KLAHOMA STATE UNIVERSITY

# A COMPARISON OF TESTED AND ESTIMATED PARAMETERS IN A RISK ASSESSMENT OF AND WATER QUALITY ANALYSIS OF A LUST SITE IN THE PERMIAN GARBER SANDSTONE

By

### RACHAL MARIE ROBERTS

Master of Science

**Oklahoma State University** 

Stillwater, Oklahoma

1999

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 1999

OKLAHOMA STATE UNIVERSITY

# A COMPARISON OF TESTED AND ESTIMATED PARAMETERS IN A RISK ASSESSMENT OF AND WATER QUALITY ANALYSIS OF A LUST SITE IN THE PERMIAN

GARBER SANDSTONE

Thesis Approved:

Thesis Advisor Cary 7. Semant Wayn B. Powell

Dean of the Graduate College

#### ACKNOWLEDGMENTS

I express my sincere appreciation to my major advisor, Dr. Arthur W. Hounslow for his achievements in groundwater analysis, for writing his knowledge in a book so I can always have him with me, for his desire to teach, and for guiding me along my scholastic path. My sincere appreciation extends to the other committee members, Dr. Will Focht for his excitement, advice, and ability to make every student feel like he or she contributes to the grand scheme of things, and Dr. Gary Stewart for his reflections, insights, and teachings on the finer details of scholastic and occupational communications, which have proven invaluable to me in every facet of my life.

Moreover, I wish to thank the OSU School of Geology's faculty and staff for giving me an education of excellent quality.

I also give my special appreciation to my husband Jason, who never doubted my ability, and who encouraged me to finish this report. Thanks also go to my parents and siblings for having supported me.

Finally, I thank those who have stepped in along the way to give me little nuggets of gold: Dr. John Naff, Ms. Kathy Lippert, Mr. Tom Cooper, Mr. Donald Ruminer, Ms. Lynn Spence, Dr. Douglas Kent, Dr. Ibrahim Cemen, and Mr. Robert Brown.

iii

REFERR

APPEN

|      | Parental ReCAll frem tA Report                                                                                                                                                                                         | 45         |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|      | TABLE OF CONTENTS                                                                                                                                                                                                      | 10         |
|      | -1.1.2 Tage 1999 Free Product Report                                                                                                                                                                                   | 82         |
| Cha  | apter Chains-of Custody Pa                                                                                                                                                                                             | age        |
| Ĩ.   | INTRODUCTION                                                                                                                                                                                                           | 95         |
|      | Overview<br>Case History<br>Objectives                                                                                                                                                                                 | 107<br>174 |
| II.  | REVIEW OF THE GARBER AQUIFER                                                                                                                                                                                           | . 6        |
|      | Review of Literature<br>Sequence of Stratigraphy<br>Structural Geology<br>Mineralogy<br>Hydrology                                                                                                                      |            |
| 111. | ANALYSIS OF LOCAL AQUIFER                                                                                                                                                                                              | 13         |
|      | Purpose of Water-Quality Study<br>Methodology for Collection of Water-Quality Data<br>Reliability Checks<br>Deductions About Source Rock                                                                               |            |
| IV.  | RISK ASSESSMENT OF LOCAL AQUIFER                                                                                                                                                                                       | 19         |
|      | Risk Assessment Methodology and Software Overview<br>Purpose of the Model Comparison<br>Methodology for Selection of Model Parameters<br>Procedure for Model Comparison<br>Software Comparison<br>Parameter Comparison |            |
| V.   | CONCLUSIONS                                                                                                                                                                                                            | 37         |
|      | Summary of Objectives<br>Results of Software Comparison<br>Results of Parameter Comparison<br>Results of Water Analysis                                                                                                |            |

| REFERENCES 43                                                |        |
|--------------------------------------------------------------|--------|
| APPENDICES                                                   |        |
| APPENDIX A - Partial ORBCA Tier 1A Report                    |        |
| APPENDIX B - Partial February 1999 Free Product Report 82    | A DECK |
| APPENDIX C - Water Quality Analyses and Chains-of-Custody 88 | 1      |
| APPENDIX D - WATEVAL Data and Reliability Checks             |        |
| APPENDIX E - Examples of the Software Outputs 107            | 1000   |
| APPENDIX F - Model Output by Pathways 124                    | 1      |

страны талан 16 м.-К. талар №. Кбягал Я 15. т Раскова В

### OF FIGURES

Page

•

|      |                             | LIST OF   | = TA  | BL | ES  | 5   |      |     |     |     |   |     |            |     |    |       |        | 3   |  |
|------|-----------------------------|-----------|-------|----|-----|-----|------|-----|-----|-----|---|-----|------------|-----|----|-------|--------|-----|--|
|      | 2015                        |           |       |    |     |     |      |     |     |     |   |     |            |     |    |       |        | 4   |  |
| Tabl | e                           |           |       |    |     |     |      |     |     |     |   |     |            |     |    |       | Pa     | age |  |
| 1. E | Background Averages of G    | roundwat  | ter C |    |     |     |      |     |     |     |   |     |            |     |    |       |        |     |  |
| 2. ( | Cation Exchange Capacitite  | s         | •••   |    |     |     | •    |     | ••  |     | · |     | •          |     | •  |       |        | . 8 |  |
| 3. F | Results of Water Quality An | alyses    | 41°   |    | ••• |     |      |     | • • |     |   |     |            |     |    |       | •••    | 17  |  |
| 4. ( | Completed Pathways          |           |       |    |     |     | 1400 | • • | • • | • • |   |     |            |     | ×  | <br>• | e e    | 23  |  |
| 5. F | Fate and Transport Parame   | ters      |       |    |     | • • | •    | •   | • • |     |   | • • | •          | • • | •  | <br>• |        | 24  |  |
| 6. E | Exposure Parameters         |           |       |    |     |     |      |     |     |     | • |     | •          |     | ł. | <br>÷ |        | 25  |  |
| 7. N | Measured Hydraulic Condu    | ctivities |       |    | • • |     |      |     |     |     | · |     | - <b>.</b> |     | •  |       | • (• ) | 27  |  |
| 8. N | Model Output Summary        |           |       |    | ••• | • • | •    | • • | • • | • • | • |     |            | ••  |    | <br>• |        | 29  |  |
| 9. F | Possible Exposure Pathway   | /s        |       |    |     |     |      |     |     |     |   |     |            |     |    |       |        | 30  |  |

## LIST OF FIGURES

| Fig | gure P                                           | age |
|-----|--------------------------------------------------|-----|
| 1.  | Site Location Map                                | . 3 |
| 2.  | Site Map                                         | . 4 |
| 3.  | Stratigraphic Cross-Section                      | 10  |
| 4.  | Geologic Map                                     | 11  |
| 5.  | Groundwater Elevation Map                        | 14  |
| 6.  | Estimated Free Product Thickness Map             | 15  |
| 7.  | Example of RISC Interface                        | 33  |
|     | <ul> <li>The state state of the state</li> </ul> |     |

## NOMENCLATURE

| API    | American Petroleum Institute                                |
|--------|-------------------------------------------------------------|
| ASTM   | American Society for Testing and Materials                  |
| AT123D | Analytical Transport: One, Two, and Three Dimensional Model |
| BGS    | Below Ground Surface                                        |
| BP     | British Petroleum                                           |
| CEC    | Cation Exchange Capacity                                    |
| DSS    | Decision Support System                                     |
| DTW    | Depth To Water                                              |
| F&T    | Fate and Transport Parameters                               |
| FPR    | Free Product Recovery                                       |
| GSI    | Groundwater Services, Inc.                                  |
| ISGC   | Investigation for Soil and Groundwater Clean-up             |
| LUST   | Leaking Underground Storage Tank                            |
| 000    | Oklahoma Corporation Commission                             |
| ORBCA  | Oklahoma Risk-Based Corrective Action                       |
| OWRB   | Oklahoma Water Resources Board                              |
| POE    | Point Of Exposure                                           |
| RBCA   | Risk-Based Corrective Action                                |
| RBSL   | Risk-Based Screening Level                                  |
| RISC   | Risk-Integrated Software for Clean-ups                      |
| SSTL   | Site Specific Target Level                                  |
| TDS    | Total Dissolved Solids                                      |
| TOC    | Top Of Casing                                               |
| USGS   | United States Geological Survey                             |
| VADSAT | Vadose Zone/Saturated Zone Model                            |

## 601.03

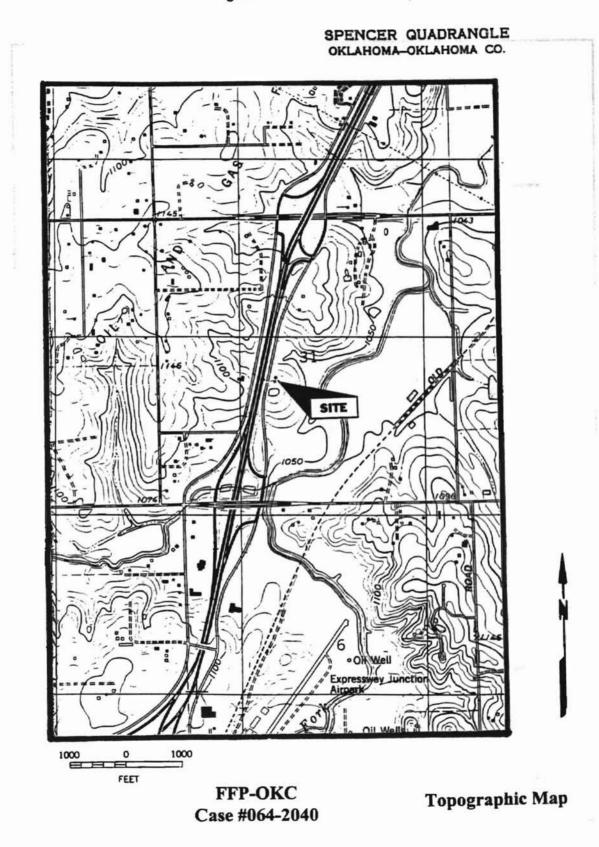
#### CHAPTER I

#### Introduction

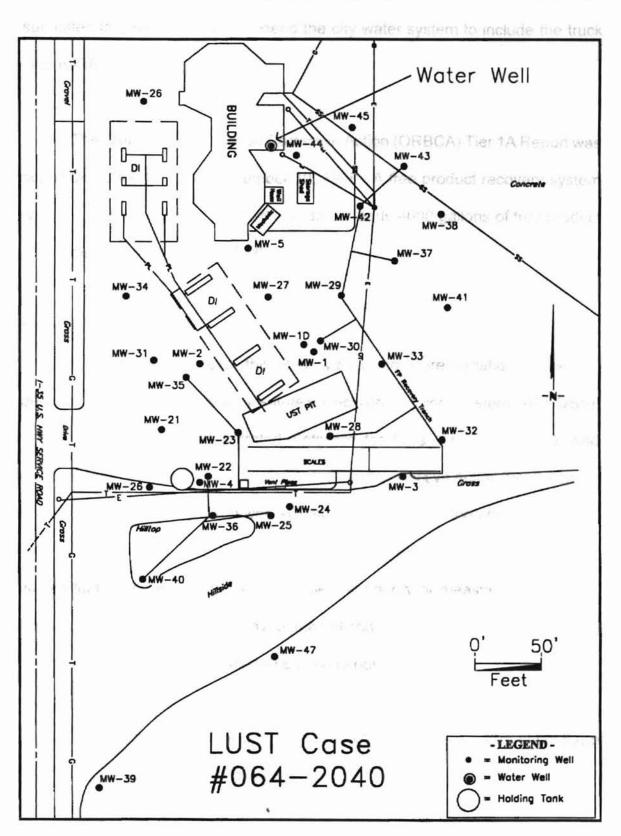
#### <u>Overview</u>

More than 2000 documented leaking underground storage tanks (LUSTs) are in Oklahoma, and each of these sites will be closed or cleaned up depending on the results from a risk analysis. The Oklahoma Corporation Commission (OCC) has adopted the American Society for Testing and Materials (ASTM) standards for risk-based clean-ups and developed software to calculate acceptable chemical concentrations that can be left in the ground. One LUST site is a truck stop in Oklahoma City, Oklahoma; where the Permian Garber Sandstone is exposed (Figure 1). The OCC confirmed the release on March 10, 1998, and assigned the release as OCC LUST Case #064-2040. This case is the focus for this study.

The purpose of the of this study is to compare variations in results between American Petroleum Institute's Decision Support System (API DSS), British Petroleum's Risc-Integrated Software for Clean-ups (BP RISC), and Groundwater Services Incorporated's Risk-Based Corrective Action Tier 2 Tool Kit (GSI RBCA). The comparison was expanded to evaluating the effect of entering estimated values that are acceptable by the environmental industry versus entering values that were derived in a state-certified laboratory or measured in the field.


In five monitoring wells at OCC LUST Case #064-2040 the elevation of groundwater is at least five feet higher than the other 27 wells. The water quality analyses from the set of the five wells and from the set of the 27 wells were gathered to determine whether the waters are connected. This is a secondary purpose of this study.

#### Case History


OCC LUST Case #064-2040 opened March 10, 1998 with the confirmed release. Average depth to water (DTW) is approximately 30 feet below ground surface (BGS). Free product (non-aqueous-phase hydrocarbons) is in the subsurface. In the monitoring wells, the free product column has been as long as 10 feet. Thirty-two monitoring wells have been drilled at this site to delineate the free product plume that is floating on the groundwater (Figure 2) (ORBCA 1998).

The on-site truck stop does not have access to city water and uses a water well located on-site approximately 25 feet from the observed edge of the free product plume. There is no Oklahoma Water Resources Board (OWRB) well record of this water well. The water well is 62 feet deep, the screened interval is unknown, and the top of groundwater is approximately 37 feet BGS. The well was sampled for dissolved hydrocarbons in April and May 1998. The results were 0.0051 mg/L of benzene, 0.0007 mg/L of toluene, 0.0012 mg/L of xylenes, and amounts less than detection limits of ethylbenzene and total petroleum hydrocarbons, in both the diesel and gasoline range. A carbon canister was installed on the well as a

# Figure 1 - Site Location Map







temporary measure until a city-water line is extended to the site. Plans have been submitted to Oklahoma City to extend the city water system to include the truck stop (ORBCA 1998).

The Oklahoma Risk-Based Corrective Action (ORBCA) Tier 1A Report was submitted to the OCC on September 10, 1998. A free product recovery system was installed on October 19, 1998. To date, nearly 4000 gallons of free product have been recovered (FPR 1999).

#### <u>Objectives</u>

The purpose of the of this study was to compare variations in results between American Petroleum Institute's Decision Support System (API DSS), British Petroleum's Risc-Integrated Software for Clean-ups (BP RISC), and Groundwater Services Incorporated's Risk-Based Corrective Action Tier 2 Tool Kit (GSI RBCA). The comparison was expanded to evaluating the effect of entering estimated values that are acceptable by the environmental industry versus entering values that were derived in a state-certified laboratory or measured in the field. This study should be useful to environmental consultants who make decisions in risk assessments and risk management every day.

The secondary purpose of this study was to determine whether or not there is a perched aquifer in the local subsurface.

#### CHAPTER II

#### **Review of the Garber Aquifer**

**Review of Literature** 

The Garber aquifer is a well studied sandstone because water is drawn from it to supply the largest city in Oklahoma, Oklahoma City. Many papers have been written and many conferences held concerning the water quality and local contamination of the aquifer.

The OWRB has conducted studies and subcontracted for studies. Pettyjohn and White (1986) prepared a report on water resources in Oklahoma for the OWRB. In this report, sources of water were discussed as well as how to treat the water to make it potable. The report gives general overviews about hardness, total dissolved solids (TDS), and major ions in water from the Garber Sandstone and other aquifers that are in Oklahoma. (Pettyjohn and White 1986)

The aquifer's groundwater quality has been compared to the aquifer's lithology by authors G. N. Breit and J. L. Schlottmann (1994) of the United States Geological Survey (USGS). They concluded that water chemistry could be related directly to how the clay-rich rocks are distributed. Two main water types are correlated to the subsurface matrix; where sandstone is more than 50% of the Garber aquifer the water type is Ca-Mg-HCO<sub>3</sub>, but where sandstone is less than 50% the water is the type Na-HCO<sub>3</sub> (Breit and Schottmann 1994)

Personnel associated with Tinker Air Force Base have studied the Garber Sandstone and developed a conceptual model that divides the groundwater into four zones; perched, top of regional, regional, and producing zone. Table 1 lists the water quality of the main zones (ISGC 1996).

| Source: PES 1996      | Perched     | Regional   | Producing Zone |
|-----------------------|-------------|------------|----------------|
| Aquifer Type          | unconfined  | unconfined | unconfined     |
| Depth to Water (feet) | 15-30       | 110-175    | 250-700        |
| arsenic               | 0.010       | 0.002      | 0.002          |
| barium                | 1.11        | 0.663      | <0.500         |
| cadmium               | 0.010       | <0.0075    | <0.0075        |
| chromium              | 0.046       |            | <0.010         |
| lead                  | 0.057       | 0.048      | 0.033          |
| mercury               | <0.0004     | <0.0004    | <0.0004        |
| selenium              | 0.0021      | 0.0005     | 0.0021         |
| silver                | 0.010       | <0.010     | <0.010         |
| nickel                | 0.101       | 0.033      | 0.019          |
| zinc                  | 0.11        | 0.12       | 0.44           |
| chloride              | 297.4       | 42.1       | 4.9            |
| sulfate               | 82.8        | 21.0       | 5.8            |
| conductivity µmhos/cm | 684.0       | 718.0      | 442.0          |
| pH S.U.               | H S.U. 7.10 |            | 7.17           |
| тос                   | 3.9         | 5.3        | 2.2            |
| cyanide               | <0.20       | <0.20 <0   |                |
| alpha pc/L            | 55.2        | 3.7        | 4.2            |
| beta pc/L             | 106.8       | 9.3        | 9.0            |

Table 1 - Background Averages of Groundwater Quality (mg/L)

The Tinker Air Force Base studies also show that strata of shale have influenced the water-bearing zones. These shales are very sandy, with 25% - 40% sand grains, and are lean, with liquid limits of 30% - 35% (ISGC 1996).

The shales are composed of clays that react with calcium in the groundwater; this reaction is known as ion exchange or natural softening. The following equation demonstrates this process.

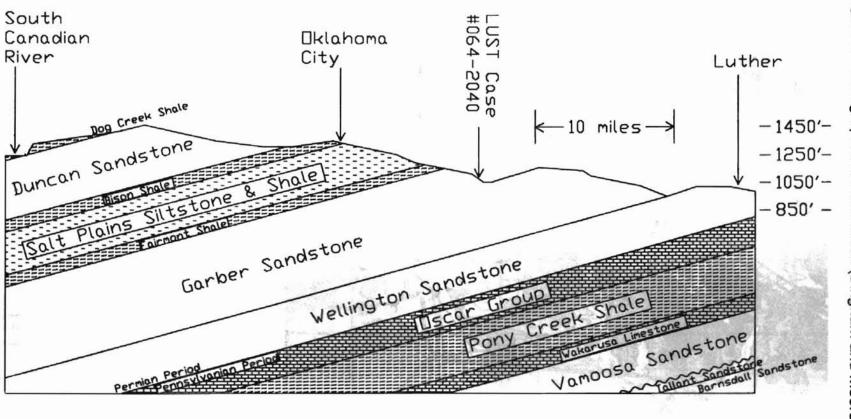
When dolomite is dissolved, Ca<sup>2+</sup> and Mg<sup>2+</sup> are liberated and these ions react with clays (Henderson 1984). Different types of clays have different cation exchange capacities (CEC). The values for CEC respective to different clays are not exact, the variation in pH and ions present can affect the CEC (Table 2).

| Clay Type                        | Henderson 1984 | Drever 1997 |
|----------------------------------|----------------|-------------|
| Kaolinite                        | 3-15           | 1-10        |
| Glauconite                       | 11-20          | no data     |
| Illite                           | 10-40          | 10-40       |
| Smectites (montmorillonite)      | 80-150         | 80-150      |
| Vermiculites                     | 100-150        | 120-200     |
| Mn(IV) and Fe(III) oxyhydroxides | 100-740        | no data     |

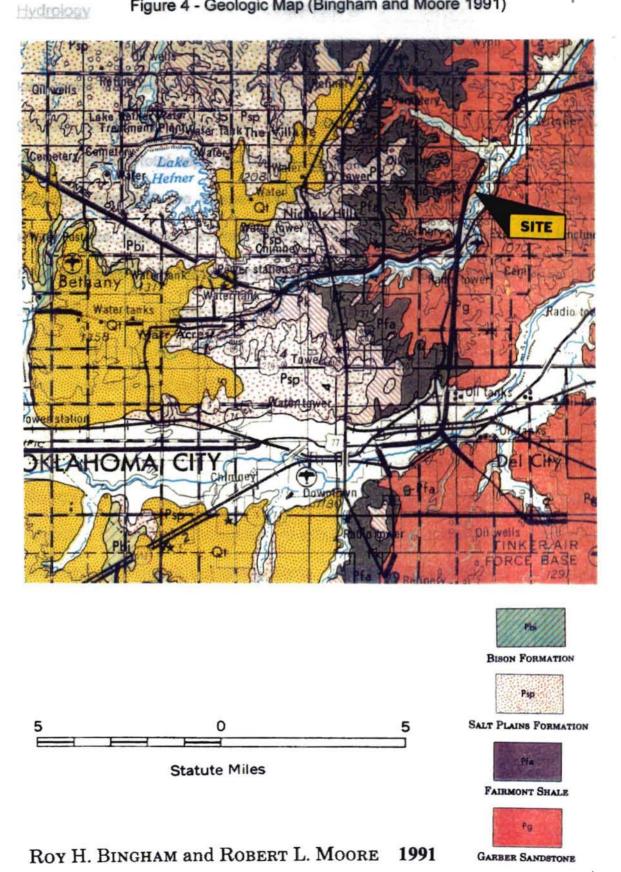
Table 2 - Cation Exchange Capacities (meq/100g)

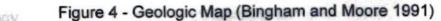
#### Sequence of Stratigraphy

#### Bingha


The combined Garber Sandstone - Wellington Formation is approximately 900 feet thick in the study area. The Garber stratigraphic unit consists of approximately 60% lenticular and interbedded sandstone with the lower 250 feet consisting of mostly reddish brown shales and siltstone, sandy and lean. The Garber Sandstone is from the Permian Period, Sumner Group. Formations overlying the Garber are the Fairmont Shale and the Salt Plains Formation of the Hennessey Group and above that lies the Duncan Sandstone of the El Reno Group. Below the Garber is the Wellington Formation also of the Sumner Group. Below the Wellington Formation is the Pennsylvanian Oscar Group (Figure 3) (Bingham and Moore 1991 and ISGC 1996).

#### Structural Geology


The Garber Sandstone outcrops in Central Oklahoma with the majority of the recharge area being in the eastern halves of Logan, Oklahoma, and Cleveland Counties. The regional formation dips westward about 15 feet per mile (Figure 4) (Bingham and Moore 1991).


#### Mineralogy

The Garber Sandstone is reddish orange to reddish brown, very finegrained, and poorly cemented with a clay matrix, and some silica and dolomite. Grains are subangular to subrounded, and are mostly quartz. Most of the clay is montmorillonite (Breit 1994 and ISGC 1996).









#### Hydrology

#### CHAPTER III

The Garber Sandstone is one the major aquifers in Oklahoma. Data from local water wells indicate that the aquifer's yield rate is in the range of 150 to 300 gal/min. Of the eight water wells in the near vicinity of OCC LUST Case #064-2040, in half the total depth is 100 feet and the water level is 30 to 75 feet BGS. The other four wells are deeper in the Garber; total depths are about 700 feet, and the water levels range from 100 to 280 feet BGS. The regional groundwater flows westward to southwestward in this region (Bingham and Moore 1991).

#### CHAPTER III

#### Analysis of Local Aquifer

#### Purpose of Water-Quality Study

The secondary purpose of this study was to determine whether is a perched aquifer is in the local subsurface. Since OCC LUST Case #064-2040 began and the 32 monitoring wells were drilled, five monitoring wells have consistently been anomalous. In these five monitoring wells, elevation of groundwater is over five feet higher than in the other 27 monitoring wells (Figure 5), suggesting that there is a local perched aquifer above the main shallow unconfined Garber aquifer. Other principal characteristics of the site are described below.

1.) Gasoline recovered from monitoring wells was tested in a state-certified laboratory for degradation, the tests indicated that this product could still be used in gasoline as long as it was added to a fresh gasoline mixture. This evidence indicates that the plume is a young plume. The given date of release was March 1998, and the length of the plume is approximately 250 feet (Figure 6). The free product is or has been present in four of the five anomalous wells, and in 20 other wells. This fact indicates that the 24 wells are interconnected

2.) One of the anomalous wells is MW-2, which is 8.5 feet upgradient from MW-35. On January 21, 1999, traceable dye was injected in MW-2 (Figure 5, left central part of site). The dye appeared in MW-35 seven days later.

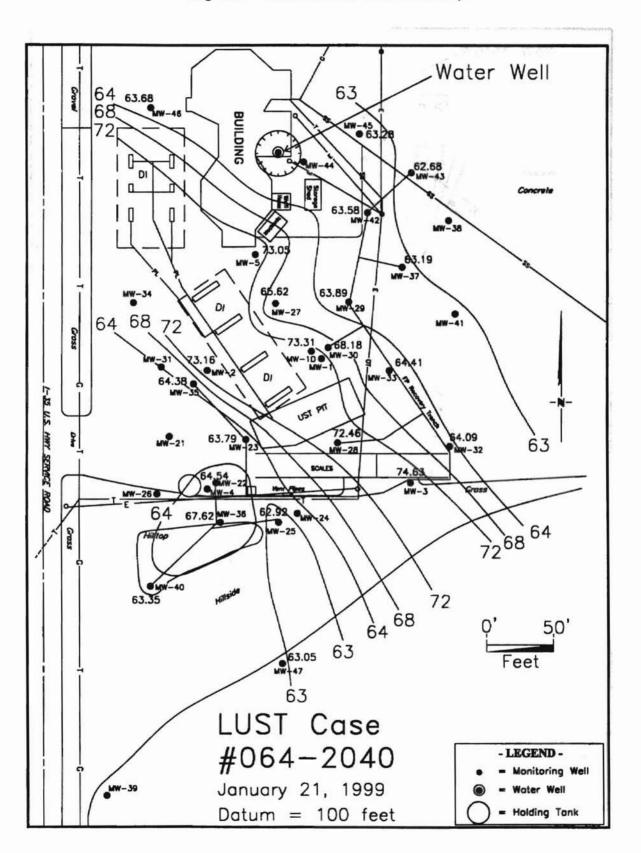



Figure 5 - Groundwater Elevation Map

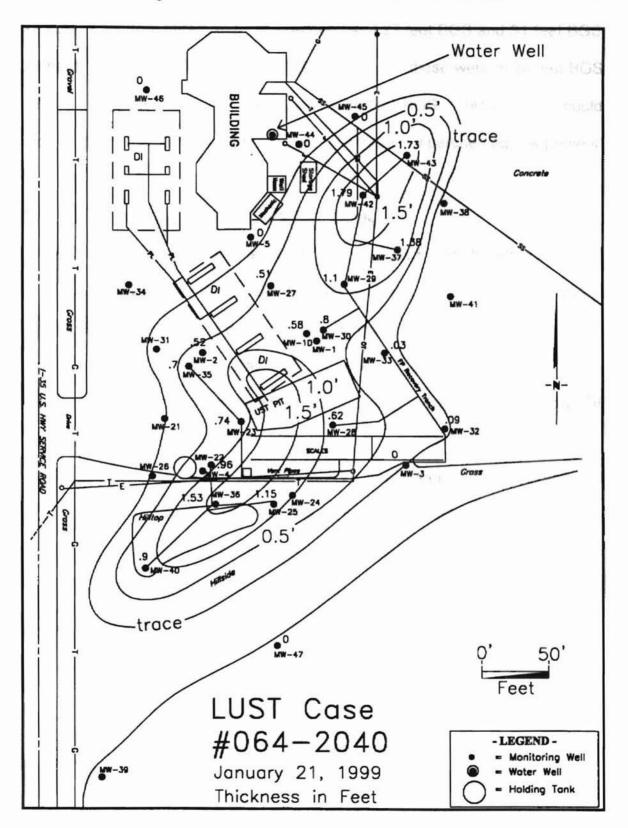



Figure 6 - Estimated Thickness of Gasoline at Site

3.) The only indication of an impermeable barrier was derived from the sample cores from MW-2 and MW-5 at depths of 27 feet BGS and 31 feet BGS respectively. The average corrected DTW in both of these wells is 24 feet BGS whereas in nearby wells corrected DTW is 30 feet BGS. This evidence could indicate the waters are not connected and that there is a perched aquifer present.

25 80 1

#### Methodology for Collection of Water-Quality Data

To determine whether the waters are connected, samples were collected from MW-1D (where average corrected DTW is 23 feet) and from MW-30 (where average corrected DTW is 29 feet). The samples were collected adherent to Appendix E of "Sampling Handling Protocol for Low, Medium, and High Concentration of Hazardous Waste" of ER 1110-1-263 of the U.S. Army Corps of Engineers. MW-1D is approximately 11 feet southwest of MW-30 (see central part, Figure 5). The difference in top-of-casing (TOC) elevation is 0.25 feet with the TOC at 6 inches below ground in each well. The groundwater samples were analyzed for the major ions. Results were entered into WATEVAL - a water equilibrium computer model that runs reliability checks and gives a "first cut" deduction about the source rock (Hounslow 1995). Table 3 shows the results of the analyses.

# Table 3 - Results of Water-Quality Analyses.

6 11 3101

1 This

in will

|                                    | M       | W-1D - | 23' BO | GS      | MW-30 - 29' BGS |        |       |        |  |  |  |
|------------------------------------|---------|--------|--------|---------|-----------------|--------|-------|--------|--|--|--|
| lon or Parameter                   | mg/L    | mmol/L | meq/L  | % meq/L | mg/L            | mmol/L | meq/L | %meq/L |  |  |  |
| Na⁺                                | 162     | 7.05   | 7.05   | 53.3    | 74              | 3.22   | 3.22  | 21     |  |  |  |
| Ca <sup>2+</sup>                   | 64      | 1.60   | 3.19   | 24.2    | 118             | 2.94   | 5.89  | 38.5   |  |  |  |
| Mg <sup>2+</sup>                   | 35      | 1.44   | 2.88   | 21.8    | 75              | 3.08   | 6.17  | 40.3   |  |  |  |
| ĸ                                  | 4       | 0.10   | 0.1    | 0.8     | 1               | 0.03   | 0.03  | 0.2    |  |  |  |
| cation sum                         | 265     |        | 13.22  |         | 268             |        | 15.31 |        |  |  |  |
| NO3                                | <1      | <.02   | <.02   | 0       | <1              | <.02   | <.02  | 0      |  |  |  |
| СГ                                 | 50      | 1.41   | 1.41   | 11.4    | 141             | 3.98   | 3.98  | 28.8   |  |  |  |
| SO42-                              | 9       | 0.09   | 0.19   | 1.5     | 14              | 0.15   | 0.29  | 2.1    |  |  |  |
| CO32-                              | 0       | 0.00   | 0      | 0       | 0               | 0.00   | 0     |        |  |  |  |
| CO3 <sup>2-</sup> calculated       | 2.2     |        |        |         | 1.6             |        |       |        |  |  |  |
| HCO3                               | 656     | 10.75  | 10.75  | 87.7    | 583             | 9.55   | 9.55  | 69.1   |  |  |  |
| HCO3 calculated                    | 651.6   |        |        |         | 579.8           |        |       |        |  |  |  |
| anion sum                          | 715     |        | 12.71  |         | 738             |        | 14.12 |        |  |  |  |
| SiO <sub>2</sub>                   | 21.42   | 0.36   | 0.36   |         | 18              | 0.30   | 0.3   |        |  |  |  |
| pН                                 | 8       |        |        |         | 7.9             |        |       |        |  |  |  |
| EC                                 | 1140    |        |        |         | 1249            |        |       |        |  |  |  |
| Estimated EC                       | 1322    |        |        |         | 1530            |        |       |        |  |  |  |
| TSS                                | 980     |        |        |         | 1006            |        |       |        |  |  |  |
| Total Diss. Solids <sub>calc</sub> | 1001.42 |        |        |         | 1024            |        |       |        |  |  |  |
| Total Diss. Solids180              | 668     |        |        |         | 728             |        |       |        |  |  |  |
| Total Hardness                     | 303.7   |        |        |         | 603             |        |       |        |  |  |  |
| Total Hardness <sub>calc</sub>     | 303.88  |        |        |         | 603.4           |        |       |        |  |  |  |
| Langelier Index                    | 0.74    |        |        |         | 0.82            |        |       |        |  |  |  |
| SAR                                | 4       |        |        |         | 1.3             |        |       |        |  |  |  |
| Alkalinity                         | 538     |        |        |         | 478             |        |       |        |  |  |  |
| Alkalinity <sub>calc</sub>         | 537.98  |        |        |         | 477.93          |        |       |        |  |  |  |

#### Reliability Checks

#### CHAPTER IV

Both samples are acceptable with respect to the proportions of the major Risk Assessment of Local Aquifer ions. A list of the reliability checks from Hounslow (1995) are in Appendix D. The only major difference in the reliability checks is the sodium / chloride ratio which will be discussed in the source rock deductions.

vienamental schementa to in-depth studies of de minimus risk, lengthy

# Deductions About Source Rock

The source rock is a quarzose sandstone. The cement is mostly clay with some silica and dolomite. The sandstone was observed when the monitoring wells were drilled; additional evidence is silica in the groundwater. The dolomite cement is indicated by the ratio of magnesium to calcium - the values in both samples are almost equal. The equation from Drever (1997) for dissolution of the dolomite cement is as follows.

### $CaMg(CO_3)_2 = Ca^{2+} + Mg^{2+} + 2CO_3^{2-}$

Ion exchange, by removal of calcium and magnesium from groundwater and concurrent release of sodium into groundwater, is strongly suggested by the high amount of sodium in relation to the amount of chloride. Sodium could also have been be released from montmorillonite clay, however there would be very little clay since the sand grains are fine-grained and sub-angular to sub-rounded.

The bicarbonate source is dolomite dissolution. Hardness of groundwater is temporary; and the water is over-saturated with respect to calcite, according to the positive value of the Langelier Index. The trime software model CHAPTER IVrudied are American Petroleum Institute's Domaion Support System (API DSS), British Petroleum's Risc-Integrated Risk Assessment of Local Aquifer Software for Cluan ups (BP RISC) and Groundwater Services Interporated's Risk-

#### Risk Assessment Methodology and Software Overview

Risk assessment has evolved from simply noting the dangers of environmental pollutants to in-depth studies of de minimus risk, lengthy procedures, and large data requirements. The risk assessment process includes four steps which are Hazard Identification, Dose-Response assessment, Exposure Assessment, and Risk Characterization (EPA 1989 - Risk Assessment).

2 to to a third? O Fillion to th

The last step - Risk Characterization is the stage in which the software models are utilized. The software packages that were studied consists of two phases; fate and transport of the chemical to the receptor and the exposure pathway that the receptor will have to the chemical. The required parameters for the software can be quite detailed and costly to acquire, therefore estimations of the parameters are used extensively in the environmental industry. It is difficult to compare risk assessments when there are several users each using different models and different estimated parameters. Both Lynn Spence (1997) and Sheldon Reaven (1990) advise that risk assessments should be used as a "first-cut" tool towards risk management and not as the final word since the estimations used in risk assessments offer a false sense of precision and accuracy (Spence 1997 and Reaven 1990).

The three software models that were studied are American Petroleum Institute's Decision Support System (API DSS), British Petroleum's Risc-Integrated Software for Clean-ups (BP RISC), and Groundwater Services Incorporated's Risk-Based Corrective Action Tier 2 Tool Kit (GSI RBCA).

API's DSS models one receptor that can be exposed to a maximum of 6 pathways. DSS requires the user to enter chemical concentrations and site data. The user also has the option to enter some or all of the required data as a Monte Carlo Analysis, the Monte Carlo Analysis is beyond the scope of this study. The model will calculate the Point-of-Exposure (POE) concentration and the receptor's risks. DSS does not perform back calculations (Spence 1998).

RISC operates similar to DSS but also has a RBCA Tier 1 Spreadsheet to calculate RBSLs. The focus of this study was tier 2 analyses where SSTLs are generated, therefore the Tier 1 Spreadsheet for RBSLs was not utilized. BP's RISC allows for 1 or 2 receptors with each one being exposed to a maximum of 9 pathways. RISC has an option to deterministically calculate clean-up levels for one receptor per run. RISC does allow uncertainty analysis (e.g. Monte Carlo analysis). RISC can back calculate SSTLs by converting user input of the Target Risk to a Target Concentration at the source (Spence 1997).

API's DSS and BP's RISC were both written by Lynn Spence. They are essentially the same suite of models although DSS is more robust because the user can choose the specific fate and transport model to be used; whereas in RISC, the models' computer codes have been combined into different media equations (i.e. unsaturated zone to groundwater). Both DSS and RISC have shower models. RISC has an indoor air model where as DSS does not. The second version of DSS (currently in beta testing) is used in this study and contains an updated version of AT123D, while RISC uses the first version of AT123D. RISC will include an ecological pathway (e.g. vegetable and fish consumption) in a future version. RISC can calculate risks from surface water, but cannot model contaminant transport to a surface water body (Spence 1997 and 1998).

GSI's RBCA Tier 2 Tool Kit permits consideration of multiple receptors and pathways but the outputs are SSTLs for each environmental media. A shower model is not included in RBCA. Receptors and pathways are listed for each media and only the lowest clean-up level of all receptors is shown. RBCA uses the identical fate and transport equations found in the ASTM Standard. GSI's RBCA does not allow uncertainty analysis. The user chooses the receptors (but cannot have an onsite and offsite receptor in the same run), site data, and receptors' exposure factors to the chemical. The user enters a value of acceptable risk (i.e. from 10E-6 to 10E-4) and then the RBCA Tier 2 Tool Kit uses fate and transport equations to back calculate the equivalent POE concentration (GSI 1997).

#### Purpose of the Model Comparison

The purpose of the of this study is to compare variations in results between American Petroleum Institute's Decision Support System (API DSS), British Petroleum's Risc-Integrated Software for Clean-ups (BP RISC), and Groundwater Services Incorporated's Risk-Based Corrective Action Tier 2 Tool Kit (GSI RBCA). The comparison was expanded to evaluating the effect of entering estimated values of fate and transport and exposure parameters that are accepted by the environmental industry versus entering values that were tested in a state-certified laboratory or measured in the field. The analysis did not include Monte Carlo or biodegradation due to the need for high concentrations and risks to compare across several models. Biodegradation greatly affects the risk assessment as evidenced by Klinchuch (1995).

