MULTIMEDIA DATA STRUCTURES

LEARNING SYSTEM

By

DONGBI (CARL) LUO

Bachelor of Science
Jiangsu University of Science and Technology
Jiangsu, China
1982

Master of Science
Jiangsu University of Science and Technology
Jiangsu, China
1989

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
July, 1999

MULTIMEDIA DATA STRUCTURES

LEARNING SYSTEM

Thesis Approved:

Jecgose & Aro—en

Thesis Adviser

q,(\/_a_-fé@,

c fat o

%@

Wby B Powsut

Deah of the Graduate Colle ge

ACKNOWLEDGEMENTS

Praise be to God. Because of His Mercy I was finally able to finish my thesis.

[would like to express my sincere appreciation to all the people who assisted me
in this study. I am especially grateful to my major adviser, Dr. Jacques E. LaFrance, for
his encouragement and guidance throughout my academic study at Oklahoma State
University.

My sincere appreciation is also extended to Dr. J. P. Chandler, Dr. G. E. Hedrick,
and Dr. H. K. Dai for serving on my graduate committee and providing valuable
suggestions, ideas, and support.

My respectful and very special thanks to my father Shuming Luo, my mother
Linzhen Gao, my wife Ningning Wang, and my daughter Xinmiao Luo for their love,
encouragement, support, and confidence in me. And [would like to thank all other
members of my family for their love and support.

Finally, I would like to thank Computer Science Department and Mechanical and
Aerospace Engineering Department for their support during these two and a half years of

study.

Hi

TABLE OF CONTENTS

Chapter Page
L. INTRODEICTION. ..ocuvuiinassismammmmmssmmimes s sy cis s dsoses smanms dosssua i 1
L LITERATURE BRENVIEW. ... oo snminmumussinvspessiassisns s i iw s s assssnians 4

2.1 Data SHUCIINES: . icomeiimmisniimmivsivkesssss st vneams susihsse sormms s iausshe 4

AR STIIT:1 54211 o) | D P 6

2.3 NIBHITEOIR - cvcovncvioss mamunmesmass s s aba e v i T4 PSR R VA M SR S o s 9
HI.DESIGN AND IMPLEMENTATION .xomcsmmnmmainsv summoninmesmsssosnessin 12
3] BardWware And SOLYWEAYE . .o smisss s ms s s viss swasmms s e 12

3.2 System Degigh iz iivvinnismansenssiniisssisisasiseisaiiie s svasnansi 14

3.2.1 Design StrateIes. .. .vvieruerinriieririeeiiinraririireresesirineeiieenes 14

3. 2.2 Toplementation . ..vvimesssvisimmerns on sias sses sressssiua e nissmai 17

3.2.3 System Movie Making Procedure.............coccovviiiininiiinnnn 21

3.3 Design MultimediaAviTree Movie...... cocuuisssinasiss s 27

3.4 Implement AVL TICE.....c.ovviiiiiiiiiniieiieiiiiiiiiiiinieiiieniniineeens 41

2.5 MultimediaBSTIoe MOVIE: s iivsiniss insensssimss s usmsms o es semwssms 45

3.6 Source Code DeBIEN .. vinmmnssnaansismiiismis srssssmms s 48

V. TESTING ANB RUNNING: ..o s oo niauss 53
V. SUMMARY AND FUTURE WORK..;cvinnmininmmmiisime i eisis 72
5.8 SUIINAEY st corene oS uernen 8 SIS A EeA SRS B AN T AR 72

D2 PN WK o005 it oo .3 0510 4 R S WA S S R 53 73
BIBLIOGRAPILY . -.coviamiinsmmmiiis i s e s s s ros s 74

Chapter Page

APPENDIXES ..ottt ettt ettt e e e r e ettt e eaea e ra e eas 77
APPENDIX A: AVL Tree Lingo Coa......ciuussunimmiivavossssssmmvmsanviis 78
ALl Main SCriPt....cooviniiiiiiiiiiiiin e e 78
AT BT TUNCHION i v o i vrmisiinisisssosstos oo sl i o 2557 /80 A 8 b 82
A3 Delete RUNCHOM: vosisisaimsiinvissnsmsnnssinsaios sessvissssosvsios s savis 86
A4 Search FUNCHON.o.oitiiiiii it ee e 100
AiD Other BandIers: ... commosmmsmmansumssans samwarsmms sisssie susmasainss 104
APPENDIX B: Binary Search Tree Lingo Code................cocoeiiiininns 121
Bl Mt SO0DE-oorvisni s e o r s ne r e A e S A S e N R e o 121
B.2 Insert FUNCHOM. c..oiuuiiiiiiiiei it e e 124
B3 Delete BORCHON v oo mimsismvumusmamis st assves s s Comms pas s niasis 127
B4 Search Functon s insviviassiaiismaisvisasaisss smsasss s soviassamvess 137
B.5 Other Handlers..........oviiiiiiiiiii e, 141
APEENINX. C: Proprammer’s Guitde . oo sommssommmmesnmmsmminsmsensss 150

LIST OF TABLES
Table Page

2.1 Personal Computers Have Evolved Gradually to Include Multimedia

Capabilities.uvi it e e 10
3.1 Lingo Script versus Object-oriented Programming Language.............ccvuunue 13
3.2 'Song TEB...ovcuanmisinnsniam s Ei A S S R ST R R 16
3.3 Director 6 Main Control Items and Their Functions...........cccocvvvieiiinrennnne. 18
3.4 All Contents of AVL Tree Definitions and Conceptions...........ccccecviueneenannn 40
3.5 The Contents of Binary Search Tree Definitions and Conceptions................ 46

Vi

LIST OF FIGURES

Figure Page
2.1 The Interface of Director 0.0 iuisvsiiiiviri@smviisssnsssasnss sanssssiniass 11
3.1 System Welcome WindOW.couviriiiiiiiiiisiiiie i iiiseaiseens e sann 19
3.2 SystemMain Menn Window ... s v 20
3.3 Main Movie Internal ‘Cast Window . ; ..« :cvieseimssismsesiisesiinmssmsv s ssmssesiss 21
3.4 System Movie Script WindowW.......c.viiiiiiiiiiiiiiiiiiiiieiiieiiiiiiiiiseiiennne. 22
3:5 SystemnText 75 AVETrer WADKIOW = conimssssmmurmmmsrammime ssmimen s e s 23
3.6 System Script of Cast Member 7: AviTree Window................coceiiiiinnnn 23
3.7 ‘System Score Behavior Window - iscusansnnssimsisessismsm v i 24
3.8 System Score SCript WindOW.......o.ivieiiiriiiiiiitiinieeeiereeiens e 24
3.9 SYSIOIN SCOTE WITIIN. ¢ o 5005080080550 0054500580 R 070 410 SRSl 25
3.10 Change Rollover Pointer Image Dialog BoX..........cccvvviiiiiiiiiiiiiiiiinnnn. 27
211 AVL Tree INEHIACE. . v o riemnnn seibupions smmmsnssabpnsmsnnes sanndaammnbe shobyesii s s se 29
3.12 The Options of Operations MeENU.c..ueuirieiiiieerernsineiareraeeenaerenanns 30
F. 19 The Optiens of File MU «.cvsnviivisimmvisopiassaiinosisinisdsisaas it 30
3.14 The Options of Shows MenU. ;. cisissvissssosas s navassassrimsiassssssesiosss 30
3.15 The Options of Help MeNU..........vviiuiiiiiiiiiiiiitiieeieeeaeieieen 30
3:16 'The Opftions of Speed MRt . c....smwmm voavissimmmsmmsas s oaslissss i 30
3.17 The Example before Double ROAON. «.....orosessamescsisnssssnssmssasnsssisssonss 32

vii

Figure Page

3.18/ The Example after DoubleRotation. (.. /.....cccccciimicssinsssssssassmmssissssnssis 33
3.19 SingleRotateWithLeft Rotation Pattem...........cccoeiiiiiiiiiiiniiniiiiniiiinnn 34
3.20 SingleRotateWithRight Rotation Pattern...........ccovvieviiiiiiiiieieiieiieennennns 34
3.21 DoubleRofateWithRipht Rotation Paterm . . u.wascaenescssimsassnsnsvnssvissvesamss 34
3.22 AV Tree hnstncaon WindoW ... s imstinmsssmisis s 35
3.23 About AVL Tret WINAOW.. . .covsrmsrmrmsssmrsassressrssmsnsssssrnsesnsssmsasmmnzsesas 35
3.24 Definitions of AVL Tree Window.........ccvuiriiuiiiiiiiariiieiiiiiiiiiaienenananns 36
3.25 Select Movie Properties from “WinAB” Window.............coeeviiiiiiiiininnn. 37
3.26 Text Cast Member Properties WIndow... . isvvsiimsssivavesssssiassasnsini 37
3.27 Make Sure to Close Movie Window...........oeviiiiiiiiiiiieiiiiiiiinieanenn.. 40
3.28 AVL Tree Internal Cast WINQoW - cvonws s ssmsmsanssassnsassanavssasss s 41
3:20 .All'the Objects on AVL Trée Movie S1age......ivcvicwiniissivsivavsssisunise 43
3.30 The Sprite Number of the Objects on the Stage..............coovvveiieiiiiiiinnn. 444
3.31 MultimediaBSTree Movie Interface...............coooiiiiiiiiiiiiiiiiienn. 47
3.32 Flow Chart for MultimediaAvITree Movie. ..ovaivsmmsisinvinsvasmosamiaass 49
T P L ey 55
4.2 Tree Full MESSAZe.........couiuiiiiiiniiiet it a e e e 56
4.3 00t of Stage MESSAEE . .oxvaecinmiissesmismannsisvenisoeasesssmsrsnonsasasmassesssssss 57
44 No Input Data MESSAE. ... cisuvivmivinins ssssvisimosivsassnsas iamasis s i tuviomas 58
4.5 No Such Node in the Tree Message.cceesnesassaswirrisrsosbsssanssassosnsissionis 59
4.0/ This: Node Is already in'the Tree MeSEaEE. ...cvusvcumsimmsiss svamsswsi smsnmasensnrs 60
4.7 Example after Ingertion of Node 3, 2, 1...cviceimiinsiinsiivinsessisnispioarasasic 61

viii

Figure Page

4.8 Bxample after Insertionof Noded, 5, 6; 7 ..o cmsvusissmsmasmsmunassssss o 62
4.9 Example after Insertion of NOde16....c;c:woivisuesissamsaioninisnissssiysiansis 63
4.10 Example after Insertion of NodelS5..............oooiiiiiiiiiiii 64
4.11 Example after Insertion of Nodeld......ccmsmmmvesssessiserssamrsvesssiveseses 65
#12 Exanipleater Inseition of Nodel 3. ccovaminnnmnpinsssimassss 66
4. 13 Example after Ingertion of odel 2. .. coriisrimmmransvasseionn snnts s ks bodsssains 67
4.14 Example after Insertion of Nodell.........coovviiiiiiiiiiiiiiiiiiiini 68
4.15 Example after Insertion of NodelD........cccuinmisiiiuiisesismmanaiiis s 69
4.16 Example after Insertionof Node 8....ccinvmmiuissasnsmmammsansess 70
4.17 Example after Insertion of Node 9............ocooiiiiiiiiiiiiiiiiiiiicane, 71

CHAPTER 1

INTRODUCTION

With the development of the modern computer, the need for programs becomes
more acute, and this requires students and programmers to give more careful attention to
data structures and algorithms. A data structure is a mathematical abstract model which
consists of data and the operations applied to the data. A model is a tentative description
of a theory or system that accounts for all of its known properties. Therefore, the model
must be proved, tested, and solved. A systematic tool for solving this well-specified
computational problem has been known as an algorithm [11]. To meet the needs for
modem techniques of programming, algorithms must be represented in a certain method
as clearly and effectively as possible.

