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NOMENCLATURE

An,B, Fourier Coefficients, equations 3.9, 3.10, 3.11

E Young's modulus

hm Fourier coefficients, equation 3.15

- Fourier coefficients. equation 3.16

Lo total length of contact nip divided by 2
M, M maximum number of terms

r radial coordinate

P r/Rqg

Ry outer radius of cylinder

R; radius of hard core

R; Ri/Ry

s nip coordinate, measured from # = 0
(tE), extensional stiffness of the sheet

U Stress Function

u radial displacement

u u/Ry

g maximum indentation (a negative quantity )
v tangential displacement

v v/ Ry

Vi1).Vi2) peripheral speed of cylinders (1) and (2)
a,,0, equation 3.19

Bh.3. equation 3.23

é displacement of roller center

[ strain in the sheet

€ tangential strain in the elastic layer of the cylinders
K, material constants related to Poisson’s ratio

v Poisson’s ratio

one half of the total contact angle
g angular coordinate

o, radial stress




Fr o /E

O tangential stress

Ty g f E

Tro shear stress

Tro T4/ E

frr coefficient of friction between elastic layers

Urp coefficient of friction between elastic layer and the sheet

Note: Any departure from these notations in an equation has been explicitly mentioned.

viii



CHAPTER 1

INTRODUCTION

A web is a thin continuous flexible material. Common web materials are newsprint, magnetic tape,
and photographic film. Many packaging materials, for example polypropylene and polyethylene,
come in web form. Web materials are usually stored in the form of rolls.

There are many situations where a web material is driven through two impinging rubber covered
rollers, notable examples are printers, photocopy machines and tape drives. Two cases can be
considered. First, the web has no net traction, which is the symmetric case. And second, the web
in the nip is being pulled or pushed by a tangential force while it is being driven in a steady state
between the two rollers. The two rollers press against each other (and the web), and give rise to
contact pressures and shear stresses [3]. This project deals with the first case, and the various
considerations that have gone into finding a theoretical solution.

A computer code NIP-SYM has been developed which can output the pressure profiles, interfacial
shear stresses, deformation profiles of the rollers, as well as the velocity ratios of the web and the
two rollers. The code also considers the possibility that the shear stresses between the rollers and
the web could start to exceed the maximum value possible due to friction, in which case there would
be slippage. This would lead to microslip over a small region of the nip for large friction coefficients,
to large scale slip for small coefficients of friction. The program is written in ‘C’; is modular, and

self contained.



CHAPTER 2

THEORETICAL BACKGROUND AND
LITERATURE SURVEY

2.1 Hertz Theory - Normal Contact of Elastic Solids

The first satisfactory analysis of the stresses at the contact of two elastic solids is due to Hertz
(1882) [5]. Two convex elastic bodies are initially just touching each other. The separation between
the surfaces of the two bodies is initially h. Then two remote points in the bodies approach each
other with respective displacements of §; and 2. This compresses the two surfaces together over a
small region of total length 2a called the contact width; figure 2.1. Hertzian contact can be summed
up by the following two expressions. Within the zone of contact equation 2.1 is valid, whereas the
inequality 2.2 holds outside of it.

iy + ez +h=4d; 46, (2.1)

Uz +Uz2 +h > 6) + 6, (2.2)

The problem in elasticity can now be stated as follows the distribution of mutual pressure
plz,y) acting over an area S on the surface of two elastic half-spaces is required which will produce
normal displacements on the surface ii.; and ., satisfying equation 2.1 within S and 2.2 outside

it. Hertz used the following simplifying assumptions to get a solution
1. The surfaces are continuous and nonconforming.
2. The strains are small.
3. Each solid can be considered an elastic half space.
4. The surfaces are frictionless.

For the simpler case of solids of revolution, Hertz obtained the following expression for contact

pressure that satisfied both equations 2.1 and 2.2 :
p = po{1 - (s/a)*}!/? (2.3)

The nondimensionalized parabolic contact pressure profile is shown in figure 2.2. From the dis-



—_— &
o 5 o1 uz ~
vy o i —

8y

T]
2

Figure 2.1: Deformation of two convex solids in contact [6].
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Figure 2.2: Stresses generated by Hertz contact pressure [6].



Figure 2.3: Body (2) in contact with surface layer (1) on rigid substrate (3) [6].

placement compatibility equations (equations 2.1 and 2.2) and the pressure distribution equation 2.3
one can obtain relations between the half width of contact a and p, and between a and 8. Thus
given a, the pressure distribution and deformation profile can be determined. Integration of the
pressure gives the applied load.

2.2 Non-Hertzian Normal Contact of Elastic Bodies :

Here we consider the case when one or more of the Hertzian assumptions are relaxed. The contact of
solids which have surface layers whose elastic properties differ from the substrate are very common;
for example rubber covered rollers in processing machinery. The basic situation is illustrated in
figure 2.3 where body (2) is in contact with the surface layer (1) on substrate (3). If the thickness
b of the layer is large compared to the contact size 2a, then the substrate has little influence and
the contact stresses between (1) and (2) are given by the Hertz theory. For the situation where b
is comparable with or less than 2a, it has been observed that even for cases where the rollers have
the same geometry and material, the limited thickness of the layer results in a relative tangential

displacement at the interface which will be resisted by friction.

2.2.1 Elastic Layer on Rigid Substrate Indented by Rigid Cylinder [6]

If the contact width is small compared with the radii of curvature of the bodies, curvature of the
layer can be ignored in analyzing its deformation, and the solids (2) and (3) can be taken to be elastic
half spaces (figure 2.4). For a nearly incompressible layer (v = 0.45 — (.5), the load-displacement

relation is given below :
(1—-w)? E a’

1
P=- 2o
3 1-2v 1-v?* Rb

(2.4)

2.2.2 An Elastic Strip Between Two Elastic Rollers [6]

For a thin strip we can take the pressure distribution to be Hertzian (given by equation 2.3). A

simplified solution to the integral equation for tangential traction g(x) is given below:

43 b x
i@ =(1-175) @ a
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Figure 2.4: Elastic layer indented by a rigid cylinder (v < 0.45) [6].

This expression for g(z) is satisfactory away from the edges of contact, but the infinite values at
z = +a are a consequence of assuming plane sections remain plane. In fact, the traction falls to zero
at the edges. This is shown in figure 2.5 below:

The direction in which the tangential tractions act tend to depend on the relative elastic moduli
of the strip and the rollers. Thinner strips tend to be squeezed out longitudinally and inward acting

tangential tractions arise.