#### Methodology for Selection of Model Parameters

Eighteen pathways shown on Table 4 are completed by four receptors: residential adult and child, commercial worker, and truck driver. The completed pathways were ran in each of the three software models with estimated or "default" values for most of the parameters and measured or best estimated for those parameters where estimations can not work (i. e., depth to water). The eighteen completed pathways were ran again in each of the software models with only measured values where possible. See Figures 5 and 6 for the parameters used.

| Completed Path    | ways That Were Modeled                      |
|-------------------|---------------------------------------------|
| Residential Child | Dermal Exposure to Groundwater in Shower    |
|                   | Inhalation of Vapors in Shower              |
|                   | Ingestion of Groundwater                    |
|                   | Indoor Inhalation of Groundwater Emissions  |
|                   | Outdoor Inhalation of Groundwater Emissions |
| Residential Adult | Dermal Exposure to Groundwater in Shower    |
|                   | Inhalation of Vapors in Shower              |
|                   | Ingestion of Groundwater                    |
|                   | Indoor Inhalation of Groundwater Emissions  |
|                   | Outdoor Inhalation of Groundwater Emissions |
| Truck Driver      | Dermal Exposure to Groundwater in Shower    |
|                   | Inhalation of Vapors in Shower              |
|                   | Ingestion of Groundwater                    |
|                   | Indoor Inhalation of Groundwater Emissions  |
|                   | Outdoor Inhalation of Groundwater Emissions |
| Commercial Worker | Ingestion of Groundwater                    |
|                   | Indoor Inhalation of Groundwater Emissions  |
|                   | Outdoor Inhalation of Groundwater Emissions |

| Foto 9 Transment Deservator               | unit              | Estimate | Measured/            | Courses      |
|-------------------------------------------|-------------------|----------|----------------------|--------------|
| Fate & Transport Parameter                | unit              | Estimate | <b>Best Estimate</b> | Source       |
| Type of Source                            |                   | constant |                      |              |
| Depth to Groundwater                      | m                 |          | 7.14                 | Observed     |
| Vadose Zone Thickness                     | m                 |          | 7.01                 | Observed     |
| Capillary Fringe Thickness                | m                 |          | 0.13                 | Observed     |
| Aquifer Thickness (assume infinite width) | m                 |          | 100                  | Bingham 1991 |
| Thickness of Soil Above Contamination     | m                 | 5.14     | 6.6                  | Observed     |
| Source Length                             | m                 |          | 80                   | Observed     |
| Source Width                              | m                 |          | 37                   | Observed     |
| Source Depth                              | m                 | 2        | 0.54                 | Observed     |
| Vadose Porosity                           | unitless          | 0.35     | 0.364                | Laboratory   |
| Vadose Volumetric Water Content           | unitless          | 0.2      | 0.08                 | Laboratory   |
| Vadose Volumetric Air Content             | unitless          | 0.15     | 0.284                | Laboratory   |
| Vadose Soil Dry Bulk Density              | g/cm <sup>3</sup> | 1.7      | 1.68                 | Laboratory   |
| Vadose Fraction Organic Carbon            | g C/g soil        | 0.01     | 0.00077              | Laboratory   |
| Vadose Infiltration Rate                  | m/day             |          | 0.002                | Bingham 1991 |
| Aquifer Porosity                          | unitless          | 0.35     | 0.407                | Laboratory   |
| Aquifer Volumetric Water Content          | unitless          | 0.2      | 0.311                | Laboratory   |
| Aquifer Volumetric Air Content            | unitless          | 0.15     | 0.096                | Laboratory   |
| Aquifer Soil Dry Bulk Density             | g/cm <sup>3</sup> | 1.7      | 1.59                 | Laboratory   |
| Aquifer Fraction Organic Carbon           | g C/g soil        | 0.01     | 0.00085              | Laboratory   |
| Van Genucten's "n" Parameter for Aquifer  | unitiess          |          | 2.68                 | Spence 1997  |
| Hydraulic Conductivity                    | m/day             | 0.021    | 0.2                  | Slug Tests   |
| Groundwater Darcy Velocity                | ft/yr             | 1.9      | 18                   | Slug Tests   |
| Groundwater Flow Velocity                 | ft/yr             | 4.68     | 43.8                 | Slug Tests   |
| Hydraulic Gradient                        | ft/ft             | 0.1      | 0.074                | Observed     |
| Longitudinal Dispersivity                 | m                 |          | 1/10 the POE         | Spence 1998  |
| Transverse Dispersivity                   | m                 |          | 1/10 Long. Dis.      | Spence 1998  |
| Vertical Dispersivity                     | m                 |          | 1/10 Trans. Dis.     | Spence 1998  |
| Wind Speed                                | cm/sec            | 225      |                      | Spence 1998  |
| Length of Box for Outdoor Air Inhalation  | m                 | 10       |                      | Spence 1998  |
| Air Exchange Rate - Comm. Worker          | 1/hr              | 20       |                      | Spence 1998  |
| Building Length                           | m                 | 15       | 45                   | Observed     |
| Building Width                            | m                 | 15       | 23                   | Observed     |
| Building Ceiling Height                   | m                 | 3        | 3                    | Observed     |
| Air Exchange Rate - Resident              | 1/hr              | 0.25     | 0.3                  | Spence 1998  |
| House Length                              | m                 |          | 24                   | Default      |
| House Width                               | m                 |          | 18                   | Default      |
| House Ceiling Height                      | m                 |          | 3                    | Default      |
| Basement Wall Thickness                   | m                 | 0.15     |                      | Default      |
| Fraction of Area Exposed by Cracks        | unitiess          | 0.01     |                      | Default      |
| POE Distance to Station Building          | m                 |          | 21                   | Observed     |
| POE Distance to Residents                 | m                 |          | 490                  | Observed     |
| X coordinate to water well                | m                 |          | 0                    | Observed     |
| Y coordinate to water well                | m                 |          | 21                   | Observed     |
| Z coordinate to top of screen             | m                 |          | 10                   | Observed     |
| Z coordinate to bottom of screen          | m                 |          | 19                   | Observed     |

# Table 5 - Fate and Transport Parameters

| Body Weight for Child       Kg         Lifetime for Adult       years         Lifetime for Child       years         Exposure Frequency - Resident       day/yr         Exposure Frequency - Comm. Worker       day/yr         Exposure Frequency - Truck Driver       day/yr         Exposure Duration - Resident Adult       years         Exposure Duration - Resident Child       years         Exposure Duration - Resident Child       years         Exposure Duration - Comm. Worker       years         Mater Ingestion Rate - Resident       L/day         Mater Ingestion Rate - Comm. Worker & Truck Driver       L/day         Indoor Inhalation Rate - Comm. Worker & Truck Driver       m³/hr         Skin Surface Area - Ams and hands       cm²         Total Skin Surface Area - Adult       cm²         Indoor Exposure Time - Resident Adult       hr/day         Indoor Exposure Time - Comm. Worker       hr/day         Indoor Exposure Time - Truck Driver       hr/day         Outdoor Exposure Time - Resident Child       hr/day         Outdoor Exposure Time - Resident Adult       hr/da                                                                                                                                                                                                                                                                                                                                                      | imate | Measured/<br>Best Estimate | Source      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|-------------|
| Body Weight for Child       Kg       1         Lifetime for Adult       years       7         Lifetime for Child       years       7         Exposure Frequency - Resident       day/yr       3         Exposure Frequency - Comm. Worker       day/yr       2         Exposure Frequency - Truck Driver       day/yr       2         Exposure Duration - Resident Adult       years       3         Exposure Duration - Resident Child       years       3         Exposure Duration - Comm. Worker       years       3         Exposure Duration Rate - Resident       L/day       1         Water Ingestion Rate - Comm. Worker & Truck Driver       L/day       1         Indoor Inhalation Rate - Comm. Worker & Truck Driver       m³/hr       0.1         Indoor Inhalation Rate - Comm. Worker & Truck Driver       m³/hr       3         Indoor Inhalation Rate - Comm. Worker & Truck Driver       m³/hr       3         Indoor Surface Area - Adult       cm²       72         Indoor Exposure Time - Resident Adult       hr/day       1                                                                                                                                                                                                                                                                                                                                                                                               | 70    |                            | EPA 1989    |
| Lifetime for Adultyears7Lifetime for Childyears1Exposure Frequency - Residentday/yr3Exposure Frequency - Comm. Workerday/yr2Exposure Frequency - Truck Driverday/yr2Exposure Duration - Resident Adultyears3Exposure Duration - Resident Childyears3Exposure Duration - Resident Childyears3Exposure Duration - Comm. Workeryears3Exposure Duration - Comm. Workeryears3Exposure Duration - Truck Driveryears3Water Ingestion Rate - ResidentL/day1Nater Ingestion Rate - Comm. Worker & Truck DriverL/dayIndoor Inhalation Rate - Comm. Worker & Truck Driverm³/hrSkin Surface Area - arms and handscm²Total Skin Surface Area - Adultcm²Indoor Exposure Time - Resident Adulthr/dayIndoor Exposure Time - Resident Adulthr/dayOutdoor Exposure Time - Resident Adulthr/dayOutdoor Exposure Time - Resident Adulthr/dayOutdoor Exposure Time - Resident Childhr/dayOutdoor Exposure Time - R                                                                                                                                                                                                                                                                                                                                                                                                                            | 15    | Internet and a black       | EPA 1989    |
| Exposure Frequency -Residentday/yr3Exposure Frequency - Comm. Workerday/yr2Exposure Frequency - Truck Driverday/yr2Exposure Duration - Resident Adultyears3Exposure Duration - Resident Childyears3Exposure Duration - Resident Childyears3Exposure Duration - Comm. Workeryears3Exposure Duration - Truck Driveryears3Exposure Duration - Truck Driveryears3Water Ingestion Rate - ResidentL/day1Indoor Inhalation Rate - Comm. Worker & Truck DriverL/dayIndoor Inhalation Rate - Comm. Worker & Truck Driverm³/hrSkin Surface Area - arms and handscm²31Total Skin Surface Area - Adultcm²72Indoor Exposure Time - Resident Adulthr/day1Indoor Exposure Time - Resident Adulthr/day1Indoor Exposure Time - Comm. Workerhr/day1Indoor Exposure Time - Comm. Workerhr/day1Indoor Exposure Time - Comm. Workerhr/day1Outdoor Exposure Time - Resident Adulthr/day1Outdoor Exposure Time - Resident Childhr/day1Outdoor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70    | and the second second      | EPA 1989    |
| Exposure Frequency - Comm. Workerday/yrExposure Frequency - Truck Driverday/yrExposure Duration - Resident AdultyearsExposure Duration - Resident ChildyearsExposure Duration - Comm. WorkeryearsExposure Duration - Truck DriveryearsWater Ingestion Rate - ResidentL/dayWater Ingestion Rate - Residentm³/hrUndoor Inhalation Rate - Comm. Worker & Truck DriverL/dayIndoor Inhalation Rate - Comm. Worker & Truck Driverm³/hrSkin Surface Area - arms and handscm²Total Skin Surface Area - Adultcm²Indoor Exposure Time - Resident Adulthr/dayIndoor Exposure Time - Resident Childhr/dayOutdoor Exposure Time - Resident Adulthr/dayOutdoor Exposure Time - Resident Adulthr/dayOutdoor Exposure Time - Resident Adulthr/dayOutdoor Exposure Time - Resident Childhr/dayOutdoor Exposure Ti                                                                                                                                                                                                                                                                                                                                           | 6     |                            | EPA 1989    |
| Exposure Frequency - Comm. Workerday/yr2Exposure Frequency - Truck Driverday/yr5Exposure Duration - Resident Adultyears3Exposure Duration - Resident Childyears3Exposure Duration - Comm. Workeryears3Exposure Duration - Truck Driveryears3Water Ingestion Rate - ResidentL/day1Mater Ingestion Rate - ResidentL/day1Indoor Inhalation Rate - Residentm³/hr0.1Indoor Inhalation Rate - Comm. Worker & Truck Driverm³/hr31Skin Surface Area - arms and handscm²31Total Skin Surface Area - Adultcm²72Indoor Exposure Time - Resident Adulthr/day1Indoor Exposure Time - Resident Childhr/day1Indoor Exposure Time - Resident Adulthr/day1Indoor Exposure Time - Resident Adulthr/day1Outdoor Exposure Time - Resident Adulthr/day1Outdoor Exposure Time - Resident Childhr/day1Outdoor Exposure Time - Resident Childhr/day1 <td>350</td> <td></td> <td>EPA 1989</td>                                                                                                                                                                                                                                                                                                                                                                                                                                             | 350   |                            | EPA 1989    |
| Exposure Frequency - Truck Driverday/yrExposure Duration - Resident AdultyearsExposure Duration - Resident ChildyearsExposure Duration - Comm. WorkeryearsExposure Duration - Truck DriveryearsWater Ingestion Rate - ResidentL/dayWater Ingestion Rate - Comm. Worker & Truck DriverL/dayIndoor Inhalation Rate - Residentm³/hrSkin Surface Area - arms and handscm²Total Skin Surface Area - Adultcm²Indoor Exposure Time - Resident Adulthr/dayIndoor Exposure Time - Resident Adulthr/dayOutdoor Exposure Time - Resident Childhr/dayOutdoor Exposure Time - Re                                                                                                                                                                                                                                                                                                                                           | 250   | 310                        | Observed    |
| Exposure Duration - Resident Adultyears3Exposure Duration - Resident Childyears3Exposure Duration - Comm. WorkeryearsExposure Duration - Truck DriveryearsWater Ingestion Rate - ResidentL/dayWater Ingestion Rate - Comm. Worker & Truck DriverL/dayIndoor Inhalation Rate - Residentm³/hrSkin Surface Area - arms and handscm²Total Skin Surface Area - arms and handscm²Total Skin Surface Area - Adultcm²Indoor Exposure Time - Resident Adulthr/dayIndoor Exposure Time - Resident Adulthr/dayOutdoor Exposure Time - Resident Childhr/dayOutdoor Exposure Time - Resident Childhr/dayO                                                                                                                                                                                                                                                                                                                                                             | 52    |                            | Default     |
| Exposure Duration - Comm. Worker       years         Exposure Duration - Truck Driver       years         Water Ingestion Rate - Resident       L/day         Water Ingestion Rate - Comm. Worker & Truck Driver       L/day         Indoor Inhalation Rate - Resident       m³/hr         Indoor Inhalation Rate - Comm. Worker & Truck Driver       m³/hr         Skin Surface Area - arms and hands       cm²         Total Skin Surface Area - Adult       cm²         Indoor Exposure Time - Resident Adult       hr/day         Indoor Exposure Time - Resident Adult       hr/day         Indoor Exposure Time - Resident Child       hr/day         Indoor Exposure Time - Resident Adult       hr/day         Outdoor Exposure Time - Resident Adult       hr/day         Outdoor Exposure Time - Resident Adult       hr/day         Outdoor Exposure Time - Resident Child       hr/day         Outdoor Exposure Time - Resident Child       hr/day         Outdoor Exposure Time - Resident Child       hr/day         Outdoor Exposure Time - Comm. Worker       hr/day         Outdoor Exposure Time - Comm. Worker <t< td=""><td>30</td><td>12</td><td>EPA 1989</td></t<>                                                                                                                                                                                                                                                                 | 30    | 12                         | EPA 1989    |
| Exposure Duration - Comm. Worker       years         Exposure Duration - Truck Driver       years         Water Ingestion Rate - Resident       L/day         Water Ingestion Rate - Comm. Worker & Truck Driver       L/day         Indoor Inhalation Rate - Comm. Worker & Truck Driver       m³/hr         Skin Surface Area - arms and hands       cm²         Total Skin Surface Area - arms and hands       cm²         Total Skin Surface Area - Adult       cm²         Indoor Exposure Time - Resident Adult       hr/day         Indoor Exposure Time - Resident Child       hr/day         Indoor Exposure Time - Comm. Worker       hr/day         Indoor Exposure Time - Resident Child       hr/day         Indoor Exposure Time - Resident Child       hr/day         Indoor Exposure Time - Resident Adult       hr/day         Outdoor Exposure Time - Resident Adult       hr/day         Outdoor Exposure Time - Resident Adult       hr/day         Outdoor Exposure Time - Resident Child       hr/day         Outdoor Exposure Time - Resident Child       hr/day         Outdoor Exposure Time - Resident Child       hr/day         Outdoor Exposure Time - Comm. Worker       hr/day         Outdoor Exposure Time - Comm. Worker       hr/day         Outdoor Exposure Time - Comm. Worker                                                                                                                                                                                                                                                                                                                      | 30    | 12                         | EPA 1989    |
| Exposure Duration - Truck DriveryearsWater Ingestion Rate - ResidentL/dayWater Ingestion Rate - Comm. Worker & Truck DriverL/dayIndoor Inhalation Rate - Residentm³/hrSkin Surface Area - Residentcm² 31Total Skin Surface Area - arms and handscm² 23Total Skin Surface Area - Adultcm² 72Indoor Exposure Time - Resident Adulthr/dayIndoor Exposure Time - Resident Childhr/dayIndoor Exposure Time - Resident Childhr/dayIndoor Exposure Time - Resident Adulthr/dayIndoor Exposure Time - Resident Childhr/dayOutdoor Exposure Time - Resident Adulthr/dayOutdoor Exposure Time - Resident Adulthr/dayOutdoor Exposure Time - Comm. Workerhr/dayOutdoor Exposure Time - Resident Childhr/dayOutdoor Exposure Time - Comm. Workerhr/dayOutdoor Exposure Time - Comm. Workerhr/dayOutdoor Exposure Time - Resident Childhr/dayOutdoor Exposure Time - Comm. Workerhr/dayOutdoor Exposure Time - Resident Childhr/dayOutdoor Exposure Time - Resident Childhr/dayOutdoor Exposure Time - Comm. Workerhr/dayOutdoor Exposure Time in Showerhr/dayExposure Time in S                                                                                                                                                                                                                                                                                                                                           | 9     | 5                          | EPA 1989    |
| Water Ingestion Rate - Comm. Worker & Truck Driver       L/day         Indoor Inhalation Rate - Resident       m³/hr       0.9         Indoor Inhalation Rate - Comm. Worker & Truck Driver       m³/hr       0.9         Skin Surface Area - arms and hands       cm²       31         Total Skin Surface Area - Adult       cm²       23         Total Skin Surface Area - Adult       cm²       72         Indoor Exposure Time - Resident Adult       hr/day       1         Indoor Exposure Time - Resident Child       hr/day       1         Indoor Exposure Time - Comm. Worker       hr/day       1         Indoor Exposure Time - Resident Child       hr/day       1         Indoor Exposure Time - Comm. Worker       hr/day       1         Indoor Exposure Time - Resident Adult       hr/day       1         Outdoor Exposure Time - Resident Child       hr/day       1         Outdoor Exposure Time - Resident Child       hr/day       1         Outdoor Exposure Time - Comm. Worker       hr/day       0         Soil Skin Adherence Factor                                                                                                                                                                                                                                                                                                                                                                    | 5     |                            | Default     |
| Water Ingestion Rate - Comm. Worker & Truck Driver       L/day         Indoor Inhalation Rate - Resident       m³/hr         Indoor Inhalation Rate - Comm. Worker & Truck Driver       m³/hr         Skin Surface Area - arms and hands       cm²       31         Total Skin Surface Area - Adult       cm²       23         Total Skin Surface Area - Adult       cm²       72         Indoor Exposure Time - Resident Adult       hr/day       1         Indoor Exposure Time - Resident Child       hr/day       1         Indoor Exposure Time - Comm. Worker       hr/day       1         Indoor Exposure Time - Resident Child       hr/day       1         Indoor Exposure Time - Comm. Worker       hr/day       1         Indoor Exposure Time - Resident Adult       hr/day       1         Outdoor Exposure Time - Resident Adult       hr/day       1         Outdoor Exposure Time - Resident Child       hr/day       1         Outdoor Exposure Time - Comm. Worker       hr/day       0         Soil Skin Adherence Factor       mg/cm²       1                                                                                                                                                                                                                                                                                                                                                                   | 2     | 1.4                        | EPA 1989    |
| Indoor Inhalation Rate - Resident       m³/hr       0.9         Indoor Inhalation Rate - Comm. Worker & Truck Driver       m³/hr       0.9         Skin Surface Area - arms and hands       cm²       31         Total Skin Surface Area - Adult       cm²       23         Total Skin Surface Area - Adult       cm²       72         Indoor Exposure Time - Resident Adult       hr/day       11         Indoor Exposure Time - Resident Child       hr/day       11         Indoor Exposure Time - Comm. Worker       hr/day       11         Indoor Exposure Time - Resident Child       hr/day       11         Indoor Exposure Time - Resident Child       hr/day       11         Indoor Exposure Time - Comm. Worker       hr/day       11         Outdoor Exposure Time - Resident Adult       hr/day       12         Outdoor Exposure Time - Comm. Worker       hr/day       14         Outdoor Exposure Time - Resident Child       hr/day       14         Outdoor Exposure Time - Comm. Worker       hr/day       14         Soil Skin Adherence                                                                                                                                                                                                                                                                                                                                                                   | 2     | 1.4                        | EPA 1989    |
| Skin Surface Area - arms and handscm231Total Skin Surface Area - Adultcm223Total Skin Surface Area - Childcm272Indoor Exposure Time - Resident Adulthr/day1Indoor Exposure Time - Resident Childhr/day1Indoor Exposure Time - Resident Childhr/day1Indoor Exposure Time - Comm. Workerhr/day1Indoor Exposure Time - Truck Driverhr/day1Outdoor Exposure Time - Resident Adulthr/day1Outdoor Exposure Time - Resident Adulthr/day1Outdoor Exposure Time - Resident Adulthr/day1Outdoor Exposure Time - Comm. Workerhr/day1Outdoor Exposure Time - Comm. Workerhr/day1Outdoor Exposure Time - Comm. Workerhr/day1Outdoor Exposure Time - Comm. Workerhr/day0Soil Skin Adherence Factormg/cm21Bioavailabilityunitless1Exposure Time in Showerhr/day0.1Fraction of Chemical Volatized in ShowerunitlessTemperature of Shower WaterC4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .937  | 0.833                      | EPA 1989    |
| Total Skin Surface Area - Adultcm²23Total Skin Surface Area - Childcm²72Indoor Exposure Time - Resident Adulthr/day1Indoor Exposure Time - Resident Childhr/day1Indoor Exposure Time - Comm. Workerhr/day1Indoor Exposure Time - Truck Driverhr/day1Outdoor Exposure Time - Resident Adulthr/day1Outdoor Exposure Time - Resident Adulthr/day1Outdoor Exposure Time - Resident Adulthr/day1Outdoor Exposure Time - Resident Childhr/day1Outdoor Exposure Time - Comm. Workerhr/day1Outdoor Exposure Time - Comm. Workerhr/day1Outdoor Exposure Time - Comm. Workerhr/day1Outdoor Exposure Time - Comm. Workerhr/day0Soil Skin Adherence Factormg/cm²1Bioavailabilityunitless1Exposure Time in Showerhr/day0.1Fraction of Chemical Volatized in ShowerunitlessTemperature of Shower WaterC4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2     | 0.833                      | EPA 1989    |
| Total Skin Surface Area - Child       cm²       72         Indoor Exposure Time - Resident Adult       hr/day       1         Indoor Exposure Time - Resident Child       hr/day       1         Indoor Exposure Time - Resident Child       hr/day       1         Indoor Exposure Time - Comm. Worker       hr/day       1         Indoor Exposure Time - Truck Driver       hr/day       1         Outdoor Exposure Time - Resident Adult       hr/day       1         Outdoor Exposure Time - Resident Adult       hr/day       1         Outdoor Exposure Time - Comm. Worker       hr/day       0         Soil Skin Adherence Factor       mg/cm²       1         Bioavailability       unitless       1         Exposure Time in Shower       hr/day       0.3         Fraction of Chemical Volatized in Shower       unitless         Temperature of Shower Water       C       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 160   |                            | EPA 1989    |
| Indoor Exposure Time - Resident Adult       hr/day       1         Indoor Exposure Time - Resident Child       hr/day       1         Indoor Exposure Time - Comm. Worker       hr/day         Indoor Exposure Time - Truck Driver       hr/day         Outdoor Exposure Time - Resident Adult       hr/day         Outdoor Exposure Time - Resident Adult       hr/day         Outdoor Exposure Time - Resident Child       hr/day         Outdoor Exposure Time - Comm. Worker       hr/day         Outdoor Exposure Time and the provide the second secon | 3000  |                            | Spence 1998 |
| Indoor Exposure Time - Resident Child       hr/day       1         Indoor Exposure Time - Comm. Worker       hr/day         Indoor Exposure Time - Truck Driver       hr/day         Outdoor Exposure Time - Resident Adult       hr/day         Outdoor Exposure Time - Resident Adult       hr/day         Outdoor Exposure Time - Resident Child       hr/day         Outdoor Exposure Time - Comm. Worker       hr/day         Outdoor Exposure Time in Shower       hr/day         Exposure Time in Shower       hr/day         Fraction of Chemical Volatized in Shower       unitless         Temperature of Shower Water       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 280   |                            | Spence 1998 |
| Indoor Exposure Time - Resident Child       hr/day       1         Indoor Exposure Time - Comm. Worker       hr/day         Indoor Exposure Time - Truck Driver       hr/day         Outdoor Exposure Time - Resident Adult       hr/day         Outdoor Exposure Time - Resident Adult       hr/day         Outdoor Exposure Time - Resident Child       hr/day         Outdoor Exposure Time - Comm. Worker       hr/day         Outdoor Exposure Time - Comm. Worker       hr/day         Outdoor Exposure Truck Driver       hr/day         Soil Skin Adherence Factor       mg/cm²         Bicavailability       unitless         Exposure Time in Shower       hr/day       0.3         Fraction of Chemical Volatized in Shower       unitless         Temperature of Shower Water       C       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16    | 19                         | Default     |
| Indoor Exposure Time - Comm. Worker       hr/day         Indoor Exposure Time - Truck Driver       hr/day         Outdoor Exposure Time - Resident Adult       hr/day         Outdoor Exposure Time - Resident Child       hr/day         Outdoor Exposure Time - Resident Child       hr/day         Outdoor Exposure Time - Comm. Worker       hr/day         Outdoor Exposure Time - Comm. Worker       hr/day         Outdoor Exposure Truck Driver       hr/day         Soil Skin Adherence Factor       mg/cm²         Bicavailability       unitless         Exposure Time in Shower       hr/day         Fraction of Chemical Volatized in Shower       unitless         Temperature of Shower Water       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16    |                            | EPA 1989    |
| Indoor Exposure Time - Truck Driver       hr/day         Outdoor Exposure Time - Resident Adult       hr/day         Outdoor Exposure Time - Resident Child       hr/day         Outdoor Exposure Time - Resident Child       hr/day         Outdoor Exposure Time - Comm. Worker       hr/day         Outdoor Exposure Truck Driver       hr/day         Soil Skin Adherence Factor       mg/cm²         Bicavailability       unitless         Exposure Time in Shower       hr/day         Fraction of Chemical Volatized in Shower       unitless         Temperature of Shower Water       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8     |                            | EPA 1989    |
| Outdoor Exposure Time - Resident Adult       hr/day       1         Outdoor Exposure Time - Resident Child       hr/day       1         Outdoor Exposure Time - Comm. Worker       hr/day       1         Outdoor Exposure Truck Driver       hr/day       0         Soil Skin Adherence Factor       mg/cm²       1         Bicavailability       unitless       1         Exposure Time in Shower       hr/day       0.3         Fraction of Chemical Volatized in Shower       unitless         Temperature of Shower Water       C       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2     |                            | Default     |
| Outdoor Exposure Time - Resident Child       hr/day       1         Outdoor Exposure Time - Comm. Worker       hr/day       0         Outdoor Exposure Truck Driver       hr/day       0         Soil Skin Adherence Factor       mg/cm²       0         Bioavailability       unitless       0.3         Exposure Time in Shower       hr/day       0.3         Fraction of Chemical Volatized in Shower       unitless         Temperature of Shower Water       C       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16    | 5                          | EPA 1989    |
| Outdoor Exposure Time -Comm. Worker       hr/day         Outdoor Exposure Truck Driver       hr/day         Soil Skin Adherence Factor       mg/cm²         Bioavailability       unitless         Exposure Time in Shower       hr/day       0.3         Fraction of Chemical Volatized in Shower       unitless         Temperature of Shower Water       C       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16    | 8                          | EPA 1989    |
| Outdoor Exposure Truck Driver       hr/day       0         Soil Skin Adherence Factor       mg/cm²       1         Bioavailability       unitless       1         Exposure Time in Shower       hr/day       0.3         Fraction of Chemical Volatized in Shower       unitless         Temperature of Shower Water       C       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8     | 3                          | EPA 1989    |
| Soil Skin Adherence Factor     mg/cm²       Bioavailability     unitless       Exposure Time in Shower     hr/day       Fraction of Chemical Volatized in Shower     unitless       Temperature of Shower Water     C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5   |                            | Default     |
| Bicavailability     unitless       Exposure Time in Shower     hr/day     0.3       Fraction of Chemical Volatized in Shower     unitless       Temperature of Shower Water     C     4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     | 0.5                        | Default     |
| Fraction of Chemical Volatized in Shower     unitless       Temperature of Shower Water     C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1     | 0.5                        | Default     |
| Temperature of Shower Water C 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .333  |                            | Default     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1     |                            | EPA 1989    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45    | - 1 - Con - 1              | Spence 1998 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10    |                            | EPA 1989    |
| Volume of Shower m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3     |                            | Spence 1998 |
| Water Droplet Diameter cm 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1   |                            | Spence 1998 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2     |                            | Spence 1998 |

The measured Fate and Transport (F&T) data was collected during site investigations for OCC LUST Case #064-2040. The vadose and aquifer data was tested in a state-certified laboratory from samples collected during drilling events. The estimated exposure parameters were taken from the ORBCA Guidelines and the EPA's Exposure Factors Handbook. The exposure parameters are estimated more frequently than the fate and transport parameters because they are more expensive to measure and collect.

A fate and transport parameter that is often estimated and merits some discussion is volumetric water content. Though not the case in this study since the measured value is within an acceptable range, volumetric water content is often the source of much debate and many incorrect Site Specific Target Levels (SSTLs). According to Fetter (1993) "One must be careful in measuring volumetric water content since in many soils (especially those with fine textures) the volume changes as the water is imbibed or drained. This is due to the interaction between the charged soil particles and the polar water molecules.", it is quite common to have soil data that is oversaturated with respect to volumetric water content. When this happens, a good remedy taken from Driscoll (1986) is to calculate volumetric water content from representative specific yield rates for various soils and the reported porosity. The equation is: % Porosity - % Specific yield = % Volumetric Water Content (Fetter 1993 and Driscoll 1986).

The measured dimensions for the station building were collected during site investigations. The measured exposure frequency for the commercial worker came from conversations with station personnel. The best estimate exposure frequency for the truck driver was derived from the following assumptions. There are many truck drivers who shower, eat, and fill their diesel tanks. The frequency and duration for each of these activities vary with the job assignment of the trucker. It was assumed that one trucker would take a shower once/week when he or she stopped for fuel. It was further assumed the trucker drove the same weekly route for a duration of five years.

The estimated hydraulic conductivity was derived by making a conservative assumption that the release occurred 50 years ago and has spread 80 meters since the release date. The resulting hydraulic conductivity was calculated at .021 m/day. The measured hydraulic conductivity was collected from four LUST Sites that are within five miles of the subject site and within the same lithologic zone as the subject site (Table 7).

| LUST Case Number | Hydraulic Conductivity |
|------------------|------------------------|
| 064-2123         | .1                     |
| 064-1446         | .2                     |
| 064-1621         | .3                     |
| 064-QH           | .2                     |

Table 7 - Measured Hydraulic Conductivities (m/day)

The average (0.2 m/day) of the four data points was used. This hydrologic data was calculated from slug tests. The procedure for conducting a slug test is to record the static water level in a single borehole. Then remove over half of the water column. At time zero, record the new water level, then record the water level often until the water level returns to within 37% of the static water level. The slug test was conducted following the guidelines outlined in "EPA Method 9100 3.4 Single Well Tests" (EPA 1985). The hydraulic conductivity equation is the Hvorslev Slug Test Method, see below. (Fetter 1994 and Freeze 1979)

$$K = \frac{r^2 \ln(\text{Le/R})}{2 \text{ Le } T_o}$$

Where K = hydraulic conductivity

r = radius of well casing

Le = Length of the gravel pack

R = radius of the borehole

 $T_o$  = Time elapsed until water level returned to within 37% of static level

#### Procedure for Model Comparison

Eighteen completed pathways were ran in each of the software models using estimated or "default" values for most of the parameters and using measured or best estimated values for those parameters where estimations cannot work (i.e., depth to water). Then the eighteen completed pathways were ran again in each of the software models using only best estimate or measured values. To evaluate the effect of estimated versus measured parameters, the RISC software output for benzene was compared across the 18 pathways. To evaluate the performance of the three software packages, software output from the measured runs was compared across the 18 pathways. Table 8 summarizes the models' output for benzene. Output from all runs is listed by pathway in Appendix F.

## Table 8 - Model Output Summary (benzene)

| Receptor   | Pathway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Output        | API DSS       | GSI RBCA                                                                                                        | BP RISC  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|-----------------------------------------------------------------------------------------------------------------|----------|
| Resident   | Dermal Exposure to Groundwater in Shower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Risk          | 3.12E-06      |                                                                                                                 | 2.20E-06 |
| Child      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SSTL          |               | can not model                                                                                                   | 0.775    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Concentration | 0.0165        |                                                                                                                 | 0.135    |
|            | Inhalation of Vapors in Shower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Risk          | 5.66E-04      |                                                                                                                 | 1.90E-04 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SSTL          |               | can not model                                                                                                   | 0.775    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Concentration | 0.55          |                                                                                                                 | 0.135    |
|            | Ingestion of Groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Risk          | 8.58E-05      | 0.0003                                                                                                          | 5.90E-05 |
|            | 1 CONSTRUCTION AND A CONSTRUCTION OF A PARTY CONTRACTOR AND A CONSTRUCTION OF A PARTY CONTRACTOR AND A PARTY CO | SSTL          |               | 0.31                                                                                                            | 0.775    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Concentration | 0.0165        |                                                                                                                 | 0.135    |
|            | Indoor Inhalation of Groundwater Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Risk          |               | 0.0003                                                                                                          | 1.20E-05 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SSTL          | can not model | 0.044                                                                                                           | 0.775    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Concentration |               |                                                                                                                 | 0.006    |
|            | Outdoor Inhalation of Groundwater Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Risk          |               | 0.0003                                                                                                          | 4.40E-10 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SSTL          | can not model | 6.1                                                                                                             | 0.775    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Concentration |               |                                                                                                                 | 4.18E-07 |
| Resident   | Dermal Exposure to Groundwater in Shower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Risk          | 1.81E-07      |                                                                                                                 | 1.50E-06 |
| Adult      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SSTL          |               | can not model                                                                                                   | 0.775    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Concentration | 0.0165        |                                                                                                                 | 0.14     |
|            | Inhalation of Vapors in Shower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Risk          | 1.04E-05      |                                                                                                                 | 4.00E-05 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SSTL          |               | can not model                                                                                                   | 0.775    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Concentration | 0.55          |                                                                                                                 | 0.135    |
|            | Ingestion of Groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Risk          | 1.58E-06      | 0.0003                                                                                                          | 1.30E-05 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SSTL          |               | 0.31                                                                                                            | 0.775    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Concentration | 0.0165        |                                                                                                                 | 0.135    |
|            | Indoor Inhalation of Groundwater Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Risk          |               | 0.0003                                                                                                          | 3.10E-06 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SSTL          | can not model | 0.044                                                                                                           | 0.775    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Concentration |               |                                                                                                                 | 0.006    |
|            | Outdoor Inhalation of Groundwater Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Risk          |               | 0.0003                                                                                                          | 5.90E-11 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SSTL          | can not model | 6.1                                                                                                             | 0.775    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Concentration | -             |                                                                                                                 | 4.18E-07 |
| Truck      | Dermal Exposure to Groundwater in Shower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Risk          | 7.56E-08      |                                                                                                                 | 1.20E-06 |
| Driver     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SSTL          |               | can not model                                                                                                   | 1.02     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Concentration | 0.112         |                                                                                                                 | 1.73     |
|            | Inhalation of Vapors in Shower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Risk          | 4.34E-06      |                                                                                                                 | 3.20E-05 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SSTL          |               | can not model                                                                                                   | 1.02     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Concentration | 0.112         |                                                                                                                 | 1.73     |
|            | Ingestion of Groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Risk          | 6.58E-07      | 0.00054                                                                                                         | 1.00E-05 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SSTL          |               | 0.17                                                                                                            | 1.02     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Concentration | 0.112         |                                                                                                                 | 1.73     |
|            | Indoor Inhalation of Groundwater Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Risk          |               | 0.00054                                                                                                         | 7.40E-09 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SSTL          | can not model | 48                                                                                                              | 1.02     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Concentration |               |                                                                                                                 | 0.002    |
|            | Outdoor Inhalation of Groundwater Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Risk          | 1             | 0.00054                                                                                                         | 8.90E-12 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SSTL          | can not model | 98                                                                                                              | 1.02     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Concentration | 1             |                                                                                                                 | 1.01E-05 |
| Commercial | Ingestion of Groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Risk          | 3.92E-06      | 0.0032                                                                                                          | 6.10E-05 |
| Worker     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SSTL          | 1             | 0.028                                                                                                           | 0.727    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Concentration | 0.112         | 0.020                                                                                                           | 1.73     |
|            | Indoor Inhalation of Groundwater Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Risk          |               | 0.003                                                                                                           | 1.80E-07 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SSTL          | can not model |                                                                                                                 | 0.727    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Concentration | 1             | 0.1                                                                                                             | 0.002    |
|            | Outdoor Inhalation of Groundwater Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Risk          |               | 0.003                                                                                                           | 3.20E-10 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SSTL          | can not model | a contract of the second se | 0.727    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |                                                                                                                 |          |

## Software Comparison

The first comparison between the three software packages are the pathways that each package is capable of modeling. Eighteen pathways were completed in OCC LUST Case #064-2040, these are denoted on Table 9. GSI's RBCA can not model exposure during showers. API DSS can not model exposure from emissions from groundwater. The only completed pathway in OCC LUST Case #064-2040 that all three software packages can model is groundwater ingestion.

| Medium                                    | Pathway                        | API DSS | <b>BP RISC</b> | GSI RBCA |
|-------------------------------------------|--------------------------------|---------|----------------|----------|
| Surficial Soil                            |                                |         |                |          |
|                                           | Dermal contact                 | *X      | X              | X        |
|                                           | Ingestion                      | *X      | X              | X        |
|                                           | Leaching to surface water      |         |                |          |
| Subsurface Soil                           |                                |         |                |          |
|                                           | Dermal contact                 | *X      | X              | X        |
|                                           | Ingestion                      | *X      | X              | X        |
|                                           | Vadose zone to groundwater     | X       | x              | X        |
|                                           | Phreatic zone to groundwater   | X       | X              |          |
|                                           | Leaching to surface water      |         |                |          |
| Surface Water                             |                                |         |                |          |
|                                           | Dermal contact                 | 1       | X              |          |
|                                           | Ingestion                      |         | X              |          |
| Groundwater                               |                                |         |                |          |
|                                           | Dermal contact (trench)        | 1       |                |          |
| Resident, Truck Driver                    | Dermal contact during shower   | X       | X              |          |
| Resident, Truck Driver, Commercial Worker | Ingestion                      | X       | x              | X        |
| Indoor Air                                | and the second second          |         |                |          |
|                                           | Emissions from surficial soil  | T       | X              |          |
|                                           | Emissions from subsurface soil |         |                | X        |
|                                           | Particulates                   |         |                |          |
| Resident, Truck Driver, Commercial Worker | Emissions from groundwater     |         | X              | X        |
| Resident, Truck Driver                    | Emissions during shower        | X       |                |          |
| Outdoor Air                               |                                |         |                |          |
|                                           | Emissions from surficial soil  | X       | X              | X        |
|                                           | Emissions from subsurface soil | 1       |                | X        |
|                                           | Particulates                   | X       |                |          |
|                                           | Emissions from surface water   |         |                |          |
| Resident, Truck Driver, Commercial Worker | Emissions from groundwater     |         | X              | X        |
| Food                                      |                                |         |                |          |
|                                           | Ingestion                      | 1       | future version | 1        |
|                                           | Dermal contact                 |         | future version |          |

## Table 9 - Possible Exposure Pathways

\*X = No Fate & Transport Models are utilized, just enter concentrations.

Consider the following saturated zone equations.

**RISC:** 
$$R(C/t) = (D_x(C/x^2)) + (D_y(C/y^2)) + (D_z(C/z^2)) - (\delta(C/x)) - \mu C + (M/\theta)$$

**RBCA:** C = exp
$$\left((x/2D_x)\left(1-\sqrt{1+(4\mu D_xR/\delta)}\right)\right)$$
erf $\left(S_w/(4\sqrt{D_yx})\right)$ erf $\left(S_d(4\sqrt{D_zx})\right)$ 

### where

- C = Concentration
- C<sub>i</sub> = Initial concentration
- x = Distance down-gradient from source to receptor well
- y = Distance cross-gradient from source to receptor well
- z = Vertical distance from top of well screen to bottom of well screen

stance

- t = Time
- R = Retardation Factor
- D<sub>x</sub> = Longitudinal Dispersivity
- D<sub>v</sub> = Transverse Dispersivity
- D, = Vertical Dispersivity
- δ = Groundwater Seepage Velocity
- μ = First-order decay rate
- M = Mass flux
- $\theta$  = Effective porosity
- $S_w =$ Source width
- S<sub>d</sub> = Source depth

**DSS VADSAT:**  $R(C_i/t) = (D_x(C_i/x^2)) + (D_y(C_i/y^2)) + (D_z(C_i/z^2)) - (\delta(C_i/x)) - \mu C_i + (M/\theta)$ where  $C_i = (C_i^w) \exp\left(-(q_u W_H S_i/\rho_b L_w F_H W_i) + (D_i^v H_i W_H S_i/\rho_b L_d L_w F_H W_i) \right)$ 

#### where

- C<sup>w</sup><sub>i</sub> = Initial Aqueous Concentration
- q<sub>u</sub> = net recharge rate
- W<sub>H</sub> = average molecular weight of hydrocarbon
- S<sub>i</sub> = aqueous solubility of pure component i
- $\rho_{\rm b}$  = soil bulk density in the waste zone
- L<sub>d</sub> = Diffusion path length
- L<sub>w</sub> = thickness of the waste zone
- F<sub>H</sub> = mass of hydrocarbon per mass of soil in the waste zone
- $D_i^v$  = effective diffusion coefficient of component i in the soil
- H<sub>i</sub> = dimensionless form of Henry's constant for component i
- W<sub>i</sub> = Molecular weight of i

## Limitations and Attributes of BP RISC

- RISC calculated higher SSTLs than RBCA for the measured ingestion pathways because the RISC saturated zone model includes cross-gradient distance to the receptor well and considers the depth of well screen.
- For most pathways, RISC calculated risks between the RBCA and DSS calculations. The risks are lower than RBCA for the previous reasons. The risks and concentrations are higher than DSS because the VADSAT model in DSS allows more of the source concentration to volatilize.
- RISC successfully back-calculated the POE concentration on every run.
- 4. The main disadvantage in using RISC in this study was that it could not save a file and perform calculations on the file after the save. Saving a file was attempted several times during this study and each time the software could not locate the saved file to perform calculations. This would make the computer lock up.
- 5. The user does not specify a certain model to run. There is only one option for the chosen media pathway. The user simply chooses "vadose soil to groundwater model" for example. This is not a discredit to RISC, it certainly makes modeling a lot easier for people to conduct.
- The required parameters are common in site characterization data.
- RISC was very user friendly and has on line example parameters for various media. The graphical user interface is appealing. (See captured screen for entering site data in RISC (Figure 7)).
- RISC uses the metric system.

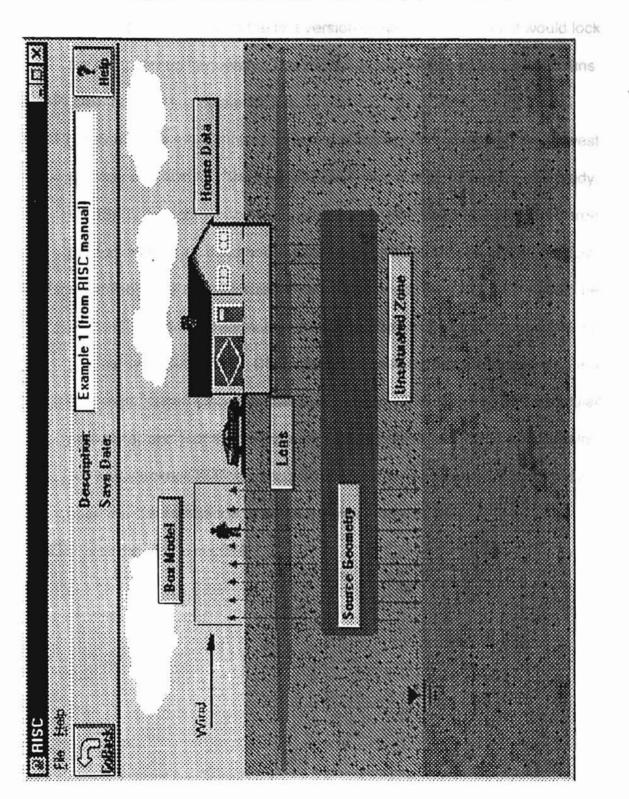



Figure 7 - Example of RISC Interface (Spence 1997)

Limitations and Attributes of API DSS: A Tier 2 Tool Kit

- The main disadvantage with the first version of API DSS was that it would lock the computer up frequently. This did not occur in the Beta Version 2.0 runs.
- 2. API DSS does not calculate SSTLs. for doubt of well screen
- 3. API DSS has the most choices of fate and transport models with the newest addition of VADSAT. The new VADSAT model was utilized for this study. VADSAT can correctly model partitioning and mass loading from free product although it does not simulate subsurface transport of free product.
- 4. If the available site characterization data is detailed, then API DSS should be used. The intricate parameters that the models in DSS require are difficult and costly to determine. DSS should be used by risk assessors who are very experienced since the user may not know the definition of a particular parameter and jeopardize the entire risk assessment. DSS is a detailed software package that can calculate acceptable concentrations provided the user has the knowledge to choose which model to use.
- 5. DSS uses the metric system.

## Limitations and Attributes of GSI RBCA Tier 2 Tool Kit

- 1. GSI's RBCA Tier 2 Tool Kit consistently calculated higher risks than DSS or RISC since it calculates down-gradient concentrations only, (not crossgradient), and does not account for depth of well screen.
- For the estimated residential pathways, neither DSS or RISC calculated the source concentration to be transported to the POE. GSI's RBCA calculated a risk of 2.4E-4 for the estimated residential ingestion pathways.
- Back calculation was attempted several times in RBCA during the study, but it does not give data (an equation error would pop up).
- The main disadvantage associated with RBCA is that the saved files are extensive and require approximately 1400 KB of disk space for each file.
- GSI's RBCA does not appear to be as robust as the other risk assessment software packages that were studied. It does not use models or code but instead uses one equation for each media.
- RBCA uses the English system.

如何的 的复数形式

## Parameter Comparison

CHAPTER V

In most pathways the measured values were less conservative so the Conclusions software package calculated lower concentrations at the receptor. Since the measured values' concentrations decreased from the estimated values' concentrations the measured risks were lower too. The SSTLs for the measured values were generally higher than the estimated values' SSTLs. The exceptions can be attributed to the software's performance and equations.

The measured petrophysical values for the vadose and phreatic zones were the main reason that the concentrations decreased from the estimated values. Most important of these is the volumetric water content. This parameter is very sensitive in risk assessment models. If the value for volumetric water content is near the porosity value (within 10%) then the value of the SSTL will be higher than it should be, which is not conservative. If the volumetric water content in the laboratory analysis is near the porosity value, then the following equation from Driscoll (1986) should be applied: % Porosity - % Specific yield = % Volumetric Water Content.

from groundwater. The only comp CHAPTER V/ in OCC LUST Case #064-2040 that all three software packages could model is groundwater ingestion. Conclusions

Summary of Objectives of Bio RISC that were found are as follows

The core objective of this study was to compare variations in the results between three risk assessment software packages: American Petroleum Institute's Decision Support System (API DSS), British Petroleum's Risc-Integrated Software for Clean-ups (BP RISC), and Groundwater Services Incorporated's Risk-Based Corrective Action Tier 2 Tool Kit (GSI RBCA).

The second objective was to compare the output when estimated values (accepted by the environmental industry) of fate and transport and exposure parameters were entered to when measured values were entered into the risk assessment software.

The final purpose of this study determined whether a local perched aquifer exists and if the waters are connected.

INTER SPECTOR

## Results of Software Comparison

Software output from the measured runs was compared across the 18 pathways to evaluate the results of the three software packages. The first comparison was the available pathway options. GSI's RBCA could not model exposure during showers. API DSS could not model exposure from emissions

from groundwater. The only completed pathway in OCC LUST Case #064-2040 that all three software packages could model is groundwater ingestion.

The limitations and attributes of BP RISC that were found are as follows.

RISC calculated higher SSTLs than RBCA for the measured ingestion pathways because the RISC saturated zone model includes cross-gradient distance to the receptor well and considers the depth of well screen.

For most pathways, RISC calculated risks between the RBCA and DSS calculations. The risks were lower than RBCA for the previous reasons. The risks and concentrations were higher than DSS because the VADSAT model in DSS allows more of the source concentration to volatilize.

The main disadvantage in using RISC in this study was that it could not save a file and perform calculations on the file after the save. Saving a file was attempted several times and each time the software could not locate the saved file to perform calculations. This would make the computer lock up.

The user could not specify a certain model to run. There was only one option for the chosen media pathway. The user simply chose "vadose soil to groundwater model" for example.

RISC was very user friendly and had on line example parameters for various media. The graphical user interface was appealing. GS//s RBCA calculated a risk of 2 do 4 to the extended responsible parameters for various

The limitations and attributes of API DSS that were found are as follows.

The main disadvantage with the first version of API DSS was that it would lock the computer up frequently. This did not occur in the Beta Version 2.0 runs. Also, API DSS could not calculate SSTLs.

