *
     AND ANY CONCENTRATION OF ETHYLENE GLYCOL/WATER SOLUTION. *
C *
        THE INPUT IS TEMPERATURE IN DEGREES F.
C *
                                *
C *
        TEMPERATURE RANGE:
C *
          PURE WATER
                         10 - 100 C
с •
          E.G. MIXTURES
                          0 - 150 C
                                         .
С
  ۰
                               .
  ************************
C
   SUBROUTINE PRNUM(TF,MFLUID,X,PRN)
  DIMENSION P(3,3), AP(3,3), P2(3)
  T=(TF-32.0)/1.8
  IF(MFLUID.GT.1) GO TO 1
C ----- PURE WATER -----
  IF(T.LT.10.OR.T.GT.100.0)THEN
   WRITE(*,*)' TEMPERATURE IS OUT OF RANGE IN SUBROUTINE PRNUM
   STOP
```

END IF

```
CALL SPHEAT(TF,MFLUID,X,SPHT)
       CALL MEW(TF, MFLUID, X, VISC)
       CALL CONDFL(TF, MFLUID, X, COND)
       PRN=SPHT*VISC/COND
       RETURN
 C ----- ETHYLENE GLYCOL -----
   1 IF(T.LT.0.0.OR.T.GT.150.0)THEN
    WRITE(*,*)' TEMPERATURE IS OUT OF RANGE IN SUBROUTINE PRNUM'
    END IF
    AP(1,1)=2.5735
    AP(1,2)=3.0411
    AP(1,3)=0.60237
    AP(2,1)=-0.031169
    AP(2,2)=-0.025424
   AP(2,3)= 0.0037454
   AP(3,1)=1.1605E-16
   AP(3,2)= 2.5283E-15
   AP(3,3)= 2.3777E-16
   DO 2 I=1,2
       DO 2 J=1,3
       P(I,J)=AP(I,J)*X**(J-1)*T**(I-1)
  2 P2(J)=AP(3,J)*X**(J-1)
       SUM=0.0
       DO 3 I=1,3
  3 SUM=SUM+P2(I)
   P3=SUM**0.25*T*T
   PRN=P3+P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)
   PRN=EXP(PRN)
   RETURN
   END
C ******
           C *
                               *
C *
           SUBROUTINE SPHEAT
                                          *
C *
C *
      CALCULATES THE SPECIFIC HEAT (SPHT) FOR PURE WATER
C *
     AND ANY CONCENTRATION OF ETHYLENE GLYCOL/WATER SOLUTION. *
С*
        THE INPUT IS TEMPERATURE IN DEGREES F
                                                   *
C *
         AND THE OUTPUT IS IN BTU/(LBM-DEGF).
                                                  *
C *
                               *
C *
       TEMPERATURE RANGE:
C*
         PURE WATER
                         0 - 100 C
C *
         E.G. MIXTURES
                         0 - 150 C
                                         .
C *
                                1
SUBROUTINE SPHEAT(TF, MFLUID, X, SPHT)
  T=(TF-32.0)/1.8
  IF(MFLUID .GT. 1.0)GO TO 1
```

C ----- PURE WATER -----

IF(T.LT.0.0.OR.T.GT.100.0)THEN WRITE(*,*)' TEMPERATURE IS OUT OF RANGE IN SUBROUTINE SPHT' STOP END IF SPHT=-1.475E-7*T**3+3.66E-5*T*T-.0022*T+4.216 SPHT=SPHT/4.1868 RETURN C ----- ETHYLENE GLYCOL -----1 IF(T.LT.0.0.OR.T.GT.150.0)THEN WRITE(*,*)' TEMPERATURE IS OUT OF RANGE IN SUBROUTINE SPHT* STOP END IF CALL MEW(TF, MFLUID, X, VISC) CALL CONDFL(TF, MFLUID, X, COND) CALL PRNUM(TF.MFLUID, X, PRN) SPHT = PRN*COND/VISC RETURN END C * C * SUBROUTINE PRINT-OUT * C * C * PRINTS DATA TO OUTPUT FILES: C * C * "RN(run #).SUM" - Device #6 C * "RN(run #).DAT" - Device #9 C * ** ******************************** C ************************* SUBROUTINE PRNT INTEGER IREN(31,8), IDFLX(31,8), IHCOF(31,8), hHAU(10,4), hSDT(10,4) INTEGER STN COMMON /PRINT/ IPICK, REN(31,8), TBULK(31), VEL, REYNO, PRNO, GW, HTCOFF(31,8),H(31),RENO(31),GRNO(31),PR(31), SNUS(31), VISBW(31), SHTHB(32), QFLXID(31,8), QFLXAV, QGEXPT, QBALC, QPCT, IPMAX, TAVG(31), VISCA(31), VISWLA(31), ROWA(31) /INPUT/ TROOM, VOLTS, TAMPS, RMFL, MFLUID, X2, FLOWRT, NRUN, VFLOW, TIN, TOUT, TOSURF(31,8), TISURF(31,8), IP(32), KST(32) /TEMP1/TWALL(31,8), AMPS(31,8), RESIS(31,8), POWERS(32), 4 TPOWER + /MAIN1/ IST, KOUNT, NSTN ÷ /GEOM1/ XAREA(31),R(31),LTP(32),LTH(32),DELZ(31),LHEAT, ÷ LTEST,LOD(31),DOUT,DIN,DELR,NODES,NSLICE,PI REAL*4 LTH, LTP, LTEST, LHEAT, H, HTCOFF, LOD REAL*8 muW(10),Twl(10),muB(10),Tbl(10),kL(10),nHAU(10),nSDTT(10) ,aPTP,fPTP,fGNL,nDTB(10),nPTP(10),nGNL(10),nCLB(10). nSDTL(10), TMP, AmBmW, fCHR, nCHRL, nCHRT, nCHR(10), nGHJL(10), + + nGHJT(10),cPTP REAL*8 LovD.DovL COMMON/STATION/STN LovD=94.80401d0 DovL=0.010548d0

AmBmW=0.0 DO 5000 IST=1,10 nGNL(IST)=0.0 nGHJt(IST)=0.0 nPTP(IST)=0.0 5000 CONTINUE

100

CC ATST=NSTN/9. ATST=NSTN/11. IFST=INT(ATST)+1

C ----

C ------C ----- PRINT RUN NUMBER & TUBE DATA -----C -------

C ---- ENGLISH UNITS ----

WRITE(6,2001)NRUN

C ----- PRINT FLUID-TYPE DESCRIPTION -----

IF(MFLUID.EQ.1)THEN WRITE(6,2003) ELSE WRITE(6,2004)X2 ENDIF

C ---- PRINT TUBE DATA ----

IGW=GW IREYN=REYNO IFXA=QFLXAV IQEX=QGEXPT IQBL=QBALC

WRITE(6,2016)VFLOW, RMFL, IGW, VEL, TROOM, TIN, TOUT, IREYN, PRNO, + TAMPS, VOLTS, IFXA, IQEX, IQBL, QPCT

C ----- ENGLISH UNITS -----

```
DO 5 K=1,NSTN

IF(P(K).EQ.2)THEN

TOSURF(K,3)=TOSURF(K,2)

TOSURF(K,2)=0.0

TOSURF(K,4)=0.0

ELSE

5 ENDIF

WRITE(6,2005)
```

DO 7 ICNT=1,IFST cc KMIN=1+(ICNT-1)*9 cc KMAX=KMIN+8 KMIN=1+(ICNT-1)*10

KMIN=1+(ICNT-1)*10 KMAX=KMIN+9 IF(NSTN.LT.KMAX)KMAX=NSTN

DO 6 IPR=1, IPMAX IF(IPR.EQ.1)WRITE(6,2006)(KST(K),K=KMIN,KMAX) IF(IPR.EQ.1 .AND. KMAX.LT.(KMIN+8))WRITE(6,2007) cc IF(IPR.EQ.1 .AND. KMAX.LT.(KMIN+9))WRITE(6,2007) WRITE(6,2008) PR,(TOSURF(IST, PR), IST=KMIN, KMAX) 6 CONTINUE 7 CONTINUE C ----------C ----- PRINT INSIDE SURFACE TEMPERATURES TO OUTPUT FILE -----C ---C ---- ENGLISH UNITS ----DO 14 K=1,NSTN IF(IP(K).EQ.2)THEN TISURF(K,3)=TISURF(K,2) TISURF(K,2)=0.0 TISURF(K,4)=0.0 ELSE 14 ENDIF WRITE(6,2010) DO 16 ICNT=1, IFST KMIN=1+(ICNT-1)*9 CC KMAX=KMIN+8 20 KMIN=1+(ICNT-1)*10 KMAX=KMIN+9 IF(NSTN.LT.KMAX)KMAX=NSTN DO 15 IPR=1, IPMAX IF(IPR.EQ.1)WRITE(6,2006)(KST(K),K=KMIN,KMAX) IF(IPR.EQ.1 .AND. KMAX.LT.(KMIN+8))WRITE(6,2007) cc IF(IPR.EQ.1 .AND. KMAX.LT.(KMIN+9))WRITE(6,2007) WRITE(6,2008) IPR,(TISURF(IST, IPR), IST=KMIN, KMAX) 15 CONTINUE 16 CONTINUE C-C ---- PRINT REYNOLDS NUMBERS TO OUTPUT FILE ----C _____ 22 DO 29 K=1,NSTN IF(IP(K).EQ.2)THEN IREN(K,1)=INT(REN(K,1)) IREN(K,3)=INT(REN(K,2)) IREN(K,2)=0 IREN(K,4)=0 ELSE DO 28 L=1, IPMAX 28 IREN(K,L)=INT(REN(K,L)) 29 ENDIF WRITE(6,2014) DO 31 ICNT=1, IFST KMIN=1+(ICNT-1)*9 cc KMAX=KMIN+8 CC KMIN=1+(ICNT-1)*10 KMAX=KMIN+9 IF(NSTN.LT.KMAX)KMAX=NSTN

DO 30 IPR=1.IPMAX IF(IPR.EQ.1)WRITE(6,2006)(KST(K),K=KMIN,KMAX) IF(IPR.EQ.1 .AND. KMAX.LT.(KMIN+8))WRITE(6,2007) CC IF(IPR.EQ.1 .AND. KMAX.LT.(KMIN+9))WRITE(6,2007) WRITE(6,2015)IPR,(IREN(IST,IPR),IST=KMIN,KMAX) **30 CONTINUE** 31 CONTINUE C -----C ----- PRINT INSIDE HEAT FLUXES TO OUTPUT FILE ----C -C ---- ENGLISH UNITS ----DO 35 K=1,NSTN IF(IP(K).EQ.2)THEN IDFLX(K,1)=INT(QFLXID(K,1)) IDFLX(K,3)=INT(QFLXID(K,2)) IDFLX(K,2)=0 IDFLX(K,4)=0 ELSE DO 34 L=1.IPMAX 34 IDFLX(K,L)=INT(QFLXID(K,L)) 35 ENDIF WRITE(6,2020) DO 37 ICNT=1,IFST KMIN=1+(ICNT-1)*9 cc KMAX=KMIN+8 cc KMIN=1+(ICNT-1)*10 KMAX=KMIN+9 IF(NSTN.LT.KMAX)KMAX=NSTN DO 36 IPR=1, IPMAX IF(IPR.EQ.1)WRITE(6,2006)(KST(K),K=KMIN,KMAX) IF(IPR.EQ.1 .AND. KMAX.LT.(KMIN+8))WRITE(6,2007) cc IF(IPR.EQ.1 .AND. KMAX.LT.(KMIN+9))WRITE(6,2007) WRITE(6,2021)IPR,(IDFLX(IST,IPR),IST=KMIN,KMAX) 36 CONTINUE **37 CONTINUE** C ------C --- PRINT PERIPHERAL HEAT TRANSFER COEFFICIENTS ----C -----WRITE(6,2017)NRUN WRITE(7,2017)NRUN C C ---- ENGLISH UNITS ----DO 46 K=1,NSTN IF(IP(K).EQ.2)THEN IHCOF(K,1)=INT(HTCOFF(K,1)) IHCOF(K,3)=INT(HTCOFF(K,2)) IHCOF(K,2)=0 IHCOF(K,4)=0 ELSE DO 45 L=1, IPMAX 45 IHCOF(K,L)=INT(HTCOFF(K,L)) 46 ENDIF WRITE(6,2023) WRITE(7,2023) С

DO 48 ICNT=1, IFST

cc KMIN=1+(ICNT-1)*9 cc KMAX=KMIN+8 KMIN=1+(ICNT-1)*10 KMAX=KMIN+9 IF(NSTN.LT.KMAX)KMAX=NSTN DO 47 IPR=1,IPMAX

IF(IPR.EQ.1)WRITE(6,2006)(KST(K),K=KMIN,KMAX)
IF(IPR.EQ.1_AND_KMAX.LT.(KMIN+8))WRITE(6,2007)
IF(IPR.EQ.1_AND_KMAX_LT.(KMIN+9))WRITE(6,2007)
WRITE(6,2021)IPR,(IHCOF(IST,IPR),IST=KMIN,KMAX)

C IF(IPR.EQ.1)WRITE(7,2006)(KST(K),K=KMIN,KMAX)

C IF(IPR.EQ.1 .AND. KMAX.LT.(KMIN+9))WRITE(7,2007)

C WRITE(7,2021) PR,(IHCOF(IST, PR), IST=KMIN, KMAX)

47 CONTINUE 48 CONTINUE

C ----- PRINT SUMMATION DATA FOR OUTPUT FILE -----

55 WRITE(6,2028)NRUN

WRITE(6,2029)

DO 56 J=1,NSTN

WRITE(6,2030)KST(J),RENO(J),PR(J),LOD(J),VISCA(J),VISWLA(J), + TBULK(J),TAVG(J),ROWA(J),SNUS(J)

- C WRITE(7,2030)KST(J), RENO(J), PR(J), LOD(J), VISCA(J), VISWLA(J),
- C + TBULK(J), TAVG(J), ROWA(J), SNUS(J)

56 CONTINUE

C ----- PRINT NOTE GIVING UNITS -----

WRITE(6,2032) RETURN