Multimedia will play an important role in developing educational techniques.
With a large-screen projector and multimedia playback system, a teacher can use
multimedia titles to enhance classroom presentation and stimulate questions. The
students can further explore topics at home using a multimedia platform.

A multimedia system [16] [29] includes multiple information channels through
which communications can be made. The information presented to users can be
visualization (text, image, animation, video), audio, or other signals for human sensory

systems.

Visualization is the process of transforming information into a visual form [14],
such as representing systems, concepts, or objects with computer multimedia, graphics,
and users’ interfaces [23]. It enables users to observe their simulations and computations.
Visualization is a very active and swiftly changing technique. This field has
tremendously affected such diverse areas as research, education, science, industry,
military, and entertainment. Applying visualization techniques can clearly and
effectively represent algorithms and help users improve the understanding of its complex
ideas.

Knowing these benefits of multimedia visualization technology rouses us to
develop this multimedia system as an assistant tool for learning data structures. As we
know, data structures are so important for computer science that almost every program
has one or more data structures. Since data structures can make data easy for storage,
transfer, retrieval, and maintenance in the program. The study of data structures would
be much easier if the learner could be able to visualize the representations of its various
complicated operations associated with its algorithm. Therefore, this system could be
definitely helpful for learning such abstract data structures.

The primary purpose of this thesis is to design and develop a flexible and user-
friendly software for simulating the animated operations of data structures as a teaching
and learning tool with multimedia technology. We name this software as Multimedia
Data Structures Leamning System, or MDSL system. It can help the user to execute and
visualize the immediate effects of each step of an operation on each data structure, as
well as explain the changes in visualization with sound. The emerging representation

formats, such as sound and animation, are much less developed than those for static

tJ

graphics [5] [10]. I have explored both sound and animation representation formats in
this project. My major task for this thesis program is general design of the MDSL
system. Because of limited time for thesis study, I only developed MultimediaAvITree
(AVL Tree; 2,450 lines lingo code, 46 handlers which is similar to the functions or
routines in C language) and MultimediaBSTree (Binary Search Tree; 1,650 lines lingo
code, 31 handers) software in the MDSL system. I have also modified some previous
visualization or multimedia data structures software and imported them to the MDSL
system.

The MDSL system has been developed by using Macromedia Director version
6.0. The Lingo scripting language of Director can precisely handle the implementation of
this software. This multimedia system has been built on the Microsoft Windows 98
operating system. But it also can run on the MS Windows 95/NT and Mac operating
system.

In this thesis, Chapter II will present a discussion on previous work related to data
structures, visualization, and multimedia. I will describe all the designing and
implementing details and explain various problems which I met in designing the software
in Chapter III. Chapter VI will be the testing and running of the system. The summary

of the thesis and suggestions for future work are presented in Chapter V.

CHAPTER Il

LITERATURE REVIEW

This study involves the design and implementation of an MDSL system in the
environment of Macromedia Director 6. The fields associated with its considerations of
this system could be grouped into the following three topics: Data Structures,

Visualization, and Multimedia.

2.1 Data Structures

Considerable research has been done to develop the study of data structures and
algorithms during the past years. Computer programming developed from a craft to an
academic discipline in the early 1970s. The pioneering work on the concept and study of
data structure was done by many authors such as Dahl [12] and Wirth [32]. Because of
their initial outstanding contributions toward this development, programs become the
concrete formulations of abstract algorithms based on particular representations and
structures of data. During 1980s and 1990s, with the development of the modern
computer, people realized the increasing role data structures and algorithms play in the
computer programming and its applications. Many scientists pay more attentions on the

development of data structures and algorithms.

For example, Reingold and Hansen [26] redifined the concept of data structures.
Based on his definition, the data structure could be represented in a set of function
associated operations, a storage structure implemented by the functions, and a set of
algorithms achieving the result for the corresponding functions.

Baron and Shapiro [6] described two ways for implementing data structures as
sequentially storing elements in contiguous memory locations and linked elements based
on some logical interconnections.

The tree-based data structures have the organization of linked structures. Aho and
Sethi [2] defined a tree as a collection of elements called nodes, one of which is
distinguished as a root, along with a relation (“parenthood”) that places a hierarchical
structure on the nodes.

Adelson-Velskii and Landis [1] introduced the AVL tree as a binary search tree
with a balance condition that for every node in the tree, the heights of the left and right
subtrees can differ by at most 1.

Weiss [31] published his textbook in which the principle and implementation of
data structures were systematically analyzed, described, and coded in C.

Appleton [3] designed a tutorial and C++ implementation of AVL trees.

The full C++ source code distribution of AVL trees and AVL tree library was established
in web site: AvlTrees.tar.gz (21KB, gzipped tar file). But there is no deletion function in
this web site.

Although considerable work has been done to develop the comprehension of data

structures, with some researchers even attempting to use a large number of examples and

graphic methods to show how the algorithm works, it is still not easy to understand the
implementation of those dynamic data structures. The keen learner would benefit

even more if the algorithms could be visualized and tested easily.

2.2 Visualization

Visualization technique is a method of presenting data and data structures, and is

an active research area. It enriches the process of scientific discovery and fosters
profound and unexpected insights. Since computers have become essential tools to
scientists, scientists have to formulate models of natural phenomena using mathematics.
In order to simulate complex events, they must automate their models as computer
algorithms. That is, scientists analyze their observations of nature in terms of
mathematical models, but the volumes of observed data dictate that these analyses be
automated as computer algorithms. Unlike hand computations, automated computations
are invisible, and their sheer volume makes them difficult to comprehend. Thus scientists
need tools to make their computations visible, and this has motivated active development
of scientific visualization systems.

In the early days, visualization systems were done more in films and video tapes.
The visualization was static and the users could not take part in the situation. Examples:
Knowiton [17] directed the first computer-generated movie which showed how an
assembly level language was implemented in 1966, Booth’s movie [8] showed several
algorithms on PQ-trees in terms of different inputs using a hash table and a graph, and

Baecker’s algorithm animation film [4] showed visualization of nine sorting algorithms.

Thus, since scientists have focused on representations of data structures and
created a variety of commercial systems, several visualization systems have been done to
display automatically some static graphs of a program’s data structures, but they cannot
show how the data structure changes and which operation is being executed. These
systems can be called static displays which only show the image of data, relationship of
data, and overall data structures. For examples, Myers [24] built a system for displaying
a data structure which can allow users to specify the variable name to get its graphical
display and select one of the formats associated with each data type. Wilson Lee [18], in
his master thesis, designed a data structures display system which implements linked-
lists, binary search trees, and B-trees on VT 100 type terminals. Zernik [33] introduced a
system named “Using Visualization Tools to Understand Concurrency” which uses
graphs to provide a logical view of execution according to computational threads,
messages, and synchronization events, and overcomes the concurrency bugs, as well as
giving the users a clear picture of concurrency. But these systems are rigid because they
display graphics as characters rather than as a combination of pixels. On the other hand,
these systems don’t have the operations of deletion for any data structure. As is common
with many data structures, the hardest operation is deletion. Once we have found the
node to be deleted, we need to consider several possibilities with many complicated
cases. In my opinion, as a teaching and learning tool, a system has to include deletion
operations for data structures. Otherwise, the system is not a complete one. So, in the
MDSL system, I have developed two data structures movies (MultimediaBSTree and
MultimediaAvITree) which have involved all of three operations (insertion, deletion, and

search).

Nowadays, the visualization system has become one of the most exciting and
rapidly growing fields in computer science. In order to overcome the static display's
shortcomings, scientists have developed a variety of visualization systems of dynamic
displays which show the behaviors of the algorithms and indicate the sequences inside
the codes of the algorithms.

The VIS-AD (VISualization for Algorithm Development) system was designed
by Hibbard, Dyer, and Paul [15] to help scientists visualize their computations. This
system can be understood in terms of its data model, computational model, and display
model. Unfortunately, this visualization system focuses on the visual programming
paradigm in an algorithm oriented way. Data itself cannot be accessed by the user
directly, but exists only internally.

Shen’s TBDSV (Tree-Based Data Structures Visualization) system [28] is built
on the X windows system. The TBDSV system simulated AVL tree, Red-Black tree, B-
tree, and Splay tree, but it cannot accept the user’s input for visualization. In his system,
there is no deletion operation available.

Furthermore, researchers have realized that human perception also depends on the
other four senses besides the vision sense exploited by graphs, texts, and animations. The
exploitation of the other human senses will be a great benefit for presenting and
comprehending complex information. For example, Bly [7] found that graphics plus
sound annotation were more effective than just graphics. With the development of sound
hardware and software, it is now possible to use more sound and clearer sound in the
visualization system which can be called “Multimedia Visualization System” since

microphone input of voice annotation is a common feature of personal computers. The

Multimedia Visualization System is a useful tool both for interpreting image data fed into
a computer and for generating images for complex multi-dimensional data sets. It will
help users comprehend the task of an algorithm and explore different scenes in the
construction of the data structures. Therefore, this system is appropriate for lab exercises
and distance learning as a teaching and research tool.

Explicitly or implicitly, visualization systems are also based on a display model in
which data and information are communicated to users [27]. Clearly, there is a need for
implementations of interface to complex data structures. Director 6 Multimedia Studio is

a great platform as a display model to implement the visualization system for my project.

2.3 Multimedia

Multimedia is a collection of various media, such as animation, sound, graphics,
text, photography, and video, which come together to constitute a singular form of
communication [19]. It effectively creates a sequence of events that will communicate an
idea usually with both sound and visual support. Typically, multimedia productions are
developed and controlled by computers [9].

In the early days of multimedia, the presentation depended heavily on skillfully
designed support devices, such as drawings, charts, graphics, and actual products.
Nowadays, the art of multimedia is still the same. However, the method of multimedia
and the new support products have ushered in a new era of sight and sound that adds a
variety of stimulus to contemporary presentations. Table 2.1 shows that personal

computers have evolved gradually to include multimedia capabilities.