With the second parts has the subject on a property of

API DSS had the most choices of fate and transport models with the newest addition of VADSAT. The new VADSAT model was utilized for this study. VADSAT correctly models partitioning and mass loading from free product although it does not simulate subsurface transport of free product.

The intricate parameters that the models in DSS require were difficult and would have been costly to determine. DSS is a detailed software package that can calculate acceptable concentrations provided the user has the knowledge to choose which model to use.

## The limitations and attributes of GSI RBCA that were found are as follows.

GSI's RBCA Tier 2 Tool Kit consistently calculated higher risks than DSS or RISC since it calculates down-gradient concentrations only, (not cross-gradient), and does not account for depth of well screen.

For the estimated residential pathways, neither DSS or RISC calculated the source concentration to be transported to the POE. GSI's RBCA calculated a risk of 2.4E-4 for the estimated residential ingestion pathways.

The main disadvantage associated with RBCA was that the saved files were extensive and require approximately 1400 KB of disk space for each file.

GSI's RBCA did not appear to be as robust as the other risk assessment software packages that were studied. It does not use models or code but instead uses one equation for each media.

1 6.0,25

## Results of Parameter Comparison

The RISC software output for benzene was compared across the 18 pathways to evaluate the effects of estimated and measured parameters. In most pathways the measured values were less conservative so the software package calculated lower concentrations at the receptor. Since the measured values' concentrations decreased from the estimated values' concentrations the measured risks were lower too. The SSTLs for the measured values were generally higher than the estimated values' SSTLs due to the lower risks.

The measured petrophysical values for the vadose and phreatic zones were the main reason that the concentrations decreased from the estimated values. The most important of the petrophysical parameters was the volumetric water content.

If the value for volumetric water content was near the porosity value (within 10%) then the value of the SSTL was higher than it should have been, which is not conservative. If the volumetric water content in the laboratory analysis is near the porosity value, then the following equation from Driscoll (1986) should be applied: % Porosity - % Specific yield = % Volumetric Water Content.

a second minuted to an MVT 1D reversion contacted GTW

Line (Network) All Contents to the Network

## Results of Water Analysis

Out of the 32 monitoring wells at OCC LUST Case #064-2040, five have consistently been anomalous. In these five monitoring wells, elevation of groundwater have ranged from five to ten feet higher than in the other 27 monitoring wells suggesting that there is a local perched aquifer above the main shallow unconfined Garber aquifer. There were four facts considered in this study.

Free-phase hydrocarbons recovered from monitoring wells were tested in a state-certified laboratory for degradation, the tests indicated that the plume is young. The free-phase hydrocarbon plume has spread approximately 250 feet and has been observed in 24 monitoring wells, including 4 of the anomalous five. This evidence indicated that the 24 wells were interconnected. A traceable dye was injected in MW-2 (One of the anomalous wells) which was 8.5 feet upgradient from MW-35 (which was a normal well) on January 21, 1999. The dye appeared seven days later in MW-35.

The only indication that a local perched aquifer could be present was an impermeable barrier that was observed in the sample cores from MW-2 and MW-5. The average corrected DTW in both wells was 24 feet BGS whereas in nearby wells corrected DTW was 30 feet BGS.

Groundwater samples were collected from MW-1D (average corrected DTW was 23 feet) and from MW-30 (average corrected DTW was 29 feet) to be tested for the major ions. The water quality analyses were similar.

where it with a manufacture of the RZ

Fdition St

The observed facts and water quality analyses that were studied in this thesis indicate that there could be a local aquifer present, but it is hydrologically connected to the main shallow unconfined Garber aquifer.

A REPORT OF A READ NOT

816 Est

ISCC. and Street established REFERENCES advater Clean-Up. OCC LUST

- ASTM. 1995. Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites
- Bingham, R. H., and Moore, R. L. 1991. Reconnaissance of the Water Resources of the Oklahoma City Quadrangle, Central Oklahoma Hydrologic Atlas 4, OGS
- Breit, G. N., and Schlottmann, J. L. 1994. Relation of Lithologic variations in Permian Rocks of the Central Oklahoma Aquifer to Water Quality. Abstracts with Programs - *Geological Society of America* 26, no. 7: 205.
- Drever, J. I. 1997. The Geochemistry of Natural Waters: Surface and Groundwater Environments, 3rd Edition: Prentice Hall. 59 and 82.
- Driscoll, F.G. 1986. Groundwater and Wells, 2<sup>nd</sup> Edition: St. Paul, Minnesota: Johnson Division. 67 and 68.

ABSTRACTORY UNDER REPORTED

- EPA. 1985. Method 9100 3.4 for Single Well Tests.
- EPA. 1989. Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual (Part A). 1-7.
- EPA. 1989. Exposure Factors Handbook.
- Fetter, C.W. 1993. Contaminant Hydrogeology. New York: Macmillan Publishing Company. 164.
- Fetter, C.W. 1994. Applied Hydrogeology, 3<sup>nd</sup> Edition: New York: Macmillan Publishing Company. 247-250.
- FPR. Feb 1999. Free Product Recovery Report. OCC LUST Case 064-2040.

Freeze, R.A., and Cherry, J.A. 1979. Groundwater: Prentice-Hall. 339-341.

GSI. 1997. Tier 2 RBCA Guidance Manual For Risk-Based Corrective Action

- Henderson, T. 1984. Geochemistry of Ground-Water in Two Sandstone Aquifer Systems in the Northern Great Plains in Parts of Montana, Wyoming, North Dakota, and South Dakota. U.S. Geological Survey Professional Paper 1402-C. 67 and 80.
- Hounslow, A.W. 1995. Water Quality Data: Analysis and Interpretation: CRC Press, Inc. Lewis Publishers. 53, 76, and 333.

- ISGC. July 1996. Investigation for Soil and Groundwater Clean-Up. OCC LUST Case 064-1621.
- Klinchuch, L. A., and Waldron, J. M. 1995. Fate and Transport Modeling with American Petroleum Institute Decision Support System Applied in a Site Assessment for Residual Crude Oil in Unconsolidated Sediments: Case Study in Kern County, California. *Environmental Geosciences* 2, no. 2: 85-94
- OCC. 1996. Oklahoma Risk-Based Corrective Action Guidelines
- ORBCA. Sept 1998. ORBCA Tier 1A Report. OCC LUST Case 064-2040.
- PES. 1996. Tinker Air Force Base Remedial Investigation Report, Volume I: Oklahoma City Air Logistics Center. Contract No. F34650-93-D-0106/5001
- Pettyjohn, W. A., and White, Hal. June 1986. Introduction to Water Resources and Domestic Water Supply in Oklahoma. OWRB.
- Reaven, Sheldon J., 1990. Choosing Among Risk Management Alternatives for Mitigating Groundwater Pollution. *Risk Assessment for Groundwater Pollution Control.* 96-107.
- Spence, L. 1997. RISC User's Manual: Version 3.0. British Petroleum Oil Company
- Spence, L. 1998. API's Decision Support System for Exposure and Risk Assessment: Documentation Version 2.0. American Petroleum Institute
- U.S. Army Corps of Engineers. Sampling Handling Protocol for Low, Medium, and High Concentration of Hazardous Waste Appendix E of ER 1110-1-263

## SERVER A

112.214 514

4. 2

# Appendix A Partial ORBCA Tier 1A Report

teris, Ciklahoma

1300.14

## ORBCA

TILLE & SIGNATURE PAGE

146

**Tier 2 Analysis** 

as required by: OAC 165:25-3-76

## FFP 8402 NE Expressway Oklahoma City, Oklahoma County, Oklahoma

Case # 064-2040 Facility #55-08256

prepared by: Applied Geoscience Environmental Services, Inc. 3408 French Park Drive, Suite C Edmond, Oklahoma (405) 348-5332

February 1999

LUST ID: 064-2040

FACILITY ID: 55-08256

**PRIORITY NUMBER: 1.4** 

FACILITY NAME: Driver's Travel Mart #411

FACILITY ADDRESS: 8402 NE Expressway

FACILITY CITY & COUNTY: Oklahoma City, Oklahoma County

**RESPONSIBLE PARTY:** Dale Roberts

CERTIFIED UST CONSULTANT: Kathy Lippert

TIER EVALUATION: I-A

I certify that all work has been conducted under my supervision and in accordance with the underground Storage Tank Rules and that I am aware that my misrepresentation of any of the information submitted herein is a violation of OAC 165:25-3-90.

 Certified UST Consultant Signature
 Date Signed
 #421 December 2000

 Certified UST Consultant Signature
 Date Signed
 Certification No. & Expiration

 Kathy Lippert
 Certified UST Consultant
 Certified UST Consultant

By signature below, I certify that I have reviewed this report for completeness

Responsible Party Signature R

Dale Roberts Responsible Party

Date Signed

## **EXECUTIVE SUMMARY**

FACILITY ID 55-08256

Minister's Travel Mart #411, 8402 NE Expression

115 CHI CASE BEEN VIOLATEA

ACTESTIVE DELERGISTICS Yes

THE RELEASE

Form Completed by: Rachal Roberts

**REPORT INFORMATION** 

Section #1 - Facility Information

Section #2 - Site Description

Section #3 - Underground Storage Tank Type of Interstate 35 and north of Wilshire

Section #4 - Land Use Summary

Section #5 - Chronology of Events

Section #6 - Release Characterization

Section #7 - UST/Piping Removal Characterization

Section #8 - Site Stratigraphy and Hydrogeology

Section #9 - Water Use

Section #10 - Site Conceptual Exposure Scenario

Section #11 - Tier1a.xls Input/Output & Fate and Transport Parameters with Justifications Section #12 - Conclusions and Recommendations

## **REFERENCES & PROTOCOLS**

#### MAPS

Topographic Map Vicinity Map Site Map Aerial Photo showing Land Use & Zoning Area Geologic Map Water Well Map Points of Exposure Map Groundwater Gradient Map Impacted Soil Contour Map Free Product Plume Map

## **TABLES & GRAPHS**

Depth to Groundwater Table Soil Analytical Data Groundwater Analytical Data Time vs Concentration Graphs

#### FIGURES

Soil Boring Logs

#### APPENDIX

Site Physical Properties Laboratory Reports Laboratory Analytical Reports Attachments OWRB Water Well Search Driscoll Reference for Volumetric Water Content

No. in Carlo I and Annual A

2212 TUP

cor hira summittery:

LUST: 064-2040

Date Form Completed: 8/19/98

der litter product is present at this site with a Form Completed by: Rachal Roberts its rice solubilities were used in place of maximum 1.4

• speciest of .074 to the northeast and .049 to the second of and th FACILITY ID: 55-08256 either side.

PRIORITIZATION INDEX NUMBER: FACILITY NAME AND ADDRESS: FACILITY LOCATION DESCRIPTION: Boulevard

Driver's Travel Mart #411, 8402 NE Expressway East of Interstate-35 and north of Wilshire

STATUS OF FACILITY: Operating GROUND SURFACE CONDITION: Paved 2100 gallons ESTIMATED VOLUME RELEASED: Yes the well as on site and to use by the state IS NATIVE SOIL IMPACTED ON-SITE: IS NATIVE SOIL IMPACTED OFF-SITE: No FORM WE LIKE THE PLANE CHERICARY WARK IS GROUNDWATER IMPACTED ON-SITE: Yes IS GROUNDWATER IMPACTED OFF-SITE: Yes HAS THE SOURCE OF THE RELEASE BEEN IDENTIFIED: Yes HAS FREE PRODUCT ASSOCIATED WITH THIS RELEASE BEEN FOUND: Yes HAS SURFACE WATER BEEN IMPACTED BY THIS RELEASE: No SHALLOWEST DEPTH TO GROUNDWATER ENCOUNTERED: 23.44 feet AVERAGE DEPTH TO GROUNDWATER: 30 feet HAS A DRINKING WATER SUPPLY BEEN IMPACTED BY THIS RELEASE: Yes

**RECOMMENDATION:** (X in front)

**CLOSURE UNDER TIER 1-A** 

- X REMEDIATE AND CLOSE UNDER TIER 1-A
- X GO TO TIER 2
- CLOSE UNDER TIER 2
- REMEDIATE AND CLOSE UNDER TIER 2
- GO TO TIER 3
- REMEDIATE AND CLOSE UNDER TIER 3
- MONITOR FOR CLOSURE THROUGH NATURAL ATTENUATION

### **EXPLANATION OF RECOMMENDATION:**

RBSLs are exceeded and free product is present at this site. We recommend recovering all available free product, after this the case will be evaluated for remediation of dissolved phase constituents in the groundwater with the possibility of conducting a Tier 2 analysis.

1. Current land use of the site if no longer an active UST/AST facility:

Site is an active UST facility.

### 2. Soil stratigraphy and analytical data summary:

The subsurface matrix is the Garber Sandstone. The sandstone is red, fine-grained, and well-cemented. Maximum soil contamination found was in MW-2 at a depth of 26 feet on 4/8/98, ppm levels were: Benzene 11; Toluene 240; Ethylbenzene 91; Xylene 430; TPH-G 920; TPH-D 5457.

### 3. Aquifer characteristics & groundwater data summary:

The aquifer is approximately 30 feet BGS with a gradient of .074 to the northeast and .049 to the southwest. There is a mounding effect at the tank pit and the water table slopes off to either side. Hydraulic conductivity is calculated to be .07 ft/day. Free product is present at this site with a maximum thickness over 10 feet in MW-42.

Only 9 wells out of 32 do not have free product. Effective solubilities were used in place of maximum concentration values, they are as follows (in ppm):

Benzene 44.39; Toluene 26.54; Ethylbenzene 2.87; Xylene 46.56.

#### 4. Risk assessment analysis:

Current pathways include commercial worker inhalation of vapors from deep groundwater and commercial worker ingestion of deep groundwater. A water well is on site and in use by the station and restaurant. A carbon canister has been placed on the well to filter out hydrocarbons and the responsible party is in the process of extending the city water main to the site. After the city water main has been installed, the current groundwater ingestion pathway will be removed from this analysis.

Future pathways include commercial worker ingestion of deep groundwater via a possible water well that could be drilled 300 feet away from the groundwater plume, and residential inhalation of vapors from and ingestion of deep groundwater. The pathway of dermal contact with deep groundwater by the commercial worker and resident will be modeled in the Tier 2 analysis. The future possible pathway of commercial worker inhalation of vapors from the deep groundwater was considered but not modeled since it is also current, (the current pathway is a more conservative number).

All of the soil RBSLs are exceeded.

There is over ten (10) feet of free product floating on the water table, therefore the groundwater concentrations listed are the effective solubilities. Only 9 wells out of 32 do not have free product. If these 9 were sampled, they would not accurately depict the groundwater contamination, therefore groundwater sampling of the 9 wells was not necessary.

The dissolved groundwater concentrations listed as effective solubilities exceed only the benzene and toluene RBSLs.

#### 5. Overall recommendations of risk assessment:

Based on this Tier 1A analysis, we recommend recovering all available free product. After the free product has been removed, the case will be evaluated for remediation of dissolved phase constituents in the groundwater with the possibility of conducting a Tier 2 analysis.

SECTION #1

LUST ID: 064-2040

FACILITY ID: 55-08256

Form Completed by: Rachal Roberts

#### FACILITY INFORMATION

Date Form Completed: 8/19/98

Prioritization Index No.:

Facility Name:

Driver's Travel Mart #411

35° 33' 41" / 97° 27' 22"

NE NE SW Sec. 31 T13N R2W

1.1.1.1.1.1

1.4

Facility Address: Facility City: Facility County: Moderate Moderate Southern Street Str

East of Interstate-35 and north of Wilshire Boulevard

Facility Location Description: Facility Latitude/Longitude: Legal Location:

Facility Owner:Clement TrustOwner Phone No.:800-890-3551Owner Address:P.O. Box 575

Facility Operator: Facility Phone No.:

Owner City/State/Zip:

FFP Partners, LP 817-838-4786

Burkburnett, TX 76354

List Previous names of this facility

Trucker's Village #2
 3.
 List Previous Owner(s) of this Facility with Address(es)
 1. Red Rock Petroleum

2. Texaco

3.

Has this site ever had an emergency response? No

If yes, then was it: \_\_\_\_\_State Lead \_\_\_\_Owner/Operator Lead (Discuss under Additional notes, below)

Additional Notes:

SECTION #2

| SITE DESCRIPTION                                            | 1.56                                  | $1.2\mu^{-1}$    |                                                  |                  |                  |      |
|-------------------------------------------------------------|---------------------------------------|------------------|--------------------------------------------------|------------------|------------------|------|
| Site Status: Operating                                      |                                       |                  | ostallation                                      | Out of           |                  |      |
| Ground Surface Condit                                       | ions: Paved                           |                  | 1. te                                            |                  | Date (s)         |      |
| Materia                                                     | l: Concrete / A                       | sphalt           |                                                  |                  |                  |      |
| Degree of cracking (X is                                    | n front):N                            | Ainimal          | X Lor                                            | w                | Moderate         | High |
| Utilities: Designate each                                   | utility as - Cond                     | uit (C), P       | otential Conduit                                 | t (P), or No     | ot a Conduit (N) |      |
|                                                             | er: Depth<br>es are overhead          | 2 feet<br>2 feet | Flow Direction<br>Flow Direction                 |                  |                  |      |
| Have the utilities been<br>Are utilities uncovered          | inspected                             | Yes<br>          | No<br>X<br>X                                     |                  | Dates            |      |
| IMMEDIATE LAND U                                            | JSE (within 500 i                     | feet):           |                                                  |                  |                  |      |
| North: Wooded / Ravin<br>Northeast:                         | e<br>Pasture / Wood                   | led              |                                                  |                  |                  |      |
| Northwest:<br>South: Vacant                                 | Interstate-35                         |                  |                                                  |                  |                  |      |
| Southeast:                                                  | Pasture / Deep                        | Fork Cre         | ek                                               |                  |                  |      |
| Southwest:<br>West: Interstate-35<br>East: Pasture / Deep 1 | Interstate-35<br>Fork Creek           |                  |                                                  |                  |                  |      |
| Surface Drainage:<br>Drainage Discharge:                    | Direction(s): N<br>Stream Yes<br>Lake | E                | Grade (ft/ft):<br>If YES, name:<br>If YES, name: | .017<br>Deep For |                  |      |
| Groundwater recharge/                                       | discharge area:                       | Yes              | If YES, aquifer                                  | name: Gai        | rber Sandstone   |      |
| Additional Notes:                                           |                                       |                  |                                                  |                  |                  |      |

## SECTION #3

## UNDERGROUND STORAGE TANK TYPE

| Tank<br>Use O | Product<br>/Close,C/F | Capacity<br>Remove R | Active | Installation | Out of              |
|---------------|-----------------------|----------------------|--------|--------------|---------------------|
|               | Туре                  | (gal)                | (Y/N)  | Date         | Date (s)            |
|               | D' 1                  | 12.000               | v      | 1005         | C. C. PREDER, C. C. |
| 1             | Diesel                | 12,000               | Yes    | 1985         |                     |
| 2             | Diesel                | 12,000               | Yes    | 1985         |                     |
| 3             | Diesel                | 4,000                | Yes    | 1985         |                     |
| 4             | Gasoline              | 8,000                | Yes    | 1985         |                     |
| 5             | Gasoline              | 8,000                | Yes    | 1985         |                     |
| 6             | Gasoline              | 5,000                | Yes    | 1985         |                     |
| 7             | Gasoline              | 10,000               | Yes    | 1985         |                     |

Additional Notes:

## LAND USE SUMMARY

The purpose of this section is to identify existing and reasonable beneficial uses for land.

### CURRENT LAND USE

|                   | Current (Y/N) | Prior (Y/N) | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------|---------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Residential       |               |             | ) (W 2, <u>&amp; 3(</u> W 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Non-residential   | X             | x           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sensitive/special |               |             | ward <del>e week</del> of his as a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Other             |               | - 23        | n in the adopted of the second s |
|                   |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Distance and direction to the nearest residence (feet): 1600 feet southwest

Distance and direction to any environmentally sensitive area (feet) within a 1/2 mile (Define in Notes): inter

Site is over the Garber Sandstone. Deep Fork Creek 800 feet east.

## Distance and direction to the nearest school, hospital, day care, retirement home, etc., (feet) (specify):

Over 1 mile away.

Distance and direction to the nearest commercial/industrial site (feet) (specify): 600 feet west Statuary Shop

Additional Notes:

## FUTURE LAND USE

|                   | Potential (Y/N) | COMMENTS |
|-------------------|-----------------|----------|
| Residential       |                 |          |
| Non-residential   | Х               |          |
| Sensitive/special |                 |          |
| Other             |                 |          |

Additional Notes:

## ORBCA SUMMARY REPORT

## CHRONOLOGY OF EVENTS

| Date      | Event we be all a second rises approximately a second rises approximately a second rise of the second rises and second rises are second rises and second rises are second rises |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3/10/98   | Release Confirmed, assigned Case #064-2040 Conversion Place                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3/30/98   | 72 & 73 Reports submitted. Property Transmitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3/31/98   | 72 & 73 Reports approved by OCC. System Tightness Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4/8/98    | Four (4) monitoring wells installed (MW-1D, MW-1, MW-2, & MW-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4/17/98   | Two (2) monitoring wells installed (MW-4 and MW-5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           | Free product found, initiated free product removal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5/13/98   | Free Product Report (FPR) submitted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5/26/98   | Carbon canister attached to water flow from the on-site water well. This is a temporary measure until a permanent drinking water source can be assigned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6/8-12/98 | Nineteen (19) 4" free product recovery wells installed (MW-21 through MW-39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7/14/98   | Five (5) 4" free product recovery wells installed (MW-39 through MW-43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7/27/98   | Free Product Recovery System Workplan submitted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7/29/98   | DEQ meeting to discuss alternate drinking water sources.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8/14/98   | FPR submitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8/18/98   | Four (4) 4" free product recovery wells installed (MW-44 through MW-47)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8/19/98   | ORBCA Tier 1A Report begun.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9/2/98    | Recovery System Workplan resubmitted as a purchase order.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

SECTION #5

## ORBCA SUMMARY REPORT

SECTION #6

| RELEA                                 | SE CHARACTERIZAT                                                                             | ION                                  | e IN PI    | LAC)<br>Trans              | AND /              | ACTIVE.                                                               |
|---------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------|------------|----------------------------|--------------------|-----------------------------------------------------------------------|
| Release                               | discovered during/by (X                                                                      | in front                             | all that a | apply):                    |                    | Alter average removal                                                 |
| <br>x                                 | UST Removal<br>Release Detection Equipr<br>Inventory Control<br>Citizen Complaint<br>Unknown | nent                                 |            |                            | Property<br>System | in Place<br>y Transaction<br>Tightness Testing<br>cident<br>specify): |
| Pumpin                                | ng Mechanism (X in front                                                                     | :):                                  |            |                            |                    |                                                                       |
| х                                     | Pressure                                                                                     | Suction                              |            |                            | Unknow             | vn                                                                    |
| Sources                               | of Release(s) (X in front                                                                    | all that ap                          | oply):     |                            |                    |                                                                       |
| <br><br>Substan                       | Spills/overfills<br>Dispenser<br>Unknown                                                     | l that apr                           | X<br>      | Piping<br>Tank<br>Other (s | specify):-         |                                                                       |
|                                       | ice Released (X in front al                                                                  | ii that app                          | y):        |                            |                    | -2.8 .                                                                |
| х                                     | Gasoline                                                                                     |                                      |            |                            | х                  | Diesel                                                                |
|                                       | Used Oil                                                                                     |                                      |            |                            |                    | AV Gas                                                                |
|                                       | Jet Fuel<br>Other:                                                                           |                                      |            |                            |                    | Hydraulic Fluid                                                       |
| Has the                               | source of release been id                                                                    | lentified?                           | :          | Yes                        |                    |                                                                       |
| Has the                               | release been eliminated?                                                                     | :                                    |            | Yes                        |                    |                                                                       |
| · · · · · · · · · · · · · · · · · · · | ndwater impacted?:                                                                           |                                      |            | Yes                        |                    |                                                                       |
|                                       | ce water impacted?:                                                                          |                                      |            | No                         |                    |                                                                       |
| Is nativ                              | e soil impacted?:                                                                            |                                      |            | Yes                        |                    |                                                                       |
| DISSO                                 | LVED PHASE EXTENT                                                                            | 3                                    |            |                            |                    |                                                                       |
| Has free                              | e product been found at                                                                      | this site (                          | YES/NO     | S)?                        | Yes                |                                                                       |
|                                       | If YES, does free product                                                                    | extend o                             | off-site?: | Yes                        |                    |                                                                       |
|                                       | If YES, denote greatest th<br>Maximum:<br>Current:                                           | hickness (<br>12.5 feet<br>10.64 fee |            | earest 1/:                 | 100 foot):         |                                                                       |
| 1200                                  | If YES, has free product                                                                     | removal b                            | een init   | iated?                     | Yes                | Method: Manual                                                        |
| Bailing/                              | Recovery System                                                                              |                                      |            |                            |                    |                                                                       |
|                                       | If NO, cite reason:                                                                          |                                      |            |                            |                    |                                                                       |
| DETAI                                 | LS OF THE RELEASE(S                                                                          | 5):                                  |            |                            |                    |                                                                       |
|                                       |                                                                                              |                                      |            |                            |                    | 0                                                                     |

Date Discovered:Location:Quantity:3/9/98Inventory Records, tank pit2100 gallons

## TANKS ARE IN PLACE AND ACTIVE

UST/PIPING REMOVAL CHARACTERIZATION

NOTE: A separate SECTION # 7 must be filled out for each UST/AST system removal

| Date of re                       | moval:                                                                                      | Tank N                                                        | lo.:       | -           | Capa                             | city(ies): |          |
|----------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------|-------------|----------------------------------|------------|----------|
|                                  | TED SOIL<br>Excavated Soil                                                                  | Date:                                                         |            |             | Quantity:                        | [ Soil     |          |
|                                  |                                                                                             |                                                               |            | Date        | Quan                             | tity       | Location |
| St                               | tockpiled on-sit                                                                            | e                                                             |            |             |                                  | 8          |          |
| D                                | isposed off-site                                                                            | 4                                                             |            |             |                                  | •          |          |
| υ                                | sed (as fill mater                                                                          | rial) on-site                                                 |            |             |                                  |            |          |
| U                                | sed as road base                                                                            | e <sup>#</sup>                                                |            | <u>.</u>    |                                  |            |          |
| Se                               | oil farm*                                                                                   |                                                               |            |             |                                  | i          |          |
|                                  | t <b>ory soil sample</b><br>ne data in Works                                                | es collected afte                                             |            |             | native soil?                     | Yes / N    | lo       |
|                                  | of excavated so<br>he data in Works                                                         |                                                               |            | d on-site)  |                                  |            |          |
| Groundwa                         | ater sampling d                                                                             | uring excavatio                                               | on?        | Yes / N     | lo                               |            |          |
|                                  | excavation: (X i<br>Open wir<br>Open/dr<br>Barricade<br>Backfilled                          | t <b>h water</b><br>y<br>d<br>1                               |            |             | 10 M 40                          |            |          |
|                                  |                                                                                             | with excavated s<br>Pervious cover                            | ioil       |             | with clean fill<br>Impervious co | ver        |          |
| Was UST<br>If<br>Was pipin<br>If | S to base of US<br>pit over-excava<br>YES, cite dimer<br>g trench over-e<br>YES, cite dimer | ted?<br>nsions (in feet) a<br>xcavated?<br>nsions (in feet) a | and give o | lirection   | (s):                             | -<br>      |          |
| Provide                          | as attachments a                                                                            | i copies of lette                                             | rs, permi  | is, etc., I | or on-site remo                  | val.       |          |

Additional Notes:

SECTION #8

| Is groundwater impacted by release?: Yes<br>STRATIGRAPHY<br>Unconsolidated:<br>Depth Unified Soil Classification General Description of Soil<br>0'-1' N/A Pavement<br>1'-1.5' SW Red Sand<br>Predominant Soil Type: Vadose - Sand Saturated - N/A<br>Consolidated (Lithified):<br>Depth Type of Bedrock & Geologic Formation Rock properties, features & fractures<br>1.5'-? Garber Sandstone, Red, fine-grained, well-cemented.<br>Predominant Bedrock Type: Vadose - Sand sturated - Sandstone<br>Average depth at which groundwater was first encountered (fr.): 30<br>Shallowest depth to water table/piezometer (fr.): 23.44<br>Flow Direction: NE & SW<br>Hydraulic Gradient (i) [fr./fr.]:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STRATIGRAPHY       Inconsolidated:         Depth       Unified Soil Classification       General Description of Soil         0'.1'       N/A       Pavement         1'-1.5'       SW       Red Sand         Predominant Soil Type: Vadose - Sand       Saturated - N/A         Consolidated (Lithified):       Depth       Type of Bedrock & Geologic Formation Rock properties, features & fractures         1.5'-?       Garber Sandstone, Red, fine-grained, well-cemented.       Predominant Bedrock Type:       Vadose - Sandstone         Average depth at which groundwater was first encountered (ft.):       30       Shallowest depth to water table/piezometer (ft.):       23.44         Flow Direction:       NE & SW       NE & SW         Hydraulic Gradient (i) [ft./ft.]:       .074 NE & .049 SW         Vadose Zone 4-6'       Saturated Zone 37-38'         Porosity (q) [cm3/cm3]:       .364       .407         Water Content [cm3/cm3]:       .08       .311         Dry Bulk Density [g/cm3]:       1.68       1.59         Fraction Organic Carbon [g carbon/g soil]       .00077       .00085         Hydraulic Conductivity (K) [ft./day]:       .07       Hydraulic Conductivity test method (X in front):       grain size/sieve analysis       _slug test                                                                        |
| STRATIGRAPHY       Depth       Unified Soil Classification       General Description of Soil         0'-1'       N/A       Pavement         1'-1.5'       SW       Red Sand         Predominant Soil Type: Vadose - Sand       Saturated - N/A         Consolidated (Lithified):       Depth       Type of Bedrock & Geologic Formation Rock properties, features & fractures         1.5'-?       Garber Sandstone, Red, fine-grained, well-cemented.       Predominant Bedrock Type:       Vadose - Sandstone         Average depth at which groundwater was first encountered (fr.):       30       Shallowest depth to water table/piezometer (fr.):       23.44         Flow Direction:       NE & SW       NE & SW       Hydraulic Gradient (i) [fr./fr.]:       .074 NE & .049 SW         Vadose Zone 4-6'       Saturated Zone 37-38'       Porosity (q) [cm3/cm3]:       .364       .407         Water Content [cm3/cm3]:       .08       .311       Dry Bulk Density [g/cm3]:       .068       .311         Dry Bulk Density [g/cm3]:       1.68       1.59       Fraction Organic Carbon [g carbon/g soil]       .00077       .00085         Hydraulic Conductivity (K) [ft./day]:       .07       .07       .00085       .07         Hydraulic Conductivity (K) [ft./day]:       .07       .00085       .07       .00085       .07 <t< td=""></t<> |
| Depth<br>0'-1'       Unified Soil Classification<br>N/A       General Description of Soil<br>Pavement         1'-1.5'       SW       Red Sand         Predominant Soil Type: Vadose - Sand       Saturated - N/A         Consolidated (Lithified):<br>Depth       Type of Bedrock & Geologic Formation Rock properties, features & fractures         1.5'-?       Garber Sandstone, Red, fine-grained, well-cemented.         Predominant Bedrock Type:       Vadose - Sandstone         Average depth at which groundwater was first encountered (ft.):       30         Shallowest depth to water table/piezometer (ft.):       23.44         Flow Direction:       NE & SW         Hydraulic Gradient (i) [ft./ft.]:       .074 NE & .049 SW         Vadose Zone 4-6'       Saturated Zone 37-38'         Porosity (q) [cm3/cm3]:       .364       .407         Water Content [cm3/cm3]:       .08       .311         Dry Bulk Density [g/cm3]:       1.68       1.59         Fraction Organic Carbon [g carbon/g soil]       .00077       .00085         Hydraulic Conductivity (K) [ft./day]:       .07       .00085         Hydraulic Conductivity test method (X in front):       grain size/sieve analysis                                                                                                                                             |
| Predominant Soil Type: Vadose - Sand       Saturated - N/A         Consolidated (Lithified):       Depth       Type of Bedrock & Geologic Formation Rock properties, features & fractures         1.5'-?       Garber Sandstone, Red, fine-grained, well-cemented.         Predominant Bedrock Type:       Vadose - Sandstone         Average depth at which groundwater was first encountered (ft.):       30         Shallowest depth to water table/piezometer (ft.):       23.44         Flow Direction:       NE & SW         Hydraulic Gradient (i) [ft./ft.]:       .074 NE & .049 SW         Vadose Zone 4-6'       Saturated Zone 37-38'         Porosity (q) [cm3/cm3]:       .364       .407         Water Content [cm3/cm3]:       .08       .311         Dry Bulk Density [g/cm3]:       1.68       1.59         Fraction Organic Carbon [g carbon/g soil]       .00077       .00085         Hydraulic Conductivity (K) [ft./day]:       .07       .07         Hydraulic Conductivity test method (X in front):       grain size/sieve analysis                                                                                                                                                                                                                                                                                                   |
| Consolidated (Lithified):<br>Depth Type of Bedrock & Geologic Formation Rock properties, features & fractures<br>1.5'-? Garber Sandstone, Red, fine-grained, well-cemented.<br>Predominant Bedrock Type: Vadose -Sandstone Saturated -Sandstone<br>Average depth at which groundwater was first encountered (ft.): 30<br>Shallowest depth to water table/piezometer (ft.): 23.44<br>Flow Direction: NE & SW<br>Hydraulic Gradient (i) [ft./ft.]:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Depth       Type of Bedrock & Geologic Formation Rock properties, features & fractures         1.5'-?       Garber Sandstone, Red, fine-grained, well-cemented.         Predominant Bedrock Type:       Vadose -Sandstone       Saturated -Sandstone         Average depth at which groundwater was first encountered (ft.):       30         Shallowest depth to water table/piezometer (ft.):       23.44         Flow Direction:       NE & SW         Hydraulic Gradient (i) [ft./ft.]:       .074 NE & .049 SW         Vadose Zone 4-6'         Saturated Zone 37-38'         Porosity (q) [cm3/cm3]:       .364         .08       .311         Dry Bulk Density [g/cm3]:       1.68       1.59         Fraction Organic Carbon [g carbon/g soil]       .00077       .00085         Hydraulic Conductivity (K) [ft./day]:       .07       Hydraulic Conductivity test method (X in front):       grain size/sieve analysis                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Shallowest depth to water table/piezometer (ft.):       23.44         Flow Direction:       NE & SW         Hydraulic Gradient (i) [ft./ft.]:       .074 NE & .049 SW         Vadose Zone 4-6'         Saturated Zone 37-38'         Porosity (q) [cm3/cm3]:       .364         .364       .407         Water Content [cm3/cm3]:       .08         .074 NE       .311         Dry Bulk Density [g/cm3]:       1.68         1.59       .00077         Fraction Organic Carbon [g carbon/g soil]       .00077         Hydraulic Conductivity (K) [ft./day]:       .07         Hydraulic Conductivity test method (X in front):       grain size/sieve analysis       slug test         pump test, period (hours):       X       other (specified in notes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Porosity (q) [cm3/cm3]:       .364       .407         Water Content [cm3/cm3]:       .08       .311         Dry Bulk Density [g/cm3]:       1.68       1.59         Fraction Organic Carbon [g carbon/g soil]       .00077       .00085         Hydraulic Conductivity (K) [ft./day]:       .07         Hydraulic Conductivity test method (X in front):       grain size/sieve analysis       slug test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Porosity (q) [cm3/cm3]:       .364       .407         Water Content [cm3/cm3]:       .08       .311         Dry Bulk Density [g/cm3]:       1.68       1.59         Fraction Organic Carbon [g carbon/g soil]       .00077       .00085         Hydraulic Conductivity (K) [ft./day]:       .07         Hydraulic Conductivity test method (X in front):       grain size/sieve analysis       slug test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Water Content [cm3/cm3]:       .08       .311         Dry Bulk Density [g/cm3]:       1.68       1.59         Fraction Organic Carbon [g carbon/g soil]       .00077       .00085         Hydraulic Conductivity (K) [ft./day]:       .07         Hydraulic Conductivity test method (X in front):       grain size/sieve analysis       slug test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dry Bulk Density [g/cm3]: 1.68 1.59<br>Fraction Organic Carbon [g carbon/g soil] .00077 .00085<br>Hydraulic Conductivity (K) [ft./day]: .07<br>Hydraulic Conductivity test method (X in front): grain size/sieve analysis slug test<br>pump test, period (hours): X other (specified<br>in notes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Fraction Organic Carbon [g carbon/g soil] .00077 .00085<br>Hydraulic Conductivity (K) [ft./day]: .07<br>Hydraulic Conductivity test method (X in front): grain size/sieve analysis slug test<br>pump test, period (hours): X other (specified<br>in notes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Hydraulic Conductivity (K) [ft./day]: .07<br>Hydraulic Conductivity test method (X in front): grain size/sieve analysis slug test<br>pump test, period (hours): X other (specified<br>in notes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hydraulic Conductivity test method (X in front): grain size/sieve analysis slug test<br>pump test, period (hours): X other (specified<br>in notes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| in notes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Is this a perched aquifer?: No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Is the first groundwater encountered confined?: No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Groundwater level fluctuations (± ft.) (cite greatest known from 1 well): 7 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Aquifer name: Garber Sandstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Annual precipitation, 30-yr avg. (in/yr): 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Identify any hydrogeologically sensitive areas that are either in, or within 1 mile of the COC's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| plume:<br>Site is over the Garber Sandstone. Deep Fork Creek is 800 feet east of the site.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Additional Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| The hydraulic conductivity was derived by calculations based on the assumption that the station is 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

The hydraulic conductivity was derived by calculations based on the assumption that the station is 50 years old and the plume has been mobile since the station began. This is a most conservative assumption and will result in a hydraulic conductivity that is lower than actual conditions. The free product plume has traveled 234 feet over 50 years. The Flow velocity is 4.68 ft/yr, the Darcy velocity is flow velocity x porosity = 1.9 ft/yr. The hydraulic conductivity is Darcy velocity / gradient (.074) = 26 ft/yr or .07 ft/day. The northeast gradient was used because the receptor is north of the tank pit.

| Irrigation (Non-Agri.)       Industrial Supply         Public/Municipal Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WATER USE<br>NOTE: Denote all wells within 1 | /2 mile radius      | s of the site o          | n Topographic |                   |              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------|--------------------------|---------------|-------------------|--------------|
| Current       Potential       Comments         Domestic Drinking       Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GROUNDWATER RESOURC                          | ES                  | a in the stack           | anna.         |                   |              |
| Domestic Drinking       Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Carrier and the second second                | Y/N                 | Y/N                      | (e.g. D       | istance from sou  | rce to POE)  |
| Domestic Drinking       Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              | Current             | Potenti                  | al Com        | ments             |              |
| Public/Municipal Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Domestic Drinking                            | Yes                 |                          | -             |                   |              |
| Industrial Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Irrigation (Non-Agri.)                       | an an <u>an 1</u> 7 | 10 - 11 <u>1</u> .<br>11 |               |                   |              |
| Agriculture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Public/Municipal Supply                      |                     |                          |               |                   |              |
| Other (Define in Notes)       Yes       Restaurant on site uses water         well.       Yes       Restaurant on site uses water         Within Wellhead       Protection Area       Yes         Protection Area       Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Industrial Supply                            | ` <u> </u>          |                          |               |                   |              |
| well.         Within Wellhead         Protection Area       Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Agriculture                                  |                     | _                        |               |                   |              |
| well.         Within Wellhead         Protection Area       Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Other (Define in Notes)                      | Yes                 |                          | Resta         | urant on site use | s water      |
| Within Wellhead         Protection Area       Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                     |                          |               |                   |              |
| Within Wellhead         Protection Area       Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                     |                          | Baada         | lar.              |              |
| Protection Area       Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Within Wellhead                              |                     |                          |               |                   |              |
| Likelihood of use of groundwater in the future (X in front):<br>None/Extremely UnlikelyLow X MediumHigh<br>Water Quality (PPM):<br>TDS: 320 Specific Conductance: Chlorides: 14<br>Hardness: 156 Nitrates: 1 Iron:<br>Sulfates: 17 Pesticides (specify): Other (specify):<br>Is the site and surrounding area supplied by a public/municipal/rural water district system?: No<br>Responsible party is in the process of extending the city water main to service the station and<br>restaurant.<br>SURFACE WATER RESOURCES - Not relevant<br>Current Potential Comments<br>Domestic supply<br>Public/Municipal Supply<br>Recreational<br>Other<br>Likelihood of use of surface water in the future (X in front): |                                              | Vec                 |                          |               |                   |              |
| None/Extremely UnlikelyLow X MediumHigh<br>Water Quality (PPM):<br>TDS: 320 Specific Conductance: Chlorides: 14<br>Hardness: 156 Nitrates: 1 Iron:<br>Sulfates: 17 Pesticides (specify): Other (specify):<br>Is the site and surrounding area supplied by a public/municipal/rural water district system?: No<br>Responsible party is in the process of extending the city water main to service the station and<br>restaurant.<br>SURFACE WATER RESOURCES - Not relevant<br>Current Potential Comments<br>Domestic supply<br>Public/Municipal Supply<br>Recreational<br>Other<br>Likelihood of use of surface water in the future (X in front):                                                                 | riotection Area                              | 165                 |                          |               | 1                 |              |
| None/Extremely UnlikelyLow X MediumHigh<br>Water Quality (PPM):<br>TDS: 320 Specific Conductance: Chlorides: 14<br>Hardness: 156 Nitrates: 1 Iron:<br>Sulfates: 17 Pesticides (specify): Other (specify):<br>Is the site and surrounding area supplied by a public/municipal/rural water district system?: No<br>Responsible party is in the process of extending the city water main to service the station and<br>restaurant.<br>SURFACE WATER RESOURCES - Not relevant<br>Current Potential Comments<br>Domestic supply<br>Public/Municipal Supply<br>Recreational<br>Other<br>Likelihood of use of surface water in the future (X in front):                                                                 | T 11-111                                     |                     | N : (                    | A.            |                   |              |
| Water Quality (PPM):       TDS: 320       Specific Conductance:       Chlorides: 14         Hardness: 156       Nitrates: 1       Iron:         Sulfates: 17       Pesticides (specify):       Other (specify):         Is the site and surrounding area supplied by a public/municipal/rural water district system?: No       Responsible party is in the process of extending the city water main to service the station and restaurant.         SURFACE WATER RESOURCES       - Not relevant       Comments         Domestic supply                                                                                                                                                                           |                                              |                     | ire (A in from           |               |                   |              |
| Water Quality (PPM):       TDS: 320       Specific Conductance:       Chlorides: 14         Hardness: 156       Nitrates: 1       Iron:         Sulfates: 17       Pesticides (specify):       Other (specify):         Is the site and surrounding area supplied by a public/municipal/rural water district system?: No       Responsible party is in the process of extending the city water main to service the station and restaurant.         SURFACE WATER RESOURCES       - Not relevant       Comments         Domestic supply                                                                                                                                                                           | None/Extremely Unlikely                      | Low                 |                          |               |                   | 0            |
| TDS: 320       Specific Conductance:       Chlorides: 14         Hardness: 156       Nitrates: 1       Iron:         Sulfates: 17       Pesticides (specify):       Other (specify):         Is the site and surrounding area supplied by a public/municipal/rural water district system?: No       Responsible party is in the process of extending the city water main to service the station and restaurant.         SURFACE WATER RESOURCES       - Not relevant       Comments         Domestic supply                                                                                                                                                                                                      |                                              |                     |                          | ur r          |                   | 1.8 a. 2. 5k |
| Hardness: 156       Nitrates: 1       Iron:         Sulfates: 17       Pesticides (specify):       Other (specify):         Is the site and surrounding area supplied by a public/municipal/rural water district system?: No         Responsible party is in the process of extending the city water main to service the station and restaurant.         SURFACE WATER RESOURCES       - Not relevant         Current       Potential         Comments         Domestic supply                                                                                                                                                                                                                                   |                                              | _                   |                          |               |                   |              |
| Sulfates: 17       Pesticides (specify):       Other (specify):         Is the site and surrounding area supplied by a public/municipal/rural water district system?: No         Responsible party is in the process of extending the city water main to service the station and restaurant.         SURFACE WATER RESOURCES       - Not relevant         Current       Potential       Comments         Domestic supply                                                                                                                                                                                                                                                                                         | TDS: 320                                     |                     | ductance:                |               | Chlorides: 14     | ł            |
| Is the site and surrounding area supplied by a public/municipal/rural water district system?: No<br>Responsible party is in the process of extending the city water main to service the station and<br>restaurant.<br>SURFACE WATER RESOURCES - Not relevant<br>Current Potential Comments<br>Domestic supply                                                                                                                                                                                                                                                                                                                                                                                                    | Hardness: 156                                | Nitrates: 1         |                          |               | Irc               | on:          |
| Is the site and surrounding area supplied by a public/municipal/rural water district system?: No<br>Responsible party is in the process of extending the city water main to service the station and<br>restaurant.<br>SURFACE WATER RESOURCES - Not relevant<br>Current Potential Comments<br>Domestic supply<br>Public/Municipal Supply<br>Recreational<br>Other<br>Likelihood of use of surface water in the future (X in front):                                                                                                                                                                                                                                                                              | Sulfates: 17                                 | Pesticides (sp      | pecify):                 | -             | Other (specif     | y):          |
| Current       Potential       Comments         Domestic supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                     |                          |               |                   |              |
| Public/Municipal Supply<br>Recreational<br>Other<br>Likelihood of use of surface water in the future (X in front):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SURFACE WATER RESOURC                        |                     | 55.50 C. 3 5 5 6 C. C.   | Potential     | Comments          |              |
| Public/Municipal Supply<br>Recreational<br>Other<br>Likelihood of use of surface water in the future (X in front):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                              |                     |                          |               |                   |              |
| Recreational<br>Other<br>Likelihood of use of surface water in the future (X in front):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Domestic supply                              |                     |                          | 5 <u></u>     |                   |              |
| Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Public/Municipal Supply                      | 1                   |                          |               |                   |              |
| Likelihood of use of surface water in the future (X in front):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Recreational                                 | 1                   |                          |               |                   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Other                                        |                     |                          |               |                   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Likelihood of use of surface wat             | er in the futu      | tre (X in from           | nt).          |                   |              |
| X None/Extremely unlikely Low Medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X None/Extremely unlikely                    |                     | -                        |               | Medium            |              |
| 방향 중 전 2012년 201             | High                                         |                     | 2011                     |               |                   |              |
| If a stream is, or may potentially be, impacted by COC's, does the stream have:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              | v he impacte        | d by COC's               | does the stre | am have           |              |
| Intermittent water flow X Continuous water flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |                     |                          |               | ani nave:         |              |

Additional Notes:

#### SECTION #10

## SITE CONCEPTUAL EXPOSURE SCENARIO - CURRENT CONDITIONS

List all completed exposure pathways and reason(s) for inclusion. List all questionable exposure pathways and reason(s) for exclusion. Remove any NOT COMPLETE pathways

| Potentially |  |
|-------------|--|
|-------------|--|

| Exposed  | Exposure route, medium, | Justification of inclusion or |
|----------|-------------------------|-------------------------------|
| Receptor | and point of exposure   | exclusion of pathways         |
| Devident |                         |                               |

Resident:

No residents within 1600 feet.