```
2001 FORMAT(/,18X,**',41('-'),**',/32X, RUN NUMBER ',14)
2003 FORMAT(25X, TEST FLUID IS DISTILLED WATER', /18X, *',41('-'), *')
2004 FORMAT(19X, MASS FRACTION OF ETHYLENE GLYCOL =', F8.4, /18X, '*',
  +
      41('-),")
2005 FORMAT(//20X,'OUTSIDE SURFACE TEMPERATURES - DEGREES F)
+
      6X.12/
2007 FORMAT( )
cc 2008 FORMAT(3X,11,1X,9F8.2)
2008 FORMAT(3X,11,1X,10F8.2)
2010 FORMAT(//20X, INSIDE SURFACE TEMPERATURES - DEGREES F)
2014 FORMAT(//20X, REYNOLDS NUMBER AT THE INSIDE TUBE WALL)
cc 2015 FORMAT(3X,11,918)
2015 FORMAT(3X, I1, 1018)
2016 FORMAT(/,18X, VOLUMETRIC FLOW RATE =',F9.2,3X, 'GPM',
      /18X, MASS FLOW RATE', 7X, '=', F9.1, 3X, 'LBM/HR',
  +
      /18X, MASS FLUX', 12X, '=', 19, 3X, LBM/(SQ.FT-HR)',
/18X, FLUID VELOCITY', 7X, '=', F9.2, 3X, FT/S',
  ÷
  +
```

+ /18X, ROOM TEMPERATURE', 5X, '=', F9.2, 3X, 'F',

/18X,'INLET TEMPERATURE',4X,'=',F9.2,3X,'F',

- /18X, 'OUTLET TEMPERATURE' 3X, '=', F9.2, 3X, 'F',
- /18X,'AVERAGE RE NUMBER',4X,'=',19, 4
- + /18X,'AVERAGE PR NUMBER',4X,'=',F9.2,
- /18X,'CURRENT TO TUBE',6X,'=',F9.1,3X,'AMPS', +
- /18X, VOLTAGE DROP IN TUBE =', F9.2, 3X, VOLTS', +
- /18X,'AVERAGE HEAT FLUX',4X,'=',19,3X,'BTU/(SQ.FT-HR)' +
- /18X,'Q=AMP*VOLT',11X,'=',19,3X,'BTU/HR', +
- /18X,'Q=M*C*(T2-T1)',8X,'=',19,3X,'BTU/HR', +

/18X,'HEAT BALANCE ERROR', 3X, '=', F9.2, 3X, %') +CC 2017 FORMAT(//////31X,'*',15('-'),'*',/32X,'RUN NUMBER ',14,/31X,'*', 2017 FORMAT(//31X,'*',15('-'),'*',/32X,'RUN NUMBER ',14,/31X,'*',

- +
- 15('-'),'*')

100

2020 FORMAT(//22X,'INSIDE SURFACE HEAT FLUXES BTU/HR/FT2') cc 2021 FORMAT(3X,11,918)

2021 FORMAT(3X,I1,1018)

CC 2023 FORMAT(//14X, PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/, 2023 FORMAT(/14X, PERIPHERAL HEAT TRANSFER COEFFICIENT BTU/',

(SQ.FT-HR-F)) +

2028 FORMAT(//31X,'*',15('-'),'*',/32X,'RUN NUMBER ',14,/36X, 'SUMMARY'/31X,'*',15('-'),'*') +

2029 FORMAT(/1X,'ST',6X, 'RE',7X, 'PR',5X, 'X/D',5X, 'MUB',5X, 'MUW', 5X, TB', 6X, TW', 5X, DENS', 6X, NU',/) +

cc 2030 FORMAT(1X,12,3X,F7.2,3X,F5.2,3X,F5.1,3X,F5.3,3X,F5.3,

2030 FORMAT(1X,12,3X,F8.2,2X,F5.2,3X,F5.1,3X,F5.3,3X,F5.3, 2(2X,F6.2),3X,F5.2,3X,F5.2) +

2032 FORMAT(/,20X,NOTE: TBULK IS GIVEN IN DEGREES FAHRENHEIT'/,

26X, MUB AND MUW ARE GIVEN IN LBM/(FT*HR))

END

C.3 Program PhaseI

This appendix discusses the PhaseI program which calculates the all of the twophase heat transfer parameters used to predict the heat transfer coefficient using twenty correlations and seven two-phase data sets

100

We have programmed [in FORTRAN] the 20 basic correlations that are found to fit the seven sets of data [from different experimental studies] that we have located. These 20 correlations are:

Auth	<u>or:</u>	Subroutine names:
[1].	Aggour, M.A. (1978)	HAGGOUR
[2].	Chu, Y-C. and B.G. Jones (1980)	HCHU
[3].	Davis, E.J. and M.M. David (1964)	HDAVIS
[4].	Dorresteijn, W.R. (1970)	HDORREST
[5].	Dusseau (1968)	HDUSSEAU
[6].	Elamavaluthi, G. and N.S. Srinivas (1984)	HELAM
[7].	Groothius and Hendal (1959)	HGROOTH
[8].	Hughmark (1965)	HHUGH
[9].	Khoze, A.N., Dunayev and Sparin (1976)	HKHOZE
[10].	King C.D.G. (1952)	HKING
[11].	Knot, Anderson, Acrivos and Peterson (1959)	HKNOT
[12].	Kudirka, Grosh and McFadden (1965)	HKUDIRKA
[13]	Martin and Sims (1971)	HMARTIN

Author:	Subroutine names:
[14]. Oliver, D.R. and S.J. Wright (1964)	HOLIVER
[15]. Ravipudi and Godbold (1978)	HRAVIPUDI
[16]. Rezkallah and Sims (1987)	HREZKALLAH
[17]. Serizawa, Kataoka and Michiyoshi (1975)	HSERIZAWA
[18]. Shah (1981)	HSHAH
[19]. Ueda and Hanaoka (1967)	HUEDA
[20]. Vijay, M.M., M.A. Aggour and G.E. Sims (1982)	HVIJAY

The above correlation numbers are consistent with previously published documents. (For a complete discussion of the correlations referenced above, see the Oklahoma State University, JIP Literature Search Survey Reports, Parts I and II; and National Heat Transfer Conference paper, "An Evaluation of Several Heat Transfer Correlations for Two-Phase Flow with Different Flow Patterns in Vertical and Horizontal Tubes," by Kim, Ghajar and Dougherty, Baltimore, MD, August 1997.)

A example of the FORTRAN subroutines for these correlations is presented in this Appendix. Each subroutine name is started with H followed by part or all of the correlation name, e.g., for Aggour's correlation, the subroutine is HAGGOUR. There is also a subroutine (PROPERTIES) which provides the properties of the fluids used in the data found, the gases being air, helium, and freon-12; and the liquids being water, glycerin, and silicone. The Nomenclature of the variables used in this program is provided in Define.for (see pp. 242-243) and Define1.for (see pp. 244-246). In order to demonstrate the ability of these correlations to predict the data, a MAIN routine is provided which reads in all of the data points and compares the original researchers data to calculations from our chosen correlations.

The Code calculates the heat transfer coefficient in two different ways:

[1] It can calculate the heat transfer coefficients by directly taking ReSL, PrL

etc. directly from an original experimenatl data set, or

[2] it can calculate ReSL, PrL etc. from the data in the experimental data

set, then use these parameters to calculate the heat transfer coefficient.

The toggle used to choose the above option in the Code is KMSWT. If KMSWT

is 1, the code performs the calculations by method [1] stated above; or else if KMSWT

is 2, the code performs the calculation by method [2]. The Code also asks the user to input the desired correlation number to perform the calculations.

A sample-input data is given below. The variables assigned to these values are clearly explained in the Phasel program.

7 1 1 1 1 39 VIJAY AIR-WATER VERTICAL DATA 0.038333D0 1.99983261D0 11 69.400000 86.258400 0.033000 4242.820000 0.033655 125280.000000 4363.200000 125742.000000 6.839000 0.813000 5592.870000 566.760000 0.710000 8995.980000 0.751000 616.640000 0.000000 0.000000 8.253000 7.415000

A sample output file is given below, and all of the tables are explained herein. This sample output file is obtained by using Aggour's (1978) correlation to calculate the heat transfer coefficient for the Vijay (1978) air-water data.

The Line 1 shows whether the user or code has chosen the correlation to perform the calculations. Line 2 shows the correlation and correlation number used. Line 3 shows the number of data sets used. In this code, we used 7 sets of data. Line 8 shows the name of the data set used, and line 9 shows the orientation of the pipe (vertical/ horizontal). Lines 10-11 show the type of gas/liquid used in this data set. Line 12 shows the number of data points in this data set. Lines 15-19 show the two digit flow pattern designations used in this code. These flow pattern designations were used throughout the output file, which makes it easier to identify the type of flow pattern present with a two-digit number.

Lines 21-23 explain the laminar/turbulent conditions depending on the Reynolds number. From line 25, the first table (overall table) is printed out. As an example, in line 41, this table clearly shows the data set point number (1 in this case), flow pattern type (11 in this case), ReSL, PrL, ReSG, VsL, VsG, muWmuB, hTPEX (experimental heat transfer coefficient), NuTPCAL (calculated Nusselt number), and their differences (line 42) as compared to the input data set values. Here, for this case, the differences for ReSL, PrL, ReSG, VsL, VsG, and muWmuB are zero, since these parameters were directly taken from the data set (i.e., KIMSWT=1) to perform the calculations. The hTPEX and NuTPCAL columns do shows differences, since they are compared with the calculated hTP and experimental NuTP values respectively.

Line 43 show the correlation name/number, and whether or not the parameters ReSL, PrL, ReSG, VsL, VsG, and muWmuB were within the range (1) or out of the range (0) specified by the author of the correlation. This type of data is given for all of the data set points through line 552.

Line 1 THE USER HAS DECIDED WHICH CORRELATION TO USE. CORRELATION USED IS :AGGOUR THE NUMBER OF DATA SETS IS : 7 Line 8 VIJAY AIR-WATER VERTICAL DATA ORIENTATION (HORIZONTAL=2, VERTICAL=1) : 1 Line 10 GASEOUS FLUIDS (AIR=1, HELIUM=2, FREON=3) : 1 LIQUID FLUIDS (WATER=1, GLYCERIN=2, SILICONE=3) : 1

		TOTAL NUMBER OF DATA POINTS IN THIS SET :139
Line	14	FLOW PATTERN DESIGNATIONS
Line	15	00 = ALL FLOW PATTERNS
		11 = BUBBLY 55 = CHURN 15 = BUBBLY_CHURN 34 - FROM AND A
		22 = SLUG = 12 = BUBBLY - SLUG = 23 = SLUG = POTAL 34 = FROTH-ANNOLAR
		33 = FROTH $13 = BUBBLY - FROTH$ $24 = SLUG - BNULL AB$
		44 = ANNULAR $14 = BUBBLY - ANNULAR 25 = SLUG-SLUG-SLUGAR 45 = ANNULAR - CHURN$
		46 = ANNULAR-MIST
Line	21	IN THE FOLLOWING TABLES "L"=LAMINAR POINTS, "T"=TURBULENT POINTS (ReSL<2000=LAM; ReSL>2000=TUR), EXCEPT SHAHS CORRELATION, WHERE 2000 IS REPLACED BY 170
		BEGIN: OVERALL TABLE====================================
Line	27	0>NO RANGE TO COMPARE WITH. 1>INDICATES VALUES WITHIN RANGE. ANY OTHER NUMBER OTHER THAN THESE INDICATES FRACTION OUT OF RANGE WITH MAX OR MIN VALUE FROM THE DATA; ****>INDICATES THE CALCULATED VALUE IS OVER 100% OUT OF RANGE WITH EITHER THE MAX OR MIN VALUE FROM DATA. IN THE FOLLOWING CALCULATIONS, ReSL, PrL, ReSG, etc., ARE TAKEN FROM THE FUNDAMENTAL DATA SET (RATHER THAN BEING COMPUTED FROM FUNDAMENTAL PROPERTIES).
Line	40	PT # PAT L/T ResL PrL ResG VsL VsG muW/muB hTPEX NuTPCAL 1 11 T 1.257E+05 6.839E+00 5.668E+02 1.253E+05 4.363E+03 8.130E-01 5.593E+03 .166E+02 FRR0RS= 000E+00 00E+00 0E+00 0E+
Line	43	AGOUR [1] 0 1 1 0 0 0 0
5	-	
Line	549	PT PAT L/T RESL PTL RESG VSL VSG muW/muB hTPEX NuTPCAL
		133 46 L 2.318E+02 8.982E+00 1.327E+05 2.160E+02 1.657E+06 8.580E+01 6.941E+02 .641E+01
Line	552	AGGOIR [1] 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		END: OVERALL TABLE

The following table (XIX), shows the rms and mean values for hTP for all of the flow patterns. This table also gives the number of data point predictions within $\pm 10\%$, $\pm 15\%$, $\pm 20\%$, $\pm 25\%$, $\pm 30\%$, and $\pm 50\%$ [for hTP differences] of the data for each flow pattern and for all data points. This table also shows the number of data points that fall in the laminar or turbulent (L/T) regime of flow. The percentage differences are computed as follows:

mean =
$$\frac{1}{n} \sum_{i=1}^{n}$$
 difference_i rms = $\frac{1}{\sqrt{n}} \left(\sum_{i=1}^{n} (difference_i)^2 \right)^{1/2}$

where n is the total number of data points

difference= $(hTP_{Cal}/hTP_{Exp}-1)$

TABLE XIX

MEAN and RMS Values for hTP, the Number of Data Points for the Specified Flow

Pattern and Regime (L/T) Combination

						BEGI	N:	RMS/	ML A	NER	ROR	TAP	I.E=						add 1000 1000 1000		-	-
FO	R TH	HE FO	LLOWING T	ABLE :																		
IN	PRI	INTIN	IG THE MEA	N AND R	MS	VALU	IES	FOR	TWO	-PHA	SE	FILM		EFFT	CIE	NT (ከምፑ	1 5	OR			
	NO	PT"	THE NUMBE	R GIVEN	TS	THE	NU	MRER	OF	DAT	AP	OTNT	IC F	OPT	HF	SPE	CTI	TED	FTC	W		
	DATT	PERM	AND REGIM	F (I/T)	00	MATN	DTT	ON		Uni	~ .	01111	5.	OR I	112	SEL	CT I	100	1 10			
50		TT S.	HEADING C	OTIMONS	TH	IF MI	MDP	P CT	VEN	TC	THE	NIL DA	DED	OF		(T) (T)	0.0.0	OFF	D			
20		CTOTI	THEADING C	ATTON D	DEL	T CTT	ONG	TUT	TE	15	LITE	NUT	IDER	UE	HEA			SEL				
C	OLEI	EICH	ENT CORREL	ALION P	REL	nen	UNS	IRA		ALL	MIII	HIN	+-x	XSC	JE 1	HE	LA	ERI	MENI	AL		
-	DA	rA.			21 S						1943		12-22		S 22				1000			
"M	EAN	-1S	THE AVERA	GE ERRO	RC	DE AI	L C	ORRE	LAT	TON	PRE	DICI	TON	IS AS	CC	MPA	REI	TC	ALI	-		
D	ATA	FOR	THAT FLOW	PATTER	N/F	REGIN	1E C	OMBI	NAT	ION.												
11 0	.M	S"-IS	S THE R.M.	S ERROR	OE	ALI	, cc	RREI	ITA.	ON E	RED	DICTI	ONS	AS	COM	PAR	ED	TO	ALL			
. K																						
D	ATA	FOR	THAT FLOW	PATTER	N/F	REGIN	IE C	OMBI	NAT	ION.												
D	ATA	FOR	THAT FLOW	PATTER	N/F	REGIN	IE C	CMB1	NAT	ION.												
D	ATA	FOR	THAT FLOW	R.M.S	N/F	LOS	4E C	15%	.NA1	201	+-	251	+-	308	+-	501						
D	NO L	FOR PT T	THAT FLOW	R.M.S	N/F +- L	10%	4E C	15% T	+- L	20% T	+- L	251 T	+- L	30% T	+- L	50% T						
D	NO L	FOR PT T	THAT FLOW	R.M.S	+- L	10% T	4E C	15% T	+- L	20% T	+- L	251 T	+- L	30% T	+- L	50% T						
D	NO L	FOR PT T 25	-17.21	18.97	+- L 0 2	10% T	4E C	15% T 7	+- L 0 3	20% T	+- L 0 3	251 T	+- L 0 3	30% T 25 22	+- L 0	50% T 25 22						
D	NO L J 3	FOR PT T 25 22 25	MEAN -17.21 -6.73	R.M.S 18.97 11.69 47 63	+- L 0 2 0	10% T 4 10	4E C	15% T 7 17	+- L 0 3 0	20% T 11 20 2	+- L 0 3	251 T 23 22 2	+- L 0 3	30% T 25 22 2	+- L 0 3	50% T 25 22	6					
D AT	NO L D 3 0 4	FOR PT T 25 22 25 21	THAT FLOW MEAN -17.21 -6.73 -43.95 -10.40	R.M.S 18.97 11.69 47.63 38.36	+- L 0 2 0	10% T 4 10 6	4E C	15% T 7 17 17 1 7	+ L 0 3 0 0	20% T 11 20 2	+- L 0 3 0	251 T 23 22 2 11	+- L 0 3 0	30% T 25 22 2 14	+- L 0 3 0	50% T 25 22 19 17						
D AT	NO L D 3 0 4	FOR PT T 25 22 25 21 7	MEAN -17.21 -6.73 -43.95 -10.40 -29.86	R.M.S 18.97 11.69 47.63 38.36 31.10	+- L 0 2 0 0	10% T 4 10 6 0	4E C	15% T 17 17 17 0	+- L 0 3 0 0	20% T 11 20 2 11 1	+- L 0 3 0 0	251 T 23 22 2 11 2	+- L 0 3 0 0	30% T 25 22 2 14 4	+- L 0 3 0 0	50% T 25 22 19 17 7	6					
AT	ATA NO L 0 3 0 4 7	FOR PT T 25 22 25 21 7 3	-17.21 -6.73 -43.95 -10.40 -29.86 39.91	18.97 11.69 47.63 38.36 31.10 61.48	+- L 0 2 0 0 1	10% T 10 0 6 0 0	4E C	15% T 7 17 17 17 0 0	+- L 0 3 0 0 1	20% T 11 20 2 11 1 1	+- L 0 3 0 0 0	251 T 23 22 2 11 2 2	+- L 0 3 0 0 0	30% T 25 22 2 14 4 3	+- L 0 3 0 0 2	50% T 25 22 19 17 7 3	5					
D AT 1 2 3 4 4 4	ATA NO L 0 3 0 4 7 0	FOR PT T 25 22 25 21 7 3 4	THAT FLOW MEAN -17.21 -6.73 -43.95 -10.40 -29.86 39.91 -29.82	R.M.S 18.97 11.69 47.63 38.36 31.10 61.48 30.16	+- L 0 2 0 0 1 0	10% T 10 0 6 0 0 0	4E C	15% T 17 17 17 0 0	+- L 0 3 0 0 1 0	20% T 11 20 2 11 1 1 0	+- L 0 3 0 0 1 0	251 T 23 22 2 11 2 2 1	+- L 0 3 0 0 1 0	30% T 25 22 2 14 4 3 1	+- L 0 3 0 0 2 0	50% T 25 22 19 17 7 3 4						
D AT 1 2 3 4 4 6	ATA NO L 0 3 0 4 0 7 0 12	FOR PT T 25 22 25 21 7 3 4 5	THAT FLOW MEAN -17.21 -6.73 -43.95 -10.40 -29.86 39.91 -29.82 -5.37	R.M.S 18.97 11.69 47.63 38.36 31.10 61.48 30.16 126.03	+- L 0 2 0 0 1 0 0	10% T 4 10 6 0 0 0 0 0	4E C	15% T 17 17 17 0 0 0	+- L 0 3 0 0 1 0 0	20% T 11 20 2 11 1 1 0 0	+- L 0 3 0 0 0 1 0	251 T 23 22 2 11 2 2 1 0	+- L 0 3 0 0 0 1 0 0 0	30% T 25 22 2 14 4 3 1 0	+- L 0 3 0 0 2 0 0 2 0 0	50% T 25 22 19 17 7 3 4 0						
D AT 1 2 3 4 3 4 6 0	ATA NO L 0 3 0 4 0 12 26	FOR PT T 25 22 25 21 7 3 4 5 113	MEAN -17.21 -6.73 -43.95 -10.40 -29.86 39.91 -29.82 -5.37 -14.27	R.M.S 18.97 11.69 47.63 38.36 31.10 61.48 30.16 126.03 56.26	+- L 0 2 0 0 1 0 3	10% T 4 10 0 6 0 0 0 20	4E C	7 17 17 17 0 0 0 32	+- L 0 3 0 0 0 1 0 0 4	20% T 11 20 2 11 1 1 0 0 46	+- L 0 3 0 0 0 1 0 0 4	251 T 23 22 2 11 2 2 1 0 63	+- L 0 3 0 0 0 1 0 0 4	30% T 25 22 2 14 4 3 1 0 71	+- L 030002005	50% T 25 22 19 17 7 3 4 0 97						

-----END: RMS/MEAN ERROR TABLE------

Aggour did not specify an ReSL range, hence the following statement is printed out. Otherwise, the following table gives the number of points within the range for the ReSL parameter with respect to hTP differences.

THE PARAMETER ReSL RANGE IS NOT APPLICABLE.

The following table (XX) gives the number of points within the author [of correlation] specified range for the V_{SG}/V_{SL} parameter with respect to $\pm 10\%$, $\pm 20\%$, etc., hTP differences, for all of the flow patterns and for laminar/turbulent (L/T) regimes.

TABLE XX

Number of Points within the Author Specified Range for VsG/ VsL Parameter with

Respect to hTP Differences.

PAT	NO	PT	1	108		15%		01	2	51	3	01	50%	
	L	Т	L	T	L	Т	L	Т	L	т	L	T	L	Т
11	0	25	0	4	0	7	0	11	0	23	0	25	0	25
22	3	22	2	10	3	17	3	20	3	22	3	22	3	22
33	0	25	0	0	0	1	0	2	0	2	0	2	0	19
44	0	21	0	6	0	7	0	11	0	11	0	14	0	17
13	0	7	0	0	0	0	0	1	0	2	0	4	0	7
24	6	3	1	0	1	0	1	1	1	2	1	3	1	3
34	0	4	0	0	0	0	0	0	0	1	0	1	0	4
46	0	6	0	0	0	0	0	0	0	0	0	0	0	0

THE FOLLLOWING TABLE GIVES THE NUMBER OF POINTS WITHIN THE RANGE FOR VsG/VsL PARAMETER WITH RESPECT TO hTP ERROR

ERROR TABLE

In this table (XXI), the number of data points that fall within the author [of correlation] specified range for the parameters ReSL, PrL, ReSG, VsG/VsL and Mg/Ml are printed. If the parameter has no author specified range, the code prints out zeroes in the appropriate location(s) as well as the message NO RANGE under that parameter.

TABLE XXI

Number of Points that Fall within the Author [of Correlation] Specified Range for that

Column Parameter ()	ReSL, PrL	, ReSG, V	sL/VsG,	and Mg/Ml)
---------------------	-----------	-----------	---------	------------

FOR FLC FOR WIT (Re	"NO DW PA ALL THIN BSL,	PT ATTE OTH THE PrL,	, TH RN A ER (AU1 ReS(HE NUN AND FI COLUMN THOR 3).	IBER LOW NS, [OF	GIV REGI THE CORF	=BEGI VEN I IME (NUME RELAT	N: I S TI L/T SER TION	AUTHO HE NU) COM GIVEN)- SE	R-SI MBER BIN I IS ECI	PECII R OF ATION THE FIED	FIED F DATA N. NUMBE RANGE	RANGE POIN ER OF E FOR	TABLI TS FOI DATA THAT	E THE SI POINTS COLUMN	PECIFIED THAT FALL PARAMETER	
PAT	NO	PT	F	ReSL	P	L	R	eSG	VsG.	/VsL	Mg	/M1					
1.11	L	T	L NO	T	L	T	L	Т	L	Т	L	т					
11	0	25	0	0	0	25	0	25	0	25	0	25					
22	3	22	0	0	3	22	3	22	3	22	3	22					
33	0	25	0	0	0	25	0	25	0	25	0	25					
44	4	21	0	0	3	20	4	21	0	21	0	21					
13	0	7	0	0	0	7	0	7	0	7	0	7					
24	7	3	0	0	5	3	7	3	6	3	7	3					
34	0	4	0	0	0	4	0	4	0	4	0	4					
46	12	6	0	0	12	6	12	6	D	6	1	6					
MEAN	-14	.27		.00	-15	. 98	-14	.27	-30	. 91	-23	.96					
RMS	56	.26		.00	55	.77	56	.26	36	. 57	54	. 93					

The following table (XXII) shows the number of data points for parameters ReSL, PrL, ReSG, VsG/ VsL and Mg/Ml within $\pm 15\%$ of the author [of correlation] specified range for those parameters.

TABLE XXII

Number of Points for ReSL, PrL, ReSG, VsG/VsL, and Mg/Ml within ±15% of the

Author Specified Range.

NUMBER OF POINTS FOR ResL, PrL, ResG, VsG/VsL, MG/ML WITHIN +-15%.

PAT	NO	PT	F	ReSL	P	rL	R	eSG	VaG	/VsL	Mg	/M1
	L	т	L NO	T RANGE	L	Т	L	т	L	т	L	т
11	0	25	0	0	0	25	0	25	0	25	0	25
22	3	22	0	O	3	22	3	22	3	22	3	22
33	0	25	0	0	0	25	0	25	0	25	0	25
44	4	21	0	0	4	21	4	21	0	21	0	21
13	0	7	0	0	0	7	0	7	0	7	0	7
24	7	3	0	0	7	3	7	3	6	3	7	3
34	0	4	0	0	0	4	0	4	0	4	0	4
46	12	6	0	0	12	6	12	6	1	6	1	6

The following table (XXIII) shows the number of data points for parameters ReSL, PrL, ReSG, VsG/ VsL and Mg/Ml within $\pm 30\%$ of the author [of correlation] specified range for those parameters.

TABLE XXIII

Number of Points for ReSL, PrL, ReSG, VsG/VsL, and Mg/Ml within ±30% of the

Author Specified Range.

NUMBER OF POINTS FOR ResL, PrL, ResG, VsG/VsL, MG/ML WITHIN +-30%.

PAT	NO	PT	R	eSL	P	сL	Re	eSG	V3G)	VsL	Mg	/M1
	L	Ť	L	T	L	Т	L	Т	L	Т	L	т
			NU	MANGE								

11	0	25	0	0	0	25	0	25	0	25	0	25	
22	3	22	0	0	3	22	3	22	3	22	3	22	
33	0	25	0	0	0	25	0	25	0	25	0	25	
44	4	21	0	0	4	21	4	21	0	21	0	21	
13	0	7	0	0	0	7	0	7	0	7	0	7	
24	7	3	0	0	7	3	7	3	7	3	7	3	
34	0	4	0	0	0	4	0	4	0	4	0	4	
46	12	6	0	0	12	6	12	6	1	6	1	6	
	_			-			-						
								CNID	20		000	DANE	
							****	=END:	: 30	8 ER	ROR	BAND) TABLE

The first 24 pages of the code are given in this appendix. The correlation subroutines are all similar, so only one correlation subroutine has been given in this appendix. A complete listing of this code can be obtained from:

Dr. R. L. Dougherty or Dr. Afshin J. Ghajar

School of Mechanical and Aerospace Engineering

Oklahoma State University

218 Engineering North

Phone: (405) 744 5900

Email: dougher@master.ceat.okstate.edu, ghajar@master.ceat.okstate.edu

Stillwater, Oklahoma 74078