Multimedia, like the computer itself, is a tool. This tool will be helpful in the
promotion of ideas, concepts, and services for developers. There are no limits for its use.

Multimedia processes are especially beneficial in the education area.

Years multimedia capabilities

1984-1987 Simple; Slide Shows; Basic interactivity

1988-1992 Faster Processors; Sophisticated graphical interface; Interactive
environments grow
1993-1999 Compact disk quality sound; 3-D animation; Presentation software

enhanced; Sophisticated authoring environments; Connection to
externals; Cross platform development

Table 2.1 Personal Computers Have Evolved Gradually to Include Multimedia Capabilities

Multimedia visualization systems allow their users to leam faster as well as
achieve better recall results. With computer-based learning techniques, the individual
can move at his own pace. In addition, a computer-based learning program has the
ability to change lessons and data for certain levels of staff learning. Another advantage
of these systems is that the content can include a variety of multimedia elements. The
integration of sound and visualization allows the learning technology to be a highly
effective medium. Such processes are particularly successful in the area of flight and
driving simulators [13].

There are many areas to consider when a multimedia project is planned. A few
are the hardware platform, the audience or user, and the design process. Perhaps the most
important event to consider is the choice of software. Software is like the engine of a car;
it takes you where you want to go. Having a software program that provides a workable
multimedia authoring environment can determine the success of your end project. There

are numerous software programs on today’s market, each with their own unique features.

10

My project requires developing a serious interactive content that demands considerable
extensibility. Therefore, I chose Macromedia Director 6 as the software program.

Director allows the development of a wide range of presentation types from the
very basic to the extremely sophisticated. Director has great strength in animation and
interactivity. The score windows in Director 6 allow virtually any action to happen based
on information entered in the score script window (see Figure 2.1). Director also
contains a complete set of painting tools to allow both the creation of a graphic object as
well as the modification of imported graphics.

The study of multimedia user interfaces has not matured into an independent
discipline. We need to examine a range of research contributions in disparate areas

which contribute to our understanding of these new interfaces.

Dwector 6.0

FER]) Rk
Con B

Figure 2.1 The Interface of Director 6.0

CHAPTER III

DESIGN AND IMPLEMENTATION

As stated above, the primary goal of this project is to design and develop a
flexible and user-friendly software (MDSL system) for simulating the operations of data
structures as a teaching and learning tool with multimedia technology. In this chapter,
besides system design and implementation, we also describe the design and
implementation of two main data structures movies (MultimediaAvITree and
MultimediaBSTree) in the MDSL system. In these two movies, both the AVL tree and
binary search tree can be implemented to simulate insertion, deletion, and search
operations, and to animate the trees of depth four, which has at most 31 nodes. This is
enough to show the principle of the trees’ operations. Users can insert, delete, and search

any node they desire during the implementation of the AVL tree and Binary Search tree.

3.1 Hardware and Software

This software will be developed by using Macromedia Director 6 and will be a
32-bit application. Director 6.0 has the following requirements for the system [19]:
Windows System Requirements:

e 486 DX, SX or greater

Windows 95/98, Windows NT 4.0, or later Direct 3D recommended

16 MB of available RAM

80 MB free hard disk space for installation

640x480(13-inch) resolution and 8-bit color (256 colors) monitor or higher
e 8-bit or 16-bit sound card
Macintosh System Requirements:

e Power Macintosh

System 7.5 or later with Quick Time extension. QuickDraw 3D recommended

16 MB of available RAM

80 MB free hard disk space for installation

640x480(13-inch) resolution and 8-bit color (256 colors) monitor or higher

8-bit or 16-bit sound card

Macromedia Director 6 is the world’s foremost powerful authoring tool for
multimedia production and for the Internet. It was introduced in March 1997. The Lingo
scripting language of Director 6 can precisely control text, sound, graphics, and digital

video. Lingo also has some concepts which are very similar to object-oriented

Common Term

Lingo Parent Child Property Handler Ancestor
Script script object variable

Object- Class Class Instance Method Super class
Oriented instance variable

Table 3.1 Lingo Script versus Object-oriented Programming Language

13

programming language. Table 3.1 shows common terms between Lingo script and
object-oriented programming language. Therefore, we can develop my project by using
Director 6 on Windows or Macintosh and play back executables on the platform (such as
0872, SGI, O8/9), over the Internet via Shockwave plug-in or Java™, or many interactive
TV formats.

This multimedia system will be built and run on the Microsoft Windows 95/98 or
NT operating system, which have good software reusability, maintainability and
accessibility. These provides a smooth and flexible open system user interface at a time
that users are accustomed to window-style interfaces. This system can also run under

Windows 95/98/NT and MacOS.

3.2 System Design

The operation of the multimedia system can be of a supportive nature, allowing
the designer to concentrate on content, and not the technical aspects of presenting. A
good feature of software is its capability to be used easily. Toward the goal of building a
user-friendly and reliable MDSL system, this section will discuss some design strategies
and implementation decisions which I have considered and made during the process of

designing this system.

3.2.1 Design Strategies

People remember 20% of what they see, 40% of what they see and hear, and 70%
of what they see, hear and do. This is also the basis for the learn-by-doing philosophy

embedded in my thesis design. This system can accept the user’s input algorithms for

multimedia visualization. That means the users can not only see and hear something but
also do something when they are learning. Actually, the implementations of the MDSL
system are controlled by users. The users can input the test data during the running time
and see the result.

As a teaching and learning tools, user interface has become very important.
Therefore this system is developed in windows environment and on the Macromedia
Director 6.0 platform, which have more benefits for designing the system user interface.
It can follow all user interface principles formulated by Sommerville [30]. That is, the
user interface should use terms and concepts which anticipated users are familiar with, be
appropriately consistent, include some mechanism which allows users to recover from
their errors, incorporate some form of user guidance, and the user should not be surprised
by the system.

Color can enrich the implementations of visualization and communicate
information presented to users more efficiently [15]. In my program, the current node
always is red and other nodes are all black. When the current node moves and animates
in the stage, the red current node can vividly show the operations of data structures in
order to hold audiences’ attention.

Audio can improve a multimedia presentation in many ways, but the most
important way is that it is used to enhance or augment the presentation of information and
instruction. In my program, sound effects have been merged into the program from a
different channel controlled by Lingo script. These sound effects (see Table 3.1) are
particularly related to programs that have an instructional message. For example, when

the user inserts, deletes, or searches a node from a data structure, there is a voice message

15

which says * You inserted, deleted, or searched a node”. If the user performs some
illegal operations, such as trying to search a node when there is no such node in the tree,
there will be an alarm dialog box which pops up with a text message, a system beep and a

voice message which says “This node is not in the tree, please try again”.

Sound file name Sound contents
StartWelcome Welcome to multimedia data structures learning system.
Please click one of the movies in main menu, and enjoy it.
Inputdata Sorry, please click input data field and enter a data.
Instruction Please read this instruction.
outStage Oops, out of the stage, please try again.
treeful Oops, this tree is full.
Insert You insert a new node.
Delete You delete a node.
Search You search a node.
Nodel This node is not in the tree, please try again.
Noinsert This node is already in the tree. i
Slrotate Need single rotation with left.
Srrotate Need single rotation with right.
Dlrotate Need double rotation with left.
Drrotate Need double rotation with right.

Table 3.2 Sound Files

Animation offers the temporal juxtapositions that graphics lack. Unlike print or
graphics, animation is a dynamic medium. We get a sense of relative timing, position,
direction, and speed of action. We need no captions, because the message is conveyed by
motion and image[25]. Therefore, we can get the most impressive smooth motion
with the animation technique.

People are always looking for new ways to educate their children. If they are
having fun, they learn better. Computer animation can be used to make exciting and fun
movies into which education can be easily incorporated. It is much more interesting to

learn math, for example, when the letters are nice, colorful, and flying on your TV screen.

16

You don’t need to solve problems on plain black and white paper. Actually, there is
much more to animation than fun. Animation has grown from being purely an
entertainment medium to being one of the most powerful ways to get your point across.
Whether you aim to deliver complex visual information or simply to keep the viewer’s
attention, animation is truly a powerful medium. Another reason for using computer
animation to simulate events as opposed to models is that variables can be programmed
into a computer and then very easily changed with a stroke of a button or select a menu
item in the interface.

In my project, the operations of data structures are implemented by using
animation techniques. For example, in MultimediaAviTree movie, animation techniques
are used in the movement of the nodes in the tree. That is, animation has been used to
show the user the tree’s operations and rotations. The speed actions of animation are
controlled by the “wait” handler in Lingo Script (see Appendix A), which has 18 speed
grades. Since different computers might have different speeds, the users can simply click
the SpeedUp and SpeedDown buttons on the stage to adjust the animation speed in the

running time, which makes the system more flexible and user-friendly.

3.2.2 Implementation
Since the MDSL system is developed by using Macromedia Director 6.0, we first
have to know Director 6.0 Control items [20] [21] [22] shown in Table 3.3.
The MDSL system consists of two main windows: System Welcome Window
and System Main Menu Window.

Figure 3.1 shows “ System Welcome Window”. When users run this system, the

17

system first shows this window. With beautiful music, this window will gradually

Control item Functions

Paint window provides the same tools in a paint application such as Microsoft paint,
supports Photoshop filters and new tweenable filters for graphic effects,
and be used to create and edit the user interface.

Cast window a multimedia database of graphics, text, sound effects, music and Lingo
scripts, and contains all the information in a movie.

Score window keeps track of each cast member on the stage in each frame of a movie and
controls tempo and the timing of sounds, transitions, and palette changes.

Control panel provides a set of controls similar to those on a VCR. The user
can use them to play, stop, or rewind a movie.

Stage window Stage in which movie appears. It is always open.

Sound control The user can import the sounds and music into a movie and can

control it with Lingo script language or a temp setting.

Lingo script director’s scripting language that adds interactivity to the multimedia
project. It can combine animation and sound in ways that score alone
cannot.

Table 3.3 Director 6 Main Control Items and Their Functions

move from the center to the top of stage. After this window disappears on the top of
stage, the system starts to run sound file “startWelcome” (see Table 3.2). The sound
explanation that is “Welcome to Multimedia Data Structures Learning System. Please
click one of the movies in the main menu, and enjoy it” will speak out from the
computer microphone. Accompanying this sound explanation, next window

“System Main Menu Window” (shown in Figure 3.2) appears in the center of stage. And
the data structures movies appear on the stage one by one. This time, users can select one

of these movies to play just according to the instruction of this sound explanation.

18

MultimediaDSLSystem - Duector 6.0

6l

Figure 3.1 System Welcome Window

MultimediaDSLSystem - Duector 6.0

| | w[al+ | BiELAlOlEl @ |

Multim edia mﬁh@"&uﬁ%gsynm

0T

Figure 3.2 System Main Menu Window

3.2.3 System Movie Making Procedure

The main system movie making procedure is much simpler than its data
structures’ movies because of its simple Lingo script code. First, we should do the

“Internal Cast” window of this movie, which shown in Figure 3.3. We can see that

=al Internal Cast : ' ' . B B

T o e | .