## Commercial Worker:

No Indoor inhalation of vapors from sub-surficial soil

Yes Indoor inhalation of vapors from deep groundwater

Yes Ingestion of deep groundwater

## Construction Worker:

Contamination is too deep for exposure.

R. volents are 1600°
 d. signadients
 B. Clents are 1600°
 d. signadient

Soil is not impacted under the building.

an waalb strat

Groundwater is impacted under building.

Station uses an on site water well, the carbon canister may quite working before the city water line is installed.

## SITE CONCEPTUAL EXPOSURE SCENARIO - FUTURE CONDITIONS

List all completed exposure pathways and reason(s) for inclusion. List all questionable exposure pathways and reason(s) for exclusion. to how the test a statistic it was Remove any NOT COMPLETE pathways

| Potentially | sati i-ali              | of laboratory analysis of derived from |  |  |
|-------------|-------------------------|----------------------------------------|--|--|
| Exposed     | Exposure route, medium, | Justification of inclusion or          |  |  |
| Receptor    | and point of exposure   | exclusion of pathways                  |  |  |

### **Resident:**

Yes Ingestion of deep groundwater

Yes Inhalation of deep groundwater

Pathways to be evaluated under Tier 2/3

Yes Dermal contact with deep groundwater

downgradient. Residents are 1600' downgradient.

Residents are 1600'

tradies independent of parameter changes and section off

Residents are 1600' downgradient.

## Commercial Worker:

Yes Ingestion of deep groundwater A future water well is possible. Yes Evaluated under current Indoor inhalation of vapors from deep groundwater conditions.

Pathways to be evaluated under Tier 2/3 Dermal contact with deep groundwater Yes

### **Construction Worker:**

Contamination is too deep for exposure.

A future water well is possible.

Tier 2/ Fier 3 Source

## TIER1A.XLS INPUT/OUTPUT

Insert at this point in the report all the input and output spreadsheets from the tier1a.xls file. If you need to make more than one run based on varying site conceptual exposure scenarios or fate and transport parameters, you need to clearly describe those scenarios or parameter changes and section off each run. If a fate and transport factor used is not the default, laboratory analysis or derived from the direct field observation, then you need to describe below why you are justified in using that particular value.

### Current Tier 1A

In the first analysis, the commercial worker inhalation of vapors from the free product plume was modeled.

POE distance was set to 1 foot since MW-42 has over 10 feet of free product and the building is downgradient from MW-42.

In the second analysis, the commercial worker ingestion of deep groundwater was modeled. Although there is a carbon canister on the current water well, it may quite working before the city water main is installed. Once the water main has been installed, the RBSLs from this pathway will be removed.

#### Future Tier 1A

In the first future analysis, residential ingestion of deep groundwater was modeled. The POE distance was set at 1600 feet.

In the second future analysis, residential inhalation of deep groundwater was modeled using the same POE distance of 1600 feet.

For the third future analysis, a water well could be drilled near this site. The POE distance was set to 300 feet to reflect current OWRB regulations that a water well can not be drilled within 300 feet of a known contaminant plume. Commercial worker ingestion of groundwater was modeled.

The pathway of dermal contact with deep groundwater by the residents and commercial worker was considered but not modeled since the Tier 1A model is not designed for this particular pathway. When the Tier 2 is completed, the future dermal contact pathway will be modeled with a different software package.

| PARAMETER, Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | Tier 2/Tier 3                                                                                                    |                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------|-----------------|
| Source parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                                                                                                  |                 |
| 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 9 R5 US     | कर्त (२) वर्ष केल्स अल                                                                                           | C <sup>11</sup> |
| Depth to groundwater, cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 714            |                                                                                                                  | on-site         |
| Depth to surficial soil sources, cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30.48          |                                                                                                                  |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 304.8 mgc This | le <del>rrenten</del> .                                                                                          |                 |
| Thickness of vadose zone, cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 701 has a      | less capiting this                                                                                               | on-site         |
| Building parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                                                                                                  |                 |
| Height of the indoor space (Building)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                                                                                  |                 |
| On/Off-site Resident (adult and child), cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 300 result     | a <del>n biot</del> test door                                                                                    | 1.717.000       |
| On-site Commercial Worker, cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 300            |                                                                                                                  |                 |
| Construction Worker, cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300            |                                                                                                                  |                 |
| Width of the indoor space (Building), cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2256           |                                                                                                                  | on-site         |
| Length of the indoor space (Building), cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4481           | a <del>density</del> by the second                                                                               | on-site         |
| Fraction of area exposed by cracks, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01           |                                                                                                                  |                 |
| Enclosed space air exchange rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4              | Wind and a start                                                                                                 |                 |
| On/Off-site Resident (adult), 1/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12             |                                                                                                                  |                 |
| On/Off-site Resident (child), 1/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12             |                                                                                                                  |                 |
| On/Off-site Commercial Worker, 1/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18             |                                                                                                                  |                 |
| Averaging time for vapor flux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                                                                                                  |                 |
| On/Off-site Resident (adult), sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 946080000      |                                                                                                                  |                 |
| On/Off-site Resident (child), sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 189216000      | 3                                                                                                                |                 |
| A second s | 788400000      |                                                                                                                  |                 |
| Construction Worker, sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31536000       |                                                                                                                  |                 |
| Groundwater parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                                                                                                  |                 |
| Groundwater Darcy velocity, cm/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 57.9           |                                                                                                                  | equation        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 457            |                                                                                                                  | well log        |
| Source width parallel to flow direction, cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7925           |                                                                                                                  | on-site         |
| Thickness of capillary fringe, cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13             |                                                                                                                  | well log        |
| Soil parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                                                                                  |                 |
| La Porte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 272725         |                                                                                                                  |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.364          |                                                                                                                  | petro           |
| Volumetric water content in vadose zone soils, cc/cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.08           |                                                                                                                  | petro           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.15           |                                                                                                                  | petro           |
| Soil bulk density, g/cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.68           |                                                                                                                  | petro           |
| Fraction organic carbon content in soil, g-C/g-soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00077        |                                                                                                                  | petro           |
| Other parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                                                                                                                  |                 |
| Particulate emission rate, g/cm <sup>2</sup> -s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.9E-09        |                                                                                                                  |                 |
| Wind speed over gr. surface in ambient mixing zone, cm/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                                                                                                  |                 |
| Width of source parallel to wind direction, cm/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2500           |                                                                                                                  |                 |
| Ambient air mixing zone height, cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200            |                                                                                                                  |                 |
| Infiltration Rate (see Table 5-4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | and the second | · · · · ·       |
| West Zone County, cm/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7              |                                                                                                                  |                 |
| Central Zone County, cm/yr<br>East Zone County, cm/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10             |                                                                                                                  |                 |
| Lines I and I among and I and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13             |                                                                                                                  |                 |

Other parameter(s) specifically for Tier 2/Tier 3

#### **JUSTIFICATION FOR TIER 2/TIER 3** FATE AND TRANSPORT PARAMETERS

Finylbenzene

Tier 2/Tier 3 parameter: Depth to Groundwater Justification: observed on site. The shallowest known water level was used, (23.44 feet below ground surface)

Xylene Tier 2/Tier 3 parameter: Vadose Zone and Capillary Fringe Thicknesses Justification: observed while drilling, see well logs. The sandstone has a low capillary fringe of 5".

Tier 2/Tier 3 parameter: Width and Length of Building Justification: The on site building measured 74 x 147 feet. For the resident 1600 feet downgradient, the default was used of 2000 x 2000 cm or 66 x 66 ft.

Darcy Velocity and Hydraulic Conductivity Tier 2/Tier 3 parameter: Justification: The hydraulic conductivity was derived by calculations based on the assumption that the station is 50 years old and the plume has been mobile since the station began. This is a most conservative assumption and will result in a hydraulic conductivity that is lower than actual conditions. The free product plume has traveled 234 feet over 50 years. The Flow velocity is 4.68 ft/yr, the Darcy velocity is flow velocity x porosity = 1.9 ft/yr. The hydraulic conductivity is Darcy velocity / gradient (.074) = 26 ft/yr or .07 ft/day. The northeast gradient was used because the receptor is north of the tank pit.

Tier 2/Tier 3 parameter: Mixing Zone Thickness in Groundwater Justification: observed while drilling, see well logs (15 feet)

Tier 2/Tier 3 parameter: Source Width and Depth Justification: observed during field activities. 260 feet long x 10 feet thick.

Tier 2/Tier 3 parameter: Soil Petrophysical Parameters Justification: measured in laboratory

Tier 2/Tier 3 parameter: Point of Exposure

The building is 70 feet downgradient of MW-42 which has over 10 feet of free product Justification: in it. Groundwater contamination is known to be under the building, therefore a distance of 14 feet was used.

The future possible commercial worker's water well must be 300 feet away from known contaminant plumes.

The residents are 1600 feet downgradient of the site.

Hydraulic Gradient Tier 2/Tier 3 parameter:

Justification: observed during field acitivities. There is a mounding effect at the tank pit with the water table sloping off either side. The gradient on the southwest side is .049 ft/ft. The northeast side's gradient is .074 ft/ft

# Comparison of Concentration Levels with the RBSLs (ppm)

|                                        |                 |              | there is a module       | d Risk-Based    |
|----------------------------------------|-----------------|--------------|-------------------------|-----------------|
| Soil                                   | Benzene         | Toluene      | Ethylbenzene            | Xylene          |
| Current                                |                 | nakše white  | sould exist out the are |                 |
| Comm. soil to protect G.W.             | 0.0             | 28.4         | 7 14.24                 | 55.71           |
| commit bon to protect 0. W.            | 0.0             | 20.1         |                         | 55.71           |
| Future                                 |                 |              |                         |                 |
|                                        | 6.02            | 104.         | 56 166.24               | 55.71           |
| Res. soil to protect G.W.              | 6.93            |              |                         |                 |
| Comm. soil to protect G.W.             | 1.19            | 237.         | 15 118.58               | 55.71           |
|                                        |                 |              |                         |                 |
| Minimum soil RBSL                      | 0.0             | 28.4         | 47 14.24                | 55.71           |
| Max. On site level<br>MW-2 26' 4/8/98  | · 11.           | 240.         | · · · 91.               | 430.            |
| Groundwater                            |                 |              |                         |                 |
| Current                                |                 |              |                         |                 |
| Comm. inh deep G.W.                    | .503            | 530.         | 739 152.                | 198.            |
| Comm. ing deep G.W.                    | .01             | 20.4:        | 5 10.22                 | 198.            |
| Future                                 |                 |              |                         |                 |
| Res. Child inh deep G.W.               | 22.833          | 3 57.79      | 99 138.468              | 47.828          |
| Res. Adult inh deep G.W.               | 21.31           | 1 269.'      | 726 152.                | 198.            |
| Res. ing deep G.W.                     | 47.693          | 3 508.0      | 07 152.                 | 198.            |
| Comm. ing deep G.W.                    | 8.22            | 170.         | 3 85.15                 | 198.            |
| Minimum G.W. RBS<br>Max. On site level | SL .01<br>44.39 | 20.4<br>26.5 |                         | 47.828<br>46.56 |

The effective solubilities were listed because free product is present at the site.

| Res. = Residential | Comm = commercial worker |
|--------------------|--------------------------|
| ing = ingestion    | inh = inhalation         |
| G.W. = groundwater |                          |

excreded.

### CONCLUSIONS AND RECOMMENDATIONS OF TIER 1-A ANALYSES

Maximum chemical-of-concern (C-O-C) concentrations compared with minimum modified Risk-Based Screening Levels (RBSLs) for all completed pathways, excluding cross- or down-gradient groundwater ingestion receptors. Comparisons should only be made with soil that still exists in the area or edded groundwater data that is no more than two years old. If free product exists list maximum solubility concentrations.

| Maximum Soil C-O-C (<br>Exceed/Nonexceeded                                                                             | Concentration    |            | Min. Allowab    | le Mo | od. R | BSL                   |
|------------------------------------------------------------------------------------------------------------------------|------------------|------------|-----------------|-------|-------|-----------------------|
| Benzene                                                                                                                | mg/Kg            |            |                 | mg/I  | Kg    | distant and           |
| Toluene                                                                                                                | mg/Kg            |            |                 | mg/I  | Kg    |                       |
| Ethylbenzene                                                                                                           | mg/Kg            | ter ng te  |                 | mg/I  | Kg    |                       |
| Xylenes                                                                                                                | mg/Kg            | 10         |                 | mg/H  | Kg    | ter an an er          |
| Max. Groundwater C-C<br>Exceed/Nonexceeded                                                                             | )-C Concentrati  | ion        | Minimum Mo      | d. RE | BSL   | anes and<br>of basis  |
| Benzene                                                                                                                | 44.39 mg/L       |            | .50             | 3 mg  | g/L   | exceeded              |
| Toluene                                                                                                                | 26.54 mg/L       |            | 57.7            | 99 m  | g/L   | not exceeded          |
| Ethylbenzene                                                                                                           | 2.87 mg/L        | 9.000      | 138.4           | 58 m  | g/L   | not exceeded          |
| Xylenes                                                                                                                | 46.56 mg/L       |            | 47.8            | 28 m  | g/L   | not exceeded          |
| Are there any cross- or<br>If YES, what is the dire<br>groundwater plume.<br>If YES, complete the ne<br>GROUNDWATER IN | ction and distar | ice to the | nearest recepto |       |       | Yes<br>Well is in the |
| Maximum Soil C-O-C (<br>Exceed/Nonexceeded                                                                             | Concentration    |            | Minimum Me      | d. RI | BSL   |                       |

| Benzene      | 11.00 mg/Kg  | 0.0 mg/Kg   | exceeded |
|--------------|--------------|-------------|----------|
| Toluene      | 240.00 mg/Kg | 28.47 mg/Kg | exceeded |
| Ethylbenzene | 91.00 mg/Kg  | 14.24 mg/Kg | exceeded |
| Xylenes      | 430.00 mg/Kg | 55.71 mg/Kg | exceeded |

| Max. Groundwater<br>Exceed/Nonexceede |            | ation                               | Min. Allowable Mod. | RBSL                      |
|---------------------------------------|------------|-------------------------------------|---------------------|---------------------------|
| All Gran and an                       |            | 76433 1855 1                        |                     | and domining time         |
| Benzene                               | 44.39 mg/L | 0.761.04%                           | 0.01 mg/L           | exceeded                  |
| Toluene                               | 26.54 mg/L | odanat Sec.                         | 20.45 mg/L          | exceeded                  |
| Ethylbenzene                          | 2.87 mg/L  | arad init <u>e</u> -<br>11 metropia |                     | in the thot exceeded af   |
| Xylenes                               | 46.56 mg/L |                                     | 198.00 mg/L         | not exceeded              |
| The Ch :                              | 0          |                                     |                     | is stion of the currently |
| dear                                  |            | 14.11 254                           |                     | The ORBCA is not a        |
| guaron v                              |            | NTP at                              | 18                  | to die                    |
| CONCLUSIONS:                          |            | A-13                                |                     | stations are based on     |
|                                       |            | $(21) \sim T_{\rm C}$               |                     |                           |

Current pathways include commercial worker inhalation of vapors from deep groundwater and is commercial worker ingestion of deep groundwater. A water well is on site and in use by the station and restaurant. A carbon canister has been placed on the well to filter out hydrocarbons and the responsible party is in the process of extending the city water main to the site. After the city water main has been installed, the current groundwater ingestion pathway will be removed from this analysis.

Future pathways include commercial worker ingestion of deep groundwater via a possible water well that could be drilled 300 feet away from the groundwater plume, and residential inhalation of vapors from and ingestion of deep groundwater. The pathway of dermal contact with deep groundwater by the commercial worker and resident will be modeled in the Tier 2 analysis. The future possible pathway of commercial worker inhalation of vapors from the deep groundwater was considered but not modeled since it is also current, (the current pathway is a more conservative number).

All of the soil RBSLs are exceeded.

There is over ten (10) feet of free product floating on the water table, therefore the groundwater concentrations listed are the effective solubilities. Only 9 wells out of 32 do not have free product. If these 9 were sampled, they would not accurately depict the groundwater contamination, therefore groundwater sampling of the 9 wells was not necessary.

The dissolved groundwater concentrations listed as effective solubilities exceed only the benzene and toluene RBSLs.

### **RECOMMENDATIONS:**

Based on this Tier 1A analysis, we recommend recovering all available free product. After the free product has been removed, the case will be evaluated for remediation of dissolved phase constituents in the groundwater with the possibility of conducting a Tier 2 analysis.

### LIMITING CONDITIONS

All findings in this report are based on facts and circumstances as they existed during the Assessment. A change in the facts and circumstances upon which this report was based may affect the findings.

In addition, AGES has relied on information derived from OCC prescribed procedures and secondary sources. We have made limited independent investigation to determine the accuracy of these procedures and have assumed that the information is reliable and complete.

The Oklahoma Based Corrective Action Assessment (ORBCA) is an evaluation of the currently identified and perceived future pathways and their completed receptors. The ORBCA is not a guarantee or warranty that the property evaluated is free of all defects with regard to the environmental condition of the property. AGES conclusions and recommendations are based on regulations in force at the time of the assessment. Changes in laws, regulations, jurisdiction, or regulatory procedures could affect the findings of the report. Furthermore, this Assessment is not a comprehensive engineering study. Residual uncertainty and risk always remain when information is limited

In the future, if any petroleum levels are discovered to exceed those determined appropriate for the site, then the case could be reopened according to OCC UST Rules and Regulations.

|                    | SUMM    | ARY O   | F GROU  | NDWATER      | DATA   | 1     |       |
|--------------------|---------|---------|---------|--------------|--------|-------|-------|
| Sample ID          | Sampled | Benzene | Toluene | Ethylbenzene | Xylene | TPH-G | TPH-D |
| MW-5               | 4/20/98 | 10      | 33      | 3.5          | 12     | 71    | ND    |
| Water Well         | 4/20/98 | 0.0051  | ND      | ND           | ND     | ND    | ND    |
| Water Well, spigot | 5/12/98 | 0.0006  | 0.0007  | ND           | 0.0012 |       |       |
| Water Well         | 5/28/98 | ND      | ND      | ND           | ND     | ND    | ND    |
| Water Well, spigot | 5/28/98 | ND      | ND      | ND           | ND     | ND    | ND    |

| WELL  | Sampled | Depth | Benzene | Toluene | Ethylbenzene | Xylene | TPH-G | TPH-D | Naphthalene | MtB      |
|-------|---------|-------|---------|---------|--------------|--------|-------|-------|-------------|----------|
| MW-1  | 4/8/98  | 16'   | 2.8     | 0.31    | 0.43         | 5.6    | 62    | 13402 |             |          |
| MW-1D | 4/8/98  | 25-27 | 2.2     | 98      | 0.76         | 96     | 470   | 2526  | 1 P.        |          |
| MW-2  | 4/8/98  | 28'   | 11      | 240     | 91           | 430    | 920   | 5457  |             |          |
| MW-3  | 4/8/98  | 30'   | 0.018   | 0.17    | 0.18         | 1.2    | 4.9   | ND    |             |          |
| MW-4  | 4/17/98 | 25    | ND      | 0.24    | 0.46         | 2.4    | 9.4   | 43    |             |          |
| MW-5  | 4/17/98 | 2     | ND      | ND      | ND           | ND     | ND    | ND    |             |          |
| MW-5  | 4/17/98 | 25'   | ND      | ND      | ND           | ND     | ND    | ND    |             |          |
| MW-24 | 6/8/98  | 40'   | 0.083   | 2.5     | 3.2          | 19     | 56    | ND    | 4.2         | 705      |
| MW-31 | 6/10/98 | 30'   | ND      | ND      | ND           | ND     | 0.18  | ND    |             |          |
|       |         |       | •       |         |              | a.     |       |       | 2010        | KAARS GR |

•

HILL STATISTICS MANUTATI

SOIL BORING LOG .

| A      | GES                                                                                |                                       |       |                          |            | LOCATION            |       | 2    |             |      | NUMB    | ER MW-1D                                                                                                        |     |
|--------|------------------------------------------------------------------------------------|---------------------------------------|-------|--------------------------|------------|---------------------|-------|------|-------------|------|---------|-----------------------------------------------------------------------------------------------------------------|-----|
| EPTH   | UTHOLOGIC DESCRIPTIO                                                               | N .                                   | E'S   | UNIFIED<br>SOIL<br>FIELD | BLOWS      | PID                 |       |      | DIL SAMPLE  |      |         | REMARKS OR                                                                                                      |     |
| FEET   |                                                                                    |                                       | LOG   | FIELD<br>CLASS.          | PER        | (ppm)               | NO.   | TYPE | DEPT        | н    | REC.    | La substantia de la companya de la c | QNS |
| -      | vFy mayied 55 wacon.                                                               |                                       |       |                          |            | _                   |       | • •  |             |      |         | wrathered                                                                                                       |     |
| 8      | ty ss uncon. white pick                                                            | 1                                     |       |                          |            | -                   |       |      |             |      |         |                                                                                                                 |     |
| - 3    | SAA pink red                                                                       |                                       |       |                          |            | -13                 |       |      |             |      |         |                                                                                                                 |     |
| 5 —    | SAA                                                                                |                                       |       |                          |            | _                   |       |      |             |      |         |                                                                                                                 |     |
|        | Vfg 55 uncon . Pink-ora                                                            |                                       | 6     |                          |            | _                   |       |      |             |      |         |                                                                                                                 |     |
| 1      | SAA dk red                                                                         | ye ?                                  |       |                          |            | -                   |       |      |             |      |         | 1                                                                                                               |     |
|        | SAA pink red                                                                       |                                       |       |                          |            |                     |       |      |             |      |         |                                                                                                                 |     |
| 0 _    | Clayers Red slightly co                                                            | ons.                                  |       |                          |            | _                   |       |      |             |      |         |                                                                                                                 | -   |
| 4      | ty 55 uncon, white<br>ty 55 urangered uncon.                                       |                                       |       |                          | 1          | -                   |       |      |             |      |         |                                                                                                                 |     |
|        |                                                                                    | :                                     |       |                          |            | _                   |       | 1    |             |      |         |                                                                                                                 |     |
|        | vtg 55 Red uncon. w/ chung                                                         | ke of                                 |       |                          |            | _52                 |       |      |             |      |         |                                                                                                                 |     |
| 5 -    | silty 55 white w/ orga                                                             | icatty IT                             | in    |                          |            | -173                |       |      |             |      |         |                                                                                                                 |     |
|        |                                                                                    | 1                                     |       | ж.                       | i i        | -                   |       |      |             |      |         | odor, 4" Red S<br>Black St                                                                                      | s4  |
|        | fg 55 uncon. orange, or                                                            |                                       |       |                          |            | -224                |       |      |             |      |         | Black St<br>odor                                                                                                | am  |
| 1      | vig 55 uncon. Red pink on                                                          | rganic !                              |       |                          |            | _75                 |       |      |             |      |         | oder                                                                                                            |     |
| o —    | SAA white wred slight                                                              | COAS                                  |       |                          | dia tria C |                     |       |      |             |      |         | oder                                                                                                            |     |
| _      |                                                                                    |                                       | 1     |                          | ÷          | -                   |       |      |             |      |         |                                                                                                                 |     |
| 1      | fg 55 litered, frimble w                                                           | caliche                               | -~-   | •                        |            | -258                |       | ŀ    |             |      |         | Oder                                                                                                            |     |
|        | •                                                                                  | 14 10 10 10                           |       |                          |            |                     |       |      |             |      |         |                                                                                                                 |     |
| 5-     | vfgSS white-red slightly                                                           | cons.                                 |       |                          |            | -309                |       |      | 4           |      |         | olor                                                                                                            |     |
|        | vfg SS white-red slightly<br>we/ hand cargers                                      | -                                     |       |                          | 112        | 473                 | 8     |      | 25-         | 27   |         |                                                                                                                 |     |
|        |                                                                                    |                                       |       |                          |            | -37                 |       | ГΙ   |             |      |         |                                                                                                                 |     |
| -      | SAA cruebly dry many h                                                             | Pieces                                |       |                          |            | - ' '               |       | 11   |             |      |         |                                                                                                                 |     |
| -      | TO = 28'                                                                           |                                       |       | •                        |            |                     |       |      |             |      |         |                                                                                                                 | ,   |
| 3      | e 169                                                                              |                                       |       |                          |            | _                   |       |      | ·           |      |         |                                                                                                                 |     |
| 1      | .02 Screen 20-28<br>Blank 0-20                                                     |                                       |       |                          |            | _                   |       |      |             |      |         |                                                                                                                 |     |
| -      |                                                                                    |                                       |       |                          |            |                     |       |      |             |      |         |                                                                                                                 |     |
| -      | No sound above so                                                                  | creen                                 |       |                          |            |                     |       |      |             |      |         |                                                                                                                 |     |
| 1      | No have drilled.                                                                   |                                       |       |                          |            | _                   |       |      |             |      |         |                                                                                                                 |     |
| _      | No hole drilled in Sand p                                                          | sint                                  |       |                          |            | _                   |       |      |             |      |         | c                                                                                                               |     |
| -      | •                                                                                  |                                       |       | 34<br>-                  |            | -                   |       |      |             |      |         |                                                                                                                 |     |
| Y      | Water Table (24 Hour)                                                              |                                       | -     |                          | G          | APHIC LO            | OG LE | GEN  | 0           |      |         | C/ PAGE                                                                                                         | 1   |
| ☑      | Water Table (Time of Baring)                                                       | 6.2                                   |       |                          |            | TAY                 | 彩     | DEBR | 15          |      | 8-9     |                                                                                                                 |     |
| PID    | <ul> <li>Photoionization Detection (pp.<br/>Identifies Sample by Number</li> </ul> | m)                                    |       |                          |            |                     |       |      | K PEAN      |      | Holle   | -1                                                                                                              |     |
| TYP    | E Sample Collection Method                                                         |                                       |       | 120                      |            |                     |       |      | ON SOLUCIAL | OALL | CO BY   | A 11.                                                                                                           |     |
| M      | SPUT-                                                                              | ROC                                   | c     | Mark 1                   |            | AND                 |       | CLAY | , n         | Loca | Javi    | 5 Drilling                                                                                                      |     |
|        | SARREL AUGER                                                                       | CORE                                  | E     |                          | 0          | RAVEL               |       | CLAY | TEY         | 1    | 00      | sherts                                                                                                          |     |
| 1000   | THIN-                                                                              | NO                                    |       | 22                       | 53         |                     | _     |      | che         | Cust | ING CAM | CELEVATION IT AMEL                                                                                              |     |
|        | TUBE                                                                               | ت                                     | OVERI |                          |            | LAY<br>LAYEY<br>ILT |       | -61  | <u> 18</u>  |      |         |                                                                                                                 | _   |
| 100000 | TH Depth Top and Bottom al Sar                                                     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |       |                          | DOM: 9     | LATET               | 1     |      |             | LOCA | TION OR | GRID CODADINATES                                                                                                |     |

SOIL BORING LOG .

|                     | AGES FF.                                                                                                                                                                                                                                                                                                             | p:c     | ok c                               |                      | LOCATION              |     |       |       | BORIN      | er MW-Z                                                         |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------|----------------------|-----------------------|-----|-------|-------|------------|-----------------------------------------------------------------|
| DEPTH<br>IN<br>FEET |                                                                                                                                                                                                                                                                                                                      | GRAFHIC | UNIFIED<br>SOIL<br>FIELD<br>CLASS. | BLOWS<br>PER<br>FOOT | PID<br>(ppm)          | NO. | SC    | DEPTH |            | REMARKS OR<br>FIELD OBSERVATIONS                                |
| 5 -<br>10 -<br>15 - | UTHOLOGIC DESCRIPTION<br>dk red siltstone w/ clary<br>SAA<br>SAA<br>SAA, med. red color<br>No return<br>med-lite Red fgSSy white<br>Largers<br>SAA<br>Blush-white 55 vfg<br>white, Lite red vfg 55 thin<br>beided<br>Lite Red vfg 55 unconsolided<br>successive coarse grain 55<br>dk red fg 55 frieble unconsolided |         | AGEN<br>CLASS.                     | PEE FOOT             |                       | ND. | 34/11 | DEPTH | REC.       | FIELD OBSERVATIONS<br>Slight wacons.<br>                        |
| 25 -<br>-<br>       | Orange Red Mg 55 unconsol.<br>3" Colliche layer in group clay<br>Red sandy silt<br>shale, Lite red<br>TD = 30'.<br>10' screen .02 slot<br>20' Blank<br>hole krilled in Sandpoint<br>Sanded 2' ubove screen                                                                                                           |         | •                                  |                      | - 208                 |     |       | 26`   | •          | moist, slight oder                                              |
|                     | Water Table (Time of Boring)<br>Photoionization Detection (ppm)<br>L Identifies Sample by Number<br>Sample Callection Method<br>SPUT-<br>BARREL AUGER                                                                                                                                                                | COVER   |                                    |                      | ILT<br>IAND<br>GRAVEL |     |       |       | GETING GRA | Dr:lling<br>20berts<br>Decession int and i<br>CALLD CODADINATES |

SOIL BORING LOG .

|                           | /   | 4665 · . FF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ρ: q                     | okc             |       | LOCATION                                        |     |      |           | BORIN                      | er MW-3                                                                                                                                                             |
|---------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------|-------|-------------------------------------------------|-----|------|-----------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | PTH |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UN S                     | UNIFIED         | BLOWS | PID                                             |     | sc   | IL SAMPLE |                            | REMARKS OR                                                                                                                                                          |
| FE                        | EET | UTHOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GRAFHU                   | FIELD<br>CLASS. | FOOT  | (ppm)                                           | NQ. | ITTE | DEPTH     | REC.                       | FIELD OBSERVATIONS                                                                                                                                                  |
| 5<br>10<br>15<br>20<br>30 |     | Orange-Red fy SS unconsolid.<br>SAA, white/pink<br>SAA w/a lager 3" dk red fy 55<br>SAA, red<br>SAA, pink<br>SAA white-pink<br>Ok red chargey sand unconsol<br>mottled white and pink 55<br>w/3" dk red mottle and organics<br>Hard Layer at 14'<br>Orange fy 55<br>SAA, Litur color, friable<br>Shale, fribble, white/red Layers<br>White-piak 55 fy slightly consoli<br>SAA, orange red, Friable<br>SAA, orange red, Friable<br>SAA, orange red, Friable<br>SAA, orange red, Friable<br>SAA w/ organics<br>w/s" Layer colored yellow at 23'<br>mad. liter Red fy 55 slightly consolic<br>white-yellow vfy 55 friable<br>SAA, orange-red<br>SAA, more consolidated<br>TD = 30'<br>15' Screen .02 slot<br>IS' = Rlank<br>dr: Illed hole in sandpoint<br>Sanded 2' above screen |                          | •               |       |                                                 |     |      | 30        |                            | s" had organic author<br>and was hard<br>"<br>"<br>white vig 55<br>"we t layer"-"mad"<br>"<br>maist<br>slight ador<br>odor<br>odor<br>odor<br>odor<br>odor<br>-<br> |
| EXPLANATION               |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DCK<br>DRE<br>D<br>COVER | ¥               |       | ELAY<br>SILT<br>SANO<br>DRAVEL<br>SILTY<br>CLAY |     |      |           | TING CRAC                  | s Diilling<br>oberts                                                                                                                                                |
|                           | REC | TH Depih Top and Bottom of Sample<br>. Actual Length of Recovered Sample in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Feat                     |                 | BED S | SILT                                            |     |      | - 4       | 1992 (1997)<br>1992 (1997) | 4' N of south te                                                                                                                                                    |

| Image: Second problem       Image: Second pr                                                                                             | F       | AGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FFP-C   | DKC     |                      | LOCATION                                                           |    | l ange |      | BORING MW-5  |                                                                                                                                                  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|----------------------|--------------------------------------------------------------------|----|--------|------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Fill, Concrete1910No ador $f_3$ SS pink uncon33 $5 - 5AA$ slightly cons.13 $5 - 5AA$ planned, friable16 $6 \cdot clarga 3S$ 13 $5 - 5AA$ planned, friable16 $6 \cdot clarga 3S$ 13 $5 - 5AA$ plannette, orn13 $10 - No Recovery1310 - Stard, thin white105 - 5AA pinkink unite115AA pinkink pink uncon105 - 5AA pinkink uncon135 - 5AA pinkink uncon132 - 5AA pinkink pinkink uncon132 - 5AA pinkink pinkink uncon107 - 53 - ginkink uncon107 - 53 - ginkink uncon107 - 55 - ginkink uncon102 - 5AA pinkink pinkink102 - 5AA pinkink pinkink10<$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IN      | UTHOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GRAPHIC | UNIFIED | BLOWS<br>PER<br>FOOT |                                                                    | NG | -      |      |              | ELELO OBCERVATIONS                                                                                                                               |  |  |
| Y     Water Table (24 Hour)     GRAPHIC LOG LEGEND     Outre Datallo     ad       V     Water Table (11me of Boring)     Photoionization Detection (ppm)     Milentifies Sample by Number     Milentifies Sample Collection Method     Milentifies Sample Collection Method |         | Clayey fg SS red uncon<br>fg SS pink uncon<br>SAA Slightly cons.<br>SAA blush red, friable<br>6" clayer 35<br>SAA pink-white, orn<br>No Recovery<br>Clayer 35 Red w/ white 1<br>Provided SS or ange red<br>fg SS or ange red<br>fg SS conse pinkish white<br>SAA pink white<br>clayer 35 dkred, thin white a<br>SAA pink white<br>clayer 35 dkred, thin white a<br>SAA pink white<br>clayer 35 dkred, thin white a<br>SAA pink white<br>SAA pink white<br>SAA pink white<br>SAA pink ish yellow<br>SAA pinkish yellow<br>SAA pinkish yellow<br>SAA pinkish yellow<br>SAA pinkish yellow<br>SAA pinkish yellow<br>SAA pinkish yellow<br>SAA<br>gravel, Brown much<br>Red clay w/ white pink<br>SAA<br>gravel, Brown much<br>Red clay w/ white pink<br>SAA<br>plugged to 32<br>hele in summing |         |         |                      | 3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |    |        |      |              | 5<br>10<br>6' c lage 35 white<br>5 fight odor<br>5 light odor<br>0 dor<br>20<br>0 dor<br>20<br>0 dor, wet<br>has a dirty 8/k<br>hard, wet<br>wet |  |  |
| SPUT.<br>EAREEL AUGER ROCK<br>CORE SAND SANDY Davis Orilling<br>CORE CORE CORE CORE CORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PID NO. | Water Table (Time of Boring)<br>Phataionization Detection (ppm)<br>Identifies Sample by Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |         |                      | CLAY                                                               | 歌  | DEBRIS | 6    | 4-17<br>Holl | -98 of                                                                                                                                           |  |  |
| BE TURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 500 ·   | Y       |                      | SAND<br>GRAVEL                                                     | 8  | SANDY  | ,  u | R.           | s Orilling                                                                                                                                       |  |  |

|            | A.G.E.S.                                                             | FFP-OK      | C                                   |                      | LOCATION     |          |      | 1.000000 | BORIN     | G MW-23                  |
|------------|----------------------------------------------------------------------|-------------|-------------------------------------|----------------------|--------------|----------|------|----------|-----------|--------------------------|
| IN<br>FEET | UTHOLOGIC DESCRIPTION                                                | GRAPHIC     | UNIFIED<br>"SOIL<br>FIELD<br>CLASS. | BLOWS<br>FER<br>FOOT | PID<br>(ppm) | NO.      | SO   | DEPTH    | -         | REMARKS OR               |
| -          | Concrete                                                             |             | CLASS.                              |                      | -            |          |      |          | -         | the second second        |
| -          | Red fy Sandstone                                                     | 1.1         |                                     |                      | -            |          |      |          |           |                          |
| 1          | 2.22                                                                 |             |                                     |                      | -            |          |      |          |           | 8                        |
| -          | pinkish-white fy ss                                                  |             | 1                                   |                      | - 24         |          |      |          |           | 1 20                     |
|            |                                                                      | 1.11        |                                     |                      | -            |          | 11   |          |           |                          |
| 1          | State in the course                                                  |             |                                     |                      | _            |          |      |          |           | TD= 40                   |
| -          | Red for 55                                                           | : :         |                                     |                      | _            |          |      |          |           | scieened 10.40           |
| ° –        | <b>V</b>                                                             | : 1         |                                     |                      | -12          |          |      | ÷        |           |                          |
| -          |                                                                      |             |                                     |                      | _            |          |      | N.       |           | 4" well                  |
| -          |                                                                      |             |                                     |                      | -            |          |      | Sugar    |           |                          |
| 5-         | SAA                                                                  | 1.1         |                                     |                      | -14          |          |      | 24       | 1         | Hole drilled             |
| -          | 1844 - <b>X</b>                                                      | 100         |                                     |                      | _            |          |      |          |           | ווייפק אישב חי           |
| -          |                                                                      |             |                                     |                      | -            |          |      |          |           |                          |
| 1          | 24.14                                                                | . · .       |                                     |                      | -            |          |      |          |           |                          |
| -          | SAA                                                                  |             |                                     |                      | - 33         |          |      |          |           |                          |
| 1          |                                                                      |             |                                     |                      |              |          |      |          |           |                          |
| -          |                                                                      | 1. · ·      |                                     |                      | =            |          |      |          |           |                          |
| . +        | SAA                                                                  |             |                                     |                      |              |          |      |          |           | - In the second          |
| 1          | 2/1/1                                                                |             |                                     |                      | -77          |          |      |          |           | Strong hydrocaub<br>odor |
| -          |                                                                      |             |                                     |                      | _            |          |      |          |           | (                        |
| 1          |                                                                      | ·           |                                     |                      | -            |          |      |          |           |                          |
| 7          | 541                                                                  | ·           |                                     |                      | _112         |          |      |          |           |                          |
| -          |                                                                      | - 131       |                                     |                      |              |          |      |          |           |                          |
|            |                                                                      | 1.11        |                                     |                      |              |          |      |          |           |                          |
| 7          |                                                                      | -           |                                     |                      | _            |          |      |          |           |                          |
| -          | 5AA with or angisty ellow layer                                      | 5           |                                     |                      | -132         |          |      |          |           |                          |
| 1          |                                                                      | 1.1         |                                     |                      | -            |          |      |          |           |                          |
| -          |                                                                      | 1.1         |                                     |                      | -            |          |      |          |           | SAA                      |
| 4          | SAA                                                                  |             | 3                                   |                      | - 92         |          |      |          |           | 344                      |
| Y          | Water Table (24 Hour)                                                |             |                                     | G                    | APHICL       |          |      |          | 0.0       | 8   of                   |
| 핏          | Water Table (Time of Baring)<br>Photoionization Detection (ppm)      |             |                                     |                      | LAY          | έjê      | FILL |          | - 8-9     | 100                      |
| NO.        | Identilles Sample by Number                                          |             |                                     | ▥,                   | a.r          |          |      | × 744    | 501       | d Stem                   |
|            | seur.                                                                | Tion        |                                     |                      | AND          | **       | CLAT | or       | Dav       | is Orilling              |
|            | ALAREL                                                               | ROCA        | •                                   | 10000                | RAVEL        | 2        |      | 100      | COLO BY   | berts                    |
|            |                                                                      | NO          |                                     | 53                   |              |          |      |          | TUNE CAL  | OF ELEVATION OF AMEL     |
|            |                                                                      | RECOVERY    |                                     | 1.000                |              |          |      |          |           |                          |
| REC        | TH Depth Top and Battam of Sample<br>Actual Length of Recovered Samp | ale in Feet |                                     | 614 3                | LAYEY        | $\Box$ . |      | <u> </u> | CATION GR | GRID COORDHATES          |