```
CCCCCC
C
                           PHASE-I.FOR
C PHASE-I HEAT TRANSFER COEFFICIENT FORTRAN CODING FOR
C
    "Paraffin Deposition Prediction in Multiphase Flowlines and Wellbores"
C
    Joint Industry Project.
C MAIN PROGRAM TO DEMONSTRATE CALCULATION OF HEAT TRANSFER COEFFICIENT
     FOR TWO PHASE FLOW WITH VARIOUS TUBE ORIENTATIONS, FLUID COMBINATIONS
C
C
     AND FLOW PATTERNS.
C BY: RYALI, VENKATA KAMAL KUMAR; OKLA ST. UNIV./MECH-AERO ENGR.
C DATE LAST CHANGED:11/18/98
   INCLUDE 'DEFINE.FOR'
      IMPLICIT NONE
      REAL*8 L, D, LoverD, DoverL, muWmuB, VsL, VsG, kL, kG, muG, muL, hTP, mL, mG, P,
              ReSG, BETA, muW, VDOT, ReSL, PrL, D2, ERRR1, ERRR2, ERRR3, ERRR4,
              ERRR5, ERRR6, ERRR7, PI, ERR, NuTP, Nu, NuER, cpL
      REAL*8 ReSLL, ReSGG, PrLL, VsLL, VsGG, hTPEX, TBULK, ALPHA, muWmB, TWALL
      REAL*8 MNH1(16), RMH1(16), MNH(16), RMH(16), TMEAN, TRMS
      REAL*8 ERCKMIN(6), ERCKMAX(6), MNRSL, MNRSG, MNVVL, MNMML, MNPRL, RMRSL,
              RMRSG, RMVVL, RMPRL, RMMML
   REAL*8 DtpbyDL, DPL, hLCAL, DPtpf
      REAL*8 ECK1, ECK2
   REAL*8 MDGML
   INTEGER I, M, N, MNG, MNL, NSETS, NUMSETS, NPT, IFLAGRG, IFLAGPL, IFLAGRL,
               IFLAGMM, IFLAGVV, IFLAGVG, IFLAGVL, IFLAGMB, COR, KIMSWT, RYSWT,
               J, F, JJ
   INTEGER MN(16), MNLL(16), MNTT(16), CL(16,6), CT(16,6), LL(16), NP(16),
               CLT(16,6),CTT(16,6),TCL(6),TCT(6),JJJ,ERSL(16,2,2),
               EPRL(16,2,2), ERSG(16,2,2), EVSL(16,2,2), EMGL(16,2,2),
               RRSL(16,2), RPRL(16,2), RRSG(16,2), RVSL(16,2), RMGL(16,2),
               PRCL(2,16,6), PRCT(2,16,6), RCOM(16,2), RCOM1(16,2),
               RCOM2(16.2)
      INTEGER TMNL, TMNT, TMN, PP, TPRCL(16),
            TPRCT(16), TOTPAR(2,16,2), TOGG(2), PCOR
       INTEGER ERR1(2), ERR2(2), ERR3(2), ERR4(2), ERR5(2), CHPL, CHRL, CHRG
      INTEGER FLSWT
      CHARACTER*1 LAMTUR
       CHARACTER*2 AP
   CHARACTER*8 RLRANGE, PLRANGE, RGRANGE, VVRANGE, MMRANGE
   CHARACTER*14 CORREL(20)
       CHARACTER*15 FILEIN, FILEOUT
       CHARACTER*40 TITLE
   COMMON/CHECKL/CL, MNLL, CLT, TCL
       COMMON/CHECKT/CT, MNTT, CTT, TCT
   COMMON/COUNT1/MNH, RMH, MNH1, RMH1, N, AP, LL
   COMMON/ECHECK/ECK1, ECK2
      COMMON/ECOUNT/ERR1, ERR2, ERR3, ERR4, ERR5, IFLAGRG, IFLAGPL,
              IFLAGRL, IFLAGMM, IFLAGVV, IFLAGMB, IFLAGVL, IFLAGVG,
              CHPL, CHRG, CHRL
      COMMON/ECOUNT2/ERSL, EPRL, ERSG, EVSL, EMGL, RRSL, RPRL, RRSG, RVSL, RMGL,
              RCOM, RCOM1, RCOM2, MNRSL, MNRSG, MNVVL, MNMML, MNPRL,
              RMRSL, RMRSG, RMVVL, RMPRL, RMMML
   COMMON/PARCHK/PRCL, PRCT, TPRCL, TPRCT
   COMMON/RANGE/RLRANGE, PLRANGE, RGRANGE, VVRANGE, MMRANGE
   COMMON/TEMP/MDGML
       COMMON/TOT/TMNL, TMNT, TMN, NP, PP, MN
   COMMON/TOTPART/TOTPAR, TOGG, PCOR
       COMMON/TPHASEA/ReSL, PrL, ReSG, LAMTUR, COR, NUMSETS
           COMMON/TPHASEB/VsL,VsG,muWmuB,kL,kG,muG,muL,muW,mL,mG
```

```
COMMON/TPHASEC/KIMSWT, ReSLL, ReSGG, PrLL, VsLL, VsGG, muWmB
     COMMON/TPHASEG/cpL,L
  COMMON/TPHASEH/DtpbyDL, DPL, hLCAL, DPtpf
     DATA CORREL/'AGGOUR', 'CHU', 'DAVIS', 'DORRESTIJIN', 'DUSSEAU', 'ELAMA'
                , 'GROOTHUIS', 'HUGHMARK', 'KHOZE', 'KING', 'KNOTT',
                'KUDIRKA', 'MARTIN', 'OLIVER', 'RAVIPUDI', 'REZKALLAH',
'SERIZAWA', 'SHAH', 'UEDA', 'VIJAY'/
    *
     DATA ECK1/0.15/
     DATA ECK2/0.30/
     DATA ERCKMIN/-10,-15,-20,-25,-30,-50/
     DATA ERCKMAX/10,15,20,25,30,50/
     DATA LL/11,22,33,44,55,12,13,14,15,23,24,25,34,35,45,46/
C FOR ERROR CALCULATIONS, THE EXPERIMENTAL HEAT TRANSFER COEFFICIENT(hTPEX)
      IS CONSIDERED TO BE CORRECT (OR ACCURATE).
C
DATA PI/3.14592653589793D0/
     AP='00'
  OPEN(UNIT=7, FILE='P2.OUT')
     ASKING THE USER TO INPUT THE I/O FILE NAMES HE/SHE WANTS TO USE, OR TO USE
C
      THE DEFAULT I/O FILES.
C
     WRITE (*,*) 'DO YOU WANT TO CHANGE THE INPUT/OUTPUT FILE NAMES OR'
     WRITE (*, *)'KEEP THE DEFAULTS P1. INP, P1. OUT? IF YES, ENTER 1; ELSE'
     WRITE(*,*)'ENTER 0;'
     READ(*, *) FLSWT
     IF(FLSWT.EQ.1)THEN
    WRITE (*, *) 'ENTER THE NAME OF THE INPUT FILE (MAX CHARACTER 14)'
     READ(*,12)FILEIN
     WRITE(*,*)'ENTER THE NAME OF THE OUTPUT FILE(MAX CHARACTER 14)'
     READ(*, 12) FILEOUT
12
       FORMAT(A15)
      ENDIF
     IF(FLSWT.EQ.0)THEN
     FILEIN='P1.INP'
     FILEOUT='pl.out'
      ENDIF
     KIMSWT=0
     ASKING THE USER WHETHER TO CALCULATE THE ERRORS BASED ON THE Re, Pr,
C
       stc. TAKEN DIRECTLY FROM THE DATA SET OR TO RECALUATE THE Re, Pr, etc.,
С
      FROM THE DATA AVAILABLE FROM THE DATA SET.
C
      WRITE(*,*)'IF YOU WANT TO CALCULATE BY TAKING Re, Pr, etc. '
   WRITE(*,*)'DIRECTLY FROM DATA SET, ENTER 1;'
   WRITE(*,*)' OR CALCULATE Re, Pr, etc., ENTER O'
      READ(*,*)KIMSWT
      ASKING THE USER WHETHER TO CALCULATE THE ERRORS BASED ON HIS CHOSEN CORRELATION
C
       OR BASED ON THE COMPUTER CHOSEN CORRELATION FOR THAT FLOW PATTERN.
C
      WRITE(*,*)'LET THE COMPUTER CHOOSE THE BEST CORRELATION?'
      WRITE(*,*)'
                     ENTER 1 =YES OR 0=NO'
      READ(*,*)RYSWT
      IF (RYSWT.EO. 0) THEN
                                                    DORRESTEIJ[4]
                         CHU/JONES[2] DAVIS[3]
     WRITE(*,*)'AGGOUR[1]
     WRITE(*,*)'DUSSEAU[5] ELAMAVAL[6] GROOTHUIS[7] HUGHMARK[8]'
                                                    KUDIRKA[12]'
                          KING[10]
                                       KNOT[11]
     WRITE(*,*)'KHOZE[9]
     WRITE(*,*)'MARTIN[13] OLIVER[14] RAVIPUDI[15] REZKALLAH[16]'
     WRITE(*,*)'SERIZAWA[17]SHAH[18]
                                      UEDA[19]
                                                    VIJAY[20]'
     WRITE (*, *) 'ENTER THE NUMBER OF THE CORRELATION DESIRED'
     READ(*,*)COR
     PCOR=COR
      ENDIF
```

```
OPEN (UNIT=6, FILE=FILEOUT)
      WRITE(6,*)'THE USER HAS DECIDED WHICH CORRELATION TO USE.'
      WRITE (6, *) 'CORRELATION USED IS
                                                 : '. CORREL(COR)
C----OPENING MASTER TEST DATA INPUT FILE
      OPEN(UNIT=1, FILE=FILEIN)
C----INPUT NUMBER OF DATA SETS
      READ(1,*) NSETS
      WRITE(6,*)'THE NUMBER OF DATA SETS IS
                                                :',NSETS
      WRITE(6,*)
      WRITE(6,*)
      DO 2200 NUMSETS=1.NSETS
C-----INPUT HORIZONTAL/VERTICAL, FLUID TYPES AND NO. OF DATA POINTS
      READ(1,*)M.MNG.MNL.NPT
C
     TITLE OF THE DATA SET USED
     READ(1,101)TITLE
      WRITE(6,103)TITLE
     WRITE(6,102)M, MNG, MNL, NPT
     FORMAT('ORIENTATION(HORIZONTAL=2,VERTICAL=1)
* 'GASEOUS FLUIDS(AIR=1,HELIUM=2,FREON=3)
102
                                                       :', 12,/,
                                                     :', 12,/,
         'LIQUID FLUIDS (WATER=1, GLYCERIN=2, SILICONE=3) :', I2, /,
         'TOTAL NUMBER OF DATA POINTS IN THIS SET
                                                    :', I3)
C
     DATA EXISTS FOR COMBINATIONS 1-1, 1-2,1-3, 2-1, 3-1, NOT ALL
C
      COMBINATIONS ARE POSSIBLE
     WRITE(6,*)
101
     FORMAT (A40)
103 FORMAT (//, 20X, A40)
C PRINTING OUT THE FLOW PATTERN DESIGNATIONS
  WRITE (6.*) '
                                  FLOW PATTERN DESIGNATIONS'
     WRITE(6,*)' 00 = ALL FLOW PATTERNS'
     WRITE(6,*)' 11 = BUBBLY 55 = CHURN
                                                15 = BUBBLY-CHURN '.
                 34 = FROTH-ANNULAR'
     WRITE(6,*)' 22 = SLUG 12 = BUBBLY-SLUG 23 = SLUG-FROTH ',
     *
               ' 35 = FROTH-CHURN'
     WRITE(6,*)' 33 = FROTH 13 = BUBBLY-FROTH 24 = SLUG-ANNULAR ',
              45 = ANNULAR-CHURN'
     WRITE(6,*)' 44 = ANNULAR 14 = BUBBLY-ANNULAR 25 = SLUG-CHURN ',
               .
                 46 = ANNULAR-MIST'
     WRITE(6.*)
  WRITE(6,*)'IN THE FOLLOWING TABLES "L"=LAMINAR POINTS,',
            "T"=TURBULENT POINTS ',
    *
                          (ReSL<2000=LAM; ReSL>2000=TUR), EXCEPT ',
    *
               'SHAHS CORRELATION, WHERE 2000 IS ',
               ' REPLACED BY 170'
    .
  WRITE(6,*)
  WRITE(6,1203)
         1203
               WRITE(6,*)
     WRITE(6,*)'0-->NO RANGE TO COMPARE WITH.'
     WRITE(6,*)'1-->INDICATES VALUES WITHIN RANGE.'
     WRITE(6,*) 'ANY OTHER NUMBER OTHER THAN THESE INDICATES FRACTION'
     WRITE(6,*)' OUT OF RANGE WITH MAX OR MIN VALUE FROM THE DATA;'
  WRITE(6,*)' ****-->INDICATES THE CALCULATED VALUE IS OVER 100% '
     WRITE (6, *) ' OUT OF RANGE WITH EITHER THE MAX OR MIN VALUE FROM '
     WRITE(6,*)' DATA.'
  WRITE(6,*)
    CHECKING IF KMSWT IS 1/0. IF KMSWT IS 1, THEN THE CODE CALCULATES THE
C
```

```
220
```

```
С
       ERRORS USING Re, Pr, etc., FROM THE DATA SET. ELSEIF KMSWT IS 0, THEN
C
       THE CODE COMPUTES THE Re, Pr, etc., FROM THE INFORMATION AVAILABLE FROM
C
       THE DATA AND THEN USES THE SAME TO CALCULATE THE ERRORS
       IF(KIMSWT.EQ.1)THEN
      WRITE(6,*)'IN THE FOLLOWING CALCULATIONS, ResL, PrL, ReSG, etc., ',
                   ' ARE TAKEN FROM THE
                                                   FUNDAMENTAL '.
     *
                   'DATA SET (RATHER THAN BEING COMPUTED FROM ',
     +
                   'FUNDAMENTAL PROPERTIES).'
    ELSE
         WRITE(6,*)'IN THE FOLLOWING CALCULATIONS, ReSL, PrL, ReSG, etc., ',
                   'ARE CALCULATED FROM FUNDAMENTAL DATA.'
       ENDIF
  WRITE(6,*)
   WRITE(6.*)
508 FORMAT(1X, 'PAT', 3X, 'NO', 3X, 'ReSL', 3X, 'PrL', 3X, 'ReSG', 3X, 'VsL/VsG'
            , 3X, 'muW/muB')
C----INPUT PIPE DIAMETER AND LENGTH
      READ(1,*)D,L
      LoverD=L/D
      DoverL=1.D0/LoverD
      FOR THE PLETCHER AIR-WATER DATA (DATA SET 4), PRESSURE IS NOT PROVIDED AS
C
C
       INPUT, THEREFORE THE CORRELATIONS 3,2,10,17 CANNOT BE USED SINCE THESE
C
       CORRELATIONS NEED PRESSURE TO CALCULATE THE hTP.
C
       HERE THE CODE SKIPS THE ERROR CALCULATIONS FOR THE ABOVE CASE.
   IF(COR.EQ.3.AND.NUMSETS.EO.4)THEN
     WRITE(6.*)
                  THERE IS NOT ENOUGH DATA TO TO CALCULATE THE HEAT"
     WRITE(6,*)"
    WRITE(6,*)"
                        TRANSFER PARAMETERS (PRESSURE IS NOT GIVEN)."
   ENDIF
   IF(COR.EQ.2.AND.NUMSETS.EQ.4) THEN
     WRITE(6.*)
     WRITE(6,*)"
                   THERE IS NOT ENOUGH DATA TO TO CALCULATE THE HEAT"
    WRITE(6,*)"
                       TRANSFER PARAMETERS (PRESSURE IS NOT GIVEN)."
   ENDIF
   IF(COR.EQ.10.AND.NUMSETS.EQ.4)THEN
    WRITE(6,*)
    WRITE(6,*)"
                  THERE IS NOT ENOUGH DATA TO TO CALCULATE THE HEAT"
    WRITE(6,*)"
                       TRANSFER PARAMETERS (PRESSURE IS NOT GIVEN)."
   ENDIF
   IF(COR.EO.17.AND.NUMSETS.EO.4)THEN
     WRITE(6.*)
    WRITE(6,*)"
                  THERE IS NOT ENOUGH DATA TO TO CALCULATE THE HEAT"
    WRITE(6,*)"
                        TRANSFER PARAMETERS (PRESSURE IS NOT GIVEN)."
   ENDIE
   IF(COR.EO.10.AND.NUMSETS.NE.3) THEN
    WRITE(6,*)
    WRITE(6,*)"
                   KING CORRELATION CAN BE USED FOR KING'S DATA ONLY"
  ENDIE
      DO 1000 I=1,NPT
C----INPUT ONE DATA POINT FROM MASTER FILE
      READ(1, *) N, TBULK, TWALL, ALPHA, P, BETA, VSLL, VSGG, ReSLL, PrLL,
               muWmB, hTPEX, ReSGG, D2, mL, mG, Nu, DtpbyDL, hLCAL, DPL, DPtpf
C SKIPPING THE HEAT TRANSFER CALCULATIONS FOR CERTAIN CASES.
  IF(COR.EQ.3.AND.NUMSETS.EQ.4)GOTO 1000
  IF(COR.EQ.2.AND.NUMSETS.EQ.4)GOTO 1000
   IF(COR.EQ.10.AND.NUMSETS.NE.3)GOTO 1000
  IF(COR.EQ.17.AND.NUMSETS.EQ.4)GOTO 1000
```

```
C----CALCULATE VOLUME FLOW RATE FOR USE IN SUBROUTINES
      VDOT=(VsLL+VsGG)*(PI*D**2.D0)/4.D0
C
      IF RYSWT IS 0 THEN THE USER CHOSEN CORRELATION IS USED, ELSEIF
       RYSWT IS 1 THEN THE COMPUTER CHOOSES THE BEST FITTED CORRELATION FOR
C
C
       THAT FLOW PATTERN.
      IF(RYSWT.EQ.0) THEN
     CALL RYALI (COR, D, MNG, MNL, TBULK, TWALL, ALPHA, VDOT, P, BETA,
                   DoverL, LoverD, hTP, NuTP)
      ELSEIF(RYSWT.EO.1) THEN
        IF(M.EQ.1.AND.MNG.EQ.1.AND.MNL.EQ.1)THEN
          IF(N.EQ.22)THEN
         CALL HAGGOUR (D, MNG, MNL, TBULK, TWALL, ALPHA, VDOT, P, BETA,
                          LoverD, hTP, NuTP)
          ENDIF
          IF(N.EQ.11.OR.N.EQ.33.OR.N.EQ.13.OR.N.EO.34.OR.N.EO.46) THEN
            CALL HKNOT (D, MNG, MNL, TBULK, TWALL, VDOT, P, BETA, LoverD, hTP,
                        NuTP)
          ENDIF
          IF(N.EQ.44.OR.N.EQ.24) THEN
         CALL HRAVIPUDI(D, MNG, MNL, TBULK, TWALL, VDOT, P, BETA, hTP, NuTP)
          ENDIE
        ENDIF
C-----VIJAY AIR-GLYCERIN (VERTICAL-57 PTS)
        IF (M. EQ. 1. AND. MNG. EQ. 1. AND. MNL. EQ. 2) THEN
          IF(N.EQ.11.OR.N.EQ.22.OR.N.EQ.33.OR.N.EQ.44.OR.N.EQ.12.
            OR.N.EQ.24) THEN
         CALL HAGGOUR (D, MNG, MNL, TBULK, TWALL, ALPHA, VDOT, P, BETA,
                          LoverD, hTP, NuTP)
          ENDIF
        ENDIF
C -----REZKALLAH AIR-SILICONE (VERTICAL-162 PTS)
        IF (M.EQ.1.AND.MNG.EQ.1.AND.MNL.EQ.3) THEN
          IF(N.EQ.11.OR.N.EQ.33.OR.N.EQ.13.OR.N.EQ.34.OR.N.EQ.46)THEN
            CALL HSHAH (D, MNG, MNL, TBULK, TWALL, VDOT, P, BETA, DoverL, hTP,
     *
                        NUTP)
          ENDIF
          IF(N.EQ.22)THEN
            CALL HREZKALLAH (D, MNG, MNL, TBULK, TWALL, ALPHA, VDOT, P,
                             BETA, DoverL, hTP, NuTP)
          ENDIF
          IF(N.EQ.55.OR.N.EQ.44.OR.N.EQ.12.OR.N.EQ.25.OR.N.EQ.45)THEN
         CALL HRAVIPUDI (D, MNG, MNL, TBULK, TWALL, VDOT, P, BETA, hTP, NuTP)
          ENDIF
        ENDIF
C-----KING AIR-WATER (HORIZONTAL-21 PTS)
        IF(M.EQ.2.AND.MNG.EQ.1.AND.MNL.EQ.1) THEN
          IF(N.EQ.22)THEN
            CALL HRAVIPUDI (D, MNG, MNL, TBULK, TWALL, VDOT, P, BETA, hTP, NuTP)
          ENDIF
C-----PLETCHER AIR-WATER (HORIZONTAL-48 PTS)
          IF(N.EO.44)THEN
      2880 Psf PRESSURE USED BECAUSE PRESSURE IS NOT AVAILABLE IN
C
        ORIGINAL PLETCHER DATA
C
            P=2880.D0
```

CALL HRAVIPUDI (D, MNG, MNL, TBULK, TWALL, VDOT, P, BETA, hTP, NuTP) ENDIF ENDIF ENDIE C TOGG(1) AND TOGG(2) DECIDES THAT PARTICULAR CORRELATION HAS THE C ReSL VsG/VsL RANGES AVAILABLE OR NOT TO CALCULATE ERRORS. C TOGG(*)=1 MEANS THAT THE CORRELATION HAS THE ResL, VsG/VsL RANGES C TO COMPARE. IF(PCOR.EQ.2.OR.PCOR.EQ.4.OR.PCOR.EQ.5.OR.PCOR.EQ.6.OR.PCOR.EQ.7. * OR. PCOR. EQ. 9. OR. PCOR. EQ. 10. OR. PCOR. EQ. 11. OR. PCOR. EQ. 12. OR. PCOR .EQ.14.OR.PCOR.EQ.15.OR.PCOR.EQ.16.OR.PCOR.EQ.18.OR.PCOR.EQ.20) *THEN TOGG(1)=1ENDIF IF (PCOR.EQ.1.OR.PCOR.EQ.2.OR.PCOR.EQ.4.OR.PCOR.EQ.6.OR.PCOR.EQ.7. * OR. PCOR. EQ. 10. OR. PCOR. EQ. 11. OR. PCOR. EQ. 12. OR. PCOR. EQ. 15. OR. PCOR * .EQ.16.OR.PCOR.EQ.18.OR.PCOR.EQ.19.OR.PCOR.EQ.20) *THEN TOGG(2)=1ENDIF C CALCULATING THE hTP ERROR ERR=100.DO*((hTPEX-hTP)/hTPEX) HERE THE hTP ERRORS ARE STORED IN INTEGER VARIABLES FOR EVERY FLOW C C PATTERN BASED ON THE ERROR RANGE TO BE PRINTED OUT IN THE OUTPUT FILE. DO 1001 JJ=1,16 IF(N.EQ.LL(JJ))THEN F=JJ HERE THE hTP ERRORS ARE STORED AS INTEGER VARIABLES FOR LAMINAR FLOW -IF(LAMTUR.EQ. 'L')THEN DO 199 J=1,6 IF(ERR.GE.ERCKMIN(J).AND.ERR.LE.ERCKMAX(J))THEN CL(F, J) = CL(F, J) + 1IF(IFLAGRL.EQ.1)THEN PRCL(1, F, J) = PRCL(1, F, J) + 1ENDIF IF(IFLAGVV.EQ.1)THEN PRCL(2, F, J) = PRCL(2, F, J) + 1ENDIF ENDIF 199 CONTINUE MNLL(F)=MNLL(F)+1 ENDIE HERE THE hTP ERRORS ARE STORED AS INTEGER VARIABLES FOR TURBULENT FLOW C IF (LAMTUR.EQ. 'T') THEN DO 1199 J=1,6 IF (ERR.GE.ERCKMIN(J).AND.ERR.LE.ERCKMAX(J)) THEN CT(F, J) = CT(F, J) + 1IF(IFLAGRL.EQ.1)THEN PRCT(1, F, J) = PRCT(1, F, J) + 1ENDIF IF(IFLAGVV.EQ.1) THEN PRCT(2, F, J) = PRCT(2, F, J) +1 ENDIF ENDIF