2.3 On Velocity Ratios - Relationship Between Local Speed

and Strain

Assuming stick contact at a point inside the nip, if the common velocity of the two surfaces is V/(s),
and the velocity at a point on the perimeter of the roller far away from the nip is Vj, the velocity
ratio can be written as :

Vi(s)/Vo=1+¢p (2.6)

This arises because in the region of the nip, there is a circumferential strain which changes the length
of the material locally. Now, the roller could be in direct contact with another roller (see Fig. 2.6)

or a strip. Considering the case of a strip, a similar relation could be written for it :

V(s)/[Vo=1+¢ (2.7)
V(s) is common to equations 2.6 and 2.7. Hence we obtain :
S s 1+ ep
ValVo = ¥
»/Vo e, (2.8)
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Figure 2.5: Theoretical normal p(r) and shear stress g(x) profiles [6].
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Figure 2.6: A sketch for steady state rotation [14].



2.4 Load Compression Relationships of Rubber Units

A couple of load-displacement relationships for rubber covered rollers are given in this section. They
were used to validate the NIP-SYM code results and to compare how the code compared with
Load-Deformation data obtained with rubber covered rollers at OSU WHRC.

2.4.1 The Lindley relation

The relationship given by Lindley (equation 2.9) [8] takes care of increasing rubber stiffness with
deformation at the nip. The relationship is given below :

F = Ewt!/?pD'/? (aﬁ + %{) ﬁg) (2.9)
where
R=3%\01-uw72) " 3
and
G 1+ ul/2 10 w!/? 44172
o= n(l—ulﬂ) "3 (1-u) +3(1 —u)?

where, u is the nondimensionalized compression of rubber = z/t, » being the penetration and t the

thickness of rubber cover. w is the width of the rubber roller cover and D is the outer diameter.

2.4.2 The Lame Relation

Using Lame's classical theory solution for the elastic stresses in a hollow cylinder subjected to
external and internal pressures, the following equation can be derived [8] :

B 8EwD! /2312

F 3t

(2.10)

where D is the external diameter and x the penetration. w is the width of the rubber cover and ¢

its thickness.

2.5 Literature Survey

There are numerous investigations of contact of elastic layer-covered cylinders. Bentall and John-
son [2] studied free-rolling of dissimilar cylinders and also plane rolling contact of an elastic strip.
Hahn and Levinson [4] studied a layered cylinder in contact with a hard cylinder without friction,
and also for the case of gross slippage. Batra et al. [1] used the finite element method to study the
same problem with the layer made of thermorheological material. Soong and Li [12] used the same
stress function approach as used in Ref. [4] to study the contact of layered cylinders with a curled
sheet in the nip. In Ref. [12], the solution was obtained by the point-matching method, instead of
the Gram-Schmitd orthonormalization method used in Ref. [4].

The present study follows the method outlined by Soong and Li (Ref. [13]) for the steady rolling
contact of two dissimilar cylinders, one drives the other and each cylinder is bonded with a soft

layer of arbitrary thickness. There is a sheet clamped in the nip and moves with the rolling of the




Vip)

Figure 2.7: Notations & Configuration of cylinders (1) and (2)

cylinders. The sheet is incompressible in its thickness, has extensional elasticity but no bending
stiffness.

Local slip is accounted for at each point of contact at the interface by the criteria that shear is
equal to the Coulomb friction when slip occurs, otherwise, their tangential speed at the matching
point should be equal. The numerical solution is made easier by using the point-matching method
(referred to from here on as the Collocation Method) as in Ref. [12].

Soong and Li have extended this symmetric study (Ref. [13]) to the asymmetric case (Ref. [14])
where the sheet in the nip is being pulled or pushed by a tangential force at the tail end while it is
being driven in a steady state through the nip in the rollers. By increasing the tail force from zero
upward, the analysis shifts from the symmetric case to the extreme case of gross slippage where the
drag force is equal to or greater than the Coulomb friction between the driver and the sheet. The
project started as a code for this unsymmetric case, however, there are certain complexities and
ambiguities in the formulation, and it was decided that one should proceed with the symmetric case
first, and gain an understanding of the equations and the collocation method. Figure 2.7 gives the

notations.



2.6 Objectives and Goals

In this work, the primary objective has been to gain an understanding of the solution of nip mechanics
of rollers using the collocation method developed by Soong and Li [13]. A numerical solution of the
problem is sought in the form of a computer code NIP-SYM which yields the normal and shear
stresses on the nip, as well as the displacements. In addition, the code is expected to generate
Load-Displacement data, and the velocity ratios of the rollers and sheet. The possibility of local
slippage in the nip is taken into account.



CHAPTER 3

FORMULATION OF THE PROBLEM

3.1 Stress, strain and displacements

The complete formulation can be found in the paper by Soong and Li (Ref. [12]). Here only the
equations necessary to understand the NIP-SYM code are given along with explanations.

3.1.1 Stress & strain in an elastic layer bonded to a rigid core

Since both the rollers have an elastic layer bonded to a rigid core, stress, strain and displacement
expressions are given for only one of them. They will be given suitable subscripts (1 for roller # 1
and 2 for roller # 2) as and when the need arises. The basic expressions for stress, strain and
displacements are the same as in Ref. [4, 12, 9].

The symmetric Airy’s stress function (wrt 8) for the outer soft layer of the roller can be written

U = aglnr+ —;-borz +cor’lnr + (byr* +er~ ! +dirinr)cosé +
1 . - n n+2 ot | —n+2
Sdirésing + D (@nr™ + bur™? 4 ™" 4 dr="+?) cos(nb), (3.1)
n=2

where r and # are coordinates. ag, bg etc. are unknown constants.

The radial, tangential and shear stresses are given respectively by :

19U 1 0*U
= o T ae St
U
0Oy = -3?. and (33}
a (10U
o= (3" e

The corresponding stress-strain relationships in terms of radial and tangential displacements u

and v for an isotropic, elastic material are :

10



du

EE = ko, — fog, (3.5)
u 1dv .
E (; + ;a—é) = kog - fo,,  and (36)
1du v v
E (;@ + E ] ;) = 2{1 “+ U)T,g. (3'7)

where, E is the Young’s modulus of the soft roll layer and & and 3 are related to Poisson’s ratio v
as follows : » = 1 —v? 3 = y(1 4+ v), in the case of plane strain, and k = 1,3 = v, in the case of
plane stress.

The nondimensionalized quantities are shown below :

G- =0,/E, 69=0¢/E, Tre=19/E F=r/Ry, dy=R;'d\/E,

Gn=RE20afE; bs =HE0JE, #=0,12%:.:; (3.8)

én=Rg_n_2‘3n/Ev d =Rgdn/E? n=1,2,...,

i =u/Ry, ©=v/Rs.

From the Airy’s stress function 3.1 and the equations 3.2, 3.3, 3.4 and 3.5, 3.6, 3.7 one can derive
expressions for stresses, strains and displacements. One then applies the boundary conditions to

determine the coefficients a,, by, ¢, and d,,.