| SOIL | 800 | INC  | 100 |  |
|------|-----|------|-----|--|
| JUIL | 007 | Inte | LUG |  |

|                    |                                                                 | FP-                 |                            |            | LOCATION    |     |      |         |        | NUMB   | a MW-27                               |
|--------------------|-----------------------------------------------------------------|---------------------|----------------------------|------------|-------------|-----|------|---------|--------|--------|---------------------------------------|
| EPTH<br>IN<br>FEET | UTHOLOGIC DESCRIPTION                                           | Serie<br>April<br>C | UNIFIED<br>FIELD<br>CLASS. | FOOT       | PID         |     | -    | DIL SAM | APLE   |        | REMARKS OR                            |
| - eel              | Paventat                                                        | GRAFI               | CLASS.                     | FOOT       | (ppm)       | NG. | TTFE | OEPT    | н      | MC     | HELD OBSERVATIONS                     |
|                    | property                                                        |                     | ł                          |            | -10         |     |      |         |        |        | T0=40'                                |
| - 2                |                                                                 |                     |                            |            | -           |     |      |         |        |        | Screened 20.40                        |
| -                  | Red, fg Sandstone                                               |                     |                            |            |             |     |      |         |        |        | A STATE CONTRACT AND A REAL PROPERTY. |
| -                  | , ,                                                             | · '                 |                            |            | - 7         |     |      |         |        |        | hole in sandpoint                     |
| 1                  |                                                                 | •                   |                            |            | -           |     |      |         |        |        | 9 62611                               |
| _                  |                                                                 | 1.                  |                            |            | _           |     |      |         |        |        |                                       |
| -                  | SAA                                                             |                     |                            |            | _           |     |      |         |        |        | all and handress to                   |
| ' ]                |                                                                 |                     |                            |            | - 7         |     |      | No      | Le     |        | slight hydrocarbo<br>odar             |
| 1                  |                                                                 | 1.                  | ( )                        |            |             |     |      | SAP     | 1      |        | (                                     |
| -                  |                                                                 | 1.                  |                            |            | -           |     |      |         |        |        |                                       |
| -                  | 544                                                             | ·                   |                            |            | -           |     |      |         |        |        | (                                     |
|                    | SAA with white sillstone layon                                  | 11/11               |                            |            | - 9         |     |      |         |        |        | )                                     |
| -                  |                                                                 | 1.2                 | •                          |            |             |     |      |         |        |        | 1                                     |
| -                  |                                                                 |                     |                            |            | -           |     |      |         |        |        | (                                     |
| , 1                | med-brown fg 55, silt layors                                    |                     |                            |            | -13         |     |      |         |        |        |                                       |
| -                  |                                                                 | 111-1               | 1                          |            |             |     |      |         |        |        | Om present )                          |
| -                  |                                                                 |                     |                            |            | _           |     |      |         |        |        | (                                     |
| 1                  |                                                                 |                     |                            |            | - 1         |     |      |         |        |        |                                       |
| 5-1                | Rod fy SS                                                       |                     |                            |            | -22         |     |      |         |        |        | ( .                                   |
| -                  | a                                                               |                     |                            |            |             |     |      |         |        |        |                                       |
| 1                  |                                                                 |                     |                            |            | _           |     |      |         |        |        | veryhard (                            |
| 7                  |                                                                 |                     |                            |            |             |     |      |         |        |        |                                       |
| -                  | SAA , white sillstone layers                                    | hiji                |                            |            | - 11        |     |      |         |        |        | . ر I                                 |
| 1                  | •                                                               | 1                   |                            |            | -           |     |      |         |        |        |                                       |
| ]                  |                                                                 | 1.1.1               |                            |            | _           |     |      |         | - 1    |        |                                       |
| -                  |                                                                 | in.                 |                            |            | _           |     |      |         |        |        | 5                                     |
| -                  | 541                                                             | -                   |                            |            | - 7         |     |      |         |        |        | 544                                   |
| 1                  |                                                                 | 11                  |                            |            | _           |     |      |         |        |        |                                       |
| -                  |                                                                 |                     |                            |            | _           |     |      |         |        |        | ×:                                    |
|                    | 541                                                             |                     |                            |            | - 13        |     |      |         |        |        | Wet                                   |
| Y                  | Water Table (24 Hour)                                           |                     |                            | 100000     | APHIC L     |     |      |         | GATE C | -10-   | PAGE                                  |
| PID                | Water Table (Time of Baring)<br>Photoionization Ostection (ppm) |                     |                            |            |             | ~   |      |         | -      | NO HET | 60                                    |
| NO.                | Identifies Sample by Number<br>Sample Collection Method         |                     |                            | <b>I</b> s | <b>1</b> .r |     |      | < pun   |        | Sol;   | d Stem                                |
| M                  | seure III.                                                      |                     |                            |            | AND         | *   |      |         |        | Davi   | · Orilling                            |
|                    | AAREL HAUGER                                                    |                     |                            |            | RAVEL       |     |      |         | Load   | LD AV  | 0                                     |
|                    |                                                                 | 10                  |                            |            |             | _   |      |         | CUST   |        | Roberts                               |
|                    |                                                                 | ECOVER              | r i                        | 833        |             | 2   | -    | arter   |        |        |                                       |
|                    | H Depth Tep and Bottom of Sample                                |                     |                            |            | LAYEY       |     |      |         | LOCU   | LON OF | CAID COORDINATES                      |

|                    | ACEE                                                            |                 | 1                       | 14     | OCATION |            | -   |                | BORIN      | IG 141 09                  |
|--------------------|-----------------------------------------------------------------|-----------------|-------------------------|--------|---------|------------|-----|----------------|------------|----------------------------|
|                    | A.G.E.S.                                                        | FFA-0           |                         |        |         |            |     |                | NUM        | ig<br>Her MW- 28           |
| EPTH<br>IN<br>FEET | UTHOLOGIC DESCRIPTION                                           | GRAFHIC         | SOIL<br>FIELD<br>CLASS. | FOOT   | PID     |            | _   | IL SAMP        | LE         | REMARKS OR                 |
| PEET               |                                                                 | 13              | CLASS.                  | FOOT   | (ppm)   | NO.        | Ē   | DEPTH          | MEC        | FIELD OBSERVATIONS         |
| -                  | Concrete                                                        |                 |                         |        |         |            | Π   |                |            | TO= 40                     |
|                    | 1                                                               | 1.1             | (                       |        | -       |            |     |                | 1          | screen 20-40'              |
|                    |                                                                 | · . ·           | 1                       |        | 1       |            |     |                |            |                            |
|                    | Pink fa-ufg 55                                                  |                 |                         |        | -9      |            |     |                | 1          | 4" well                    |
| -                  | a c                                                             |                 |                         |        | - '     |            |     |                |            | hole in sund point-        |
| -                  |                                                                 |                 |                         |        | -       |            |     |                | 1          | Review 1                   |
| -                  |                                                                 |                 |                         |        | -       |            |     |                |            |                            |
| <i>ء</i> ٦         | Red for 55                                                      |                 |                         |        | -10     |            |     |                | 1          | faintodor                  |
| -                  | a statute a second a se <b>g</b> a contrario a                  |                 |                         |        | - 10    |            |     |                | 1          |                            |
| -                  |                                                                 |                 |                         |        | -       |            |     |                |            |                            |
| -                  |                                                                 |                 |                         |        | -       |            |     | Nº Ve          |            |                            |
|                    | SAA , with white sillstone                                      | lagos 11.1.     |                         |        | - /-    |            |     | Nº Le<br>sarge |            | a Josete H. dracor         |
| 5-                 |                                                                 | · · · ·         |                         |        | -67     |            |     |                |            | moderate Hydrocar,<br>oder |
|                    |                                                                 | ist?            | 3. <b>•</b> .           |        | -       |            |     |                |            |                            |
| -                  |                                                                 | 149             |                         |        |         |            |     |                |            |                            |
| -                  | 0                                                               |                 |                         | H      | -       |            |     |                |            | 1                          |
| 0-                 | Brown + white siltstone -                                       | +55 111"<br>+fa |                         |        | -251    |            |     |                |            | strong HC odor             |
| 1                  |                                                                 | · · · ·         |                         |        |         |            |     |                |            |                            |
| -                  |                                                                 |                 |                         |        |         |            |     |                |            |                            |
| -                  |                                                                 | 1.              |                         |        | -       |            |     |                |            |                            |
| 5-                 | Brown fy SS                                                     | ·:.·            |                         | i -    | -236    |            |     |                |            | /                          |
| 1                  | v                                                               |                 |                         |        |         |            |     |                |            |                            |
| 1                  |                                                                 |                 |                         |        |         |            |     |                |            | 1 2                        |
| -                  |                                                                 |                 |                         |        |         |            |     |                |            |                            |
| 2-                 | SAA                                                             |                 |                         |        | -149    |            |     |                |            | very hard, wet }           |
| -                  |                                                                 |                 |                         | -      |         |            |     |                |            |                            |
|                    |                                                                 | · · ·           |                         |        | -       |            |     |                |            | ) ) )                      |
| 1                  |                                                                 | Y .             |                         |        |         |            |     |                |            |                            |
|                    | 541                                                             |                 |                         |        | -231    |            |     |                |            | ) SAA                      |
| -                  |                                                                 |                 |                         | -      | -       |            |     |                |            |                            |
| -                  |                                                                 | ·               |                         |        | -       |            |     |                |            |                            |
| ]                  | с4.4 та:                                                        | 40              |                         |        | -       |            |     |                |            |                            |
| _                  | 5AA 20:55                                                       |                 |                         |        | 185     |            |     |                |            | 544                        |
| Y                  | Water Table (24 Hour)                                           |                 |                         |        | APHICL  |            |     | -              | 6-10-      |                            |
| PID                | Water Table (Time of Boring)<br>Photoionization Octoction (ppm) | í.              |                         | a W    | AY      | 壶          |     |                | LUNG MET   | HOD                        |
| NO.                | Identities Jample by Number                                     |                 |                         | 💷 su   | J       |            |     | C PLUA         | 50         | lid stem                   |
|                    | seur-                                                           |                 |                         | 🕅 s.   |         | *          | SAN | PT             | Day        | is Arilling                |
|                    | ARREL                                                           | 10000           | •2                      |        |         |            |     | 117            | R. C       | 20 bents                   |
|                    |                                                                 | RECOVER         | r                       |        |         |            |     |                | ISTING CIG | CE ELEVATION INT. America  |
| 1.000              | TH Depth Tep and Battam of Samp                                 | 4               |                         |        |         |            |     | Te             | CATORIO    | GRID COORDHATES            |
| REC                | Actual Length of Recovered Samp                                 | ngle in feet    |                         | 012 21 | T       | <u> </u> . |     | <u> </u>       |            |                            |

SOIL BORING LOG

|            |                                                                | FA-0           |                                    |             | (4" twi  | +   | 716  | (0-10    | BORIN     | G MW-30                   |
|------------|----------------------------------------------------------------|----------------|------------------------------------|-------------|----------|-----|------|----------|-----------|---------------------------|
| IN<br>FEET | UTHOLOGIC DESCRIPTION                                          | GRAPHIC<br>106 | UNIFIED<br>SOIL<br>FIELD<br>CLASS, | HOWS<br>FEE | PID      |     | sc   | DIL SAMP |           | REMARKS OR                |
|            | pavement                                                       | 3-             | CLASS.                             | FOOT        | (ppm)    | NO. | 341  | DEPTH    | REC.      | HELD COSERVATION          |
| 1          | perental                                                       |                |                                    |             | -        |     |      |          |           |                           |
| 1          |                                                                | · · ·          |                                    |             | -        | -   |      |          |           |                           |
| _          | 010-0                                                          |                |                                    | 1           | - 1      |     |      |          |           |                           |
| -          | Red fg 55                                                      | 1.7.           |                                    |             | _13      |     |      |          |           |                           |
| -          |                                                                | . •.           |                                    |             | -        |     |      |          |           | TD=40                     |
| 1          |                                                                |                |                                    |             | -        |     |      |          |           | Screen 20:40              |
| -          |                                                                | ÷              |                                    |             | _        |     |      |          |           | 4" well                   |
| 0-         | SAA, with white siltstones                                     | 1.14.14        |                                    |             | -212     |     |      |          |           | hole in sandpoint         |
| ]          | SAA                                                            | Lii .          |                                    |             | _        |     |      | 10 10    |           |                           |
| -          |                                                                |                |                                    |             | _        |     |      | Sample   |           |                           |
| -          | 0 0 11                                                         |                |                                    |             | _        |     |      |          |           |                           |
|            | Brown fg 55                                                    |                |                                    |             | -192     |     |      |          |           | 6                         |
| 1          |                                                                | • • •          |                                    |             | -        |     |      |          |           | 54                        |
| -          |                                                                | 11.            |                                    | I I         | _        |     |      |          |           |                           |
| -          |                                                                |                |                                    |             | _        |     |      |          |           |                           |
| ° –        | SAA, with white siltstones                                     | 1117           |                                    |             | -212     |     |      |          |           | 3                         |
| 7          |                                                                |                |                                    |             | _        |     |      |          |           |                           |
| -          |                                                                | 1.1            |                                    |             | - 1      |     |      |          |           |                           |
| - 1        | Brown for 55                                                   | 1 '            |                                    |             |          | Ĩ   |      |          |           |                           |
| ŗ          | Diewa ta JJ                                                    |                |                                    |             | -340     |     |      |          |           | 8                         |
| -          |                                                                |                |                                    |             | _        |     |      |          |           |                           |
| -          |                                                                |                |                                    |             |          |     |      |          |           | very hard                 |
| ,-1        | Red fg 55                                                      | 2.0            |                                    |             | - 181    |     |      |          |           | very hard                 |
| 4          | 0                                                              |                |                                    |             | ,        |     |      |          |           | Strong hydrocarter        |
| -          |                                                                | 1.1            |                                    |             | -        |     |      |          |           | C                         |
| -          |                                                                |                |                                    |             | -        |     |      |          |           |                           |
|            | SAA                                                            |                |                                    | 1           | -226     |     |      |          |           | wet /                     |
| -          |                                                                |                |                                    |             | -        |     |      |          |           | $\left \right\rangle$     |
| -          |                                                                |                |                                    |             | -        |     |      |          |           | $\langle \langle \rangle$ |
| 1          | - • •                                                          | ::             |                                    |             | _        |     |      |          |           | 6 4                       |
|            | SAA                                                            | 1              |                                    |             | 265      |     |      | 100      | C DRULLED | SAA SAA                   |
| 포          | Water Table (24 Hour)<br>Water Table (Time of Baring)          |                |                                    | -           | APHIC LO |     | -    |          | 6-10-     |                           |
| PID NO.    | Photoionization Ostection (ppm)<br>Identifies Sample by Number |                |                                    |             |          | 题   |      |          |           | id Stem                   |
| TYPE       | Sample Collection Method                                       |                |                                    | <b>I</b>    |          |     |      |          | 501       | in otem                   |
|            |                                                                | ROCK           |                                    | <b>.</b>    | AND      | 8   | CLAN | or       | Dav:      | , Arilling                |
| 2          |                                                                |                |                                    |             | RAVEL    |     |      | EY I     |           | U                         |
| 168 V      |                                                                | NO             |                                    | 123         |          |     |      |          | aline cat | Robert S                  |
|            | H Depth Top and Battom of Sample                               | 4              |                                    | 1           | LAYEY    |     |      | 10       | ATION OF  | GRID COORDINATES          |
| REC        | Actual Length of Recovered Sample                              | in Feet        |                                    | 2012        | il T     | ш.  |      |          |           |                           |

| SOIL BORING LOO | 2 |
|-----------------|---|
|-----------------|---|

|            | A. G. E. S          | 5.                                                       | FFA. OK              |                         |             | (4° + wi | • .f  | 1    | 110.2    | BORIN      | ER MW-35           |
|------------|---------------------|----------------------------------------------------------|----------------------|-------------------------|-------------|----------|-------|------|----------|------------|--------------------|
| IN<br>FEET |                     | OGIC DESCRIPTION                                         | N N                  | SOIL<br>FIELD<br>CLASS. | HOWS<br>FER | PID      |       | -    | DIL SAM  | PLE        | REMARKS OR         |
| FEET       |                     |                                                          | GEAPHI<br>106        | CLASS.                  | FOOT        | (ppm)    | NO.   | TYPE | OEPTH    | REC        | FIELD OBSERVATIONS |
|            | Concrete            |                                                          |                      | 1.5                     | 1.1         | -        |       |      |          |            | and a state        |
|            | 1                   |                                                          |                      |                         |             | - 1      |       |      |          |            |                    |
|            | 1                   |                                                          |                      |                         |             | _        |       |      |          | 1          | TD=40'             |
| 5 -        | Brown ist -         | red fa 55                                                |                      |                         |             | -9       |       |      |          |            | screen 20:40' -    |
| 1          | Life ton f          |                                                          |                      |                         |             | - '      |       |      |          | 1          | 4" Well            |
|            | ]                   | 1 33                                                     |                      |                         |             | -        |       |      |          |            | hole in Sandpoint  |
| -          | 1010                | 6                                                        | -1.*                 |                         | 11          | _        |       |      |          |            |                    |
| 0 -        | Red fg-             | vtg 55                                                   |                      |                         |             | -19      |       |      |          | 1          | -                  |
|            | 1                   |                                                          |                      |                         |             | -        |       |      |          | 1          |                    |
| -          |                     |                                                          |                      |                         |             | _        |       |      |          |            |                    |
| -          |                     |                                                          |                      | 6                       |             | -        |       |      |          |            |                    |
| 5-         | SAA                 |                                                          | 1.                   |                         |             | -13      |       |      |          |            |                    |
| _          | SAA                 |                                                          | 12:                  | •                       |             |          |       |      |          |            | 1.4                |
|            |                     |                                                          |                      |                         |             |          |       |      |          |            |                    |
| -          | Lite tan            | £ 65                                                     |                      |                         |             | -        |       |      | Nº I     | e          |                    |
| 0-         | 10112 121           | (9 ) )                                                   |                      |                         |             | - 9      | 1     |      | Sampl    |            | -                  |
| -          |                     |                                                          |                      |                         |             | _        |       |      |          | 1          |                    |
| -          |                     |                                                          |                      |                         |             | -        |       |      |          |            |                    |
| 5-         | Palline             |                                                          |                      |                         |             | -345     |       |      |          |            | moderate hydrocan  |
| -          | renarisin is        | rown fg 55                                               | í []::               |                         |             | - 513    |       |      |          |            | alor               |
| -          |                     |                                                          |                      |                         |             |          |       |      |          |            |                    |
|            |                     |                                                          |                      |                         |             | -        |       |      |          |            |                    |
| 0-         | SAA                 | white siltstone                                          | 1                    |                         |             | -397     |       |      |          |            | 0. 1. 110 1.0.     |
|            | о. л, <i>р</i> л (н | WALLS 21/13 MIG                                          | - Jas iiii           |                         |             | - "      |       |      |          |            | faint HC odor .    |
| -          |                     |                                                          | utity.               |                         |             | -        |       |      |          |            |                    |
| 1          |                     |                                                          | tiqu.                |                         |             | _        |       |      |          |            |                    |
| 5 -        | SAA                 |                                                          | with                 |                         |             | -172     |       |      | l.       |            |                    |
| -          |                     |                                                          |                      |                         |             | -        |       |      |          |            |                    |
| 1          |                     |                                                          | 1.100                |                         |             |          |       |      |          |            |                    |
| 0 -        | SAA                 |                                                          | in i.                |                         |             | - 138    |       |      |          |            | Sound wet          |
| Y          |                     | (24 Hour)                                                | anna                 |                         | G           | APHIC L  | OG LE | GEN  |          | ATE DANLES | PAGE               |
| 핏          | Water Tabl          | e (Time of Baring)                                       |                      |                         |             | TAY      | 彩     | PILL | us o     | 6-11-      | -98   •i  <br>Hoo  |
| NO         | . Identifies St     | tion Ostection (ppm<br>ample by Number<br>lection Method | 4                    |                         | ▥,          |          |       |      |          | 501        | id stem            |
|            |                     | 7                                                        | <b>m</b>             |                         |             |          | *     |      | -        | Day        | is Arilling        |
|            | SPUT-               | AUGER                                                    | CORE                 | 2                       | -           |          |       |      | <b>π</b> | 00000 BV   | in the second      |
| 100        | THIN                | CONTINUOUS                                               | N                    |                         |             | JRAVEL   | 1853  | SAN  |          | R.         | Coberts            |
|            | TUBE                | SAMPLER                                                  | RECOVERY             |                         | 3           |          | L.    | -    | ſ        |            |                    |
| DEP        |                     | and Bettom of Som                                        | pie<br>Impie in Feet |                         | ED:         | LAYEY    |       |      | T        | OCATION OF | GRID COORDINATES   |

|                                                  |                              | 3400 N. LINCO                                                                              | CHARLE OFFICE IN                                                                    | Y, OK 73105 (405) 528-054                                                                                       |
|--------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                                  |                              | 9200 KING ARTHUR DRIVI<br>902 TRAILS WEST LOOP<br>900 S.E. SECOND<br>5806 S, 129 EAST AVE. | Ares Offices<br>DALLAS, TX 752<br>ENID, OK 73703<br>LAWTON, OK 73<br>TULSA, OK 7413 | CA 77 Exp. 06/30/9<br>47 (214) 631-437<br>. (405) 237-313<br>1501 (405) 353-087<br>14 (918) 459-270             |
| Acct. No:                                        | 2AG56 File No:               | AG56-55                                                                                    | 1.124, 011 -                                                                        | 0.000                                                                                                           |
| Report Date:                                     | 4/27/98                      | 1.81                                                                                       | Date Sampled:                                                                       |                                                                                                                 |
| Project                                          | FFP                          | _                                                                                          | Sampled By:                                                                         | R. Boberts                                                                                                      |
| Location:                                        | MW-4 Vadose (4-6             | ·) ·                                                                                       | By Order Of:                                                                        | K. Lippert                                                                                                      |
| Arch./Engr:<br>Contractor:                       | AGES                         |                                                                                            | Order No:                                                                           | See Below                                                                                                       |
| contractor.                                      | AGES                         |                                                                                            | Represented:                                                                        |                                                                                                                 |
| REPORT:                                          | See Below                    |                                                                                            | LAB NO:                                                                             |                                                                                                                 |
| Specification:                                   | CES DEICH                    |                                                                                            |                                                                                     | ASTM D2216,<br>D2937, D854                                                                                      |
|                                                  |                              | TEST RESULTS                                                                               | - 17.000                                                                            |                                                                                                                 |
|                                                  |                              |                                                                                            |                                                                                     |                                                                                                                 |
| Sample IF                                        |                              |                                                                                            | MW                                                                                  | 4                                                                                                               |
| Sample ID                                        |                              | t of water/g weight of dry soil)                                                           | 0.04                                                                                |                                                                                                                 |
|                                                  | Density, (g/cc)              | t of watter/ g weight of dry soil)                                                         | 1.6                                                                                 | the second se |
| Specific G                                       |                              |                                                                                            | 2.63                                                                                |                                                                                                                 |
|                                                  | latter, (g organic matter/g  | soil)                                                                                      |                                                                                     |                                                                                                                 |
|                                                  |                              | nic Carbon (g carbon/g soil)                                                               | 0.000                                                                               | 77                                                                                                              |
| Volumetric                                       | Water Content (cc.)          | volume of water/CC total sample volum                                                      |                                                                                     | the second s  |
|                                                  | CC volume of void/CC total a |                                                                                            | 0.36                                                                                |                                                                                                                 |
|                                                  |                              |                                                                                            | Light f                                                                             |                                                                                                                 |
| Soil Desc                                        | 10001                        |                                                                                            |                                                                                     |                                                                                                                 |
| Soil Descr                                       |                              |                                                                                            | Sands                                                                               |                                                                                                                 |
| Charge: AGE<br>Drig. & 1-cc s                    |                              |                                                                                            |                                                                                     | tone                                                                                                            |
| Charge: AGE<br>Drig. & 1-cc                      | ĒS                           | STANDA                                                                                     | Illy submitted.                                                                     |                                                                                                                 |
| Charge: AGE<br>Drig. & 1-cc s                    | ĒS                           |                                                                                            | Illy submitted.<br>RD TESTING AND E                                                 |                                                                                                                 |
| Charge: AGE<br>Drig. & 1-cc                      | ĒS                           |                                                                                            | Illy submitted,<br>RD TESTING AND E                                                 |                                                                                                                 |
| Charge: AGE<br>Drig. & 1-cc s                    | ĒS                           |                                                                                            | Illy submitted,<br>RD TESTING AND E                                                 |                                                                                                                 |
| Charge: AGE<br>Drig. & 1-cc                      | ĒS                           |                                                                                            | Illy submitted,<br>RD TESTING AND E                                                 |                                                                                                                 |
| Charge: AGE<br>Drig. & 1-cc                      | ĒS                           |                                                                                            | Illy submitted,<br>RD TESTING AND E                                                 |                                                                                                                 |
| Charge: AGE<br>Drig. & 1-cc s                    | ĒS                           |                                                                                            | Illy submitted,<br>RD TESTING AND E                                                 |                                                                                                                 |
| Charge: AGE<br>Drig. & 1-cc s                    | ĒS                           |                                                                                            | Illy submitted,<br>RD TESTING AND E                                                 |                                                                                                                 |
| Charge: AGE                                      | ĒS                           |                                                                                            | Illy submitted,<br>RD TESTING AND E                                                 |                                                                                                                 |
| Charge: AGE<br>Drig. & 1-cc                      | ĒS                           |                                                                                            | Illy submitted,<br>RD TESTING AND E                                                 |                                                                                                                 |
| Charge: AGE<br>Orig. & 1-cc                      | ĒS                           |                                                                                            | Illy submitted,<br>RD TESTING AND E                                                 |                                                                                                                 |
| Charge: AGE<br>Drig. & 1-cc                      | ĒS                           |                                                                                            | Illy submitted,<br>RD TESTING AND E                                                 |                                                                                                                 |
| Charge: AGE<br>Drig. & 1-cc                      | ĒS                           |                                                                                            | Illy submitted,<br>RD TESTING AND E                                                 |                                                                                                                 |
| Charge: AGE<br>Orig. & 1-cc                      | ĒS                           |                                                                                            | Illy submitted,<br>RD TESTING AND E                                                 |                                                                                                                 |
| Charge: AGE<br>Orig. & 1-cc 3<br>1-cc Laboratory | ES<br>same                   |                                                                                            | Illy submitted.<br>RD TESTING AND E<br>mad, MSCE, El, Lab                           | INGINEERING CO.                                                                                                 |

| and Engenergy and CO.                                                                      | G                                                                                    |                                                                                            |                                                                                                  | CENTRAL LABORATOR<br>Y, OK 73105 (405) 528-054 |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------|
|                                                                                            |                                                                                      | 9200 KING ARTHUR DRIVE<br>902 TRAILS WEST LOOP<br>900 S.E. SECOND<br>5806 S. 129 EAST AVE. | Area Offices<br>DALLAS, TX 752<br>ENID, OK 73703<br>LAWTON, OK 73<br>TULSA, OK 7413              | (405) 237-313<br>501 (405) 353-087             |
| Acct. No:<br>Report Date:<br>Project<br>Location:<br>Arch./Engr.<br>Contractor:<br>REPORT: | 2AG56 File No: AG5<br>4/27/98<br>FFP<br>MW-4 (37-38') Saturated<br>AGES<br>See Below |                                                                                            | Date Sampled:<br>Sampled By:<br>By Order Of:<br>Order No:<br>Quantity<br>Represented:<br>LAB NO: | R. Boberts<br>K. Lippert<br>See Below          |
| Specification:                                                                             |                                                                                      |                                                                                            |                                                                                                  | ASTM D2216,<br>D2937, D854                     |
|                                                                                            |                                                                                      |                                                                                            |                                                                                                  |                                                |
| Sample I                                                                                   | D                                                                                    |                                                                                            | MW-4 (3<br>Satura                                                                                |                                                |
| Natural V                                                                                  | Vater Content, (g weight of water                                                    | (g weight of dry soil)                                                                     | 0.19                                                                                             |                                                |
|                                                                                            | Density, (g/cc)                                                                      |                                                                                            | 1.59                                                                                             |                                                |
| Specific                                                                                   |                                                                                      |                                                                                            | 2.67                                                                                             | 4                                              |
|                                                                                            | Matter, (g organic metter/g soil)                                                    | the stands                                                                                 | 0.000                                                                                            | 95                                             |
|                                                                                            | Black, Fractional Organic Ca<br>ic Water Content (cc volume of                       |                                                                                            | 0.000                                                                                            |                                                |
|                                                                                            | (CC volume of void/CC total sample vo                                                |                                                                                            | 0.31                                                                                             |                                                |
| Soil Des                                                                                   |                                                                                      |                                                                                            | Light Pink<br>Sandst                                                                             | Loose                                          |
| Charge: AG<br>Drig. & 1-cc<br>1-cc Laborator                                               | ses<br>same<br>y                                                                     |                                                                                            | y submitted,<br>D TESTING AND E                                                                  | NGINEERING CO.                                 |
| 5.47                                                                                       |                                                                                      | Farid Ahma<br>9-27-                                                                        | id, MSCE, El, Labo<br>- 13                                                                       | oratory Manager                                |
|                                                                                            |                                                                                      |                                                                                            |                                                                                                  |                                                |
|                                                                                            |                                                                                      |                                                                                            |                                                                                                  |                                                |

| PROJ  | CT NAM  |        |        |                | _                  | SIGN.      | LER   | (Prist) | Name) |             | ſ,           | <u>v.</u> z |                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A.<br>B.          |                               | DESC<br>VOA |             | ON O<br>D.<br>EL : | ODES<br>Plantic   | : í.liter<br>I Soll J | lar  | SAM<br>A. Ground Wate<br>B. Waste Wate<br>C. Leachate<br>D. Asbeatos | aler | ESCRIPTION<br>E. Soil/Sed<br>F. Air<br>O. Waste<br>H. Blank/Sp | I. Othe                               |
|-------|---------|--------|--------|----------------|--------------------|------------|-------|---------|-------|-------------|--------------|-------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------|-------------|-------------|--------------------|-------------------|-----------------------|------|----------------------------------------------------------------------|------|----------------------------------------------------------------|---------------------------------------|
|       |         |        |        |                | ž                  | 00         | NTAL  | NERS    | AND   |             | -            | L           | <b>—</b>                       | ANA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LYSIS             | REQU                          | TRED        | <u></u>     | -                  | T.                | 0.11                  |      |                                                                      |      |                                                                | Y USE ONLY                            |
| DATE  | тіме    | SAMP   | -      | SAMPLE CONTAIN | SAMPLE DESCIUPTION | UNTELEVIED | 1040, |         |       | C=COMPOSITE | Dry Mit Damy | ATTN D216   | Byeetific Granty<br>ASTIM DESN | in the second se | Nymeric Control N | Own Rim Amilyin<br>AUTAK DOCD | FOC.        | NSTIN DAVID | NTIN CEL           | Nymeric Contraint | SAMPLE STORED A       |      | NOTES                                                                | 1    | AB NO.                                                         | SAMPLE<br>CONDITIC<br>UPON<br>RECEIPT |
| 1.7   |         | 19W-4  |        |                |                    |            |       |         |       | 1-          | $\lor$       | V           | 1                              | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                               |             |             |                    |                   |                       |      |                                                                      |      | 11-14-14                                                       | . 新市                                  |
| į     | μг.     | ines 4 | (37.31 |                |                    |            |       |         |       | 5           | J            | 1           | 1                              | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                               | 1           |             |                    |                   |                       |      |                                                                      | 杨熙   | diala                                                          | 海道的                                   |
| *     |         |        |        |                |                    |            |       |         |       |             |              |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                               |             |             |                    |                   | Γ                     |      |                                                                      | 意志   |                                                                | <b>Weilly</b>                         |
|       |         |        |        |                |                    |            |       | Γ       |       |             |              |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                               |             |             |                    |                   |                       |      |                                                                      |      | 法法律                                                            |                                       |
|       |         |        |        |                |                    |            |       |         |       |             |              |             | 1                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                               |             |             |                    |                   |                       |      |                                                                      | 行行   | 的論                                                             |                                       |
|       |         |        |        |                |                    |            |       |         |       |             |              |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                               |             |             |                    |                   |                       |      |                                                                      |      |                                                                | i na bi                               |
|       |         |        |        |                |                    |            |       |         |       |             |              |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                               |             |             |                    |                   |                       |      |                                                                      | 1.3  | 1 4 4 14 14 14 14 14 14 14 14 14 14 14 1                       | 1. N. M. 1. 13                        |
| OTES/ | MISCELL | ANEOUS |        |                |                    | DESC       | RIPT  | TON C   | NP.   | _           | 1            | •           | HED :                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                               |             |             |                    | 2.                | ~                     | Ĺc   | ATURE)                                                               |      |                                                                | DATE                                  |
|       |         |        |        |                |                    | SHIP       | Divid | CONT    | ANE   | 8           | RELD         |             | SENE                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                               |             |             | LECI               | TYED              | BYL                   | BORA | TORY (SIGNATU                                                        |      | TIME<br>IS/8                                                   | DATE                                  |

STANTECH ANALYTICAL SERVICES = 3400 NORTH LINCOLN BOULEVARD = OKLAHOMA CITY, OKLAHOMA 73105 TELEPHONE (405) 528-0541 = Fax (405) 528-0559

| STATE CONTRACT |
|----------------|
|                |
| Salah Rakara   |
|                |

2.0579.

# Appendix B Partial February 1999 Free Product Report



Applied Geoscience Environmental Services, Inc.

## Free Product Recovery Report February 1999 Case #064-2040, Facility #55-08256 FFP, Oklahoma City, Oklahoma As required by rule 3-75

### Site History

After the confirmed release on March 10, 1998, five 2-inch monitoring wells (MW-1D through MW-5) were installed. Upon gauging these wells, free product was discovered in four of them (MWs 1D, 2, 3, and 4). Over the next several months, 27 delineation/recovery wells (4-inch) were installed, MW-20 through MW-47 (MW-6 through MW-19 do not exist at this site). During this investigative period, free product removal and gauging was conducted in a variety of ways. A vacuum truck was hired in April, 1998 to remove free product from the wells, with marginal success. This event was followed by manual weekly free product recovery. In June, 1998 free product recovery events were increased to bi-weekly using a portable pump due to the large volume of product encountered. A total of 350 gallons of fuel were recovered from April to August 1998. All free product was stored in 55-gallon drums on site for later removal by a waste disposal company. (See attached recovery table.)

This site now has a total of 32 monitoring/recovery wells with the last four (4) being drilled August 18, 1998 (see attached soil boring logs). Out of the 32 monitoring wells, MW-31 has trace amounts of free product, 12 wells do not have any free product, and the remaining 19 have measurable thicknesses of free product.

The Free Product Recovery System Proposal was submitted to the OCC on July 30, 1998. After negotiations the proposal was later submitted as a purchase order on September 2, 1998 and approved two days later. The proposed recovery system

consisted of 11 ferret pumps connected to a central air compressor which was later changed to 12 ferret pumps. Product lines drain into a 3000-gallon double-walled holding tank. System installation was partially completed in October 1998 and installation was completed in January 1999.

### **Drinking Water Supply Status**

The on-site water well is impacted. There is currently a carbon canister filtering the water which is monitored on a regular basis. The tap water was last sampled January 1, 1999; all chemicals of concern were non-detect (see attached lab results). The OCC has approved the extension of the city water main from Wilshire Boulevard north to the station. An engineer was contracted to complete the water line plans and take bids to perform the work. The water main extension plans were submitted to the City of Oklahoma City on January 29, 1999. Following the city's approval, the engineer will collect bids for installation.

### Free Product Recovery

Static free product and water level measurements were taken on January 21 & 22, 1999. The average free product thickness in the system wells is 4.86' and average depth to water at the site is 32'. The greatest static free product thickness was in MW-42 at 9.47' on January 21, 1999; although the pump usually keeps the product thickness pumped down to less than one inch.

The total amount of free product recovered at this site is:

| 1.) From inception 3/10/98 - 8/4/98 | 350 gallons        |
|-------------------------------------|--------------------|
| 2.) From 8/4/98 -10/19/98           | no recovery events |
| 3.) From 10/19/98 - 11/12/98        | 1323 gallons       |
| 4.) From 11/12/98 - 2/9/99          | 2267 gallons       |

The thickness of the free product plume has not decreased much since system start-up, although considerable quantities have been removed. The only noticeable decrease has been MW-25 (from 7.09 feet to 5.75 feet); MW-28 (from 8.33 feet to 3.12 feet); MW-37 (from 7.69 feet to 6.88 feet); and MW-40 (from 6.03 feet to 4.51 feet).

The electrical breaker tripped and was discovered January 6<sup>th</sup> due to the air compressor shorting out. The air compressor was repaired on January 25<sup>th</sup>. Four "Alpha" ferret pumps were installed January 25 & 26, 1999 in MW-22, MW-32, MW-29, and MW-43. The observed product thickness in MW-33 has been less than one foot, therefore we installed a 4" soakease "sock" for recovery. The Alpha Ferret pump was relocated to MW-35. On February 9, 1999, 1½ gallons of free product was squeezed from the "sock" in MW-33 and 0.4' of free product was present in the well.

We have yet to install the pump in MW-35 due to an hydraulic conductivity test we are conducting in that area of the groundwater. On January 22, 1999, when MW-35 was checked, 1½ gallons of free product was manually bailed and disposed of in the holding tank located on site. Since then, less than 2 inches has returned.

From the discovery of the release to the system installation, the free product plume had migrated down gradient to the east and northeast as demonstrated by the recorded appearance of product in MW-43 and the decline in free product thickness in MW-33 and MW-32 (see attached well graphs). This was partly due to the increased water level in MW-42 caused by the removal of free product. We believe this migration has been mitigated since a pump was installed in MW-43 and MW-32 in January 1999.

## **Conclusions**

The ORBCA Tier 1A Report was completed and submitted to the OCC on September 10, 1998. The Ferret® Free Product Recovery System is steadily removing free product. We continue to check the system at least once a week for optimum performance, and remove free product off site on a regular basis.

Prepared by: Rachal Roberts Hydrologist

Approved by: Kathy Lippert UST Consultant #421

|                         |             | riee           | Pro            | uuci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rec    | ove        | ry ia     | Die (   | 21110                                                                                                          | e 11/       | 20/5        | <i>(</i> 0)  |         |          |
|-------------------------|-------------|----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|-----------|---------|----------------------------------------------------------------------------------------------------------------|-------------|-------------|--------------|---------|----------|
| Well #                  |             | 10/12          | 11/20 1        | 12/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/10  | 12/11      | 12/15     | 12/28   | 12/31                                                                                                          | 1/6/99      | 1/7/99 1    | 1/21/99      | 1/28/99 | 2/9/99   |
| MW-22                   | FP          | 33.65          | 34.37          | 34.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34.62. |            | 34.17     |         | 33.65                                                                                                          |             | 34.29       | 33.48        |         | 36.17    |
| began 1/25              | WL          | 38.72          | 38.78          | 38.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38.78  |            | 38.8      |         | 38.6                                                                                                           | 12 - 12 - E | 38.76       | 38.27        |         | 38.5     |
| TD=39                   | Unicionese  | 5.07           | 4.41           | 4.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.26   |            | 4.63      |         | 4.95                                                                                                           |             | 4.47        | 4.79         |         | 3.33     |
| short                   | pumping?    |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |            |           |         |                                                                                                                |             |             |              |         | no       |
| MW-23                   | FP          | 32.92          | 33.32          | 34.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33.49  | 34.4       | 34.4      |         | 33.5                                                                                                           |             | 34.45       | 33.43        |         | 33.58    |
| begen 10/19             | WL          | 37.24          | 37.22          | 34.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37.33  | 35.85      | 35.4      | -       | 35.4                                                                                                           |             | 34.88       | 37.13        |         | 37.3     |
| TD=37.25<br>short       | thickness   | 4.32           | 3.9            | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.84   | 1.45       | 1         |         | 1.0                                                                                                            |             | 0.43        | 3.7          |         | 3.72     |
| MW-25                   | pumping?    |                | on             | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | no     | yes        | yee       |         | y465                                                                                                           |             | yes         |              |         | no       |
| began 10/29             | FP          | 45.21          | 46.84          | 45.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45.83  | 45.72      | 45.5      |         | 45.42                                                                                                          |             | 48.48       | 45.9         |         | 48.02    |
| TD-62.3                 | thickness   | 7.09           | 1.92           | 5.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51.75  | 51,63      | 51.7      |         |                                                                                                                |             | 2.38        | 5.75         |         | 5.98     |
| lang                    | pumping?    | 1.00           | 1.84<br>986    | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5,92   | 5.91       | 6.2<br>no |         | 6.15                                                                                                           |             | Yes         | 0.10         |         | no       |
| MW-28                   | FP          | 24.85          | 24.95          | 25.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25.56  | 25.8       | 28.52     |         | 25.6                                                                                                           |             | 25.58       | 25.3         |         | 25.68    |
| begen 10/29             | WL          | 33.18          | 29.78          | 27.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28.45  | 28.17      | 28.02     |         | 28.25                                                                                                          |             | 28.65       | 28.42        |         | 28.37    |
| TD-38'5"                | Thickmenn   | 8.33           | 4.83           | 2.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.89   | 0.37       | 0.5       |         | 0.65                                                                                                           |             | 1.07        | 3.12         |         | 0.49     |
| lang                    | pumping?    |                | stowly         | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | yes    | YOU        | yes       |         | 700                                                                                                            |             | Yes         |              |         | Yes      |
| MW-29                   | FP          | 31.72          | 31.56          | 31.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32.13  |            | 31.73     |         |                                                                                                                |             | 31.83       | 31.2         |         | 32.6     |
| began 1/25              | WL          | 37.11          | 37.13          | 37.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37.05  |            | 36.95     |         |                                                                                                                |             | 37.08       | 36.7         |         | 33.96    |
| TD=37                   | thickness   | 5.39           | 5.27           | 5.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.92   |            | 5.22      |         |                                                                                                                |             | 5.25        | 5.5          |         | 1.38     |
| short                   | pumping?    |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |            |           |         |                                                                                                                |             |             |              |         | yes      |
| MW-30                   | FP          | 28.17          | 28.12          | 28.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28.06  | 28.1       | 27.9      |         | 28.8                                                                                                           |             | 27.95       | 27.88        |         | 27.9     |
| begen 10/20             | WL          | 31.96          | 29.72          | 30.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31.78  | 29.37      | 31.54     |         | 29.9                                                                                                           |             | 29.38       | 31.66        |         | 31.7     |
| TD=38                   | thickness   | 3.19           | 1.6            | 2.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.7    | 1.27       | 3.64      |         | 1.1                                                                                                            |             | 1.43        | 3.98         |         | 3.8      |
| long                    | pumping?    |                | yes            | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sionty | yes        | yes       |         | yes                                                                                                            |             | <b>y96</b>  |              |         | no       |
| MW-32                   | FP          | 33.55          | 33.94          | 33.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33.94  |            | 33.75     |         |                                                                                                                |             | 33.66       | 33.44        |         | 34.66    |
| began 1/26<br>TD=39' 2" | WL          | 34.92          | 34.61          | 34.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34.61  |            | 34.25     |         |                                                                                                                |             | 34.52       | 33.88        |         | 0.04     |
| short                   | pumping?    | 1.37           | 0.67           | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.57   |            | 0.5       |         |                                                                                                                |             | 0.66        | 0.44         |         | yes      |
| MW-33                   | FP FP       | 31.87          | 32.2           | 322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32.12  |            | -         |         |                                                                                                                |             | 12.1        | 31.58        |         | 32.95    |
| installed 1/28          | WL          | 35.28          | 33.93          | 33.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33.74  |            | 32.05     |         |                                                                                                                |             | 32.8        | 31.8         |         | 33.35    |
| TD-36 1*                | thickness   | 3.41           | 1.73           | 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.82   |            | 1.02      |         |                                                                                                                |             | 0.7         | 0.14         |         | 0.4      |
| BOCK                    | galiona     | -              | 1.10           | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.04   |            | 1,04      |         |                                                                                                                |             |             |              |         | 1.5      |
| MW-35                   | FP          | 37.9           | 33.15          | 33.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33.31  |            | 33.25     |         |                                                                                                                |             | 33.05       | 32.52        |         | 33.72    |
|                         | WL          | 36.92          | 38.04          | 36.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36.38  |            | 38.25     |         |                                                                                                                |             | 38.35       | 38.02        |         | 33.87    |
| TD=38                   | thickness   | 3.02           | 2.89           | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.07   |            | 3         |         |                                                                                                                |             | 3.3         | 3.5          |         | 0.15     |
| lang                    | galions     |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |            |           |         |                                                                                                                |             | 1           | 1.5          |         |          |
| MW-38                   | FP          | 48.27          | 48.33          | 48.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.25  | 48.27      | 48.2      |         |                                                                                                                |             | 44.97       | 45.24        |         | 45.12    |
| begen 10/20             | WL          | 52.17          | 53,19          | 53.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 53.1   | 53.25      | 47 8      |         | 48.4                                                                                                           |             | 50.81       | 52.9         |         | 51.6     |
| TD=67" 4"               | thickness   | 0.0            | 7.86           | 7.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.85   | 7.98       | 1.4       |         | 0                                                                                                              |             | 5.84        | 7.66         |         | 6,48     |
| long                    | pumping?    |                | na             | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | no     | no         | yes       |         | yes                                                                                                            |             | na          |              |         | 00       |
| MW-37                   | FP          | 30.35          | 31.15          | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32.27  | 32.44      | 12        |         | 31.95                                                                                                          |             | 31.38       | 30.88        |         | 32.55    |
| began 10/19             | WL          | 38.04          | 38             | 38.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32.97  | 32.68      | 33.02     |         | 32.84                                                                                                          |             | 38.45       | 37.78        |         | 32.96    |
| TD=38                   | thickness   | 7.69           | 6.85           | 7.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.7    | 0.24       | 1.02      | -       | 0.88                                                                                                           |             | 5.07        | 6.88         |         | 0.41     |
| long                    | pumping?    |                | no             | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yes    | yes        | ym        |         | yes                                                                                                            |             | no          |              |         | Y        |
| MW-40                   | FP          | 50.75<br>56.78 | 52.66<br>54.78 | 53.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 53.28  | 51.12      | 52.97     |         | 52.37                                                                                                          |             | 52.85       | 51.94        |         | 53.22    |
| TD-61' 9'               | Thickness   | 6.03           | 21             | 53.72<br>0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 53.5   | 53.5       | 53.62     |         | 0.99                                                                                                           |             | 0.75        | 4.51         | -       | 0.28     |
| long                    | pumping?    | 0.03           | 21<br>yes      | 0.67<br>Y96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.24   | 0.38       | 0.50      |         | 0.99                                                                                                           |             | 0.75<br>yes | +.01         |         | yes      |
| MW-42                   | FP          | 30,47          | 30.78          | 32.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32,49  | 32.42      | 30,45     |         |                                                                                                                |             | 32.1        | 29.63        |         | 32.42    |
| began 10/27             | WL          | 38.83          | 38.95          | 32.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32.6   | 32,45      | 38.6      |         | 30,18                                                                                                          |             | 32.85       | 39.1         |         | 32.45    |
| TD=39.25                | Trickness   | 8.38           | 8.17           | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.31   | 0.03       | 8.15      |         | 0                                                                                                              |             | 0.75        | 9.47         | -       | 0.03     |
| long                    | pumping?    |                | no             | yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | yes    | yes        | no        |         | yes                                                                                                            | 1           | yes         | 1            |         | yes      |
| MW-43                   | FP          | 31.21          | 31.6           | 29.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29.85  |            | 29.48     |         | 29.09                                                                                                          |             | 29.63       | 29.67        | 1       | 30.97    |
| began 1/25              | WL          | 32.1           | 35.2           | 38.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38.37  |            | 38.3      |         | 38.07                                                                                                          |             | 38.35       | 38.32        |         | 34.12    |
| TD-39.26                | thickness   | 0.89           | 3.6            | 8.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.52   |            | 8.82      |         | 8.98                                                                                                           |             | 8.72        | 8.65         |         | 3.15     |
| long                    | pumping?    |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |            |           |         |                                                                                                                |             |             |              |         | yes      |
| Tank                    | FP          | 8.31           | 3.54           | 3.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.2    | 6.12       | 5.65      | 4.71    | 4.05                                                                                                           | 3.91        | 3.71        | 3.57         | 2,75    | 5.25     |
| x 376 - gai             | WL          | 8.41           | 7.68           | 7.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.52   | 7.44       | 7.4       | fraze   | frank                                                                                                          | froze       | fraza       | 7.12         | 6.92    | 6.74     |
| * = 31.33 gai           | gations     | 37.8           | 1558.64        | and the second se | 498.32 | 498.32     | 658       | 1011.44 | the second s | 1312.24     |             | 1334.8       | 1567.92 | 560.2    |
| Recovery Rate           | e (galiday) | 32             | 16             | 4.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38.6   | 0          | 40.42     | 32      | 49.8                                                                                                           | 6.8         |             |              | 77.7    | 31       |
| Total gal. F            | Removed     | 38             |                | 1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2146   | 1          | 1         | 1       | 1                                                                                                              |             |             |              | 3218    | 359      |
|                         |             | 10/12/98       | 11/20/98       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10     | 4/98       | 1         |         | 1                                                                                                              | 1/6/99      | 1/10/99     | 1/25/99      | 2       | 2/99     |
| History of              | Events      | 10/12/08       | 11/20/08       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12     |            |           |         |                                                                                                                |             |             | air beck on  | 4       |          |
|                         |             | Baseline       | The Pickness   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | hauled off |           |         |                                                                                                                | r tripped   | -           | Ine Distance |         | hauled o |