```
1199
            CONTINUE
        MNTT(E)=MNTT(E)+1
       ENDIF
      MNH1(F)=MNH1(F)+(ERR/100.D0)
       RMH1(F)=RMH1(F)+(ERR/100.D0)**2.D0
       MN(F) = MN(F) + 1
       GOTO 1002
     ENDIF
1001 CONTINUE
1002 CONTINUE
CC CALCULATING NO. OF POINTS WITHIN AUTHOR SPECIFIED RANGE FOR
CC
     ReSL, PrL, ReSG, VsL/VsG, muW/muB
CCC
CC ALSO CALCULATING +-15%,+-30% ERRORS FOR RESL, PRL, RESG WITHIN
CC
     RANGE OF AUTHOR'S SPECIFICATIONS
      DO 1009 JJ=1,16
     IF(N.EQ.LL(JJ))THEN
      F=JJ
C
C
      RMS AND MEAN CALCULATION FOR THOSE WITHIN THE AUTHOR SPECIFIED RANGE.
C
        IF(IFLAGRL.EQ.1)THEN
      MNRSL=MNRSL+(ERR/100.D0)
       RMRSL=RMRSL+(ERR/100.D0)**2.D0
        ENDIF
     IF(IFLAGPL.EQ.1)THEN
      MNPRL=MNPRL+(ERR/100.D0)
       RMPRL=RMPRL+(ERR/100.D0)**2.D0
     ENDIF
     IF(IFLAGRG.EQ.1) THEN
      MNRSG=MNRSG+(ERR/100.D0)
      RMRSG=RMRSG+(ERR/100.D0)**2.D0
    ENDIF
     IF(IFLAGVV.EQ.1)THEN
       MNVVL=MNVVL+(ERR/100.D0)
      RMVVL=RMVVL+(ERR/100.D0)**2.D0
    ENDIF
    IF(IFLAGMM.EQ.1)THEN
      MNMML=MNMML+(ERR/100.D0)
      RMMML=RMMML+(ERR/100.D0)**2.D0
    ENDIF
C
      CHECKING THE NO. OF POINTS WITHIN THE AUTHOR SPECIFIED RANGE AND
C
       ERROR RANGE FOR EVERY PARAMETER, FOR LAMINAR POINTS.
      IF(LAMTUR.EQ. 'L')THEN
        IF(ERR1(1).EQ.1.OR.IFLAGRL.EQ.1)ERSL(F,1,1)=ERSL(F,1,1)+1
            IF(ERR1(2).EQ.1.OR.IFLAGRL.EQ.1.OR.ERR1(1).EQ.1)
              ERSL(F,2,1)=ERSL(F,2,1)+1
        IF(ERR2(1).EQ.1.OR.IFLAGPL.EQ.1)EPRL(F,1,1)=EPRL(F,1,1)+1
        IF(ERR2(2).EQ.1.OR.ERR2(1).EQ.1.OR.IFLAGPL.EQ.1)
              EPRL(F,2,1)=EPRL(F,2,1)+1
        IF(ERR3(1).EQ.1.OR.IFLAGRG.EQ.1)ERSG(F,1,1)=ERSG(F,1,1)+1
        IF(ERR3(2).EQ.1.OR.ERR3(1).EQ.1.OR.IFLAGRG.EQ.1)
              ERSG(F, 2, 1) = ERSG(F, 2, 1) + 1
        IF(ERR4(1).EQ.1.OR.IFLAGVV.EQ.1)EVSL(F,1,1)=EVSL(F,1,1)+1
        IF(ERR4(2).EQ.1.OR.ERR4(1).EQ.1.OR.IFLAGVV.EQ.1)
     *
              EVSL(F,2,1)=EVSL(F,2,1)+1
        IF(ERR5(1).EQ.1.OR.IFLAGMM.EQ.1)EMGL(F,1,1)=EMGL(F,1,1)+1
        IF(ERR5(2).EQ.1.OR.ERR5(1).EQ.1.OR.IFLAGMM.EQ.1)
              EMGL(F,2,1)=EMGL(F,2,1)+1
     COUNTING THE NO. OF POINTS WITHIN THE AUTHOR SPECIFIED RANGE
C
C
      OF ALL OF THE PARAMETERS
                IF(IFLAGRL.EQ.1)RRSL(F,1)=RRSL(F,1)+1
        IF(IFLAGPL.EQ.1)RPRL(F,1)=RPRL(F,1)+1
```

```
IF(IFLAGFL.EQ.1)RRSG(F,1)=RRSG(F,1)+1
IF(IFLAGRG.EQ.1)RRSG(F,1)=RRSG(F,1)+1
```

```
224
```

```
IF(IFLAGVV.EQ.1)RVSL(F,1)=RVSL(F,1)+1
         IF(IFLAGMM.EQ.1)RMGL(F,1)=RMGL(F,1)+1
       ENDIF
C
      CHECKING THE NO. OF POINTS WITHIN THE AUTHOR SPECIFIED RANGE AND
C
       ERROR RANGE FOR EVERY PARAMETER, FOR TURBULENT POINTS.
       IF(LAMTUR.EQ. 'T')THEN
         IF(ERR1(1).EQ.1.OR.IFLAGRL.EQ.1)ERSL(F,1,2)=ERSL(F,1,2)+1
         IF(ERR1(2).EQ.1.OR.ERR1(1).EQ.1.OR.IFLAGRL.EQ.1)
              ERSL(F,2,2)=ERSL(F,2,2)+1
         IF(ERR2(1).EQ.1.OR.IFLAGPL.EQ.1)EPRL(F,1,2)=EPRL(F,1,2)+1
         IF(ERR2(2).EQ.1.OR.ERR2(1).EQ.1.OR.IFLAGPL.EQ.1)
              EPRL(F, 2, 2) = EPRL(F, 2, 2) + 1
         IF(ERR3(1).EQ.1.OR.IFLAGRG.EQ.1)ERSG(F,1,2)=ERSG(F,1,2)+1
         IF(ERR3(2).EQ.1.OR.ERR3(1).EQ.1.OR.IFLAGRG.EQ.1)
              ERSG(F, 2, 2) = ERSG(F, 2, 2) + 1
         IF(ERR4(1).EQ.1.OR.IFLAGVV.EQ.1)EVSL(F,1,2)=EVSL(F,1,2)+1
         IF(ERR4(2).EQ.1.OR.ERR4(1).EQ.1.OR.IFLAGVV.EQ.1)
     4
              EVSL(F, 2, 2) = EVSL(F, 2, 2) + 1
         IF(ERR5(1).EQ.1.OR.IFLAGMM.EQ.1)EMGL(F,1,2)=EMGL(F,1,2)+1
         IF(ERR5(2).EQ.1.OR.ERR5(1).EQ.1.OR.IFLAGMM.EQ.1)
              EMGL(F, 2, 2) = EMGL(F, 2, 2) + 1
      COUNTING THE NO. OF POINTS WITHIN THE AUTHOR SPECIFIED RANGE
C
       OF ALL OF THE PARAMETERS
C
             IF(IFLAGRL, EO, 1) RRSL(F, 2)=RRSL(F, 2)+1
         IF(IFLAGPL.EQ.1)RPRL(F,2)=RPRL(F,2)+1
         IF(IFLAGRG.EQ.1)RRSG(F,2)=RRSG(F,2)+1
         IF(IFLAGVV.EQ.1)RVSL(F,2)=RVSL(F,2)+1
         IF(IFLAGMM.EQ.1)RMGL(F,2)=RMGL(F,2)+1
       ENDIF
     ENDIF
 1009 CONTINUE
      STORING THE TOTAL POINTS WITHIN THE RANGE FOR THE PARTICULAR
C
       PARAMETER SPECIFIED TO PRINT OUT THE TABLE IN PRINT SUBROUTINE
C
   DO 889 PP=1,16
     TOTPAR(1, PP, 1) = RRSL(PP, 1)
     TOTPAR(1, PP, 2) = RRSL(PP, 2)
     TOTPAR(2, PP, 1) = RVSL(PP, 1)
     TOTPAR(2, PP, 2) = RVSL(PP, 2)
  889 CONTINUE
C----CALCULATING ERRORS
      ERRR1=-10.D0
      ERRR2=-10.D0
       ERRR3=-10.D0
      ERRR4=-10.D0
      ERRR5=-10.D0
      ERRR6=-10.D0
       IF(ReSLL.NE.O.DO) ERRR1=1.DO-ReSL/ReSLL
       IF(PrLL.NE.0.D0) ERRR2=1.D0-PrL/PrLL
       IF(ReSGG.NE.0.D0) ERRR3=1.D0-ReSG/ReSGG
       IF(VsLL.NE.0.D0) ERRR4=1.D0-VsL/VsLL
       IF(VsGG.NE.0.D0) ERRR5=1.D0-VsG/VsGG
       ERRR7=(hTPEX-hTP)/hTPEX
       TE(NU.NE. 0) THEN
        NuER=(Nu-NuTP)/Nu
      ELSE
        NuER=100.0
       ENDIF
C-----WRITE OUT DATA TO P1.OUT
       WRITE(6,224)
```

FORMAT('PT #', 2X, 'PAT', 2X, 'L/T', 4X, 'ReSL', 7X, 'PrL', 6X, 224 'ReSG', 7X, 'VsL', 6X, 'VsG', 6X, 'muW/muB', 3X, 'hTPEX', 4X, 'NuTPCAL 1) WRITE(6,202)I, N, LAMTUR, ReSLL, PrLL, ReSGG, VsLL, VsGG, muWmB, hTPEX, Nu 202 FORMAT(1X, I3, 3X, I2, 3X, A1, 1X, (1P9E10.3)) C-----WRITE OUT ERRORS IN CALCULATIONS AS COMPARED TO DATA WRITE(6,203)ERRR1, ERRR2, ERRR3, ERRR4, ERRR5, ERRR6, ERRR7, NuER 203 FORMAT('ERRORS=', 7X, 8E10.3) C PRINTING OUT THE INTEGER ERROR VALUES FOR PARAMETERS ResL. PrL. ReSG. WRITE (6, 301) CORREL (COR), COR, CHRL, CHPL, CHRG, IFLAGVL, IFLAGVG, IFLAGMB 301 FORMAT(A10, '[', I2, ']', 3X, I4, 5(6X, I4), /) 1000 CONTINUE WRITE(6,*) WRITE(6,1204) 1204 FORMAT('======END: OVERALL ', SKIPPING THE PRINTING PROCEDURE FOR THE MENTIONED CORRELATIONS C C FOR WHICH DATA IS INSUFFICIENT. IF(COR.EQ.3.AND.NUMSETS.EQ.4)GOTO 2200 IF(COR.EQ.2.AND.NUMSETS.EQ.4)GOTO 2200 IF(COR.EQ.10.AND.NUMSETS.NE.3)GOTO 2200 IF(COR.EQ.17.AND.NUMSETS.EQ.4)GOTO 2200 CALLING PRINT SUBROUTINE TO PRINT R.M.S AND MEAN VALUES CCC CCC FOR hTP CALL PRINTING (TMEAN, TRMS) WRITE(6.*) WRITE(6,*) CALLING THE SUBROUTINE SECOND TO PRINT OUT THE TABLES CCC CCC FOR PARAMETER RANGES, +/-15%, +/-30% ERROR BAND RANGES. CALL SECOND (TMEAN, TRMS) INITIALIZING ALL THE VARIABLES FOR NEXT DATA SET CALCULATIONS. CCC 2222 WRITE(6,*) MNRSL=0 MNRSG=0 MNVVL=0 MNPRL=0 MNMML=0 RMRSL=0 RMRSG=0 RMPRL=0 RMVVT.=0 RMMML=0 TMN=0 TMNL=0 TMNT=0 TMEAN=0 TRMS=0 DO 2010 JJ=1,16 MN(JJ) = 0

```
MNLL(JJ)=0
        MNTT(JJ)=0
        MNH1(JJ)=0
         RMH1(JJ)=0
        RMH(JJ)=0
        MNH(JJ) = 0
     TPRCT(JJ)=0
     TPRCL(JJ)=0
     DO 2023 JJJ=1,2
       RCOM(JJ, JJJ)=0
       RCOM1(JJ,JJJ)=0
       RCOM2(JJ, JJJ)=0
       RRSL(JJ, JJJ) = 0
       RRSG(JJ,JJJ)=0
       RPRL(JJ, JJJ) = 0
       RVSL(JJ, JJJ) = 0
       RMGL(JJ, JJJ) = 0
       ERSL(JJ, JJJ, 1) = 0
       EPRL(JJ, JJJ, 1) = 0
       ERSG(JJ, JJJ, 1) = 0
       EVSL(JJ, JJJ, 1) = 0
       EMGL(JJ, JJJ, 1) = 0
       ERSL(JJ, JJJ, 2) = 0
       EPRL(JJ, JJJ, 2) = 0
       ERSG(JJ, JJJ, 2) = 0
       EVSL(JJ, JJJ, 2) = 0
       EMGL(JJ, JJJ, 2) = 0
2023
        CONTINUE
     DO 2011 J=1,6
       TCL(J)=0
       TCT(J) = 0
       CL(JJ,J)=0
       CT(JJ,J)=0
       CLT(JJ,J)=0
       CTT(JJ,J)=0
       PRCL(1, JJ, J) = 0
       PRCT(1, JJ, J) = 0
       PRCL(2, JJ, J) = 0
       PRCT(2, JJ, J) = 0
2011
       CONTINUE
2010 CONTINUE
2200 CONTINUE
   CLOSE(1)
   CLOSE(6)
      CLOSE(7)
      STOP
      END
      SUBROUTINE SECOND (TMEAN, TRMS)
CCC
       THIS SUBROUTINE PRINTS THE TABLES FOR PARAMETERS WHICH ARE
CC
        WITHIN +/- 15%, 30% RANGES
CCC
       SECOND PART OF THE MAIN PROGRAM
CCC
   TRRSL = TOTAL POINTS WITHIN THE AUTHOR SPECIFIED RANGE FOR ReSL
C
C
   TRRSG = TOTAL POINTS WITHIN THE AUTHOR SPECIFIED RANGE FOR ReSG
C
    TRPRL = TOTAL POINTS WITHIN THE AUTHOR SPECIFIED RANGE FOR PrL
  TRVSL = TOTAL POINTS WITHIN THE AUTHOR SPECIFIED RANGE FOR VsL/VsG
C
C TRMGL = TOTAL POINTS WITHIN THE AUTHOR SPECIFIED RANGE FOR mG/mL
   INCLUDE 'DEFINE.FOR'
      REAL*8 MNRSL, MNRSG, MNVVL, MNMML, MNPRL, RMRSL, RMRSG, RMVVL, RMPRL, RMMML
              , TMEAN, TRMS
   INTEGER MN(16), MNLL(16), MNTT(16), CL(16,6), CT(16,6), NP(16),
              CLT(16,6),CTT(16,6),TCL(6),TCT(6),ERSL(16,2,2),
     *
     .
               EPRL(16,2,2), ERSG(16,2,2), EVSL(16,2,2), EMGL(16,2,2),
```

```
÷
              RRSL(16,2), RPRL(16,2), RRSG(16,2), RVSL(16,2), RMGL(16,2),
     *
              TO1(16,2), TO2(16,2), RCOM(16,2), RCOM1(16,2),
              RCOM2(16,2), TRRSL, TRPRL, TRRSG, TRMGL, TRVSL, N
   CHARACTER*2 AP
   CHARACTER*8 RLRANGE, PLRANGE, RGRANGE, VVRANGE, MMRANGE
   COMMON/CHECKL/CL, MNLL, CLT, TCL
      COMMON/CHECKT/CT, MNTT, CTT, TCT
      COMMON/ECOUNT2/ERSL, EPRL, ERSG, EVSL, EMGL, RRSL, RPRL, RRSG, RVSL, RMGL,
     *
             RCOM, RCOM1, RCOM2, MNRSL, MNRSG, MNVVL, MNMML, MNPRL,
             RMRSL, RMRSG, RMVVL, RMPRL, RMMML
   COMMON/RANGE/RLRANGE, PLRANGE, RGRANGE, VVRANGE, MMRANGE
      COMMON/TOT/TMNL, TMNT, TMN, NP, PP, MN
      DATA NP/11,22,33,44,55,12,13,14,15,23,24,25,34,35,45,46/
      AP='00'
C REINITIALIZING THE TRRSL, TRPRL, etc TO ZERO
   TRRSL=0
   TRPRL=0
   TRRSG=0
   TRMGL=0
   TRVSL=0
  WRITE(6,1212)
1212
          FORMAT(/, '======BEGIN: AUTHOR-',
            'SPECIFIED RANGE TABLE============',/)
      WRITE(6,*)
      WRITE(6,*)'FOR "NO PT", THE NUMBER GIVEN IS THE NUMBER OF DATA ',
                   'POINTS FOR THE SPECIFIED'
      WRITE(6,*)' FLOW PATTERN AND FLOW REGIME (L/T) COMBINATION.'
      WRITE(6,*)'FOR ALL OTHER COLUMNS, THE NUMBER GIVEN IS THE NUMBER',
                ' OF DATA POINTS THAT FALL'
     WRITE(6,*)' WITHIN THE AUTHOR [OF CORRELATION] - SPECIFIED RANGE ',
                'FOR THAT COLUMN PARAMETER'
      WRITE(6,*)' (ReSL, PrL, ReSG).'
     WRITE(6,*)
  WRITE(6,909)
   WRITE(6,705)
      WRITE(6,707)
      PRINTING OUT WHETHER THE PARAMETERS ResL, PrL, etc., HAVE RANGES TO
C
C
       CHECK OR NOT.
  WRITE(6,908) RLRANGE, PLRANGE, RGRANGE, VVRANGE, MMRANGE
  WRITE(6,909)
  DO 888 PP=1,16
        IF(MN(PP).NE.0)THEN
          WRITE(6,514)NP(PP),MNLL(PP),MNTT(PP),RRSL(PP,1),RRSL(PP,2)
               ,RPRL(PP,1),RPRL(PP,2),RRSG(PP,1),RRSG(PP,2),RVSL(PP,1),
     *
               RVSL(PP,2), RMGL(PP,1), RMGL(PP,2)
      TRRSL=TRRSL+RRSL(PP,1)+RRSL(PP,2)
      TRPRL=TRPRL+RPRL(PP,1)+RPRL(PP,2)
          TRRSG=TRRSG+RRSG(PP,1)+RRSG(PP,2)
       TRVSL=TRVSL+RVSL(PP,1)+RVSL(PP,2)
          TRMGL=TRMGL+RMGL(PP,1)+RMGL(PP,2)
    ENDIF
  888 CONTINUE
      CALCULATING/PRINTING THE MEAN AND R.M.S FOR hTP ERRORS FOR EVERY
C
0
      ReSL, PrL, etc. WITHIN THE RANGE.
  IF(TRRSL.NE.0)THEN
    MNRSL=MNRSL*100.D0/TRRSL
    RMRSL=((RMRSL/TRRSL)**.5D0)*100.D0
```