3.2 Boundary Conditions

The boundary conditions at the inner and outer radii of the hard core soft roll, with the radial and

shear stress at the outer radius expressed as two Fourier series, are :

i=9=0 onfzizﬁ.i; (3.9)
rg
7o = Y Bn sinné, onF=1,0<8<m, (3.10)
n=1
ar = Z A, cosnb, ont=1,0<8<m; (3.11)
=0

where B, and A, are constants. It is to be noted that, unlike that in Ref. [4], the shear stress at
the nip is, in general independent of the normal stress [13] and micro-slip may or may not occur,

depending on the speed differential at each point.

11



Substituting the stress and displacerrient expressions into equations 3.9, 3.10, and 3.11 yields

= (k-0

% = (s +B)R' + (x - B)R: Ao,
dJyD—1

Bﬂ = (K'-'— J]Ri ‘103

[K . J’j}R: ! ot 2 (K, - ,13).&1 ’
by = Bl_ngl +Bl_31‘41

&6 = BR'By+BjlA, (3.12)
di = By'Bi+ B4,

a, = —(x—3B8)Rib — (x+B)R, %6 — (InR;) (— L 13)2 + «.) d

By = ChBu+CrkAn

bn = Cr3Bn+CrpyAn
& = CoyBn+Cpyidn

dn = CoiyBn+ CpriiAn

where R; = R;/Rg and B,-_J-] and C}denote the (ij)th elements of the matrices [B]~! and [C,] !,

nij

respectively. Matrices [B] and [C}] are given below :

(6x—20)R? 2x+P)R7> —p- o0

(B] = 2 -9 54'"" (3.13)
2 -2 14+ &=
G s
[Cn] = S (3.14)
Co Cag

n=23,...,00. where,

~(k+ B)mRP™" ~[K(n—2) + B(n + 2R

[Cu] = ) )
(k+ B)nR [£(n+4) + Sn)]RE'””
Cu] (x4 B)nR; ™Y [k(n+2) + B(n - 2)]R; "7
12] = _
(k+ B)nR;{"*” [x(n —4) + ﬁﬂ]Ri—(ﬂ—U
[Car] n(n—1) nin+1)
2] =
-nn—-1) —(n-2)(n+1)
(Caal -n(n+1) -n(n—1)
22) =
I -n(n+1) —(n+2)(n-1)

12



3.3 Stress and Displacement at the Contact Arc

To separate the indented zone from the rest of the circumference which is stress-free, we assume

that the radial stress and shear stress at the contact zone are expressed by Fourier series :

&r[F=l) = m=1 :h [ _l}m+l e mT“a] 0= 9 = [315}
= 0 w<l<mw
and
frﬂ{F:J] = Zm 1 :hm sin #5= ""73 0 = 9 Sw [3 15)
= 0 w<h<a

where M and M are integers. It is to be noted that at the end of the arc, # = w, both stresses
are zero as required from contact theory.

Since the Fourier series of equations 3.10 and 3.11 cover the entire range of #, coefficients A,, and
B, can be related to h,, and h,, by the following equations :

M
Ao =Y hm(-1)™!

m=1

ik sin(mm — nw) sm(mrr — nw)
th( ) f=1,2 ...,00

mm — nw mmT — nw
m=1

2

The radial displacement, in terms of the Fourier coefficients, can be derived to yield

:J-u

n=12,...,00 (3.17)

sin(mm —nw)  sin(mr — nw)
mm — nw mm — nw

@(6) = oo Ao + _(anAy +GnBy)cosnf  0<0<w (3.18)

n=1
where with the help of equation 3.12, the coefficients are :

(K- B)(-Ri+ R]")
" (k+ B8R + (k- B)R;

— /)2 _
ay = (k—38)(1 - R?)By' + (k + 3)(1 — R7%)B,;! — (.-{. = %) In R, By,

an = —(k+BnC Y = [K(n—2) + B(n+2)]C2 + (k+ B)nC + [k(n+2) + B(n - 2)]C.7, (3.19)

n=23,...,00

@ is the same as a; except that the second subscript 3 in B,}l is changed to 2. @, is the same as

a, except the third subscript 4 in C,} is changed to 3.

13



Equation 3.18, in terms of h,, and h,,, can be written as :

M oo M oo
u(f) = Z hm {(—1}’"""00 + Zanf{m,n)cosnﬂ} + Z hom {Z anf(m,n) cosnﬂ} (3.20)
m=1 m=1 n=1

n=1

where,

flm,n) = (=1)m+! 2sinnw  sin(mr —nw)  sin(mw + nw)

W mm — nw mi -+ nw
Flon sl sin(mm — nw)  sin(mm + nw) (3.21)
mmw — nw mw + nw

Similarly, the tangential strain at the surface can be written as

€9(0) = BoAo+ D _(BaAn+ BnBy)cosn  0<O<w (3.22)

n=1

where

4o (D)= DR~ R)
T k+BR T+ (k-AR;

B = 2(3k - B)BS! +2(x + 8)By — (%’E}_ 4 g) By}, and

Bn = n(n—1)(s+B)ClY + (k(n* +3n +2) - B(2 +n —n?))C,
+ (5 + B)(n + n?)Crzy + (x(n® — 3n + 2) — B(n® +n — 2))Cryy (3.23)

f is the same as /3; except that the second subscript 3 in Bi;l is changed to 2. /3, is the same as
3, except that the third subscript 4 in C;} is changed to 3. Similar to equation (3.20), equation 3.23

can be expressed by h,, and h,, as,

M o0 M o0
€(0) = Z hm {(—l)"‘“ﬁg + z Buflm,n) cosnﬂ} s Z hmn {Z Bnf(m,n)cos n.ﬁ} . (3.24)

m=1 n=1 m=1 n=1

3.4 Rolling Contact of two Cylinders

The previous equations describe the surface stress, strain and displacements for a cylinder with a
soft layer in contact with other surfaces.

For the present problem, assume the other surface is also the soft layer of a cylinder. Let
subscripts (1) and (2) designate the quantities related to the two cylinders, respectively.

The following two conditions, with respect to the normal pressure and indentation at the contact

point, are always to be satisfied, regardless of whether there is a sheet or not :

(Ear)a) = (Edr)( (3.25)

: 1
(T].Ro)“) 7+ (RRO)Q} +t=ug + ‘2—82[}?{;[1” + RU—IE}] (326)
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where ¢ is the thickness of the sheet, ug is the indentation at s = 0, and, like the radial displace-
ment i, it is negative when displaced towards the center of the cylinder. The nip line coordinate s
is defined as :

1) = s/ Ro1), 62y = 8/ Ry(3). (3.27)

Differentiation of equation 3.26 yields a relationship which is independant of up,

=1 -1
an +Rc|(2>

di -

B | dia _ q[
dé dé

The other two conditions are related to shear and slip phenomena, and they are dependant on

] . (3.28)

whether there is a sheet in the nip or not. In this project, it has been assumed that a sheet exists
between the two rollers, so only the equations relevant to this case are given here. For the case of
no sheet between rollers, see Ref. [13].

