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PREFACE 

     This dissertation is presented in three chapters to be submitted for publication to 

refereed journals. Chapter 1 is formatted for the journal Landscape Ecology.  Chapters 2 

and 3 have been prepared to be submitted to Ecological Modelling. 
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ABSTRACT 

     Predictive modeling for species distributions has received considerable attention in the 

past decade.  As more data sets and better satellite images become available it is of 

interest to know how well modeling techniques can use environmental variables in 

predictive models of species distributions.  I evaluated: how well logistic regression 

develops predictive models for distributions of the 209 species of the Oklahoma 

breeding-bird-atlas project; the number of sites needed by logistic regression to develop 

robust models; how well logistic regression and GARP (genetic algorithm rule-set 

prediction) predicted species distributions; and how well logistic regression and GARP 

predicted species richness. 

     Predictive models for species distributions were developed using logistic regression 

with 13 land-cover and 21 climatic variables.  The 209 species models were then applied 

to the 562 breeding-bird-atlas sites and 12 independent sites surveyed in 2004.  Models 

correctly predicted occurrences 89.4% of the time for the 562 sites and 81.8% for the 12 

sites.  Greater species richness was found at sites with more land-cover types and was 

positively associated with principal component 1 for climatic variables. 

     It is of practical interest to know the amount of data required to produce reliable 

models.  I developed nine training sets of from 50 to 450 sites for each species to predict 

occurrence in a 100-site test set.  Model performance was determined by the reduction in 

error of prediction (tau-p) compared to the null.  On average, model performance leveled 

off after 300 sites. 

     It is of interest to evaluate abilities of techniques to predict species occurrences and 

species richness.  I compared logistic regression and two forms of GARP in predicting 



 

 x

individual species distributions.  Logistic regression produced more consistent results, 

while GARP overpredicted presences.  When distribution predictions were summed to 

estimate species richness for a given site, logistic regression was a better predictor of 

species richness than GARP, but it did not produce particularly reliable relative measures 

across sites.  GARP routinely overpredicted species richness per site and also did not 

produce reliable relative measures across sites. 
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Abstract   Accurately predicting species distributions is a goal of ecologists.  We 

evaluated the efficacy of logistic regression to predict bird distributions in Oklahoma 

(112 500 km
2
), analyzing occurrence data (presences and absences) for 209 species at 

562 survey blocks in the Oklahoma Breeding Bird Atlas.  We studied the relationship of 

species richness to the number of land-cover types and to a general climatic factor, and 

assessed accuracy of logistic-regression models relative to the number of sites where 

individual species were present.  We used 13 land-cover and 21 climatic variables to 

develop models, which then were employed to predict occurrences in original blocks and 

12 newly surveyed blocks.  Models averaged 3.2 variables, with climatic variables being 

incorporated most frequently.  Models predicted occurrences well for original blocks 

(89.4% correct) and supplemental sites (81.8%).  Species richness was positively 

associated with the number of land-cover types and climatic PC1, a composite variable 

with a west-to-east trend of more rain, higher humidity and pressure, less sunlight, lower 

wind speeds, and lower soil temperatures.  Model performance was best for species 

occurring at few and at many sites.  Presences were more accurately predicted at sites 

having more land-cover types and higher climatic-PC1 values.  Percentages of incorrectly 

predicted occurrences were inversely related to the number of land-cover types, but not to 

climatic PC1.  Atlas projects provide a baseline of species occurrences and, when 

considered with environmental variables, useful predictions can be made as to where 

changes in bird distributions will occur if land-cover types or climatic conditions change.   

   

Keywords: Bird distributions • Distribution maps • Land-cover variables • Climatic 

variables • Logistic regression • Geographic information systems
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Introduction 

Knowledge of species distributions is central to management of animal populations.  

Conservation biologists and planners benefit from being able to identify key 

environmental parameters that can be used as surrogates to represent distribution of 

species of interest over a broad region (MacKenzie et al. 2006).  Therefore, identifying 

variables that correlate with species occurrences (i.e. presences and absences; 

Angermeier et al. 2002) is important for management of large areas (Simberloff 1988).  

Land-cover types represent a suite of possible variables that can be accessed using 

satellite imagery.  Detailed data for other environmental factors also are readily available.  

Climatic variables, particularly precipitation and temperature measures, may be helpful 

when attempting to predict species occurrences.  

     Several analytical techniques can be used to develop prediction models of bird-species 

distributions based on environmental measures.  One approach, GARP (genetic algorithm 

rule-set predictions; Stockwell 1998), typically has been applied to large presence-only 

samples generated from museum specimens.  This method has been used to predict bird 

distributions in both Mexico and North America (Peterson 2001; Peterson and Vieglais 

2001; Peterson et al. 2002; Peterson and Kluza 2003; Peterson and Robins 2003), as well 

as those of mammals in North America (Peterson et al. 2002; Peterson et al. 2006) and 

South America (Anderson et al. 2002; Lim et al. 2002) and reptiles of Madagascar 

(Raxworthy et al. 2003).  Discriminant analysis, correspondence analysis, artificial neural 

networks, general linear models, and logistic regression have been used with occurrence 

data (Manel et al. 1999; van Horseen et al. 1999; Brotons et al. 2004; Engler et al. 2004; 

Venier et al. 2004).  Comparisons of predictive abilities of procedures for individual bird 
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species have suggested, not surprisingly, that occurrence data when available are better 

predictors of occurrence than presence-only data (Brotons et al. 2004).  In predicting 

species occurrences, logistic regression has been shown to outperform discriminant 

analysis and artificial neural networks in correctly predicting distributions of six bird 

species associated with mountain streams (Manel et al. 2004). 

     Breeding-bird-atlas projects are a valuable source of occurrence data.  One of the first 

projects was completed in the United Kingdom in 1972 (Cox 2006).  In North America, 

such projects were initiated in the 1970s in northeastern United States (Bevier 1994; 

Brewer et al. 1991) and now have been completed throughout much of the USA and 

Canada.  While numerous breeding-bird-atlas projects have been produced, few 

quantitative studies (e.g. van Rensburg et al. 2002; Venier et al. 2004; Cox 2006) have 

been published using such data. 

     The use of logistic-regression models in conjunction with climatic and land-cover data 

to predict occurrences of species has become widespread (Murtaugh 1996; van Horseen 

et al. 1999; Rahbeck and Graves 2001; van Rensburg et al. 2001; Koleff and Gaston 

2002; Manel et al. 2004; Venier et al. 2004; Gilbert et al. 2005).  Logistic regression is 

well suited to developing these models as they meet the assumption of a dichotomous 

dependent variable in the form of present (1) or absent (0), and continuous and/or 

categorical independent variables.  Evaluating regression models usually has been done 

using one part of the existing data set of occurrences and variable data to predict 

occurrences in the remaining sites within the data set.  Regression models from the 

original data set also have been applied to new blocks that were not initially surveyed 

(Pearce and Ferrier 2000).  It is also of interest to know how well models actually predict 
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the values for sites on which they are based, an approach using intrinsic criteria to judge 

accuracy (Anderson et al. 2003).  

     Several studies have looked at the efficacy of climatic and land-cover variables to 

predict species distributions, focusing on either areas of limited extent (i.e. <1000 km
2
; 

Austin et al. 1996; van Horseen et al. 1999; Villard et al. 1999; Bustamante and Seoane 

2004; Gibson et al. 2004) or on only a few species at a large number of sites (i.e. <10 

species; Titeux et al. 2004; Venier et al. 2004).  We have evaluated 209 bird distributions 

in a considerably larger area (i.e. Oklahoma; 112 500 km
2
) based on data from the 

Oklahoma Breeding Bird Atlas (Reinking 2004).  

     Our purposes were two-fold.  First, we were interested in determining how species 

richness was related to the number of land-cover types in a block, as well as to a general 

climatic factor.  Second, we evaluated the efficiency in predicting the occurrences of 209 

breeding-bird species at a large number of sites in Oklahoma using models developed 

from climatic and land-cover variables.  We assessed how accuracy was related to the 

number of land-cover types and a general climatic factor.  The results for Oklahoma 

potentially have broader significance in providing insights as to the predictive success of 

logistic regression as applied to other data sets, including those from other breeding-bird-

atlas programs, as well as from other studies that generate occurrence information. 
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Methods 

Presence/absence bird data 

We analyzed occurrence information (both presences and absences) for 209 bird species 

from the Oklahoma Breeding Bird Atlas, including data for 562 complete atlas blocks 

(Fig. 1), each of equal size (25 km
2
), in a species-incidence matrix of occurrence 

(MacKenzie et al. 2006).  Initial block selection for the atlas was based on a stratified-

random procedure that ensured broad coverage of the state (Reinking 2004).  Over a 5-

year period (1997-2001), observers visited each of the 562 blocks during the breeding 

season, recording all bird species encountered.  

 

Land-cover variables 

We defined 13 land-cover variables, 12 of which were based on an initial 19 types found 

in Oklahoma and described for the 1992 land-cover image in the United States 

Geological Survey archive (USGS 2002).  Four residential types were merged into a 

single variable, as we did for three cultivated types and for three bare-ground types.  Map 

polygons then were defined as 1 of 12 land-cover variables: (1) deciduous forest; (2) 

mixed forest; (3) evergreen forest; (4) woody wetland; (5) emergent herbaceous wetland; 

(6) shrubland; (7) grassland; (8) pasture/hay; (9) cropland; (10) developed; (11) barren; 

and (12) water.  Within each atlas block we determined the proportion of the block 

covered by each land-cover type.  Variable 13 was the distance to water (in meters), 

calculated as the distance from the center of the block to river or stream as identified in 

the Oklahoma Digital Elevation Model hydrological network derived from the 1:100,000-

scale digital topographic map (USGS 1998).  We obtained measurements for this variable 
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using the Distance Between Points (between layers) procedure of Analyst Tools in 

ArcGIS (Beyer 2004).  All ArcGIS layers were placed in Universal Transverse Mercator 

projection, zone 14, based on the North American Datum 1983.  In addition to using 

land-cover data in model development, species richnesses were regressed on the number 

of land-cover types in blocks. 

 

Climatic variables 

The climatic data were from the Oklahoma Mesonet provided by the Oklahoma 

Climatological Service at the University of Oklahoma, which maintains a network of 119 

weather stations placed throughout Oklahoma (Brock et al. 1995).  The data were for 

1997 through 2001, covering May, June, and July, corresponding to the years and months 

when the birds were surveyed.  The five years were averaged for each month to generate 

point data for each station.  For each of the three months (May, June, and July), seven 

variables were selected:  temperature (
o
C); soil temperature (

o
C); rainfall (cm); solar 

radiation (megajoules/m
2
); wind speed (kph); barometric pressure (millibars); and 

humidity (%).  The 21 resulting climatic variables (numbered 14-34 in Table 1) were 

interpolated to estimate values for all locations in the state using the ordinary kriging 

method (van Horseen et al. 1999) in the Geostatistical Analyst of ArcGIS (ESRI 2004).   

     The values of the 21 climatic variables for the 562 atlas blocks were analyzed using 

NTSYSpc (Rohlf 2002) to determine the first principal-component axis (climatic PC1), 

which represents a general climatic gradient for the state of Oklahoma.  Projections of 

blocks on this component were based on standardized data, where each variable had a 
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mean of 0 and standard deviation of 1 for the 562 blocks.  Species richness was regressed 

on climatic-PC1 projections. 

 

Individual species models 

Bird occurrence data were analyzed based on the 34 land-cover and climatic variables in 

a stepwise logistic regression (Hosmer and Lemeshow 2000) to determine the best subset 

of variables that statistically explained presences and absences of a given species.  

Computations were done in SAS 9 (SAS 2004) with a 0.05 p-value for significance.  

Regression equations for each species gave a response value for each atlas block that was 

either positive (present) or negative (absent).  These predicted occurrences were used to 

generate predicted distribution maps in ArcGIS.    

  

Model performance 

The atlas occurrence data for a given species were compared to the data on predicted 

occurrences to determine model performance based on the number and percent of 

correctly predicted occurrences, presences, and absences.  We used tau-p (τp) as a 

measure of the proportional change in error rate of the model compared to the expected 

rate of error without the model for each species.  The value of τp can vary from 1 to 

1 - [N
2
/2(N-1)], where N is the total number of sites.  When τp is negative there is 

proportionally greater error for the model, indicating the model performs worse than 

chance.  A positive τp denotes  a proportional reduction in error for the model as 

compared to chance, indicating greater accuracy (Menard 2002). 
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Additional sites 

We further evaluated the predictive performance of the individual regression equations 

by selecting 12 independent sites for survey during the 2004 breeding season.  Since we 

wanted to prevent overlap or shared boundaries with existing sites, potential sites were 

identified using the empty outlines of counties and atlas blocks.  From these potential 

sites, 12 were selected, two from each of six counties in central Oklahoma: Canadian, 

Cleveland, Grady, McClain, Oklahoma and Pottawatomie counties.   

           Surveys were conducted using the same procedures employed by those recording 

data for the Oklahoma Breeding Bird Atlas as set by the Oklahoma Breeding Bird Atlas 

Handbook (Reinking 2000).  From May through July 2004, the first author visited each of 

the 12 sites once every two weeks.  Sites were surveyed for an average of 22.5 hours 

(range 18 – 28).  Species were identified by sight and/or song.  After the surveys, we used 

the logistic-regression models that had been generated for individual species based on 

atlas data to predict the occurrences of a species in the new blocks.  We then compared 

the surveyed presences and absences to those predicted by the model in the same manner 

as described above. 
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Results 

Atlas block associations to land-cover types and climatic PC1 

Atlas blocks enclosed a variety of the possible land-cover types, with an average of 9.0 

land-cover types per block (SD = 1.8; Fig. 1a).  The atlas block with the fewest number 

of land-cover types (3) occurred in the Panhandle region of the state, with the average for 

the Panhandle being 5.8.  The maximum number of types (13) was in one block in south-

central Oklahoma along the Red River; relatively high numbers of types also occurred in 

northeastern Oklahoma.  Except along the Red River, which constitutes the southern 

border with Texas, the southeastern corner of the state was also relatively lower in land-

cover types (x̄  =    7.1) than the rest of the main body of the state (x̄ = 10.0).   

     For the 562 atlas blocks, observers recorded from 24 to 100 bird species per block 

(x̄  = 57.8, SD = 12.5).  Regression of species richness in a block on the number of land-

cover types was positive (p < 0.05; Fig. 2a).  For each additional land-cover type there 

were, on average, 2.42 more species. 

     The climatic PC1 had both positive and negative associations with climatic variables 

(Table 1), explaining 54.9% of the variation in climatic variables.  For this component, 14 

of the 21 climatic variables had relatively high loadings.  Positively associated variables 

were rain (May and June), pressure (May, June, and July), and humidity (June and July); 

values for these variables increased from west to east.  Negatively associated variables 

were solar radiation (May, June, and July), wind speed (May, June and July), and soil 

temperature at 10 cm (June), all of which generally decreased from west to east.  

Climatic-PC1 projections, which went from negative values in the west to positive values 
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in the east (Fig. 1b), show a significant association with species richness (p < 0.05; Fig. 

2b).   

 

Model performance 

The 209 species were recorded as present in from 1 to 556 of the 562 atlas blocks, being 

present on average in 152.8 blocks per species (SD = 175.3).  The logistic-regression 

equations for given species included those with: (1) only a constant (28 of 209 species); 

(2) a constant and land-cover variables (15 species); (3) a constant and climatic variables 

(36 species); and (4) a constant and some combination of land-cover and climatic 

variables (130 species; Appendix 1).  On average, equations for individual species had 

3.2 variables, with a range of 0 to 10.  For 33 species, equations included from 5 to 9 

variables.  Only the equation for the painted bunting had 10 variables.   