副

Project: FFP-OKC Case: 064-2040

|       | CASING | Screen    |         | DEP    | ТН ТО                                 | GROUN   | DWAT    | ER after | 8/18/98  | Corrected |             |          |
|-------|--------|-----------|---------|--------|---------------------------------------|---------|---------|----------|----------|-----------|-------------|----------|
| WELL  | ELEV.  | Interval  | 8/27/98 | 9/4/98 | 9/11/98                               | 9/17/98 | 9/24/98 | 11/12/98 | 11/20/98 | 1/21/99   | Water Depth | WL ELEV. |
| MW-1  | 97.26  | 10.20'    |         |        | 1                                     |         |         |          |          |           |             |          |
| MW-1D | 97.11  | 20.28     | 25.86   | 25.71  | · · · · · · · · · · · · · · · · · · · |         | 26.12   |          | 25.6     | 26.1      | 23.80       | 73.31    |
| MW-2  | 97.41  | 20-30'    | 25.43   | 25.55  |                                       |         | 25.56   |          |          | 26.32     | 24.25       | 73.16    |
| MW-3  | 99.06  | 15-30'    | 23.86   | 23.74  |                                       | 11      | 23.81   | 24.58    |          | 24.43     |             | 74.63    |
| MW-4  | 99.29  | 29.39'    | 38.85   |        |                                       |         | 38.85   | . 81.    |          |           |             |          |
| MW-5  | 96.64  | 20-32'    | 24.87   | 24.82  | 24.83                                 | 24.77   | 24.72   | 24.16    |          | 23.59     |             | 73.05    |
| MW-21 | 97.79  | 20-40'    |         |        |                                       | 33.42   | 33.53   | 34.07    |          |           |             |          |
| MW-22 | 98.98  | 20-40'    | 38.28   | 38.3   | 38.74                                 | 38.8    | 38.75   | 38.45    | 38.78    | 38.27     | 34.44       | 64.54    |
| MW-23 | 97.96  | 20.40'    | 37.13   | 37.22  | 37.32                                 | 37.33   | 37.29   | 34.68    | 37.22    | 37.13     | 34.17       | 63.79    |
| MW-24 | 108.72 | 20.50     | 43.82   | 43.9   |                                       |         | 44.21   | 45.35    | 46.50    |           |             |          |
| MW-25 | 109.97 | 25-55'    |         | 46.5   |                                       |         | 52.24   | 47.65    | 47.76    | 51.65     | 47.05       | 62.92    |
| MW-26 | 98.12  | 21-41'    |         |        |                                       |         | 32.1    |          |          |           |             |          |
| MW-27 | 97.9   | 20-40'    | 34.29   | 34.2   | 34.24                                 | 34.23   | 34.22   | 34.80    | 35.12    | 34.30     | 32.28       | 65.62    |
| MW-28 | 98.38  | 20.40     | 33.35   |        | 33.24                                 | 33.15   | 33.14   | 27.98    | 29.78    | 28.42     | 25.92       | 72.46    |
| MW-29 | 96.19  | 17-37'    | 37.15   | 37.11  | 37.16                                 | 37.17   | 37.17   | 37.14    | 37.13    | 36.70     | 32.30       | 63.89    |
| MW-30 | 96.86  | 20.40'    | 32.1    | 32.05  | 32.08                                 | 32.05   | 32.1    | 30.03    | 29.72    | 31.86     | 28.68       | 68.18    |
| MW-31 | 97.19  | 20.40     |         |        |                                       | 31.48   | 31.59   | 32.13    | 32.28    |           |             |          |
| MW-32 | 97.62  | 20.40'    | 39.31   | 39.35  | 39.3                                  | 38.57   | 37.98   | 35.63    | 34.61    | 33.88     | 33.53       | 64.09    |
| MW-33 | 96.1   | 17.37     | 34.73   | 34.65  | 34.57                                 | 34.54   | 34.38   | 33.77    | 33.93    | 31.80     | 31.69       | 64.41    |
| MW-34 | 96.02  | 20-40'    | 28.17   | 28.16  | 28.58                                 | 28.71   | 28.91   | 29.78    | 29.95    |           |             |          |
| MW-35 | 97.6   | 20-40'    | 35.63   | 35.81  | 35.95                                 | 35.88   | 35.71   |          | 36.04    | 36.02     | 33.22       | 64.38    |
| MW-36 | 114.39 | 29.59'    | 52      |        | 52                                    | 52.14   | 52.05   | 49.05    | 53.19    | 52.90     | 46.77       | 67.62    |
| MW-37 | 95.45  | 20-40'    |         | 38     | 38.04                                 | 38.04   | 38.01   | 32.7     | 38       | 37.76     | 32.26       | 63.19    |
| MW-38 | 95.39  | 20.40'    |         |        |                                       |         | 32.13   | 33.2     |          |           |             |          |
| MW-39 | 97.61  | 25-45'    |         |        |                                       | 1       | 34.21   |          |          |           |             |          |
| MW-40 | 116.19 | 40.60'    | 56.92   | 56.9   | 56.82                                 | 56.78   | 56.8    | 54.1     | 54.78    | 56.45     | 52.84       | 63.35    |
| MW-41 | 94.95  | 20.40     | 32.1    | 32.16  | 32.4                                  | 32.54   | 32.67   |          |          |           |             |          |
| MW-42 | 95.55  | 20-40'    | 39.41   | 39.39  | 39.42                                 | 39.42   | 39.42   | 32.45    | 38.95    | 39.13     | 31.97       | 63.58    |
| MW-43 | 94.08  | 20.40     |         |        |                                       | 30.85   | 31      | 38.27    | 35.2     | 38.32     | 31.40       | 62.68    |
| MW-44 | 95.46  | 22.42'    | 30.26   | 30.38  | 30.42                                 | 31.29   | 31.19   | 28.84    | 27.93    |           |             |          |
| MW-45 | 94.56  | 19.5-39.5 | 30.59   | 30.7   | 30.87                                 | 31.21   | 31.4    | 31.72    | 31.8     | 31.28     |             | 63.28    |
| MW-46 | 95.22  | 25-45'    | 31.27   | 31.4   |                                       |         | 31.93   | 31.85    |          | 31.54     |             | 63.68    |
| MW-47 | 98.9   | 25-45     | 35.34   | 35.28  | 35.58                                 | 35.65   | 35.73   | 36.26    |          | 35.85     |             | 63.05    |

同社

| (BACHER)                                                  | 12.2 |
|-----------------------------------------------------------|------|
| Sumifician                                                |      |
| BUT STATES                                                |      |
| frendland have been and                                   |      |
| Contraction and the second stress of the second stress of |      |
| 1.1.4.495                                                 |      |
| A STRAND STRAND AND STRAND                                |      |

## 7.2.4. N.2.4. Land 5.7.8

## TRACE ANALY LETAL LABORATORY

 Setters when a subscription of the contract of contract polymer balance of contract of Contract of Contract

#### REPORT

Let: v vided Ctestus - d (6) Sempler: Received (12119-99) Received (12119-99)

and see the set

.

# Appendix C Water Quality Analyses and Chains-of-Custody

OKLAHOMA COOPERATIVE EXTENSION SERVICE



### SOIL, WATER & FORAGE ANALYTICAL LABORATORY

Division of Agricultural Sciences and Natural Resources - Oklahoma State University Plant and Soil Sciences • 048 Agricultural Hall • Stillwater, OK 74078

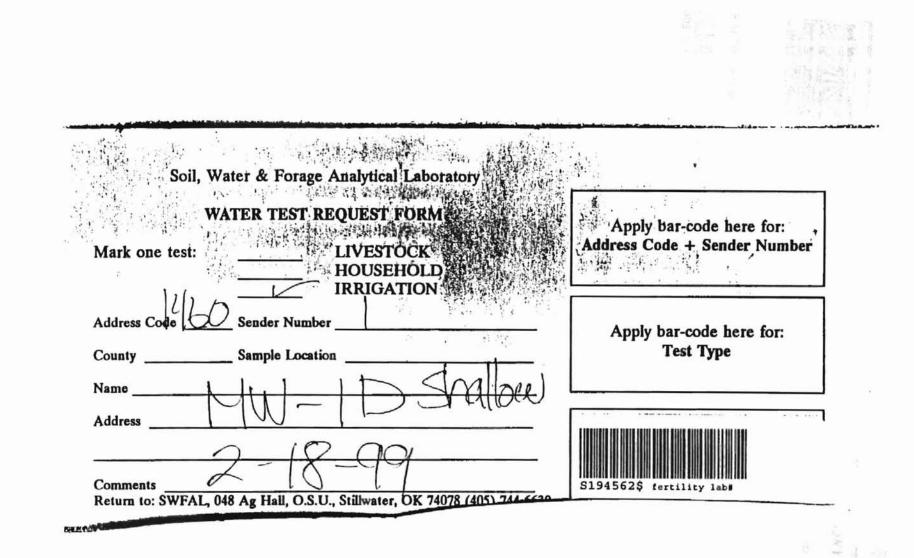
### WATER QUALITY REPORT

#### RACHEL ROBERTS

RT 1 BOX 784 CHANDLER, OK 74834 405-258-0064

Name: Location: Lab I.D. No .: 194562 Customer Code: 1460 Sample No: 1 Received: 02/19/99 Report Date: 03/03/99 Test No: 1

| Cations -              |                            | Anions            |         | Other                   |           |
|------------------------|----------------------------|-------------------|---------|-------------------------|-----------|
| Sodium (ppm)           | 162                        | Nitrate-N (ppm)   | <1      | pH                      | 8.0       |
| Calcium (ppm)          | 64                         | Chloride (ppm)    | 50      | EC (µmhos/cm)           | 1140      |
| Magnesium (ppm)        | 35                         | Sulfate (ppm)     | 9       |                         |           |
| Potassium (ppm)        | 4                          | Carbonate (ppm)   | 0       | Boron (ppm)             | . 0.09    |
|                        |                            | Bicarbonate (ppm) | 656     |                         |           |
| Der                    | ived Values                |                   |         | - Derived Values (cont' | d)        |
| Total Soluble Salts (7 | SS in ppm)                 | 980               | Sodium  | Percentage              | 53.7      |
| Sodium Adsorption F    | atio (SAR)                 | 4.0               | Hardnes | s (ppm)                 | 303.7     |
| Potassium Adsorption   | Ratio (PAR)                | 0.1               | Hardnes |                         | Very Hard |
| Residual Carbonates    | sidual Carbonates meg 4.68 |                   |         | ty (ppm as CaCO3)       | 538       |


**INTERPRETATIONS FOR** Irrigation Water

This water is generally of sufficiently low quality that its use is considerably restricted. It may be used safely only on very well-drained permeable soils and on salt tolerant crops. It requires careful irrigation practices, including applications of excess irrigation water to keep the soil leached of salt when rain fall is insufficient.

excess irrigation water to keep the soil leached of salt when rain fall is insufficient. Good soil management practices must be used to maintain good physical structure in the soil and to maintain a high level of fertility. Use of this water on medium textured soils may result in problems if care is not exercised. This water is not recommended for heavy textured soils. If this water is used extensively, it is recommended that a soil sample be obtained every few years from the irrigated fields to determine the extent to which sodium or salts are accumulating and the need for special management practices. Residual carbonates are present in excess amounts, lowering water quality to unsituable. Waters with excess residual exchange more carrier more affective acdium then indicated by the indicated by the solice of the water. The calcium and carbonates may contain more effective sodium than indicated by the sodium percentage of the water. The calcium and magnesium may precipitate out as lime, increasing the percentage of sodium.

Signature

Oklahoma State University. U.S. Department of Agnoulture, state, and local governments cooperating. Oklahoma Cooperative Extension Service offers its programs to all eligible persons regardees of race, color, national orgin, religion, sex, age or disability and is an Equal Opportunity Employer.



OKLAHOMA COOPERATIVE EXTENSION SERVICE



## SOIL, WATER & FORAGE ANALYTICAL LABORATORY

Division of Agricultural Sciences and Natural Resources • Oklahoma State University Plant and Soil Sciences • 048 Agricultural Hall • Stillwater, OK 74078

### WATER QUALITY REPORT

### **RACHEL ROBERTS**

RT 1 BOX 78 CHANDLER, OK 74834 405-258-0064 
 Name:
 Lab I.D. No.:
 194563

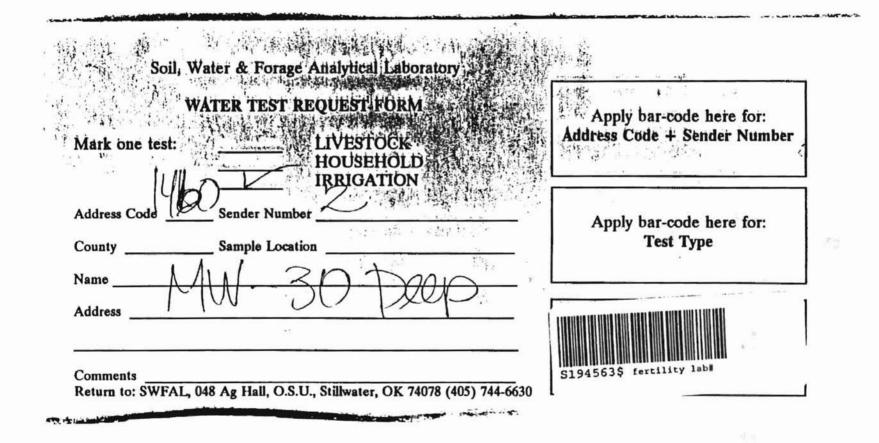
 Location:
 Sample No:
 2

 Received:
 02/19/99

 Report Date:
 03/03/99

 Test No:
 1

TEST RESULTS


| Cations -              |                              | Anions            |                | Other                  |           |
|------------------------|------------------------------|-------------------|----------------|------------------------|-----------|
| Sodium (ppm)           | 74                           | Nitrate-N (ppm)   | <1             | pH                     | 7.9       |
| Calcium (ppm)          | 118                          | Chloride (ppm)    | 141            | EC (µmhos/cm)          | 1249      |
| Magnesium (ppm)        | 75                           | Sulfate (ppm)     | 14             |                        |           |
| Potassium (ppm)        | 1                            | Carbonate (ppm)   | 0              | Boron (ppm)            | . 0.28    |
|                        |                              | Bicarbonate (ppm) | 583            |                        |           |
| Der                    | ived Values                  |                   |                | - Derived Values (cont | 'd)       |
| Total Soluble Salts (7 | TSS in ppm)                  | 1006              | Sodium         | Percentage             | 21.1      |
| Sodium Adsorption R    | latio (SAR)                  | 1.3               | Hardness       | s (ppm)                | 603.0     |
| Potassium Adsorption   | ssium Adsorption Ratio (PAR) |                   | Hardness Class |                        | Very Hard |
|                        |                              |                   | Alkalinit      | ty (ppm as CaCO3)      | 478       |

INTERPRETATIONS FOR Irrigation Water

This water is suitable for use on most crops under most conditions. A problem may arise with continued use on very heavy soils where essentially no leaching occurs. If rainfall is sufficient, it will dilute the salts and reduce any negative effect. If sodium is the main problem, gypsum can be used to reduce the problem.

Signature

Oklahoma State University. U.S. Department of Agnoulture, state, and local governments cooperating. Oklahoma Cooperative Extension Service offers its programs to all eligible persons regardless of race, color, national origin, religion, sex, age or disability and is an Equal Opportunity Employer.



#### SOUTHWELL LABORATORY, INC. P.O. BOX 25001 1838 S.W. 13th STREET OKLAHOMA CITY, OKLAHOMA 73125 (405) 232-1966 or (800) 872-5669 FAX (405) 235-8234 ODEQ CERT #7218

| 10: | KATHY LIPPERT                                            |                                    | PO Number:                |
|-----|----------------------------------------------------------|------------------------------------|---------------------------|
|     | AGES INC<br>3408 FRENCH PARK DR STE C<br>Edmond ok 73034 | Project #:<br>Project Name: RACHAL | Date Received: 02/23/1999 |
|     | CONTROL OK 13034                                         | - CERTIFICATE OF ANALYSIS -        | Report Date: 02/23/1999   |

| Lab<br>Kumber | Sample<br>Identification | Matrix | Date<br>Sampled | PARAMETER                | Result     | HOL   | Hethod     |
|---------------|--------------------------|--------|-----------------|--------------------------|------------|-------|------------|
| SL9903618     | HW-10                    | WATER  | 02/23/1999      | SILICON DIOXIDE (SILICA) | 21.42 mg/l | 0.036 | 200.7/6010 |
| SL9903619     | MW-30                    | WATER  | 02/23/1999      | SILICON DIOXIDE (SILICA) | 18 mg/(    | 0.036 | 200.7/6010 |

Laboratory Authorized Signature

mg/l = Milligrams per Liter, equivalent to parts-per-million.

OUR REPORTS AND LETTERS ARE FOR THE EXCLUSIVE USE OF THE CLIENT TO WHOM THEY ARE ADDRESSED. THE USE OF OUR WAME MUST RECEIVE OUR PRIOR WRITTEN APPROVAL. OUR LETTERS AND REPORTS APPLY ONLY TO THE SAMPLE TESTED AND/OR INSPECTED, AND ARE NOT INDICATIVE OF THE QUANTITIES OF APPARENTLY IDENTICAL OR SIMILAR PRODUCTS. UNLESS NOTIFIED IN WRITING, SAMPLES ARE DISPOSED OF 15 DAYS AFTER THE RESULTS ARE FIRST REPORTED.

.

| eport To: A.G.E.                 |                      | RM     |               |             | _           |                       |                       |                |      |       |        |        |           |       |       |                 |            |
|----------------------------------|----------------------|--------|---------------|-------------|-------------|-----------------------|-----------------------|----------------|------|-------|--------|--------|-----------|-------|-------|-----------------|------------|
| /                                | <u>.</u>             |        | -             |             |             | _                     | 1                     | nvoic          | e To | (if D | iffere | nt):   | F         | ar    | Ra    | chil            |            |
| ddress:                          |                      | 100    |               |             | -           |                       | +                     | 14/            |      | -     |        | D      | ch        | . /   |       |                 |            |
| ity:                             | State:               |        | Zij           | ):          |             |                       | _                     | rojec          |      |       |        | D      | -I.       | -     | 1     |                 |            |
| elephone:<br>eport To:           | FAX#:<br>Sampler:    |        | 1 - 1         |             |             |                       | _                     | rojec<br>urcha | _    | -     |        | Ka     | <u>cn</u> | M     | •     |                 |            |
| Turnaround Time:                 |                      | ush    | . Prio        | _           |             | e of (                | _                     |                | ix   | •     | -      | alysis | Req       | ueste | d     | Custody Seal: Y | 'N Intact: |
| Client<br>Sample ID              | Date/Time<br>Sampled | Matrix | Grab/<br>Comp | V<br>O<br>A | 1<br>L<br>R | 5<br>0<br>0<br>M<br>L | 2<br>5<br>0<br>M<br>L | O T H E R      |      | 5:02  |        |        |           |       |       | Remarks         | Southwe    |
| · MW-10                          | 2-23-914:00          | GW     | G             | ·           |             | ×                     |                       |                |      | X     |        |        |           |       |       |                 |            |
| · mw-30                          | 54 <i>p</i>          | 600    | G             |             |             | ¥                     |                       |                |      | X     | _      |        |           |       |       |                 |            |
| •                                |                      |        |               |             |             |                       |                       |                |      |       | -      | +      |           |       | _     |                 | _          |
| · .                              |                      |        |               |             | $\square$   |                       | ⊢                     |                | _    | +     | +      | +      | ╋         |       | +     |                 |            |
|                                  | - <u>·</u>           |        |               | ⊢           | $\square$   | -                     | -                     | $\vdash$       | -    | +     | +      | +      | +         |       | -     |                 |            |
|                                  |                      |        |               | 1.          |             | -                     | -                     |                | -    |       | +      | +      | +         |       | -     |                 |            |
|                                  |                      |        |               |             |             |                       | 1                     | $\square$      |      |       | +      | +      |           |       |       |                 |            |
|                                  |                      |        |               |             |             |                       |                       |                |      |       |        |        |           |       |       |                 |            |
|                                  |                      |        |               |             |             |                       |                       |                |      |       |        |        |           |       |       |                 |            |
| elinquished By:<br>Rachel Robert | Date:                | Time:  | Receive       | d By        | :           |                       |                       |                |      |       | S      | Specia | d Ins     | truct | ions: |                 |            |
| elinquished By:                  | Date:                | Time:  | Receive       | d By        |             | 1.1                   |                       |                | -    |       |        |        |           |       |       |                 |            |

94



# Appendix D WATEVAL Data and Reliability Checks

|                                 | Sample MW-1D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                    |   |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---|
| TempC = 0.0                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pH = 8.0                                                                           |   |
| TDS = 1001.4<br>HARD = 303.7    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COND = 1140.0<br>DENS = 0.0                                                        |   |
| x - cor = 0.0                   | 1011°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y-cor = 0.0                                                                        |   |
| Units = mg/L                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rock = 0.0                                                                         |   |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |   |
| mg/                             | L mmole/L meg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | % meg/L                                                                            |   |
| Na+ 162.0<br>K + 4.0            | 7.0462 7.0462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53.3                                                                               |   |
| Ca++ 64.0                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8                                                                                |   |
|                                 | 1.4396 2.8792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.8                                                                               |   |
| CI- 50.0                        | 1.4103 1.4103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.4                                                                               |   |
| SO4 9.0<br>HCO3- 656.0          | 0.0937 0.1874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5                                                                                |   |
| HCO3- 656.0<br>CO3 0.0          | 10.7513 10.7513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 87.1                                                                               |   |
| Si02 21.4                       | 0.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                |   |
| Li+ 0.0                         | 0.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                |   |
| Sr++ 0.0                        | 0.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                |   |
| Ba++ 0.0                        | 0.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                |   |
| Fe++ 0.0                        | 0.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                |   |
| NO3- 0.0                        | 0.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                |   |
| F- 0.0<br>Br- 0.0               | 0.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                |   |
| в 0.0                           | 1.4396         2.8792           1.4103         1.4103           0.0937         0.1874           10.7513         10.7513           0.0000         0.0000           0.3565         0.0000           0.0000         0.0000           0.0000         0.0000           0.0000         0.0000           0.0000         0.0000           0.0000         0.0000           0.0000         0.0000           0.0000         0.0000           0.0000         0.0000           0.0000         0.0000           0.0000         0.0000 | 0.0                                                                                |   |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |   |
| LANGELIER INC                   | EX = 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SAR = 4.0<br>Est. Cond. = 1322 umho                                                |   |
| Conductivity                    | = 1140 umbo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Est. Cond. = 1322 umbo                                                             |   |
|                                 | Analytical checks a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nd comparisons .                                                                   |   |
| Sum cations =                   | 13.2214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sum anions = 12.3490<br>BALANCE = 3.41 %                                           |   |
| Electric de                     | TDS entered = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 001 mg/L                                                                           |   |
| TDS calc =                      | 1001 mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TDS(180) calc = 668 mg/L<br>Entered TDS - TDS(180) diff= 33.3                      |   |
| Encered TDS - TDS               | (calc) diff= 0.0 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | kntered TDS - TDS(180) diff= 33.3                                                  | ा |
|                                 | Conductivity =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1140 umho                                                                          |   |
| TDS (entered) / Cond            | ratio = 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Usual range = 0.55 to 0.75                                                         |   |
| TDS(calc)/Cond                  | = 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Usual range = 0.55 to 0.75<br>Usual range = 0.55 to 0.75<br>Usual range = 90 - 110 |   |
| Conductivity/Sum-               | cations = 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Usual range = 90 - 110                                                             |   |
|                                 | Entered and calcula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ted density                                                                        |   |
| Meas. Density =                 | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Calc. Density = 1.0008                                                             |   |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |   |
| Mong bardnogg                   | Entered and calcula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Calc. hardness 303.9 mg/L CaCO                                                     | 2 |
| Meas. naturess=                 | 303.7 mg/1 Cacos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | care. mardiless= 505.9 mg/l caco.                                                  | 5 |
|                                 | Element r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | atios                                                                              |   |
| Na/(Na+Cl) =                    | 83.3 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Usually > 50%                                                                      |   |
| a //a                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |   |
| Ca/(Ca + SO4) =<br>K/(Na + K) = | 94.5 %<br>1.4 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Usually > 50%<br>Usually < 20%                                                     |   |
| K/(Ma + K) =                    | 1.7 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | condity < 201                                                                      |   |
| Mg/(Mg+Ca) =                    | 47.4 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Usually < 40%                                                                      |   |
| 0.5397 00 0.558 0.5             | <b>a</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |   |
| Mana HCO2                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rbonate at pH = 8                                                                  |   |
| Meas HCO3 =<br>Calc HCO3 =      | 656.0 mg/L<br>651.6 mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Meas CO3 = 0.0 mg/L<br>Calc CO3 = 2.2 mg/L                                         |   |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ······································                                             |   |

### REDOX EQUILIBRIA

NOTE Concentrations not activities are used 25 degrees C and 1 atmosphere assumed

|                                                                                                                          |                                          | 2. 1       | 10   |                                              |              |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------|------|----------------------------------------------|--------------|
| pH = 8                                                                                                                   | 2.01                                     | SO4 =      | = 9  | E.                                           |              |
| I                                                                                                                        | REDOX CAL                                | CULATI     | IONS | en to distribution<br>services               | -            |
| <ol> <li>Dissolved Oxygen</li> <li>Ferrous iron         <ul> <li>Ferric iron</li> <li>Ferric iron</li> </ul> </li> </ol> | 0.0 m<br>0.000 m<br>0.001 m              | g/L<br>g/L |      |                                              | pe           |
| <ol> <li>Ferric iron<br/>Solid Fe(OH)3<br/>Solid FeOOH</li> </ol>                                                        | 0.100 m<br>0.000 m                       | ğ/L        |      |                                              |              |
| 4. Manganous (Mn++)<br>Solid MnO2                                                                                        | 0.000 π                                  | g/L        |      |                                              |              |
| 5. Nitrate<br>Ammonium<br>Ammonium<br>6. Ammonium<br>If H2S PESENT                                                       | 0.000 m<br>0.001 m<br>0.100 m<br>0.000 m | g/L<br>g/L |      |                                              | ţ,           |
| For PH2S of<br>For PH2S of<br>If CH4 PESENT                                                                              |                                          |            |      |                                              | -4.4<br>-3.8 |
| For 1% CH4<br>For 99% CH4                                                                                                |                                          |            |      |                                              | -4.9<br>-5.4 |
| **************************************                                                                                   | on ESTIMA                                | TES fo     | or g | iven pe *                                    |              |
| I                                                                                                                        | for given                                | pe =       | 0    |                                              |              |
| 02 / H2O system                                                                                                          |                                          | p02<br>D0  | =    | 0.77E-27 at<br>0.00 mg/L                     | mos          |
| Fe++ / Fe+++ system<br>Fe++ / Fe(OH)3 system<br>Fe++ / limonite syste                                                    | n                                        | Fe++       | =    | 00.00 mole %<br>0.64E-03 mg/<br>0.53E-03 mg/ |              |
| Mn++ / MnO2 system                                                                                                       |                                          | Mn++       | =    | 0.22E+15 mg/                                 | 'L           |
| NO3- / N2 system                                                                                                         |                                          | NO NO      | 03 E | NTERED                                       |              |
| NO3- / NH4+ system                                                                                                       |                                          | NH4        | = 1  | 00.00 mole %                                 |              |
| H2S / SO4= system                                                                                                        |                                          | -          |      | 0.94E-38 atm<br>0.00 mg/L                    | 105          |
| CH4 / CO2 system                                                                                                         |                                          | CH4        | =    | 0.00 %                                       |              |

#### Sample MW-1D SOURCE ROCK ESTIMATE

|                                          | 14.5                                       |
|------------------------------------------|--------------------------------------------|
| SiO2 (mmol/L) = 0.36                     | 1                                          |
| HC03/SiO2 = 30.16                        | Carbonate weathering                       |
| SiO2/(Na+K-C1) = 0.06                    | Cation exchange                            |
| (Na+K-C1)/(Na+K-C1+Ca) = 0.78            | Plagioclase weathering possible            |
| Na/(Na + Cl) = 0.83<br>Mg/(Mg+Ca) = 0.47 | Albite or ion exchange                     |
| Mg/(Mg+Ca) = 0.47                        | Limestone-dolomite weathering              |
| Ca/(Ca + SO4) = 0.94                     | Ca source other than gypsum                |
|                                          | carbonates or silicates                    |
| (Ca + Mg)/SO4 = 32.4                     | Dedolomitization unlikely                  |
| TDS calculated = 1001 mg/L               | Carbonate weathering, brine,               |
|                                          | evaporites or sea water                    |
| Cl/sum anions = 0.11                     | Silicate or carbonate weathering           |
| HCO3/sum anions = 0.87                   | Silicate or carbonate weathering           |
| Langelier Index = 0.74                   | Oversaturated with respect to calcite      |
|                                          |                                            |
| Ma                                       | ss Balance Calculation                     |
| Carbonate option                         |                                            |
| Mineral D                                | issolves Precipitates                      |
| HALITE                                   | 1.410                                      |
| CALCITE                                  | 2.881                                      |
| DOLOMITE                                 | 1.440                                      |
| GYPSUM                                   | 0.094                                      |
| ION EXCH                                 | 2.818                                      |
| CO2 GAS                                  | 4.991                                      |
|                                          |                                            |
| Silicate option                          |                                            |
|                                          | issolves Precipitates                      |
| HALITE                                   | 1.410                                      |
| ALBITE(K)                                | 5.636                                      |
| ANORTHIT (K)                             | 0.063                                      |
| DIOPSIDE                                 | 1.440                                      |
| GYPSUM                                   | 0.094                                      |
| CO2 GAS                                  | -0.770                                     |
|                                          |                                            |
| Analysed silica = 21 S                   | ilica from albite and diopside = 512 - 850 |
| TEMPERATURE                              | ESTIMATES IN DEGREES C                     |
|                                          |                                            |
| Good for te                              | mperatures 20 - 350 C                      |
| Mg-Li>                                   | 0                                          |
| Na-Li>                                   | 0                                          |
| Na-K-Ca (Mg corrected)>                  | 51                                         |
|                                          |                                            |
|                                          | w temperatures 30 - 70 C                   |
| Chalcedony>                              | 34                                         |
|                                          |                                            |
|                                          | mperatures > 70 C                          |
| Quartz-no steam loss>                    |                                            |
| Quartz-maximum steam loss>               | 71                                         |
|                                          | 2 TO 12 TO 12 TO 12                        |
|                                          | for oil-field waters                       |
|                                          | useful below 150 C                         |
|                                          | 121                                        |
| Na-K (Truesdell)>                        |                                            |
| Na-K-Ca (t < 100 C)>                     |                                            |
| Na-K-Ca (t > 100 C)>                     | 107                                        |

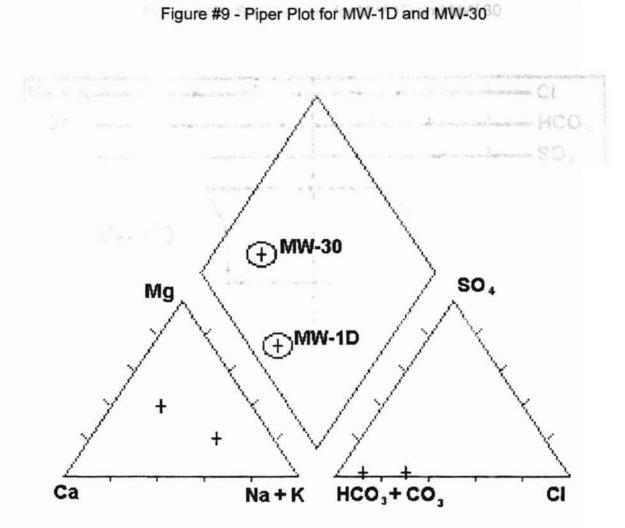
| Sample MW-30         TempC =       0.0       pH =       7.9         TDS =       1024.0       COND =       1249.0         HARD =       603.0       DENS =       0.0         x-cor =       0.0       y-cor =       0.0         Units =       mg/L       rock =       0.0                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mg/Lmmole/Lmeq/L $\mathbf{imeq/L}$ Na+74.03.21873.218721.0K +1.00.02560.02560.2Ca++118.02.94415.888238.5Mg++75.03.08496.169840.3Cl-141.03.97713.977128.8SO414.00.14570.29152.1HCO3-583.09.55499.554969.1Co30.00.00000.00000.0SiO218.00.29960.00000.0Li+0.00.00000.00000.0Sr++0.00.00000.00000.0Ba++0.00.00000.00000.0Fe++0.00.00000.00000.0Br-0.00.00000.00000.0B0.00.00000.00000.0 |
| LANGELIER INDEX = 0.82 SAR = 1.3<br>Conductivity = 1249 umho Est. Cond. = 1530 umho<br>Analytical checks and comparisons                                                                                                                                                                                                                                                            |
| Sum cations = 15.3022       Sum anions = 13.8235         BALANCE = 5.08 %         TDS entered = 1024 mg/L         TDS calc = 1024 mg/L         Entered TDS - TDS(calc) diff= 0.0 % Entered TDS - TDS(180) diff= 28.9 %                                                                                                                                                              |
| Conductivity = 1249 umho<br>TDS(entered)/Cond ratio = 0.82 Usual range = 0.55 to 0.75<br>TDS(calc)/Cond = 0.82 Usual range = 0.55 to 0.75<br>Conductivity/Sum-cations = 82 Usual range = 90 - 110                                                                                                                                                                                   |
| Entered and calculated density .<br>Meas. Density = 0.0000 Calc. Density = 1.0008                                                                                                                                                                                                                                                                                                   |
| Entered and calculated hardness<br>Meas. hardness= 603.0 mg/L CaCO3 Calc. hardness= 603.4 mg/L CaCO3                                                                                                                                                                                                                                                                                |
| Element ratios<br>Na/(Na+Cl) = 44.7 % Usually > 50%                                                                                                                                                                                                                                                                                                                                 |
| Ca/(Ca + SO4) =95.3 %Usually > 50%K/(Na + K) =0.8 %Usually < 20%                                                                                                                                                                                                                                                                                                                    |
| Mg/(Mg+Ca) = 51.2 % Usually < 40%                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{rllllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                               |

Sample MW-30 SOURCE ROCK ESTIMATE - 9.1

影门

| SiO2 (mmol/L) = 0.30                                            |                                                         |
|-----------------------------------------------------------------|---------------------------------------------------------|
| HC03/S102 = 31.90                                               | Carbonate weathering                                    |
| SiO2/(Na+K-Cl) =                                                | Cl > (Na+K)                                             |
| (Na+K-Cl) / (Na+K-Cl+Ca) =                                      | Cl > (Na+K)                                             |
| Na/(Na + C1) = 0.45                                             |                                                         |
| Mg/(Mg+Ca) = 0.51                                               | Dolomite dissoln and calcite pptn or sea water          |
| Mg/(Mg+Ca) = 0.51<br>Ca/(Ca + SO4) = 0.95                       | Ca source other than gypsum                             |
|                                                                 | carbonates or silicates                                 |
| (Ca + Mg)/SO4 = 41.4                                            | Dedolomitization unlikely                               |
| TDS calculated = 1024 mg/1                                      | Carbonate weathering, brine,<br>evaporites or sea water |
| Cl/sum anions = 0.29                                            | Sea water, brine or evaporites possible                 |
| HCO3/sum anions = 0.69                                          |                                                         |
| Langelier Index = 0.82                                          | Oversaturated with respect to calcite                   |
|                                                                 |                                                         |
| Carbonate option Mass Balance Calculation                       |                                                         |
|                                                                 | Dissolves Precipitates                                  |
| HALITE                                                          | 3.977                                                   |
| CALCITE                                                         | -0.666                                                  |
| DOLOMITE                                                        | 3.085                                                   |
| GYPSUM                                                          | 0.146                                                   |
| ION EXCH<br>CO2 GAS                                             | -0.379                                                  |
| CO2 GAS                                                         | 4.051                                                   |
| Silicate option                                                 |                                                         |
| Mineral                                                         | REDOX EQUILIBRIA                                        |
|                                                                 |                                                         |
| NOTE<br>Concentrations not activities are used                  |                                                         |
|                                                                 | ees C and 1 atmosphere assumed                          |
|                                                                 |                                                         |
| pH =                                                            | 7.9 $SO4 = 14 mg/L$                                     |
|                                                                 | ADDAY ON OT MEANS                                       |
|                                                                 | REDOX CALCULATIONS De                                   |
| 1. Dissolved Oxygen                                             |                                                         |
| 2. Ferrous iron<br>Ferric iron<br>Ferric iron<br>3. Ferric iron | 0.000 mg/L                                              |
| Ferric iron                                                     | 0.001 mg/L                                              |
| Ferric iron                                                     | 0.100 mg/L                                              |
| 3. Ferric iron                                                  | 0.000 mg/L                                              |
| Solid Fe(OH)3<br>Solid FeOOH                                    |                                                         |
| 4. Manganous (Mn++)                                             | 0.000 mg/L                                              |
| Solid MnO2                                                      |                                                         |
| 5. Nitrate                                                      | 0.000 mg/L                                              |
| Ammonium<br>Ammonium<br>6. Ammonium                             | 0.000 mg/L<br>0.001 mg/L<br>0.100 mg/L                  |
| Ammonium                                                        | 0.100 mg/L                                              |
| 6. Antmonium<br>If H2S PESENT                                   | 0.000                                                   |
|                                                                 | f 1E-3 atmos or 3.1763 mg/L -4.2                        |
| For PH2S of                                                     | f 1E-8 atmos or 0.0000 mg/L -3.6                        |
| If CH4 PESENT                                                   |                                                         |
| For 1% CH4                                                      |                                                         |
| For 99% CH                                                      | 4 -5.3                                                  |
|                                                                 |                                                         |

## 


For given pe = 0

| 02 / H2O system                                                        | pO2 = 0.77E-27 atmos                                                 |
|------------------------------------------------------------------------|----------------------------------------------------------------------|
|                                                                        | DO = 0.00  mg/L                                                      |
| Fe++ / Fe+++ system<br>Fe++ / Fe(OH)3 system<br>Fe++ / limonite system | Fe++ = 100.00 mole %<br>Fe++ = 0.13E-02 mg/L<br>Fe++ = 0.11E-02 mg/L |
|                                                                        | Mn++ = 0.55E+15 mg/L                                                 |
| NO3- / N2 system                                                       | NO NOS ENTERED                                                       |
| NO3- / NH4+ system                                                     | NH4 = 100.00 mole %                                                  |
| H2S / SO4= system                                                      | pH2S = 0.15E-36 atmos<br>H2S = 0.00 mg/L                             |
| CH4 / CO2 system                                                       | CH4 = 0.00 %                                                         |
| Temperature 2                                                          | Estimates in Dancer C                                                |

# Sample MW-30 SOURCE ROCK ESTIMATE

| SiO2 (mmol/L)<br>HCO3/SiO2<br>SiO2/(Na+K-Cl)<br>(Na+K-Cl)/(Na+K | = 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .30<br>.90 | Carbonate weather<br>Cl > (Na+K)<br>Cl > (Na+K) | ring                          |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------|-------------------------------|
| Na/(Na + Cl)                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .45        | Reverse softening                               | , sea water                   |
| Mg/(Mg+Ca)                                                      | = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .51        | Dolomite dissoln                                | and calcite pptn or sea water |
| Ca/(Ca + SO4)                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .95        | Ca source other t<br>carbonates or              | chan gypsum                   |
| (Ca + Mg)/SO4                                                   | = 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4          | Dedolomitization                                | unlikely                      |
| TDS calculated                                                  | = 1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/L       | Carbonate weather<br>evaporites or              |                               |
| Cl/sum anions                                                   | - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .29        | Sea water, brine                                | or evaporites possible        |
| HCO3/sum anions                                                 | = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 69       |                                                 | •                             |
| Langelier Index                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .82        | Oversaturated wit                               | th respect to calcite         |
| Carbonate optio                                                 | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mai        | ss Balance Calcula                              | ation                         |
| Minera                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D          | issolves                                        | Precipitates                  |
| HALITE                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.         | 3.977                                           | receptoneed                   |
| CALCIT                                                          | and the second se |            | 5.577                                           | -0.666                        |
| DOLOMI                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 3.085                                           | -0.000                        |
| GYPSUM                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 0.146                                           |                               |
| ION EX                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 0.140                                           | -0.379                        |
| CO2 GA                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 4.051                                           | -0.379                        |
|                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                                                 |                               |
| Silicate option<br>Minera                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | э.         |                                                 |                               |
|                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                                                 |                               |
| Halite                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 3.977                                           |                               |
| Albite                                                          | 2(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                 | 758                           |
| ANorthit                                                        | 4 (L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                 | -0:7                          |
| A-MOITHI                                                        | e(k)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                 | 287                           |
| Diops                                                           | ide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 3.085                                           |                               |
| бурѕ                                                            | um                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 0.146                                           |                               |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                                 | *                             |
| C02                                                             | Gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                                                 | -1.453                        |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                                 | 649 S. 19 (0)                 |

Analysed silica = 18 Silica from Albite and diopside = 325-280



| TDS        | PPM    |
|------------|--------|
| $\bigcirc$ | 100    |
| $\bigcirc$ | 1,000  |
| $\bigcirc$ | 10,000 |

