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CHAPTER I

INTRODUCTION

To be successful in the horse industry today, producers must raise champions in

the show pen and on the racetrack, while watching the bottom line. An area that affects

this a great deal is the money spent on the feed to produce these winners. Grain prices

fluctuate like the Stock Market, and what may be profitable one day, may cause

bankruptcy the next. Therefore, a great deal of research focuses on the process of

digestion in the animal. The more investigators understand digestion, the more

information they can pass on to the producer, and ultimately reduce the costs associated

with feeding. Ifan animal gets out of its normal homeostatic range, production can

suffer. There have been many studies in horses and other species that have established

the link between the Dietary Cation-Anion Difference (DCAD) and the subsequent

alterations in acid-base status, mineral metabolism and growth of the animal Currently

there is no recommended DeAD level for horses set forth by the NRC. However several

companies are starting to utilize research studies and incorporate DCAD into their ration

balancing formulas.

The purpose of the current study was to determine the effect of DCAD on the acid

base status, energy digestibility and mineral balance of sedentary horses consuming

varying sources ofstarch and starch intakes. Several studies have linked high starch diets

to metabolic acidosis, but have neglected to address the mineral content of these diets,

and thus the DCAD effect on acid/base parameters. Therefore the objective ofthis study

was to evaluate the effects ofDCAD in horses fed varying starch intake and sources to

investigate which factor most effects metabolic homeostasis.
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CHAPTER II

LITERATURE REVlEW

Acid-Base Physiology

To sustain life, animals must maintain the acid-base balance of the body within a

very narrow range. The critical reason is that excessive protein denaturation will occur

due to elevated levels ofhydrogen ions (Rose, 1994). Thus, maintaining extra-cellular

fluid (ECF) pH is vital for normal body function. The definition ofpH is the inverse

logarithm of the·hydrogen ion concentration ofa system (pH = -log [H+]). In

physiologic systems, acids are compounds that donate protons (H+), whereas bases are

those substances that accept protons. For physiological purposes, the most important

weak acid and conjugate base compounds are carbonic acid (H2C03) and bicarbonate

(HC03), respectively. To maintain the desired plL animals must maintain these two

compounds in a proper ratio in accordance with the Henderson-Hasselbalch equation,

which states that the pH = 6.1 + log [HC03-1/[H2C03]. Unfortunately, the quantification

of carbonic acid is very difficult. Therefore, we estimate its concentration by taking the

partial pressure of C02 (due to C02 reacting with water to form carbonic acid) and

multiplying it by its solubility coefficient of0.03. This results in the equation being

rewritten as pH =6.1+ log (HC031/(.03 *pC02). The stable ratio of20 parts bicarbonate

to one part dissolved CO2 is the principle determining factor to body pH, and any

alteration of this ratio must be corrected. A more accurate determination would also

include hemoglobin, plasma protein and phosphate buffer systems. Another way to

estimate the pH of the body and its subsequent homeostasis is to look at the system's

electrolyte balance. Under normal conditions the sum ofplasma sodium and potassium

will exceed chloride and bicarbonate, and is known as the anion gap (Duke, 1993).
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A depression in ECF pH beyond normal (7.4) is called acidosis, while an increase

in pH above normal is termed alkalosis. To further divide these cat.egori~s excess

addition of acid or loss ofbase from the ECF resulting in a decreased pH is referred to as

metabolic acidosis. On the other band., an increase in pH due to decreased acid or base

excess, is termed metabolic alkalosis. If the acidosis is due to a decrease in alveolar

ventilation resulting in reduced expiration ofC02, respiratory acidosis develops. When

alveolar ventilation and CO2expiration increases above normal, respiratory alkalosis may

occur (Duke, 1993).

The body uses three mechanisms to counteract these conditions and include

chemical buffering, changing respiration rate, and excretion via the kidney. Chemical

buffering entails the use ofthe bicarbonate buffer system that will produce more weak

acid or conjugate base in response to increased strong base or strong acid., respectively.

In the second system, respiration rate can be altered to either expel more or less CO2than

is produced, thus again altering the ratio ofacid to base. In the final system, hydrogen

ions and bicarbonate ions are filtered through the kidney. Excretion ofone ofthese ions

and reabsorption ofthe other, depending on the state ofthe anima~ will result in the

ultimate return to a homeostatic condition (Duke, 1993).

In the intestinal lumen, sodium and potassium ions are absorbed into the blood in

exchange for a hydrogen ion (If) which enters the lumen. In a similar situation, cr will

be absorbed from the lumen in exchange for an HCO)' ion being released into the lumen.

Therefore it is evident that the absorption of ions from the gastrointestinal tract can have

a dramatic effect on the acidlbase status of the body. (Duke, 1993)
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Dietary Cation-Anion Difference

Knowing that gastrointestinal absorption ofcations and anions could alter the

body's acid-base status; a great deal 0 f research bas evaluated the ratio ofcations to

anions in the diet. The ratio of these ions in the diet is known as the dietary cation-anion

difference (DCAD). Using this knowledge, many researchers have looked at these levels

and studied the effects on the body. Several numerical equations have been developed

from this research to quantify DCAD. Several studies have utilized the cations sodium

(Nal and potassium (Kl and the anion chloride (Cl) to calculate DCAD using the

following equation: meq [(Na+ + Kl- Cll/ kg dietary DM (Baker et ai, 1992; Patience et

aI., 1987; Fredeen et aL, 1988b). Due to its acidogenic nature, researchers also started

including sulfur into the anion portion of this equation (Tucker et aL, 1991). Currently,

DCAD is calculated as: meq (Na+ + Kl -(Cr + Sj/ kg DM. (Block, 1984; Popplewell et

aL, 1993; Baker, et aL, 1997). The principle of the DeAD equation assumes the

comp~te dietary availability ofNa+, K+, and cr, and the acidifying properties ofsulfur

(Tucker et aL, 1988; Block 1991). Using this equation, researchers can fonnulate diets
. .

with variable DCAD values and study the resulting alterations in homeostasis and

mineral metabolism.

Effects on AcidIBase Parameters

Blood pH

Many researchers have found that altering the DCAD level of the diet can have

dramatic effects on body acidlbase physiology.
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Looking at blood pH, many studies have shown a very dominant correlation between the

arterial and venous pH values and the DCAD of the diet. Escobosa et al., (1984) fed a

high Na+ diet (DCAD +320 meqlkg DM) and a high cr diet (DCAD -191 meq/kg DM)

to lactating dairy cows and found blood pH values lower than normal fur the high cr

diet, and elevated pH readings on the high Na+ diet. Further research in dairy cows

(Tucker et al., 1988) showed that pH varied from 7.369 for cows on a -100 meq/ kg DM

diet, up to 7.427 for the cows on a +200 meqI kg DM diet. Research in swine (patience

et al., 1987) has shown that growing pigs, fed diets high (+341) and low (-85) in DCAD,

bad a mean blood pH of7.21 and 7.09, respectively. Studies in sheep (Abu Damir et aI.,

1990) have shown that when ammonium chloride ('!'DCAD) was added to the diet, blood

pH was significantly lower (p<.05) than sheep that consumed diets with added sodium

bicarbonate ( t DCAD). In. horses, several studies have shown results that are

dramatically similar. Baker et al. (1992) fed four diets with a calculated DCAD of+21,

+125, +231, and +351 meq/ kg DM, and found that arterial and venous blood pH values

increased as DCAD increased. Stutz and coworkers (1992) found that the blood pH was

significantly lower for horses consuming a-50 meq/kg DM diet as opposed to either a

+150 or +250 meq/kg DM diet. Other studies have also shown1bat horses consuming a

low DCAD diet tended to exhibit an induced metabolic acidosis (Wall et al., 1995;

Popplewell et al., 1993).