     The individual models showed a range of variability in performance, as indicated by 

the percent correctly predicted occurrences for individual species (Fig. 3a).  Models for 

species that had either widespread distributions (present at ≥ 506 of the 562 sites [90%]) 

or sparse distributions (present at ≤ 56 sites [10%]) had correctly predicted occurrences 

for most of the blocks (x̄ = 97.3%, range 91.1 – 99.8%; Fig. 3a).  Models for species that 

were present in 57 to 505 sites generally did less well at predicting occurrences, and there 

was notable scatter (x̄ = 89.4%, range 56.1 – 98.8% correct; Fig. 3a).  Models for this 

middle group of species generally included more variables than average.   

     Model performance in terms of correctly predicting presences showed high variability 

for species that occurred in fewer than 250 sites (left part of Fig. 3b); as actual presences 

increased above 250 sites, the percentage of correctly predicted presences approached 
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100% (right half of Fig. 3b).  The proportional reduction in error rate (τp) for models was 

also variable, with the lowest values being associated with the species that were present 

at about one-half of the sites (τ̄p = 0.504, range 0.09 – 0.97; Fig. 3c).  Two curves of τp 

have been superimposed on Fig. 3c, one for the “models” where it is estimated that the 

species is present everywhere (solid line) and the other for when the species is judged to 

be absent from all sites (dashed line).  In all cases, logistic-regression models resulted in 

τp-values that were higher than for the present-everywhere model.  There are a few 

instances where the τp from logistic regression is less than that obtained using the absent-

everywhere model.  Given that all τp-values were positive, all species equations were 

more accurate in correctly predicting presences and absences than expected by chance 

alone, a not unexpected result given that predictions were for the same sites on which the 

models were based. 

      Correctly predicted presences had a positive association with the number of land-

cover types, while correctly predicted absences showed a negative association (both p < 

0.001; Fig. 4a and b); thus, with more land-cover types in a block there were more 

correctly predicted presences and fewer correctly predicted absences.  Percentages of 

correctly predicted as presences and absences showed the same patterns (both p < 0.001; 

Fig. 4e and f).  Incorrectly predicted presences and absences had the opposite patterns 

(both p < 0.001; Fig. 4c and d), showing that fewer species were incorrectly predicted 

present when there were more land-cover types in a block.  However, when there were 

more land-cover types, there also were more incorrectly predicted absences. 

     When presences and absences of individual species were compared separately to 

climatic PC1, correctly predicted presences had a positive regression slope with climatic 
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PC1 (p < 0.001; Fig. 5a), while the number of correctly predicted absences had a negative 

regression slope (p < 0.001; Fig. 5b).  As climatic PC1 went from -2.0 to 1.5, 

corresponding to a west-to-east trend, more species were correctly predicted present and 

fewer species were correctly predicted as absent.  Regressions of percentages of the 

correctly predicted presences and absences on climatic PC1 were not significant (p = 

0.102 and 0.088, respectively; Fig. 5e and f).  Thus, even though more species were 

found at sites with positive values for climatic PC1, the relative number of correctly 

predicted presences and absences did not change (Fig. 5e and f).  As climatic PC1 went 

from negative to positive, there was a significant increase in the number of incorrectly 

predicted presences (p < 0.01; Fig. 5c).  The number of incorrectly predicted absences, 

however, was not significantly associated with climatic PC1 (p = 0.717; Fig. 5d).   

 

Supplemental sites from 2004 

     When applied to the 12 blocks surveyed in 2004, models for the 111 species that were 

not found in the blocks correctly predicted their absences in all 12 blocks.  Of the 

remaining 98 species that were found in one or more of these blocks, their respective 

individual models on average correctly predicted occurrences 81.8% of the time.  

Considering presences and absences separately, models correctly predicted presences 

71.5% of the time and absences 85.3%.  When a species occurred in only 1 of the 12 

blocks, the model incorrectly predicted the species to be present in several other blocks as 

well.  For the 49 species that occurred in 6 or more of the 12 sites, models of individual 

species incorrectly predicted that the species were present in all 12 locations. 
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Discussion 

Our findings parallel those of Venier et al. (2004), who found that climatic variables, 

when compared with land-cover variables, were more often included as predictors of 

avian species occurrence.  They used large-scale climate variables and satellite-derived 

forest-cover values to predict distributions of 10 forest birds.  In our study, more models 

included only climatic variables (36 species) than only land-cover variables (15 species).  

We did have more climatic than land-cover variables that could have been included (21 

vs. 13 variables), but this likely does not account fully for the discrepancy.  Climatic 

variables, in general, showed clinal variation, while land-cover types often exhibited 

more abrupt changes between adjacent sites. 

     From the 36 species models with only climatic variables, two patterns emerged.  The 

first was similar to that found by Lawler et al. (2004), where only climatic variables were 

needed to develop models in areas where land-cover richness was relatively low and did 

not add to the explanatory power of the climatic variables.  For the 36 species with 

models that included only climatic variables, 23 were found only in the western half of 

the state, with several restricted to the Panhandle region during the breeding season (e.g. 

black-billed magpie [Pica hudsonia], gadwall [Anas strepera], and lesser prairie-chicken 

[Tympanuchus pallidicinctus]).  This region, with 43 sites, had the lowest land-cover 

richness, being unequally dominated by three types: grasslands (range of proportion 

0.136 – 0.965), pasture/hay (0.000 – 0.154), and cropland (0.000 – 0.839).  Due to the 

range of proportional coverage by these land-cover types and their occurrences in other 

locations east of the Panhandle, models were unable to identify an association that was 

unique to species that only occurred in the Panhandle with these land-cover types.  This 
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resulted in climatic variables being more instructive in predicting occurrences of species 

that occur only in this region.   

     The second pattern was that of 10 species with widespread distributions spanning the 

entire state (bank swallow [Riparia riparia], barred owl [Strix varia], blue-winged teal 

[Anas discors], Carolina chickadee [Poecile carolinensis], Carolina wren [Thryothorus 

ludovicianus], cedar waxwing [Bombycilla cedrorum], Cooper’s hawk [Accipiter 

cooperii], great horned owl [Bubo virginianus], and northern cardinal [Cardinalis 

cardinalis]); they occurred at many sites that did not share similar land-cover types.  The 

variety of land-cover proportions coupled with the continuous occurrence of the species 

prevented the logistic regression from identifying land-cover types as having significant 

predictive power for these species.  Rather, climatic variables that showed a clinal 

variation were more instructive.   

     Models that performed relatively poorly may have done so, at least in part, because 

our scale of analysis did not match the scale at which particular species “perceive” the 

environment.  For example, the model for the cattle egret (Bubulcus ibis; Appendix 1) 

had the lowest prediction rating (τp = 0.09).  On a daily basis this species typically travels 

distances considerably exceeding the size of an atlas block in search of food (> 20 km; 

Telfair 1994).  Detailed data on block land-cover types probably are not particularly 

relevant for such highly mobile species.  Some models performed exceptionally well (e.g. 

blue grosbeak, τp = 0.97).  The blue grosbeak (Passerina caerulea) model (Appendix 1) 

incorporated the deciduous forest land-cover type, which likely was associated with 

extensive habitat edge, a component of the environment that is important for the species 

(Ingold 1993).  The other variables in the blue grosbeak model — mixed forest, cropland, 
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developed, and July rain — were negatively associated; the species tended not to be 

found when there was a substantial portion of mixed forest, where much of the land was 

cropland or developed, and where July rainfall was relatively meager. 

     To date, more than 40 breeding-bird atlases have been completed in North America.  

One aim is to repeat the surveys every 10-15 years (Peterjohn and Rice 1991; Bevier 

1994), which would allow comparisons and testing of predictions by models developed 

with the original data.  With no change in environmental conditions, the best prediction is 

that species will continue to be found at the same sites as in the initial survey.  However, 

climatic changes do occur.  For example, from 1910 to 1995, the south-central United 

States (Texas, Oklahoma, Kansas, Arkansas, and Louisiana) underwent a precipitation 

increase of 7.7% (Karl and Knight 1998).  Based on the Hadley Centre Climate model 

(Williams et al. 2001), Oklahoma could experience a 1.11
o
C temperature increase in the 

next 100 years, which in turn would have a significant affect on bird distributions in the 

state.  

     Since the 1890s there also have been seen significant changes in land uses and land-

cover types, brought about in part by widespread conversion of grasslands to cropland 

and pastures (Ramankutty and Foley 1999).  In many areas the mixed-forest land-cover 

type, typical of riparian areas in Oklahoma, has decreased in extent because of man-made 

reservoirs like Lake Eufala and Lake Texoma.  Numerous Oklahoma communities have 

incorporated reservoirs and the adjacent areas into town/city limits to ensure that they 

have a significant role in management of the reservoirs, and they are able to make and 

enforce zoning ordinances in watersheds of these reservoirs.  As a result, some cities have 

experienced rapid growth in area, such as Lawton, which changed from 80 km
2
 in 1990 
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(Clark 1993) to 195 km
2
 in 2000 (US Census Bureau 2006).  Typically, significant 

changes in land-cover types occur with increased urbanization.   

     Changes in land uses and in climate are expected to continue with concomitant 

changes in bird distributions within the state.  With a marked temperature change (as per 

Williams et al. 2001), areas that currently are marginal for a particular species may 

become suitable such that the distribution of the species expands.  Prediction models 

based on environmental variables and current atlas data can be valuable in helping us to 

predict how and where future avifauna changes likely will occur.    
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Table 1. Climatic variables and loadings for climatic PC1. 

  Variable        Loading 
a
 

14 May temperature (
o
C) -0.245  

15 May soil temperature (
o
C) -0.237  

16 May rain (cm) 0.786  

17 May solar radiation (MJ/m
2
) -0.866  

18 May wind speed (kph) -0.893  

19 May pressure (cm) 0.867  

20 May humidity (%) 0.650  

21 June temperature (
o
C) -0.238  

22 June soil temperature (
o
C) -0.765  

23 June rain (cm) 0.902  

24 June solar radiation (MJ/m
2
) -0.870  

25 June wind speed (kph) -0.850  

26 June pressure (cm) 0.870  

27 June humidity (%) 0.887  

28 July temperature (
o
C) -0.464  

29 July soil temperature (
o
C) -0.554  

30 July rain (cm) 0.083  

31 July solar radiation (MJ/m
2
) -0.858  

32 July wind speed (kph) -0.902  

33 July pressure (cm) 0.869  

34 July humidity (%) 0.880   

a
 Relatively high loadings (> |0.75|) identified in bold.  

 



 

20 

Fig. 1 Maps showing locations of 562 Oklahoma breeding bird atlas blocks, as well as (a) 

number of land cover types in each block, and (b) projections of each atlas block on 

climatic principal component 1 

 

Fig. 2 Significant regression of number of species in a block on: (a) number of land cover 

types (X1); and (b) climatic PC1 (X2).  Equations were (each N = 562): (a) Y = 34.19 + 

2.42X1 (r
2
 = 0.12, p < 0.001); and (b) Y = 9.35 + 0.98X2 (r

2
 = 0.17, p < 0.001) 

 

Fig. 3 Performance of 209 individual species models relative to number of sites at which 

each species occurred: (a) percent correctly predicted occurrences (both presence and 

absence); (b) percent correctly predicted presences; and (c) τp, indicating performance of 

model relative to expected error without the model.  In panel C, solid line shows τp for 

model in which species are judged to be present at all sites, while dashed line results from 

model where species are considered to be absent from all sites 

 

Fig. 4 Regressions on number of land cover types (X) of: (a, b) number of correctly 

predicted presences and absences; (c, d) number of incorrectly predicted presences and 

absences; and (e, f) percent of correctly predicted presences and absences (all p < 0.001 

and N = 562).  Equations were: (a) Y = 27.79 + 166X (r
2
 = 0.15); (b) Y = 161.25 - 1.94X 

(r
2
 = 0.13); (c) Y = 13.57 - 0.48X (r

2
 = 0.03); (d) Y = 6.40 + 0.76X (r

2
 = 0.03); (e) Y = 

70.53 + 1.30X (r
2
 =0.08); and (f) Y = 96.41 - 0.54X (r

2
 = 0.04) 
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Fig. 5  Regression on climatic PC1 (X) of: (a, b) number of correctly predicted presences 

and absences; (c, d) number of incorrectly predicted presences and absences; and (e, f) 

percent of correctly predicted presences and absences.  Equations were (all N = 562): (a) 

Y = 43.32 + 6.22X (r
2
 = 0.35, p < 0.01); (b) Y = 143.15 - 7.25X (r

 2
 = 0.31, p < 0.001); (c) 

Y = 9.04 + 0.87X (r
 2

 = 0.10, p < 0.01); (d) Y = 13.49 + 0.15 X (r
 2

 = 0.00, p > 0.50); (e) Y 

= 82.67 + 0.95X (r
 2

 = 0.01, p > 0.05); (f) Y = 91.38 - 0.45X (r
 2

 = 0.01, p > 0.05) 
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Supplementary Material 

Appendix 1  Value of τp and unstandardized logistic-regression equation for each 

species
a 
 

________________________________________________________________________

Podicipedidae: pied-billed grebe (Podilymbus podiceps; 0.46), Y = –78.30 + 18.58X4 + 

0.35X27 + 1.39X28 + 0.41X30; eared grebe (Podiceps nigricollis; 0.50), Y = –70.35 + 

2.38X22; western grebe (Aechmophorus occidentalis; 0.50), Y = –6.33.  Pelecanidae: 

double-crested coromorant (Phalacrocorax auritus; 0.46), Y = 20.93 + 9.93X12 – 0.76X24.  

Ardeidae: American bittern (Botaurus lentiginosus; 0.50), Y =–5.47 + 36.79X5; great 

blue heron (Ardea herodias; 0.46), Y = –48.70 – 7.27X3 – 1.08X9 – 12.71X11 + 0.13X18 + 

0.25X27 + 1.18X33; great egret (A. alba; 0.40), Y = 112.8 + 35.01X4 + 1.68X8 + 7.95X12 – 

1.44X14 + 0.17X18 + 0.25X20 + 3.56X26 + 1.45X28; snowy egret (Egretta thula; 0.40), Y = 

38.78 – 2.49X1 + 4.51X12 – 1.03X16 – 4.86X17 + 0.65X20 + 1.81X31; little blue heron (E. 

caerulea; 0.30), Y = 23.20 – 1.71X17 + 0.33X20 – 0.62X21; cattle egret (Bubulcus ibis; 

0.09), Y = 28.8824823 + 7.31X10 – 0.99X31; green heron (Butorides virescens; 0.22), Y = 

–42.25 + 1.49X8 – 2.03X9 + 0.22X20 + 0.09X25 + 0.93X26; black-crowned night-heron 

(Nycticorax nycticorax; 0.49), Y = 144.9 + 48.23X4 + 11.72X10 –5.45X14 –5.16X21 – 

15.23X24 + 7.20X29 + 22.28X31; yellow-crowned night-heron (N. violacea; 0.48), Y = 

-26.78 + 6.63X2 + 14.89X4 + 5.87X10 + 0.85X14.  Threskiornithidae: white-faced ibis 

(Eudocimus albus; 0.49), Y = –45.29 + 47.04X5 + 0.98X28 + 0.38X32.  Cathartidae: black 

vulture (Coragyps atratus; 0.48), Y = 233.1 – 39.75X13 – 3.65X14 + 0.63X18 + 2.88X23 – 

3.80X24 – 0.79X27 – 2.37X30 + 0.73X34; turkey vulture (Cathartes aura; 0.53), Y = 152.3 – 

1.86X9 – 6.57X10 + 0.38X20 + 2.11X24 + 2.61X33.  Anatidae: black-bellied whistling-duck 

(Dendrocygna autumnalis; 0.50), Y = –6.33; Canada goose (Branta canadensis; 0.31), Y 

= 50.13 + 1.55X7 + 3.80X10 – 1.71X17; wood duck (Aix sponsa; 0.39), Y = 42.06 + 
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10.70X4 – 2.06X8 – 1.49X17; gadwall (Anas strepera; 0.75), Y = –1783.7 + 57.47X31; 