3.4.1 The Case of a Sheet in the Nip

Assume that a thin elastic sheet of infinite length is being driven by the nip of the two cylinders
and there is no net force acting on the sheet. In this case, an additional unknown is introduced —
the speed of the sheet outside the contact arc. Inside the nip, the steady-state speed at any point is
equal to V(1 +¢,(s)) where V;, is the unknown speed outside the nip zone and €, is the local strain
(see section 2.3). Since the two surfaces of the sheet are subjected to the shear stress from the two
cylinders, we have,
=i Lo B B

p(8) = m-/; [(ETra)(2) + (BETra) (1] ds (3.29)

where (tE), is the extensional stiffness of the sheet.
From equation 3.16, equation 3.29 can be written as
M

Z ((ERu;lm)(]J + (E%ﬁm)(g)} (COS?’H?T — COs8

) = &), 2

'L":"") / m. (3.30)

At a point s on cylinder (1), if the contact with the sheet is non-slip, we have

Vi (L +ep(1)) = Va1 + €) (3.31)
which can be approximated by 1'
7o =1-&+e) (3.32)
(1)
Differentiation yields
de d
d_: g M= 0. (3.33)

If the shear is more than what the coulomb friction can produce, we have the slip condition:
[p'rpE&rl(” = |Efr5|“] (334)
where i, is the friction coefficient between the roller and the sheet.

-
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Similarly, for cylinder (2), we have either

1.’ =
‘,p =1—¢+ €9(2)- (3.35)
Viz)
which is approximated by
L JE. S (3.36)
ds  ds '™ '
or the slipping condition,
|rpEd| 5y = |ETral 2 (3.37)

3.5 Solution by the Collocation Method

It has been claimed by Soong and Li [12] that the point matching (collocation) method that satisfies
the matching conditions at a number of discrete points on the contact arc is a much simpler technique
and has an accuracy comparable to the Gram-Schmidt orthonormalization method used in Ref. [4],
which solves for the coeflicients h,, in series form. One of the objectives of this project has been to
try and understand the intricacies of implementing this collocation method.

For the collocation method, we assume that the contact arc has a semi contact length of Ly
(symmetric about roller centerline). The contact arc is equally divided into N subdivisions. Thus,
there are N — 1 intermediate collocation points, plus two end points at s = 0 and s = Ly.

We need to match the number of available equations with the number of unknowns. The un-
knowns are the coefficients h,, and hp for both the rollers (1) and (2), the roller interference ug,
velocity ratios % and ;%’T However, the last three variables are differentiated out of equations 3.26,
3.32 and 3.35 to yield equations 3.28, 3.33 and 3.36. The coefficients h,,, and h,, are first solved, and
then they are substituted in the equations 3.26, 3.32 and 3.35 to obtain the remaining 3 unknowns

V, V,
Wi, ArB .
0> Vi Vi

The equations are set up as follows. For the mid point (an end point due to symmetry), one only
needs to satisfy the normal stress equality equation 3.25. Also for the end point of contact there
is also only one equation to be satisfied 3.28. (At these end points, the other equations effectively
become of the form 0 = 0). For the intermediate points, all the four equations 3.25, 3.28, 3.33
and 3.36 must be satisfied. This yields 4N — 2 equations. If we choose M = N and M = N — 1
in equations 3.15 and 3.16, we have again 4N — 2 number of unknown coefficients (considering
both rollers). Thus the system of equations can be solved. Here, we assume that the known input

parameter is the half length of nip contact L.
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CHAPTER 4

ELUCIDATIONS ON THE
COLLOCATION METHOD OF
SOLUTION

4.1 On the Airy’s Stress Function and its Solution

The stress function is derived based on purely elastic continuum mechanics principles (Ref: [9]),
hence the structural behavior should be expected to be linear. This should not be taken to mean
however that any load-displacement relationship is linear as well. The contact width increases with
load, hence the load-displacement curve shows a stiffening effect. However, the code does not take
into account any compression induced stiffening of rubber properties. This has been taken into

account by a simplified analytical study by Lindley (see section 2.4.1).

4.2 Displacements are from an Eulerian Point of View

When we talk about displacements of the rubber in the nip region, it should be understood that
this is an Eulerian displacement. That is, a material point rolls around, and hence has a velocity,
but here attention is focused on a region in space. If a steady state situation is considered, a spatial
point will have an unwavering value of displacement, almost like the displacement of a material point

of two rollers that are pressed together statically.

4.3 Known, and to be Computed Parameters

The normal tendency is to assume that the load pressing the two rollers together is the input
parameter (apart from the geometries and properties of the rollers and strip). However, in the
formulation considered here, it is found that it is easier to take the semi nip length Ly as the given
quantity, from which all other parameters can be evaluated. For example, the nip load can be

found by integrating the radial pressure between the rollers. Apart from the stresses, strains and
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displacements, there are three majn unknowns in this problem — the central overlap (interference)
ug, and velocity ratios —rL and . Any of the three quantities — the central overlap ug, radial
nip load P or the semi contact \ndth Lo — could have been used as the known quantity, and the
other two derived from it. The semi nip length is chosen because the length along the nip s is the

primary unknown in all the equations.

4.4 Relation Between the Stress Equations 3.10, 3.11 and
Equations 3.15 and 3.16

The stress boundary condition requires that the normal and shear stresses be prescribed on the
complete circumference of the cylinder. This is expressed as an infinite fourier series (equations 3.10
and 3.11). Stresses on the free surface are zero. The radial and normal stress on the nip are
expressed as a truncated fourier series with much less number of terms (equations 3.15 and 3.16).
This is possible because the nip length is very small compared to the complete circumferential length,
and it needs a lot more terins of a fourier series to approximate the stress field on the circumference,
than it takes to describe the parabolic profile on the nip.
The relationship between the coefficients A, and h,, is obtained as follows :

o0
= Ao+ Y Aycos nf (4.1)

n=1

= mmd
Fr(r=1) = Z —hm [ )™ + s

For Ag : Multiply both sides of the above equation 4.1 by % [¥ 86.

M
Ao =) _(-1)"*hy, (4.2)

m=1

For A, : Multiply both sides of the above equation 4.1 b} " cos k8.