Blood pC02

Because ofthe connection between blood pH and blood PC02, it would seem

logical that DCAD would have a very similar response on pC02•
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In dairy cattle, Escobosa and coworkers (1984) found that the pC02 values varied from

30.57 mm Hg on the low DCAD diet to 32.98 mm Hg on the high diets. Further work

with dairy calves bas shown that pCCh increases linearly (P<.0004) as the DCAD ofthe

diet increases (Jackson et aL, 1992). Patience et aL, (1987) also showed a response in

swine, with an increase in pC02 from 73.9 mm Hg to 74.2 mm Hg as the DCAD

increased from -85 to +341 meqlkg DM. Stutz et aL(1992} found that the pC02 in horses

increased from 46.75 mm Hg to 55.2 rnm Hg as the DCAD increased from -50 to +250

meq/kg DM Further studies showed that horses consuming a-21 meqlkg DM diet had

significantly lower pCCh levels than horses consuming a +231 meqlkg DM diet (Baker et

ai, 1992). This alteration is pC~, is due an increase in alveolar respiration (or decrease

depending on the stlIte) during metabolic acidosis, to result in removal ofC02 and

returning the ration ofconjugate base to weak acid back to normal (Duke~1993)

Blood Bicarbonate

The levels ofbicarbonate (RC03) in the blood also have been found to vary with

the DCAD ofthe diet. Patience et aL (1987) found that blood RC03· concentration of

swine showed a linear (P<.OOI) and quadratic (P<.022) relationship to DCAD. Dairy

cows also showed a response in HC03- increasing from 18.06 to 24.64 meq/l when fed a­

191 and 320 meqlkg DM diet, respectively (Escabosa et aI., 1984). Tucker et aL, (1988)

showed a similar response in dairy cattle to low and high DCAD diets. Horses have also

shown a significantly lower (P<.05) mean arterial HC03- concentration when con.suqPng

a +21 meq/ kg DM diet as compared to + 125,+231, or +350 meq/kg DM diets (Baker et

aL, 1992). In a later study, Baker and coworkers (1997) again found that bicarbonate

levels were lower (p <.05) when horses consumed a low DCAD diet as opposed.!O a high

diet.
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Additional studies have demonstrated a possible trend toward lower bicarbonate

concentrations in exercising horses consuming a diet low in sodium. and potassium, as

opposed to a high sodium and potassium diet (Stutz et al., 1992).

Urine pH

The pH value ofurine is also a good indication ofthe acidlbase status of the body.

The final regulatory mechanism is either Ir or HC03- excretion through the urine in

response to acidosis or alkalosis, respectively. In horses, Wall and coworkers (1995)

showed that DCAD bad a significant effect on urine pH. The pH means ranged from

5.38 to 8.34 as the DCAD increased from +13 to +367 meq/kg DM. Baker et al. (1992)

also showed that horses exhibited a significant response in urine pH to the varying

DeAD ofthe diet. Additional studies show that the urine pH was significantly lower for

horses consuming a 10 meq/kg DM diet as opposed to a 95 meqlkg DM diet. In the same

study, urine pH was increased (P<.05) as the DCAD ofthe diet increased from 165

meqlkg DM to 295 meq/kg DM Furthermore, work in dairy cattle reveals a decrease

(P<.Ol) in urinary pH as the DCAD ofthe diet decreases (Escabosa et al., 1984). Tucker

et al. (1988) found a linear and quadratic (P<.05) response in urine pH as the DCAD of

the diet increased.

Effect on Mineral Metabolism

The effect ofdietary cation anion balance on mineral absorption and excretion has

also been very well studied. Exercising horses bad a linear increase in urinary calcium

excretion as the DCAD ofthe diet decreased from 327 meql kg DM to 5 meq / kg DM

(Wall et al., 1992).
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Baker et at (1997) also found that horses consuming an anionic diet, achieved through

ammonium chloride addition, had a lower (P<.05) apparent daily calcium balance as

compared to all other diets. An increase in urinary sodium. excretion was observed in

sedentary and exercising horses as the sodium content and thus DCAD oftheir diet was

increased (Baker et alt1993). In this study, urinary excretionofCa++ and cr increased in

horses consuming a low DCAD diet. Further studies in weanlings also show an increased

urinary excretion ofCa++ and cr when horses consume a -25.69 meq/kg DM diet

(Cooper et al. t 1995). This same study found that horses on a high DCAD diet (+379

meqlkg DM) had higher (P<.01) urinary excretion ofNa+ and K+. Wall et al. (1992)

found that horses consuming low DCAD diets (high levels ofchloride)t excreted more (P

< .05) chloride in their urine than horses consuming diets high in DCAD (low levels of

chloride). On the other hand, this same study found that DCAD had no effect on the

urinary excretion ofmagnesium, phosphorus, potassium, or sulfur. Fecal calcium

excretion shows dramatic decreases for horses consuming low DCAD diets which

resulted in an overall increase in Ca++ balance on the low diets (Wall et al. t 1997).

In growing lambs, Abu Damir et al. (1990) found that lambs fed a sodium

bicarbonate supplemented diet retained 1.46, 1.26, and 1.21 times the calcium,

phosphorus, and magnesium, respectively, than those animals fed an ammonium chloride

supplemented diet. Further research in sheep has shown that sheep infused with

hydrochloric acid (HCI) produced increase urinary excretion of Ca++, Na+, and cr when

compared to a control group (Scott et al., 1981).

In lactating goats, it was found that urinary calcium excretion was increased on

anionic diets when compared to a cationic diet (Fredeen et al., 1988a). During lactation,

these goats on the anionic diet also bad an apparent increase in calcium absorption, as

evidenced by a decreased fecal excretion. The incidences of milk fever have been found

to decrease on low DCAD diets (Block., 1984). It was found that ifdairy cows consumed

a -12 meqlkg DM diet there was no milk fever during the study.
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If the diet increased to a +33 meq/kg DM, the incidence ofmilk fever increased to 47.4 %

throughout the study. It is postulated that the acidifying nature of low DCAD diets will

increase bone mobilization ofCa++ to offset the Ca++ lost in the milk.

The mechanism for ahered excretions ofthese minerals is not fully understood

For the minerals sodium, potassium and chloride, intake is the chiefdeterminant of

amount excreted. The major source ofthese minerals is intestinal absorption from food

or water, thus balance is a factor of intake. In the case ofcalci~phosphorus and

magnesium, the body has a significant concentration ofthese minerals already present in

the bone. Therefore, mineral balance is a function of gastrointestinal absorption as well

as the amount deposited and/or removed frOIP bone (bone turnover). Calcium,

magnesium, and phosphorus excretion via the kidney is altered primarily by parathyroid

hormone (PTH) levels. In the intestinal lumen, the compound 1,25 (OH)2D3 (active form

ofvitamin D3) will promote the absorption ofcalcium and phosphorus (Best and Taylor,

1985). However, there are many contradicting reports as to how acidosis or alkalosis will

effect these mechanisms. One study found that rats in an induced metabolic acidosis had

increased serum calcium levels when compared to control and alkalotic rats. It was

determined that this rise in Ca++ was due to increased levels or efficacy ofPTII in

response to the acidotic state, thereby increasing the mobilization ofCa++ from bone.

Furthermore this same study found that acidotic rats had an overall increase in urinary

excretion ofcalcium, possibly due to acidosis inhibiting renal reabsorption of calcium.