American wigeon (Anas americana; 0.50), Y = –5.63; mallard (Anas platyhynchos; 0.39), 

Y = –39.82 – 1.66X1 + 9.59X4 – 1.09X7 + 5.09X10 + 12.9X13 + 0.91X29; blue-winged teal 

(A. discors; 0.32), Y = –31.57 + 0.35X28 + 0.09X32 + 0.20X20; cinnamon teal (Anas 

cyanoptera; 0.50), Y = –133.50 + 4.18X17; northern shoveler (A. clypeata; 0.45), 

Y = -2.76 + 1.50X9; northern pintail (A. acuta; 0.48), Y = –55.13 + 1.77X9 + 1.68X17; 

green-winged teal (A. crecca; 0.50), Y = –138.5 + 4.35X17; redhead (Aythya americana; 

0.47), Y = –129.8 + 1.49X14 + 2.75X24 + 0.74X30; ring-necked duck (A. collaris; 0.50), Y = 

–4.94; lesser scaup (Aythya affinis; 0.50), Y = –6.33; hooded merganser (Lophodytes 

cucullatus; 0.49), Y = –4.24; ruddy duck (Oxyura jamaicensis; 0.49), Y = –7.0681 + 

0.15X32.  Accipitridae: osprey (Pandion haliaetus; 0.38), Y = –30.10 + 9.43X12 + 

0.95X14; Mississippi kite (Ictinia mississippiensis; 0.45), Y = –69.29 + 6.07X6 + 1.59X7 + 

8.07X10+ 0.53X20 – 1.01X23 + 0.76X28; bald eagle (Haliaeetus leucocephalus; 0.49), Y = 

-12.40 + 1.78X23; northern harrier (Circus cyaneus; 0.35), Y = –2.84 – 3.44X1 – 3.71X6 + 

0.09X18; sharp-shinned hawk (Accipiter striatus; 0.50), Y = –6.33; Cooper’s hawk (A. 

cooperii; 0.42), Y = 29.40 – 1.03X17; red-shouldered hawk (Buteo lineatus; 0.57), Y = 

-36.58 + 3.73X1 + 5.33X2 – 9.41X6 – 3.90X9 – 0.27X27 + 2.75X33; broad-winged hawk (B. 

platypterus; 0.47), Y = –46.67 + 3.51X1 + 0.49X20 + 3.94X12; Swainson’s hawk (B. 

swainsoni; 0.54), Y = –82.02 – 4.48X1 + 1.72X9 + 2.67X17; red-tailed hawk (B. 

jamaicensis; 0.49), Y = –152.2 + 2.49X7 – 3.73X12 + 2.69X24 + 3.32X33; ferruginous hawk 

(B. regalis; 0.36), Y = –889.4 – 16.04X14 + 6.82X15 + 19.34X17 + 1.61X20 + 12.84X28; 

golden eagle (Aquila chrysaetos; 0.50), Y = –6.33.  Falconidae: American kestrel (Falco 

sparverius; 0.37), Y = –36.59 – 2.45X1 + 1.26X31; prairie falcon (F. mexicanus; 0.49), Y = 
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–92.60 + 0.99X14 + 3.24X17 – 0.42X20.  Phasianidae: ring-necked pheasant (Phasianus 

colchicus; 0.80), Y = –114.5 + 4.19X9 + 39.93X13 + 2.28X29 + 1.12X30; greater prairie-

chicken (Tympanuchus cupido; 0.50), Y = –10.11 + 1.56X30; lesser prairie-chicken (T. 

pallidicinctus; 0.42), Y = –1609.0 + 49.74X17 + 18.51X23; wild turkey (Meleagris 

gallopavo; 0.30), Y = –21.16 + 2.26X1 + 5.445X3 + 5.42X6 – 2.13X8 + 0.63X28.  

Odontiphoridae: scaled quail (Callipepla squamata; 0.75), Y = –116.1 + 8.39X6 – 

4.86X15 + 8.24X21; northern bobwhite (Colinus virginianus; 0.60), Y = –204.7 + 3.34X7 – 

6.23X10 + 3.53X15 – 0.32X17 + 1.26X20 + 1.34X23 + 10.42X24.  Rallidae: king rail (Rallus 

elegans; 0.50), Y = –6.33; sora (Porzana carolina; 0.50), Y = 49.92 – 2.67X33; American 

coot (Fulica americana; 0.44), Y = 15.90 – 0.21X27.  Charadriidae: killdeer (Charadrius 

vociferous; 0.53), Y = –5.72 + 4.42X8 + 0.32X18; mountain plover (C. montanus; 0.50), Y 

= –5.64.  Recurvirostridae: black-necked stilt (Himantopus mexicanus; 0.49), Y = 33.73 

– 0.45X27 + 47.65X5; American avocet (Recurvirostra americana; 0.40), Y = –296.14 + 

10.14X17 – 3.88X7 – 1.101X27 + 90.04X5 + 3.56X26.  Scolopacidae: spotted sandpiper 

(Actitis macularia; 0.47), Y = –2.59 + 5.84X12; upland sandpiper (Bartramia longicauda; 

0.49), Y = –17.98 – 4.49X1 – 4.71X6 + 0.67X23 + 0.18X25 + 0.12X34; long-billed curlew 

(Numenius americanus; 0.52), Y = 55.39 – 2.81X33; Wilson’s phalarope (Phalaropus 

tricolor; 0.37), Y = 49.32 + 6.12X9 – 2.74X19.  Laridae: ring-billed gull (Larus 

delawarensis; 0.50), Y = –6.33; least tern (Sterna antillarum; 0.43), Y = –201.0 + 51.93X5 

+ 26.87X11 + 10.81X12 + 2.93X14 + 1.26X20 + 0.19X32.  Columbidae: rock pigeon 

(Columba livia; 0.30), Y = –2.54 + 2.40X8 + 16.25X10 + 4.60X13 – 0.71X16; Eurasian 

collard-dove (Streptopelia decaocto; 0.50), Y = –5.63; white-winged dove (Zenaida 

asiatica; 0.50), Y = –6.33; mourning dove (Z. macroura; 0.50), Y = –52.71 + 0.40X25 + 
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0.59X34; Inca dove (Columbina inca; 0.50), Y = –6.33.  Cuculidae: black-billed cuckoo 

(Coccyzus erythropthalmus; 0.49), Y = –4.39 + 12.87X4; yellow-billed cuckoo (C. 

americanus; 0.66), Y = –36.91 + 11.00X6 – 18.17X11 + 1.43X16 + 1.58X33; greater 

roadrunner (Geococcyx californianus; 0.35), Y = 35.80 + 6.63X3 – 17.88X4 + 4.76X6 + 

1.41X7 + 0.34X20 – 1.59X24 – 0.23X34.  Tytonidae: barn owl (Tyto alba; 0.50), Y = –39.35 

+ 35.22X5 + 2.37X9 + 3.03X21 – 1.56X29.  Strigidae: western screech-owl (Megascops 

kennicottii; 0.50), Y = –6.33; eastern screech-owl (M. asio; 0.46), Y = –2.75 + 4.78X2 + 

3.90X6; great horned owl (Bubo virginianus; 0.26), Y = –2.40 + 0.08X32; burrowing owl 

(Athene cunicularia; 0.81), Y = –232.39 + 7.45X17 + 2.35X9; barred owl (Strix varia; 

0.33), Y = –45.39 + 0.33X27 + 0.47X28; short-eared owl (Asio flammeus; 0.62), Y = –729.1 

+ 13.69X16 + 4.93X30 + 21.69X31.  Caprimulgidae: common nighthawk (Chordeiles 

minor; 0.54), Y = 2.72 – 60.94X1 + 13.51X7 – 96.84X3 + 70.46X2; common poorwill 

(Phalaenoptilus nuttallii; 0.49), Y = –100.91 + 5.06X7 + 3.41X22; chuck-will’s-widow 

(Caprimulgus carolinensis; 0.39), Y = –26.62 – 1.32X8 – 3.55X9 + 0.29X20; whip-poor-

will (C. vociferous; 0.49), Y = –10.47 – 8.34X7 + 1.71X16.  Apodidae: chimney swift 

(Chaetura pelagica; 0.31), Y = –160.89 + 3.33X26 + 20.41X10 – 1.38X7 – 3.75X12 + 

3.38X31 + 0.48X20 – 0.90X16 – 1.65X17.  Trochilidae: ruby-throated hummingbird 

(Archilochus colubris; 0.64), Y = 63.92 + 3.73X1 + 8.07X3 – 20.23X11 + 0.30X18 – 2.11X24 

– 0.37X32; black-chinned hummingbird (A. alexandri; 0.49), Y = 64.75 – 28.88X13 – 

1.78X29 + 0.53X32.  Alcedinidae: belted kingfisher (Ceryle alcyon; 0.23), Y = –24.84 + 

1.96X7 + 4.64 X12 + 0.48X20 + 2.70X24 + 0.88X15 – 4.04X17.  Picidae: Lewis’s 

woodpecker (Melanerpes lewis; 0.50), Y = –6.33; red-headed woodpecker (M. 

erythrocephalus; 0.22), Y = –42.54 + 18.17X4 + 9.18X13 + 0.78X15 + 0.17X20; golden-
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fronted woodpecker (M. aurifrons; 0.49), Y = 265.2 + 16.67X6 – 40.09X13 – 3.03X34; red-

bellied woodpecker (M. carolinus; 0.65), Y = –154.6 – 14.02X2 + 30.54X3 – 5.46X17 + 

0.80X20 + 5.41X24 – 0.94X30 + 4.03X33; ladder-backed woodpecker (Picoides scalaris; 

0.57), Y = –5.57 + 8.15X6 – 0.70X20 + 1.36X21 + 0.82X28; downy woodpecker (P. 

pubescens; 0.61), Y = –94.95 + 2.13X7 + 0.35X27 + 0.14X32 + 2.89X33; hairy woodpecker 

(P. villosus; 0.27), Y = 7.27 + 2.41X1 + 0.17X18 + 0.21X20 – 1.05X31; northern flicker 

(Colaptes auratus; 0.21), Y = –25.16 + 1.95X1 + 1.046X7 + 11.35X10 + 11.57X11 + 6.34X13 

+ 0.75X15; pileated woodpecker (Dryocopus pileatus; 0.59), Y = 35.23 + 5.87X1 + 9.21X2 

+ 28.43X4 + 2.14X7 + 0.46X18 + 0.89X23 – 1.520X31 – 0.43X32.  Tyrannidae: western 

wood-pewee (Contopus sordidulus; 0.50), Y = 62.71 – 3.32X33; eastern wood-pewee (C. 

virens; 0.71), Y = 42.41 + 4.50X1 – 1.87X24 + 0.19X18 + 2.21X8 – 1.031X28 + 1.91X26; 

Acadian flycatcher (Empidonax virescens; 0.59), Y = 18.46 + 3.31X1 + 1.76X23 +18.88X4 

– 0.96X28; willow flycatcher (E. traillii; 0.46), Y = 14.91 + 25.82X5 – 0.59X28; eastern 

phoebe (Sayornis phoebe; 0.64), Y = 130.5 – 6.29X2 – 33.30X5 – 3.04X17 – 1.23X21 – 

0.99X30; Say’s phoebe (S. saya; 0.70), Y = 207.5 + 5.42X28 – 12.55X33 – 1.56X34; 

vermilion flycatcher (Pyrocephalus rubinus; 0.50), Y = –6.33; ash-throated flycatcher 

(Myiarchus cinerascens; 0.56), Y = 103.31 –0.54X27 – 0.78X34; great crested flycatcher 

(M. crinitus; 0.0.57), Y = –186.0 + 1.44X7 + 0.72X20 + 1.76X24 + 3.18X33; Cassin’s 

kingbird (Tyrannus vociferans; 0.50), Y = –4.93; western kingbird (T. verticalis; 0.49), Y 

= –11.59 – 5.47X6 + 2.0X8 + 14.49X10 + 4.68X11 + 0.86X18 + 0.45X20 – 0.40X25 – 0.47X27; 

eastern kingbird (T. tyrannus; 0.50), Y = –57.2538 + 3.62X8 + 11.58X13 + 0.22X27 + 

2.22X33 – 0.23X34; scissor-tailed flycatcher (T. forficatus; 0.72), Y = –322.1 – 6.63X1 – 

19.14X4 + 14.14X7 + 8.03X9 + 0.69X18 + 1.99X23 + 0.90X27 + 10.22X33. Laniidae: 
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loggerheaded shrike (Lanius ludovicianus; 0.41), Y = 13.40 – 2.22X1 – 10.83X3 + 1.18X7 

+ 3.58X8 – 0.33X20 + 0.15X28.  Vireonidae: white-eyed vireo (Vireo griseus; 0.70), Y = 

60.73 + 2.14X1 – 3.03X9 + 0.91X23 – 2.07X24 – 1.05X30; Bell’s vireo (V. bellii; 0.35), Y = 

42.88 + 1.35 X16 + 2.53X7 + 0.14X18 + 2.10X8 – 1.77X24; black-capped vireo (V. 

atricapilla; 0.60), Y = –302.97 + 20.30X6 + 6.01X28 + 1.23X34 – 68.84X5, yellow-throated 

vireo (V. flavifrons; 0.57), Y = 21.19 + 3.69X1 + 5.44X2 + 15.97X4 – 2.35X17 + 0.51X20; 

warbling vireo (V. gilvus; 0.35), Y = –22.53 + 13.26X13 + 0.92X15 – 0.19X32 – 0.11X34; 

red-eyed vireo (V. olivaceus; 0.58), Y = –3.59 + 5.10X1 + 10.37X2 – 1.73X9 + 0.60X23.  

Corvidae: blue jay (Cyanocitta cristata; 0.45), Y = 11.64 – 1.46X9 – 0.89X21 + 0.55X23 + 

0.39X28; western scrub-jay (Aphelocoma californica; 0.50), Y = –5.63; pinyon jay 

(Gymnorhinus cyanocephalus; 0.50), Y = –6.33; black-billed magpie (Pica hudsonia; 

0.49), Y = 52.20 – 238.36X19 + 235.85X26; American crow (Corvus brachyrhynchos; 

0.51), Y = –32.45 + 4.50X9 + 0.37X20 + 0.55X25 – 0.56X32; fish crow (C. ossifragus; 0.55), 

Y = –219.60 + 2.68X1 + 20.59X4 – 11.86X13 + 1.75X16 + 0.82X23 + 3.53X31 + 5.20X33; 

Chihuahuan raven (C. cryptoleucus; 0.53), Y = 57.50 – 2.93X33; common raven (C. corax; 

1.0), Y = –6.33.  Alaudidae: horned lark (Eremophila alpestris; 0.53), Y = –14.70 – 

5.27X1 – 4.49X6 + 1.85X9 + 1.93X17 – 0.50X20.  Hirundinidae: purple martin (Progne 

subis; 0.63), Y = 97.83 + 3.48X1 + 1.71X7 + 5.86X8 + 29.31X10 – 3.20X17 + 0.31X18 – 

0.88X23 – 0.38X32; tree swallow (Tachycineta bicolor; 0.53), Y = –5.11 + 10.45X12 + 

0.58X30; northern rough-winged swallow (Stelgidopteryx serripennis; 0.17), Y = –4.02 – 

1.95X9 + 0.48X23 + 0.10X25; bank swallow (Riparia riparia; 0.49), Y = –5.67 + 0.69X30; 

cliff swallow (Petrochelidon pyrrhonota; 0.31), Y = –11.89 + 4.059X12 + 0.11X18 + 

0.32X22; barn swallow (Hirundo rustica; 0.50), Y = 11.10 – 8.07X13.  Paridae: Carolina 
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chickadee (Poecile carolinensis; 0.75), Y = –22.86 + 3.65X15 – 0.26X18 + 0.89X20 – 

4.67X21 – 2.10X23; tufted titmouse (Baeolophus bicolor; 0.63), Y = 76.31 + 19.52X1 – 

19.17X2 + 14.10X3 – 2.49X24.  Sittidae: white-breasted nuthatch (Sitta carolinensis; 

0.62), Y = 68.59 + 3.90X1 – 2.55X9 – 1.22X16 – 2.27X17 + 1.11X23; brown-headed nuthatch 

(S. pusilla; 0.50), Y = –6.0929 + 19.51X4.  Troglodytidae: rock wren (Salpinctes 

obsoletus; 0.59), Y = 44.83 – 2.28X26; canyon wren (Catherpes mexicanus; 0.43), Y = 

53.12 + 12.14X6 – 0.66X20; Carolina wren (Thryothorus ludovicianus; 0.61), Y = 55.10 + 

0.29X27 – 0.46X30 – 2.65X31; Bewick’s wren (Thryomanes bewickii; 0.49), Y = 39.63 – 

12.15X2 + 2.51X7 – 1.75X17 + 0.30X27 + 0.41X28 – 0.31X34; house wren (Troglodytes 

aedon; 0.40), Y = –7.28 + 5.75X10 + 7.81X13 – 0.78X30; sedge wren (Cistothorus 

platensis; 0.50), Y = –4.71.  Sylviidae: blue-gray gnatcatcher (Polioptila caerulea; 0.62), 

Y = 15.64 + 13.90X1 + 3.59X8 – 2.81X9 – 5.28X10 + 0.39X20 – 1.82X24 + 0.21X25.  