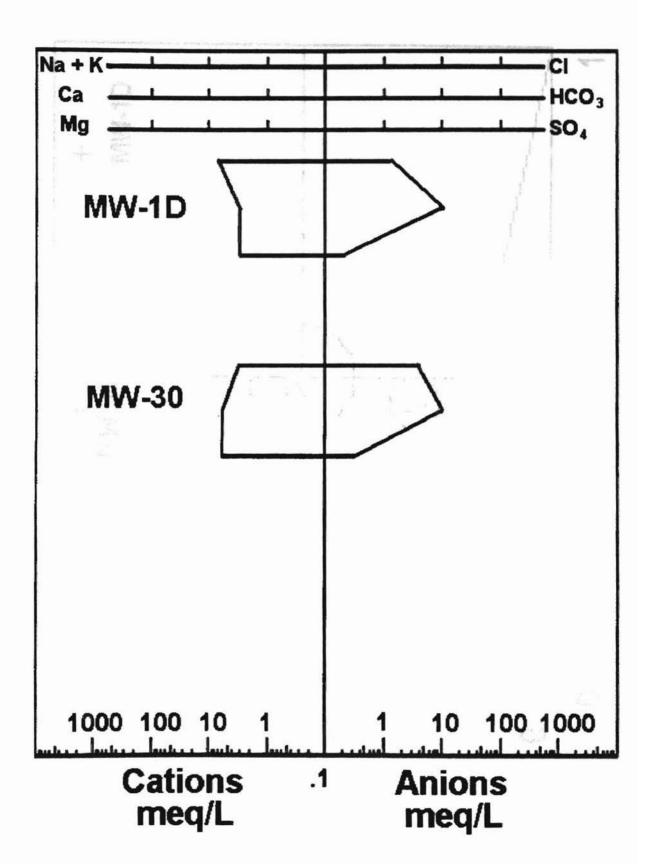
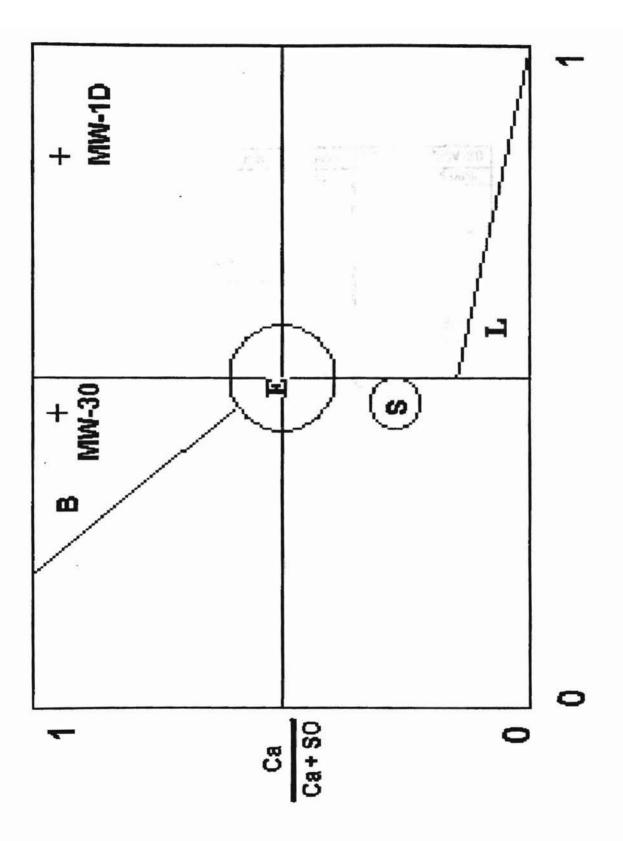




Figure #10 - Stiff Diagram for MW-1D and MW-30

Statistic Palatettiv Land



### Table #4 - Reliability Checks

| <b>Reliability Check</b>                                             | is usually | MW-1D  | MW-30  |
|----------------------------------------------------------------------|------------|--------|--------|
| Ion Balance                                                          | < 5%       | 3.41%  | 5.08%  |
| Hardness<br>Entered - Calculated<br>Entered                          | < 5%       | 0.06%  | 0.07%  |
| Total Diss. Solids<br>Entered - Calculated<br>Entered                | < 5%       | 0.00%  | 0.00%  |
| Total Diss. Solids <sub>180</sub><br>Entered - Calculated<br>Entered | < 5%       | 33.33% | 28.90% |
| TDS <sub>entered</sub> / EC                                          | .5575      | 0.88   | 0.82   |
| TDS <sub>calc</sub> / EC                                             | .5575      | 0.88   | 0.82   |
| EC / cation sum                                                      | 90 - 110   | 86.23  | 81.58  |
| <del>K⁺</del><br>Na⁺ + K⁺                                            | < 20%      | 1.40%  | 0.80%  |
| $\frac{Mg^{2+}}{Ca^{2+} + Mg^{2+}}$                                  | < 40%      | 47.40% | 51.16% |
| $\frac{Ca^{2^{+}}}{Ca^{2^{+}} + SO_{4}^{2^{-}}}$                     | > 50%      | 94.50% | 95.30% |
| <u>Na<sup>+</sup></u><br>Na <sup>+</sup> + Cl <sup>-</sup>           | > 50%      | 83.33% | 44.72% |
| Conclusio                                                            | n          | accept | accept |

|                        | New Sesaion | $0 \in \mathbb{R}^{n}_{+} \in \mathbb{Q}$ | 18:07    |
|------------------------|-------------|-------------------------------------------|----------|
| $\gamma \in \{0,, n\}$ |             |                                           |          |
|                        |             |                                           |          |
|                        |             |                                           |          |
| 1.000                  |             |                                           |          |
|                        |             |                                           |          |
| (Kell)                 |             |                                           |          |
|                        |             |                                           |          |
|                        |             |                                           |          |
| 1                      |             |                                           | (1) or o |

# Appendix E Examples of the Software Outputs

| API DSS Data Requirements                                                                                                                                                                                                                          | New Session | 03/24/99 18:07                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------|
| DEVELOPMENT OF RISK SCEN                                                                                                                                                                                                                           | ARIO        | 004<br>(200                                              |
| The following chemicals were select<br>Benzene                                                                                                                                                                                                     | cted:       |                                                          |
| The following exposure routes were<br>Drinking Water<br>Dermal Intake During Sho<br>Inhalation During Shower                                                                                                                                       |             | 596<br>108<br>6.85                                       |
| RECEPTOR POINT CONCENTRA                                                                                                                                                                                                                           | TIONS       |                                                          |
| Data for Fate and Transport Models<br>Models Selected:<br>VADSAT<br>Simulation Time (max=100) [yea<br>Simulation Title:<br>Date and Time of Simulation:                                                                                            | ars]:       | 50<br>DSS Fate and Transport<br>03/24/99 18:04           |
| VADSAT Model                                                                                                                                                                                                                                       |             | 1111-111                                                 |
| Model Control Parameters                                                                                                                                                                                                                           |             |                                                          |
| Allowing Volatilization?<br>Solid Phase Degradation?<br>Code-calculated dispersivities?                                                                                                                                                            |             | Yes<br>No<br>No                                          |
| Source Zone Parameters<br>Saturated conductivity of waste zon<br>Thickness of waste zone [m]<br>Waste zone area [m <sup>2</sup> ]<br>Length to width ratio [m/m]<br>Thickness of soil cover [m]<br>Fraction organic carbon [-]                     | one [m/day] | 0.2<br>0.54<br>2960<br>2.16<br>6.6<br>0.00085            |
| Vadose Zone Soil Parameters<br>Fraction organic carbon [-]<br>Saturated conductivity [m/day]<br>Depth to groundwater [m]<br>Effective porosity [-]<br>van Genucten's n parameter [-]<br>Residual moisture content [-]<br>Net recharge rate [m/day] |             | 0.00077<br>0.2<br>7.14<br>0.364<br>2.68<br>0.08<br>0.002 |
| Saturated Zone (Aquifer) Paramete<br>Effective porosity [-]<br>Fraction organic carbon [-]<br>Saturated conductivity [m/day]                                                                                                                       | rs          | 0.407<br>0.00085<br>0.2                                  |

| Hydraulic gradient [m/m]<br>Aquifer thickness [-]<br>Location of well-downgradient [m]<br>Location of wellcross-gradient [m]<br>Depth of well [m]                                                                                                                                                                                                                  | 52<br>3<br>0.853<br>1 2 4 5 | 0.074<br>100<br>0<br>21<br>19                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------|
| TPH Data<br>Concentration of TPH mixture [mg/kg]<br>Molecular Weight of TPH [g/mole]<br>Density of TPH [g/cm^3]                                                                                                                                                                                                                                                    |                             | 2500<br>100<br>0.95                                                                          |
| VADSAT Chemical Specific Parameters<br>Benzene<br>Total Concentration in Soil [mg/kg]<br>Diffusion Coeff. in Air [cm^2/s]<br>Diffusion Coeff. in Water [cm^2/s]<br>Henrys Law Constant [(mg/L)/(mg/L)]<br>Koc [ug/gOC/ug/ml]<br>Solubility [mg/l]<br>Degradation Rate in Vadose Zone [1/days]<br>Degradation Rate in Aquifer [1/days]<br>Molecular Weight [g/mole] |                             | 11<br>8.80E-02<br>9.80E-06<br>2.28E-01<br>5.89E+01<br>1.75E+03<br>0.00E+00<br>0.00E+00<br>78 |
| Analysis Type: Deterministic                                                                                                                                                                                                                                                                                                                                       |                             |                                                                                              |
| Body Weight and Lifetime<br>Average Weight (kg)<br>Lifetime (yrs)                                                                                                                                                                                                                                                                                                  | 70<br>70                    |                                                                                              |
| Drinking Water<br>Exposure Frequency [days/yr]<br>Exposure Duration [years]<br>Ingestion Rate [liters/day]<br>Drinking Water Chemical Specific Parameters<br>Benzene                                                                                                                                                                                               | 52<br>5<br>1.4              |                                                                                              |
| Bioavailability [fraction]<br>Dermal Intake During Shower<br>Exposure Frequency [days/yr]<br>Exposure Duration [years]<br>Total Skin Surface Area [cm^2]<br>Time in Shower [hours/day]                                                                                                                                                                             | 52<br>5<br>23000<br>0.333   | 1.00E+00                                                                                     |
| Dermal Intake Chemical Specific Parameters<br>Benzene<br>Permeability Coef [cm/hour]                                                                                                                                                                                                                                                                               |                             | 2.10E-02                                                                                     |

| Exposure Frequency [days/yr]52Exposure Duration [years]5Inhalation Rate [m^3/hr]0.833Time in Shower [hours/day]0.333Fraction Volatilized [-]0.5Shower Flow Rate [l/min]10Volume of Bathroom [m^3]3Temperature of the Water [C]45Droplet Diameter [cm]0.1Droplet Drop Time [s]2Liquid Mass Trans. Coeff. [cm/hr]20Gas Mass Trans. Coeff. [cm/hr]3000Inhalation During Shower Chemical Specific ParametersBenzeneHenry's Constant [(mg/L)/(mg/L)Bioavailability [fraction]1.00E+00Oral Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]Slope Factor [ 1/(mg/kg-day) ]2.90E-02Reference Dose [mg/kg-day]1.70E-03Dermal Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]Slope Factor [ 1/(mg/kg-day]1.70E-03Dermal Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]2.90E-02Reference Dose [mg/kg-day]1.70E-03 | Inhalation During Shower                            |                |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------|----------|
| Exposure Duration [years]5Inhalation Rate [m^3/hr]0.833Time in Shower [hours/day]0.333Fraction Volatilized [-]0.5Shower Flow Rate [l/min]10Volume of Bathroom [m^3]3Temperature of the Water [C]45Droplet Diameter [cm]0.1Droplet Drop Time [s]2Liquid Mass Trans. Coeff. [cm/hr]20Gas Mass Trans. Coeff. [cm/hr]3000Inhalation During Shower Chemical Specific ParametersBenzeneHenry's Constant [(mg/L)/(mg/L)2.28E-01Bioavailability [fraction]1.00E+00Oral Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]2.90E-02Reference Dose [mg/kg-day]1.70E-03Inhalation Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]2.90E-02Reference Dose [mg/kg-day]1.70E-03Dermal Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]2.90E-02Reference Dose [mg/kg-day]1.70E-03                                           |                                                     | 52             |          |
| Inhalation Rate [m^3/hr]0.833Time in Shower [hours/day]0.333Fraction Volatilized [-]0.5Shower Flow Rate [l/min]10Volume of Bathroom [m^3]3Temperature of the Water [C]45Droplet Diameter [cm]0.1Droplet Drop Time [s]2Liquid Mass Trans. Coeff. [cm/hr]20Gas Mass Trans. Coeff. [cm/hr]3000Inhalation During Shower Chemical Specific ParametersBenzeneHenry's Constant [(mg/L)/(mg/L)2.28E-01Bioavailability [fraction]1.00E+00Oral Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]2.90E-02Reference Dose [mg/kg-day]1.70E-03Inhalation Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]2.90E-02Reference Dose [mg/kg-day]1.70E-03Dermal Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]2.90E-02Reference Dose [mg/kg-day]1.70E-03                                                                     |                                                     | 5              |          |
| Time in Shower [hours/day]0.333Fraction Volatilized [-]0.5Shower Flow Rate [l/min]10Volume of Bathroom [m^3]3Temperature of the Water [C]45Droplet Diameter [cm]0.1Droplet Drop Time [s]2Liquid Mass Trans. Coeff. [cm/hr]20Gas Mass Trans. Coeff. [cm/hr]3000Inhalation During Shower Chemical Specific ParametersBenzeneHenry's Constant [(mg/L)/(mg/L)Bioavailability [fraction]2.28E-01Bioavailability [fraction]1.00E+00Oral Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]Slope Factor [ 1/(mg/kg-day]2.90E-02Reference Dose [mg/kg-day]1.70E-03Dermal Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]2.90E-02Reference Dose [mg/kg-day]1.70E-03                                                                                                                                                         |                                                     | 0.833          |          |
| Fraction Volatilized [-]0.5Shower Flow Rate [l/min]10Volume of Bathroom [m^3]3Temperature of the Water [C]45Droplet Diameter [cm]0.1Droplet Drop Time [s]2Liquid Mass Trans. Coeff. [cm/hr]20Gas Mass Trans. Coeff. [cm/hr]3000Inhalation During Shower Chemical Specific ParametersBenzeneHenry's Constant [(mg/L)/(mg/L)Bioavailability [fraction]2.28E-01Bioavailability [fraction]1.00E+00Oral Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]Slope Factor [ 1/(mg/kg-day]2.90E-02Reference Dose [mg/kg-day]1.70E-03Dermal Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]2.90E-02Reference Dose [mg/kg-day]1.70E-03                                                                                                                                                                                        |                                                     | 0.333          |          |
| Volume of Bathroom [m^3]3Temperature of the Water [C]45Droplet Diameter [cm]0.1Droplet Drop Time [s]2Liquid Mass Trans. Coeff. [cm/hr]20Gas Mass Trans. Coeff. [cm/hr]3000Inhalation During Shower Chemical Specific ParametersBenzeneHenry's Constant [(mg/L)/(mg/L)Henry's Constant [(mg/L)/(mg/L)2.28E-01Bioavailability [fraction]1.00E+00Oral Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]2.90E-02Reference Dose [mg/kg-day]1.70E-03Inhalation Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]2.90E-02Reference Dose [mg/kg-day]1.70E-03Dermal Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]2.90E-02Reference Dose [mg/kg-day]1.70E-03                                                                                                                                                       |                                                     | 0.5            |          |
| Temperature of the Water [C]45Droplet Diameter [cm]0.1Droplet Drop Time [s]2Liquid Mass Trans. Coeff. [cm/hr]20Gas Mass Trans. Coeff. [cm/hr]3000Inhalation During Shower Chemical Specific ParametersBenzeneHenry's Constant [(mg/L)/(mg/L)Bioavailability [fraction]1.00E+00Oral Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]Slope Factor [ 1/(mg/kg-day) ]2.90E-02Reference Dose [mg/kg-day]1.70E-03Inhalation Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]Slope Factor [ 1/(mg/kg-day]1.70E-03Dermal Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day]2.90E-02Reference Dose [mg/kg-day]1.70E-03                                                                                                                                                                                                 | Shower Flow Rate [1/min]                            | 10             |          |
| Droplet Diameter [cm]0.1Droplet Drop Time [s]2Liquid Mass Trans. Coeff. [cm/hr]20Gas Mass Trans. Coeff. [cm/hr]3000Inhalation During Shower Chemical Specific ParametersBenzene2.28E-01Henry's Constant [(mg/L)/(mg/L)2.28E-01Bioavailability [fraction]1.00E+00Oral Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]Slope Factor [ 1/(mg/kg-day]1.70E-03Inhalation Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]2.90E-02Reference Dose [mg/kg-day]1.70E-03Dermal Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day] ]2.90E-02Reference Dose [mg/kg-day]1.70E-03                                                                                                                                                                                                                                           | Volume of Bathroom [m^3]                            | 3              |          |
| Droplet Drop Time [s]2Liquid Mass Trans. Coeff. [cm/hr]20Gas Mass Trans. Coeff. [cm/hr]3000Inhalation During Shower Chemical Specific ParametersBenzeneHenry's Constant [(mg/L)/(mg/L)Henry's Constant [(mg/L)/(mg/L)2.28E-01Bioavailability [fraction]1.00E+00Oral Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]Slope Factor [ 1/(mg/kg-day) ]2.90E-02Reference Dose [mg/kg-day]1.70E-03Inhalation Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]Slope Factor [ 1/(mg/kg-day) ]2.90E-02Reference Dose [mg/kg-day]1.70E-03Dermal Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]2.90E-02Reference Dose [mg/kg-day]1.70E-03                                                                                                                                                                          | Temperature of the Water [C]                        | 45             |          |
| Liquid Mass Trans. Coeff. [cm/hr]20Gas Mass Trans. Coeff. [cm/hr]3000Inhalation During Shower Chemical Specific Parameters<br>Benzene<br>Henry's Constant [(mg/L)/(mg/L)2.28E-01<br>1.00E+00Bioavailability [fraction]1.00E+00Oral Toxicity Parameters<br>Benzene<br>Slope Factor [ 1/(mg/kg-day) ]2.90E-02<br>1.70E-03Inhalation Toxicity Parameters<br>Benzene<br>Slope Factor [ 1/(mg/kg-day) ]2.90E-02<br>1.70E-03Inhalation Toxicity Parameters<br>Benzene<br>Slope Factor [ 1/(mg/kg-day) ]2.90E-02<br>1.70E-03Dermal Toxicity Parameters<br>Benzene<br>Slope Factor [ 1/(mg/kg-day) ]2.90E-02<br>2.90E-02<br>1.70E-03                                                                                                                                                                                                      | Droplet Diameter [cm]                               | 0.1            |          |
| Gas Mass Trans. Coeff. [cm/hr]3000Inhalation During Shower Chemical Specific Parameters<br>Benzene<br>Henry's Constant [(mg/L)/(mg/L)2.28E-01<br>1.00E+00Bioavailability [fraction]1.00E+00Oral Toxicity Parameters<br>Benzene<br>Slope Factor [ 1/(mg/kg-day) ]2.90E-02<br>1.70E-03Inhalation Toxicity Parameters<br>Benzene<br>Slope Factor [ 1/(mg/kg-day) ]2.90E-02<br>1.70E-03Inhalation Toxicity Parameters<br>Benzene<br>Slope Factor [ 1/(mg/kg-day) ]2.90E-02<br>1.70E-03Dermal Toxicity Parameters<br>Benzene<br>Slope Factor [ 1/(mg/kg-day) ]2.90E-02<br>1.70E-03                                                                                                                                                                                                                                                     | Droplet Drop Time [s]                               | 2              |          |
| Inhalation During Shower Chemical Specific Parameters<br>Benzene<br>Henry's Constant [(mg/L)/(mg/L)2.28E-01<br>1.00E+00Bioavailability [fraction]1.00E+00Oral Toxicity Parameters<br>Benzene<br>Slope Factor [ 1/(mg/kg-day) ]2.90E-02<br>1.70E-03Inhalation Toxicity Parameters<br>Benzene<br>Slope Factor [ 1/(mg/kg-day) ]2.90E-02<br>1.70E-03Inhalation Toxicity Parameters<br>Benzene<br>Slope Factor [ 1/(mg/kg-day) ]2.90E-02<br>1.70E-03Dermal Toxicity Parameters<br>Benzene<br>Slope Factor [ 1/(mg/kg-day) ]2.90E-02<br>1.70E-03Dermal Toxicity Parameters<br>Benzene<br>Slope Factor [ 1/(mg/kg-day) ]2.90E-02<br>1.70E-03                                                                                                                                                                                            | Liquid Mass Trans. Coeff. [cm/hr]                   | 20             |          |
| Benzene<br>Henry's Constant [(mg/L)/(mg/L)2.28E-01<br>3.00E+00Bioavailability [fraction]1.00E+00Oral Toxicity Parameters<br>Benzene<br>Slope Factor [ 1/(mg/kg-day) ]2.90E-02<br>1.70E-03Inhalation Toxicity Parameters<br>Benzene<br>Slope Factor [ 1/(mg/kg-day) ]2.90E-02<br>1.70E-03Inhalation Toxicity Parameters<br>Benzene<br>Slope Factor [ 1/(mg/kg-day) ]2.90E-02<br>1.70E-03Dermal Toxicity Parameters<br>Benzene<br>Slope Factor [ 1/(mg/kg-day) ]2.90E-02<br>1.70E-03Dermal Toxicity Parameters<br>Benzene<br>Slope Factor [ 1/(mg/kg-day) ]2.90E-02                                                                                                                                                                                                                                                                 | Gas Mass Trans. Coeff. [cm/hr]                      | 3000           |          |
| Benzene2.90E-02Slope Factor [ 1/(mg/kg-day) ]2.90E-02Reference Dose [mg/kg-day]1.70E-03Inhalation Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]2.90E-02Reference Dose [mg/kg-day]1.70E-03Dermal Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]2.90E-022.90E-021.70E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Benzene<br>Henry's Constant [(mg/L)/(mg/L)          | fic Parameters |          |
| Benzene2.90E-02Slope Factor [ 1/(mg/kg-day) ]2.90E-02Reference Dose [mg/kg-day]1.70E-03Inhalation Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]2.90E-02Reference Dose [mg/kg-day]1.70E-03Dermal Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]2.90E-022.90E-021.70E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oral Toxicity Parameters                            |                |          |
| Reference Dose [mg/kg-day]       1.70E-03         Inhalation Toxicity Parameters       1.70E-03         Benzene       Slope Factor [ 1/(mg/kg-day) ]       2.90E-02         Reference Dose [mg/kg-day]       1.70E-03         Dermal Toxicity Parameters       1.70E-03         Dermal Toxicity Parameters       2.90E-02         Slope Factor [ 1/(mg/kg-day) ]       2.90E-02         Slope Factor [ 1/(mg/kg-day) ]       2.90E-02                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |                |          |
| Reference Dose [mg/kg-day]1.70E-03Inhalation Toxicity Parameters<br>Benzene<br>Slope Factor [ 1/(mg/kg-day) ]2.90E-02<br>1.70E-03Reference Dose [mg/kg-day]1.70E-03Dermal Toxicity Parameters<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Slope Factor [ 1/(mg/kg-day) ]                      |                | 2.90E-02 |
| Benzene2.90E-02Slope Factor [ 1/(mg/kg-day) ]2.90E-02Reference Dose [mg/kg-day]1.70E-03Dermal Toxicity ParametersBenzeneSlope Factor [ 1/(mg/kg-day) ]2.90E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |                | 1.70E-03 |
| Reference Dose [mg/kg-day]1.70E-03Dermal Toxicity Parameters<br>Benzene<br>Slope Factor [ 1/(mg/kg-day) ]2.90E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Benzene                                             |                | 2.90E-02 |
| Benzene<br>Slope Factor [ 1/(mg/kg-day) ] 2.90E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                | 1.70E-03 |
| Slope Factor [ 1/(mg/kg-day) ] 2.90E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                   |                |          |
| 정말 문 밖에서 가장 것을 해야 하는 것을 가지 않는 것이 있는 것이 없다. 그는 것이 같은 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |                | 2.90E-02 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 집에서 승규야 하는 것은 것은 것 같아요. 귀엽에 관계하는 것을 가지하는 것이 가지 않았다. |                |          |

Chemicals in the analysis:

Benzene Ethylbenzene Toluene Xylenes

Chemical Intake Analysis

Deterministic Run

| PARAMETER NAME               | UNITS    | VALUE    |
|------------------------------|----------|----------|
| Body Weight                  | kg       | 7.00E+01 |
| Life Time                    | yr       | 7.00E+01 |
| Exposure Duration Groundwate | er yr    | 5.00E+00 |
| Exposure Frequency Ingestion | dy/yr    | 5.20E+01 |
| Water Ingestion Rate         | 1/day    | 1.40E+00 |
| Exposure Duration Groundwate |          | 5.00E+00 |
| Exposure Frequency Shower    | dy/yr    | 5.20E+01 |
| Shower Duration              | hr       | 3.33E-01 |
| Total Skin Surface Area      | cm^2     | 2.30E+04 |
| Exposure Duration Groundwate |          | 5.00E+00 |
| Exposure Duration Groundwate |          | 5.20E+01 |
| Shower Duration              | hr       | 3.33E-01 |
| Inhalation Rate in Shower    | m^3/hr   | 8.33E-01 |
| Fraction Volatilized         | (-)      | 5.00E-01 |
| Shower Flow Rate             | 1/hr     | 1.00E+01 |
| Volume of Bathroom           | m^3      | 3.00E+00 |
| Volume of Bachroom           | m S      | 3.00E+00 |
| Benzene                      |          |          |
| PARAMETER NAME               | UNITS    | VALUE    |
|                              |          |          |
|                              |          |          |
| Water Ingestion Bioavailibil | lity (-) | 1.00E+00 |
| Permeability Coefficient     | cm/hr    | 2.10E-02 |
| Henrys constant (mg/L)       | /(mg/L)  | 2.28E-01 |
| Molecular Weight             | g/mol    | 7.80E+01 |
| Inhal Shower Bioavailibility | (-)      | 1.00E+00 |
|                              | cg-dy/mg | 2.90E-02 |
| Oral Reference Dose m        | ng/kg-dy | 1.70E-03 |
| Inhalation Slope Factor      | cg-dy/mg | 2.90E-02 |
| Inhalation Reference Dose m  | ng/kg/dy | 1.70E-03 |
| Dermal Slope Factor          | cg-dy/mg | 2.90E-02 |
|                              | ng/kg-dy | 1.70E-03 |
| Ethylbenzene                 |          |          |
| PARAMETER NAME               | UNITS    | VALUE    |
| Water Ingestion Bioavailibil | Lity (-) | 1.00E+00 |
| Permeability Coefficient     | cm/hr    | 7.40E-02 |
|                              | /(mg/L)  | 3.23E-01 |
| Molecular Weight             | g/mol    | 1.06E+02 |
|                              | 3        |          |

Inhal Shower Bioavailibility (-) 1.00E+00 Oral Slope Factor kg-dy/mg Oral Reference Dose mg/kg-dy Inhalation Slope Factor kg-dy/mg ND 1.00E-01 ND Inhalation Reference Dose mg/kg/dy 2.90E-01 Dermal Slope Factor kg-dy/mg Dermal Reference Dose mg/kg-dy ND 1.00E-01 Toluene \_\_\_\_\_ PARAMETER NAME UNITS VALUE water Ingestion Bioavailibility (-)1.00E+00Permeability Coefficientcm/hrHenrys constant(mg/L)/(mg/L)Molecular Weightg/molInhal Shower Bioavailibility(-)Oral Slope Factorkg-dy/mgOral Reference Dosemg/kg-dyInhalation Slope Factorkg-dy/mgNDInhalation Reference Dosemg/kg/dyInhalation Reference Dosemg/kg/dy Inhalation Reference Dose mg/kg/dy 1.14E-01 
 Inhalation
 Kg-dy/mg

 Dermal
 Slope
 Factor
 kg-dy/mg

 Deference
 Dose
 mg/kg-dy
 ND 2.00E-01 Xylenes ------PARAMETER NAME UNITS VALUE ------\_\_\_\_\_ mater ingestion Bioavailibility (-)1.00E+00Permeability Coefficientcm/hr8.00E-02Henrys constant(mg/L) / (mg/L)2.90E-01Molecular Weightg/mol1.06E+02Inhal Shower Bioavailibility(-)1.00E+00Oral Slope Factorkg-dy/mgND Oral Slope Factorkg-dy/mgNDOral Reference Dosemg/kg-dy2.00E+00Inhalation Slope Factorkg-dy/mgNDInhalation Reference Dosemg/kg/dy2.00E-01Dermal Slope Factorkg-dy/mgNDDermal Reference Dosemg/kg-dy2.00E+00 SUMMARY OF THE OUTPUTS \*\*\*\*\*\*\*\*\*\*\*\*\*\* CDI: Chronic Daily Intake LADI: Lifetime Average Daily Intake DRINKING WATER Daily CDI LADI Risk Hazard Intake Quotient (mg/kg-dy) (mg/kg-dy) (mg/kg-dy) (-) (-) \_\_\_\_\_ ----2.23E-03 3.18E-04 2.27E-05 6.58E-07 1.87E-01 4.75E-03 6.76E-04 4.83E-05 ND 6.76E-03 Benzene ND 6.76E-03 ND 1.99E-02 Ethylbenzene 2.80E-02 3.98E-03 2.85E-04

Toluene

|                    |                 |            |            |          | -                  |
|--------------------|-----------------|------------|------------|----------|--------------------|
| Xylenes            | 2.69E-02        | 3.83E-03   | 2.74E-04   | ND       | 1.92E-03           |
| DERMAL INTAKE DURI | NG SHOWER       |            |            |          |                    |
|                    | Daily<br>Intake | CDI        | LADI       | Risk     | Hazard<br>Quotient |
|                    | (mg/kg-dy)      | (mg/kg-dy) | (mg/kg-dy) | (-)      | (-)                |
| Benzene            | 2.56E-04        | 3.65E-05   | 2.61E-06   | 7.56E-08 | 2.15E-02           |
| Ethylbenzene       | 1.92E-03        | 2.74E-04   | 1.96E-05   | ND       | 2.74E-0            |
| Toluene            | 6.88E-03        | 9.81E-04   | 7.00E-05   | ND       | 4.90E-0            |
| Xylenes            | 1.18E-02        | 1.68E-03   | 1.20E-04   | ND       | 8.39E-0            |
| INHALATION DURING  | SHOWER          |            |            |          |                    |
|                    | Daily<br>Intake | CDI        | LADI       | Risk     | Hazard<br>Quotien  |
|                    | (mg/kg-dy)      | (mg/kg-dy) | (mg/kg-dy) | (-)      | (-)                |
| Benzene            | 1.47E-02        | 2.10E-03   | 1.50E-04   | 4.34E-06 | 1.23E+0            |
| Ethylbenzene       | 3.13E-02        | 4.46E-03   | 3.19E-04   | ND       | 1.54E-0            |
| Maluana            |                 | 2 (22 02   | 1 005 03   | ND       | 2.31E-0            |
| Toluene            | 1.84E-01        | 2.63E-02   | 1.88E-03   | ND       | L.JIL U.           |

Receptor Point Concentrations

| Groundwater Concentrations: | Max. 5-year ave<br>(non-carcinogens) | Ave. over ED<br>(carcinogens) |
|-----------------------------|--------------------------------------|-------------------------------|
| Benzene                     | .112                                 | .112                          |
| Ethylbenzene                | .237                                 | .237                          |
| Toluene                     | 1.40                                 | 1.40                          |
| Xylenes                     | 1.35                                 | 1.35                          |
| Shower Air Concentrations   | Max. 5-year ave<br>(non-carcinogens) | Ave. over ED (carcinogens)    |
| Benzene                     | 3.71                                 | 3.71                          |
| Ethylbenzene                | 7.90                                 | 7.90                          |
| Toluene                     | 46.6                                 | 46.6                          |
| Xylenes                     | 44.8                                 | 44.8                          |

|                                                 | RBCA S                                                                    | ITE ASSESSMENT             |                                       | Tier 2 V                      | Vorksheet 8.1                |
|-------------------------------------------------|---------------------------------------------------------------------------|----------------------------|---------------------------------------|-------------------------------|------------------------------|
| Site Name: Truck Stop                           | ame: Truck Stop Site Location: Oklahoma City Completed By: Rachal Roberts |                            | Date Completed: 3/1/1999              | 8 OF                          |                              |
|                                                 |                                                                           | TIER 2 EXPOSURE CON        | CENTRATION AND INTAKE CALC            | ULATION                       |                              |
| GROUNDWATER EXPOSURE PATH                       | NAYS STANDARD BUILD                                                       | <b>利用的时候就把中心</b> 有物能化;我像的保 | I CHECKED IF PATHWAY IS ACTIVE        | 期期期期期期期期期期期期期期期期期期期           | 的影响的影响和影响中的分子的影响。            |
| SOIL: LEACHING TO GROUNDWATER/                  | Exposure Concentration                                                    |                            |                                       |                               |                              |
| GROUNDWATER INGESTION                           | 1) Source Medium                                                          | 2) NAF Value (L/kg)        | 3) Exposure Medium                    | 4) Exposure Multiplier        | 5) Average Daily Intake Rate |
|                                                 |                                                                           | Receptor                   | Groundwater: POE Conc. (mg/L) (1)/(2) | (IRxEFxED)/(BWxAT) (L/kg-day) | (mg/kg-day) (3) x (4)        |
|                                                 | Soil Concentration                                                        | # 255-3-5120%              |                                       |                               |                              |
| Constituents of Concern                         | (mg/kg)                                                                   | On-Site Commercial         | On-Site Commercial                    | On-Site Commercial            | On-Site Commercial           |
|                                                 | 1.1E+1                                                                    | 1.2E-1                     | 9.2E+1                                | 2.0E-4                        | 1.9E-2                       |
| Benzene                                         |                                                                           |                            |                                       |                               |                              |
| TAXABLE INC. INC. INC. INC. INC. INC. INC. INC. | 9.1E+1                                                                    | 1.8E-1                     | 4.9E+2                                | 5.7E-4                        | 2.8E-1                       |
| Benzene<br>Ethylbenzene<br>Toluene              |                                                                           | 1.8E-1<br>2.1E-1           | 4.9E+2<br>1.2E+3                      | 5.7E-4<br>5.7E-4              | 2.8E-1<br>6.7E-1             |

| ( | NOTE:    | ABS = Dermal absorption factor (dim)<br>AF = Adherance/factor (mg/cm <sup>2</sup> 2)<br>AT = Averaging time (days) | 8W = Body Weight (kg)<br>CF = Units conversion factor<br>ED = Exposure duration (yrs) | EF = Exposure frequencey (days/yr)<br>ET = Exposure time (hrs/day)<br>iR = intake rate (L/day) | POE = Point of exposure<br>SA = Skin exposure area (cm*2klay) |
|---|----------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|   | © Ground | twater Services, Inc. (GSI), 1995-1997. All                                                                        | Rights Reserved                                                                       | Software: GSI RBCA Spreadsheet<br>Version: 1.0.1                                               | Serial: G-507-WJX-400                                         |



1 2 × 10

|                         |                             | RBCA SITE ASSESSME                    | NT                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tier 2 W                                                     | Vorksheet 8.1                                                              |
|-------------------------|-----------------------------|---------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------|
| Site Name: Truck Stop   | Site Location: Okla         | homa City                             | Date Completed: 3/1/1999                                           | 9 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |                                                                            |
|                         |                             | TIER 2 EXPO                           | SURE CONCENTRATION AND                                             | INTAKE CALCULATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                                                                            |
| GROUNDWATER EXPOSURE PA | THWAYS MELINE THE           | <b>的现在分子,你</b> 你不能能能                  |                                                                    | TIVE THE PARTY OF |                                                              | <b>建模型的运行性的利用的 网络拉拉拉拉</b> 拉拉                                               |
| GROUNDWATER: INGESTION  | Exposure Concentration      |                                       |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                            | MAX. PATHWAY INTAKE (mg/kg-day)                                            |
|                         | 1) Source Medium            | 2) <u>NAF Value (dim)</u><br>Receptor | 3) <u>Exposure Medium</u><br>Groundwater: POE Conc. (mg/L) (1)/(2) | 4) Exposure Multiplier<br>(IRxEFxED)(BMbAT) (L/kg-day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5) <u>Average Daily Intake Rate</u><br>(mg/kg-day) (3) x (4) | (Maximum Intake of ective pathwaye<br>coll leaching & groundwater routes.) |
| Constituents of Concern | Groundwater Conc.<br>(mg/L) | On-Site Commercial                    | On-Site Commercial                                                 | On-Site Commercial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | On-Site Commercial                                           | On-Site Commercial                                                         |
| Benzene                 | FP                          | 1.0E+0                                | #VALUE!                                                            | 2.0E-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | #VALUE!                                                      | 1.9E-2                                                                     |
| Ethylbenzene            | FP                          | 1.0E+0                                | #VALUE!                                                            | 5.7E-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | #VALUE!                                                      | 2.8E-1                                                                     |
|                         |                             | 100.0                                 | #VALUE!                                                            | 5.7E-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | #VALUE!                                                      | 6.7E-1                                                                     |
| Toluane                 | FP                          | 1.0E+0                                | PANEOEI                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                                                            |

| NOTE | ABS = Dermal absorption factor (dm)<br>AF = Adherance factor (mg/cm*2) | BW = Body weight (kg)<br>CF = Units conversion factor | EF = Exposure frequencey (deytu/yr)<br>ET = Exposure time (hrs/day) | POE = Point of exposure<br>SA = Sidn exposure area (cm*2/day) |
|------|------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|
|      | AT = Averaging time (days)                                             | ED . Exposure duration (yrs)                          | IR = intaka rate (L/day)                                            |                                                               |
|      |                                                                        |                                                       |                                                                     |                                                               |
|      |                                                                        |                                                       | Coloren OCI DDCA Considered                                         | Redat O FOT WIN                                               |

O Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-507-WJX-400

|                         |                                                     | RBCA                                                                                                                                                                                                                                                                                                            | SITE ASSESS  | MENT                                                              |                  |                                                     |                    | Tier 2 Wo                                                                                                        | rksheet 8.2 |                 |
|-------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------|------------------|-----------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------|-------------|-----------------|
| Site Name: Truck Stop   | Site Location: Oklahoma City Completed By: Rachal R |                                                                                                                                                                                                                                                                                                                 |              |                                                                   | : Rachal Roberts | Date Completed                                      | 1: 3/1/1999        | 40                                                                                                               |             |                 |
|                         |                                                     |                                                                                                                                                                                                                                                                                                                 |              | TIER 2 PAT                                                        | HWAY RISK        | CALCULATIO                                          | N                  |                                                                                                                  |             |                 |
|                         | ATHWAYS                                             | 他让 维持的 海豚                                                                                                                                                                                                                                                                                                       | 地址的原注的指      | (1)())()()()()()()()()()()()()()()()()(                           | · 新新建築           |                                                     | ATHWAYS ARE ACTIVE | an all an end and an all | 副新闻和副主      | d minutes       |
|                         |                                                     |                                                                                                                                                                                                                                                                                                                 | CA           | RCINOGENIC R                                                      | ISK              |                                                     |                    | TOXIC EFFECTS                                                                                                    |             |                 |
| Constituents of Concern | (1) EPA<br>Classificatio                            | (2) Total Carcinogenic         (3) Oral         (4) Individual COC         (5) Total Toxi           (1) EPA         Intake Rate (mg/kg/day)         Slope Factor         Risk (2) x (3)         Intake Rate (mg/kg/day)           Classificatio         On-Site         On-Site         On-Site         On-Site |              | (5) Total Toxican<br>Intake Rate (mg/kg/<br>On-Site<br>Commercial |                  | (7) Individ<br>Hazard Quol<br>On-Site<br>Commercial |                    |                                                                                                                  |             |                 |
| Benzene                 | Ä                                                   | 1.9E-2                                                                                                                                                                                                                                                                                                          |              | 2.9E-2                                                            | 5.4E-4           |                                                     |                    |                                                                                                                  |             |                 |
| Ethylbenzene            | D                                                   |                                                                                                                                                                                                                                                                                                                 |              |                                                                   |                  |                                                     | 2.8E-1             | 1.0E-1                                                                                                           | 2.8E+0      |                 |
| Toluene                 | D                                                   |                                                                                                                                                                                                                                                                                                                 |              |                                                                   |                  |                                                     | 6.7E-1             | 2.0E-1                                                                                                           | 3.3E+0      | 44              |
| Xylene (mixed isomers)  | D                                                   |                                                                                                                                                                                                                                                                                                                 |              |                                                                   |                  |                                                     | 8.3E-1             | 2.0E+0                                                                                                           | 4.1E-1      |                 |
|                         |                                                     | Total Path                                                                                                                                                                                                                                                                                                      | way Carcinog | enic Risk = [                                                     | 5.4E-4           | 0.0E+0                                              | Totel Per          | hway Hazard Index =                                                                                              | 8.6E+0      | 0.0E+0          |
|                         |                                                     |                                                                                                                                                                                                                                                                                                                 |              |                                                                   |                  |                                                     |                    |                                                                                                                  |             | 10 A 10         |
|                         |                                                     | *                                                                                                                                                                                                                                                                                                               |              |                                                                   |                  |                                                     |                    |                                                                                                                  |             |                 |
|                         |                                                     |                                                                                                                                                                                                                                                                                                                 |              |                                                                   |                  |                                                     |                    |                                                                                                                  | 1           |                 |
|                         |                                                     |                                                                                                                                                                                                                                                                                                                 |              |                                                                   |                  |                                                     |                    |                                                                                                                  |             |                 |
|                         |                                                     |                                                                                                                                                                                                                                                                                                                 |              |                                                                   |                  |                                                     | Saturare: GSI PB   | CA Spreadsheet                                                                                                   | Carial      | G. 507.W IX 400 |

C Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Version: 1.0.1

|                                                            |                   | RBCA         | SITE ASS                        | ESSMENT                            |                                     |                                 |                                    |       |                               |                                    | Tier 2 Wo       | orksheet 9.3 |                              |
|------------------------------------------------------------|-------------------|--------------|---------------------------------|------------------------------------|-------------------------------------|---------------------------------|------------------------------------|-------|-------------------------------|------------------------------------|-----------------|--------------|------------------------------|
| Site Name: Tr                                              | uck Stop          |              | Completed B                     | y: Rachal Rol                      | berts                               |                                 |                                    |       |                               |                                    |                 |              |                              |
| Site Location                                              | Oklahoma City     |              | Date Comple                     | ted: 3/1/1999                      | L                                   |                                 |                                    |       |                               |                                    |                 |              | 1 OF 1                       |
|                                                            |                   |              | Target Ris                      | k (Class A & B)                    | 1.0E-8                              | MCL expo                        | sure limit?                        |       |                               | Cel                                | culation Option | : 3          | 20 CE 1000                   |
| G                                                          | ROUNDWATER SSTL V | ALUES        | Targe                           | t Risk (Class C)                   | 1.0E-6                              | PEL exposure limit?             |                                    |       |                               |                                    |                 |              |                              |
|                                                            |                   |              | Target H                        | lazard Quotient                    | 1.0E+0                              |                                 |                                    |       |                               |                                    |                 |              |                              |
|                                                            |                   |              |                                 | 85                                 | TL Results For Com                  | plete Exposure                  | Pathways ("x" H C                  | Compl | ete)                          |                                    |                 |              |                              |
| Representative<br>Concentration<br>CONSTITUENTS OF CONCERN |                   |              | Groundwater                     | Incestion                          |                                     | ater Volatilization             |                                    |       | er Volatilization             | Applicable                         | SSTL            | Required CRF |                              |
| CONSTITUEN                                                 | NTS OF CONCERN    |              |                                 | Grounder                           | IL COLICI                           | A 101                           |                                    |       | 10 00                         | tdoor Air                          | SSTL            | Exceeded ?   | Required Chir                |
|                                                            | Name              | (mg/L)       | Residential:<br>(on-site)       | Commercial:<br>(on-site)           | Regulatory(MCL):<br>(on-site)       | Residential:<br>(on-site)       | Commercial:<br>(on-site)           | 1.1   | esidential<br>(on-site)       | Commercial:<br>(on-site)           | (mg/L           |              | Only if 'yes' let            |
| CAS No.                                                    |                   | (mg/L)<br>FP | Residential:                    | Commercial:                        | Regulatory(MCL):                    | Residential:                    | Commercial:                        | 1.1   | esidential                    | Commercial:                        |                 |              |                              |
| CAS No.<br>71-43-2                                         | Name              |              | Residential:<br>(on-site)       | Commercial:<br>(on-site)           | Regulatory(MCL):<br>(on-site)       | Residential:<br>(on-site)       | Commercial:<br>(on-site)           | 1.1   | esidential<br>(on-site)       | Commercial:<br>(on-site)           | (mg/L           | ·= if yes    | Only if 'yes' le             |
| 71-43-2<br>100-41-4                                        | Name<br>Benzene   | FP           | Residential:<br>(on-site)<br>NA | Commercial:<br>(on-site)<br>1.7E-1 | Regulatory(MCL):<br>(on-alte)<br>NA | Residential:<br>(on-site)<br>NA | Commercial:<br>(on-site)<br>4.8E+1 | 1.1   | esidential<br>(on-site)<br>NA | Commercial:<br>(on-aite)<br>9.8E+1 | (mg/L<br>1.7E-1 | •=" if yes   | Only if 'yes' lei<br>#VALUE! |