A, = 5 2 (=)™ [ cosnées S 2 [ conndicos 72848
‘“_Z; sl=1) 4 cos T +z$ m |, COS 7L (osT
m=1

m=1

Z hm( 1}m+151nM & Z K (Bm(?mr — nw) bin('.l'n‘.'r + w)

mm — nw mm + nw
m.—'l m=1
X 2sinnw  sin(mm — nw)  sin(mr + nw)
= Z [ = + % : hm (4.3)
nw mm — nw mmw + nw

The equations 4.2 and 4.3 derived above are seen to be same as equations 3.17. The relations
for By, can be derived in a similar way — multiply equation 4.1 on both sides by 2 [ cos k046,
Thus, using the equations 3.21, equations 3.17 can be written as :

M
Ao = Y hm(-1)™*!
m=1

M
A, = thf[m,n} (4.4)

m=1
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F(m,n) n=1-2500 m=20 (1= 6 degrees

0 500 1000 1500 2000 2500
Figure 4.1: Plot of f(m,n) for n =1 — 2500 and m = 20 (2 = 6°).

M -
. = thf(m,n]
m=1

4.5 On o, §, and Evaluation of Strains and Displacements

a, shows a decreasing trend with n, but never quite goes to zero. /3, on the other hand quickly satu-
rates to a constant value. This gives rise to the possibility of certain simplifications in equation 3.24
for the evaluation of circumnferential strain on the roller surface. Equation 3.24 is important for the
evaluation of velocity ratios, and since the quantities of concern here are so small in magnitude, the
value of circumferential strain must be properly converged.

Two approaches were adopted to obtain convergent €4(#) [10]. First, it was seen that f(m,n)
and f(m, n) become negligible after around n = 7000. Hence the summation on n, namely, z:':,
can be limited to ):1020? (equation 3.24). Also, since 4 saturates, it need not be evaluated beyond
say n = 1000. To give an idea how the functions f(m,n) and f(m,n) behave as a function of the

variable n, they are plotted below in figures 4.1 and 4.2. m has been taken as constant (= 20) in

the figures.
Another approach is to take 4 out of the summation in equation 3.24. This can be done as
follows :
oo 1000 o
Z Bnf(m,n)cosnf = Z(ﬁn — Broo1 ) f(m,n) cosnfl + Biop Z f(m,n)cos né (4.5)
n=1 n=1 n=1

Now, the part remaining inside the summation, namely 3" f(m,n)cosné can be evaluated as a
closed form solution. This saves a lot of computer time. However, no closed form expression could
be found for the other summation, namely, 37 | f(m,n) cosnf. This yields a log singularity, which

cannot be integrated analytically.
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Fbar{m,n) n=1-3000 m=20 £ = 6 degrees

| —

0 500 1000 1 EOCI 2000 2500 300

Figure 4.2: Plot of f(m,n) for n = 1 — 3000 and m = 20 (Q = 6°).

4.5.1 Considering the First Summation in Equation 4.5

The expression for f(m,n) below has been obtained from section 4.4.

o ) - -
Z f(m,n)cosnd = % Z {/ |:(—1)m"'I + cos mjg] cos nééé} cosnf
n=I1 n=1 0
= 22{[{—1)"““ + cos Lﬂe] ~ siond (= 0)
w e w mn 0

+
| 3

& f [Sin m —1~ sin i;éﬁé] cos nﬂ}
0 w n
w 6 e
{fﬂ f [sin il l sin ?1969] cos m‘r‘}
| w Jo w n

5 A OO
2mm [ ] . mwf 1. ~
= sin E —sinnf cosné » 46
0 ] n

w? w

M2 ¢

2
w

n

n=1
Ny i

F(o.6)

2m w mm#
= e sin
W 0 W

F(6,8)50 (4.6)
Using Mathematica, the analytical expression for F(f?,fj) was found to be :
F(.0) = "T‘ [In[l — e~H0-0)) _ (1 — ei0=0)) 4 In(1 — e~H6+8)) _ In(1 — e*‘*"”})] (4.7)

In general,

In(1 —e ™) —In(1 — ¢'%)
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-Hr+z) , £<0

Hence F(E,é) reduces to the following :

0 ; =z

fr+z) | =

7 +6-60)+Lx-6-0)
~dr—-6+6)+ixr-6-6) , 6-6>0

which simplifies to,

Now, the expression inside the integral of equation 4.6 can be written as :

+£] sinﬂﬂg-/ g'sin
2 g W 0 2

6‘9'-

= = Sin

0

.
2

mmné _-

W

a6

(-] - - . 1

=0

>0

é

6-6<0

8-6>0

-f8<0

= /w sin mwﬂaé - /w gsin nmaéé
2 fo w 0 2 w
w w mmd W
= cosmm + 2 cos = + B cos|m)
w? w mmé
= [217:17 - %ﬂ cosmm + oy, €05 —
W fw w mmf
= g (5~ 1) U+ gmcos T

Hence the final analytical expression for 37", f(m,n)cosnf is :

Ex:f(m,n) cosnf = — (:{—J- = ]) (-1)™ + = cos

n=1

m
W

T mmé

mmf _-

ot

4.5.2 Considering the Second Summation in Equation 4.5

A similar procedure is used to obtain an analytical expression for ), f(m,n) cosnb.

f(m,n)

2

W

< mrf LA
f 5in —— sin nféd
0 w

sin(mm — nw)  sin(mr + nw)

2

W

mm — nw

uw

—_——

“  mm@
sin
0

2

— Sln
w

2mm 1

w!
cos
nJo

w?

mmé 1

w
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n
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g —— .
sin nf 46

0
mwf

+ nw

(—0)

cos n#sl

(4.8)

(4.9)

(4.10)

(4.11)



0 oo o A L
Z f(m,n)cosn = 2m;r Z ! 0s i cos n#éfcosnd
Lt w? £ n Jg W
2mnw [ maf o= 1 - p
= ! cos = ,,Zﬂ s cos nflcosné 66
G(;,é)
2 w g .
= 25 / cos ™ G(9,6)66 (4.12)
w? Jy w

G(ﬂ,é) is evaluated in Mathematica as follows. However, the expression thus obtained for G(#, é]
has a log singularity at § = # and the integral in equation 4.12 cannot be evaluated analytically

(which limits its usefulness).

G(8.6) = Z -3—;- cos nf cos nf

n=1

,% {1n [1 = ef(a+é;] +1In [1 _e—i(FHi'}] +1In [1 B ei[a-r}}] +ii [1 _e_,-wu,;,]}

Now, in general,

Hi- {m1-e*]+In[1-e*]} = —%ln 1-e** -e*+1]

=-%[2—2cosx]

Therefore,

G(9,6) = —% {1n [2 — 2cos(f + é)] +1In [2 — 2cos(0 — é)]} (4.13)

To give an idea about the nature of the function G(6,8), it is plotted below (figure 4.3) against
the variable 6.

Hence, in equation 3.24, the first infinite summation is replaced by a finite sum and an analytical
expression, whereas the second infinite summation is replaced by a finite sum and a numerical

integration.