```
ENDIE
  IF(TRPRL.NE.0) THEN
    MNPRL=MNPRL*100.D0/TRPRL
    RMPRL=((RMPRL/TRPRL)**.5D0)*100.D0
  ENDIE
  IF(TRRSG.NE.0)THEN
    MNRSG=MNRSG*100.D0/TRRSG
    RMRSG=((RMRSG/TRRSG)**.5D0)*100.D0
  ENDIE
  IF(TRVSL.NE.0)THEN
    MNVVL=MNVVL*100.D0/TRVSL
    RMVVL=((RMVVL/TRVSL)**.5D0)*100.D0
  ENDIF
  IF(TRMGL.NE.0)THEN
    MNMML=MNMML*100.D0/TRMGL
    RMMML=((RMMML/TRMGL) **.5D0)*100.D0
      ENDIE
  WRITE (6,917) TMEAN, MNRSL, MNPRL, MNRSG, MNVVL, MNMML
  WRITE(6,918)TRMS, RMRSL, RMPRL, RMRSG, RMVVL, RMMML
  917 FORMAT ('MEAN', 1X, F7.2, 2X, F7.2, 2X, F7.2, 2X, F7.2, 2X, F7.2, 2X, F7.2)
  918 FORMAT ('RMS ', 1X, F7.2, 2X, F7.2, 2X, F7.2, 2X, F7.2, 2X, F7.2, 2X, F7.2)
  WRITE(6,909)
     WRITE(6,1213)
          FORMAT(/, '======END: AUTHOR-',
 1213
            'SPECIFIED RANGE TABLE===========:=:====::,/)
  519 FORMAT(1X, 12, 3X, 13, 2X, 13, 3X, 13, 2X, 13, 3X, 13, 2X, 13, 3X, 13, 2X, 13, 3X, 13
           ,2X, I3, 3X, I3, 2X, I3, 3X, I3, 2X, I3, 3X, I3, 2X, I3)
  542 FORMAT (1X, A2, 3X, I3, 2X, I3, 3X, I3, 2X, I3, 3X, I3, 2X, I3, 3X, I3, 2X, I3, 3X,
            13,2X,13,3X,13,2X,13,3X,13,2X,13,3X,13,2X,13)
  544 FORMAT(1X, A2, 6X, I3, 8X, I3, 8X, I3, 7X, I3, 8X, I3, 7X, I3)
      WRITE(6,*)
  WRITE(6,1214)
      PRINTING THE TABLE FOR 15% ERROR BAND TABLE FOR ReSL, PrL, etc.
C
          FORMAT (/, '====BEGIN: 15% ERROR ',
 1214
            'BAND TABLE==========',/)
      WRITE(6.*)
      WRITE(6,706)
      WRITE(6,*)
      WRITE(6,909)
      WRITE(6,705)
      WRITE(6,707)
  WRITE(6,908) RLRANGE, PLRANGE, RGRANGE, VVRANGE, MMRANGE
      WRITE(6,909)
      CALCULATING THE TOTAL NUMBER OF POINTS FOR +/- 15%, +/- 30% FOR ALL THE
C
       PARAMETERS
C
      DO 887 PP=1.16
     TO1(PP,1)=ERSL(PP,1,1)+ERSG(PP,1,1)+EVSL(PP,1,1)+EPRL(PP,1,1)+
                  EMGL(PP, 1, 1)
     TO1(PP,2)=ERSL(PP,1,2)+ERSG(PP,1,2)+EVSL(PP,1,2)+EPRL(PP,1,2)+
                  EMGL(PP,1,2)
        TO2(PP,1)=ERSL(PP,2,1)+ERSG(PP,2,1)+EVSL(PP,2,1)+EPRL(PP,2,1)+
                  EMGL(PP, 2, 1)
        TO2(PP,2)=ERSL(PP,2,2)+ERSG(PP,2,2)+EVSL(PP,2,2)+EPRL(PP,2,2)+
                  EMGL(PP, 2, 2)
```

```
887 CONTINUE
```

```
PRINTING THE NUMBER OF POINTS FOR ALL THE PARAMETERS WITHIN +/- 30%
C
C
      OF THE AUTHOR SPECIFIED RANGES
     DO 8891 PP=1,16
    IF (MN (PP) .NE. 0) THEN
      WRITE(6,514)NP(PP), MNLL(PP), MNTT(PP), ERSL(PP,1,1),
              ERSL(PP,1,2), EPRL(PP,1,1), EPRL(PP,1,2), ERSG(PP,1,1),
              ERSG(PP,1,2), EVSL(PP,1,1), EVSL(PP,1,2), EMGL(PP,1,1),
     .
              EMGL(PP,1,2)
       ENDIF
 8891 CONTINUE
     WRITE(6,909)
     WRITE(6,*)
  WRITE(6,1215)
 1215
          FORMAT(/, '======END: 15% ERROR ',
           WRITE(6,*)
     WRITE(6.*)
  WRITE(6,1216)
C
     PRINTING THE TABLE FOR 30% ERROR BAND TABLE FOR ReSL, PrL, etc.
 1216
          'BAND TABLE=======:,/}
     WRITE(6,906)
     WRITE(6,*)
     WRITE(6,909)
     WRITE(6.705)
  WRITE(6,707)
  WRITE (6, 908) RLRANGE, PLRANGE, RGRANGE, VVRANGE, MMRANGE
     WRITE(6,909)
     PRINTING THE NUMBER OF POINTS FOR ALL THE PARAMETERS WITHIN +/- 30%
C
      OF THE AUTHOR SPECIFIED RANGES
C
     DO 899 PP=1,16
       IF (MN (PP) .NE. 0) THEN
      WRITE(6,514)NP(PP),MNLL(PP),MNTT(PP),ERSL(PP,2,1),
              ERSL(PP, 2, 2), EPRL(PP, 2, 1), EPRL(PP, 2, 2), ERSG(PP, 2, 1),
    *
              ERSG(PP,2,2), EVSL(PP,2,1), EVSL(PP,2,2), EMGL(PP,2,1),
              EMGL(PP, 2, 2)
       ENDIF
  899 CONTINUE
     WRITE(6,909)
  WRITE(6,1217)
         FORMAT(/, '=====END: 30% ERROR BAN',
 1217
           41 FORMAT(1X, I3, 2X, I3, 2X, I3, 2X, I3, 2X, I3, 3X, I3, 2X, I3, 3X, I3, 2X, I3, 3X,
    *
            13,2X,13,3X,13,2X,13)
     WRITE(6,*)
     WRITE(6,*)
  514 FORMAT(1X, I2, 2X, I3, 1X, I3, 2X, I3, 1X, I3, 2X, I3, 1X, I3, 2X, I3, 1X, I3, 2X, I3
           ,1X, I3, 2X, I3, 1X, I3, 2X, I3, 1X, I3, 2X, I3, 1X, I3)
  705 FORMAT(1X, 'PAT', 3X, 'NO PT', 5X, 'ReSL', 5X, 'PrL', 6X, 'ReSG', 3X,
           'VsG/VsL', 3X, 'Mg/M1')
  707 FORMAT(7X, 'L', 3X, 'T', 4X, 'L', 3X, 'T', 4X, 'L', 3X, 'T', 4X, 'L', 3X, 'T'
          ,4X,'L',3X,'T',4X,'L',3X,'T')
  706 FORMAT(1X, 'NUMBER OF POINTS FOR ResL, PrL, ResG, VsG/VsL, MG/ML '
  *
         'WITHIN+-15%.')
  906
         FORMAT(1X, 'NUMBER OF POINTS FOR ResL, PrL, ResG, VsG/VsL, MG/ML '
         'WITHIN+-30%.')
```

```
908 FORMAT(15X,A8,3X,A8,3X,A8,3X,A8,3X,A8)
909 FORMAT(1X,'_________')
```

RETURN

END

SUBROUTINE PRINTING (TMEAN, TRMS)

CCC THIS SUBROUTINE PRINTS THE RMS AND MEAN VALUES CALULATED ON CCC THE BASIS OF hTP, AND VsG/VsL, ReSL RANGE TABLES CCC C BY: RYALI VENKATA KAMAL KUMAR; OKLA ST. UNIV./MECH-AERO ENGR. C DATE LAST CHANGED: 7/29/98 INCLUDE 'DEFINE.FOR' REAL*8 MNH1(16), RMH1(16), MNH(16), RMH(16), TMEAN, TRMS INTEGER TCL(6), TCT(6), TC(6), F, TPRCL(16), TPRCT(16), TOGG(2) INTEGER MN(16), MNLL(16), MNTT(16), CL(16,6), CT(16,6), LL(16), NP(16) INTEGER CLT(16,6), CTT(16,6), PRCL(2,16,6), PRCT(2,16,6), TOTPAR(2,16,2), K, PCOR, N INTEGER TMNL, TMNT, TMN CHARACTER*2 AP COMMON/CHECKL/CL, MNLL, CLT, TCL COMMON/CHECKT/CT, MNTT, CTT, TCT COMMON/COUNT1/MNH, RMH, MNH1, RMH1, N, AP, LL COMMON/PARCHK/PRCL, PRCT, TPRCL, TPRCT COMMON/TOT/TMNL, TMNT, TMN, NP, PP, MN COMMON/TOTPART/TOTPAR, TOGG, PCOR DATA LL/11,22,33,44,55,12,13,14,15,23,24,25,34,35,45,46/ C--- PRINTING MEAN AND RMS VALUES FOR hTP WRITE(6,1207) 1207 FORMAT(/, '=====BEGIN: RMS/MEAN ', WRITE(6,*)'FOR THE FOLLOWING TABLE:' WRITE(6,*)'IN PRINTING THE MEAN AND RMS VALUES FOR TWO-PHASE ', 'FILM COEFFICIENT(hTP) FOR "NO PT", THE NUMBER ', 'GIVEN IS THE NUMBER OF DATA POINTS FOR THE SPECIFIED ', 'FLOW PATTERN AND REGIME (L/T) COMBINATION.' WRITE(6,*)'FOR ALL %-HEADING COLUMNS, THE NUMBER GIVEN IS THE ', 'NUMBER OF HEAT TRANSFER COEFFICIENT CORRELATION ', 'PREDICTIONS THAT FALL WITHIN +-xx% OF THE ', 'EXPERIMENTAL DATA.' WRITE(6,*)'"MEAN"-IS THE AVERAGE ERROR OF ALL CORRELATION ', 'PREDICTIONS AS COMPARED TO ALL DATA FOR THAT FLOW ', + 'PATTERN/REGIME COMBINATION.' WRITE(6,*)'"R.M.S"-IS THE R.M.S ERROR OF ALL CORRELATION ', 'PREDICTIONS AS COMPARED TO ALL DATA FOR THAT FLOW ', 'PATTERN/REGIME COMBINATION.' WRITE(6,*) WRITE (6, 9091) WRITE(6,501) 9091 FORMAT(' 1) 501 FORMAT('PAT', 2X, 'NO PT', 6X, 'MEAN', 5X, 'R.M.S', 2X, '+-10%', 3X, '+-15%',2X,' +-20%',2X,' +-25%',3X,'+-30%',3X,'+-50%') WRITE(6,522) WRITE(7,522) 522 FORMAT(5X,'L', 3X,'T', 22X,'L', 3X,'T', 3X,'L', 3X,'T', 3X,'L', 3X,'L', 3X,'T' , 3X, 'L', 3X, 'T', 3X, 'L', 3X, 'T', 3X, 'L', 3X, 'T') WRITE(6,9091)

```
C
      PRINTING OUT THE MEAN, R.M.S AND NO. OF POINTS WITHIN +-10%, +-15%,
C
       etc., FOR EACH FLOW PATTERN.
  DO 662 F=1,16
    IF(MN(F).NE.0)THEN
      MNH(F)=MNH1(F)*100.D0/MN(F)
      RMH(F) = ((RMH1(F) / MN(F)) **.5D0) *100.D0
         WRITE(6,503)LL(F),MNLL(F),MNTT(F),MNH(F),RMH(F),CL(F,1),
              CT(F,1), CL(F,2), CT(F,2), CL(F,3), CT(F,3), CL(F,4), CT(F,4),
     *
              CL(F,5),CT(F,5),CL(F,6),CT(F,6)
    ENDIF
  662 CONTINUE
  503 FORMAT(12,2X,12,2X,12,2X,F8.2,2X,F8.2,1X,12,2X,12,10
           (2X. T21)
CC
CCC CALCULATION FOR TOTAL MEAN AND R.M.S ERRORS FOR ALL THE FLOW PATTERNS
CC
     DO 334 PP=1,16
       TMNL=MNLL(PP)+TMNL
       TMNT=MNTT (PP) +TMNT
       TMN=TMNL+TMNT
 334 CONTINUE
     DO 336 PP=1,16
       TMEAN=MN (PP) * MNH (PP) + TMEAN
       TRMS=RMH1 (PP) +TRMS
 336 CONTINUE
C
     CALCULATING THE TOTAL MEAN, R.M.S FOR THE ENTIRE DATA SET.
     TMEAN=TMEAN/TMN
     TRMS=(TRMS/TMN) **0.5D0*100.D0
C
     CALCULATING THE TOTAL NO. OF POINTS FOR THE ENTIRE DATA SET.
     DO 666 P=1,6
       DO 665 PP=1,16
      TCL(P)=CL(PP,P)+TCL(P)
         TCT(P) = CT(PP, P) + TCT(P)
  665 CONTINUE
       TC(P) = TCL(P) + TCT(P)
  666 CONTINUE
     WRITE(6,505)AP, TMNL, TMNT, TMEAN, TRMS, TCL(1), TCT(1), (TCL(P),
                 TCT(P), P=2,6)
  505 FORMAT(A2, 1X, I3, 1X, I3, 1X, F9.2, 2X, F8.2, I3, 1X, I3, 10(1X, I3))
     WRITE(6,506)AP, TMN, TMEAN, TRMS, (TC(P), P=1,6)
  506 FORMAT(A2,4X,I3,2X,F9.2,1X,F9.2,2X,I3,6X,I3,4(5X,I3))
  WRITE(6,9091)
  WRITE(6,1206)
         1206
           WRITE(6,9092)
 9092
         FORMAT (//)
     PRINTING THE NO. OF POINTS FOR ResL, VsG/VsL PARAMETERS WITHIN
C
       +-10%, +-15%, etc., FOR EACH FLOW PATTERN; UNLESS THE RANGE
C
       WAS NOT GIVEN BY THE AUTHOR
C
     IF(TOGG(1).NE.1)THEN
    WRITE(6,*)'**THE PARAMETER ReSL RANGE IS NOT APPLICABLE**.'
    WRITE(6,*)
  ENDIF
  IF(TOGG(2).NE.1)THEN
```

```
WRITE(6,*)'**THE PARAMETER VsG/VsL RANGE IS NOT APPLICABLE**.'
    WRITE(6,*)
    WRITE(6.*)
  ENDIF
  DO 671 K=1.2
  IF(TOGG(K).EQ.1)THEN
    IF(K.EQ.1)THEN
      WRITE(6,*)
      WRITE(6,1208)
 1208
             FORMAT(/, '=====BEGIN: ReSL ',
               'ERROR TABLE==========:==:===:==:=:=:=:=:::,/)
      WRITE(6,509)
  509
         FORMAT ('THE FOLLLOWING TABLE GIVES THE NUMBER OF POINTS',
              ' IN THE RANGE')
         WRITE(6,515)
  515
         FORMAT(1X, 'FOR ReSL PARAMETER WITH RESPECT TO hTP ERROR' )
    ENDTE
    IF(K.EQ.2)THEN
      WRITE(6,*)
         WRITE(6,1209)
 1209
             FORMAT(/, '=====BEGIN: VsG/VsL ',
           'ERROR TABLE========:,/)
         WRTTE(6,491)
  491
         FORMAT ( 'THE FOLLLOWING TABLE GIVES THE NUMBER OF POINTS',
               ' WITHIN THE RANGE')
     WRITE(6,493)
             FORMAT(1X, 'FOR VsG/VsL PARAMETER WITH RESPECT TO hTP ',
  493
    *
               'ERROR')
    ENDIF
       WRITE(6,517)
  517
      FORMAT ( '
                                                              ۰.
                           1 1
    WRITE(6,510)
  510 FORMAT ('PAT', 3X, 'NO PT', 6X, '10%', 5X,
              '15%',4X,' 20%',4X,' 25%',5X,'30%',5X,'50%')
       WRITE(6,512)
       WRITE(7,512)
  512 FORMAT(6X,'L', 3X, 'T', 5X, 'L', 3X, 'T', 3X, 'L', 3X, 'T', 3X, 'L', 3X, 'T'
              , 3X, 'L', 3X, 'T', 3X, 'L', 3X, 'T', 3X, 'L', 3X, 'T')
    WRITE(6,517)
C
 PRINTING OUT THE TOTAL NUMBER OF POINTS FOR THE ReSL & VsG/VsL
C
      PARAMETERS WHICH FALL WITHIN +- 10%, 15%, 20%, etc. OF AUTHOR'S hTP
C
      DATA
    DO 663 F=1,16
         IF(MN(F).NE.O)THEN
        WRITE(6,513)LL(F), TOTPAR(K, F, 1), TOTPAR(K, F, 2), PRCL(K, F, 1),
    *
               PRCT(K, F, 1), PRCL(K, F, 2), PRCT(K, F, 2), PRCL(K, F, 3),
    *
               PRCT(K, F, 3), PRCL(K, F, 4), PRCT(K, F, 4), PRCL(K, F, 5),
               PRCT(K, F, 5), PRCL(K, F, 6), PRCT(K, F, 6)
         ENDIF
  663
      CONTINUE
  513 FORMAT(12, 3X, 12, 2X, 12, 2X, 12(2X, 12))
    WRITE(6,517)
    IF(K.EO.1)THEN
      WRITE(6,1210)
             FORMAT(/, '======END: ReSL ',
 1210
              'SRROR TABLE=======================;,/)
    ELSEIF(K.EQ.2)THEN
        WRITE(6,1211)
            1211
```

```
ENDIF
```

```
ENDIF
  671 CONTINUE
      RETURN
      END
      SUBROUTINE RYALI (COR, D, MNG, MNL, TBULK, TWALL, ALPHA, VDOT, P, BETA,
                        DoverL, LoverD, hTP, NuTP)
C THIS SUBROUTINE CALLS THE AUTHOR SPECIFIED CORRELATION.
      INCLUDE 'DEFINE.FOR'
      REAL*8 hTP, D, LoverD, DOVERL
      REAL*8 TBULK, ALPHA, P, TWALL, VDOT, BETA, NUTP
      INTEGER COR
   CHARACTER*8 RLRANGE, PLRANGE, RGRANGE, VVRANGE, MMRANGE
   COMMON/RANGE/RLRANGE, PLRANGE, RGRANGE, VVRANGE, MMRANGE
C
      CHECKING WHETHER THE PARAMETERS ReSL, PrL, etc., HAVE A RANGE
       TO CHECK OR NOT AND THEN CALLING THE SUBROUTINE THE USER HAS CHOSEN.
С
   IF(COR.EO.1)THEN
     RLRANGE='NO RANGE'
     PLRANGE= '
                       1
     RGRANGE= '
     VVRANGE='
                       23
     MMRANGE= '
     CALL HAGGOUR (D, MNG, MNL, TBULK, TWALL, ALPHA, VDOT, P, BETA,
                      LoverD, hTP, NuTP)
     *
   ELSEIF(COR.EQ.4)THEN
     RLRANGE= '
     PLRANGE= 'NO RANGE'
     RGRANGE='NO RANGE'
     VVRANGE='
                       1.1
     MMRANGE='NO RANGE'
     CALL HDORREST (D, MNG, MNL, TBULK, TWALL, VDOT, P, BETA, ALPHA, hTP,
                      NuTP)
   ELSEIF(COR.EQ.13) THEN
     RLRANGE= 'NO RANGE'
     PLRANGE='NO RANGE'
     RGRANGE='NO RANGE'
     VVRANGE= 'NO RANGE '
     MMRANGE='NO RANGE'
        CALL HMARTIN (D, MNG, MNL, TBULK, TWALL, VDOT, P, BETA, DoverL, hTP,
     *
                     NuTP)
   ELSEIF(COR.EQ.11)THEN
     RLRANGE='
                       1
     PLRANGE='NO RANGE'
     RGRANGE='
     VVRANGE='
                       1
     MMRANGE= '
     CALL HKNOT (D, MNG, MNL, TBULK, TWALL, VDOT, P, BETA, LoverD, hTP, NuTP)
   ELSEIF(COR.EQ.12) THEN
                1
     RLRANGE= '
                       .
     PLRANGE= '
     RGRANGE='NO RANGE'
     VVRANGE='
     MMRANGE= '
                       . .
     CALL HKUDIRKA(D, MNG, MNL, TBULK, TWALL, VDOT, P, BETA, hTP, NuTP)
   ELSEIF(COR.EQ.15)THEN
     RLRANGE='
```