Turdidae: eastern bluebird (Sialia sialis; 0.72), Y = –156.4 –16.35X2 – 3.35X9 – 5.68X10 

+ 1.00X20 + 3.35X26 – 0.57X30; mountain bluebird (S. currucoides; 0.50), Y = –5.23; wood 

thrush (Hylocichla mustelina; 0.58), Y = 53.40 + 15.37X4 + 1.97X16 – 0.34X18 – 2.65X19; 

American robin (Turdus migratorius; 0.34), Y = 4.65 – 3.86X13 + 12.45 X10.  Mimidae: 

gray catbird (Dumetella carolinensis; 0.40), Y = –14.34 – 2.08X9 + 3.92X12 + 0.62X23 + 

0.12X34; northern mockingbird (Mimus polyglottos; 0.48), Y = 126.6 – 43.59X5 + 7.32X7 

+ 15.22X8 – 2.36X16 – 3.83X17; brown thrasher (Toxostoma rufum; 0.36), Y = 5.22 – 

3.61X1 – 2.057X9 – 4.38X12 + 0.14X18 + 1.64X23 + 0.46X28 – 0.91X29; curve-billed 

thrasher (T. curvirostre; 0.57), Y = 85.38 + 4.69X14 + 2.46X30 – 0.63X32 – 9.75X33.  

Sturnidae: European starling (Sturnus vulgaris; 0.45), Y = –23.33 – 5.21X3 – 5.55X6 + 

3.09X8 + 7.10X13 + 0.57X28.  Bombycillidae: cedar waxwing (Bombycilla cedrorum; 
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0.38), Y = 28.73 – 1.02X31.  Parulide: northern parula (Parula americana; 0.61), Y = 

-153.1 + 5.43X1 + 11.51X3 + 14.51X4 + 3.75X8 – 2.11X14 – 3.57X24 + 6.15X26 + 6.33X33; 

yellow warbler (Dendroica petechia; 0.38), Y = –22.64 – 6.69X6 – 2.30X9 + 4.78X13 + 

0.55X28; yellow-throated warbler (D. dominica; 0.50), Y = –0.66 + 2.37X1 – 0.25X18 + 

0.68X23; pine warbler (D. pinus; 0.74), Y = 5.58 + 3.86X1 + 15.45X3 – 0.50X18; prairie 

warbler (D. discolor; 0.55), Y = 118.7 – 3.73X24 – 0.56X25; black-and-white warbler 

(Mniotilta varia; 0.53), Y = 26.18 + 2.37X13 – 2.12X8 – 2.62X9 + 0.33X20 – 1.86X24; 

American redstart (Setophaga ruticilla; 0.49), Y = –4.74 + 3.57X1; prothonotary warbler 

(Protonotaria citrea; 0.49), Y = –4.21 + 4.87X1 + 19.12X4 + 3.23X8 + 10.16X12; worm-

eating warbler (Helmitheros vermivorum; 0.50), Y = –15.71 + 9.18X2 + 2.18X23; 

overnbird (Seiurus aurocapilla; 0.49), Y = –18.48+ 17.19X1 + 23.36X2 + 16.42X8; 

Louisiana waterthrush (S. motacilla; 0.41), Y = –2.53 + 4.39X1 + 7.04X3; Kentucky 

warbler (Oporornis formosus; 0.45), Y = 17.96 + 3.84X1 + 13.13X4 + 3.86X12 – 0.19X18 – 

0.63X21; common yellowthroat (Geothlypis trichas; 0.51), Y = 7.10 + 1.48X1 + 4.65X2 + 

14.14X12 – 0.71X21 + 0.13X34; hooded warbler (G. nelsoni; 0.49), Y = 4.12 – 0.40X18; 

yellow-breasted chat (Icteria virens; 0.70), Y = 21.38 – 8.05X8 – 2.55X14 + 1.61X16 – 

0.20X18 + 1.47X21 + 1.38X23 – 0.91X30.  Thraupidae: summer tanager (Piranga rubra; 

0.65), Y = 62.06 + 5.32X1 – 2.58X9 – 8.50X10 – 2.01X17 – 0.13X32; scarlet tanager (P. 

olivacea; 0.64), Y = 83.64 + 6.46X1 + 8.77X2 + 8.77X3 + 6.21X12 – 0.37X32 – 3.87X33; 

western tanager (P. ludoviciana; 0.50), Y = –6.33.  Emberizidae: spotted towhee (Pipilo 

maculates; 0.50), Y = 32.70 + 7.83X6 – 1.83X33; eastern towhee (P. erythrophthalmus; 

0.48), Y = –3.47; canyon towhee (P. fuscus; 0.75), Y = 84.77 – 1.07X27; Cassin’s sparrow 

(Aimophila cassinii; 0.70), Y = –119.7 + 5.09X6 + 0.59X14 + 4.00X24 – 0.25X27; 
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Bachman’s sparrow (A. aestivalis; 0.56), Y = 0.03 + 16.54X11 – 0.21X18; rufous-crowned 

sparrow (A. ruficeps; 0.48), Y = –45.5818 – 2.71X1 – 8.59X3 – 4.04X6 + 6.11X12 + 0.20X20 

– 1.51X21 + 1.11X24 – 0.11X25 + 1.20X28; chipping sparrow (Spizella passerina; 0.41), Y = 

6.13 + 8.80X2 + 0.33X20 + 1.20X23 – 0.77X26 – 0.29X27; field sparrow (S. pusilla; 0.60), Y 

= 10.76 – 5.02X9 – 4.55X10 + 0.75X15 – 7.23X17 + 0.41X18 + 0.74X20 + 4.16X31 – 0.30X32; 

lark sparrow (Chondestes grammacus; 0.46), Y = 0.37 – 4.35X2 – 2.54X9 – 7.11X10 + 

0.78X28 – 0.26X34; black-throated sparrow (Amphispiza bilineata; 0.50), Y = –6.33; lark 

bunting (Calamospiza melanocorys; 0.85), Y = –224.8 + 8.51X8 + 3.14X9 + 7.31X31; 

grasshopper sparrow (Ammodramus savannarum; 0.65), Y = –49.84 – 4.24X1 – 26.86X2 – 

5.10X6 – 11.53X10 + 0.58X21 + 0.25X25 + 0.35X27; Henslow’s sparrow (Ammodramus 

henslowii; 0.59), Y = 52.41 + 5.13X7 – 2.22X22; Lincoln’s sparrow (Melospiza lincolnii; 

0.50), Y = –6.33.  Cardinalidae: northern cardinal (Cardinalis cardinalis; 0.75), Y = 

-76.46 + 4.65X19 – 0.25X34; rose-breasted grosbeak (Pheucticus ludovicianus; 0.49), Y = 

–7.9206 + 12.33X4 + 0.96X23; black-headed grosbeak (P. melanocephalus; 0.50), Y = 

-6.33; blue grosbeak (Passerina caerulea; 0.97), Y = 2.17 + 2.95X1 – 3.73X2 – 0.99X9 – 

11.50X10 – 0.38X30; lazuli bunting (P. amoena; 0.55), Y = 11.59 + 12.59X3 – 80.15X26 + 

79.4X33; indigo bunting (P. cyanea; 0.71), Y = 83.04 + 20.86X1 + 5.86X13 – 3.00X31; 

painted bunting (P. ciris; 0.57), Y = –84.9511 – 10.40X2 + 9.24X6 – 2.32X9 – 6.23X10 – 

7.92X13 – 2.57X14 + 3.60X19 + 0.42X27 + 2.44X28 – 0.35X34; dickcissel (Spiza americana; 

0.48), Y = –62.07 + 3.67X8 – 5.92X10 – 0.79X14 + 0.39X18 + 3.51X33.  Icteridae: red-

winged blackbird (Agelaius phoeniceus; 0.51), Y = 175.7 – 4.43X1 – 7.19X7 – 3.95X17 + 

0.39X18 – 0.65X27; eastern meadowlark (Sturnella magna; 0.80), Y = –64.6 + 7.61X8 + 

2.38X16 + 1.14X18 + 0.62X20 –0.45X32 + 3.80X33; western meadowlark (S. neglecta; 0.67), 



Appendix 1 (continued) 

________________________________________________________________________ 

 

 43 

Y = 68.38 – 7.39X3 – 2.10X19 + 1.20X23 + 0.24X32 – 0.41X34; yellow-headed blackbird 

(Xanthocephalus xanthocephalus; 0.46), Y = –44.04 + 1.67X9 + 1.33X24; Brewer’s 

blackbird (Euphagus cyanocephalus; 0.50), Y = 38.14 – 2.08X33; common grackle 

(Quiscalus quiscula; 0.53), Y = 12.27 – 2.68X1 + 4.44X8 + 3.59X31 – 3.84X17 – 3.25X6; 

great-tailed grackle (Q. mexicanus; 0.39), Y = –5.42 – 5.02X6 + 3.69X8 + 8.16X10 + 

0.17X32; brown-headed cowbird (Molothrus ater; 0.48), Y = –1.13 – 8.41X2 + 1.38X23; 

orchard oriole (Icterus spurious; 0.29), Y = –19.57 – 5.39X6 + 0.94X7 – 8.97X10 + 0.80X17 

+ 0.83X23 – 0.25X28; Baltimore oriole (I. galbula; 0.34), Y = –45.5818 – 2.71X1 – 8.59X3 

– 4.04X6 + 6.11X12 + 0.20X20 – 1.51X21 + 1.11X24 – 0.11X25 + 1.20X28; Bullock’s oriole 

(I. bullockii; 0.71), Y = 140.1 + 3.16X14 – 0.51X18 – 79.61X26 + 71.63X33 – 0.54X34.  

Fringillidae: house finch (Carpodacus mexicanus; 0.46), Y = –6.72 + 1.52X8 + 50.86X10 

+ 5.15X13; red crossbill (Loxia curvirostra; 0.50), Y = –6.52 + 20.94X4 + 22.39X11; lesser 

goldfinch (Carduelis psaltria; 0.50), Y = 94.74 + 11.71X6 + 8.7X10 + 9.47X12 – 1.15X20; 

American goldfinch (Carduelis tristis; 0.41), Y = 19.22 – 3.81X6 + 5.46X13 – 3.00X21 + 

1.92X29.  Passeridae: house sparrow (Passer domesticus; 0.46), Y = –4.32 – 4.47X6 + 

6.27X8 + 0.38X18 – 0.20X32. 

________________________________________________________________________ 

a
 Variables are: (X1) deciduous forest; (X2) mixed forest; (X3) evergreen forest; (X4) 

woody wetland; (X5) emergent herbaceous wetland; (X6) shrubland; (X7) grassland; (X8) 

pasture/hay; (X9) cropland; (X10) developed; (X11) barren; (X12) water; (X13) distance to 

water; (X14) May temperature; (X15) May soil temperature at 10 cm; (X16) May rain; (X17) 

May solar radiation; (X18) May wind speed; (X19) May barometric pressure; (X20) May 

percent humidity; (X21) June temperature; (X22) June soil temperature at 10 cm; (X23) 
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June rain; (X24) June solar radiation; (X25) June wind speed; (X26) June barometric 

pressure; (X27) June percent humidity; (X28) July temperature; (X29) July soil temperature 

at 10 cm; (X30) July rain; (X31) July solar radiation; (X32) July wind speed; (X33) July 

barometric pressure;  and (X34) July percent humidity. 
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ABSTRACT 

The continued loss of species has encouraged the development of predictive models using 

surrogate information; particular attention has focused on use of environmental variables.  

Large data sets make it possible to estimate the effect of splitting these sets by showing 

the effect that sample size has on the development of predictive models for species that 

are both widespread and sparse.  The Oklahoma breeding-bird atlas includes a data set for 

occurrences (presences and absences) of 209 avian species in 562 sites, each 5.00 × 5.88 

km in size. We divided this data set into one 100-site test set and nine 50-site training 

subsets. The nine training subsets were progressively added together to develop training 

sets of 50, 100, 150, 200, 250, 300, 350, 400, and 450 sites.  Using these training sets and 

34 environmental variables, we employed stepwise logistic regression to develop 

predictive models for 179 of the 209 species that occurred in the 100-site test set.  Model 

performance was based on overall accuracy at predicting species occurrences in a 100-

site test set based on average τp scores.  Logistic regression was more accurate (larger τp) 

when sparsely and widely distributed species were included in the analyses.  Model 

accuracy improved as up to 250 sites were added to the initial 50-site training set.  Model 

accuracy remained relatively consistent when 300 or more training sites were used to 
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develop species models. While additional sites provide actual data that would be useful 

for other purposes, our results suggest that for an area the size of Oklahoma little is 

gained in terms of predictive ability by sampling more than 300 sites.   

 

Keywords: Bird-habitat relationships; Geographic information systems; Model 

performance; Logistic regression; Training-set size 
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1. Introduction 

Prediction models for species distributions have received increased attention in the past 

decade (Scott et al., 2002; Lomolino and Heany, 2004).  The development and 

application of such models have been enhanced by the advances in biogeographical 

approaches that incorporate geographic information systems (GIS) to handle the spatial 

requirements of such models (Yuan, 1999; Burrough, 2001).  Recent focus has been on 

model development from data sets that include occurrences (both presences and absences, 

as defined by Angermeier et al., 2002; e.g., Austin et al., 1996; van Horseen et al., 1999; 

Pearce and Ferrier, 2000; Venier et al., 2004) or presence-only data (e.g., Peterson, 2001; 

Anderson et al., 2002; Peterson et al., 2002; Illoldi-Rangel et al., 2004), an example of 

the latter being information based on museum specimens.  Logistic regression often is 

employed with occurrence data (Hosmer and Lemeshow, 2000).   
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     Associations of species occurrences with various land-cover types and climatic factors 

are used to develop models based on a training subset (e.g., 50%) of the overall data set.  

These models are then applied to a test set or independent data sets and evaluated for 

their ability to predict the occurrence of a species (Guisan and Zimmerman, 2000).  

     For conservation efforts, only limited data may be available to comprise a training 

data set.  For example, funding may be unavailable for extensive sampling, there may be 

insufficient time in which to collect data, and/or the species of interest simply may be so 

sparsely distributed or secretive that it is not possible to establish an extensive database. 

This raises the issue of how much data are required in a training set to provide accurate 

predictions of occurrence of a species in an area of interest.  We have addressed this issue 

using occurrence data from the Oklahoma Breeding Bird Atlas (Reinking, 2004). We 

developed logistic-regression models using nine different-sized training sets to predict 

species occurrences for 179 species in a 100-site test set. Our goal was to determine when 

additional data no longer provided substantial improvement in model predictions.      