Figure 3.3 Main Movie Internal Cast Window

the total cast number used is 28. Cast 1 is the movie script. Click it and click the script
window button in Director 6.0 window. The script window will pop up as Figure 3.4.
We can directly code the movie script in this window, which is shown in Figure 3.4.
Then close the script window and save it. Cast 1 is done.

Cast 2 is a picture file. It is made by using MS PowerPoint. Save it as a picture
file, copy, and paste to the Paint window. Then import it into cast 2. The picture used
the library tower of Oklahoma State University and the American flag as background.

Type “Welcome to Multimedia Data Structures Learning System” by using “wordArt...”

Ed Movie Script 1-StartMovie

|] [statiovie

.

== LiE] Okl

on startMovie

puppetSound "welcomeMusic2”
updateStage

puppetSprite 1, True
set the stageColor to 0
end startMovie

on Prompt
set the ink of sprite (the currentSpriteNum) to 256
updateStage

end Prompt

on Noprompt
set the ink of sprite (the currentSpriteNum) to 1
updateStage

end noprompt

Figure 3.4 System Movie Script Window

from PowerPoint insert menu > picture. And type author, adviser, school name and date
by clicking “Text Box” button in the bottom of the PowerPoint window. If we use
Director Paint window or MS word window to make this picture, the text box cannot be
the same color of picture as the background. This is why we use MS PowerPoint to make
cast 2. In the same way, we can make cast 5 which is another picture file.

Cast 6~21 are “Text” messages on the stage, which can connect to data structures
movies. For example, when you make cast 7 (named AviTree), first click cast 7, and

click text window button in the Director 6.0 window. The text window will pop up as

Figure 3.5. We can type text content (MultimediaAvITree) in the text window. Then
click the Cast Number Script button in the text window. There is a script of cast member
7: AviTree window will pop up as shown in Figure 3.6. We can code cast script in this

window as shown in Figure 3.6. Then close these windows and save them.

22

A Text 7-AviTree

Figure 3.5 System Text 7: AviTree Window

E3 Sciript of Cast Member 7:AviTree H=1E3

T . | .

== L=l ofFE 2

on mouselp
play movie "MultimedialAvlTree"
end 2

on mouseEnter
Prompt
end

on mouseleave
Noprompt
end|

Figure 3.6 System Script of Cast Member 7: AvlTree Window

Cast 22~24 are all score behavior. If you click one of them, the Behavior
Inspector window will show up as Figure 3.7. When we click the script window in
this window, there will be a score script window pop up as Figure 3.8. We can see this
time consumer score behavior from Lingo script. They are put into the script channel in
the score window shown as Figure 3.9. The script channel stores behaviors or

instructions written in Lingo that are executed when the movie reaches a particular frame.

23

¢ Behavior Inspector

) e) O

on exitFrane i
startTimer '
repeat while the timer <60

nothing b
end repeat i
end

Figure 3.8 System score Script Window
Therefore, these score behaviors are put into different frames in the script channel
in order to control every data structures movie entering the stage at a different timc.
When the playback head reaches frame 25, the movie will loop here because Lingo in the
score script window is:
on exitFrame

go to the frame

puppetSprite 1, False

set the visible of sprite 1 to False

puppetSprite 2, True

set the soundEnabled to False

--set the main menu to the window

set the locV of sprite 2 to 196
set the locH of sprite 2 to 260

24

" Ul

set the visible of sprite 2 to True
updateStage
end

1 246

Ihi v

Copy 0 ' 25 193

¥ BackMain
232424242424 2424 24 2424242424

Member

—

Figure 3.9 System Score Window
This handler names exitFrame because it is executed when the playback head will
exit frame 25. Obviously, the first line Lingo “go to the frame” causes the movie loop in
the frame 25.
When the movie starts, the playback head is in frame 1. The Lingo script stored
in the script channel of frame 1 is:
on enterFrame
--move the welcome window and instruction window
--into or off the stage

puppetSprite 1, True
set the visible of sprite 2 to False

25

set the locV of sprite 1 to 190

set the locH of sprite 1 to 245

set the visible of sprite 1 to True
updateStage

startTimer

repeat while the timer <3*60
nothing

end repeat

--move the welcome window

repeat with i = 1 to 300
set the locV of sprite 1 to

(the locV of sprite 1 - 1)

updateStage

end repeat

set the visible of sprite 1 to False

updateStage

startTimer

repeat while the timer <60
nothing

end repeat

set soundEnabled to True
puppetSound "startwelcome"
updateStage
startTimer
repeat while the timer <60
nothing
end repeat
end
on exitFrame
puppetSprite 1, FALSE
set the visible of sprite 1 to False
end

This phrase Lingo controls the “System welcome window” to display, move, and
sound explanation.

In addition, we have used the behavior of Cursor Rollover and Mouse Down in
the System Main Menu Window that cursor changes from Arrow to Hand when the

user’s mouse cursor points to the text box of one of data structures movies. This cursor

26

change benefits for reminding user that the pointed data structure movie will be selected
to implement if he clicks mouse. In order to do so, we need to select the Behavior
Library from Director menu item Xtras. The Behavior Library Cast window will pop up.

Drag cast 47 (behavior of pointer rollover and mouse down) into system cast 26 (see

Parameters for “Ul Rollover and Mouse Down Pointer Change™

Figure 3.10 Change Rollover Pointer Image Dialog Box

Figure 3.3). Then drag system cast 26 to cvery text box of data structures movies in the
stage. When we drag system cast 26 to one of these text boxes, there is a dialog box that
will pop up as shown in Figure 3.10. Click first pull-down arrow and select “Hand” item
instead of “I-Beam’ item. Click OK. This behavior has been attached to this text box.

When the user points to this text box, the cursor will change from arrow to hand image.

3.3 Design MultimediaAviTree Movie
MultimediaAviTree is one of the main data structures movies in the MDSL
system. The user can implement the AVL tree by selecting MultimediaAvITree from the

main menu (see Figure 3.2). In the meantime, an empty data structure of the AVL tree

27

is created automatically by calling the newTree handler in startMovie (see Appendix A:
Lingo source code) script. The user can work on the AVL tree interface shown in Figure
3.11. Then the user is able to select any one of the operations of the AVL tree. But the
user has to select the insertion operation first for the empty tree. The user is also able to
input the data at running time, to execute an operation, to watch the animation of the
operation, and to listen to the explanation, which can enhance the user to understand the
concept of the AVL tree. In order to use the system conveniently for users, I have
developed three ways for users to input data. Firstly, users are able to select the options
of operations from the pull-down menu shown in Figure 3.12. Secondly, users are able to
select the options of operations by using combined keys. From Figure3.12, you can see
that users press “Ctrl + D” for insertion, “Ctrl + D” for deletion, and “Ctrl + S” for
searching. Thirdly, users able to select the options of operations by clicking the buttons
in the AVL tree interface (see Figure 3.11).

Besides the “Operations” menu item, there are three other menu items which are
“File”, “Shows”, “Help”, and “Speed” shown in Figure 3.13, 3.14, 3.15, and 3.16
respectively.

From Figure 3.14, we can see that there are five options in the “Shows” of the
pull-down menu item. If users select the option *“ Operations History” in the running
time, the “Operations history” text box and “Close” button will display on the stage (see
Figure 3.11). They will disappear if users click the “Close” button. The other four
options in the menu “Shows” are all rotation patterns which will display on the stage to
show users clearly how the rotation could be executed when the AVL tree needs to do

these rotations. These rotations patterns will cover the “Operation history” text box,

I
|

MultimediaAviTiee - Director 6.0

FEEECR FaEE ke O e ok

Operations history:

MultimediaAvITree - Ditector 6.0

Bl S =)

Insertion Chl+l

Figure 3.12 The Options of Operations Menu

MultimediaAviTiee - Director 6.0

BackMenu Ctl+B

Figure 3.13 The Options of File Menu

MultimediaAvITiee - Direclor 6.0

e

Ciperation Histoy

Figure 3.14 The Options of Shows Menu

MultimediaAvITree - Diwector 6.0

......

Figure 3.15 The Options of Help Menu

MultimediaAvlTree - Director 6.0

i

Figure 3.16 The Options of Speed Menu

30

which means these patterns don’t hamper users to visualize the implementations of the
AVL tree when they are displayed on the stage. For example, if users want to insert
node 14 into the AVL tree as shown in Figure 3.17, the AVL tree balance condition will
be destroyed. To rebalance the AVL tree, system will call doubleRotateWithLeft handler
to do double rotation. Before the insertion, users could display this rotation pattern by
clicking doubleRotateWithLeft option in the “Shows” menu item. The left side is the
pattern before rotation, and the right side is the pattern after rotation. Obviously, users
can easily compare the example with the rotation pattern to find out that node 6 is k1,
node 15 is k3, and node 7 is k2. Therefore, users already know the rotation result from
the rotation pattern. Figure 3.18 shows the result of the example after double rotation.
Figure 3.19, Figure 3.20, and Figure 3.21 show the singleRotateWithLeft,
singleRotateWithRight, and doubleRotateWithLeft rotation patterns respectively
(doubleRotateWithRight rotation pattern is shown in Figure 3.17).

Figure 3.22 shows the “Instruction” which guide users how to implement the
AVL tree movie because the “Instruction” shows all functions and properties of the

buttons and menu options in the AVL tree interface.

31

MultimediaAviTree - Director 6.0

[HEEREEN A R)=t
SpeedUp . o
' o O

. doubleRotateWithRight

[HEELEElrE T s (EEEab e
a O @

Operations history. Insert 6, Insert 4, Insert 15, Delete 4, Insert
, Insert 16, Search 5, Insert7, Insert 14

) ()

A :

A
A JEA:'N /2\

Figure 3.19 SingleRotateWithLeft Rotation Pattern

Figure 3.20 SingleRotateWithRight Rotation Pattern

: doubleRotateWithLelt

Figure 3.21 DoubleRotateWithRight Rotation Pattern

34

MultimediaAvITiee - Director 6.0

FEE R L e s
| X

+ Instiuctions

Instructions

1. This software is limited to 31 nodes for each AVL tree, which is
sufficient to illustrate the principles of the three operations, When a
user clicks the play button, there willbe & prompt in the input data
field. If there is no prompt in the input data field, the user should
click on the input date field first, then input the data.

2 The input data should be & nuraber less than 4 digits.

3. Click on the Insert, Delete, or Search button (or select them from
menu or use corabined key) to perform an operation.

4. Click on the Reset or New button to erase an old tree and build & new

one.