```
PLRANGE='NO RANGE'
  RGRANGE= '
  VVRANGE= '
                    MMRANGE='NO RANGE'
  CALL HRAVIPUDI (D, MNG, MNL, TBULK, TWALL, VDOT, P, BETA, hTP, NuTP)
ELSEIF(COR.EQ.16)THEN
  RLRANGE= !
  PLRANGE='
  RGRANGE='NO RANGE'
  VVRANGE= '
 MMRANGE='NO RANGE'
  CALL HREZKALLAH (D, MNG, MNL, TBULK, TWALL, ALPHA, VDOT, P,
  *
                     BETA, DoverL, hTP, NuTP)
ELSEIF(COR.EO.17)THEN
  RLRANGE= 'NO RANGE '
  PLRANGE= 'NO RANGE'
  RGRANGE='NO RANGE'
  VVRANGE='NO RANGE'
  MMRANGE='NO RANGE'
  CALL HSERIZAWA (D, MNG, MNL, TBULK, TWALL, VDOT, P, BETA, hTP, DOVERL,
                    NuTP)
ELSEIF(COR.EQ.18) THEN
  RLRANGE='
  PLRANGE='NO RANGE'
  RGRANGE='NO RANGE'
  VVRANGE= '
  MMRANGE='NO RANGE'
 CALL HSHAH (D, MNG, MNL, TBULK, TWALL, VDOT, P, BETA, DoverL, hTP, NuTP)
ELSEIF(COR.EQ.19) THEN
  RLRANGE='NO RANGE'
  PLRANGE='
  RGRANGE='NO RANGE'
  VVRANGE='
  MMRANGE= '
                     1
 CALL HUEDA (D, MNG, MNL, TBULK, TWALL, VDOT, P, BETA, ALPHA, hTP, NuTP)
ELSEIF(COR.EQ.9)THEN
  RLRANGE='
  PLRANGE= '
  RGRANGE="
  VVRANGE='NO RANGE'
  MMRANGE='NO RANGE'
  CALL HKHOZE(D, MNG, MNL, TBULK, TWALL, ALPHA, VDOT, P, BETA, LoverD, hTP,
                 NuTP)
ELSEIF (COR. EQ. 2) THEN
  RLRANGE= '
  PLRANGE='NO RANGE'
  RGRANGE= '
  VVRANGE= '
                     .
 MMRANGE='NO RANGE'
  CALL HCHU (D, MNG, MNL, TBULK, TWALL, ALPHA, VDOT, P, BETA,
  *
               LoverD, hTP, NuTP)
ELSEIF (COR. EQ. 3) THEN
  RLRANGE='NO RANGE'
  PLRANGE='NO RANGE'
 RGRANGE='NO RANGE'
  VVRANGE='NO RANGE'
  MMRANGE='NO RANGE'
```
```
CALL HDAVIS (D, MNG, MNL, TBULK, TWALL, ALPHA, VDOT, P, BETA,
                 LoverD, hTP, NuTP)
ELSEIF(COR.EQ.5)THEN
  RLRANGE='
  PLRANGE='NO RANGE'
  RGRANGE= *
  VVRANGE='NO RANGE'
  MMRANGE= '
  CALL HDUSSEAU (D, MNG, MNL, TBULK, TWALL, ALPHA, VDOT, P, BETA,
                   LoverD, hTP, NuTP)
ELSEIF (COR.EQ. 6) THEN
  RLRANGE='
  PLRANGE='NO RANGE'
  RGRANGE='NO RANGE'
  VVRANGE= '
                    .
  MMRANGE='NO RANGE'
  CALL HELAM (D, MNG, MNL, TBULK, TWALL, ALPHA, VDOT, P, BETA,
                LoverD, hTP, NuTP)
ELSEIF (COR. EQ. 7) THEN
  RLRANGE='
  PLRANGE='NO RANGE'
  RGRANGE='NO RANGE'
  VVRANGE= '
  MMRANGE= '
                    .
  CALL HGROOTH (D, MNG, MNL, TBULK, TWALL, ALPHA, VDOT, P, BETA,
                  LoverD, hTP, NuTP)
ELSEIF (COR. EQ. 8) THEN
  RLRANGE='NO RANGE'
  PLRANGE= 'NO RANGE '
  RGRANGE='NO RANGE'
  VVRANGE='NO RANGE'
  MMRANGE='NO RANGE'
  CALL HHUGH (D, MNG, MNL, TBULK, TWALL, ALPHA, VDOT, P, BETA,
               LoverD, hTP, NuTP)
ELSEIF(COR.EQ.14)THEN
  RLRANGE= '
  PLRANGE='NO RANGE'
  RGRANGE='NO RANGE'
  VVRANGE='NO RANGE'
  MMRANGE='NO RANGE'
  CALL HOLIVER (D, MNG, MNL, TBULK, TWALL, ALPHA, VDOT, P, BETA,
                  LoverD, hTP, NuTP)
ELSEIF(COR.EQ.10)THEN
  RLRANGE= '
  PLRANGE= 'NO RANGE '
  RGRANGE= '
                    .
  VVRANGE='
 MMRANGE='NO RANGE'
  CALL HKING (D, MNG, MNL, TBULK, TWALL, ALPHA, VDOT, P, BETA,
                  LoverD, hTP, NuTP)
ELSEIF(COR.EQ.20) THEN
  RLRANGE= '
  PLRANGE='NO RANGE'
  RGRANGE=1
  VVRANGE= '
                    .
 MMRANGE='NO RANGE'
  CALL HVIJAY (D, MNG, MNL, TBULK, TWALL, ALPHA, VDOT, P, BETA,
                      LoverD, hTP, NuTP)
```

```
ENDIF
      RETURN
      END
      SUBROUTINE PROPERTIES (D, MNG, MNL, TBULK, TWALL, VDOT, P, BETA)
CCC
     THIS SUBROUTINE CALCULATES PROPERTIES OF FLUIDS USED IN TWO-PHASE
CCC
       HEAT TRANSER CORRELATIONS
CCC
        CURRENTLY GASES: AIR, HELIUM, AND FREON-12; AND LIQUIDS: WATER,
CCC
          GLYCERIN, and SILICONE ARE AVAILABLE. USER CAN ADD OTHER FLUIDS
CCC
         (MNG=1, 2, 3 AND MNL=1, 2, 3) AS SHOWN IN THIS SUBROUTINE
      INCLUDE 'DEFINE.FOR'
      IMPLICIT NONE
      INTEGER MNG, MNL, COR, NUMSETS
  REAL*8 D, rhoG, AREA, ReSL, VsL, VsG, PrL, muWmuB, muG, muL, muW, mL, mG,
             kL, kG, ReSG, P, TWALL, TBULK, CPL, rhoL, R, VDOT, BETA, PI, L
      CHARACTER*1 LAMTUR
      COMMON/TPHASEA/Resl, PrL, ResG, LAMTUR, COR, NUMSETS
      COMMON/TPHASEB/VsL, VsG, muWmuB, kL, kG, muG, muL, muW, mL, mG
      COMMON/TPHASED/rhoL, rhoG
      COMMON/TPHASEG/cpL,L
  DATA PI/3.14592653589793D0/
      DATA R/53.34D0/
      AREA=PI*D**2.D0/4.D0
C
     -----AIR PROPERTIES
      IF(MNG.EQ.1)THEN
     kG=-6.514D-9*TBULK**2.D0+2.591D-5*TBULK+0.01313D0
     muG=-2.673D-8*TBULK**2.D0+6.819D-5*TBULK+0.03936D0
    rhoG=(P*144.D0)/(R*(TBULK+459.67D0))
      ENDIF
     -----HELIUM PROPERTIES
C
      IF(MNG.EQ.2)THEN
     kG=-1.333D-7*TBULK**2.D0+12.333D-5*TBULK+0.0784
    muG=0.0481D0
     rhoG=P/(386.D0*(TBULK+459.67D0))
      ENDIF
     -----FREON-12 PROPERTIES
C
      IF (MNG.EQ.3) THEN
     kG=4.79D-03+7.615D-06*TBULK**1.11944
        muG=25.833D-03+8.458D-06*(TBULK)**(0.90906D0)
     rhoG=
C
      ENDIE
C
C USER MAY ADD OTHER GASES' PROPERTIES HERE (MNG=4,5,6, etc.)
C
C
     -----WATER PROPERTIES
     IF (MNL.EQ.1) THEN
     cpL=1.337D-6*TBULK**2.D0-3.374D-4*TBULK+1.018D0
     kL=4.722D-4*TBULK+0.3149D0
    muL=(1.207D-5*TBULK**2.D0+3.863D-3*TBULK
            +0.09461D0)**(-1.D0)
    muW=(1.207D-5*TWALL**2.D0+3.863D-3*TWALL
            +0.09461D0) ** (-1.D0)
     rhoL=(2.101D-8*TBULK**2.D0-1.303D-6*TBULK+
             0.01602D0)**(-1.D0)
      ENDIF
```

```
C
   -----GLYCERIN PROPERTIES
      IF (MNL. EQ. 2) THEN
        cpL=.513123D0+.000824729D0*TBULK
     kL=0.1645
     muL=-0.01225126D0*TBULK**3.D0+4.707399D0*TBULK**2.D0-610.142D0*
            TBULK+26970.75D0
     muW=-0.01225126D0*TWALL**3.D0+4.707399D0*TWALL**2.D0-610.142D0*
            TWALL+26970.7500
     rhoL=80.1747D0-0.02131D0*TBULK
   ENDIE
C
     -----SILICONE PROPERTIES
      IF(MNL.EO.3) THEN
     cpL=1.80178D-4*TBULK+0.3839D0
     kL=0.06773D0
     muL=-5.1D-6*TBULK**3.D0+2.41D-3*TBULK**2.D0-
            0.41076D0*TBULK+31.18D0
     muW=-5.1D-6*TWALL**3.D0+2.41D-3*TWALL**2.D0-
            0.41076D0*TWALL+31.18D0
     rhoL=(920.D0/16.D0)
      ENDIF
C
C USER MAY ADD OTHER LIQUIDS' PROPERTIES HERE (MNL=4,5,6, etc.)
C
      PrL=cpL*muL/kL
   ReSG=rhoG*VsG*D/muG
   ReSL=rhoL*VsL*D/muL
   VsG=BETA*VDOT/AREA
      VsL=(1.D0-BETA) *VDOT/AREA
      RETURN
      END
      SUBROUTINE HAGGOUR (D, MNG, MNL, TBULK, TWALL, ALPHA, VDOT, P, BETA,
                          LoverD, hTP, NuTP)
C THIS SUBROUTINE IS TO CALCULATE TWO PHASE HEAT TRANSFER
C
     USING AGGOUR (1978) CORRELATION.
      INCLUDE 'DEFINE1.FOR'
      IMPLICIT NONE
      REAL*8 NuSP, hSP, hTP, D, LoverD, MGML, VSVL, NuTP
      REAL*8 ReSL, VsL, VsG, kL, TBULK, ALPHA, PrL, muWmuB, muG, muL, muW, kG,
             mL, mG, ReSG, P, TWALL, VDOT, BETA, x, kTP
      REAL*8 ReSLL, ReSGG, PrLL, VsLL, VsGG, muWmB, MDGML
      REAL*8 ECK1, ECK2
   REAL*8 ERR(5)
      INTEGER ERR1(2), ERR2(2), ERR3(2), ERR4(2), ERR5(2), CHPL, CHRL, CHRG
   INTEGER MNG, MNL, IFLAGRG, IFLAGPL, IFLAGRL, IFLAGVV, IFLAGMM,
              IFLAGVL, IFLAGVG, IFLAGMB, COR, KIMSWT, NUMSETS
     .
   CHARACTER*1 LAMTUR
      COMMON/ECHECK/ECK1,ECK2
   COMMON/ECOUNT/ERR1, ERR2, ERR3, ERR4, ERR5, IFLAGRG, IFLAGPL,
             IFLAGRL, IFLAGMM, IFLAGVV, IFLAGMB, IFLAGVL, IFLAGVG,
   *
             CHPL, CHRG, CHRL
   COMMON/TPHASEA/ReSL, PrL, ReSG, LAMTUR, COR, NUMSETS
      COMMON/TPHASEB/VsL, VsG, muWmuB, kL, kG, muG, muL, muW, mL, mG
      COMMON/TPHASEC/KIMSWT, ReSLL, ReSGG, PrLL, VsLL, VsGG, muWmB
     CALLING THE FLAGS SUBROUTINE TO GIVE THE VALUES FOR IFLAGRL, IFLAGPL, etc.
C
  CALL FLAGS
```

C----GIVING THE CORRELATION NUMBER AS DEFINED IN THE 3rd QUARTER REPORT TO C THE PARAFFIN DEPOSITION IN MULTIPHASE FLOWLINES AND WELLBORES JIP(OCT 1, 1997),

```
HEAT TRANSFER SECTION, PP. 8-17.
C
C
     COR=1
C----- CALL PROPERTIES SUBROUTINE IN ORDER TO HAVE
C
                            THE VALUES OF PROPERTIES REQUIRED FOR CALCULATION
     CALL PROPERTIES (D, MNG, MNL, TBULK, TWALL, VDOT, P, BETA)
C---COMPUTE DYNAMIC VISCOSITY RATIO
     muWmuB=muW/muL
     MGML=muG/muL
C---COMPUTING MASS FLOW RATE RATIO
  MDGML=mG/mL
C---CALCULATING THE HEAT TRANSFER COEFFICIENT BASED ON THE AUTHOR'S INPUT
     DATA AVAILABLE (KIMSWT=1); OTHERWISE (KIMSWT.NE.1), USE THE DATA
C
     CALCULATED IN THE "PROPERTIES" SUBROUTINE
C
     IF (KIMSWT.EQ.1) THEN
        ReSL=ReSLL
        ReSG=ReSGG
        VsL=VsLL
        VsG=VsGG
        PrL=PrLL
        VSVL=VsG/VsL
     IF(MNG.EQ.1)muWmuB=muWmB
   ENDIF
C----COMPUTING TWO-PHASE QUALITY AND THERMAL CONDUCITVITY
          x=mG/(mG+mL)
   kTP=kL*(1.DO-x)+kG*x
C----CHECK FOR LAMINAR OR TURBULENT FLOW
   IF(ReSL.LT.2000.DO)THEN
C----- LAMINAR IF ReSL < 2000
     NuSP=1.615D0*(ReSL*PrL*1.D0/LoverD)**(1.D0/3.D0)
            *muWmuB**(-0.14D0)
C----CALCULATING HEAT TRANSFER COEFFICIENT
            hSP=NuSP*kL/D
     hTP=hSP*(1.D0-ALPHA)**(-1.D0/3.D0)
     LAMTUR='L'
C----- TURBULENT IF ReSL > 2000
      ELSE
     hSP=0.0155D0*ReSL**0.83D0*PrL**0.5D0*
           muWmuB**(-0.33D0)*kL/D
C---CALCULATING HEAT TRANSFER COEFFICIENT
        hTP=hSP*(1.D0-ALPHA)**(-0.83D0)
     LAMTUR='T'
   ENDIE
   NuTP=hTP*D/kTP
C---CHECKING AUTHOR SPECIFIED RANGES FOR ReSL, ReSG, etc.
C---A POSITIVE ERR(*) MEANS "BELOW" THE AUTHOR'S RANGE, AND A NEGATIVE ERR(*)
     MEANS "ABOVE" THE AUTHOR'S RANGE
C
   IF(ReSG.LT.13.95D0)THEN
     IFLAGRG=111
        CHRG=NINT((ReSG-13.95D0)/13.95D0)
```

```
ERR(3)=(1-ReSG/13.95D0)
   ELSEIF(ReSG.GT.2.95D05) THEN
  IFLAGRG=111
     CHRG=NINT((ReSG-2.95D05)/2.95D05)
  ERR(3)=(1-ReSG/2.95D05)
   ENDIF
    IF(ABS(ERR(3)).LE.ECK1)THEN
     ERR3(1)=1
ENDIF
   IF (ABS (ERR (3)). LE. ECK2) THEN
     ERR3(2)=1
   ENDIF
   IF(PrL.LT.5.78D0)THEN
  IFLAGPL=111
  CHPL=NINT((PrL-5.78D0)/5.78D0)
  ERR(2)=(1-PrL/5.78D0)
   ELSEIF(PrL.GT.7.04D0)THEN
  IFLAGPL=111
  CHPL=NINT((PrL-7.04D0)/7.04D0)
  ERR(2) = (1 - PrL/7.04D0)
   ENDIF
   IF(ABS(ERR(2)).LE.ECK1)THEN
  ERR2(1)=1
ENDIF
   IF (ABS (ERR(2)). LE. ECK2) THEN
  ERR2(2)=1
   ENDIF
IF (MDGML.LT.2.2D-06) THEN
  IFLAGMM=111
  ERR(5) = (1 - MDGML/2.2D - 06)
ELSEIF(MDGML.GT.0.7738D0)THEN
  IFLAGMM=111
  ERR(5) = (1 - MDGML/0.7738D0)
ENDIF
IF (ABS (ERR (5)). LE. ECK1) THEN
  ERR5(1)=1
ENDIF
IF (ABS (ERR (5)). LE. ECK2) THEN
  ERR5(2) = 1
ENDIF
IF(VSVL.LT.0.02D0)THEN
  IFLAGVV=111
  ERR(4)=(1.-VSVL/0.02D0)
ELSEIF(VSVL.GT. 470.0D0)THEN
  IFLAGVV=111
  ERR(4)=(1.-VSVL/470.0D0)
ENDIF
IF (ABS (ERR (4)).LE.ECK1) THEN
  ERR4(1) = 1
ENDIF
IF (ABS (ERR (4)). LE. ECK2) THEN
  ERR4(2) = 1
ENDIE
   FOR PARAMETERS WHICH DID NOT HAVE ANY RANGES TO CHECK, THE VARIABLES
    TO IDENTIFY THEM WERE SET TO ZERO.
CHRL=0
IFLAGRL=0
   IFLAGVL=0
   IFLAGVG=0
   IFLAGMB=0
   RETURN
   END
```

C

C

```
SUBROUTINE FLAGS
```

```
INTEGER ERR1(2), ERR2(2), ERR3(2), ERR4(2), ERR5(2), IFLAGRG
          , IFLAGPL, IFLAGRL, IFLAGMM, IFLAGVV, IFLAGMB, IFLAGVL,
 *
           IFLAGVG, CHPL, CHRG, CHRL
COMMON/ECOUNT/ERR1, ERR2, ERR3, ERR4, ERR5, IFLAGRG, IFLAGPL,
          IFLAGRL, IFLAGMM, IFLAGVV, IFLAGMB, IFLAGVL, IFLAGVG,
. *
          CHPL, CHRG, CHRL
CHRG=1
CHRL=1
CHPL=1
   IFLAGRG=1
   IFLAGPL=1
   IFLAGRL=1
   IFLAGVL=1
   IFLAGVG=1
   IFLAGMB=1
   IFLAGMM=1
   IFLAGVV=1
   ERR1(1)=0
   ERR1(2) = 0
   ERR2(1) = 0
   ERR2(2) = 0
   ERR3(1) = 0
   ERR3(2) = 0
   ERR4(1)=0
   ERR4(2)=0
   ERR5(1)=0
   ERR5(2) = 0
```

RETURN END