However, this decrease in reabsorption diminished in acidotic rats with the

administration of exogenous PTH.
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Thus while the acidosis directly inhibits renal reabsorption, the increased levels and

efficacy ofPTII due to the acidosis, could partially decrease the level of inhibition (Beck

and Webster, 1976).

Energy Metabolism

Energy is required to drive body processes. The ultimate energy source ofall

living organisms is adenosine triphosphate (ATP). ATP is derived from many sources

depending on the organism. Plants transfer the energy ofsunlight into ATP during

photosynthetic reactions. Animals must consume substances, break them down into

smaller molecules, and form ATP to gain energy for life. Many processes involved in the

fInal production of ATP require energy themselves, thus the amount energy consumed is

not the same as the amount ofenergy available for body functions. Gross energy is the

amount ofenergy available in a substance, determined by a total combustion of the

substance and measuring the amount ofheat given off. As feedstuffs are consumed,

some of this stored energy is not digested ,and thus lost in feces. From there significant

amounts of the digestible energy are lost in urine and production ofgases. Ofthe

remaining energy, a great deal is lost in the form ofheat, thus leaving smaller amounts of

energy available to the animal for body processes (Lewis, 1995)
Amount of
energy available
that the body
can use for
production
and body
maintenance

Amount ofenergy available
to the cells for metabolism

Heat produced Amount ofenergy
during complete that is absorbed from
combustion the intestine
Gross Energy (GE) ~Digestible Energy (DE) ~Metabolizable Energy (ME) =l> Net Energy

Energy lost Energy lost Energy lost
in feces in urine and gases in heat
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Carbohydrate Digestion

The main energy sources for today's livestock are vegetative sources of

carbohydrates. There are many forms of carbohydrate that can be utilized including

structural carbohydrates, sucrose, lactose, and starches. Structural carbohydrates make

up the rigid supporting structures ofthe plant ce~ and are made up of cellulose and

hemicellulose. Cellulose is an unbranched polymer ofglucose linked by ~- 1,4 bonds

which can only be broken down with the aid ofmicrobial digestion. Sucrose and lactose

are di.saccharides that are made up ofglucose and fructose (sucrose) and glucose and

galactose (lactose). These sugars are degraded in the gastrointestinal tract and absorbed

as their respective monosaccharides. Starch is a polymer ofglucose units connected by

a.-I,4 glucosyl bonds to form linear chains and a.-I,6 glucosyl bonds form branches in the

polymer (Duke, 1993).

Starch Utilization

For horses, starch is a major energy source that is generally fed in high levels via

concentrate diets. The major source of starch in these diets is from the endosperm of seed

grains such as corn, oats and barley, which can typically have 75 %,58 % and 64 %

starch, respectively (Herera-Saldana et aI., 1990). The extent and site ofdigestion of

different starch sources is very similar in the equine gastrointestinal tract. In a study by

Potter et at (1992), they found that when horses were fed corn, oats, barley and sorghum

there were no differences in the extent of starch digestion. For these grains, the starch

digestibility averaged 98.6 % with 86.3 % ofdigestion occurring in the small intestine.

This study also showed that as the dietary starch component increased, more starch was

degraded in the cecum.
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Potter also found that as starch content exceeded 0.4% ofthe body weight per feeding, an

upper limit to small intestinal digestion ofstarch was reached, resulting in an increased

amount of undigested starch reaching the cecum.. Starch degradation in the cecum, via

anaerobic microbial digestion, can result in a lactic acidosis, very similar to carbohydrate

overload in mminants (Garner et aL, 1977). This lactic acidosis in horses could result in

severe lameness and even possible death.

For the starch to be available to the body cells, it must be broken down to glucose,

which is the major source of cellular energy. The breakdown ofa majority ofthese

starches in the intestinal lumen is due to the pancreatic enzyme a-amylase. This enzyme

cleaves the interior 0.-1,4 linka.ges ofglucose yielding the oligosaccharides, maltose (two

glucose units), mahotriose (three glucose units), and remaining glucose units containing

0.-1,6 bonded glucoses, known as a.-dextrin Little free glucose is formed by a-amylase

in the intestinal lumen.. Glucose is not formed until enzymes within the brush border

membranes utilize oligosaccharidase enzymes to allow further breakdown. A group of

enzymes collectively known as rna/rases will degrade maltose and maltotriose into

glucose, and a-dextrinase will breakdown a.-dextrins into glucose. Now that glucose is

present, it must be absorbed into the bloodstream to be distributed throughout the body.

This is accomplished through the active cotransport (with Na) ofglucose across the

brush border membrane into the portal blood system. The energy for this transport is

derived from the sodium-potassium. ATPase pump, thus sodium bas to be present in a

ratio of two moles ofsodium per one mole ofglucose, in order for maximum glucose

transport to occur. Upon glucose being delivered to the cell it is then available for energy

metabolism and ATP production via glycolysis (Gray, 1992)
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Fiber Utilization

For the forage content of the diet to be digested in the horse, the large intestine,

namely the cecum becomes greatly involved. The insoluble fiber portion ofthe diet

(cellulose and hemicellulose) is very similar to starch, except it is a ~ linked glucose

chain instead of a. linked. There are no enzymes produced by the animal that are capable

ofbreaking this bond. However, microbes namely bacteria, protozoa, and some fung~ do

produce such an enzyme and are present in high concentrations in the cecum ofthe horse.

Thus, a symbiotic relationship exists between the host animal and the microbes. The

primary products ofmicrobial digestion offorages are the volatile fatty acids (VFA's)

(Duke, 1993) As the forage to concentrate ratio changes to include more concentrate

there is an increase in the cecal concentration ofpropionate and a decrease in acetate,

compare to high forage diets (Hintz et al, 1972) These VFA's (acetic, proprionic, and

butyric) are consequently absorbed by the large intestine and are utilized as a source of

energy (Duke, 1993)

Starch Research

Significant research has been done in the animal to study the effects ofaltering

dietary forage:concentrate ratios. Hintz et al (1972) found no decrease in forage

digestibility due to addition ofgrain. They also found that the plasma glucose levels

showed no differences with forage to grain ratios of 1:0, 3:2 or 1:4. Stull et al. (1988)

found that as the equine diet changed from 100 % alfalfa to 100% com there was no

difference in plasma glucose, cortisol or insulin levels. In terms ofacid-base status

several studies have also been done with some profound results. Dairy heifers consuming

a 90 % com diet had lower blood pH and bicarbonate than those heifers consuming a 100

% alfalfa diet (Roby et al, 19'87).
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Furthermore, this same~study showed that the depressed. pH and bicarbonate levels could

be reversed by the addition of2 % sodium bicarbonate. Ralston et al.. (1997) further

demonstrated in horses that a reduced post feeding acidemia (p=.0 1) and higher levels of

blood bicarbonate (P=.004) could be obtained with the addition of 1 % sodium

bicarbonate to a grain and alfalfil hay diet fed in a 50:50 ratio.. Grains typically have a

low cation content (Na+, r, Caj and a high anion (Cn content, thus resuhing in a low

DCAD for that particular grain (Com R: 58 meqlkg DM, Oats R: 73 meqJkg DM(NRC,

1989». Forages, on the other hand., generally have elevated levels ofcations, therefore

they have an increased DCAD (Alfalfa R:329 meq~ DM, Bermuda grass hay R: 427

meq/kg DM(NRC, 1989». Thus, it is very plausible that the increased acid load of

anjmals consuming a high grain diet is due to a concurrent decrease in DCAD in

association with the increased grain portion of the diet (Abu Damir et aL, 1990).