5. Click on the Exit button to quit the MultimediaAvITree window.

6. Select menu item File > backlVIain to go back to raain menu.

7. Select one of the rotations menu item from Show to display the
corresponding rotation pattern of AVL tree.

8. Select menu item OperationHistory fo display the operations that
have already been performed on the current tree.

9. Select menu item Definitions of AVL Tree to show the basic concepts
of AVL tree.

10. The animation speeds are divided into 18 grades, grade 1 is the lowest

speed, and grade 18 is the highest speed.

Figure 3.22 AVL Tree Instruction Window
If users select the AboutMultimediaAviTree or Definition of AVL Tree in the
“Help”menu item, Figure 3.23 or Figure 3.24 will pop up at the upper left corner of the

stage.

: aboutAviTree

MULTIMEDIA AVL TREE

Version 1.0
[IMacromedia Director Movies

f Direcior: Carl Luo
Il Advisor: Dr. LaFrance

Computer Science Department
” Oklahoma State University

Figure 3.23 About AVL Tree Window

35

\ Conceptions of AVL Trees

‘ Definitions and Conceptions
| of AVL Trees

An AVL tree is a binary search tree with a balance
| condition m which for every node i the tree, the heights of the
left and right subtree can differ by at most 1. (The height of an
| empty tree is defined to be -1.) i
I All the tree operations (insertion, deletion, and searching)
| ean be performed in this program.

| Insertion Algorithm

Figure 3.24 Definitions of AvliTree Window

Users can read definitions and conceptions of the AVL tree from “Definitions of
AVL Tree Window” if they don’t know about the AVL tree. Actually, the contents of the
AVL tree definitions and conceptions are shown in Table 3.4, which are more than users
can see in Figure 3.24. In order to save the “Definitions of AVL Tree Window” space
and make the users read the contents of the AVL tree definitions and conceptions
conveniently, I have made the scrolling bar in the right side of “Definitions of AVL Tree
Window”. This Window is supported by the “WinAB” movie. I can put the scrolling bar
in this window as follows:
1. Type all contents of the AVL tree definitions and conceptions in the text
message window of the “WinAB” movie.
2. Store this text message into the “winAB” internal cast window as a cast
member.

3. Drag this cast member and put it at the corner of the upper left stage.

36

4. Select the internal properties from the movie menu, which is shown in Figure
3.25. There will be a “Text Cast Member Properties” window that will pop up
(as shown in Figure 3.26). Click the pull-down arrow at the right side of the
framing text box. Select the “Scrolling” item instead of “Adjust to Fit” item.
Then click OK.

5. Adjust the side of “Definitions of AVL Tree Window” to look like Figure

3.24.

2 WinAB - Director 6.0

Figure 3.25 Select Movie Properties from “WinAB” Window

Text Cast Member Propeities

Figure 3.26 Text Cast Member Properties Window

37

Definitions and conceptions
of AVL Tree

An AVL tree is a binary search tree with a balance
condition in which for every node in the tree; the height of the
left and right subtree can differ by at most 1. (The height of an
empty tree is defined to be -1.)

All the tree operations (insertion, deletion, and
searching) can be performed in this program.

Insertion Algorithm

When we do an insertion, we need to update all the
balancing information for the nodes on the path back to the
root, but the reason that insertion is potentially difficult is that
inserting a node could violate the AVL tree property. It turns
out that this can always be done with a simple modification to
the tree, known as a rotation. After an insertion, only nodes that
are on the path from the insertion point to the root might have
their balance altered because only those nodes have their
subtree altered. As we follow the path up to the root and update
the balancing information, we may find a node whose new
balance violates the AVL condition and do the rotation to
rebalance the tree.

Rotation
Let us call the node X that must be rebalanced. Since
the X’s two subtrees’ height differs by two, it is easy to see that
a violation might occur in the following four cases in which we
need to do corresponding rotation (see four rotations patterns
by selecting them from Menu > Show) :
case 1: An insertion into the left subtree of the left child
of X. We need a single rotation to rebalance it
(called single rotation with left).
case 2: An insertion into the right subtree of the left
child of X. We need double rotation to
rebalance it (called double rotation with left).
case 3: An insertion into the left subtree of the right
child of X. We need double rotation to
rebalance it (called double rotation with right).
case 4: An insertion into the right subtree of the right
child of X. We need single rotation to rebalance
it (called single rotation with right).

38

Single rotation:

The pattern singleRotateWithLeft shows single rotation
that fixes case 1. The before picture is on the left, and the after
picture is on the right. Node k2 violates the AVL tree balance
property because its left subtree is two levels deeper than its
right subtree. The situation depicted is the only possible case 1
scenario that allows k2 to satisfy the AVL property before an
insertion but violate it afterwards. Subtree X has grown to an
extra level, causing it to be exactly two levels deeper than Z. Y
cannot be at the same level as the new X because then k2
would have been out of balance before the insertion, and Y
cannot be at the same level as Z because then k1 would be the
first node on the path toward the root that was in violation of
AVL balancing condition.

In order to ideally rebalance the tree, we would like to
move X up a level and Z down a level. Note that this is
actually more than the AVL property would require. To do this
, we rearrange nodes into an equivalent tree as shown in the
second part of this pattern.

Here is an abstract scenario: visualize the tree as being
flexible. Grab the child node k1, close your eyes, and shake it,
letting gravity take hold. The result is that k1 will be the new
root. k2>k1, so k2 becomes the right child of k1 in the new
tree. X and Y remain as the left child of k1 and right child of
k2, respectively. Subtree Y, which holds items that are between
k1 and k2 in the original tree, can be placed as k2’ left child in
the new tree and satisfy all the ordering requirements.

The pattern singleRotateWithright shows single rotation
that fixes case 4 which represents a symmetric case.

Double rotation:

The pattern doubleRotateWithLeft shows double
rotation that fixes case 2. In this case, it includes following two
single rotations:

1. Single rotate between k1 and k2,

k3->Left=singlerotateWithRight(k3-Left);

2. Single rotate between k3 and k2,

return singleRotateWithLeft(k3);

The pattern doubleRotateWithRight shows double
rotation that fixes case 3 which represents a symmetric case.

Deletion Algorithm
Binary search tree deletion algorithm:
case l: If the deleted node is a leaf, it can be deleted
immediately

39

P

3 State aiv. iiu

case 2: If the deleted node only has one child, the node
can be deleted after its parent adjusts a pointer
to bypass the node.

case 3: If the deleted node has both the left child and
right child, exchange this node with the smallest
node of the right subtree. Then delete the node.

Deletion in AVL trees is the same as in a binary search
tree, as above described. The rebalancing is as follows:

First, case 3 needs one more thing. After the exchange,
the deletion continues down the right subtree and eventually
deletes the exchanged node.

Second, after a deletion, only nodes that are on the path
from the deleted node or exchange node to the root might have
their balance altered because only those nodes have their
subtree altered. As we follow the path up to the root and update
the balancing information, we may find a node whose new
balance violates the AVL condition and do the rotation to
rebalance the tree.

Table 3.4 All Contents of AVL Tree Definitions and Conceptions

If users click “Exit” button on the stage, select “Exit” option from menu “File”
item, or press combined keys “Ctrl + E”, there will be a “Close This Movie 7’ window

(as show in Figure 3.27) that will pop up at the upper left comer of the stage. This

MultimediaAviTree - Duector 6.0

|3 el) | o)™) s | el [»
X

: Close This Movie ?

Are you sure to close This Movie ?

Figure 3.27 Make Sure to Close Movie Window

40

window wants users to make sure whether they really need to close the movie they are

working on or not.

3.4 Implement AVL Tree

First, I have made the AVL Tree “Internal Cast” Window shown in Figure 3.28.
Cast 3 is the “Menu” Lingo script for MultimediaAvITree movie. Other main Lingo
scripts are stored in Cast 1, Cast 4, and Cast 5 (see Appendix A). Cast 11, Cast 12, and

Cast 13 represent respectively the AVL tree’s node, left edge, and right edge. I have

== Internal Cast Ei=] E3

T o clef [

Erresane
o'l io 7 AP 4P AR A
Far

Figure 3.28 AVL Tree Internal Cast Window

41

dragged 31 of them into the movie stage shown in Figure 3.29. In order to code the
simulation of the AVL tree operations easily, I have put all objects (called sprite in
Director movie) on the stage into the first frame in the score window in order and
controlled them visibly or invisibly by Lingo script when users implement the AVL
tree. For example, 31 nodes are stored from channel 1 to channel 31. The compare
signal (cast 8) is stored in channel 32, which is used to compare the insert node or search
node with the current node. If the insert node or search node is larger than the current
node, the insert node or search node will go to the right child of the current node.
Otherwise, it will go to the left child of the current node. The moving node is made up of
Sprite redCircle (cast 9) stored in channel 33 and sprite movingToken (cast 10) stored in
channel 34. This red moving node plays an important role in the animation of the AVL
tree operations. Actually, all movements of the insertion, deletion, searching, and
rotation have been completed by this moving node. Thirty one numbers of left edges are
stored from channel 35 to channel 49 in order. Thirty one numbers of right edges are
stored from channel 50 to channel 64 in order. Sprites “value 1” ~ “value 31” (cast 21~
cast 51) are all fields stored from channel 65 to channel 95 in order, which are used to
show the values for each node respectively. Sprite “Arrow” (cast 32) is stored in channel
96, which is used to show searched node flashily. Sprite “showOpHi” (cast 53) is stored
in channel 97, which is used to show all operations history. Sprite “closeButton” (cast
54) is stored in channel 98, which is used to close the operations history text box on

the stage. Cast 14 is a text type cast stored in channel 99, which has “Input Data”
content. Sprite “inputField” (cast 15) is stored in channel 100, which is used to show

input data on the stage. Sprites “insertButton” (cast 16), “deleteButton™ (cast 17),

42

Gicii g

.

Okiafioma Siatie Taiv. &

ey

MultimediaAviTree - Director 6.0

HEEEEEN s s - o A=

BSpeednp .

133] Operations history:

Figure 3.29 All Objects on the AVL Tree Movie Stage

e

0000000000000000

e Operations history. 97

Figure 3.30 The Sprite number of the objects on the Stage

S TR it bt

> - »

“ExitButton” (cast 18), “ResetButton” (cast 19), and “searchButton” (cast 20) are stored
in channel 101, channel 102, channel 103, channel 104, and channel 105 in order, whose
functions are shown in Figure 3.22. These buttons always are visible on the stage. In

general, all sprite numbers (channel numbers) on the stage are shown in Figure 3.30.

3.5 MultimediaBSTree Movie

MultimediaBSTree is another data structures movie in the MDSL system. It
implements and simulates the operations of animated binary search trees on the Director
stage. The implementation and design of the MultimediaBSTree movie is similar to that
of the MultimediaAvITree movie. The main differences are their algorithms, such as
binary search trees don’t have balance conditions, so they don’t need the rotation
operations to rebalance the trees after users insert or delete some nodes from the trees.
Table 3.5 shows the binary search trees algorithm which is the contents of “Definitions of
BSTree Window” in the MultimediaBSTree movie. The readers can compare it with
Table 3.4 to see the details of their different algorithms.