 

2.  Methods 

2.1. Occurrence bird data 

We initially evaluated occurrence data for 209 bird species from the Oklahoma Breeding 

Bird Atlas for 562 5.00 × 5.88 km blocks (Fig. 1a).  Subsequently, given species 

occurrences at the initial 50-site training set (see below), analyses were restricted to 179 

species (Appendix 1).  Data for the atlas were gathered over a 5-year period, with 

observers visiting each of the 562 blocks during the breeding season to record all bird 
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species present.  The atlas blocks initially were selected using a stratified-random 

procedure to ensure that sites were not unduly clumped geographically (Reinking, 2000). 

 

2.1.1. Test and training sets 

From the 562 atlas blocks, a test set of 100 sites (Fig. 1b) was selected using a stratified-

random procedure so that the sites selected were not by chance geographically clumped.  

From the remaining 462 sites, nine stratified-random selections of 50 (without 

replacement) were placed in subsets used to develop training sets (Fig. 1c).  We 

generated training sets of 50, 100, 150, 200, 250, 300, 350, 400, and 450 sites by starting 

with the initial 50-site training set and in turn adding 50-site subsets to the previously 

formed training sets.  For example, to the initial subset of 50 sites we added the second 

subset of 50 sites to form the 100-site training set; a third subset was then added to form 

the 150-site training set. 

 

2.2. Variables 

We used 34 environmental variables (land-cover and climatic variables) to develop 

prediction models of occurrences for each of the 179 bird species.  Twelve land-cover 

variables were based on an initial 19 land-cover types defined for Oklahoma by United 

States Geological Survey archive and found in the 1992 land-cover image (USGS, 2002).  

We combined four human-use types into one variable (light intensity residential, high 

intensity residential, commercial/industrial/transportation, and urban/recreational grasses 

were subsumed under “developed”), as we did for three cultivated types (row crops, 

small grains, and fallow were designated as “crops”), and for three bare-ground types 
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(bare rock/gravel/clay, quarries/strip mines/gravel pits, and transitional were combined as 

“barren”).  In ArcGIS (ESRI, 2004) the map polygons were reclassified as representing 1 

of the 12 land-cover types: (1) deciduous forest; (2) mixed forest; (3) evergreen forest; 

(4) woody wetland; (5) emergent herbaceous wetland; (6) shrubland; (7) grassland; (8) 

pasture/hay; (9) cropland; (10) developed; (11) barren; and (12) water.  Within each atlas 

block we calculated the proportion of the block covered by each land-cover type.  The 

13
th

 variable was the distance in meters from the center of the block to the nearest river or 

stream as identified in the Oklahoma Digital Elevation Model hydrological network 

(USGS, 1998).   We obtained measurements for this variable using Analyst Tools in 

ArcGIS (Beyer, 2004).  In order to maintain accurate distance measurements, all ArcGIS 

layers were placed in Universal Transverse Mercator projection, zone 14, based on the 

North American Datum 1983. 

     The climatic data for 1997 to 2001 covering May, June, and July were gathered 

through the Oklahoma Mesonet, a system of 119 weather stations in Oklahoma (Brock et 

al., 1995).  The five years of data were averaged by month to generate point data for each 

station.  For each of the three months (May, June, and July), seven variables were 

selected: temperature (
o
C); soil temperature (

o
C); rainfall (cm); solar radiation 

(megajoules/m
2
); wind speed (kph); barometric pressure (millibars); and humidity (%).  

Using the ordinary kriging method in the Geostatistical Analyst of ArcGIS (ESRI, 2004), 

the values for each of the 21 resulting climatic variables were estimated, from the point 

values, for all points on a surface that covered Oklahoma (van Horseen et al., 1999).   
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2.3. Species models based on logistic regression  

Individual logistic regressions were developed for each of the 209 species using each of 

the nine training sets.  We used step wise procedures with a 0.05 p-value (Hosmer and 

Lemeshow, 2000) to predict occurrences of each species at the 100 sites in the test set. 

Models were not produced for some species using the 50-site training set because they 

were either absent from or present in all localities in the set. These species could not be 

evaluated in all subsets, so they were removed.  As a result, 179 of the 209 species 

(Appendix 1) were evaluated.  The response value for each of the species at each of the 

100 test sites was counted as either present (> 0.5) or absent (< 0.5). 

 

2.4. Sample evaluations 

The logistic-regression models for the 179 species were evaluated based on the extent to 

which models correctly predicted the occurrence of the species.  As a summary of model 

prediction efficiency, we used a measure of proportional change in error, tau-p (τp): 

wo

wwo
p

E

EE −
=τ , 

  

where Ewo refers to error without the model and Ew to error with the model (Menard, 

2002).  Ew is the sum of incorrectly predicted presences and incorrectly predicted 

absences.  Ewo is 2 times the number of presences times the number of absences divided 

by the size of the sample (N = 100 for our test set).  τp can vary from 1 to 1-[N
2
/2(N-1)], 

with 0 being no different from chance, a negative value being worse than chance, and a 

positive value being better than chance (Menard, 2002).  The overall performance of each 

training set was evaluated as the average value of τp for the 100 test sites for the 179 

species. 
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     In addition to analyzing all 179 species, we also assessed subsets of those species from 

which sparsely distributed and widely distributed species had been removed.  When the 

25 species that occurred in only 1 or in 99 of the test sites were removed, the remaining 

species constituted subgroup A.  When those in 5 or less or 95 or more of the test sites 

(35 species) were removed, the 119 remaining species are referred to subgroup B.  We 

then removed those in 10 or fewer and 90 or more test sites; the remaining 94 species 

made up subgroup C.  

 

3. Results 

As indicated by average τp -values (Fig. 2; Table 1), model accuracy increased as 

training-set size increased from 50 to 300 sites.  The curves asymptoted and the standard 

deviations stabilized (Table 1) when 300 to 350 sites were in the training set.  Except for 

subgroup C, standard deviations of τp tended to be higher for training sets with relatively 

few sites (Table 1).  When all sites were considered, as well as for the three site 

subgroups, there was a slight decrease in accuracy from the 350-site training set to the 

400-site training set (Fig. 2).  This may be an example of reduced accuracy by increasing 

information from more variables producing models that are too specific to the sample 

sites (Stockwell and Peterson, 2002).  Another possibility is that the 400-site training set 

did not improve accuracy by chance because the 50-site subset that was added to the 

350-site training set did not provide sufficient new information to improve the average 

τp-value.   

     For the various-sized training subsets the average τp-values for all species, for 

subgroup A, and for subgroup B were not appreciably different (Fig. 2).  However, when 
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species in 10 or fewer and in 90 or more of the test sites were removed (i.e. subgroup C), 

there was a substantial drop in average τp-values for all sizes of training subsets (Fig. 2).  

Logistic regression produced more accurate results when relatively sparsely and widely 

distributed species were included. 

 

4. Discussion 

Using the 300-site training subset to predict the 100-site test set provided a balance 

between model performance and necessary effort for Oklahoma, which has an area of 

112 500 km
2
.  This fits within the training/testing proportions of other studies that were 

much larger in extent (Stockwell and Peterson, 2002; Venier et al., 2004).  Stockwell and 

Peterson (2002) evaluated Mexico (1 973 000 km
2
) for all bird species, while Venier et 

al. (2004) studied 10 species of warblers in the Great Lakes basin (80 0000 km
2
).  For 

Mexico, Stockwell and Peterson (2002) derived training subsets of 2000 points and a 

testing set of 1000 points from museum specimens.  Venier et al. (2004) divided their 

data set of 1302 points into roughly five equal-sized groups, using four as training subsets 

and one as the test set.   

     When many species are involved over such large areas, it is unavoidable that a 

considerable effort will be needed to provide accurate predictions of species occurrences.  

Using 300 sites in Oklahoma allowed useful models to be developed for most avian 

species, while also meeting the needs of surveyors in terms of costs, time, and model 

applicability.  Beyond a 300-site training set, we did not gain appreciably in terms of 

prediction ability.  Prediction of occurrences is only one purpose for which data from the 

Oklahoma breeding-bird atlas can be used and, for other uses, having actual occurrence 
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data for more than 300 sites may well prove beneficial.  This likely would be the case for 

breeding-bird atlases for other regions, as well as for other programs that generate 

occurrence data sets. 
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Table 1. Average values for τp ± SD (range) for different-sized training sets for: all 

species; subgroup A (species at 1 or 99 sites removed); subgroup B (species at ≤ 5 or ≥ 

95 sites removed); and subgroup C (species at ≤ 10 or ≥ 90 sites removed).  

    Subgroup   No. sites 

in training 

set 
All species 

(179  species) 

A 

(154 species) 

B (119 

species) 
C (94 species) 

     

50 
0.40 ± 0.23 

(-1.04 to 1.00) 

0.38 ± 0.25  

(-1.04 to 1.00) 

0.38 ± 0.20  

(-0.22 to 1.00) 

0.36 ± 0.19  

(-0.10 to 0.75) 

     

100 
0.41 ± 0.22  

(-1.30 to 0.91) 

0.39 ± 0.23  

(-1.30 to 0.91) 

0.39 ± 0.19  

(-0.25 to 0.91) 

0.37 ± 0.19  

(-0.25 to 0.81) 

     

150 
0.41 ± 0.25  

(-1.04 to 1.00) 

0.42 ± 0.23  

(-1.04 to 1.00) 

0.42 ± 0.18  

(-0.01 to 1.00) 

0.40 ± 0.19  

(-0.01 to 0.86) 

     

200 
0.44 ± 0.18  

(-0.28 to 0.91) 

0.43 ± 0.19  

(-0.27 tp 0.91) 

0.43 ± 0.19  

(-0.01 to 0.91) 

0.41 ± 0.19  

(-0.01 to 0.91) 

     

250 
0.44 ± 0.16  

(-0.02 to 0.89) 

0.44 ± 0.18  

(-0.02 to 0.89) 

0.43 ± 0.18  

(0.00 to0.82) 

0.41 ± 0.18  

(0.00 to 0.76) 

     

300 
0.45 ± 0.17  

(-0.03 to 0.91) 

0.45 ± 0.18  

(-0.03 to 0.91) 

0.44 ± 0.19  

(-0.01 to 0.91) 

0.41 ± 0.19  

(-0.01 to .086) 

     

350 
0.45 ± 0.16 

(0.02 to 0.91) 

0.45 ± 0.17  

(0.02 to 0.91) 

0.44 ± 0.18  

(0.02 to 0.91) 

0.42 ± 0.18  

(0.01 to 0.86) 

     

400 
0.45 ± 0.16  

(-0.04 to 0.82) 

0.45 ± 0.17  

(-0.04 to 0.82) 

0.44 ± 0.18  

(-0.04 to 0.82) 

0.41 ± 0.18  

(-0.04 to 0.81) 

     

450 
0.46 ± 0.17  

(-0.04 to 1.00) 

0.46 ± 0.18  

(-0.04 to 1.00) 

0.45 ± 0.18  

(-0.04 to 0.82) 

0.42 ± 0.19  

(-0.04 to 0.73) 
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Fig. 1 - Locations across state of Oklahoma of: (a) 562 breeding bird atlas sites; (b) 100 

sites used to test the predictions of logistic-regression models; and (c) 450 training sites 

used to develop the logistic regressions, where first 50 were used to develop models for 

the 50-site training set, second 50 was added to first 50 to develop models for the 100-site 

training set, third 50 was added to the 100-site training set to develop models for the 150-

site training set, etc. 

 

Fig. 2 - Average values of τp for different-sized training subsets: all species; subgroup A 

(species at 1 or 99 sites removed); subgroup B (species at ≤ 5 or ≥ 95 sites removed); and 

subgroup C (species at ≤ 10 or ≥ 90 sites removed).  Number of species and subgroups 

indicated in parentheses in legend.  
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Appendix 1 – The 179 species for which logistic-regression models were generated. 

___________________________________________________________________ 

Podicipedidae: pied-billed grebe (Podilymbus podiceps).  Pelecanidae: double-crested 

coromorant (Phalacrocorax auritus).  Ardeidae: American bittern (Botaurus 

lentiginosus); great blue heron (Ardea herodias); great egret (A. alba); snowy egret 

(Egretta thula); little blue heron (E. caerulea); cattle egret (Bubulcus ibis); green heron 

(Butorides virescens); black-crowned night-heron (Nycticorax nycticorax); yellow-

crowned night-heron (N. violacea).  Threskiornithidae: white-faced ibis (Eudocimus 

albus).  Cathartidae: black vulture (Coragyps atratus); turkey vulture (Cathartes aura).  

Anatidae: Canada goose (Branta canadensis); wood duck (Aix sponsa); mallard (Anas 

platyhynchos); blue-winged teal (A. discors); northern shoveler (A. clypeata); northern 

pintail (A. acuta); green-winged teal (A. crecca); redhead (Aythya americana); ring-

necked duck (A. collaris); hooded merganser (Lophodytes cucullatus); ruddy duck 

(Oxyura jamaicensis).  Accipitridae: osprey (Pandion haliaetus); Mississippi kite 

(Ictinia mississippiensis); bald eagle (Haliaeetus leucocephalus); northern harrier (Circus 

cyaneus); Cooper’s hawk (Accipiter cooperii); red-shouldered hawk (Buteo lineatus); 

broad-winged hawk (B. platypterus); Swainson’s hawk (B. swainsoni); red-tailed hawk 

(B. jamaicensis); ferruginous hawk (B. regalis).  Falconidae: American kestrel (Falco 

sparverius); prairie falcon (F. mexicanus). Phasianidae: ring-necked pheasant 

(Phasianus colchicus); greater prairie-chicken (Tympanuchus cupido); lesser prairie-

chicken (T. pallidicinctus); wild turkey (Meleagris gallopavo).  Odontiphoridae: scaled 

quail (Callipepla squamata); northern bobwhite (Colinus virginianus).  Rallidae: sora 

(Porzana carolina); American coot (Fulica americana).  Charadriidae: killdeer 
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(Charadrius vociferous).  Recurvirostridae: black-necked stilt (Himantopus mexicanus); 

American avocet (Recurvirostra americana).  Scolopacidae: spotted sandpiper (Actitis 

macularia); upland sandpiper (Bartramia longicauda); long-billed curlew (Numenius 

americanus).  Laridae: least tern (Sterna antillarum).  Columbidae: rock pigeon 

(Columba livia); white-winged dove (Zenaida asiatica); Inca dove (Columbina inca).  

Cuculidae: black-billed cuckoo (Coccyzus erythropthalmus); yellow-billed cuckoo (C. 

americanus); greater roadrunner (Geococcyx californianus).  Tytonidae: barn owl (Tyto 

alba).  Strigidae: eastern screech-owl (Megascops asio); great horned owl (Bubo 

virginianus); burrowing owl (Athene cunicularia); barred owl (Strix varia).  