Objectives

Since grains are a significant portion ofthe diets ofhorses, it is vital that

researchers and producers tmderstan.d how they can affect the body's homeostasis.

Maximum production occurs when the body is functioning within its normal parameters.

Thus, anything the owner can do to achieve maximum performance would be of benefit.

Therefore, the purpose ofthe current trial was to investigate the effect ofDCAD on acid­

base status, mineral balance and energy digestibilities ofsedentary horses fed varying

intakes and sources of starch. TIle objectives ofthis study include 1) measurement of

acid-base parameters such as blood pH, pC(h, HC03-, and urine pH; 2) determine the

actual energy digestibilies of the treatment diets; and 3) determination ofdaily mineral

balances of sodium, potassium, chloride, magnesiwn, phosphorus, and calcium.
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CHAPTER ill

MATERIALS AND METHODS

Experimental Design

Six mature sedentary horses (3 mares & 3 geldings) were used in a 6 x 6 Latin

square design experiment to study the effects ofDCAD on the acid-base status, energy

digestibility, and mineral balance of mature horses fed varying starch intakes and sources.

The Latin square was designed so as to reduce any statistical effect ofcarryover between

the experimental diets. Each diet preceded and lor followed each other diet only once

(Table 1). Thus if carryover did occur when moving from one diet to another, that

combination would only occur once, thus having little effect on the overall outcome.

(John, 1971) During each of the six experimental perio~ horses were fed one of the six

experimental diets during an II-d adjustment period followed by a 72 h collection period.

The six diets were formulated utilizing one ofthree energy sources combined with one of

two DCADs.

Horses were exercised 15 minutes/day on a mechanical walker at a brisk trot. On

days ODe, five and eleven of the adjustment periods all horses were weighed prior to the

morning feeding. Routine deworming were completed throughout the study.

Experimental Rations

All diets were formulated to equalize daily intakes of energy, protein calcium and

phosphorus.
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Table 1.
L ti S D·a. n .quare esl211

Horse 1 Horse 2 Horse 3 Horse 4 Horse 5 Horse 6

Period 1 HC LC HO LO HH LH

I

Period 2 LC HO LO HH LH HC

Period 3 LH He LC HO LO lffi

Period 4 HO LO HH LH He LC

Period 5 HH LH HC LC HO LO

Period 6 LO llli LH HC LC HO

HC~ High DCAD-Com Diet

LC~ Low DCAD-Com Diet

HO~ High DCAD-Oats Diet

LO~ Low DCAD-Oats Diet

HH~ High DCAD-Hay Diet

LH~ Low DCAD-Hay Diet



11

The treatments were as such: 1) rolled com with a DCAD of >300 meq/kg DM (HC); 2)

rolled com with a DCAD of <100 meq/kg DM (LC); 3) whole oats with a DCAD of

>300 meqlkg DM (HO); 4) whole oats with a DCAD of<100 meq/kg DM(LO); 5)

dehydrated alfulfa with a DCAD of>300 meq/kg DM (HH), and 6) dehydrated alfalfa

with a DCAD of <1 00 meqlkg DM (LH). Native prairie grass was ted at 30 % ofdaily

intake for the four grain diets and 50 % ofdaily intake on the alfalfa diets (fable 2) The

DCAD ofthe lffi diet is the naturally occurring DCAD leveL Sodium bicarbonate was

added to the HC and HO diets to achieve the DCAD levels above 300 meq/kg DM. On

the LC, LO and LH diets, ammonium chloride as added to result in the low DCAD

values. Horses were fed at 7:00 a.In. and 7:00 p.m and supplied with fresh water at all

times. Daily feed intake was constant within a treatment regardless of animal weight

(Table 3). Horses were given 12 of the previous diet and Y2 ofthe current diet for the first

three days ofthe adjustment period in order to decrease the chances of gastrointestinal

problems.

Mineral Balance

During the 72 h collections, total urine production was collected via urine harness.

Urine was collected at the time ofurination, immediately measured for volume and

analyzed for pH (Cole-Parmer@ Hand-held pH meter). A sample representing 1% ofthe

volume was then frozen and composited for later analysis. Fecal samples were obtained

via rectal palpation to represent every 2 h post feeding. Samples were composited on

equal weight basis, and dried for 72 h at 40°C.
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Table 2.
Diet composition, as fed b is

Treatments

Ingredient % HC LC DO LO DB LH

Starch sources

Rolled com 45.5 45.5

Whole oats 48 48

Pellet

Dehy.alfaIfa 49.1 48.1

Soybean meal 18.7 19.5 16.8 17.5

Cottonseed hulls 1.2 1.2 1.1 1.1

Grd.Limestone 2.9 2.9 2.6 2.7

DiCal phosphate .12 .12 .15 .15

Trace Mineral
.06 .06 .06 .06 .06 .06

premIX
Feed flavoring .02 .02 .02 .02 .02 .02

Sodium bicarb. 1.2 1.3

Ammon. Chloride. .24 .25 1.0

Sodium Chloride .24 .23 .50 .50

Prairie hay 30 30 30 30 50 50
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Table 3.
Daily intakes, as fed basis

Treatment
kg/d HC LC HO LO HH LH

Rolled Com 3.37 3.37
Whole Oats 4.00 4.00
Dehydrated
alfalfa pellet 5.45 5.45

Supplement
1.82 1.82 1.82 1.82

pellet
Prairie Hay 2.27 2.27 2.45 2.45 5.45 5.45
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Blood Collection

On the last day ofthe collection period, blood samples were drawn via jugular

venapuncture at times 0, 2, 4, and 6 h post-feeding. Samples for blood gas analysis were

collected in lithium heparin syringes, immediately placed on ice, and analyzed within 15­

30 min with a Cilia-Corning 288 Blood Gas analyzer. Samples for blood lactate analysis

were drawn into lithium heparin vacutainers, placed on ice, and measured within 15-30

min, using a YSI 1500 Lactate Analyzer. Blood samples for glucose analysis were drawn

into potassium oxalate vacutainers (inln"bits glycolysis), centrifuged, plasma harvested

and frozen for later evaluation.

Laboratory Procedures

Digestible Energy Determination

Experimental gross energy values for all feed and fecal samples were detennined

using bomb calorimetry. All samples were prepared into approximately one gram pellets

using a Parr pellet press. Samples were then placed in a Parr 1180 Oxygen bomb

canisters with a 10 cm fuse wire and placed under 20 to 25 atmospheres ofoxygen. The

bomb canister was then placed into a Parr 1261 Automatic Isoperibol Bomb Calorimeter

in 2,000 ml ofwater. Upon sample ignition, the calorimeter calculates a preliminary

gross energy value determined by the raise in the water temperature during ignition. The

canister is then rinsed and any acid that is produced during combustion is determined via

titration. Furthermore, the unburned fuse wire is measured.
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The amount ofacid produced and the amount of fuse burned is then reentered into the

calorimeter, and the preliminary energy value is adjusted for these factors.