Figure 3.31 shows MultimediaBSTree movie interface in which all objects on the

stage are visible before starting this movie.

Definitions and conceptions
of Binary Search Tree

The property that makes a binary tree into a binary
search tree is that for every node, X, in the tree, the values of
all the keys in its left subtree are smaller than the key value in
X, and the values of all the keys in its right subtree are larger
than the key value in X.

45

Ui

All the tree operations (insertion, deletion, and
searching) can be performed in this program.

Insertion Algorithm
The insertion is conceptually simple. To insert X into
tree T, proceed down the tree as you would with a Find. If X is
found, do nothing. Otherwisc, insert X at the last spot on the
path traversed. The Insertion into a binary search tree C code is
as following:
Insert(ElementType X, SearchTree T)
{
if(T==NULL)
{
/*Create and return a one-node tree */
T = malloc(sizeof(struct TreeNode));
if(T==NULL) i
FatalError("Out of space!!!"); i '

else
{
T- >Element=X; ‘vl
T- >Left=T->Right=NULL; :i |
} R
} J
else W '
if(X< T->Element) iE
T->Left=Insert(X, t->Left); 3
else [
if(X>T->Element) e
T->Right=Insert(X, T->Right); ha
/* Else X is in the tree already; we'll do nothing */ "‘.
return T;
}
Deletion Algorithm
case 1: If the deleted node is a leaf, it can be deleted
immediately

case 2: If the deleted node only has one child, the node can be
deleted after its parent adjusts a pointer to bypass the
node.
case 3: If the deleted node both has the left child and right
child, exchange this node with the smallest node
of the right subtree. Then delete the node.

Table 3.5 The Contents of Binary Search Tree Definitions and Conceptions

46

Ly

MultimediaBSTree - Director 6.0

| FEFEFRE HEERE T R EEEE

SpeedDown

. o

| B mnsert [@operations history: Insert 3, Insert 4, Insert 5, Delete 4
==

3.6 Source Code Design

I have described the system source code design in Section 3.2.3. The source code
of the MultimediaBSTree movie is similar to that of the MultimediaAvITree movie.
Therefore, I will focus on the MultimediaAvITree movie’s source code design in this
section. Figure 3.32 shows the flow chart for the MultimediaAvITree movie. As
mentioned before, this source code has 46 handlers. [will describe the following main
handlers and their pseudocode. They are the insert handler, the delete handler, and the
adjustbalance handler. The search handler is the same as the insert handler except for no
adjustBalance handler call. Other handlers source code can be seen for details in the
Appendix A of this thesis. There are two global linked lists in this program. One is
gNodeList which is used to link every node in the tree in order. Another is gHistoryList
which is used to store operation history in order. The AVL tree insertion and deletion
algorithm is shown in the Table 3.4. Its insert, delete, and adjustBalance handlers
pseudocode are as follows:

Insert handler:

On Insert
global gHistoryList, gNodeList
--check if the tree is full
--check if input data is blank or space

if input data is not in the tree

set input data=Token
set root=currentValue
while loop (current node has wvalue)
if currentValue>Token
insert node move to left child
set current node= left child
else
insert node move to right child
set current node=right child
end if

48

Start

v
System Welcome
Window and Audio Message
v
Back Main . Select to play
»{ Main Menu ; ; :
K MultimediaAviTree Movie
> New AVL 1
No
Prompt ? Click Input Field
About AVL Tree
Concepts of AVL Yes
Rotation Patterns Type Data N
I
Ty v ¥
Y Menu Button Combined Key
L [
Yes @pty?
No
v v v
Insert Delete Search
B ‘
AVL Tree Interface

Operation Animation

Figure 3.32 Flow Chart for MultimediaAvlTree Movie

49

iaiy

T

i Ve ddbsicid

Ui

o)
2

-

Ukiaficaia

end while loop
adjustblance (current node)

add Token into gNodeList
add Insert and string(Token) into gHistoryList

else
alert This node already in the tree

end if
end insert

adjustbalance handler:

on adjustBalance (currentNode)
set parent=(currentNode) /2
set GP=parent/2

if no grandparent
exit
end if

while loop (grandparent exist)
if (GP’s height difference between left
and right =2)
--need rotation

if parent is left child of GP and
currentNode is left child of parent
--case 1
singleRotateWithLeft (GP)

else if parent is right child of GP and
currentNode is left child of parent
--case 2
doubleRotateWithRight (GP)

else if parent is left child of GP and
currentNode is right child of parent
--case 3
doubleRotateWithLeft (GP)

else if parent is right child of GP and
currentNode is right child of parent
--case 4
singleRotateWithRight (GP)

end if

else
--up one level
set currentNode=parent | 1)
set parent=currentNode/2 |
set GP=parent/2 i
end if

50

end while loop
end adjustBalance

delete handler:

on delete
global gHistoryList, gNodeList
--check if input data is a blank or space
--check if deleted node is not in the tree
while loop
find deleted node position and treeHeight
end while loop

--delete this node in many cases
if deleted node is a leaf
deletenode
else if deleted node only has a left subtree
deleteNode
move left subtree up one level
else if deleted node only has a right subtree
deleteNode
move right subtree up one level
else if deleted node have both left and
right subtree
find minimum node in the right subtree
exchange the positions between deleted
node and minimum node
deleteNode
if current deleted node only has a
left subtree
move right subtree up one level
else
move left subtree up one level
end if
end if

deleteBalance

add deleted node into gNodeList
add Insert and string(deleted node) into
gHistoryList

Viiiv. sisiaiy

k)
I
3

"

id

Ukiaiic

end delete

In addition, Undo and Replay functions are very important for this system. If
users make a mistake, do a wrong operation, or don’t see clearly last step action of the
movie playing, they can select the Undo option from the menu operations item to go back

one step, then play again, or select the Replay from menu to replay the movie. Therefore,

51

we add the Undo and Replay functions in the system. The Replay function is similar to
the Undo function. The Undo will set on flag with which all operations have no
animations and delete the last element from gKeyList and gOpNameList. The Replay
will do all animation operations (see Appendix A for details). The following code is the
Undo function pseudocode.

on undo
declare global variables

set gUndoFlag=1
reset

set the highest gSpeedGrade
delete the last element of gKeyList and gOpNameList

--recover AVL tree except last element
x=numbers of the elements in gKeyList
loop from i=1 to i=x

Token= ith elements in gKeyList

if Operation = “Insert” then
insert operation

else if Operation = "Delete" then
delete operation

else
search operation

end if

end loop

set the normal gSpeedGrade

set gUndoFlag=0
end undo

52

aiadilid

UiKi

vidiy

o |

CHAPTER 1V

TESTING AND RUNNING

We dedicate the first part of this chapter to testing the MultimediaAvITree

movie’s error message. Then we are running the MultimediaAvilTree movie with the

example in book [31] (pp114-ppl19). Following is error message testing:

L.

Figure 4.1 shows the full AVL tree. If the user wants to insert another node
32 into this full AVL tree, system will beep, pop up the error message “Sorry,
this tree is full !” as shown in Figure 4.2, and audio message “‘Oops, this tree
is full”.

[f the user wants to insert a node 9 in to the AVL tree as shown in Figure 4.3,
this node will go to level 5. It is over system level limited: level 4. So, the
system will beep, pop up the error message “Sorry, Out of Stage, Try again”,
and audio message “Oops, out of stage, please try again”.

If the user doesn’t type data in the input data field, then do any one of
operations, there will be an error message that will pop up as shown in Figure
44.

If the user wants to delete or search a node which is not in the tree, system
will beep, pop up the error message ““This node is not in the tree, please try
again !” as shown in Figure 4.5, and audio message * This node is not in the

tree, please try again”.

53

=¥ 4

JEULE tithe il

Ukidagiia

5. If the user wants to insert a node which is already in the tree, system will
beep, pop up the error message “This node is already in the tree” as shown in

Figure 4.6, and audio message “This node is already in the tree”.

Running insertion operation with an example:

Insert the nodes 3,2,1, (as shown in Figure 4.7) and then 4 though 7 in sequential
order (the result is shown in Figure 4.8). Then we continue our previous example by
inserting the nodes 10 though 16 in reverse order (as shown in Figure 4.9, 4.10, 4.11,
4.12,4.13, 4.14, 4.15 respectively), followed by inserting node 8 (as shown in Figure
4.16) and then inserting node 9 (as shown in Figure 4.17). Since node 8 is in level 4,
node 9 should be node 8 right child in level 5. So insertion of node 9 caused “Sorry, Out
of stage! Try again!” message to pop up.

Besides running the insertion operation, we were also testing and running deletion

and search operations continuously during the development of this program.

54

iGi j

Lid

fii¥e

& &
o

UKidiidiiid Jiais

Y

MultimediaAvlTree - Director 6.0

[HEEEEER

Bt) Operations history. Insert 2, Insert 4, Insert 6, Insert 8, Insert 10,
Insert12, Insert 14, Insert16, Insert 18, Insert 20, Insert 22,

insert 24, Insert 26, Insert 28, Insert 30, Insert 1, Insert3, Insert
, Insert7, Insent 9, Insert11, Insert13, Insert15, Insert17,
Insert 19, Insert 21, Insert 23, Insert 25, Insert 27, Insert 29,

Figure 4.1 Full AVL Tree

UKIGHGEId Jigi€ Uiiiv. sissiai f

9<

Director

Operations history: Insert 2, Insert 4, Insert 8, Insert8, Insert10,
Iinsert12, Insert14, Insert 16, Insert 18, Insert 20, Insert 22,
nsert 24, Insert 26, Insert 28, Insert 30, Insert1, Insert 3, Inse

, Insert7, Insent 9, Insert11, Insert13, Insert 15, Insert17,
insert 19, Insert 21, Insert 23, Insert 25, Insert 27, Insert 29,
insert 31

Figure 4.2 Tree full Message

URiGGilld JiGiC Viiii. diiiGi

LS

[e) o e o W e e e I » 8 P o I B = [

Duector

Operations history: Insert 2, Insert 4, Insert 6, Insert 88, Insert
10, Insert12, Insert14, Insert 16, Insert 18, Insert 20, Insert 22,
insert 24, Insert8

Figure 4.3 Out of Stage Message

URKIdiiGilld JiGie Giiive aikiiGi §

8¢

| 7 e W P I N = Y

=
© Lo

=
=

—

Director

Operations history: Insert 5, Insert 9, Insert 32, Insert 82, Insert
75, Insert 41, Insert 87, Insert18

|FE=Eee]| e

peedlp

Duector

Operations history. Insert 100, Insert 200, Insert 300, Insert 150,
Insert 250, Insert 1000, Insert 5000, Insert 50

MultimediaAvITree - Duector 6.0

| i e o e e o s e O =)