Caprimulgidae: common nighthawk (Chordeiles minor); common poorwill 

(Phalaenoptilus nuttallii); chuck-will’s-widow (Caprimulgus carolinensis); whip-poor-

will (C. vociferous).  Apodidae: chimney swift (Chaetura pelagica).  Trochilidae: ruby-

throated hummingbird (Archilochus colubris); black-chinned hummingbird (A. 

alexandri).  Alcedinidae: belted kingfisher (Ceryle alcyon).  Picidae: Lewis’s 

woodpecker (Melanerpes lewis); red-headed woodpecker (M. erythrocephalus); golden-

fronted woodpecker (M. aurifrons); red-bellied woodpecker (M. carolinus); ladder-

backed woodpecker (Picoides scalaris); downy woodpecker (P. pubescens); hairy 

woodpecker (P. villosus); northern flicker (Colaptes auratus); pileated woodpecker 

(Dryocopus pileatus).  Tyrannidae: western wood-pewee (Contopus sordidulus); eastern 

wood-pewee (C. virens); Acadian flycatcher (Empidonax virescens); willow flycatcher 

(E. traillii); eastern phoebe (Sayornis phoebe); Say’s phoebe (S. saya); ash-throated 

flycatcher (Myiarchus cinerascens); great crested flycatcher (M. crinitus); Cassin’s 

kingbird (Tyrannus vociferans); western kingbird (T. verticalis); eastern kingbird (T. 
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tyrannus); scissor-tailed flycatcher (T. forficatus); Laniidae: loggerheaded shrike (Lanius 

ludovicianus).  Vireonidae: white-eyed vireo (Vireo griseus); Bell’s vireo (V. bellii); 

yellow-throated vireo (V. flavifrons); warbling vireo (V. gilvus); red-eyed vireo (V. 

olivaceus).  Corvidae: blue jay (Cyanocitta cristata); western scrub-jay (Aphelocoma 

californica); pinyon jay (Gymnorhinus cyanocephalus); black-billed magpie (Pica 

hudsonia); American crow (Corvus brachyrhynchos); fish crow (C. ossifragus); 

Chihuahuan raven (C. cryptoleucus); common raven (C. corax).  Alaudidae: horned lark 

(Eremophila alpestris).  Hirundinidae: purple martin (Progne subis); tree swallow 

(Tachycineta bicolor); northern rough-winged swallow (Stelgidopteryx serripennis); bank 

swallow (Riparia riparia); cliff swallow (Petrochelidon pyrrhonota); barn swallow 

(Hirundo rustica).  Paridae: Carolina chickadee (Poecile carolinensis); tufted titmouse 

(Baeolophus bicolor).  Sittidae: white-breasted nuthatch (Sitta carolinensis).  

Troglodytidae: rock wren (Salpinctes obsoletus); canyon wren (Catherpes mexicanus); 

Carolina wren (Thryothorus ludovicianus); Bewick’s wren (Thryomanes bewickii); house 

wren (Troglodytes aedon); sedge wren (Cistothorus platensis).  Sylviidae: blue-gray 

gnatcatcher (Polioptila caerulea).  Turdidae: eastern bluebird (Sialia sialis); wood 

thrush (Hylocichla mustelina); American robin (Turdus migratorius).  Mimidae: gray 

catbird (Dumetella carolinensis); northern mockingbird (Mimus polyglottos); brown 

thrasher (Toxostoma rufum); curve-billed thrasher (T. curvirostre).  Sturnidae: European 

starling (Sturnus vulgaris).  Bombycillidae: cedar waxwing (Bombycilla cedrorum).  

Parulide: northern parula (Parula americana); yellow warbler (Dendroica petechia); 

yellow-throated warbler (D. dominica); pine warbler (D. pinus); prairie warbler (D. 

discolor); black-and-white warbler (Mniotilta varia); American redstart (Setophaga 
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ruticilla); prothonotary warbler (Protonotaria citrea); Louisiana waterthrush (Seiurus 

motacilla); Kentucky warbler (Oporornis formosus); common yellowthroat (Geothlypis 

trichas); hooded warbler (G. nelsoni); yellow-breasted chat (Icteria virens).  

Thraupidae: summer tanager (Piranga rubra); scarlet tanager (P. olivacea).  

Emberizidae: canyon towhee (Pipilo fuscus); Cassin’s sparrow (Aimophila cassinii); 

Bachman’s sparrow (A. aestivalis); rufous-crowned sparrow (A. ruficeps); chipping 

sparrow (Spizella passerina); field sparrow (S. pusilla); lark sparrow (Chondestes 

grammacus); black-throated sparrow (Amphispiza bilineata); lark bunting (Calamospiza 

melanocorys); grasshopper sparrow (Ammodramus savannarum); Lincoln’s sparrow 

(Melospiza lincolnii).  Cardinalidae: northern cardinal (Cardinalis cardinalis); rose-

breasted grosbeak (Pheucticus ludovicianus); blue grosbeak (Passerina caerulea); lazuli 

bunting (P. amoena); indigo bunting (P. cyanea); painted bunting (P. ciris); dickcissel 

(Spiza americana).  Icteridae: red-winged blackbird (Agelaius phoeniceus); eastern 

meadowlark (Sturnella magna); western meadowlark (S. neglecta); yellow-headed 

blackbird (Xanthocephalus xanthocephalus); Brewer’s blackbird (Euphagus 

cyanocephalus); common grackle (Quiscalus quiscula); great-tailed grackle (Q. 

mexicanus); brown-headed cowbird (Molothrus ater); orchard oriole (Icterus spurious); 

Baltimore oriole (I. galbula); Bullock’s oriole (I. bullockii).  Fringillidae: house finch 

(Carpodacus mexicanus); American goldfinch (Carduelis tristis).  Passeridae: house 

sparrow (Passer domesticus). 

________________________________________________________________________ 
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ABSTRACT 

Species-distribution models have been employed with increased frequency to predict 

species occurrences (both presences and absences) and sometimes species richness.  

Heuristically, as well as practically, it is useful to compare predictive abilities of 

commonly used procedures.  Using intrinsic criteria, we evaluated the efficiency of 

stepwise logistic regression and two forms of GARP (genetic algorithm rule-set 

prediction) in predicting actual occurrences for 209 species included in the Oklahoma 

Breeding Bird Atlas using 34 environmental variables.  We also summed predictions to 

estimate species richness for each of the 562 atlas blocks.  Logistic regression developed 

models by selecting variables that best predicted distributions of each species.  GARP50:50 

used a 0.5 cutoff similar to logistic regression and GARPBest subset the summed best subset 

to develop distribution models for each species, an approach employed by a number of 

previous investigations.  Considering all individual species occurrences, logistic 

regression correctly predicted species occurrences 89.4% of the time, which was better 

than GARP50:50 (76.6%) or GARPBest subset (70.3%).  Comparisons were made for 

subgroups of species based on distribution extents and for subgroups of localities with 

low, moderate, and high species richnesses.  For occurrences, logistic regression was the 
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better predictor irrespective of the extent of distributions.  GARPBest subset, which 

consistently overpredicted presences, not surprisingly was a better predictor of presences 

than either logistic regression or GARP50:50 for all but the widespread species, for which 

it was not significantly different from logistic regression.  GARP50:50 was intermediate to 

logistic regression and GARPBest subset in predictive ability, better predicting presences 

than logistic regression and absences than GARPBest subset.  Logistic regression slightly 

overpredicted species richness for blocks with relatively low species richness and 

underpredicted it at sites with relatively high species richness, such that the average was 

close to the actual average species richness.  GARP, for both implementations, routinely 

overpredicted species richness, with GARPBest subset on average predicting over twice the 

actual number of species.  Summing results for logistic regression for a given site 

provided a good estimate of species richness, although results from this technique were 

not particularly informative when trying to estimate and compare relative species 

richnesses across localities.  GARP substantially overestimated species richness for any 

given block and also did not produce particularly reliable estimates of relative 

interlocality differences in species richness.  Thus, GARP in these two forms is less than 

an optimal choice for accurately predicting individual species distributions or site species 

richness when reputable occurrence data are available. 

 

Keywords: Breeding bird atlas, Presence-absence data, Presence-only data, Occurrence 

data, Breeding bird atlas, Model comparison, Model performance, Logistic regression, 

Predictive ability, GARP, Genetic algorithm rule-set prediction 
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1. Introduction 

The development of species-distribution and richness models has received considerable 

attention over the past decade.  Species-distribution models often are used to predict 

occurrences (both presences and absences; Angermeier et al. 2002) of individual species 

by developing an equation or rule-set typically based on environmental variables, such as 

land-cover types or climatic measures.  With the increase in types of models now 

available (Guisan and Thuiller, 2005), one is faced with deciding which models are most 

appropriately applied to particular data sets and/or for particular purposes.  However, few 

comparisons have been published that can assist researchers in deciding which models 

are most appropriate for their data.   

      Manel et al. (1999) showed that logistic regression was more suitable than either 

artificial neural networks or discriminant analysis in predicting presence/absence of river 

birds.  Other comparisons have assessed models as used with presence-only data.  

Brotons et al. (2004) and Olivier and Wootherspoon (2006) compared the results of 

ecological niche factor analysis (EFNA) of Biomapper (Hirzel et al., 2002) and of logistic 

regression with pseudo-absences.  Logistic regression provided more accurate predictions 

than those from ENFA.   

     The genetic algorithm rule-set prediction (GARP; Stockwell and Noble, 1992) is 

another model type typically used in biological applications employed on presence-only 

data.  It has been used extensively and compared to logistic regression, using pseudo-
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absences, to determine the effect of sample size on model efficiency (Stockwell and 

Peterson, 2002).  GARP was declared more efficient, using fewer sites to predict 

presence-only data developed from museum collections; only 50 sites were required by 

GARP to reach a consistent prediction level, whereas 100 sites were needed to reach the 

same level as logistic regression using pseudo-absences.  However, it is of interest to 

determine whether GARP would be the technique of choice if one has reputable 

occurrence information, such as is provided through a number of projects, including 

statewide programs to develop breeding-bird atlases.  Occurrence data from atlas 

programs also can be employed to evaluate the degree to which GARP and logistic 

regression accurately predict actual distributions. 

     In addition, it is of interest to evaluate the degree of concordance between estimates of 

species richness based on individual species models and actual species richness.  Studies 

have used species-distribution data to sum the number of species that occurred at a site 

and then, using environmental data, predicted species richness for unsampled sites (e.g. 

Bohning-Gaese, 1997; van Rensberg et al., 2002; Waldhardt et al., 2004).  Others have 

developed predictions of species richness by summing the predicted presences of 

individual species at a site and comparing the prediction to the actual site richness 

(Lehmann et al., 2002; Zaniewski et al., 2002).  To be useful, the sum of the unique 

predictions should provide an estimate that is near the actual richness, or at least provide 

good relative measure for comparison of species richnesses across sites.   

     Few comparisons of different species-distribution models have been published that 

assess model accuracy (Brotons et al., 2004; Olivier and Wootherspoon, 2006).  Using 

data from the Oklahoma Breeding Bird Atlas (Reinking, 2004), we have evaluated the 
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degree to which logistic regression and two forms of GARP correctly predict 

occurrences, presences, and absences of individual species based on environmental 

variables.  We have made direct comparisons for all species, as well as for: (1) subgroups 

of species as determined by their distribution extents; and (2) subgroups of localities with 

low, moderate, and high species richness.  Estimates of species richness derived from 

summations of results for individual species models also were examined. 

 

2. Methods 

2.1. Bird data and environmental descriptors 

Distribution data for a species can be classified as either occurrence information 

(presences or absences) or presence-only data.  Breeding-bird atlases (e.g., Peterjohn and 

Rice, 1991; Corman and Wise-Gervais, 2005), where observers visit numerous localities 

within a given geographic area and record the breeding bird species, can provide reliable 

occurrence data.  For atlas projects observers must meet defined minimum time criteria 

for a block to be included (e.g. Reinking, 2000); thus, one has presence/absence 

information for each species at a series of localities.  While, of course, a species at a 

particular site could have been present but went undetected (i.e. an apparent commission 

error; Anderson et al., 2003); it seems unlikely that commission errors of this type would 

be widespread.  In our comparisons of logistic regression and two forms of GARP, we 

used occurrence data for 209 bird species at 562 blocks (Fig. 1) as reported in the 

Oklahoma Breeding Bird Atlas.  Blocks, initially selected using a stratified-random 

procedure to ensure no undo clumping spatially, were sampled from 1997 through 2001. 
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2.2. Environmental variables 

We used two types of environmental descriptors in this study – 13 land-cover types and 

21 climatic variables.  Twelve of the land-cover types were based on an initial 19 land-

cover types as described from the 1992 land-cover image in the United States Geological 

Survey archive (USGS, 2002).  We consolidated four variables (low intensity residential, 

high intensity residential, industrial, and urban grasses) into one variable “developed”, 

three variables (row crops, small grains, and fallow) into “crops”, and a further three 

variables (bare rock, quarries/mines, and transitional) into “barren”.  With these 

modifications the 12 resulting land-cover variables were: (1) deciduous forest; (2) mixed 

forest; (3) evergreen forest; (4) woody wetland; (5) emergent herbaceous wetland; (6) 

shrubland; (7) grassland; (8) pasture/hay; (9) cropland; (10) developed; (11) barren; and 

(12) water.  A 13
th

 variable, distance to water (in meters), was calculated as the distance 

from the atlas block center to the nearest river or stream as identified in the Oklahoma 

Digital Elevation Model hydrological network derived from the 1:100,000-scale digital 

topographic map (USGS, 1998).  We obtained measurements for this variable using the 

Distance Between Points (between layers) procedure of Analysis Tools (Beyer, 2004) in 

ArcGIS (ESRI, 2004). 

     We generated climatic variables using point data provided through the Oklahoma 

Mesonet (Brock et al., 1995), a series of 119 weather stations with at least one in each of 

the state’s 77 counties.  The data we employed were averaged for 1997 through 2001 

covering May, June, and July, corresponding to the years and months when the bird 

surveys were conducted.  For each of the three months (May, June, and July), seven 

variables were selected: temperature (
o
C); soil temperature (

o
C); rainfall (cm); solar 
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radiation (megajoules/m
2
); wind speed (kph); barometric pressure (millibars); and 

humidity (%).  The 21 resulting climatic variables were interpolated to generate layers for 

all locations in the state using the ordinary kriging method (van Horseen et al., 1999) in 

the Geostatistical Analyst of ArcGIS (ESRI, 2004).  The climatic layers were intersected 

by the atlas-block layer to provide the climatic variable using the Intersect Point Tool of 

Analysis Tools (Beyer, 2004) in ArcGIS.  Using the raster-to-ASCII conversion tool of 

ArcToolbox, we exported all variables from ArcGIS to ASCII format files for use in 

GARP.   

 

2.3. Model development 

We developed models for each of the 209 species using both logistic regression and 

GARP.  For logistic regression, we employed a stepwise procedure (p = 0.05) in SAS 9 

(SAS, 2004) to select from the 34 environmental variables the subset that best explained 

presence/absence for each species.  Each logistic-regression equation produced a score 

for its species that ranged from 0 to 1.  For any location with a score for a species of 0.5 

or greater, the species was considered present (Pearce and Ferrier, 2000).  Predicted 

presences and absences were compared to actual presences and absences for each species 

to determine the model’s accuracy.  A result for an individual block was then categorized 

as a correctly predicted presence, an incorrectly predicted presence, an incorrectly 

predicted absence, or a correctly predicted absence (van Horseen et al., 1999).  These 

categories correspond to true positive, false positive, false negative, and true negative of 

Anderson et al. (2003).  Thus, the performance of the technique was judged based on 

intrinsic measures of error (Anderson et al., 2003). 
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     Two variations of GARP were run: GARPBest subset and GARP50:50.  For GARPBest subset, 

we generated 21 maps using 1000 iterations or until convergence was reached for each 

species (Stockwell and Peters, 1999).  Previous studies (e.g. Anderson et al., 2002; 

Raxworthy et al., 2003; Illoldi-Rengel et al., 2004; Peterson et al., 2006) typically have 

employed GARPBest subset, using this technique to generate from 10-100 maps, with model 

criteria being a low-omission threshold and a moderate commission-error threshold 

(Anderson et al., 2003).  In our study, GARPBest subset was the best subset based on optimal 

combinations of error components, as per Anderson et al. (2003) and Raxworthy et al. 

(2003).  For each species we produced 21 replicate models and a best subset of 10 

models; models that predicted less than 90% (i.e. 10% hard omission threshold) of 

presences were discarded and from among the remaining models the 10 closest to the 

median predicted area were summed to provide a “best distributional prediction” 

(Raxworthy et al., 2003).  The commission threshold was set at 50% of the distribution.   