Starch analysis

To determine the starch qontent of the corn, oats, pellets, and prairie hay, the

Megazyme (Bray, Co. Wicklow, Ireland) Total Starch Assay kit was used. This

procedure has been proven reliable and reproducible to give quantitative starch

measurements (AACC Method 76-12). Thermostable a-amylase and amyloglucosidase

was used to degrade the starch and resuh in a colorimetric reaction. The pellet and

prairie bay samples were ground through a .5 mm screen on a No.3 Willey Mill. The

corn and oats samples were ground with a mortar and pestle (Willey Mill resulted in

significant portions ofthe sample not being ground) to achieve a sample that would pass

a .5 mm screen. One hundred mg ofsample was placed in a tube with aqueous ethanol to

aid in dispersion. Due to the presence of resistant starch the com and oat samples had to

be treated with Dimethyl Sulfoxide (DMSO) and placed in a boiling water bath for five

minutes to get accurate starch readings. The thermostable a-amylase diluted with a

MOPS buffer solution was added to the sample and incubated in a boiling water bath for

six minutes. A sodium acetate buffer and amyloglucosidase enzyme was added to each

sample and incubated at 50°C for 30 minutes. An aliquot ofthe samples was then diluted

with water and centrifuged. Aliquots of the diluted solution were then mixed with a

GOPOD color reagent and incubated at 50°C for 20 minutes. The absorbance ofeach

sample, blank and standard were then read at 510 nm on a Gilford Spectrophotometer.
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Blood Gas Analysis

Blood values for pH, PC02, P02, and HC03' were determined using a Ciba

Corning 288 Blood Gas analyzer. All reported values were adjusted for the rectal body

temperature ofthe animal at time ofcollection by the analyzer. Samples were placed on

ice and analyzed within 15-30 min, (Clinical Pathology division ofthe Oklahoma State

University Veterinary Teaching Hospital). The analyzer goes through two self­

calibrations per hour, and is fully maintained by the clinical pathology staff.

Urine Mineral Analysis

Urine niineral values for sodium (Naj, potassium (K), chloride (Cn, phosphorus

(Pl, calcium (Ca), and magnesium (Mg) were analyzed using the composited frozen

urine samples. Samples were thawed and analyzed by the staffof the Clinical Pathology

division ofthe Oklahoma State University Veterinary Teaching Hospital. The urine

values for Na+, K+, and cr were determined using a Beckman's System E4A™

Electrolyte Analyzer. The values for Ca++, Mg++, and P+, were determined

calorimetrically using the EKTACHEM 700 Analyzer C Series.

Fecal Mineral. Analysis

The fecal mineral values were determined at the Northeast Dairy One Forage Lab,

in Ithaca, NY. The mineral contents for sodium, potassium, phosphorus, calcium, and

magnesium were determined using inductively coupled plasma spectroscopy (ICP).

Duplicate samples were ashed in a muffle furnace at 500eC for four hours. lbree ml of

6N HCI are added to the ashed residue and evaporated to dryness on a 100eC hot plate.
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Minerals were extracted with an acid solution of 1.5NHN03 + .5 N HC4 and determined

using and ICAP 61 (Thermo Jarrell Ash Corporation, Franklin, Mass.). Chloride

concentration is determined via potentiometric titration with AgN03 and utilizing a

Brinkman Metrohm 716 Titrino Titration unit with a silver electrode.

Chromic Oxide Analysis

Chromium analysis of feed and fecal samples was completed using inductively

coupled plasma spectroscopy (ICP). The samples were digested in nitric acid in a

microwave oven at pressures of20, 40, 80, 135, and 175 PSI for five minutes at each

pressure. Samples were then diluted and read on an rCAP 61.

Blood Lactate Analysis

Values for blood lactate concentrations were obtained using the YSI (Yellow

Springs, OR) 1500 Lactate Analyzer. The analyzer was property of the Oklahoma State

University Veterinary Teaching Hospi~ and on loan throughout the trial. Each

morning, prior to collection the machine was calibrated using a 5 rnmollL lactate standard

and linearity checked using a 30 mmol/L lactate standard. Following that, a calibration

was completed prior to the next collection time. Each blood sample was analyzed twice

and the mean values reported for that sample.

Plasma Glucose Analysis.

Plasma glucose was determined using the Sigma Diagnostics (St. Louis, MO)

Blood Glucose Procedure 51O-DA Frozen plasma samples were allowed to thaw in a

refrigerator the evening prior to analysis.
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Duplicate aliquots ofplasma were deproteinized by adding 1.0 ml barium hydroxide

solution and 1.0 ml zinc sulfate solution and mixing well. Samples were centrifuged and

a clear .5 ml aliquot was taken from sample and mixed with 5.0 m.I ofa combined

enzyme-color reagent solution and allowed to sit at room temperature for 45 minutes.

Samples were then transferred to cuvettes and absorbance was read on a Gilford

Spectrophotometer at 475 DID ana compared against a standard glucose solution

Statistical Analysis

Statistical analysis was determined using the General Linear Models (GLM)

procedure of SAS (1990). Data for urine pH, mineral balances, digestible energies, and

blood data were analyzed using orthogonal contrasts which compared, high vs low

DeAD, com vs oats (starch source and intake comparison), com vs bay (starch intake

comparison), oats vs bay (starch intake comparison), and com and oats vs bay (starch

intake comparison). Blood data was analyzed using a repeated measures model to

determine any response over time, with horse, period, and diet as the main effects and

time as the repeated measure. Least squared means were then calculated and tested for

significance using the pdiffprocedure of SAS (1990). Statistical significance was

declared at an alpha level ofP<.05.
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CHAPTER IV

RESULTS AND DISCUSSION

All horses maintained good physical health throughout the trial. One mare did

have a cracked hoofand was unable to be exercised on the walker for 1wk, until

lameness subsided. There was no significant dietary effect on animal weights. The

average gain while on any specified diet was .93 kg. The initial mean weight was 550.3

kg, with this increasing to 563.6 kg by trials end (Table 4).

Ration Analysis

Due to unexpected nutrient contents, analyzed daily intakes ofnutrients ended up

being more variable than calculated values. (Table 5 & 6). There was a significant

difference in starch intakes between diets. The HC andLe diets bad a mean daily intake

of4.378 g starch/kg BW/day. The HO and LO diets had a mean daily intake of 3.96 g

starch! kg BW I day. The HH diet bad an average daily intake of .3187 g starch /kg

BW/day, whereas the LH diet bad an average daily intake of .2591g starch! kg BW/day.

These levels are all below the threshold intake ( 0.4% ofBW ofstarch! feeding) above

which increasing amounts of starch are digested in the cecum (potter et aI., 1992). The

highest level in the current study was on the HC and LC diets with a o/oOfBW intake of

0.2 % ofBW ofstarch Ifeeding. Thus it can be assumed that there is minimal starch

digestion taking place in the cecum, thereby minimizing the potential for a lactic acidosis

due to rapid fermentation of starch.



Table 4
Effect of diet on body weight
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kg Horse I Horse 2 Horse 3 Horse 4 Horse 5 Borse6

Period 1 HC LC HO La HH LH
Day 1 615 495 590 531 509 559
Day 5 605 499 597 540 501 552

Day 11 616 486 582 540 495 550
Period 2 LC HO La HH LH HC

Day 1 613 493 592 550 504 535
DayS 612 495 591 550 504 532
Dayt1 624 497 596 550 507 536

Period 3 LH HC LC HO La HH
Day 1 619 502 589 547 503 543
Day 5 619 505 597 549 508 540

Day1! 620 509 601 550 513 539
Period 4 HO La HH LH HC LC

Day 1 619 507 604 557 501 540
Day 5 621 513 600 559 500 536
Day11 622 520 597 555 506 536

Period 5 HH LH HC LC HO La
Day 1 627 531 590 550 509 538
DayS 627 531 590 545 514 540
Day11 618 522 592 552 513 546

Period 6 La HH LH HC LC HO
Day 1 614 534 601 545 522 545
DayS 618 535 604 550 518 550

Day11 621 538 600 547 520 552



Table S
Daily nutrient int ke, DM basis.