Operations history: Insert 3, Insert 2, Insert 1 | Search |

Figure 4.7 Example after Insertion of Node 3, 2, 1

URiGiiGiiid JeGiT Jiidis Likiiif

MultimediaAviTree - Director 6.0

FlE =R lel e ek o e

Operations history: Insert 3, Insert 2, Insert1, Insert 4, Insert 5,
nsert 6, Insert 7

_insert |
| Exit

Figure 4.8 Example after Insertion of Node 4, 5, 6, 7

URIGIIGIGT Jilie SJfiidie ainwidi j

MultimediaAvITree - Duector 6.0

BRI e = -

Operations history; Insert 3, Insert 2, Insert 1, Insert 4, Insert 5,
Insert 6, Insert 7, Insert16

MultimediaAviTree - Director 6.0

| FEIEe) [l [0 R e [

Operations history: Insert 3, Insert 2, Insert1, Insert 4, Insert 5,
insert 6, Insert 7, Insert16, Insert15

Figure 4.10 Example after Insertion of Node 15

VRIGIiiG Gais Vtille sintue]

MultimediaAviTree - Director 6.0

== =2 e

Operations history: Insert 3, Insert 2, Insert 1, Insert 4, Insert 5,
Insert 6, Insert7, Insent 16, Insert15, Insert 14

Figure 4.11 Example after Insertion of Node 14

VRIGIIGiiiG wiliie Wiidie miwisisf

99

MultimediaAviTree - Duector 6.0

Operations history: Insert 3, Insert 2, Insert1, Insert 4, Insert 5,
Insent 6, Insert 7, Insert16, Insert 15, Insert 14, Insert13

L9

MultimediaAvITree - Director 6.0

Operations history. Insert 3, Insert2, Insert1, Insert 4, Insert5,
Insert 6, Insert 7, Insert16, Insert15, Insert14, Insert 13, Insert
12

Figure 4.13 Example after Insertion of Node 12

VRidiiViing wiliiv wiidié meWisi g

89

MultimediaAviTree - Director 6.0

Figure 4.14 Example after Insertion of Node 11

VAiGiiviiaa wiliiv iidiis amiwiss g

69

MultimediaAviTree - Duector 6.0

Operations history: Insert 3, Insert 2, Insert1, Insert 4, Insert 5,
Insert 6, Insert7, Insent16, Insert15, Insert 14, Insert 13, Insert
2, Insert 11, Insert 10

Figure 4.15 Example after Insertion of Node 10

VRl Vi witkiiv wiiiis imive s 4

oL

> MultimediaAvITiee - Diector 6.0

8 e S g e B e <[E [

Operations history: Insert 3, Insert 2, Insert1, Insert 4, Insert5,
Insert6, Insert 7, Insert16, Insert15, Insert14, Insert13, Insert
12, Insert11, Insert 10, InsertB

Figure 4.16 Example after Insertion of Node 8

VRIUIIVIGUG Tiuiv Wilizrs smemess g

1L

BEIFE | [b o

Durector

Operations history: Insert 3, Insert 2, Insert1, Insert 4, Insert5,
Insert 6, Insert 7, Insert16, Insent15, Insert 14, Insert 13, Inse
12, Insert11, Insert10, Insert 8

Figure 4.17 Example after Insertion of Node 9

VRIUIIVIGG Gk Wi as mewe e 4

CHAPTER V

SUMMARY AND FUTURE WORK
5.1 Summary

As mentioned earlier, the primary purpose of this thesis is to design and develop,
with scientific visualization and multimedia technology, an flexible, interactive, and user-
friendly MDSL system for simulating the animated operations of abstract data structures
as a teaching and learning tool. We have developed the MDSL system on the Microsoft
Windows 98/NT operating system with Macromedia Director 6.0 platform which has
good software accessibility, reusability, and maintainability.

For better understanding of the abstract data structures concepts and algorithms,
we have explored not only the human vision sensory system by using text, image, and
animation but also the human audio sense by using the sound message. In order to get
the best learning result, the MDSL system provides a good interactive user interface to let
users take part in simulations while they are leaming.

The use of color animation in the MDSL system enriches the implementation of
the visualization and communicates information to users more efficiently. In general,

users can get more information during their learning because of the good environment

provided by the MDSL system.

72

4

Widied

oddd

Wi

WANEW TFIII TR EaNwe ™

5.2 Future Work

This implementation performs the good features and fulfills requirements for the

MDSL system. However, there are some other features and schemes that could be

developed for the future works which are listed below:

L.

)

Currently, only the MultimediaAvlTree, MultimediaBSTree,
VisualRedBlackTree, MultimediaB-Tree, and MultimediaADT are available.
The others (shown in Figure 3.2) are not available yet. Therefore, we have a
lot of work to do. In the appendix, there is a programmer’s guide. If anyone
develops a data structure movie, he/she can follow this guide to add the movie
into the system.

Use the video technology in this multimedia system.

Add some examinations and quizzes into every data structure movie to test the
users’ learning results. The examinations and quizzes should be divided into
four or five levels for the different level learners.

Publish the MDSL system to OSU Computer Science Department web site,
and use the Shockwave plug-in as Internet multimedia movie for distance

learning.

73

et

Je3 F e ERE Y. —-—

WRIMIIViiiG Tivew @

(1]

(2]

(3]

(3]

(6]

(8]
(9]

[10]

BIBLIOGRAPHY

Adelson-Velskii, G. M. and E. M. Landis. An algorithm for the organization of
information. Soviet. Mat. Doklady, 3(3): pp. 1259-1263, 1962.

Aho, A. V., R. Sethi, and J. D. Ullman. Compilers: Principles, Technigues, and
Tools. Reading. Massachusetts. Addison-Wesley, 1985.

Appleton, B. URL: htip://www.enteract.com/~bradapp/ftp/src/libs/C++/AvITrees htr.

Baecker, Ronald. Sorting Out Sorting. 16mm color film with sound (25 minutes),
The Dynamic Graphics Project Computer Systems Research Group, University of
Toronto, Toronto, Canada, 1981.

Baecker, R. M. and W. A. S. Buxton. Reading in Human-Computer Interaction. Los

Altos, CA: Morgan Kaufmann,1987.

Baron, R. J. and L.G. Shapiro. Data Structures and Their Implementations. New
York. Van Nostrand Reinhold, 1983.

Bly, B. A. Presenting information in sound. Proceeding of CHI'85 Conference on
Human Factors in Computing Systems. New York: ACM Press, pp. 371-375, 1985.

Booth, K. PQ-Trees. 16mm color silent films (12 minutes), 1975.

Buford, J.F.K. Multimedia Systems. University of Massachusetts, Lowell, New
York, ACM Press,1994.

Buxton, W., S. A. Bly, S. P. Frysinger, and D. Lunney. Communications with
sound. Proceedings of the ACM SIGCHI Human Factors in Computing Systems

Conference. New York: ACM Press, pp. 115-119, 1984.

T4

SRR e = —— r

" FTTEN

e e

WRiIMIiGViiid

[11] Cormen, T. H., C. E. Leiserson, and R. L. Rivest. Introduction to
Algorithms. MIT Press; New York, McGraw-Hill, 1990.
[12] Dahl, O.J., E. W. Dijkstra, and C. A. R. Hoare. Structured Programming. New
York, Academic Press, 1972.
[13] Earnshaw, R. A. and J. A. Vince. Multimedia System & Applications. San Diego,
CA, Academic Press Inc, pp. 133-140, 1995.
[14] Gershon, N. D. From perception to visualization. Computer Graphics. 27(5):
pp- 414-417, 1992.
[15] Hibbard, W., C. Dyer and B. Paul. Display of scientific data structures for algorithm
visualization. Visualization, Boston, IEEE, pp. 139-146.1992.
[16] Keyes, Jessica. The McGraw-Hill Multimedia Handbook. New York, R. R.
Donnelley & Sons Company. 1994.
[17] Knowlton, K. C. L6: Bell Telephone Laboratories Low-level Linked List Language,
Two Black and White Sound Films. 1966.
[18] Lee, Wilson. An Implementation of a Data Structures Display System. M.S. Thesis.
Computer Science Department, Oklahoma State University, Stillwater, OK, 1988.
[19] Lopuck, Lisa. Designing Multimedia: A Visual Guide To Multimedia and Online
Graphic Design. Berkeley, CA, Peachpit Press, 1996.
[20] Macromedia Director 6 Lingo Dictionary. Macromedia, Inc., 1997.
[21] Macromedia Director 6 Using Director. Macromedia, Inc., 1997.
[22] Macromedia Director 6 Using Lingo. Macromedia, Inc., 1997.
[23] McCormick, B. H., T. A. DeFanti, and M. D. Brown. Visualization in scientific

computing. Computer Graphics. 21 (6): pp. 1-14, 1987.

75

W aas

WhHilMiivirie & owew

[24] Myers, B. A. INCENSE: A system for displaying data structures. Computer
Graphics. 17 (3): pp. 115-125, 1983.

[25] Petrik, Paula and Dubrovsky, Ben. Creating and Designing Multimedia with
Director Version 5.0. New Jersey, Prentice-Hall, Inc., 1997

[26] Reingold, E. M. and W. J. Hansen. Data Structures. Boston. Little, Brown and
Company, 1983.

[27] Robertson, R. K., R.A. Earnshaw, D. Thalman, M. Grave, J. Gallup, and E. M. De
Jong. Research issues in the foundations of visualization. Computer Graphics and
Applications. 14 (2): pp. 73-76, 1994.

[28] Shen, Hung-che. A Visual Aid for the Learning of Tree-based Data Structure. M.S.
Thesis. Computer Science Department, Oklahoma State University, Stillwater, OK,
1994.

[29] Sheu, Bing., and Ismail, Mohammed. Microsystems Technology for Multimedia

Applications. New York, The Institute of Electrical and Electronics Engineers, Inc.,

1995.

[30] Sommerville, 1., Software Engineering (third edition), Reading, MA: Addison-
Wesley Publishing Co., 1989.

[31] Weiss, M. A. Data Structures and Algorithm Analysis in C. Menlo Park. CA:
Addison-Wesley Publising Co., 1996.

[32] Wirth, N. Systematic Programming: An introduction. Englewood Cliffs, NJ,
Prentice-Hall Inc., 1973.

[33] Zernik, D., M. Snir, and D. Malki. Using visualization tools to understand

concurrency. IEEE Software. 9 (3): pp. 87-92, 1992.