4.6 A note on slip

The way equations 3.34 and 3.37 are expressed, they are not amenable to programming. The reason
is that the signs of o, and 7.4 are not known beforehand when the equations are being set up. One
cannot take the absolute value, as g, and 7,4 are expressed as a sum of the coefficients h,,, and fzm.
(Absolute value of o, is not equal to the sum of the absolute value of its coefficients).

The solution is to solve the problem in two steps. In the first step, complete stick is assumed, and

the direction of shear force at each collocation point is noted. It is then a logical assumption that if
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Singularity in the function G at 6é(bar) = 8
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T
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Figure 4.3: Log singularity in function G(6,6).

slip occurs, the direction of shear stress at a point remains unchanged, and only the magnitude of
slip gets limited by the friction law.

Initially it was felt that the slip solution had to be obtained iteratively. However, it was seen
that once a collocation point is determined to be ‘slip’ or ‘stick’, its status does not change. Hence,
a two step process is adequate.

It should be mentioned here that ‘slip’ zones and the shear stress directions ought to depend
on the directions of roller surface velocity, as well as on whether the roller is the ‘driver’ or the
‘brake’. The Soong-Li solution [13] seems to yield the solution to the static case, when two rollers
are statically pressed together.
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CHAPTER 5

WRITING THE NIP CODE

5.1 Introduction

The code NIP-SYM is written in ‘C’ and actually consists of 6 separate files. The first, nip.c, is the
main program. There are4 ‘.c’ and 2 ‘.1’ (header) files in all. Among the other 3 *.c’ files, integ.c
takes care of numerical integration and inverse.c takes care of matrix inversion. The numerical
algorithms have been taken from the book ‘Numerical Recipes in C' [11]. The last .c file nrutil.c

consists of array handling routines from this book.

5.2 Equation Setup

It can be seen that every equation necessary in formulating the problem (3.25, 3.28, 3.33/3.34,
3.36/3.37) can be expressed in terms of the unknown coefficients h,,, and hum. They are set up in the
form [K]{h} = {rhs}. Ouly equation 3.28 provides a non-zero ‘rhs'. The matrix equation is then
solved for the coefficients h,, and hy,, by inverting (K]

All the routines for setting up the equations are called from the function section(). This is the
heart of the nip.c program, and a study of this function should give a good idea about the way

nip.c is organized. The functions for setting up the equations in turn call their own functions.

5.3 Matrix Inversion

The actual inversion of [K] is carried out by the function invK(). The program was taken from
"Numerical Recipes in C' [11] and the reason it looks complex is that it requires dynamic memory
allocation, and has some complicated code that makes all arrays to start with index 1 instead of 0
as is customary for the C language. The function is very accurate, and yields perfect inverses with
matrices of size upto 380 x 380. The capability of the function beyond this was not checked as it
was not required during the solution. It uses the LU decomposition technique.

The main matrix inversion function is stored in the inverse.c file. This file calls the auxilliary
files nrutil.c, nrutil.h & nr.h. nrutil.c contains the functions for creation of dynamically

allocated arrays using the malloc() memory allocation routine.

24



5.4 Array Storage

The routines where the displacements, strains and their derivatives are computed have a double
summation, first over n, followed by a summation over m. These routines take up a lot of computer
time because they call the sin() and cos() functions millions of times, and computation of sin()
and cos() is expensive. Hence these terms are computed only once and stored in arrays. One
drawback is that these arrays take up a huge amount of computer memory, and the code does not
run on a 32 MB Pentium PC. (Upgrading the memory to 64 MB or higher should solve the problem).
It needs to be executed on a mainframe computer. To eliminate this problem of large arrays, effort
was made to store these arrays in direct access (or random access) files. This uses the fseek()
function in C. However, accessing data from random access files turned out to take as much time (if

not more) as computing the sin() and cos() functions over and over again.

5.5 The Functions main() & Restart()

The function main() calls the function section() iteratively. For a single input value of the semi nip
length, it calls section() just once. For generating load-displacement data, main() calls section()
iteratively for changing semi nip lengths. The user input needed to setup the solution is also coded
in the function main(). User is prompted as to whether one or multiple solutions are needed. If
one solution is all that is needed, next prompt asks for the semi contact angle for the first roller in
degrees. If the input is for multiple angles, the user is not prompted further. Instead the program
assumes that semi nip angle changes from 1 to 6 degrees, and proceeds to call section() a certain
number of times. It should be mentioned here that although the user may input a round number like
6 degrees for the semi contact angle, the program adds a small fraction to it (eg. 6.000001 degrees)
to avoid a potential situation where a sin :)—’ is encountered. However, this value is small, hence does
not affect the final solution.

Another function called inside main() is restart(). Once a solution to the coeflicients h,, and
fa,,, are obtained, there is no need to keep reevaluating it every time an output for a new parameter
is needed. The solution to the coefficients is stored in a file with a large precision, and read in when

the restart () option is selected. The other option of course is a full run.

5.6 Postprocessing

In general, postprocessing is activated by uncommenting the line containing that function. It may
be obtained in a full run or a restart run. It requires that certain output files be created by nip.c.
This is done by setting some output file flags = 1 in the function filesopen(), which of course
is called by main(). The output files have descriptive names, and a quick look should suffice to

determine which output files needs to be opened for a cetain postprocessing output choice.



5.6.1 Load-Displacement Output

For the generation of load vs. displacement data, one needs to run the nip.c program in a loop,
with a changing value of the input parameter — the semi nip length. This is controlled by the
main function main(). The radial stress is integrated, (assuming a unit length of roller along roller
axis), and the load output. In addition, the displacement of the roller is output as the central radial
displacement of the collocation point lying on the centerline for roller # 1.

5.6.2 Displaced Shape

This function called prindent() prints out the displacements along twice the nip length. The
function indent() does the same thing but it prints out displacements only for the collocation
points, and the resulting plot could look jagged if the number of points are small. indent () was used
primarily for checking the results when the code was being developed. prindent () prints the central
interference, as well as the radial displacement for 200 points along twice the semi nip length, in a file
dispprint.out. This data was then postprocessed by two small programs circles.c and disp.c
to generate the displaced shapes presented in this report. circles.c generates the coordinates for

the rigid inner cylinder, and disp.c generates the deformed profile of the rubber cover.

5.6.3 Stresses

Normal and shear stresses are output through the routines printsigr() and printtau(). There
are corresponding routines sigr () and tau() that generated the radial stress and shear stresses on
the rubber surface along the nip at the collocation points, that were primarily used for checking the
code. printsigr() and printtau() printout the stresses for twice the nip length. The resulting
zero stress at any coordinate outside the nip demonstrates that the boundary conditions are satisfied

by the solution.