```
CC THIS FILE HAS ALL THE VARIABLES DEFINED WHICH WERE USED IN THE
CC
       CORRELATION SUBROUTINES
C ALPHA = VOID FRACTION
C COR
        = CORRELATION NUMBER
CD
        = DIAMETER OF PIPE (ft)
C DoverL = RATIO OF PIPE DIAMETER TO LENGTH
C DPL = SINGLE PHASE DIFFERENTIAL PRESSURE
                                               (COL 20)
C DtpbyDL= RATIO OS TWO-PHASE AND SINGLE-PHASE PRESSURE
           DIFFERENCE (DP/DL) tp/(DP/DL) sl(COL 18) IN KING DATA
C Ptpf = TWO-PHASE DIFFERENTIAL PRESSURE (COL 21) IN PLETCHER DATA
C ERR(5) = REAL VALUES OF ERRORS FOR RESL, PRL, RESG, VSG/VSL, MG/ML
C ERR1(1) = NO OF POINTS OF ResL WITHIN +/- 15% OF AUTHOR SPECIFIED
               RANGE .
C
     (2) = WITHIN +/- 30%
C
C ERR2(1) = NO OF POINTS OF ReSG WITHIN +/- 15% OF AUTHOR SPECIFIED
C
               RANGE.
      (2) = WITHIN +/- 30%
C
C ERR3(1) = NO OF POINTS OF PrL WITHIN +/- 15% OF AUTHOR SPECIFIED
С
               RANGE .
      (2) = WITHIN +/- 30%
C
C ERR4(1) = NO OF POINTS OF VsG/VsL WITHIN +/- 15% OF AUTHOR SPECIFIED
               RANGE .
0
C
      (2) = WITHIN +/- 30%
C ERR5(1) = NO OF POINTS OF mG/mL WITHIN +/- 15% OF AUTHOR SPECIFIED
C
               RANGE .
      (2) = WITHIN +/- 30%
C
        = TWO PHASE HEAT TRANSFER COEFFICIENT -- CALCULATED (Btu/hr-ft^2-F)
C hTP
C hTPEX = TWO PHASE HEAT TRANSFER COEFFICIENT -- FROM DATA SET (Btu/hr-ft^2-F)
C IFLAGRG= FLAG TO CHECK WHETHER ReSG IS WITHIN RANGE OR NOT
0
        = 1 WITHIN RANGE
         = 0 OUT OF RANGE
0
C IFLAGPL= FLAG TO CHECK WHETHER PrL IS WITHIN RANGE OR NOT
        = 1 WITHIN RANGE
C
         = 0 OUT OF RANGE
C
C IFLAGRL= FLAG TO CHECK WHETHER ResL IS WITHIN RANGE OR NOT
         = 1 WITHIN RANGE
C
         = 0 OUT OF RANGE
C
C IFLAGVL= FLAG TO CHECK WHETHER VSL IS WITHIN RANGE OR NOT
        = 1 WITHIN RANGE
C
         = 0 OUT OF RANGE
C
C IFLAGVG= FLAG TO CHECK WHETHER VSG IS WITHIN RANGE OR NOT
C
         = 1 WITHIN RANGE
C
         = 0 OUT OF RANGE
C IFLAGMB= FLAG TO CHECK WHETHER muW/muB IS WITHIN RANGE OR NOT
         = 1 WITHIN RANGE
C
         = 0 OUT OF RANGE
10
C IFLAGMM= FLAG TO CHECK WHETHER mG/mL IS WITHIN RANGE OR NOT
         = 1 WITHIN RANGE
0
C
         = 0 OUT OF RANGE
C IFLAGVV= FLAG TO CHECK WHETHER VsG/VsL IS WITHIN RANGE OR NOT
C
         = 1 WITHIN RANGE
         = 0 OUT OF RANGE
C
         = GAS THERMAL CONDUCTIVITY (Btu/hr-ft-F)
C kG
         = LIQUID THERMAL CONDUCTIVITY (Btu/hr-ft-F)
CkL
         = PIPE LENGTH (ft)
CL
C LAMTUR = VARIABLE WHICH INDICATES THAT THE GIVEN DATA POINT IS LAMINAR OR
            TURBULENT, L- LAMINAR, T- TURBULENT
С
C LoverD = RATIO OF PIPE LENGTH TO DIAMETER
         = GAS MASS FLOW RATE (1bm/hr)
C mG
         = LIQUID MASS FLOW RATE (1bm/hr)
C mL
         = GASEOUS PHASE COMPONENT DESIGNATOR
C MNG
     (=1)= AIR
C
      (=2) = HELIUM
0
     (=3) = FREON - 12
C
C MNL = LIQUID PHASE COMPONENT DESIGNATOR
C
     (=1) = WATER
     (=2)= GLYCERIN
100
     (=3)= SILICONE
 C
```

С	muB	=	DYNAMIC VISCOSITY OF LIQUID AT BULK TEMPERATURE (1bm/ft-hr)			
С	muG	=	DYNAMIC VISCOSITY OF GAS AT WALL TEMPERATURE (lbm/ft-hr)			
С	muL	=	DYNAMIC VISCOSITY OF LIQUID (1bm/ft-hr)			
С	muW	=	DYNAMIC VISCOSITY OF LIQUID AT WALL TEMPERATURE (1bm/ft-hr)			
С	muWmuB	-	muW/muB CALCULATED			
С	muWmB	=	muW/muB FROM DATA SET			
С	P	-	PRESSURE (1bf/ft^2)			
С	PrL	=	LIQUID PRANDTL NUMBER (CALCULATED)			
С	PrLL	=	LIQUID PRANDTL NUMBER (FROM DATA SET)			
С	ReSG	=	SUPERFICIAL GAS REYNOLDS NUMBER (CALCULATED)			
С	ReSGG	=	SUPERFICIAL GAS REYNOLDS NUMBER (FROM DATA SET)			
С	ReSL	=	SUPERFICIAL LIQUID REYNOLDS NUMBER (CALCULATED)			
С	ReSLL	=	SUPERFICIAL LIQUID REYNOLDS NUMBER (FROM DATA SET)			
С	RMGL	=	NO. OF POINTS WITHIN THE AUTHOR SPECIFIED RANGE FOR mG/mL			
С	RL	=	LIQUID VOLUME FRACTION (=1-ALPHA), DIMENSIONLESS			
С	RPRL	=	NO. OF POINTS WITHIN THE AUTHOR SPECIFIED RANGE FOR PrL			
С	RRSL	=	NO. OF POINTS WITHIN THE AUTHOR SPECIFIED RANGE FOR ReSL			
С	RRSG	=	NO. OF POINTS WITHIN THE AUTHOR SPECIFIED RANGE FOR ReSG			
С	RVSL	=	NO. OF POINTS WITHIN THE AUTHOR SPECIFIED RANGE FOR VsG/VsL			
С	RMXYZ	=	R.M.S hTP ERROR FOR ResL, ReSG, PrL, VsL/VsG, mG/mL WHICH ARE WITHIN THE			
C			AUTHORS SPECIFIED RANGE.			
С	TBULK	12	BULK TEMPERATURE (F)			
C	TWALL	=	WALL TEMPERATURE (F)			
C	VDOT	=	TOTAL VOLUMETRIC FLOW RATE (ft^3/hr)			
С	VsG	=	SUPERFICIAL VELOCITY OF GAS CALCULATED (ft/hr)			
С	VsGG	=	SUPERFICIAL VELOCITY OF GAS FROM DATA SET (ft/hr)			
С	VsL	=	SUPERFICIAL VELOCITY OF LIQUID CALCULATED (ft/hr)			
C	VsLL	=	SUPERFICIAL VELOCITY OF LIQUID FROM DATA SET (ft/hr)			

```
CC THIS FILE HAS ALL THE VARIABLES DEFINED WHICH WERE USED IN THE PHASE-I
CC
     CODE
C ALPHA = VOID FRACTION
       = VOLUMETRIC RATIO OF GAS FLOW RATE TO TOTAL FLOW RATE
C BETA
C COR
        = CORRELATION NUMBER
C CL(*,*)= NO. OF POINTS FOR EACH FLOW PATTERN AND LAMINAR POINT THAT SHOWS
           hTP ERRORS WITHIN +/- ERROR RANGE.
C
C CT(*,*)= NO. OF POINTS FOR EACH FLOW PATTERN AND TURBULENT POINT THAT SHOWS
           hTP ERRORS WITHIN +/- ERROR RANGE.
C
CD
        = DIAMETER OF PIPE (ft)
c D2
            = DUMMY VARIABLE
C DoverL = RATIO OF PIPE DIAMETER TO LENGTH
C DPL
        = SINGLE PHASE DIFFERENTIAL PRESSURE
                                              (COL 20)
C DtpbyDL= RATIO OS TWO-PHASE AND SINGLE-PHASE PRESSURE
           DIFFERENCE (DP/DL)_tp/(DP/DL)_s1(COL 18) IN KING DATA
C Ptpf
        = TWO-PHASE DIFFERENTIAL PRESSURE (COL 21) IN PLETCHER DATA
       = NO. OF POINTS OF mG/mL WITHIN +/-15% AND +/- 30%
C EMGL
C
           THE AUTHOR SPECIFIED RANGE
C EPRL
        = NO. OF POINTS OF PrL WITHIN +/-15% AND +/- 30%
C
           THE AUTHOR SPECIFIED RANGE
C ERSL
        = NO. OF POINTS OF ReSL WITHIN +/-15% AND +/- 30%
C
           THE AUTHOR SPECIFIED RANGE
C ERSG
        = NO. OF POINTS OF ReSG WITHIN +/-15% AND +/- 30%
           THE AUTHOR SPECIFIED RANGE
C
C EVSL
        = NO. OF POINTS OF VsG/VsL WITHIN +/-15% AND +/- 30%
C
           THE AUTHOR SPECIFIED RANGE
C ERRR1 = FRACTIONAL ERROR BETWEEN ReSL COMPUTED AND FROM DATA
C ERRR2 = FRACTIONAL ERROR BETWEEN PrL COMPUTED AND FROM DATA
C ERRR3 = FRACTIONAL ERROR BETWEEN ReSG COMPUTED AND FROM DATA
C ERRR4 = FRACTIONAL ERROR BETWEEN VSL COMPUTED AND FROM DATA
C ERRR5 = FRACTIONAL ERROR BETWEEN VSG COMPUTED AND FROM DATA
C ERRR6 = FRACTIONAL ERROR BETWEEN VISCOSITY RATIO COMPUTED AND FROM DATA
C ERRR7 = FRACTIONAL ERROR BETWEEN hTP COMPUTED AND FROM DATA
C ERR(5) = REAL VALUES OF ERRORS FOR RESL, PRL, RESG, VSG/VSL, MG/ML
C ERR1(1) = NO OF POINTS OF ReSL WITHIN +/- 15% WITHIN AUTHOR SPECIFIED
               RANGE .
C
      (2) = WITHIN +/- 30%
C
C ERR2(1) = NO OF POINTS OF ReSG WITHIN +/- 15% WITHIN AUTHOR SPECIFIED
                RANGE .
C
      (2) = WITHIN +/- 30%
C
C ERR3(1) = NO OF POINTS OF PrL WITHIN +/- 15% WITHIN AUTHOR SPECIFIED
C
               RANGE .
      (2) = WITHIN +/- 30%
C
C ERR4(1) = NO OF POINTS OF VSL/VSG WITHIN +/- 15% WITHIN AUTHOR SPECIFIED
C
               RANGE .
C
      (2) = WITHIN +/- 30%
C ERR5(1) = NO OF POINTS OF mG/mL WITHIN +/- 15% WITHIN AUTHOR SPECIFIED
C
               RANGE .
     (2) = WITHIN +/- 30%
C
C FLSWT = USER INPUT VARIABLE WHICH THE USER DECIDES WHETHER TO USE THE
            I/O FILES PROVIDED BY THE CODE (0) OR THE USER DECIDES TO
C
            USE HIS OWN I/O FILES
C
C FILEIN = NAME OF THE INPUT FILE PROVIDED BY THE USER
C FILEOUT= NAME OF THE OUTPUT FILE PROVIDED BY THE USER
        = IS IS SINGLE PHASE HEAT TRANSFER COEFFICIENT(hLCAL) FOR KING DATA
C hL
         = TWO PHASE HEAT TRANSFER COEFFICIENT -- CALCULATED (Btu/hr-ft^2-F)
C hTP
C hTPEX = TWO PHASE HEAT TRANSFER COEFFICIENT -- FROM DATA SET (Btu/hr-ft^2-F)
C IFLAGRG= FLAG TO CHECK WHETHER ReSG IS WITHIN AUTHOR SPECIFIED RANGE OR NOT
        = 1 WITHIN RANGE
C
         = 0 OUT OF RANGE
C
C IFLAGPL= FLAG TO CHECK WHETHER PrL IS WITHIN AUTHOR SPECIFIED RANGE OR NOT
         = 1 WITHIN RANGE
        = 0 OUT OF RANGE
C
C IFLAGRL= FLAG TO CHECK WHETHER ReSL IS WITHIN AUTHOR SPECIFIED RANGE OR NOT
        = 1 WITHIN RANGE
C
        = 0 OUT OF RANGE
C
C IFLAGVL= FLAG TO CHECK WHETHER VSL IS WITHIN AUTHOR SPECIFIED RANGE OR NOT
C
        = 1 WITHIN RANGE
        = 0 OUT OF RANGE
C
C IFLAGVG= FLAG TO CHECK WHETHER VSG IS WITHIN AUTHOR SPECIFIED RANGE OR NOT
```