Treatment

27

Nutrient HC LC HO LO HH LH

DE (meal/d) 23 24 24 24 22 22
Starch (g/d)8 2426.7 2427.5 2195.7 2192.7 176.7 143.7
CP (g/d) 1127 1147 1435 1461 1240 1355
Ca (gld) 132 128 144 143 100 88
P (g/d) 23 25 30 32 22 22
Mg (g/d) 12 12 15 16 24 23
K (gld) 68 67 78 82 190 180
S (g1d) 10 12 15 15 15 16
Na (g/d) 26 15 27 10 23 32
Cl (g1d) 10 43 14 35 69 144

aStarch intake values are analyzed values obtained with the Megazyme Total Starch
Assay Kit.(Wicklow, Ireland)
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Table 6
Nutrient analysis, DM basis.

Treatment

Nutrient (%) HC LC HO LO HH LH

CP(%) 15.1 15.4 17.4 17.7 11.4 12.4

DE (Mcallkg)a 3.11 3.26 2.88 2.89 2.0 2.0

Ca(%) 1.78 1.72 1.75 1.74 .92 .81

P(%) .31 .35 .37 .38 .20 .20

Mg(%) .16 .16 .19 .20 .22 .21

K(%) .92 .90 .94 .99 1.75 1.66

S(%) .14 .16 .18 .18 .14 .14

Na(%) .34 .20 .33 .13 .21 .29

Cl(%) .14 .58 .17 .42 .64 1.32

DCAD
+318 +124 +305 +154 +333 +152

(meqlkg DM)

aDigestible energy values in this table are from Dairy One Forage Lab Analysis
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Acid-Base Status

Blood Lactate

Blood lactate showed no significant response due to treatment or over time

(Figure 1). Mean lactate values for HC, RO, HH, LC, LO, and LH are .7545, .7546,

.8063, .7~I3, ,7~33, and .7650 mmoIIL, r~~iv~ly (Tabl~ 7). Th~~ ~ding 4lD<i pO~

feeding values are similar to basal lactate values (no excess lactic acid production) of

horses in other studies prior to feeding or exercise. (Garner et al., 1977; Popplewell et aL,

1993). Thus it is unlikely that any acid-base response could be attributed to lactic

acidosis from starch overload in the cecum.

Plasma Glucose

There was no significant effect of treatment on plasma glucose levels (Figure 2 &

Table 7). This is in agreement with Stull et a1. (1987) who found no difference in blood

glucose values when horses consumed diets of 100 % alfalfa, SWAt alfalfa and SWAt com,

100% com, or 90% com and 10 % com oil Hintz and coworkers (1972) further found no

significant differen~ in phisma gluCQ~ levels as the forag~ to grain ratio w~ ~ered

from 1:0, 3:2 and 1:4. The HO diet at feeding had a significantly lower plasma glucose

level than the LO and HH diets. There was a significant increase in plasma glucose levels

between feeding and two hours post feeding for the HC and HO diets. Furthermore this

same diet showed a significant decrease from two hours post feeding to six hours post

feeding
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Table 7
Effect of diet on blood lactate, glncose, pH, pC02, and HC03-.

Treatment

Item· BC LC DO LO HH LB 8.EM.
Lactate .754 .751 .754 .753 .806 .765 .02618
(mmollL)

Glucose 6.066 6.129 6.027 6.617 6.160 5.980 .25745
(mmollL)
PH 7.384b 7.368c 7.376b 7.368c 7.379t! 7.373c .00379

HC03" 3L39b 29.94c 3L06b 29.90c 30.30b 29.98c .25551
(mmollL)
pC02 53.00 52.34 53.58 52.38 51.70 51.88 1.0805
(mmHg)

a Values are least square means.
be Means within a row with different superscripts differ (P<.05) with respect to DeAD.
de Means within a row with different superscripts differ (p<.05) with respect to soW'Ce or
intake ofstarch.
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Blood pH

Horses consuming low DCAD diets bad a lower (P<.01) mean blood pH than the

horses on the high DCAD diets (Table 7). Since anions are absorbed from the intestinal

lumen in exchange for HC03- from the blood, there is an increase in blood hydrogen ions

thus decreasing pH. Conversely.cations are absorbed in exchange for H\ thus raising

blood pH (Baker et aI., 1992; Tucker et aI., 1990). This response agrees with several

studies showing that low DCAD diets result in a depression in blood pH (Baker et at,

1992; Wall et al., 1995; Patience et aI., 1987) There was no significant differences in

blood pH when comparing starch source or level ofstarch intake. This finding is in

contradiction with Ralston et al (1993) who found a lower blood pH in horses consuming

5 kg of grain and 2.7 kg ofgrass hay, versus horses consuming .45kg of gain and 7.7kg of

grass hay, irrespective ofDCAD. All horses in the present study tended to show a drop

in pH 2 h post feeding regardless ofdiet (Figure 3 & Figure 4). This may signal the time

of peak cr absorption, thus the highest concentration ofW in the blood. These values

were increased at 4 and 6 h post-feeding for all diets, except HO which was still lower at

4 h and increased at 6 h post feeding.

Blood Bicarbonate

The horses on the low DCAD diets bad significantly lower mean blood

bicarbonate (RC03') values than did the horses on the high DCAD diets (Table 7). This is

also due to the counterexcbange ofanions for HC03- between the intestine and blood.

These findings agree with several studies showing that low DCAD diets tend to decrease

the HC03- levels in the blood (Baker et al., 1992; Tucker et al., 1988).
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Bicarbonate also shows a significant dietary effect over time (Figure 5 & Figure 6). At

time of feeding the LO and LH diets started out with a lower (P<.05) HC03-level than

did the HC diet. Two hours post feeding there was no significant differences among

treatments. However at 4 h post feeding all the low DCAD diets had a significantly

lower HC03- concentration than did the He diet. The low DCAD diets also bad a mean

drop in bicarbonate from feeding to 6 h post feeding of 1.70 mmoVL, whereas the high

DCAD diets only dropped an average of .7167 mmol/l.

Blood pC02

Diet had no significant effect on mean pC02 readings (Table 7). There was also

no effect ofdiet on pC02values over time (Figure 7). MeanpC~ values ranged from

51.7 rom Hg to 53.58 mm Hg. These results are in contradiction with many researchers

(Baker et al., 1992; Stutz et al., 1992). This finding may be due to the fact that the

alteration in blood pH and HC03-, while statistically different, may not have been a

sufficient change for the body to correct the pH by altering alveolar respiration.

Urine pH

Urine pH was higher (P<.OOOI) for horses on the high DCAD diets, versus the

horses on the low DCAD diets (Figure 8). Since the final mechanism to reestablish acid­

base balance is urinary excretion ony in cases ofacidosis, and HC03- in cases of

alkalosis, it is evident why urine pH behaves in this manner. Horses consuming diets

HC, HO, and HH bad mean urine pH values of7.75, 7.94, and 7.67 respectively, where

as horses on diets LC, La, and LH had mean pH values of7.13, 7.11, and 6.93,

respectively.
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No significant difference in urine pH was detected between the com and oat based diets

(HC &LC vs HO & LO), or between the com and bay based diets (HC & LC vs HH &

LH). However, urine pH was higher (P<.OI) in horses consuming the high starch diets

versus the low starch diets. However, the urine pH values of the LH diet were

considerably lower than all other readings, which could account for this difference.