5.6.4 Velocity Ratios

The velocity ratios are obtained from equation 3.32 and 3.35. It should be remembered that the
velocity ratio equations are satisfied only at the stick points, hence an attempt to evaluate them at
a slip collocation point will not yield correct answers. The routines VR1() and VR2() handle the
computation of velocity ratios of rollers 1 & 2. A large Young’s modulus has been assumed for the
strip to make the strain in the strip (¢,) equal to zero. This is not necessary, but was used for
validating the code, as in this case a simple inspection of the velocity ratio gives an indication of
the circumferential strain. The ratios do not change over the nip length, and an evaluation at the
mid point of the nip should suffice. However, the routines evaluate the ratios at all the collocation

points (results at slip points will be in error).

5.6.5 Slip

As mentioned previously, slip evaluation is a two step process. First evaluation is a complete stick

solution. The s1ip() function then determines which of collocation points satisfy the slip criterion,
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and assign flags to them. In the next iteration these points will use the equations 3.35 and 3.37.
s1ip() also prints out some quantities of interest, that were primarily used for checking the code.
In this process, the direction of shear stress evaluated in the first iteration is important, and is used

to determine the form of the slip equations.
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CHAPTER 6

OBTAINING A SOLUTION

Soong and Li in their paper [13] mention that they obtained convergent solutions for n = 450, and
that the final linear system in h,, and h,, used in equations 3.15 and 3.16 was approximately 40,
The experience in developing NIP-SYM was however somewhat different. This is described in the
sections below :

6.1 Oscillations

When initially attempting a complete stick solution, a high frequency oscillation in the normal stress
at the nip was observed. This is quite high, of the same order as the normal stress, and cannot be
ignored. This results from an abnormally high value of the coefficient hy for both the rollers. This
corresponds to the highest frequency, and the magnitude is a spurious quantity, that is, does not
have any physical relevance. The correct value of the last coefficient can be obtained by solving the
same problem with N augmented by 1. This introduces a new spurious last term, and the second last
term is the correct last term for the previous solution. It seems to arise from the fact that there is
one extra term in the equation for normal stress 3.15 (= N) than there is for shear stress (= N —1).
This was necessitated to have the number of equations equal to the number of unknowns. There
also seems to be a connection between the individual components of radial and shear stress. Hence
the extra (n = N) term for radial stress seems to be an artefact of the solution process. For the
stick solution equations, the shear stresses are not directly related to the normal stresses, ie. they
do not appear in the same equation, hence dropping the last term for the normal stress coefficient
produces the correct normal and shear stress distributions.

For slip. the situation is more complex, as the shear stresses get directly related to the normal
stresses by the slip equations, and hence incorporate the oscillations as well. This case will be

discussed in the section on slip (see section 6.4.3).

6.2 Convergence

Once a reasonable normal/shear stress profile and a displaced shape at the nip is obtained, one has

to check whether the results have converged. There are two variables to consider .. .the number of
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collocation points, and the number of terms in the infinite series in the stress equations 3.10 & 3.11.
These are actually related by equations 3.17. That is because setting the number of collocation
points also fixes the number of terms in the stress equations 3.15 & 3.16. One has to consider
two fourier series, the first one defines the stresses over the entire perimeter (equations 3.10 &
3.11), and the other defines the same stresses but using a fourier series that has a longest period
equal to the semi nip length (equations 3.15 & 3.16). Thus, one needs much fewer number of
terms for the series with the smaller period. This is obvious because the smaller fourier series
has to approximate a smooth continuous profile over the semi nip length, whereas the larger one
approximates a discontinuous stress profile — one that is parabolic over the semi nip length and
zero everywhere else on the perimeter. To ensure that both series yield the same answers, one has to
take enough terms for the larger series to reproduce the highest frequency stress term of the smaller
series (given by equations 3.15 & 3.16). A rough estimate can be obtained by multiplying N by the
ratio of (m/semi nip length) but should be checked by using equation 3.17.

However there are situations where the theoretically required number of fourier terms in the
larger series need not be adhered to. For example, during slip calculations, a large N (100 collocation
points) is needed to bring down the oscillations mentioned above. However this means a very large
number of terms need to be considered for the larger fourier series. But it is observed that we get
reasonably converged solutions for N = 15...20. Hence the extra collocation points are not really
necessary, and the corresponding high frequencies can be ignored. This is specially important for
small nip angles (eg. 1 degree), where the number of fourier coefficients for the larger series become
inordinately high. Thus n can be limited to a reasonable value, around 3000.

It is also noticed that the shear stress takes a lot more number of terms to converge than the
normal stress. However, the peak value of shear stress is not very important, as in the second

iteration for slip, the shear stresses get truncated to peo, anyway.

6.3 Code Limitations

The Soong and Li formulation [13] introduces a limitation on the maximum thickness of rubber cover
given by the nondimensionalized parameter R;. Equation 3.14 has to be evaluated multiple times
for increasing n. There is a problem here as the diagonal terms keep getting smaller in comparison
to the other terms, with the result that beyond a certain n, the matrix cannot be inverted. For
values of R; around 1.0 (ie. a small rubber cover), the n upto which the matrix inverts correctly is
high. Problem arises for lesser values of R, = 0.85 where the inversion problem crops up for values
of n as low as 1000. This is just not enough to achieve convergence, and the error can be seen in
the displacement plots (see figure 6.5).

Another limitation is that the formulation does not consider the direction of rotation of the
rollers. Hence, it appears that the solution obtained really simulates the situation where two rollers

are statically pressed together. The shear stresses for rollers that are in free rolling are not symmetric.
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Figure 6.1: Typical normal stress profile.

6.4 Results

6.4.1 Complete Stick

Following are some plots that show the normal (Fig.6.1) and shear stress (Fig.6.2) distributions at
the nip, as well as the deformation profiles for a generic problem. The first deformed shape is
for the case where the rollers and rubber properties are identical (Fig.6.3). The next one is for the
same problem but with a much stiffer rubber cover for one roller (Fig.6.4). The figure following
this (Fig.6.5) shows the error in displacements that appear as a result of considering a larger rubber

thickness (R; = 0.8).

6.4.2 Load — Displacement Curves (P — 0)

To validate the stress profiles obtained earlier, P — § curves are constructed by integrating the
radial stress over the nip length, and compared with the tests on 4 different roller configurations

— these tests were carried out at Oklahoma State University and 3M. For comparison, the P — 4
predicted by the Lindley (2.9), Johnson (2.4) and Lame (2.10) relations are shown as well. The
simplified analytical study by Lindley (see section 2.4.1) takes into account the compression induced
stiffening of rubber properties. But the nip-code answers seem to match the unstiffened correlations
of section 2.2.1 better. The reason probably is that in the numerical test problems that were solved
with the nip-code, a maximnm half contact width angle of 6° has been considered. However, this does
not give sufficient rubber compression to make the stiffening effect to be felt. Also, the Lindley load-
displacement expression (equation 2.9) seems to underpredict the load at small deformations. The
nip code thus fares much better when compared to the ‘Lame’ and ‘K.L. Johnson’ load-displacement
relations (equations 2.10 and 2.4).