The resulting 10 best maps were exported as Arc/INFO Grids, brought into ArcGIS, and 

summed using a raster calculator.  The values of the sums could then vary from 0 to 10 

representing the number of runs in which the species was predicted present for a cell; not 

all maps had all possible values.  We intersected the summed maps with the center points 

of atlas blocks in ArcGIS.  The summed map was considered to represent the potential 

distribution of a species.  Due to the variability in number of values in each map any 

value greater than zero was judged to be a presence (1), and zero an absence (0).  As with 

logistic regression, predicted presences and absences were compared to actual presences 

and absences for a species. 
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     For GARP50:50, the 21 maps were summed as a potential distribution map, generating 

22 possible occurrence categories (0-21) so that a 0.5 cutoff could be established 

somewhat analogous to that used with the logistic-regression procedure.  The 21 maps 

were also exported as Arc/INFO Grids, brought into ArcGIS, similarly summed using a 

raster calculator, and intersected.  A species having a value of 11-21 for a block was 

judged to be present (1) in that block; when the sum was from 0-10 for a block, the 

prediction was that the species was absent (0).  Predicted presences and absences then 

were compared to the actual presences and absences. 

 

2.4. Model comparisons 

Sites for which species were correctly predicted as either present or absent were summed 

to determine the total correctly predicted occurrences.  Correctly predicted presences and 

absences also were considered separately.  Correctly predicted occurrences, presences, 

and absences were the basis of pairwise comparisons of the results for logistic regression, 

GARP50:50, and GARPBest subset.  We tabulated which technique was the best predictor for 

each of the 209 species, with the result compared to the expected null hypothesis using a 

G-test with one degree of freedom (Sokal and Rohlf, 1997). 

     Similar comparisons were made for subgroups of species determined on the basis of 

the extent of their actual distributions.  Species were partitioned into five approximately 

equal-range groups: those having sparse distributions (being present in 1-112 of the 562 

blocks), moderately sparse distributions (113-225 blocks), intermediate distributions 

(226-338 blocks), moderately widespread distributions (339-451 blocks), and widespread 

distributions (452-562 blocks).   
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     In comparisons within each of the 562 blocks, based on the 209 individual species 

models, we tabulated over species the correctly predicted presences, incorrectly predicted 

presences, correctly predicted absences, and incorrectly predicted absences; pairwise 

comparisons were used to determine which technique was the best predictor.  Similar 

comparisons were done for subgroups of blocks – those with relatively low, moderate, 

and high species richnesses (24-49, 50-75, and 76-100 species, respectively; Fig. 1). 

     For each technique we then counted the number of species predicted to be present in 

each block, thus obtaining the predicted species richness.  The actual and predicted 

species richnesses were then compared.  

 

3. Results 

3.1.  Overall  prediction accuracy 

Accuracy for predicting species occurrences (both presences and absences) was relatively 

good for all models.  The average correctly predicted occurrences by logistic regression 

was 89.3%, by GARP50:50 76.7%, and by GARPBest subset 70.3%.  Logistic regression 

performed significantly better than either GARP50:50 or GARPBest subset for predicting 

occurrences (Table 1).  When comparing only presences, GARP50:50 did better than 

logistic regression, while GARPBest subset outperformed both logistic regression and 

GARP50:50 (Table 1).  However, when only absences were considered, logistic regression 

performed better than either form of GARP.  Comparing GARP procedures for overall 

performance showed that GARP50:50 did better than GARPBest subset (Table 1) in predicting 

occurrences.  When GARP procedures were compared for correctly predicting absences, 

GARP50:50 was a better predictor.   
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3.2.     Predictive ability for species relative to distribution extents  

When species were separated into five groups based on the extents of their distributions 

(separation shown by dotted lines in Figs. 2 and 3), logistic regression was best when 

predicting at the extremes, with the mean percent of correctly predicted occurrences of 

sparse and widespread distributions being 96.0 and 92.3%, respectively.  For distributions 

intermediate in extent, prediction performance generally was poorer (x̄  = 69.0%) and 

variability among species in model performance was higher (central portion of Fig. 2a). 

     GARP50:50 models showed a range of performance.  For sparse distributions (left part 

of Fig. 2b), predictive ability ranged from 100% to less than 20% correctly predicted 

occurrences, with the predictions for most sparsely distributed species being highly 

accurate.  Predictive performance by GARP50:50 was poorest for several species present at 

about 100 sites.  In general, there was better predictive accuracy for more widespread 

species, with the average percents of correctly predicted occurrences being 61.3%, 

77.0%, and 82.3% for intermediate, moderately widespread, and widespread 

distributions, respectively (middle section and those to right in Fig. 2b). 

     GARPBest subset showed a pattern similar to GARP50:50, but more pronounced (Fig. 2c).  

Predictions for the sparsest distributions were good, but for several species found at 25 to 

60 sites only 20% of occurrences were correctly predicted, although occurrence 

predictions for a few species in this range were over 80% accurate.  For species found at 

about 100 sites or more, predictive ability of GARPBest subset increased in a linear fashion, 

eventually approaching 100% accuracy. 
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     When presences and absences are considered separately, the sources of variability in 

the ability to predict occurrences are evident.  Logistic regression showed variability in 

predictive ability for sparse and moderately sparse distributions (Fig. 3a, two leftmost 

sections), but correct predictions of performance increased markedly from species with 

intermediate distributions to those that were widespread.  The pattern for predictions of 

absences was essentially a mirror image, ranging from perfect for species found in only a 

few localities to zero for species found in almost all sites. 

     For GARP50:50, the percent of correctly predicted occurrences showed a range of 

variation among species found in only a few localities (Fig. 3c), was very high for most 

species found at from 50 to 300 sites, and was somewhat lower for many of the species 

found at more localities.  GARP50:50 predicted absences well for species found at only a 

few localities (Fig. 3d); for the rest of the species, predictive ability ranged widely (10 to 

89%). 

     GARPBest subset showed a similar but more pronounced pattern to GARP50:50 for 

percents of correctly predicted occurrences (Fig. 3e) and correctly predicted presences 

(Fig. 3f).  Except for a few species found at only a few localities, GARPBest subset correctly 

predicted presences at or near 100% of the time (Fig. 3e).  This high level of prediction 

ability for presences was achieved by substantially overpredicting the number of sites 

where any given species was present, with the result that, except for a few species found 

infrequently in Oklahoma, predictive ability for where species were not found was 

notably diminished (Fig. 3f).   

     When the occurrences of species were compared within their five distribution groups, 

logistic regression predicted occurrences better than GARP50:50.  GARP50:50 was the better 
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predictor for 44 of the 120 species with sparse distributions (Table 2).  When presences 

and absences were separated, GARP50:50 better predicted presences for the first three 

distribution groups (Table 2).  A comparison of the presence predictions of the 

moderately widespread species showed no significant difference in predictive ability of 

logistic regression and GARP50:50.  When widespread distributions were compared, 

logistic regression did better (Table 2).  For absences, logistic regression consistently did 

better for the first four distribution groups.  GARP50:50 better predicted absences for 19 of 

the 24 species with widespread distributions (Table 2), although neither GARP50:50 nor 

logistic regression did particularly well (left side of Figs. 3b and d). 

     When logistic regression was compared to GARPBest subset for sparse distributions, 

logistic regression was the better predictor overall; however, 27 species were better 

predicted by GARPBest subset.  The species in the other four distribution groups were better 

predicted by logistic regression (Table 2).  When only presences were compared, 

GARPBest subset better predicted the first four distribution groups, and there was no 

significant difference for the widespread distributions (Table 2).  For widespread 

distributions, 12 species were better predicted by logistic regression, with 10 better 

predicted by GARPBest subset.  Logistic regression better predicted absences in all five 

distribution groups (Table 2).  Since GARPBest subset does not use absences directly, this 

result was expected.   

     When the two GARP procedures were compared, results were more similar to each 

other than to those for logistic regression.  For the first three groups of species, 

distributions were better predicted by GARP50:50 (Table 2).  The comparison of GARP 

procedures using the moderately widespread group of species distributions was not 
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significantly different; GARP50:50 better predicted 5 species distributions to the 11 better 

predicted by GARPBest subset (Table 2).  All species with widespread distributions were 

better predicted by GARPBest subset (Table 2).  When presences were compared, 

GARPBest subset better predicted all but one species (yellow-crowned night-heron, 

Nycticorax violacea) in all distribution groups (Table 2).  For absences, when compared 

to GARPBest subset, GARP50:50 tied or better predicted all species in all distribution groups. 

 

3.3. Predictive ability for blocks relative to species richnesses 

Surveyed blocks exhibited a wide range of species richnesses (24-100 species), with an 

average of 56.8 species.  Blocks with the highest species richnesses (Fig. 1, black 

squares) tended to be associated with large, man-made reservoirs, such as Lake Fort 

Supply in the northwest, Lake Eufala and Lake Tenkiller in the east, and Lake Texoma in 

the south.  These blocks support shorebirds and waterbirds in addition to land birds. 

     Logistic regression correctly predicted species occurrences from 78.0 to 95.7% of the 

time for the 562 blocks.  Predictions tended to be less accurate for localities with the most 

species (Fig. 4a).  For GARP50:50, the range was 59.8 to 91.9% (Fig. 4b).  When plotted 

against actual species richness a J-shaped curve resulted, with predictions being relatively 

good for sites where species richness was very low or very high.  Predictions generally 

were poorest for localities with species richnesses of 30 to 50 species; except for those 

localities with low species richnesses, prediction percentages tended to increase in a 

linear fashion with actual species richnesses.  A similar pattern to that for GARP50:50 was 

found for GARPBest subset (Fig. 4c), but the average percent correct was lower (70.3%, 

range 54.1 to 90.4%).   
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     We also examined the degree to which each of the techniques correctly predicted 

species presences only and absences only for each block (Fig. 5).  For logistic regression, 

there was an inverse relationship of percent species correctly predicted present and 

species richness (Fig. 5a).  For percent species correctly predicted absent, logistic 

regression provided better predictions when more species were present (Fig. 5b).  

GARP50:50, in general, did well at correctly predicting species that were present, although 

there were a number of blocks where it performed poorly (Fig. 5c).  When species 

actually were absent, GARP50:50 made numerous mistakes for most localities (Fig. 5d), 

although it did better for blocks with very low species richnesses.  For GARPBest subset, the 

pattern paralleled that of GARP50:50, but was more extreme.  For most blocks, presences 

were correctly predicted by GARPBest subset most of the time (Fig. 5e), but absences were 

poorly predicted for almost all localities (Fig. 5f).     

     When compared to one another, logistic regression better predicted occurrences at 

localities than either GARP50:50 or GARPBest subset, while GARP50:50 performed better than 

GARPBest subset (Table 3).  GARPBest subset was a better predictor of presences than either 

logistic regression or GARP50:50.  However, logistic regression was notably better than 

either GARP technique at predicting absences at each locality, with GARP50:50 always 

doing better than GARPBest subset. 

     Irrespective of whether species richness was low, moderate, or high, logistic 

regression outperformed both forms of GARP in correctly estimating occurrences of 

species at localities, with only one comparison (i.e. logistic regression vs. GARP50:50 for 

high species richness) not being statistically significant (Table 4).  GARP50:50 was a better 
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predictor of occurrences than GARPBest subset for sites with low, moderate, and high 

species richness (Table 4). 

     For presences of species at given localities, GARP50:50 was a better predictor than 

logistic regression and GARPBest subset better than either of the other techniques for all 

three subgroups – sites with low, moderate, and high species richness (Table 4).  

However, when judging whether species were absent at localities, logistic regression was 

the best performer at all three species-richness levels, and GARP50:50 was better than 

GARPBest subset (Table 4).  

 

3.4.  Predicted species richness 

Predictions of species richness using individual species models based on logistic 

regression were relatively close to actual species richnesses, but tended to be too high for 

localities with low species richness and too low for localities with high species richness 

(Fig. 6a).  The product-moment correlation of actual and predicted species richness based 

on logistic regression was 0.44 (p < 0.001; Fig. 6a).  The average absolute deviation 

between actual and predicted species richness was 9.67 species, while the average, taking 

sign into account, was -4.9 species.   

     GARP50:50 typically overpredicted species richness irrespective of actual species 

richness, but there were a few sites where species richness was exactly predicted and 

some where the parameter was underestimated (Fig. 6b).  The lowest correlation of actual 

and predicted species richness occurred using this technique (r = 0.35, p < 0.001; Fig. 

6b).  The average absolute deviation was 40.9 species and, taking into account sign, was 

37.4 species.   
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     Species richness was overpredicted by GARPBest subset for all but one of the blocks (Fig. 

6c).  The correlation of actual and predicted species richness was 0.39 (p < 0.001; Fig. 

6c).  The average absolute deviation (as well as the deviation considering sign) was 60.7 

species; thus, predictions of species richness on average using this technique were more 

than twice the average actual species richness of 56.8. 

 

4. Discussion 

We used intrinsic criteria to evaluate the efficacy of logistic regression and two forms of 

GARP in correctly estimating species occurrences based on presence-absence data for 

Oklahoma birds.  We have not addressed directly the question of which technique or 

techniques are best applied to presence-only data, although our analyses indicate that 

GARP considerably overestimates actual distributions.  In our study, logistic regression 

was better overall in predicting actual occurrences than either of the GARP techniques 

used.  While not documented in detail previously, this is not a particularly surprising 

result given that GARP as typically implemented in biological studies only makes use of 

presences, while logistic regression considers both presences and absences.   

     Logistic regression showed less variability in accuracy at predicting occurrences of 

species, particularly for species with sparse or widespread distributions.  For both forms 

of GARP, the variability in accuracy was widest for species with sparse distributions, 

particularly those that occurred in fewer than 50 blocks.  This difference in accuracy is 

consistent with the sample effect reported by Stockwell and Peterson (2002).  Using the 

Atlas of Mexican Bird Distributions, they showed GARP to be less accurate when fewer 

than 50 sites were used to develop distribution models.  The inconsistency of the percent 
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of correctly predicted species occurrences in our analyses reflects the overall reduced 

accuracy shown by the sample effect.   

     Breeding-bird atlases employ minimum sampling criteria such that each block is 

sampled to produce reputable occurrence data of both presences and absences.  GARP, 

using only presence data, is a less than optimal choice for accurately predicting species 

distributions based on occurrence information.  If the purpose is to estimate “potential” 

distributions, it is an open question as to whether it is advantageous to employ a 

technique in a way that overestimates where species occur and probably overestimate the 

range extents of these species as well.  Even if one is interested in the “potential” range, 

such a concept is difficult to define objectively, and is readily open to multiple subjective 

and often nontestable interpretations. 

     Occurrences of species at sites with relatively low or moderate actual species 

richnesses were better predicted by logistic regression than were species at sites of high 

species richness (Fig. 4a).  This difference is due to relatively poor predictions of 

presence for sparsely distributed species; these typically are “add-on species” to the list 

of more widespread species, with the result that the given locality is relatively species-

rich.  In fact, logistic regression predicted that several of these add-on species did not 

occur in any of the atlas blocks in the state.  Similar findings were reported for the 

Florida breeding-bird-atlas project in that species richness at a site was predominantly 

comprised of common species that occurred statewide (Cox, 2006). 

     GARP50:50, on average, correctly predicted occurrences of the species found in a block 

76.6% of the time.  The left portion of the J-shape of the curve (Fig. 4b) was generated 

because of blocks along the Oklahoma-Kansas border; these sites had relatively low 
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species richness, yet were well predicted.  For the remaining blocks there was a positive 

linear association of percent correctly predicted occurrences with actual numbers of 

species in those blocks.  This is due to GARP50:50 uniformly overpredicting species 

presence at sites.  The fact that, with the exception of the relatively species-poor sites 

mentioned, occurrences were better predicted for relatively species-rich blocks is simply 

a function of GARP notably overpredicting presences; when more species actually are 

present GARP does better on a percentage basis. 