Dry Matter Digestibility

The effect oftreatment on dry matter digestloility and fecal output is shown in

Table 8. Fecal dry matter output was calculated by taking the gld intake ofchromiwn and

dividing that by the g of chromium per g of feces. Dry matter digestibility was

calculated by taking the dry matter intake minus fecal output and dividing by dry matter

intake. Dry matter digestibility was higher (P<.05) and fecal output was lower (p<.05)

for the high starch versus the low starch diets. This alteration in dry matter digestibility

agrees with Hintz et al. (1972), where dry matter digestibility increased with increasing

grain content of the diet. Furthermore there was a significant difference due to starch

source (HC & LC vs. HO & LO). There was no DeAD effect on dry matter digestibility

or fecal output. This data agrees with Baker et at (1997) who found that dry matter

digestibility didn't vary with respect to DCAD. However, Baker et al. (1993) did find

that dry matter digestibility did show significant differences with respect to DCAD.

Fecal output also disagrees with Baker et al. (1993) which found that DCAD had a

significant effect on fecal output.



Table 8
Effect of diet on dry matter digestibility, fecal output and urine volume.

Treatment

6.72

73.31 f

Item
HC

Dry Matter Intake
kgld
DM Digestibility
%
Feces gld 180S.87f

Urine ml/d 10454.01

LO
6.72

70.91 f

1960.44f

10251.68

HO
7.48

67.81 8

24120~

10558.85

LO
7.47

66.668

2488.928

8474.558

HH
10.01

57.86e

4211.0ge

9462.85

LH
9.96

57.38e

4259.08e

11740.64

SEM

2.26

194.15
1124.004

aValues are least square means
bcMeans within a row with different superscripts differ (p<.05) with respect to DeAD
deMeans within a row with different superscripts differ (p<.05) with respect to starch intake
fgMeans within a row with different superscripts differ (P<.05) with respect to starch source (excludes HH and LH diets)

..,.
10
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Energy Digestibility

The effect of treatment ofenergy digestibility is shown in Table 9. Energy

digestibility was calculated by taking the gross energy intake/day minus the gross energy

of fecal output/day and dividing by the gross energy intake/day. There. was no effect of

DeAD on energy digestibility. However, there was a significant difference with respect

to starch intake with the high starch diets having significantly higher energy

digestibilities. The HH and LH diets did have significantly higher DE intake values than

the HC, LC, HO or La diets. Digestible energy intakes on the HH and LH diets were

26.62 McaVd arid 25.95 McaVd respectively. Whereas the DE values on the HC, LC,

HO, and LO diets ranged from 23.31 McaVday, 22.68 McaVcL 24.15 McaVcL and 24.35

Mcal/day respectively. This difference may have been a result of the increased dry

matter intake and therefore increased gross energy intake for the bay diets, and not the

starch intake.

Mineral Balance

Due to the lack ofvariation in daily feed intakes between horses for each diet,

statistical analysis could not be completed for mineral intake values. Thus, the values

that are given are absolute values, and no orthogonal comparisons could be made.

Sodium Balance

The effect oftreatment on sodium. balance is shown in Table 10. In order to

achieve the elevated DeADs on the HC and HO diets, NaIlCO] was used.
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Table 9
Effect of diet on fecal energy loss and digestible energy.

Treatment

SEM

.984

.985

LH

44.29

IS.44f

HH

44.42

7.Sot

24.358

34.26

9.91 eb

HO LO

34.24

IO.09e1!

24.158

LC

30.73

S.04eg

22.6S8.

HC

30.43

23.31 g

Item-
GEbIntake
Mcal/d
GE feces
Mcalld
DE Intake
Mcal/d
Energy
Digestibility 76.S0e 73.93e 70.56e 70.9ge 59.SSf 5S.57f 2.54
%
aValues are Least square means.
bGrOSS energy as determined by oxygen bomb calorimetry.
aiMeans within a row with different superscripts vary (p<.05) with respect to DeAD.
efMeans within a row with different superscripts vary (P<.05) with respect to starch
intake.
ghMeans within a row with different superscripts vary (P<.05) with respect to starch
source (excludes HH and ill diets).
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T ble 10
Effect ofdiet on mineral balances

Treatment

Sodium
Intake
Urine
Fecal
Balance

Potassium
Intake
Urine
Fecal
Balance

He

25.71
16.66b

9.61d

-.57

68.22
43.44df

10.27d

14.51d

LC

14.93
7.41c

6.62d

.89

66.80
41.0Sdf

13.73d

11.9'P

HO

27.64
18.89b

10.Sld

-2.05

78.01
51.43da

10.43d

16.14d

LO

10.35
4.92c

9.39d

-3.96

82.14
47.35da

13.93°
20.86°

HH

23.05
12.87b

12.t6e

-1.978

190.55
108.l'P
30.34°
52.04°

LH

32.05
13.76°
13.53e

4.75

180.88
102.62e

32.93'
45.33e

SEM

1.181
1.176
1.612

2.406
2.287
2.915

Chloride
Intake 10:29
Urine 9.81bd

Fecal 1.54d

Balance -1.06d

Magnesium
Intake 12.28
Urine 2.86bd

Fecal 4.05
Balance 5.36bdf

Phosphorus
Intake 23.35
Urine .162d

Fecal 14.23d

Balance 8.9Sdf

42.99
30.46cd

1.40d

11.13d

12.28
3.61cd
4.80
3.8rtt

25.84
.200d

16.7~

8.8Sdf

13.95
9.14bd

1.34d

3.47d

IS.39
2.99bd

3.63
8.77bd8

30.23
.196d

11.80d

18.23da

34.99
32.7Scd

1.3r
.85d

16.25
4.04al

4.18
8.02ala

31.76
.16,0

13.74°
17.86da

69.32
57.69be

2.35°
9.28°

24.47
5.46be

4.06
14.95bo

22.17
.052°

6.84°
15.2Se

144.11
116.62D:l

2.38°
25.13e

23.37
s.or
3.90

11.39ce

22.10
.071e

7.81e

14.22°

2.835
.293

2.840

.366

.423

.511

.056
1.398
1.380

Calcium
Intake 132.71 128.27 144.44 143.81 100.76 88.17
Urine 9.22b 14.44c S.39b 14.50c 8.24b 22.52° 1.516
Fecal 58.15df 40.17df 31.21da 3S.99dg 15.43° 15.77° 5.268
Balance 65.34' 73.6Sf 104.848 90.318 77.07 49.86 5.600

~alues are least squares means.
~eans within a row with different superscripts differ (p<.05) with respect to DeAD.
~ within a row with different superscripts differ (p<.05) with respect to starch
intake.
f3Means within a row with different superscripts differ (p<.05) with respect to starch
source (excludes HH and LH diets).
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The DCAD ofthe llli diet is the naturally occurring DCAD. This resulted in the high

DCAD diets having a higher DCAD along with elevated daily sodium intakes. The intake

on the LH diet was elevated as well due to the supplementation ofNaCI in order to meet

NRC sodium requirements. Horses on the high DCAD diets did have a significant

increase in daily sodium urinary excretion over the horses on the low DCAD diets. High

DCAD diets resulted in sodium excretion least square means of 16.66, 18.89 and 12.87

gld for the HC, HO, and HH diets respectively. The LC diet had a daily excretion of7.41

gld with the LO and LH diet excretion of4.92 and 13.76 gld respectively The elevated

sodium urine excretion on the high DCAD diets agrees with Cooper et ale (1995) and

Wall et aL (1992) who demonstrated that daily sodium excretion is a function of sodium

intake. This is further shown in the cmrent study by the elevated urinary sodium

excretion on the LH diet, which had an elevated daily intake due to NaCI

supplementation even with a low DCAD. There was no significant effect ofstarch

source or intake on urinary sodium loss.

Daily fecal excretion of sodium did not vary with DCAD, starch source or intake.