```
C
        = 1 WITHIN RANGE
C
        = 0 OUT OF RANGE
C IFLAGMB= FLAG TO CHECK WHETHER muW/muB IS WITHIN AUTHOR SPECIFIED RANGE OR NOT
C
        = 1 WITHIN RANGE
C
        = 0 OUT OF RANGE
C IFLAGMM= FLAG TO CHECK WHETHER mg/mL IS WITHIN AUTHOR SPECIFIED RANGE OR NOT
C
        = 1 WITHIN RANGE
\mathbf{C}
         = 0 OUT OF RANGE
C IFLAGVV= FLAG TO CHECK WHETHER Vsg/Vsl is within Author specifiedrange or not
C
        = 1 WITHIN RANGE
C
         = 0 OUT OF RANGE
C kG
        = GAS CONDUCTIVITY (Btu/hr-ft-F)
C kL
        = LIQUID CONDUCTIVITY (Btu/hr-ft-F)
C KIMSWT = USER INPUT IF KIMSWT IS 1 THEN CODE CALCULATES THE HEAT
            HEAT TRANSFER PARAMETERS FROM ReSL, ReSG etc. PROVIDED BY THE
C
C
            INPUT FILE; IF KIMSWT IS 0 THEN CODE CALCULATES THE PARAMETERS
С
            BY CALCULATING THE ReSL, ReSG, etc.
CI.
        = PIPE LENGTH (ft)
C LAMTUR = VARIABLE WHICH INDICATES THAT THE GIVEN DATA POINT IS LAMINAR OR
           TURBULENT; L- LAMINAR, T- TURBULENT
C
C LoverD = RATIO OF PIPE LENGTH TO DIAMETER
C M=1 = VERTICAL PIPE
C M=2
        = HORIZONTAL PIPE
C mG
        = GAS MASS FLOW RATE (1bm/hr)
C mL
         = LIQUID MASS FLOW RATE (1bm/hr)
C MN*** = MEAN hTP ERROR FOR ReSL, ReSG, PrL, VsL/VsG, mG/mL WHICH ARE WITHIN THE
C
           AUTHORS SPECIFIED RANGE.
C MNG
       = GASEOUS PHASE COMPONENT DESIGNATOR
C
    (=1) = AIR
С
     (=2) = HELIUM
C
     (=3) = FREON - 12
C MNL = LIQUID PHASE COMPONENT DESIGNATOR
     (=1) = WATER
C
С
     (=2) = GLYCERIN
C
     (=3) = SILICONE
C MNH1(*) = MEAN VALUE OF hTP ERRORS
C MN(*) = NO. OF POINTS IN EACH DATA SET FOR EACH FLOW PATTERN
        = DYNAMIC VISCOSITY OF LIQUID AT BULK TEMPERATURE (lbm/ft-hr)
C muB
        = DYNAMIC VISCOSITY OF GAS AT WALL TEMPERATURE (lbm/ft-hr)
C muG
        = DYNAMIC VISCOSITY OF LIQUID (1bm/ft-hr)
C muL
        = DYNAMIC VISCOSITY OF LIQUID AT WALL TEMPERATURE (lbm/ft-hr)
C muW
C muWmuB = muW/muB -- CALCULATED
C muWmB = muW/muB -- FROM DATA SET
C N = TYPE OF FLOW PATTERN
C
     11 = BUBBLY
     22 = SLUG
C
      33 = FROTH
C
      44 = ANNULAR
C
C
      55 = CHURN
      12 = BUBBLY - SLUG
C
C
      13 = BUBBLY - FROTH
      14 = BUBBLY - ANNULAR
C
     15 = BUBBLY - CHURN
C
      23 = SLUG - FROTH
C
      24 = SLUG - ANNULAR
C
      25 = SLUG - CHURN
C
     34 = FROTH - ANNULAR
C
     35 = FROTH - CHURN
C
      45 = ANNULAR - CHURN
C
      46 = ANNULAR - MIST
C
       = NUMBER OF DATA POINTS IN EACH DATA SET
C NPT
C NSETS = NUMBER OF SEPARATE DATA SETS TO BE TESTED
        = PRESSURE (1bf/ft^2)
CP
C PRCL(X,Y,Z)= NO. OF LAMINAR POINTS WITHIN THE AUTHOR SPECIFIED RANGE FOR
                A GIVEN PARAMETER
C PRCT(X,Y,Z)= NO. OF TURBULENT POINTS WITHIN THE AUTHOR SPECIFIED RANGE FOR
                A GIVEN PARAMETER
C
            X= 1 FOR ReSL PARAMETER
C
            X= 2 VsL/VsG PARAMETER
G
            Y= 1 +/- 15% ERROR
Y= 2 +/- 30% ERROR
C
```

С			Z = FOR EACH FLOW PATTERN				
С	PrL	=	LIQUID PRANDTL NUMBER (CALCULATED)				
С	PrLL	=	LIQUID PRANDTL NUMBER (FROM DATA SET)				
С	C RMH1(X) =		RMS VALUE OF hTP VALUES				
C	Х	×	FLOW PATTERNS				
С	ReSG	=	SUPERFICIAL GAS REYNOLDS NUMBER (CALCULATED)				
C	ReSGG	=	SUPERFICIAL GAS REYNOLDS NUMBER (FROM DATA SET)				
C	ReSL	=	SUPERFICIAL LIQUID REYNOLDS NUMBER (CALCULATED)				
С	ReSLL	=	SUPERFICIAL LIQUID REYNOLDS NUMBER (FROM DATA SET)				
С	RMGL	×	NO. OF POINTS WITHIN THE AUTHOR SPECIFIED RANGE FOR mG/mL				
С	RPRL	=	NO. OF POINTS WITHIN THE AUTHOR SPECIFIED RANGE FOR PrL				
С	RRSL	π	NO. OF POINTS WITHIN THE AUTHOR SPECIFIED RANGE FOR Resl				
С	RRSG	=	NO. OF POINTS WITHIN THE AUTHOR SPECIFIED RANGE FOR ReSG				
С	RVSL	=	NO. OF POINTS WITHIN THE AUTHOR SPECIFIED RANGE FOR VsL/VsG				
С	RMXYZ	=	R.M.S hTP ERROR FOR ReSL, ReSG, PrL, VsL/VsG, mG/mL WHICH ARE WITHIN THE				
С			AUTHORS SPECIFIED RANGE.				
C	TMNL	=	TOTAL NO. OF LAMINAR POINTS IN EACH DATA SET				
С	TMNT	=	TOTAL NO. OF TURBULENT POINTS IN EACH DATA SET				
C	TMN	=	TOTAL NO. OF POINTS IN EACH DATA SET				
C	TMEAN	=	OVERALL MEAN VALUE OF HTP ERRORS				
C	TRMS	=	OVERALL RMS VALUE OF hTP ERRORS				
С	TBULK	=	BULK TEMPERATURE (F)				
C	TWALL	=	WALL TEMPERATURE (F)				
C	TOGGLE	=	THIS SWITCH HELPS TO PRINT THE VSG/VSL OR RESL RANGE TABLE				
C	IF AVAILABLE FOR THAT DATA SET.						
С	VDOT	=	TOTAL VOLUMETRIC FLOW RATE (ft^3/hr)				
С	VsG	=	SUPERFICIAL VELOCITY OF GAS CALCULATED (ft/hr)				
C	VsGG	=	SUPERFICIAL VELOCITY OF GAS FROM DATA SET (ft/hr)				
C	VsL	=	SUPERFICIAL VELOCITY OF LIQUID CALCULATED (ft/hr)				
C	VsLL	=	SUPERFICIAL VELOCITY OF LIQUID FROM DATA SET (ft/hr)				

÷

APPENDIX D

CALIBRATION CURVES FOR WALL THERMOCOUPLES AND BULK

TEMPERATURE PROBES

APPENDIX D

CALIBRATION CURVES FOR WALL THERMOCOUPLES AND BULK TEMPERATURE PROBES

In this Appendix, the calibration curves for all of the thermocouples used on the test section and for the inlet/exit bulk temperature probes are given. The regression coefficient for all of these thermocouples is approximately equal to 1.000 (regression: predicting the future values by using the present value; the closer the regression coefficient is to 1, the higher the accuracy to predict the future value). Figures D.1 to D.4 show how the difference between the thermocouple readings and bath temperature changed with the temperature of the bath. As explained in Chapter III, the thermocouples appear to have small, but consistent errors as bath temperature increases. However, these errors are attributable to the bath temperature being more difficult to maintain constant as the bath temperature deviated from the ambient temperature.

Y= Thermocouple Reading in °C.

X= Temperature of the Bath in °C.

1:	Y=0.984557*X+0.63491	R ² =1.000
2:	Y=0.983405*X+0.771464	R ² =0.9999
3:	Y=0.984072*X+0.730135	R ² =0.9999
4:	Y=0.984011*X+0.67914	R ² =0.9999
5:	Y=0.983774*X+0.805216	R ² =0.9999
6:	Y=0.983422*X+0.700356	R ² =0.9999
7:	Y=0.983998*X+0.813274	R ² =0.9998
8:	Y=0.983366*X+0.651619	R ² =1.000
9:	Y=0.983293*X+0.78138	R ² =0.9999
10 : `	Y=0.983042*X+0.671963	$R^2 = 1.000$
11:	Y=0.983419*X+0.761119	R ² =1.000
	1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11:	1: Y=0.984557*X+0.63491 2: Y=0.983405*X+0.771464 3: Y=0.984072*X+0.730135 4: Y=0.984011*X+0.67914 5: Y=0.983774*X+0.805216 6: Y=0.983422*X+0.700356 7: Y=0.983998*X+0.813274 8: Y=0.983366*X+0.651619 9: Y=0.983293*X+0.78138 10: Y=0.983042*X+0.671963 11: Y=0.983419*X+0.761119

TC	12 :	Y=0.98315*X+0.663013	$R^2 = 1.000$
TC	13:	Y=0.982752*X+0.755736	$R^2 = 1.000$
TC	14:	Y=0.983079*X+0.693533	R ² =0.9999
тс	15:	Y=0.983934*X+0.742681	$R^2 = 1.000$
тс	16:	Y=0.983793*X+0.644655	$R^2 = 1.000$
TC	17:	Y=0.9832823*X+0.753102	$R^2 = 1.000$
TC	18:	Y=0.9828835*X+0.698383	R ² =1.000
TC	19:	Y=0.9827634*X+0.788053	R ² =0.9999
тс	20:	Y=0.9835481*X+0.676779	R ² =0.9999
TC	21:	Y=0.9825978*X+0.803249	R ² =1.000
тс	22 :	Y=0.9824387*X+0.73387	R ² =1.000
тс	23 :	Y=0.982791*X+0.796852	R ² =1.000
тс	24 :	Y=0.9828552*X+0.710093	R ² =1.000
тс	25 :	Y=0.9839026*X+0.777476	R ² =0.9999
тс	26:	Y=0.9826202*X+0.731173	R ² =1.000
тс	27 :	Y=0.9829349*X+0.800486	R ² =1.000
TC	28:	Y=0.9832472*X+0.716721	$R^2 = 1.000$
тс	29 :	Y=0.98298*X+0.787335	R ² =1.000
тс	30:	Y=0.9841836*X+0.66775	R ² =1.000
TC	31:	Y=0.9835554*X+0.79781	R ² =1.000
тс	32 :	Y=0.9830942*X+0.719171	R ² =1.000
тс	33 :	Y=0.97965*X+0.8512889	$R^2 = 1.000$
TC	34 :	Y=0.980067*X+0.9614704	$R^2 = 1.000$
тс	35 :	Y=0.97980496*X+0.8937116	$R^2 = 1.000$
тс	36 :	Y=0.979507*X+0.9358338	$R^2 = 1.000$
TC	37 :	Y=0.97837*X+1.0141242	$R^2 = 1.000$
тс	38 :	Y=0.979588*X+0.942584	R ² =0.9998
тс	39 :	Y=0.980335*X+0.9596527	$R^2 = 1.000$
TC	40:	Y=0.980926*X+0.8599794	R ² =0.9999

The calibration equations for the inlet and exit bulk thermocouple probes are:

inlet thermocouple probe:

Y=0.978992397*X+0.694780824 R²=0.9999

exit thermocouple probe:

Y=0.9802038*X+0.677827405 R²=0.9999

Figure D.1: Trend of Difference Between Thermocouples (11-20) and Bath Temperature vs. Bath Temperature

Figure D.2: Trend of Difference Between Thermocouples (21-30) and Bath Temperature vs. Bath Temperature

Figure D.3: Trend of Difference Between Thermocouples (31-40) and Bath Temperature vs. Bath Temperature

252

APPENDIX E

SAMPLE CALCULATION AND ANALYSIS

APPENDIX E

SAMPLE CALCULATION AND ANALYSIS

In this Appendix, the physical properties of water were hand calculated for a test run (run 0172) at station 6, and then they were compared with the calculated properties from the computer program RHt98F. This was done to verify that the computer program was calculating all parameters properly. It was evident that the hand calculations were approximately the same as the program RHt98F results. The bulk temperature (Tbulk) and average wall temperature (Twall) were taken at station 6. [A greater number of digits of accuracy are shown to demonstrate that the difference between the code and hand calculations are well below measurement accuracy.]

Tbulk = 91.17374 °F (32.8743 °C) (at Station 6)

Twall = $92.51445 \,^{\circ}\text{F}$ (33.61914 $\,^{\circ}\text{C}$) (at Station 6)

Specific Heat (C_{PL}) of Water in kJ/(kg-k), T in °C (calculated at Tbulk).
 C_{PL} = -1.475E-7 (T)³+3.66E-5 (T)²-.0022 (T)+4.216
 C_{PL} = C_{PL} /4.1868 4.1868 conversion factor to Btu/lbm- °F
 C_{PL} = 4.17799/4.1868= 0.99789589 Btu/lbm- °F
 From program RHt98F: 0.9978959 Btu/lbm- °F

Error = -1.0 E-06%

- 2) Thermal Conductivity, k_L in w/m-°K, T in °C (calculated at Tbulk) k_L= 5.6276E-1+1.874e-3 (T)-6.80E-6 (T)² k_L = k_L (0.5778) 0.5778 conversion factor to (Btu/hr-ft-°F) k_L = 0.6169575 (0.5778)=0.3564780 (Btu/hr-ft-°F) From program RHt98F: 0.3565127 Btu/hr-ft-°F Error = -9.7 E-03%
- 3) Density, ρ_L in kg/m³, T in °C (calculated at Tbulk)

$$\rho_L = 999.86 + 6.1464 e^{-2} (T) - 8.4648 e^{-3} (T)^2 + 6.8794 e^{-5} (T)^3 - 4.4214 e^{-7} (T)^4 + 1.2505 e^{-9} (T)^5$$

@ Tbulk = 32.87374 °C

 $\rho_L = \rho_L (0.062427)$ 0.062427: conversion factor to lb/ft^3

 $\rho_L = 994.7081 \ (0.062427) = 62.096645 \ \text{Ib/ft}^3$

From program RHt98F: 62.096650 lb/ft³

Error = -8.4 E-06%

4) Viscosity μ (in lb/hr-ft) at Tbulk (°C) and Twall (°C)

 $\mu = 2.4189 (1.0019)^{10^{((1.327(20-(T))-1.053E-3(20-(T))^2)/((T)+105))}}$

 $\mu_{\rm h}$ (at Tbulk) = 1.8166239 lb/hr-ft

From program RHt98F: 1.816546 lb/hr-ft

 μ_{*} (at Twall) = 1.789193805 lb/hr-ft

From program RHt98F: 1.789113 lb/hr-ft

 $\mu_b / \mu_w = 1.015330977$ lb/hr-ft

From program RHt98F: 1.015333 lb/hr-ft

Error = -1.99 E-6%

5) Prandtl Number

 $Pr = \mu_b (C_{PL})/k_L = (1.8166239) (0.99789589)/(0.3564780)$

Pr = 5.08531

From program RHt98F: 5.084597

Error = 0.014%

6) Reynolds Number

Re = $\dot{m}_{\rm L}$ (D/12.0) $\mu_{\rm b}$

D = 1.097 inch

 $\dot{m}_{\rm L} = 335381 \text{ lbm/(ft}^2\text{-hr})$ from the code, taken as Constant.

Re = 335381 (1.097/12) (1.8166239)=16877.138

From program RHt98F: 16877.88

Error = -4.39 E-3%

7) Heat Transfer Coefficient (Btu/ft²-hr-°F)

h = q"avg/(Twall-Tbulk)

 q''_{avg} (heat flux) = 313.396 (Btu/(ft²-hr)) from the code, Twall=92.51445 °F

Tbulk=91.17374 °F

 $h = 233.5795366 Btu/ft^{2}-hr-{}^{\circ}F$

From program RHt98F: 233.7522 Btu/ft²-hr-°F

Error = -0.073%

8) Nusselt Number

 $Nu = h (D/12.0) k_L$ D=1.097 inch

Nu=233.5795366 (1.097/12) 0.3564780

Nu = 59.9447516

From program RHt98F: 59.938540

Error = 0.01%

It is evident from these comparisons, that the computer code is working well enough to carry out further data reduction of the test runs.

APPENDIX F

STEADY STATE CRITERION

Appendix F

Steady State Criterion

Described herein is a detailed procedure regarding how to attain the inlet bulk temperature, steady state, and maximum bulk temperature difference, for all of the nine cases of experimental test runs (see Table XIV). However, to attain a maximum temperature difference and steady-state, it is entirely based upon the skill and knowledge of the experimentalist, and how he/she operates the heat exchanger to bring about these conditions. Several test runs have been done to carefully monitor how the heat exchanger controls the bulk temperatures and the attainment of steady-state. Based on experience from 20 test runs, the following procedure is presented to control the temperature difference and to attain steady-state. Some of the abbreviated terms used in the discussion below are:

DeltaTB= difference between exit and inlet bulk temperatures

DeltaTBin= change in the inlet bulk temperature in one minute

DeltaTBot= change in the exit bulk temperature in one minute

Case 1 (Low Power/Low Flow Rate)

Power Input: 180 A/1.40V

Flow rate (main loop): 0.75 gpm

 After setting the flow rate and power input, the fluid is allowed to run for 20 minutes. It is necessary to run for 20 minutes since it takes a longer time to get a good DeltaTB.

- 2. After 20 minutes, it is observed that DeltaTB=4.5 °F.
- Now DeltaTBin and DeltaTBot are monitored carefully. It was found that for this case, DeltaTBin=0.09 °F /min, DeltaTBot=0.1 °F /min.
- 4. Then switch on the heat exchanger at 1.5 gpm. Allow it to run for 2 minutes, and then the DeltaTBin and DeltaTBot are recorded:
 DeltaTBin=0.07 °F /min DeltaTBot=0.07 °F /min
- Because of low flow rate and low power input, this case can be run at 1.5 gpm (heat exchanger flow rate.)
- 6. DeltaTB is always 4.5 °F throughout the run.
- Case 2 (Low Power/Medium Flow Rate)

Power Input: 180 A/1.40V

Flow rate (main loop): 2.4 gpm

- After setting the flow rate and power input, the fluid is allowed to run for
 15 minutes. This has been done to get a good DeltaTB for this type of flow rate and power input.
- 2. After 15 minutes, it is observed that without the heat exchanger:

DeltaTBin=0.18 °F/min DeltaTBot=0.18 °F/min

DeltaTB in one minute=2.5 °F

 Run the heat exchanger at 1.5 gpm for 2 minutes, and the monitored bulk temperatures are:

DeltaTBin=0.07 °F/min DeltaTBot=0.07 °F/min

DeltaTB in one minute =2.8 °F

4. Run the heat exchanger at 2.5 gpm for 2 minutes, and the monitored bulk

Temperatures are:

DeltaTBin=0.56 °F/min

DeltaTBot=0.56 °F/min

DeltaTB in one minute =2.4 °F

5. Run the heat exchanger at 4.5 gpm for 2 minutes, and the monitored bulk temperatures are:

DeltaTBin=0.63 °F/min DeltaTBot=0.63 °F/min

DeltaTB in one minute =2.2 °F

6. Here we see a gradual increase in inlet and outlet bulk temperatures for heat exchanger flow rates less than 1.5 gpm; but at the same time the DeltaTB decreases, which clearly shows that steady-state can be reached with less than 1.5 gpm (1.0-1.4 gpm) through the heat exchanger. Also the DeltaTBin and DeltaTBot were minimum at 1.5 gpm flow rate on the heat exchanger.

Case 3 (Low Power/ High Flow Rate)

Power Input: 180 A/1.40V

Flow rate (main loop): 4.15 gpm

- After setting the flow rate and power input, the fluid is allowed to run for 10
 minutes. Due to a high flow, the flow in the test section attains steady-state and
 well-developed flow in a short time.
- 2. After 10 minutes, it is observed without the operation of heat exchanger:

DeltaTBin=0.1 °F/min DeltaTBot=0.1 °F/min

DeltaTB in one minute =1.5 °F

 Run the heat exchanger at 1.0 gpm for 2 minutes, and the monitored bulk temperatures are: DeltaTBin=-0.054 °F/min DeltaTBot=-0.36 °F/min

DeltaTB in one minute =1.0 °F

 Run the heat exchanger at 1.5 gpm for 2 minute and the monitored the bulk temperatures are:

DeltaTBin=-0.126 °F/min DeltaTBot=-0.9 °F/min

DeltaTB in one minute =1.7 °F

5 Here as we increase the flow rate through the heat exchanger, we see that DeltaTBin and DeltaTBot decrease, that is the fluid is cooling. So it is always advisable to use a very low flow rate about (0.5 gpm) through the heat exchanger for this case.

Case 4 (Medium Power/Low Flow Rate)

Power Input: 330 A/2.65V

Flow rate (main loop): 0.75 gpm

- After setting the flow rate and power input, the fluid is allowed to run for 10 minutes.
- 2. After 10 minutes, it is observed without the heat exchanger:

DeltaTBin=0.36 °F/min DeltaTBot=1.8 °F/min

DeltaTB in one minute =8.19 °F

 Run the heat exchanger at 1.5 gpm for 2 minutes, and the monitored bulk temperatures are:

DeltaTBin=0.34 °F/min DeltaTBot=0.43 °F/min

DeltaTB in one minute =8.3 °F

 Run the heat exchanger at 2.5 gpm for 2 minutes, and the monitored bulk temperatures are: DeltaTBin=0.324 °F/min DeltaTBot=0.414 °F/min

DeltaTB in one minute =8.316 °F

5. Run the heat exchanger at 3.5 gpm for 2 minutes and the monitored bulk temperatures are:

DeltaTBin=0.25 °F/min DeltaTBot=0.23 °F/min

DeltaTB in one minute =8.36 °F

6. Run the heat exchanger at 5.5 gpm for 2 minutes and the monitored bulk temperatures are:

DeltaTBin=0.18 °F/min DeltaTBot=0.21 °F/min

DeltaTB in one minute =8.5 °F

- It was observed that for this case, the DeltaTB increases as the flow through the heat exchanger increases. This was because the DeltaTB in is decreasing more rapidly than DeltaTBot is decreasing.
- 8. For this run, it is advisable to run the heat exchanger between 1.5 and 2.5 gpm flow rate to reach steady-state.

Case 5 (Medium Power/ Medium Flow Rate):

Power Input: 330 A/2.65V

Flow rate (main loop): 2.4 gpm

- 1. After setting the flow rate and power input, the fluid is allowed to run for 10 minutes.
- 2. After 10 minutes, it is observed without the heat exchanger:

DeltaTBin=0.72 °F/min DeltaTBot=0.9 °F/min

DeltaTB in one minute =3.0 °F

3. Run the heat exchanger at 1.5 gpm for 2 minutes and the monitored bulk temperatures are:

DeltaTBin=0.36 °F/min DeltaTBot=0.36 °F/min

DeltaTB in one minute =3.2 °F

4. Run the heat exchanger at 2.0 gpm for 2 minutes and the monitored bulk temperatures are:

DeltaTBin=0.36 °F/min DeltaTBot=0.36 °F/min

DeltaTB in one minute =3.2 °F

5. Run the heat exchanger at 2.5 gpm for 2 minutes and the monitored bulk temperatures are:

DeltaTBin=0.36 °F/min DeltaTBot=0.36 °F/min

DeltaTB in one minute =3.3 °F

 Run the heat exchanger at 3.0 gpm for 2 minutes and the monitored bulk temperatures are:

DeltaTBin=0.18 °F/min DeltaTBot=0.18 °F/min

DeltaTB in one minute =3.4 °F

7. For this case, DeltaTBin and DeltaTBot remain the same for 1.5-2.5 gpm flow rate through the heat exchanger, and this type of run also satisfies the stability criterion for this range of flow rates.

Case 6 (Medium Power/High Flow Rate):

Power Input: 330 A/2.65V

Flow rate (main loop): 4.15 gpm

- After setting the flow rate and power input, the fluid is allowed to run for 10 minutes.
- 2. After 10 minutes, it is observed without the heat exchanger:

DeltaTBin=0.2 °F/min DeltaTBot=0.2 °F/min

DeltaTB in one minute =1.33 °F

3. Run the heat exchanger at 1.5 gpm for 2 minutes and the monitored bulk temperatures are:

DeltaTBin=0.18 °F/min DeltaTBot=0.18 °F/min

DeltaTB in one minute =1.4 °F

4. Run the heat exchanger at 2.5 gpm for 2 minutes and the monitored bulk temperatures are:

DeltaTBin=0.1 °F/min DeltaTBot=0.11 °F/min

DeltaTB in one minute =1.35 °F

5. In this case, we see that DeltaTB starts to drop, after 2.5 gpm through the heat exchanger. So for flow rates less than 1.5 gpm through the heat exchanger, the fluid reaches steady-state, since the DeltaTB is a maximum at this point.

Case 7 (High Power/Low Flow Rate):

Power Input: 500 A/4.62V

Flow rate (main loop): 0.75 gpm

- After setting the flow rate and power input, the fluid is allowed to run for 2 minutes. For this power, it is enough to run the fluid for 2 minutes for the system to be ready for any experimentation.
- 2. After 2 minutes, it is observed without the heat exchanger:

DeltaTBin=0.36 °F/min

DeltaTBot=3.6 °F/min

DeltaTB in one minute =18 °F

 Run the heat exchanger at 1.5 gpm for 1 minute and the monitored bulk temperatures are:

DeltaTBin=0.34 °F/min DeltaTBot=3.6 °F/min

DeltaTB in one minute =17.64 °F

 Run the heat exchanger at 2.5 gpm for 1 minute and the monitored bulk temperatures are:

DeltaTBin=0.32 °F/min DeltaTBot=3.6 °F/min

DeltaTB in one minute =18.9 °F

5. Run the heat exchanger at 4.5 gpm for 1 minute and the monitored bulk temperatures are:

DeltaTBin=0.31 °F/min DeltaTBot=3.6 °F/min

DeltaTB in one minute =18 °F

 Run the heat exchanger at 5.5 gpm for 1 minute and the monitored bulk temperatures are:

DeltaTBin=0.27 °F/min DeltaTBot=2.52 °F/min

DeltaTB in one minute =18 °F

7. In this case, DeltaTB goes to a maximum value at a heat exchanger flow rate of 2.5 gpm, after which DeltaTB remians almost constant. So a good DeltaTB is reached at a flow rate 2.5 gpm from the heat exchanger for this case.

DeltaTBin=0.36 °F/min

DeltaTBot=3.6 °F/min

DeltaTB in one minute =18 °F

 Run the heat exchanger at 1.5 gpm for 1 minute and the monitored bulk temperatures are:

DeltaTBin=0.34 °F/min DeltaTBot=3.6 °F/min

DeltaTB in one minute =17.64 °F

4. Run the heat exchanger at 2.5 gpm for 1 minute and the monitored bulk temperatures are:

DeltaTBin=0.32 °F/min DeltaTBot=3.6 °F/min

DeltaTB in one minute =18.9 °F

5. Run the heat exchanger at 4.5 gpm for 1 minute and the monitored bulk temperatures

are:

DeltaTBin=0.31 °F/min DeltaTBot=3.6 °F/min

DeltaTB in one minute =18 °F

 Run the heat exchanger at 5.5 gpm for 1 minute and the monitored bulk temperatures are:

DeltaTBin=0.27 °F/min DeltaTBot=2.52 °F/min

DeltaTB in one minute =18 °F

7. In this case, DeltaTB goes to a maximum value at a heat exchanger flow rate of 2.5 gpm, after which DeltaTB remians almost constant. So a good DeltaTB is reached at a flow rate 2.5 gpm from the heat exchanger for this case.

Case 9 (High Power/High Flow Rate):

Power Input: 500 A/4.62V

Flow rate (main loop): 4.15 gpm

- After setting the flow rate and power input, the fluid is allowed to run for 2 minutes. This time is enough to get the system ready for experimentation.
- 2. After 2 minutes, it is observed without the heat exchanger

DeltaTBin=0.54 °F/min DeltaTBot=0.72 °F/min

DeltaTB in one minute =5.81 °F

 Run the heat exchanger at 1.5 gpm for 1 minute and the monitored bulk temperatures are:

DeltaTBin=1.17 °F/min DeltaTBot=1.26 °F/min

DeltaTB in one minute =5.6 °F

4. Since the power was high, in this case it will be reasonable to operate the heat exchanger at less than 1.5 gpm flow rate.

Observation from the above test cases:

- 1. To reach steady-state, the following are the parameters that should be considered:
 - a. Initial DeltaTB
 - b. Flow rate
 - c. Power input
 - d. Initial Tbulkin
- 2. To reach a particular steady-state condition, we need to control inlet bulk temperature, which is possible by adjusting the heat exchanger flow rate.

- 3. In this setup, DeltaTB is very low for low and medium power input, which makes the fluid reach steady-state conditions very quickly; or rather, the flow is always at steady-state after about 15 minutes of operation for low and medium power inputs.
- 4. At high power input, there is a high DeltaTB, which makes a very good run.
- Steady-state can be reached based upon the ability of the experimentalist. For my test run, I assumed 0.25~0.55 °F/minute in Tbulkin to be equivalent to steady-state.
- 6. To get a maximum DeltaTB for low and medium power inputs, we start the heat exchanger at a high flow rate and then gradually decrease it; but we have to understand the stability criterion for every type of run. This can be achieved only through constant experimenting and time spent using the heat exchanger.

However with the help of the Real Time Graphics (RTG) display, the exit bulk temperature, the inlet bulk temperature, and the tank temperature are plotted on a single graph, to clearly see when steady-state is reached. Figures F.1 and F.2 shows how the Real Time Graphics (RTG) display provides the plots for inlet bulk, exit bulk, and tank temperatures. Note that, after some time (Figs. F.1 and F.2), the inlet and exit bulk temperatures remain almost constant. This was when the system appeared to have reached steady-state. After steady-state conditions were reached, 60 to 100 data points were taken to calculate the heat transfer parameters. Figure F.2 shows the steady-state results for a particular test run. Thus, it was much easier to identify steady-state using the RTG.

Figure F.1: Steady State Criterion for Test Run 4103

Figure F.2: Steady State Criterion for a Test Run 1161

APPENDIX G

•

52

Uncertainty Analysis

_

4

APPENDIX G

Uncertainty Analysis

The uncertainty in the prediction of heat transfer coefficient is covered in this appendix.

h=q"/DeltaTB	(G.1)
where: q" is the heat input per unit area = VI/A	(G.2)
the error in predicting the voltage= $\pm 1\%$	
the error in predicting the amperage= $\pm 10/500=\pm 0.02\%$	
the variation of temperature is ± 0.3 °F	
A is a constant	
for a minimum DeltaTB of 1 °F, the error in predicting the DeltaTB is:	
$\pm 0.3/1 = \pm 0.3$	
for a maximum DeltaTB of 6.3 °F, the error in predicting the DeltaTB is:	

 $\pm 0.3/6.3 = \pm 0.0476$

These can be used to determine overall percentage error for computing h using Eq. (G.1).

VITA

Venkata K. Ryali

Candidate for the Degree of

Master of Science

Thesis: DESIGN, CONSTRUCTION AND TESTING OF A SINGLE-PHASE AND TWO-PHASE FLUID FLOW SYSTEM IN A HORIZONTAL CIRCULAR TUBE WITH CONSTANT HEAT FLUX.

Major Field: Mechanical Engineering

Biographical:

- Personal Data: Born in Visakhapatnam, on June 22, 1974, eldest son of Syamsundar Ryali and Sakuntala Ryali.
- Education: Graduated from St. Johns Parish High School, Visakhapatnam, in June, 1991; received the Bachelor of Science degree in Mechanical Engineering, Andhra University, India, in June, 1995; Completed the requirements for the Master of Science degree at Oklahoma State University in May, 1999.
- Professional Experience: Graduate Research Assistant, School of Mechanical and Aerospace Engineering, Oklahoma State University, 1996 to 1998. Worked as Junior Engineer, in Water Float Marine Services, VSP, India, 1995 to 1996.