The roller configurations and corresponding figure numbers are given below:
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Symmelric Displacermnent

Roller 1
Rigid inner radius
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Figure 6.3: Symmetric deformed shape.
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Figure 6.4: Unsymmetric deformed shape — Rubber on one roller stiffer (x 10).
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Figure 6.5: Error in deformed shape : low R; = 0.8.
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Figure 6.6: P —§ : OD 6.5in CT 0.25in Du = 60 R; = 0.92.
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Fig.6.7: OD 2.5in CT 0.25in Du = 80

Fig6.8: OD5.0in CT 0.50in Du=60 R, =0.80
Fig6.9: OD7.5in CT 0.75in Du=80 R; =0.80

where OD is the outer dia of rubber cover, CT is the cover thickness, and Du is the Young’s modulus
in Durometers.
A formula for convenient conversion for the Young's modulus of rubber from Durometer to ‘psi’
is given below :
E = 26.549 exp(.0524D) (6.1)

The table below gives the same conversion for some common Durometers :

IRHD | E4 (Young's mod-psi)
30 130
35 168
40 213
45 256
50 310
55 460
60 630
65 830
70 1040
75 1340
80 1756.4
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Figure 6.7: P — 4§ : OD 2.5in CT 0.25in Du = 80 R, = 0.8.
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Figure 6.8: P —4 : OD 5.0in CT 0.5in Du = 60 R, = 0.8.
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Figure 6.9: P — 46 : OD 7.5in CT 0.75in Du = 80 R, = 0.8.

6.4.3 Slip Solution

As was explained earlier, the slip solution is a two step process. First, a stick solution is obtained,
and the slip locations determined. Next, for the slip zones, the slip equations are used for a second
solution. It is expected that in locations where the shear stress magnitude exceeds that of the
maximum possible shear allowed by friction (|7| < u|o,|), the shear stress should get limited to the
value of the normal stress scaled by a factor g, the coefficient of friction. However arriving at a slip
solution required some effort, and involved making considerable changes to the coding of NIP-SYM.

For the complete stick solutions, the shear stresses are not directly connected to the normal
stresses, and thus only the normal stresses showed a high frequency oscillation that could be easily
got rid of by dropping the erroneous last term. However, the slip solution is a two step process,
and in the second step, the shear stresses get directly related to the normal stresses in the same
equation. Hence the oscillations in the normal stress make an appearance in the shear stress as well.
The problem is that the oscillations are not limited to the highest frequency (shear distribution in
the stick region is smooth) and just dropping the last shear term does not help. It was seen that as
one increases the number of collocation points, the magnitude of the oscillation drops. At around
N = 100 the oscillations are reasonably attennated, and the error in the high frequency coefficients
are limited to the last few terms. Thus by dropping the last 20 terms, one can obtain a good shear
stress profile for slip. One should recall that one can obtain convergent solutions even with N = 20.
So. dropping the last 20 terms out of 100 does not affect the proper solution, just eliminates the
oscillation. A generic slip solution is shown in figure 6.10.

The indentation and the normal stresses are not affected by slip. Hence, if for example one has

to generate P — & curves, its not necessary to go in for a slip solution.



Slip Results
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Figure 6.10: Slip solution : Initial and corrected shear stresses.

6.4.4 Velocity Ratios

The code outputs converged values for the velocity ratios of sheet and rollers ['T:f; and ‘—‘[;'—]) The
variation of velocity ratios with coefficient of friction between roller and sheet (p,,) follow the trend
presented by Soong and Li [13], but the numbers are somewhat off (figure 6.11). This is essentially
due to a difference in the results for circumferential strain. It can be seen from the figure that as
the coeflicient of friction reduces below 0.1, micro slip occurs which affects the nominal speed ratios
between the sheet and the two rollers.

The variation of velocity ratio along the nip has not been plotted as it is a constant. (The ratios

are between velocities outside of the nip and will remain a constant for any point within the nip).
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EFFECT OF COEFFICIENT OF FRICTION ON SPEED RATIOS
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Figure 6.11: Variation of Velocity Ratios with Friction Coeff.
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CHAPTER 7

CONCLUSIONS

7.1 Understanding Nip Mechanics

Considering the complexity of the subject, a reasonably good understanding of the problem has been
gained during this work. The limitations and potential of the collocation method in modeling the
symmetric nip mechanics of rollers has been brought out. The major limitation of the method is that
it is limited to yielding correct solutions for very thin rubber covers. The solution incorporates certain
oscillations that are hard to get rid of. Since convergent results are obtained with 20 collocation
points, and 100 points are needed to get rid of the oscillations, the penalty in terms of computation
time can be guessed. This oscillation should go away if a formulation can be found where the number
of coeflicients of the normal and shear stresses are equal (see equations 3.15 and 3.16). The velocity
ratios have also so far not yielded the expected answers. The slip directions should depend on the

rolling direction, which has not been considered in the formulation.

7.2 Goals Met

7.2.1 Load-Displacement Curves

Load-Displacement curves were obtained that match experimental data very well. This is also a
very good check on the normal stresses obtained.

7.2.2 Normal and Shear Stresses

Normal stresses match the Hertzian parabolic profiles very well (equation 2.3). This is because very
small indentations have been considered. Shear stresses (both with full stick and slip solutions)
match the profiles given in [6].

7.2.3 Displaced Shapes

Perfect displaced shapes have been obtained when the thin rubber cover limitation has been adhered

to (see figures 6.3 and 6.4).
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CHAPTER 8

FUTURE WORK

The only area where the current work has fallen short is in the evaluation of the velocity ratios.
Although converged solutions are obtained, they do not match the values obtained by Soong and Li
[13]. The thin cover limitation can be removed by using the formulation by Jorkama [10], but it will
need extensive changes to the code.

Since the problem with velocity ratios stems from an error in the evaluation of circumferential
strain, a way out could be to obtain these strains using a different approach. Since rubber materials
are almost incompressible, their volumetric strain should be zero. (Volumetric strain is equal to the
sum of the three normal strains). As the strain along the roller axis is taken to be zero (plain strain
conditions), the circumferential strain should be approximately equal to the negative of the radial
strain. As the radial displacements are correct (checked against experimental load-displacement
curves), presumably the radial strains are correct as well.

There are a number of other formulations that appear to be theoretically sound, and which
should be explored. One such work is by Kalker [7]. Kalker uses a Green's function approach. His

treatment of the rolling direction and its influence on slip seems to be more robust.
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