>Sol indicates risk-based target concentration greater than constituent solubility

C Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved

Software: GSI RBCA Spreadsheet Version: 1.0.1 Serial: G-507-WJX-400

**BP RISC** 

Saturated zone model (dissolved phase source) Indoor air model with volatile emissions from groundwater Outdoor air concentration estimated from gw concentration

Title: New Project Simulation time (years)..... 100 Unsaturated Zone Properties Total Porosity in vadose zone (cm3/cm3) .364 Residual water content (cm3/cm3)...... 8.000E-02 Fraction organic carbon (g oc/g soil)... 7.700E-04 Soil bulk density (g/cm3)..... 1.68 Infiltration Rate (cm/yr)...... 730. Van Genuchten"s N..... 2.68 Thickness of vadose zone (m)...... 7.01 Water content under house(cm3/cm3)..... 8.000E-02 Thickness of capillary fringe (cm)..... 13.0 Air content in capillary fringe(cm3/cm3) 9.600E-02 (Water cont. in cap. fringe(cm3/cm3))... .268 Air content in capillary fringe(cm3/cm3) 9.600E-02

#### OUTDOOR AIR PARAMETERS

Height of box (breathing zone) (m)..... 2.00 Length of box (m)..... 10.0 Wind speed (m/s)..... 2.25

Basement and House Data Distance from source to basement (m).... 7.14 Cross-sect. area of basement (m2)..... 1.035E+03 Volume of house (m3)..... 3.100E+03 Number of air changes per day...... 480. Foundation thickness (m)..... 150 Fraction of cracks (cm3/cm3)..... 1.000E-02

Saturated Zone Model Source

Aquifer Properties

Soil bulk density (g/cm3)..... 1.59 Hydraulic gradient (m/m)..... 7.400E-02 Longitudinal dispersivity (m)...... 2.10 Vertical dispersivity (m)..... 2.100E-02 Receptor Well Location Distance cross-gradient (m)..... 21.0 Depth to top of well screen (m)...... .000 Depth to bottom of well screen(m)...... 9.70 Number of points used to calc. conc.... 2 CHEMICAL DATA INPUT: Benzene Diffusion coeff. in air (cm2/s)..... 8.800E-02 Diffusion coeff. in water (cm2/s)... 9.800E-06 Solubility (mg/l)..... 1.750E+03 KOC (ml/g)..... 58.9 Molecular Weight (g/mol)..... 78.0 Degradation rate sat. zone (1/d).... .000 Degradation rate unsat. zone (1/d).. .000 Source conc. for GW model (mg/l)..... 44.4 Routes: INGESTION OF GROUNDWATER DERMAL CONTACT DURING SHOWER INHALATION DURING SHOWER INHALATION OF OUTDOOR AIR INHALATION OF INDOOR AIR SUMMARY OF INPUT PARAMETERS Body Weight (kg) 70.00 Lifetime (years) 70.00 INGESTION OF GROUNDWATER 1.40 Ingestion rate (I/day) Exp. Freq Groundwater (events/year) 52.00 Exp. Duration Groundwater (years) 5.00 Absorption Adjustment Factor for Ingestion of water (-) Benzene 1.0

#### INHALATION OF INDOOR AIR

| Inhalation rate (m <sup>3</sup> /hr) | 0.83           |     |
|--------------------------------------|----------------|-----|
| Time indoors (hours/day)             | 2.00           |     |
| Lung Retention Factor (-)            | 0.50           |     |
| Exp. Freq. Indoor Air (events/yr)    | 52.00          |     |
| Exp. Duration Indoor Air (yr)        | 5.00           |     |
| Absorption Adjustment Factor for     | Inhalation (-) | 1.0 |

#### MEDIA CONCENTRATIONS

Concentration in Groundwater (mg/l) Obtained from Fate and Transport output AVERAGE Concentration (over exposure duration) (used to calculate carcinogenic risk) Exposure Duration (years) 5.0 Benzene 1.7

Concentration used to calculate hazard index (Minimum of 7 years or exposure duration) Exposure Duration (years) 5.0 Benzene 1.7

Concentration in Indoor Air (mg/m^3) Obtained from Fate and Transport output AVERAGE Concentration (over exposure duration) (used to calculate carcinogenic risk) Exposure Duration (years) 5.0 Benzene 2.10E-03

Concentration used to calculate hazard index (Minimum of 7 years or exposure duration) Exposure Duration (years) 5.0 Benzene 2.10E-03

SLOPE FACTORS AND REFERENCE DOSESIngestion Slope Factor [1/(mg/kg-day)]2.90E-02Ingestion Reference Dose (mg/kg-day)1.70E-03Inhalation Slope Factor [1/(mg/kg-day)]2.90E-02Inhalation Reference Dose (mg/kg-day)1.70E-03Dermal Slope Factor [1/(mg/kg-day)]2.90E-02Dermal Slope Factor [1/(mg/kg-day)]2.90E-02Dermal Reference Dose (mg/kg-day)1.70E-03

#### SUMMARY OF RESULTS INGESTION OF GROUNDWATER

| Benzene          | <u>e</u> |
|------------------|----------|
| CDI (mg/kg-day)  | 4.93E-03 |
| LADD (mg/kg-day) | 3.52E-04 |
| Cancer Risk (-)  | 1.02E-05 |
| Hazard Index (-) | 2.90E+00 |

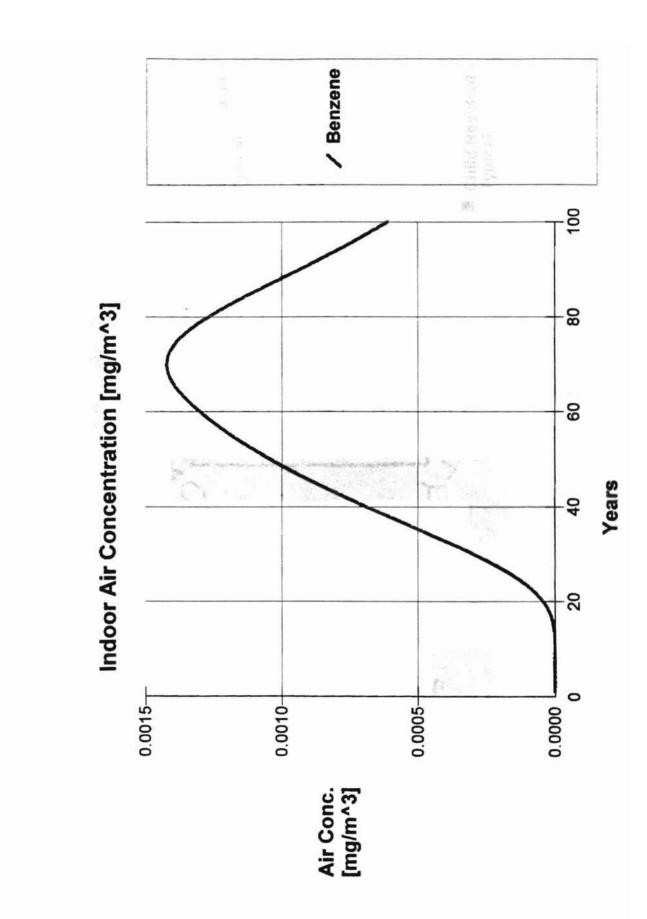
#### INHALATION OF INDOOR AIR

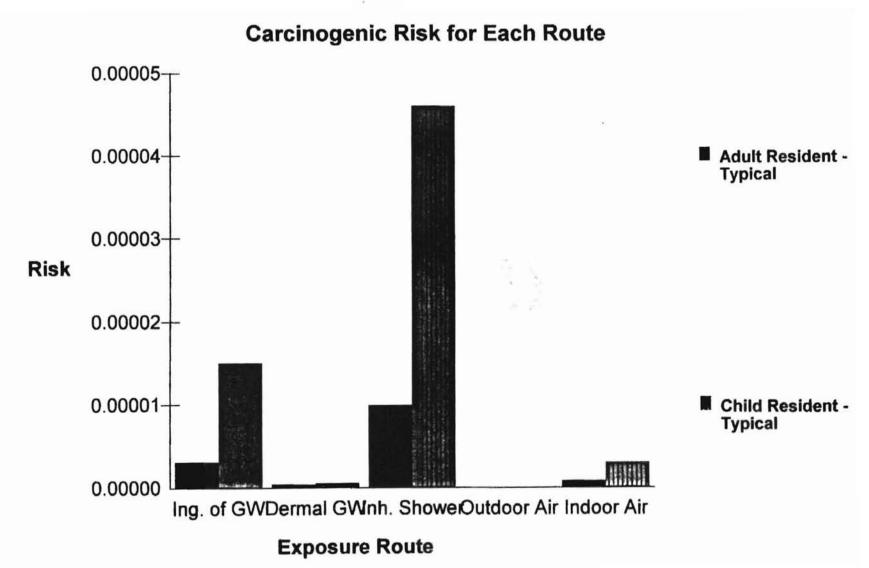
#### Benzene

| CDI (mg/kg-day)  | 3.56E-06 |
|------------------|----------|
| LADD (mg/kg-day) | 2.54E-07 |
| Cancer Risk (-)  | 7.36E-09 |
| Hazard Index (-) | 2.09E-03 |

### SUMMARY OF CARCINOGENIC RISK CASE 1:

Worker - Typical


|         | Ingestion | n Dermal   | Inhalati  | on Inhalat | tion Inhalat | ion         |
|---------|-----------|------------|-----------|------------|--------------|-------------|
|         | of        | Conta      | ct During | g of       | fof          |             |
|         | Groundwa  | ter Shower | Shower    | Outdoo     | or Air Indoo | r Air TOTAL |
| Benzene | 1.0E-05   | 1.2E-06    | 3.2E-05   | 8.9E-12    | 7.4E-09      | 4.3E-05     |
| TOTAL   | 1.0E-05   | 1.2E-06    | 3.2E-05   | 8.9E-12    | 7.4E-09      | 4.3E-05     |


#### SUMMARY OF HAZARD QUOTIENTS

|             | Ingestion<br>of<br>Groundwat | Contac  |         | of      | n Inhalatio<br>of<br>Air Indoor |         |
|-------------|------------------------------|---------|---------|---------|---------------------------------|---------|
| TOTAL       |                              |         |         |         |                                 |         |
| Benzene     | 2.9E+00                      | 3.3E-01 | 9.1E+00 | 2.5E-06 | 2.1E-03                         | 1.2E+01 |
| Ethylbenzer | ne 3.2E-03                   | 1.3E-03 | 3.1E-03 | 1.2E-09 | 1.2E-07                         | 7.6E-03 |
| Toluene     | .5E-02                       | 3.6E-03 | 7.7E-02 | 2.6E-08 | 2.7E-06                         | 9.5E-02 |
| Xylenes     | 2.6E-03                      | 1.1E-03 | 7.3E-02 | 2.3E-08 | 2.3E-06                         | 7.7E-02 |
|             |                              |         |         |         |                                 |         |
| TOTAL       | 2.9E+00                      | 3.4E-01 | 9.3E+00 | 2.6E-06 | 2.1E-03                         | 1.3E+01 |

Clean-up Levels (RBSLs) in Saturated Zone Source [mg/l}

| Benzene      | 1.02  |
|--------------|-------|
| Ethylbenzene | .0662 |
| Toluene      | .612  |
| Xylenes      | 1.07  |





| #11 mm    |  |
|-----------|--|
| Ret       |  |
| 10 Mar 12 |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |

## Appendix F Model Output by Pathways

|         |              |      |           | Estima    | ted            |            |          |            | Measur   | ed             |            |
|---------|--------------|------|-----------|-----------|----------------|------------|----------|------------|----------|----------------|------------|
|         | 1 1          |      | Hazard    |           | Air Conc       | entration  |          | Hazard     |          | Air Conc       | entration  |
| Model   | Chemical     | Risk | Quotient  | SSTL      | Non-Carcinogen | Carcinogen | Risk     | Quotient   | SSTL     | Non-Carcinogen | Carcinogen |
| API DSS | Benzene      | 0.0  | 0.0       |           | 0.0            | 0.0        | 3.12E-06 | 3.22E-02   |          | 0.0168         | 0.0165     |
|         | Ethylbenzene | 0.0  | 0.0       |           | 0.0            | 0.0        |          | 7.02E-04   |          | 0.0061         | 0.0044     |
|         | Toluene      | 0.0  | 0.0       |           | 0.0            | 0.0        |          | 6.75E-03   |          | 0.1930         | 0.1670     |
|         | Xylene       | 0.0  | 0.0       |           | 0.0            | 0.0        |          | 7.62E-04   |          | 0.1230         | 0.0968     |
| SI RBCA | Benzene      |      | 100000    | 5         |                |            |          |            |          |                |            |
|         | Ethylbenzene |      | Can not b | e modeled |                |            |          | Can not be | modeled  |                |            |
|         | Toluene      |      |           |           |                |            |          | 1.28       |          |                |            |
|         | Xylene       |      | 1.1.1     |           |                |            |          |            |          |                |            |
| BP RISC | Benzene      | 0.0  | 0.0       | > sol     | 0.0            | 0.0        | 2.20E-06 | 2.60E-01   | 7.75E-01 |                | 1.35E-01   |
|         | Ethylbenzene | 0.0  | 0.0       | 1.13E+02  | 0.0            | 0.0        |          | 6.80E-04   | 5.01E-02 | 5.93E-03       |            |
|         | Toluene      | 0.0  | 0.0       | 1.05E+03  | 0.0            | 0.0        |          | 2.40E-03   | 4.63E-01 | 0.0688         |            |
|         | Xylene       | 0.0  | 0.0       | 1.84E+03  | 0.0            | 0.0        | 1        | 6.90E-04   | 8.13E-01 | 0.112          |            |

|          |              |      |           | Estima    | ted            |            |                                       |            | Measur       | ed             |            |
|----------|--------------|------|-----------|-----------|----------------|------------|---------------------------------------|------------|--------------|----------------|------------|
|          | i r          |      | Hazard    |           | Air Conc       | entration  |                                       | Hazard     | concert days | Air Conc       | entration  |
| Model    | Chemical     | Risk | Quotient  | SSTL      | Non-Carcinogen | Carcinogen | Risk                                  | Quotient   | SSTL         | Non-Carcinogen | Carcinogen |
| API DSS  | Benzene      | 0.0  | 0.0       |           | 0.0            | 0.0        | 5.66E-04                              | 5.84E+00   |              | 0,559          | 0.550      |
|          | Ethylbenzene | 0.0  | 0.0       |           | 0.0            | 0.0        |                                       | 1.25E-02   |              | 0.204          | 0.146      |
|          | Toluene      | 0.0  | 0.0       |           | 0.0            | 0.0        | · · · · · · · · · · · · · · · · · · · | 1.00E+00   |              | 6.440          | 5.550      |
|          | Xylene       | 0.0  | 0.0       |           | 0.0            | 0.0        |                                       | 3.63E-01   |              | 4.090          | 3.220      |
| SSI RBCA | Benzene      |      |           |           |                |            |                                       |            |              |                |            |
|          | Ethylbenzene |      | Can not b | e modeled |                |            |                                       | Can not be | modeled      |                |            |
|          | Toluene      |      |           |           |                |            |                                       |            |              |                |            |
|          | Xylene       |      |           |           |                |            |                                       |            |              |                |            |
| BP RISC  | Benzene      | 0.0  | 0.0       | > sol     | 0.0            | 0.0        | 1.90E-04                              | 2.20E+01   | 7.75E-01     |                | 1.35E-01   |
|          | Ethylbenzene | 0.0  | 0.0       | 1.13E+02  | 0.0            | 0.0        |                                       | 5.20E-03   | 5.01E-02     | 5.93E-03       |            |
|          | Toluene      | 0.0  | 0.0       | 1.05E+03  | 0.0            | 0.0        |                                       | 1.60E-01   | 4.63E-01     | 0.0688         |            |
|          | Xylene       | 0.0  | 0.0       | 1.84E+03  | 0.0            | 0.0        |                                       | 1.40E-01   | 8.13E-01     | 0.112          |            |

|          |              |          |          | Estimat | ted            |            |          |          | Measure | ed             |            |
|----------|--------------|----------|----------|---------|----------------|------------|----------|----------|---------|----------------|------------|
|          |              |          | Hazard   |         | Air Conc       | entration  |          | Hazard   |         | Air Conc       | entration  |
| Model    | Chemical     | Risk     | Quotient | SSTL    | Non-Carcinogen | Carcinogen | Risk     | Quotient | SSTL    | Non-Carcinogen | Carcinogen |
| API DSS  | Benzene      | 0.0      | 0.0      |         | 0.0            | 0.0        | 8.58E-05 | 0.884    |         | 0.0168         | 0.0165     |
|          | Ethylbenzene | 0.0      | 0.0      |         | 0.0            | 0.0        |          | 0.005    |         | 0.0061         | 0.0044     |
|          | Toluene      | 0.0      | 0.0      |         | 0.0            | 0.0        |          | 0.087    |         | 0.1930         | 0.1670     |
|          | Xylene       | 0.0      | 0.0      |         | 0.0            | 0.0        |          | 0.006    |         | 0.1230         | 0.0968     |
| GSI RBCA | Benzene      | 2.40E-04 |          | 0.086   |                |            | 3.00E-04 |          | 0.310   | _              |            |
|          | Ethylbenzene |          | 0.760    | 110.000 |                |            |          | 1.300    | > sol   |                |            |
|          | Toluene      |          | 0.750    | 210.000 |                |            |          | 1.500    | > sol   |                |            |
|          | Xylene       |          | 0.078    | > sol   |                |            |          | 0.190    | > sol   |                |            |
| BP RISC  | Benzene      | 0.0      | 0.0      | > sol   | 0.0            | 0.0        | 5.90E-05 | 7.100    | 0.775   |                | 0.135      |
|          | Ethylbenzene | 0.0      | 0.0      | 113.00  | 0.0            | 0.0        |          | 0.005    | 0.050   | 0.006          |            |
|          | Toluene      | 0.0      | 0.0      | 1050.00 | 0.0            | 0.0        |          | 0.031    | 0.463   | 0.0688         |            |
|          | Xylene       | 0.0      | 0.0      | 1840.00 | 0.0            | 0.0        |          | 0.005    | 0.813   | 0.112          | -          |

|                 |              |          |            | Estimat   | ted            |            |          |            | Measur  | ed             |            |
|-----------------|--------------|----------|------------|-----------|----------------|------------|----------|------------|---------|----------------|------------|
|                 |              |          | Hazard     |           | Air Conc       | entration  |          | Hazard     |         | Air Conc       | entration  |
| Model           | Chemical     | Risk     | Quotient   | SSTL      | Non-Carcinogen | Carcinogen | Risk     | Quotient   | SSTL    | Non-Carcinogen | Carcinogen |
| API DSS         | Benzene      |          |            |           |                |            |          |            |         |                | = 5        |
|                 | Ethylbenzene |          | Can not be | e modeled |                |            |          | Can not be | modeled |                | 2          |
|                 | Toluene      |          |            |           |                |            |          |            |         |                |            |
|                 | Xylene       |          |            |           |                |            |          |            |         |                |            |
| <b>SSI RBCA</b> | Benzene      | 2.40E-04 |            | 0.018     |                |            | 3.00E-04 |            | 0.044   |                |            |
|                 | Ethylbenzene |          | 0.760      | 54.000    |                |            |          | 1.300      | 140.000 |                |            |
|                 | Toluene      |          | 0.750      | 24.000    |                |            |          | 1.500      | 59.000  |                |            |
|                 | Xylene       | and and  | 0.078      | > 801     |                |            |          | 0.190      | > sol   |                |            |
| BP RISC         | Benzene      | 0.0      | 0.0        | > 60      | 0.0            | 0.0        | 1.20E-05 | 1.40E+00   | 0.775   |                | 0.006      |
|                 | Ethylbenzene | 0.0      | 0.0        | 113.00    | 0.0            | 0.0        |          | 5.40E-05   | 0.050   | 3.67E-05       |            |
|                 | Toluene      | 0.0      | 0.0        | 1050.00   | 0.0            | 0.0        |          | 1.60E-03   | 0.463   | 4.16E-04       |            |
|                 | Xylene       | 0.0      | 0.0        | 1840.00   | 0.0            | 0.0        |          | 1.30E-03   | 0.813   | 5.98E-04       |            |

|                 |              |          |            | Estimat | ted            |            |          |            | Measur  | ed             |            |
|-----------------|--------------|----------|------------|---------|----------------|------------|----------|------------|---------|----------------|------------|
|                 |              |          | Hazard     |         | Air Conc       | entration  |          | Hazard     |         | Alr Conc       | entration  |
| Model           | Chemical     | Risk     | Quotient   | SSTL    | Non-Carcinogen | Carcinogen | Risk     | Quotient   | SSTL    | Non-Carcinogen | Carcinogen |
| API DSS         | Benzene      |          |            |         |                |            |          |            |         |                |            |
|                 | Ethylbenzene |          | Can not be | modeled |                |            |          | Can not be | modeled |                |            |
|                 | Toluene      |          |            |         |                |            | 20.026   |            |         |                |            |
|                 | Xylene       |          |            |         |                |            |          |            |         |                |            |
| <b>SSI RBCA</b> | Benzene      | 2.40E-04 |            | 3.50    |                |            | 3.00E-04 |            | 6.100   |                |            |
|                 | Ethylbenzene |          | 0.760      | > sol   |                |            |          | 1.300      | > sol   |                |            |
|                 | Toluene      |          | 0.750      | > sol   |                |            |          | 1.500      | > sol   |                |            |
|                 | Xylene       |          | 0.078      | > sol   |                |            | 10. S    | 0.190      | > sol   |                |            |
| BP RISC         | Benzene      | 0.0      | 0.0        | > sol   | 0.0            | 0.0        | 4.40E-10 | 5.20E-05   | 0.775   |                | 4.18E-07   |
|                 | Ethylbenzene | 0.0      | 0.0        | 113.00  | 0.0            | 0.0        |          | 1.60E-08   | 0.050   | 2.21E-08       |            |
|                 | Toluene      | 0.0      | 0.0        | 1050.00 | 0.0            | 0.0        |          | 4.70E-07   | 0.463   | 2.51E-07       |            |
|                 | Xylene       | 0.0      | 0.0        | 1840.00 | 0.0            | 0.0        |          | 3.80E-07   | 0.813   | 3.60E-07       |            |

|          |              |      |            | Estimat | ted            |            |          |            | Measure | ed             |                       |
|----------|--------------|------|------------|---------|----------------|------------|----------|------------|---------|----------------|-----------------------|
|          | I            |      | Hazard     |         | Air Conc       | entration  |          | Hazard     |         | Air Conc       | entration             |
| Model    | Chemical     | Risk | Quotient   | SSTL    | Non-Carcinogen | Carcinogen | Risk     | Quotient   | SSTL    | Non-Carcinogen | Carcinogen            |
| API DSS  | Benzene      | 0.0  | 0.0        |         | 0.0            | 0.0        | 1.81E-07 | 0.022      |         | 0.0168         | 0.0165                |
|          | Ethylbenzene | 0.0  | 0.0        |         | 0.0            | 0.0        |          | 0.000      |         | 0.0061         | 0.0044                |
|          | Toluene      | 0.0  | 0.0        |         | 0.0            | 0.0        |          | 0.005      |         | 0.1930         | 0.1670                |
|          | Xylene       | 0.0  | 0.0        |         | 0.0            | 0.0        |          | 0.001      |         | 0.1230         | 0.0968                |
| GSI RBCA | Benzene      |      |            |         |                |            |          |            |         |                |                       |
|          | Ethylbenzene |      | Can not be | modeled |                |            |          | Can not be | modeled |                |                       |
|          | Toluene      |      |            |         |                |            |          |            |         |                |                       |
|          | Xylene       |      |            |         |                |            |          |            |         |                |                       |
| BP RISC  | Benzene      | 0.0  | 0.0        | > sol   | 0.0            | 0.0        | 1.50E-06 | 0.170      | 0.775   |                | 0.14                  |
|          | Ethylbenzene | 0.0  | 0.0        | 113.00  | 0.0            | 0.0        |          | 0.000      | 0.050   | 0.006          | and the second second |
|          | Toluene      | 0.0  | 0.0        | 1050.00 | 0.0            | 0.0        |          | 0.002      | 0.463   | 0.0688         |                       |
|          | Xylene       | 0.0  | 0.0        | 1840.00 | 0.0            | 0.0        |          | 0.000      | 0.813   | 0.112          |                       |

|         |              |          |            | Estima  | ted            |            |          |           | Measu     | red            |            |
|---------|--------------|----------|------------|---------|----------------|------------|----------|-----------|-----------|----------------|------------|
|         |              |          | Hazard     |         | Air Conc       | entration  |          | Hazard    |           | Air Conc       | entration  |
| Model   | Chemical     | Risk     | Quotient   | SSTL    | Non-Carcinogen | Carcinogen | Risk     | Quotient  | SSTL      | Non-Carcinogen | Carcinogen |
| APIDSS  | Benzene      |          |            |         |                |            |          |           |           | 1              |            |
|         | Ethylbenzene |          | Can not be | modeled |                |            |          | Can not b | e modeled |                | 1.1        |
|         | Toluene      |          |            |         |                |            |          |           |           |                | 103        |
|         | Xylene       |          |            |         |                |            |          |           |           |                | 1.0        |
|         | Benzene      | 2.40E-04 |            | 3.50    |                |            | 3.00E-04 |           | 6.100     |                |            |
|         | Ethylbenzene |          | 0.760      | > sol   |                |            |          | 1.300     | > 501     |                |            |
|         | Toluene      |          | 0.750      | > sol   |                |            |          | 1.500     | > sol     |                |            |
|         | Xylene       |          | 0.078      | > sol   |                |            |          | 0.190     | > sol     |                |            |
| BP RISC | Benzene      | 0.0      | 0.0        | > 801   | 0.0            | 0.0        | 5.90E-11 | 7.00E-06  | 0.775     |                | 4.18E-07   |
|         | Ethylbenzene | 0.0      | 0.0        | 113.00  | 0.0            | 0.0        |          | 2.20E-09  | 0.050     | 2.21E-08       |            |
|         | Toluene      | 0.0      | 0.0        | 1050.00 | 0.0            | 0.0        |          | 6.30E-08  | 0.463     | 2.51E-07       |            |
|         | Xylene       | 0.0      | 0.0        | 1840.00 | 0.0            | 0.0        |          | 5.10E-08  | 0.813     | 3.60E-07       |            |

|         |              |          |            | Estima  | ted            |            |                                       |            | Measu         | red            |            |
|---------|--------------|----------|------------|---------|----------------|------------|---------------------------------------|------------|---------------|----------------|------------|
|         |              |          | Hazard     |         | Air Conc       | entration  |                                       | Hazard     |               | Air Conc       | entration  |
| Model   | Chemical     | Risk     | Quotient   | SSTL    | Non-Carcinogen | Carcinogen | Risk                                  | Quotient   | SSTL          | Non-Carcinogen | Carcinogen |
| API DSS | Benzene      | 2.30E-08 | 0.007      |         | 0.034          | 0.034      | 7.56E-08                              | 0.0215     |               | 0.112          | 0.112      |
|         | Ethylbenzene |          | 6.96E-11   |         | 6.00E-09       | 6.00E-09   |                                       | 0.0027     |               | 0.237          | 0.237      |
|         | Toluene      |          | 8.02E-06   |         | 0.0023         | 0.0023     |                                       | 0.0049     |               | 1.400          | 1.400      |
|         | Xylene       |          | 3.80E-08   |         | 6.10E-05       | 6.10E-05   |                                       | 0.0008     |               | 1.350          | 1.350      |
|         | Benzene      |          |            |         |                |            |                                       |            |               |                |            |
|         | Ethylbenzene |          | Can not be | modeled |                |            |                                       | Can not be | modeled       |                |            |
|         | Toluene      |          |            |         |                |            |                                       |            |               |                |            |
|         | Xylene       |          |            |         |                |            | · · · · · · · · · · · · · · · · · · · |            | in the second |                |            |
| BP RISC | Benzene      | 1.20E-06 | 0.3500     | 0.25    |                | 1.84       | 1.20E-06                              | 0.3300     | 1.02          |                | 1.73       |
|         | Ethylbenzene |          | 0.0001     | 0.02    | 0.009          |            |                                       | 0.0013     | 0.066         | 0.112          |            |
|         | Toluene      |          | 0.0010     | 0.15    | 0.30           |            |                                       | 0.0036     | 0.612         | 1.03           |            |
|         | Xylene       |          | 0.0002     | 0.26    | 0.33           |            |                                       | 0.0011     | 1.070         | 1.81           |            |

|          |              |          |            | Estima  | ted            |            |          |            | Measu                                 | red            |            |
|----------|--------------|----------|------------|---------|----------------|------------|----------|------------|---------------------------------------|----------------|------------|
|          |              |          | Hazard     |         | Air Conc       | entration  |          | Hazard     |                                       | Air Conc       | entration  |
| Model    | Chemical     | Risk     | Quotient   | SSTL    | Non-Carcinogen | Carcinogen | Risk     | Quotient   | SSTL                                  | Non-Carcinogen | Carcinogen |
| API DSS  | Benzene      | 3.17E-06 | 0.899      |         | 0.034          | 0.034      | 4.34E-06 | 1.23       | · · · · · · · · · · · · · · · · · · · | 0.112          | 0.112      |
|          | Ethylbenzene |          | 9.39E-10   |         | 6.00E-09       | 6.00E-09   |          | 0.0154     |                                       | 0.237          | 0.237      |
|          | Toluene      |          | 9.06E-04   |         | 0.0023         | 0.0023     |          | 0.2310     |                                       | 1.400          | 1.400      |
|          | Xylene       |          | 1.38E-05   |         | 6.10E-05       | 6.10E-05   |          | 0.1260     |                                       | 1.350          | 1.350      |
| GSI RBCA | Benzene      |          |            |         |                |            |          |            |                                       |                |            |
|          | Ethylbenzene |          | Can not be | modeled |                |            |          | Can not be | modeled                               |                |            |
|          | Toluene      |          |            |         |                |            |          |            |                                       |                |            |
|          | Xylene       |          |            |         |                |            |          |            |                                       |                |            |
| BP RISC  | Benzene      | 1.60E-04 | 46.0       | 0.25    |                | 1.B4       | 3.20E-05 | 9.1        | 1.02                                  |                | 1.73       |
|          | Ethylbenzene |          | 0.0012     | 0.02    | 0.009          |            |          | 0.0031     | 0.066                                 | 0.112          |            |
|          | Toluene      |          | 0.1000     | 0.15    | 0.30           |            |          | 0.0770     | 0.612                                 | 1.03           |            |
|          | Xylene       |          | 0.0630     | 0.26    | 0.33           |            |          | 0.0730     | 1.070                                 | 1.81           |            |

|          |              |          |          | Estima   | ted            |            |          |          | Measu | red            |            |
|----------|--------------|----------|----------|----------|----------------|------------|----------|----------|-------|----------------|------------|
|          |              |          | Hazard   |          | Air Conc       | entration  |          | Hazard   |       | Air Conc       | entration  |
| Model    | Chemical     | Risk     | Quotient | SSTL     | Non-Carcinogen | Carcinogen | Risk     | Quotient | SSTL  | Non-Carcinogen | Carcinogen |
| API DSS  | Benzene      | 2.9E-07  | 8.1E-02  |          | 0.034          | 0.034      | 6.58E-07 | 0.187    |       | 0.112          | 0.112      |
|          | Ethylbenzene |          | 2.5E-10  |          | 6.00E-09       | 6.00E-09   |          | 0.007    |       | 0.237          | 0.237      |
|          | Toluene      |          | 4.7E-05  |          | 0.0023         | 0.0023     |          | 0.020    |       | 1.400          | 1.400      |
|          | Xylene       |          | 1.2E-07  |          | 6.10E-05       | 6.10E-05   |          | 0.002    |       | 1.350          | 1.350      |
| GSI RBCA | Benzene      | 1.80E-04 |          | 0.120    |                |            | 5.40E-04 |          | 0.170 |                |            |
|          | Ethylbenzene |          | 0.670    | 120      |                | The second |          | 2.80     | > sol |                |            |
|          | Toluene      |          | 0.650    | 250      |                |            |          | 3.30     | 350   |                |            |
|          | Xylene       |          | 0.068    | > sol    |                |            |          | 0.410    | > sol |                |            |
| BP RISC  | Benzene      | 1.50E-05 | 4.40E+00 | 2.47E-01 |                | 1.84       | 1.00E-05 | 2.900    | 1.020 |                | 1.73       |
|          | Ethylbenzene |          | 3.60E-04 | 1.59E-02 | 0.009          |            |          | 0.003    | 0.066 | 0.112          |            |
|          | Toluene      |          | 5.90E-03 | 1.47E-01 | 0.30           |            |          | 0.015    | 0.612 | 1.03           |            |
|          | Xylene       |          | 6.60E-04 | 2.59E-01 | 0.33           |            |          | 0.003    | 1.070 | 1.81           |            |

|          |              |          |            | Estima    | ted            |            |          |           | Measu     | red            |            |
|----------|--------------|----------|------------|-----------|----------------|------------|----------|-----------|-----------|----------------|------------|
|          |              |          | Hazard     |           | Air Conc       | entration  |          | Hazard    |           | Air Conc       | entration  |
| Model    | Chemical     | Risk     | Quotient   | SSTL      | Non-Carcinogen | Carcinogen | Risk     | Quotient  | SSTL      | Non-Carcinogen | Carcinogen |
| API DSS  | Benzene      |          |            |           |                |            |          |           |           |                |            |
|          | Ethylbenzene |          | Can not be | e modeled |                |            |          | Can not b | e modeled |                |            |
|          | Toluene      |          |            |           |                |            |          |           |           |                |            |
|          | Xylene       |          |            |           |                |            |          |           |           |                |            |
| GSI RBCA | Benzene      | 1.80E-04 |            | 27.000    |                |            | 5.40E-04 |           | 48.000    |                |            |
|          | Ethylbenzene |          | 0.670      | > sol     |                |            |          | 2.800     | > sol     |                |            |
|          | Toluene      |          | 0.650      | > sol     |                |            |          | 3.300     | > sol     |                |            |
|          | Xylene       |          | 0.068      | > sol     |                |            |          | 0.410     | > sol     |                |            |
| BP RISC  | Benzene      | 1.30E-08 | 0.0036     | 0.247     |                | 7.62E-04   | 7.40E-09 | 2.10E-03  | 1.020     |                | 0.002      |
|          | Ethylbenzene |          | 8.10E-10   | 0.0159    | 3.00E-08       |            |          | 1.20E-07  | 0.066     | 1.97E-05       |            |
|          | Toluene      |          | 7.50E-08   | 0.147     | 1.07E-06       |            |          | 2.70E-06  | 0.612     | 1.78E-04       |            |
|          | Xylene       |          | 4.70E-08   | 0.259     | 1.18E-06       |            |          | 2.30E-06  | 1.070     | 2.76E-04       |            |

|          |              |                  |            | Estima  | ted            |            |          |            | Measu     | red            |            |
|----------|--------------|------------------|------------|---------|----------------|------------|----------|------------|-----------|----------------|------------|
|          |              |                  | Hazard     |         | Air Cond       | entration  |          | Hazard     |           | Air Conc       | entration  |
| Model    | Chemical     | Risk             | Quotient   | SSTL    | Non-Carcinogen | Carcinogen | Risk     | Quotient   | SSTL      | Non-Carcinogen | Carcinogen |
| API DSS  | Benzene      |                  |            |         |                |            |          |            |           |                |            |
|          | Ethylbenzene |                  | Can not be | modeled |                |            |          | Can not be | e modeled |                |            |
|          | Toluene      |                  |            |         |                |            |          |            |           |                |            |
|          | Xylene       |                  |            |         |                |            |          |            |           |                |            |
| GSI RBCA | Benzene      | 1.80E-04         |            | 66.00   |                |            | 5.40E-04 |            | 98.000    | 1              |            |
|          | Ethylbenzene |                  | 0.670      | > sol   |                |            |          | 2.800      | > sol     |                |            |
|          | Toluene      |                  | 0.650      | > sol   |                |            |          | 3.300      | > sol     |                |            |
|          | Xylene       |                  | 0.068      | > 80    |                |            |          | 0.410      | > sol     |                |            |
| BP RISC  | Benzene      | 1.20E-12         | 3.40E-07   | 0.247   |                | 2.84E-07   | 8.90E-12 | 2.50E-06   | 1.020     |                | 1.01E-05   |
|          | Ethylbenzene |                  | 7.60E-12   | 0.0159  | 1.13E-09       |            |          | 1.20E-09   | 0.066     | 7.88E-07       |            |
|          | Toluene      |                  | 7.00E-10   | 0.147   | 4.05E-08       |            |          | 2.60E-08   | 0.612     | 7.13E-06       |            |
|          | Xylene       | V. Sector Course | 4.40E-10   | 0.259   | 4.46E-08       |            |          | 2.30E-08   | 1.070     | 1.10E-05       |            |

| Model    | Chemical     | Estimated |                    |       |                   |            | Measured |          |       |                   |            |  |
|----------|--------------|-----------|--------------------|-------|-------------------|------------|----------|----------|-------|-------------------|------------|--|
|          |              | Risk      | Hazard<br>Quotient | SSTL  | Air Concentration |            |          | Hazard   |       | Air Concentration |            |  |
|          |              |           |                    |       | Non-Carcinogen    | Carcinogen | Risk     | Quotient | SSTL  | Non-Carcinogen    | Carcinogen |  |
| APIDSS   | Benzene      | 2.5E-06   | 0.4                |       | 0.034             | 0.034      | 3.92E-06 | 1.110    |       | 0.112             | 0.112      |  |
|          | Ethylbenzene |           | 1.2E-09            |       | 6.02E-09          | 6.00E-09   |          | 0.040    |       | 0.237             | 0.237      |  |
|          | Toluene      |           | 2.2E-04            |       | 0.0023            | 0.0023     |          | 0.119    |       | 1.400             | 1.400      |  |
|          | Xylene       |           | 6.0E-07            |       | 6.06E-05          | 6.10E-05   |          | 0.011    |       | 1.350             | 1.350      |  |
| GSI RBCA | Benzene      | 0.0015    |                    | 0.014 |                   |            | 0.0032   |          | 0.028 |                   |            |  |
|          | Ethylbenzene |           | 5.800              | 14    |                   |            |          | 17.00    | 29.0  |                   |            |  |
|          | Toluene      |           | 5.600              | 28    |                   |            |          | 20.00    | 59    |                   |            |  |
|          | Xylene       | 2.7       | 0.590              | > sol |                   | 1.1        |          | 2.500    | > sol |                   |            |  |
| BP RISC  | Benzene      | 1.30E-04  | 21.000             | 0.33  |                   | 1.84       | 6.10E-05 | 17.000   | 0.727 |                   | 1.73       |  |
|          | Ethylbenzene |           | 0.002              | 0.28  | 0.009             |            |          | 0.019    | 0.047 | 0.112             |            |  |
|          | Toluene      |           | 0.028              | 0.17  | 0.30              |            |          | 0.088    | 0.435 | 1.03              |            |  |
|          | Xylene       |           | 0.003              | 0.44  | 0.33              |            |          | 0.015    | 0.763 | 1.81              |            |  |

| Model    | Chemical     | Estimated |                    |         |                   |            |          | Measured           |       |                |                 |  |  |
|----------|--------------|-----------|--------------------|---------|-------------------|------------|----------|--------------------|-------|----------------|-----------------|--|--|
|          |              | Risk      | Hazard<br>Quotient | SSTL    | Air Concentration |            |          | Hazard             |       | Air Conc       | entration       |  |  |
|          |              |           |                    |         | Non-Carcinogen    | Carcinogen | Risk     | Quotient           | SSTL  | Non-Carcinogen | Carcinogen      |  |  |
| API DSS  | Benzene      |           |                    |         |                   |            |          |                    |       |                |                 |  |  |
|          | Ethylbenzene |           | Can not be         | modeled |                   |            |          | Can not be modeled |       |                |                 |  |  |
|          | Toluene      |           |                    |         |                   | •          |          |                    |       |                |                 |  |  |
|          | Xylene       |           |                    |         |                   |            |          |                    |       |                |                 |  |  |
| GSI RBCA | Benzene      | 0.0015    |                    | 3.200   | ·                 |            | 0.003    |                    | 8.100 |                |                 |  |  |
|          | Ethylbenzene |           | 5.800              | > sol   |                   |            |          | 17.000             | > sol |                |                 |  |  |
|          | Toluene      | 1         | 5.600              | > sol   |                   |            |          | 20.000             | > sol |                |                 |  |  |
|          | Xylene       |           | 0.590              | > sol   |                   |            |          | 2.500              | > sol |                |                 |  |  |
| BP RISC  | Benzene      | 4.40E-07  | 0.07               | 0.333   |                   | 7.62E-04   | 1.80E-07 | 0.050              | 0.727 |                | 0.002           |  |  |
|          | Ethylbenzene |           | 1.50E-08           | 0.277   | 3.00E-08          |            |          | 2.70E-06           | 0.047 | 1.97E-05       |                 |  |  |
|          | Toluene      |           | 1.40E-06           | 0.166   | 1.07E-06          |            |          | 6.30E-05           | 0.435 | 1.78E-04       |                 |  |  |
|          | Xylane       |           | 8.80E-07           | 0.444   | 1.18E-06          |            |          | 5.60E-05           | 0.763 | 2.76E-04       | en sterier naar |  |  |

| Model    | Chemical     | Estimated |                    |         |                   |            | Measured |                    |        |                |            |  |
|----------|--------------|-----------|--------------------|---------|-------------------|------------|----------|--------------------|--------|----------------|------------|--|
|          |              | Risk      | Hazard<br>Quotient | SSTL    | Air Concentration |            |          | Hazard             |        | Alr Conc       | entration  |  |
|          |              |           |                    |         | Non-Carcinogen    | Carcinogen | Risk     | Quotient           | SSTL   | Non-Carcinogen | Carcinogen |  |
| API DSS  | Benzene      |           |                    |         |                   |            |          |                    |        |                |            |  |
|          | Ethylbenzene |           | Can not be         | modeled |                   |            |          | Can not be modeled |        |                |            |  |
|          | Toluene      |           |                    |         |                   |            |          |                    |        |                |            |  |
|          | Xylene       |           |                    |         |                   | 1          |          |                    |        |                |            |  |
| GSI RBCA | Benzene      | 0.002     |                    | 7.60    |                   |            | 0.003    |                    | 18.000 |                |            |  |
|          | Ethylbenzene |           | 5.800              | > sol   |                   |            |          | 17.000             | > 80   |                |            |  |
|          | Toluene      |           | 5.600              | > sol   |                   |            |          | 20.000             | > sol  |                |            |  |
|          | Xylene       |           | 0.590              | > sol   | /                 |            |          | 2.500              | > sol  |                |            |  |
| BP RISC  | Benzene      | 1.60E-10  | 2.60E-05           | 0.3330  |                   | 2.84E-07   | 3.20E-10 | 9.00E-05           | 0.727  |                | 1.01E-05   |  |
|          | Ethylbenzene |           | 5.80E-10           | 0.2770  | 1.13E-09          |            |          | 4.10E-08           | 0.047  | 7.88E-07       |            |  |
|          | Toluene      |           | 5.40E-08           | 0.1660  | 4.05E-08          |            |          | 9.50E-07           | 0.435  | 7.13E-06       |            |  |
|          | Xylene       |           | 3.30E-08           | 0.4440  | 4.46E-08          |            |          | 8.40E-07           | 0.763  | 1.10E-05       |            |  |

### VITA

2

#### **Rachal Marie Roberts**

#### Candidate for the Degree of

#### **Master of Science**

#### Thesis: A COMPARISON OF TESTED AND ESTIMATED PARAMETERS IN A RISK ASSESSMENT OF AND WATER QUALITY ANALYSIS OF A LUST SITE IN THE PERMIAN GARBER SANDSTONE

Major Field: Geology

**Biographical:** 

- Personal Data: Born in Tulsa, Oklahoma, on December 20, 1972, the daughter of Calvin and Sylvia Jackson.
- Education: Graduated from Chouteau High School, Chouteau, Oklahoma in May 1991; received Bachelor of Science degree in Geology from Oklahoma State University, Stillwater, Oklahoma in May 1995. Completed the requirements for the Master of Science degree with a major in Geology at Oklahoma State University in May 1999.
- Experience: Project Hydrogeologist for AGES, L.L.C., Aug 1997 to present; Technical Reviewer for the Oklahoma Corporation Commission, PSTD from May 1996 to October 1996; and Teaching Assistant for the Oklahoma State University Department of Geology from August 1995 to May 1997.