     Of the three techniques evaluated, GARPBest subset had the lowest average percent 

correctly predicted occurrences at 70.3%.  It did reach 90.4% for one block, a relatively 

species-poor site along the Oklahoma-Kansas border.  Aside from these border blocks, 

GARPBest subset also showed near-linear and positive improvement as more species 

occurred at a site (Fig. 4c); however, it did not reach the performance level of GARP50:50 

or logistic regression on a site-by-site basis.  As with GARP50:50, the higher level of 

performance by GARPBest subset for relatively species-rich blocks was due to it markedly 

overpredicting occurrences on a routine basis, which resulted in a higher percentage of 

correctly predicted occurrences for species-rich blocks. 

     In a similar study, Lehmann et al. (2002) used 10 environmental variables and fern 

occurrence data in GRASP (generalized regression analysis and spatial predictions) to 

sum predictions for species richness of 43 species of ferns.  These predictions were then 

compared to the actual species richness at sites in New Zealand using a product-moment 

correlation of predicted to actual species richnesses, with a result that was notably higher 

(r = 0.72) than found in our study.  They did have difficulty using GRASP to predict 

occurrences of species that occurred in only a few sites.   
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     Zaniewski et al. (2002) developed predictions for the same fern data based on 

environmental predictors using GAM (general additive models) and ENFA (ecological 

niche factor analysis) to compare the abilities of these techniques to predict species 

richness by summing individual predictions.  On average ENFA, using only species 

presence data similarly to GARP, predicted higher species richnesses per site than GAM, 

which uses species presence and absence data similarly to logistic regression.  ENFA and 

GARP both overpredicted the species richnesses for sites, suggesting that using only 

presence data to develop models may leave out important information by not considering 

absence data in their analyses.  

     The development of individual species models to predict occurrences will continue to 

be a useful tool in identifying areas of interest for the given species.  Many of these 

models were developed using occurrence data or presence-only data, in combination with 

appropriate predictor variables.  However, our investigation suggests that there may be 

only limited value to summing individual species predictions to estimate species richness 

at a site.  While logistic regression provided good estimates of actual species richnesses, 

it did not produce consistently reliable relative measures of species richness across sites.  

GARP did not provide accurate estimates of species richnesses or reliable relative 

measures of species richness across sites. 
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Table 1 – Paired comparisons of techniques, indicating percent of the 209 species for 

which particular technique better predicted total occurrences, presences, and absences. 

Number in parentheses indicates number of species for which technique was better 

predictor.  Statistical significance (G-test; ***, p < 0.001) of deviation from random 

expectation for proportion (i.e., 0.5:0.5) of species best predicted by the two techniques 

compared; ties not considered in statistical comparison 

 

Correctly predicted Technique that was 

best predictor Occurences Presences Absences 

Logistic regression vs. GARP50:50 

Logistic regression 73.7 (154)*** 16.3 (34) 70.8 (148)*** 

Tied 4.3 (9) 1.9 (4) 15.8 (33) 

GARP50:50 22.0 (46) 81.8 (171)*** 13.4 (28) 

Logistic regression vs. GARPBest subset 

Logistic regression 83.7 (175)*** 6.2 (13) 84.7 (177)*** 

Tied 2.4 (5) 2.9 (2) 12.4 (26) 

GARPBest subset 13.9 (29) 90.9 (194)*** 2.9 (6) 

GARP50:50 vs. GARPBest subset 

GARP50:50 69.9 (146)*** 0.5 (1) 87.6 (183)*** 

Tied 10.0 (21) 17.2 (35) 12.4 (26) 

GARPBest subset 20.1 (42) 82.3 (173)*** 0.0 (0) 
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Table 2 – For subgroups (based on number of blocks where a species was present) of the 

209 species, paired comparisons indicating percent of time particular technique better 

predicted total occurrences, presences, and absences.  Number of species indicated in 

parentheses.  Subgroups defined as: sparse distributions (species present in 1-112 blocks); 

moderately sparse (113-225); intermediate (226-338); moderately widespread (339-451); 

and widespread (452-564). Statistical significance (G-test; 
ns

, p > 0.05; *, p < 0.05; **, p 

< 0.01; ***, p < 0.001) of deviation from random expectation that an equal proportion 

(0.5:0.5) of species would be best predicted by the two techniques. For statistical 

comparisons, ties not considered 

Correctly predicted 

Distribution extent and 

technique that was 

best predictor 
Occurrences Presences Absences 

Logistic regression vs. GARP50:50 

Sparse distributions 

     Logistic regression 55.0 (66)* 0.0 (0) 69.2 (83)*** 

     Tied 8.3 (10) 2.5 (3) 26.7 (32) 

     GARP50:50 36.7 (44) 97.5 (117)*** 4.2 (5) 

Moderately sparse distributions 

     Logistic regression 100.0 (31)*** 3.2 (1) 100.0 (31)*** 

     Tied 0.0 (0) 0.0 (0) 0.0 (0) 

     GARP50:50 0.0 (0) 96.8 (30)*** 0.0 (0) 



Table 2 (continued). 

 

Correctly predicted 

Distribution extent and 

technique that was 

best predictor 
Occurrences Presences Absences 
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Intermediate distributions 

     Logistic regression 100.0 (18)*** 0.0 (0) 100.0 (18)*** 

     Tied 0.0 (0) 0.0 (0) 0.0 (0) 

     GARP50:50 0.0 (0) 100.0 (18)*** 0.0 (0) 

Moderately widespread distributions 

     Logistic regression 93.8 (15)*** 56.3 (9)
ns

 81.3 (13)** 

     Tied 0.0 (0) 6.3 (1) 0.0 (0) 

     GARP50:50 6.3 (1) 37.5 (6) 18.8 (3) 

Widespread distributions 

     Logistic regression 100.0 (24)*** 100.0 (24)*** 16.7 (4) 

     Tied 0.0 (0) 0.0 (0) 4.2 (1) 

     GARP50:50 0.0 (0) 0.0 (0) 79.2 (19)** 

Logistic regression vs. GARPBest subset 

Sparse distributions 

     Logistic regression 75.0 (90)*** 0.0 (0) 80.0 (96)*** 

     Tied 2.5 (3) 0.0 (0) 19.2 (23) 

     GARPBest subset 22.5 (27) 100.0 (120)*** 0.8 (1) 

 



Table 2 (continued). 

 

Correctly predicted 

Distribution extent and 

technique that was 

best predictor 
Occurrences Presences Absences 
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Moderately sparse distributions 

     Logistic regression 100.0 (31)*** 0.0 (0) 100.0 (31)*** 

     Tied 0.0 (0) 0.0 (0) 0.0 (0) 

     GARPBest subset 0.0 (0) 100.0 (31)*** 0.0 (0) 

Intermediate distributions 

     Logistic regression 100.0 (18)*** 0.0 (0) 100.0 (18)*** 

     Tied 0.0 (0) 0.0 (0) 0.0 (0) 

     GARPBest subset 0.0 (0) 100.0 (18)*** 0.0 (0) 

Moderately widespread distributions 

     Logistic regression 100.0 (16)*** 6.3 (1) 100.0 (16)*** 

     Tied 0.0 (0) 0.0 (0) 0.0 (0) 

     GARPBest subset 0.0 (0) 93.8 (15)*** 0.0 (0) 

Widespread distributions 

     Logistic regression 87.5 (21)*** 50.0 (12)ns 70.8 (17)** 

     Tied 8.3 (2) 8.3 (2) 12.5 (3) 

     GARPBest subset 4.2 (1) 41.7 (10) 16.7 (4) 



Table 2 (continued). 

 

Correctly predicted 

Distribution extent and 

technique that was 

best predictor 
Occurrences Presences Absences 
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GARP50:50 vs. GARPBest subset 

Sparse distributions 

     GARP50:50 77.5 (93)*** 0.0 (1) 79.2 (95)*** 

     Tied 17.5 (21) 20.8 (32) 20.8 (25) 

     GARPBest subset 5.0 (6) 79.2 (87)*** 0.0 (0) 

Moderately sparse distributions 

     GARP50:50 96.8 (30)*** 0.0 (0) 100.0 (31)*** 

     Tied 0.0 (0) 9.7 (3) 0.0 (0) 

     GARPBest subset 3.2 (1) 90.3 (28)*** 0.0 (0) 

Intermediate distributions 

     GARP50:50 100.0 (18)*** 0.0 (0) 100.0 (18)*** 

     Tied 0.0 (0) 0.0 (0) 0.0 (0) 

     GARPBest subset 0.0 (0) 100.0 (18)*** 0.0 (0) 

Moderately widespread distributions 

     GARP50:50 31.3 (5)
ns

 0.0 (0) 100.0 (16)*** 

     Tied 0.0 (0) 0.0 (0) 0.0 (0) 

     GARPBest subset 68.8 (11) 100.0 (16)*** 0.0 (0) 



Table 2 (continued). 

 

Correctly predicted 

Distribution extent and 

technique that was 

best predictor 
Occurrences Presences Absences 
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Widespread distributions 

     GARP50:50 0.0 (0) 0.0 (0) 95.8 (23)*** 

     Tied 0.0 (0) 0.0 (0) 4.2 (1) 

     GARPBest subset 100.0 (24)*** 100.0 (24)*** 0.0 (0) 
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Table 3 – Paired comparison of techniques, indicating percent of sites (N=562) for which 

particular technique better predicted total occurrences, presences only, and absences only.  

Number in parentheses indicates number of sites for which technique was better 

predictor.  Statistical significance (based on G-test) of deviation from random expectation 

(i.e. by chance alone two techniques would be equally likely to be best predictor; ***, p  

< 0.001). Ties not considered in statistical comparisons   

 

 

Correctly predicted Technique that was 

best predictor Occurrences Presences Absences 

Logistic regression vs. GARP50:50 

Logistic regression 96.1 (540)*** 17.4 (98) 96.3 (541)*** 

Tied 1.1 (6) 0.0 (0) 0.0 (0) 

GARP50:50 2.8 (16) 82.6 (464)*** 3.7 (21) 

Logistic regression vs. GARPBest subset 

Logistic regression 98.4 (553)*** 0.9 (5) 100.0 (562)*** 

Tied 0.2 (1) 1.1 (6) 0.0 (0) 

GARPBest subset 1.4 (8) 98.0 (551)*** 0.0 (0) 

GARP50:50 vs. GARPBest subset 

GARP50:50 94.1 (529)*** 0.5 (3) 100.0 (562)*** 

Tied 0.4 (2) 38.8 (218) 0.0 (0) 

GARPBest subset 5.5 (31) 60.7 (341)*** 0.0 (0) 
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Table 4 – For subgroups  of the 562 sites (based on number of species actually present at 

a site), paired comparisons indicating percent of time particular technique better predicted 

total occurrences, presences only, and absences only. Number in parentheses indicates 

number of sites for which technique was better predictor. Subgroups defined as including 

those sites with relatively low, moderate, and high species richnesses (24-49, 50-75, and 

76-101 species per site, respectively).  Statistical significance (based on G-test) of 

deviation from random expectation (i.e. by chance alone two techniques would be equally 

likely to be best predictor; 
ns

, p > 0.05; ***, p < 0.001). Ties not considered in statistical 

comparisons 

Correctly predicted Subgroup and technique 

that was best predictor Occurrences Presences Absences 

Logistic regression vs. GARP50:50 

Low species richnesses 

     Logistic regression 98.1 (155)*** 34.2 (54) 91.1 (144)*** 

     Tied 1.3 (2) 0.0 (0) 0.0 (0) 

     GARP50:50 0.6 (1) 65.8 (104)*** 8.9 (14) 

Moderate species richnesses 

     Logistic regression 97.8 (364)*** 11.8 (44) 98.1 (365)*** 

     Tied 1.3 (5) 0.0 (0) 0.0 (0) 

     GARP50:50 0.8 (3) 88.2 (328)*** 1.9 (7) 

High species richnesses 

     Logistic regression 59.4 (19)
ns

 0.0 (0) 100.0 (32)*** 

     Tied 3.1 (1) 0.0 (0) 0.0 (0) 



Table 4 (continued). 

 

Correctly predicted Subgroup and technique 

that was best predictor Occurrences Presences Absences 
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     GARP50:50 37.5 (12) 100.0 (32)*** 0.0 (0) 

Logistic regression vs. GARPBest subset 

Low species richnesses 

     Logistic regression 100.0 (158)*** 2.5 (4) 100.0 (158)*** 

     Tied 0.0 (0) 3.2 (5) 0.0 (0) 

     GARPBest subset 0.0 (0) 94.3 (149)*** 0.0 (0) 

Moderate species richnesses 

     Logistic regression 98.9 (368)*** 0.5 (2) 100.0 (372)*** 

     Tied 0.3 (1) 0.3 (1) 0.0 (0) 

     GARPBest subset 0.8 (3) 99.2 (369)*** 0.0 (0) 

High species richnesses 

     Logistic regression 84.4 (27)*** 0.0 (0) 100.0 (32)*** 

     Tied 0.0 (0) 0.0 (0) 0.0 (0) 

     GARPBest subset 15.6 (5) 100.0 (32)*** 0.0 (0) 

GARP50:50 vs. GARPBest subset 

Low species richnesses 

     GARP50:50 97.5 (154)*** 0.6 (1) 100.0 (158)*** 

     Tied 0.0 (0) 36.1 (57) 0.0 (0) 

     GARPBest subset 2.5 (4) 63.3 (100)*** 0.0 (0) 



Table 4 (continued). 

 

Correctly predicted Subgroup and technique 

that was best predictor Occurrences Presences Absences 

 

 100 

Moderate species richnesses 

     GARP50:50 92.7 (345)*** 0.3 (1) 100.0 (372)*** 

     Tied 0.5 (2) 40.3 (150) 0.0 (0) 

     GARPBest subset 6.7 (25) 59.4 (221)*** 0.0 (0) 

High species richnesses 

     GARP50:50 93.8 (30)*** 3.1 (1) 100.0 (32)*** 

     Tied 0.0 (0) 34.4 (11) 0.0 (0) 

     GARPBest subset 6.3 (2) 62.5 (20)*** 0.0 (0) 
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Captions 

Fig. 1 – Location of the 562 breeding-bird-atlas blocks in Oklahoma, indicating relative 

species richnesses of blocks.  Squares are not to scale, being somewhat larger than actual 

survey blocks. 

 

Fig. 2 – Percent of correctly predicted occurrences for each species for (a) logistic 

regression, (b) GARP50:50, and (c) GARPBest subset.  From left to right, dotted lines separate 

sparse distributions (1-112 sites where species was present), moderately sparse 

distributions (113-225), intermediate distributions (226-338), moderately widespread 

distributions (339-451), and widespread distributions (452-562). 

 

Fig. 3 – Percent of correctly predicted presences and absences, respecitively, for each 

species based on: (a, b) logistic regression; (c, d) GARP50:50; and (e, f) GARPBest subset.  

From left to right, dotted lines separate sparse distributions (1-112 sites), moderately 

sparse distributions (113-225), intermediate distributions (226-338), moderately 

widespread distributions (339-451), and widespread distributions (452-562). 

 

Fig. 4 – Percent of correctly predicted occurrences of species for each block based on (a) 

logistic regression, (b) GARP50:50, and (c) GARPBest subset.  Dotted lines partition localities 

into those with species richnesses that are relatively low, moderate, and high. 
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Fig. 5 – Percent of species at localities correctly predicted as being present or absent, 

respectively, using: (a, b) logistic regression; (c, d) GARP50:50; and (e, f) GARPBest subset.  

Dotted lines partition localities into those with species richnesses that are relatively low, 

moderate, and high. 

 

Fig. 6 – Scatter plot of actual species richness and predicted species richness for (a) 

logistic regression, (b) GARP50:50, and (c) GARPBest subset.  Dotted line indicates where 

actual and predicted species richnesses are equal. 
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Figure 4 
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Figure 5 
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