The values ranged from 6.62 gld on the LC diet to 13.53 gld on the LH diet. The lack ofa

significant difference due to treatment on the fecal sodium excretions disagrees with

Baker et al. (1993), who found an increase (P<.05) in daily fecal sodium output as the

DCAD ofthe diet increased

The sodium balance calculated as the daily urinary sodium excretion plus daily

fecal sodium excretion minus daily sodium intake, did not vary with DCAD, starch

source or starch intake. The horses in the current study did demonstrate a very low or

even negative sodium balance.
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Potassium. Balance

The effect ofdiet on potassium balance is shown in Table 10. All potassium

intakes are due to naturally occurring potassiU1l1, thus resulting in the elevated daily

potassium intake on the HH and LH diets due to the high percentage of dehydrated alfalfa

in the ration. The potassium int~es for the HC, LC, HO, and LO diets are an at least Y2

the daily intake ofthe HH and LH diets. Starch source and starch intake had a significant

effect on the daily urinary potassium excretion. The llli and LH (low starch intake) diets

bad a significantly higher excretion than the HC, LC, HO and LO (high starch intakes)

diets. The HO and LO diets were also higher (P<.05) than the He and LC diets.

Low starch intake diets (HH & LH) also resuhed in an increased (P<.05) daily

fecal potassium excretion compared to the high starch intake diets. Furthermore, there

was no DCAD or starch source effect. The overall potassium balance mirrored the fecal

excretion with starch intake showing a significant difference in grams per day. The

potassium excretion and overall balance is similar to sodium in the fact that excretion is a

function of intake. These data agree with Tucker et al. (1990) and Baker et al. (1997)

who further demonstrated that the potassium excretion is dependent upon intake.

Chloride Balance

Chloride was the only anion that was manipulated to aher the DCAD. The LC

and LH diets had .24 and .25% ammonium chloride additions respectively, and the LH

diet had 1.0% ammonium chloride added. The effect of diet on cr balance is shown in

Table 10. The low DCAD diets had a significantly higher daily urinary chloride

excretion.
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The urinary chloride excretion data agree with Cooper et at (1995) which found that

daily chloride excretion was elevated on low DCAD diets, due to the increased daily

intake. Starch intake also resulted in a significantly lower urinary chloride loss on the

high starch diets when compared to the low starch diets.

Fecal chloride losses were lower (P<.05) on the high starch diets versus the low

starch diets. Furthermore, overall chloride balance also was higher (P<.05) on the low

starch diets as compared to the high. There was no effect ofDCAD on fecal chloride

losses or daily chloride balances. Baker et aL (1993) found that fecal chloride excretion

in sedentary horses did not vary with respect to DCAD. This study also showed that the

overall daily chloride balance showed no significant difference due to DCAD. These

data all support the findings of the current study.

Magnesium Balance

No alterations in dietary magnesium concentrations were made during this trial;

therefore all intakes are from naturally occurring sources. Daily intakes ranged from a

low of 12.28 gld on the HC and LC diets to 24.47 gld for the HH diet (Table 10). The

high DCAD diets did result in a decrease (P<.OOO2) in daily urinary magnesium

excretions. The least square means forthe high diets (HC, HO, and HH) were 2.86,2.99,

and 5.46 gld respectively. This is compared to the low DCAD diets (LC, LO, and LH)

which bad a daily urinary magnesium loss of3.61, 4.04 and 8.07 girl, respectively.

Starch intake also resulted in a significant increase in daily magnesium loss via the urine.

The effect ofDCAD on urinary and overall balance is in contradiction with other studies

(Baker et al., 1993; Baker et aL, 1997; Wall et a4 1997).
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This may be explained by the fact that renal magnesium handling parallels caloi~ thus

with increased urinary calcium losses and decreased balances on low DCAD diets, the

same effect occurs in magnesium (Best and Taylor, 1985).

The magnesium lost through the feces did not vary with treatment. This is in

contradiction with Baker et al. (1993) who found that as the DCAD ofthe diet increased

the daily fecal magnesium excretion declined in exercising and sedentary horses. Overall

daily magnesium balance was significantly higher on the high DCAD diets. The low

starch diets also resulted in an increased (P<.05) daily magnesium balance compared to

the high starch diets.

Phosphorus Balance

A concise effort was made to hold daily phosphorus intakes constant, however

daily intakes ranged from 22.10 g/d (LH diet) to 31.76 g/d (LO diet) due to the

subsequent variation of feedstuffs (Table 10). Daily urinary excretion ofphosphorus via

the urine is minimal, but does vary with respect to starch intake. The high starch intake

diets resulted in significantly higher daily urinary losses compared with the low starch

diets. Fecal phosphorus losses also decreased with the low starch diets. The daily

phosphorus balance shows was significantly lower on the high starch intake diets

compared to the low starch intake diets. Furthermore, the oat based diet bad a higher

(P<.05) daily phosphorus balance than the com diets. These data agree with Baker et al

(1993) and Wall et a1. (1992) who found the daily urinary phosphorus excretion and

balance did not vary with respect to DCAD and tended to mirror intake
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Calcium Balance

The effect of treatment on calcium balance is shown in Table 10. Once again as

with phosphorus diets were formulated to have constant calcium intake across treatments.

However, due to higher than expected levels in the com and oats that were used to

balance the diets, these four di~ did tend to result in higher daily calcium intakes over

the two hay diets.

Loss ofthe calcium through the urine was increased (P<.000l) on the low DCAD

diets. The LC, LO and LH diets resulted in daily losses of 14.44, 14.50, and 22.52 gld

respectively compared to the HC, HO and HH diets losing 9.22,8.39, and 8.24 gld

respectively. There was no e:trect ofstarch intake or source on urinary calcium losses.

The effect ofDCAD on daily urinary excretion of calcium agrees with many researchers.

Baker et al. (1993) found that as the DCAD ofthe diet decreased the daily urinary

calcium loss increased significantly in sedentary horses. Wall et al. (1997) also found

that in horses consuming the high DCAD diets; urinary calcium excretion declined. Beck

and Webster (1976) also found that acidotic rats experienced an increased urinary

calcium loss, possibly due to the increased acid load inhibiting renal tubular reabsorption

ofcalcium.

Fecal calcium loss was significantly higher on the high starch intake diets as well

as the com based diets when compared to the oat based diets. There was no effect of

DCAD on fecal calcium losses. The overall calcium balance did not vary with respect to

DCAD or starch intake but did with starch source. The HO and LO diets had a higher

(P<.05) daily balances with values of 104.84 and 90.31 gld respectively compared to the

HC and LC diets which had balances of65.34 and 73.65 gld.
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CHAPTER V

Summary and Conclusions

Once again this study indicates the strong connection between the dietary cation..

anion difference ofthe diet and acid-base status. Furthermore this trial establishes the

correlation between DCAD on acid-base status regardless of starch source or intake.

High DCAD diets appear to have a buffering capacity on acid-base parameters regardless

ofstarch source or intakes

Any correlation between treatment and mineral balance on this study is difficult.

1bere was a high degree ofvariation ofdaily mineral intakes, that could have confounded

the effects ofDCAD, starch intake or starch source. However, the link between low

DCAD diets and increased urinary calcium excretion was once again solidly established.

Therefore, there may have been detrimental losses of Ca++ through the urine on the low

DeAD diets, possibly due to bone turnover.

To improve the results ofthe current study some changes need to be made in the

experiment. First ofall, the diets should be fed on a percent ofbody weight basis.

Secondly the starch intakes may not have been high enough to really elicit any starch

effect. This area needs further research to determine of the mineral is that of intake or

bone, which would lead to further understanding.
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