76

& W ena

v

WiHildaisvirse

APPENDIXES

aamoem smesrrarfmldN

77

APPENDIX A

AVL TREE LINGO CODE

e e o o e e o e o e

-—+ +

== Main Script +

-—+ -

a2 e e e o o o o o o o

on startMovie

-- global variable declarations
global gNodeList,gHistoryList,gSpeedGrade
global gKeyList, gOpNameList, gUndoFlag, gReplayFlag

set gKeyList = []
set gOpNameList = []
set gUndoFlag=0

set gReplayflag=0

newTree

set the stageColor to 43

set the backCoclor of sprite 96 to 43

set gSpeedGrade to 9

set the text of member "speedField" to string(gSpeedGrade)

installMenu 3

end startMovie

B o o e e e o o o e o o i o o S e
on reset

global gHistoryList, gNodeList

global gKeyList, gOpNameList, gUndoFlag, gReplayFlag

set gHistoryList = []
set gNodeList = []
history

if gUndoFlag=0 and gReplayFlag=0 then
set gKeyList=[]
set gOpNamelList=[]

end if

repeat with i=1 to 98

puppetSprite i,True

set the visible of sprite 1 to False
end repeat

78

Wil Wit wemyw

set the text of member "InputField" to ""

repeat with i=21 teo 51
set the text of member i to ""
end repeat
end reset

i o e i o o s ok o o o o S S R S S o O S S e

on newTree
reset
end

Bt b b L o o D i o o o o b o o o o

on backMain
play done
end

ekt i o o b Bl B o o b B o o o e

on stopmovie
repeat with i=1 to 98

set the visible of sprite i to False
end repeat

set the text of member "InputField" to ""

repeat with i=21 to 51
set the text of member i to "
end repeat
end

T o e e o o o o e e e

on closeWin
set the modal of window "WinAB" to False
set the windowtype of window "WinAB" to 4
set the rect of window "WinAB" to rect(10,50,330,180)

tell window "WinAB" to go to frame "Exit"
open window "WinAB"
end

B L b b ok o b o e e e e e e

on instruction
puppetsound "instruction"
updateStage
set the modal of window "WinAB" to False
set the windowtype of window "WinAB" to 4
set the rect of window "WinAB" to rect(10,50,380,345)

tell window "WinAB" to go to frame "Instruction"

open window "WinAB"
end

79

- ey v

WP A M T s

e T o o e o o T

on SLrotation
set the modal of window "WinAB" to False
set the windowtype of window "WinAB" to 4
set the rect of window "WinAB" to rect({247,490,777,620)

tell window "WinAB" to go to frame "SLrotation®
open window "WinAB"
end

R e T o o o o e e e e o o o R 'S

on SRrotation
set the modal of window "WinAB" to False
set the windowtype of window "WinAB" to 4
set the rect of window "WinAB" to rect(247,490,777,620)

tell window "WinAB" to go to frame "SRrotation"
open window "WinAB"
end

e B o S o S o

on DLrotation
set the modal of window "WinAB" to False
set the windowtype of window "WinAB" to 4
set the rect of window "WinAB" to rect(247,490,777,620)

tell window "WinAB" to go to frame "DLrotation"
open window "WinAB"
cnd

e o o o e o o S o S o e e e R s

on DRrotation
set the modal of window "WinAB" to False
set the windowtype of window "WinAB" to 4
set the rect of window "WinAB" to rect(247,490,777,620)

tell window "WinAB" to go to frame "DRrotation"
open window "WinAB"
end

B b o o ek o o o S o
on aboutAvlTree
set the modal of window "WinAB" to True
set the windowtype of window "WinAB" to 4
set the rect of window "WinAB" to rect(10,50,300,280)
tell window "WinAB" to go to frame "AboutAvlTree"
open window "WinAB"

end

B o o o o b b e o o o ot

80

Wil dras wass v

on definition
set the modal of window "WinAB" to True
set the windowtype of window "WinAB" to 4
set the rect of window "WinAB" to rect(10,50,390,300)

tell window "WinAB" to go to frame "Definition"
open window "WinAB"
end

i o o o o o S e e e e

on history
global gHistoryList

set operationNum to count (gHistoryList)
if operationNum=0 then
set operations="Operations history: "
else
set operations="Operations history: "=
& getAt (gHistoryList, 1)
repeat with i=2 to operationNum
put ", " & getAt(gHistoryList,i) after operations
end repeat
end if

puppetSprite 97, True
puppetSprite 98, True
set the visible of sprite 97 to True
set the visible of sprite 98 to True
set the text of member "showOpHi" to operations
updateStage
end history

i T e o T R R

on closeButton
puppetSprite 97, False
puppetSprite 98, False
set the visible of sprite 97 to False
set the visible of sprite 98 to False
end

Bk o o ok o o e e S o o o e e o o o o o o o o o S o o =
- Menu Script +
B o o o o b E o ot o =

menu: File
New/N|newTree
Reset/R|reset
BackMenu/B|backMain
(=
Exit/E| closeWin
menu: Operations
Undo/U|undo

81

WL eeas w -

Replay/P|replay

Insertion/I| inser:

Deletion/D| delete

Searching/S| search

menu: Speed

SpeedUp/V | speedUp
SpeedDown/W | speedDown
CloseSpeedButton|closeSpeed
ShowSpeedButton | showSpeed

menu: Shows

singleRotateWithLeft| SLrotation
singleRotateWithRight| SRrotation
doubleRotateWithLeft| DLrotation
doubleRotateWithRight | DRrotation
Operation History| history

menu: Help

Instruction| instruction
Definitions of AVL Tree| Definition
AboutMultimediaAvlTree| aboutAvlTree

i e o e o e o ol e e A S T o e

-—+ Insert Function +
R o o o o o T e e

on insert
global gNodeList, gHistoryList, gSpeedGrade
global gKeyList, gOpNameList, gUndoFlag, gReplayFlag

--check if the NodeList is full
if count{gNodeList)=31 then
puppetsound "treeful"

updateStage
alert "Sorry, The Tree is fulll"
exit

end if

--let Token = input data
set Token to valuel(the text of member"InputField")

--check if Token is blank or a space
if Token="" or Token=" " then
puppetsound "inputdata"
updateStage
alert "Please enter a data value in the box."
exit
end if

--remove input data from InputField
put "" into field "InputField"
updateStage

if gUndoFlag=0 then
puppetsound "insert!'
updateStage

end 1if

82

1 FITE TT RN

--active compare,movingNode, and movingToken
puppetSprite 33, True
puppetSprite 34, True
puppetSprite 32, True

--close "winAB" window
close window "winAB"

if count(gNodeList)=0 then
set the visible of sprite 1 to True
set the visible of sprite 65 to True
set the text of member "valuel" = string(Token)
set the enabled of menultem "undo" of menu "Operations" to True
set the enabled of menultem "Replay" of menu "Operations" to-
True
updateStage

if gUndoFlag=0 then

add gKeyList, Token

add gOpNameList, "Insert"
end if

add gNodeList, Token
add gHistoryList,"Insert " & string(Token)
history
else
if getOne(gNodeList, Token)=0 then
set currentNum=1
set currentValue=value(the text of member "wvaluel")

set the text of member "movingToken" to string(Token)
set TreeLevelcount=-1

repeat while voidP({currentValue)=False
set currentSprite=currentNum
set TreeLevelcount=TreeLevelcount+l

--Check if tree levels are more than 4
if TreeLevelcount>=4 and the visible of sprite (currentNum)-
=True then
set the visible of sprite 32 to False
set the visible of sprite 33 to False
set the visible of sprite 34 to False
puppetsound "outStage"
updateStage
alert "Sorry, Out of stage! Try again!"
exit
end if

if gUndoFlag=0 then
--move compare,movingToken, and movingNode to the right of
--currentNode
set the locH of sprite 32 to the right of sprite-
currentSprite
set the locV of sprite 32 to the locV of sprite-
currentSprite-6

set the locH of sprite 33 to the right of sprite-
currentSprite+40
set the locV of sprite 33 to the locV of sprite-~
currentSprite
set the locH orf sprite 34 to the locH of sprite 33-13
set the locV of sprite 34 to the locV of sprite 33-8
end if

if currentValue > Token then
set the text of member "Compare" to ">"
set edge=currentNum+34
set currentNum=currentNum*2

else
set the text of member "Compare" to "<"
set edge=currentNum+49
set currentNum=currentNum*2+1

end if

if gUndoFlag=0 then
set the visible of sprite 32 to True
set the visible of sprite 33 to True
set the visible of sprite 34 to True
updateStage

end if

set temp=gSpeedGrade
set gSpeedGrade = 6
wait

set gSpeedGrade=temp

--make compare field invisible
set the visible of sprite 32 to False

--move insert node to the current node position

repeat with i=the locH of sprite 33 down to -
{the locH of sprite currentSprite)
set the locH of sprite 33 to (the locH of sprite 33-1)
set the locH of sprite 34 to (the locH of sprite 34-1)
walt
updateStage

end repeat

if gUndoFlag=0 then
--move insert node to the child position of current node
set cnH=the locH of sprite currentNum
set cnV=the locV of sprite currentNum
set csH=the locH of sprite currentSprite
set csV=the locV of sprite currentSprite

if currentValue > Token then
--move to left child
moveOneNodeLeftDown (csH, csV, cnH, cnV)

else

--move to right child
moveOneNodeRightDown (csH, csV, cnH, cnV)

84

W Eeg e

end if
end if

wait

if the visible of sprite (currentNum)=False then
--make the edge and current node visible
set the visible of sprite edge to True
set the visible of sprite currentNum to True
set the visible of sprite currentNum+64 to True
set the text of member 20+currentNum=string(Token)
wailt
updateStage
exit repeat

else
set currentValue=the text of member (20+currentNum)

end if

end repeat

updateStage
wait

adjustbalance (currentNum)

set the visible of sprite 33 to False
set the visible of sprite 34 to False

if gUndoFlag=0 and gReplayFlag=0 then
add gKeyList, Token
add gOpNameList, "Insert"

end if

add gNodeList, Token

add gHistoryList, "Insert " & string(Token)
else

puppetsound "noinsert"

updateStage

alert "This node is already in the tree."
end if

end if

history
end insert

B L o o o b o o o o T e o b S T SR AR o 8

on adjustBalance thisNum

set thisParent=thisNum/2
set GP=thisParent/2

if GP<1l then
exit
end if

repeat while GP<>0)

85

if (abs (getLeftHeigh(GP)-getRightHeigh(GP))=2) then

--need rotation
if({thisParent med 2)=0 and (thisNum mod 2)=0) then
--case 1
puppetsound "slrotate"
SLrotation
updateStage
wait
singleRotateWithLeft (GP)
else if((thisParent mod 2)<>0 and (thisNum mod 2)=0) then
--case 2
puppetsound "drrotate"
DRrotation
updateStage
wait
DoubleRotateWithRight (GP)
else if((thisParent mod 2)=0 and (thisNum mod 2)<>0) then
--case 3
puppetsound "dlrotate"
DLrotation
updateStage
wait 1
DoubleRotateWithLeft (GP)
else if((thisParent mod 2)<>0 and (thisNum mod 2)<>0) then
--case 4
puppetsound "srrotate"
SRrotation
updateStage
wait
singleRotateWithRight (GP)
end 1if

else
--up one level
set thisNum=thisParent
set thisParent=thisNum/2
set GP=thisParent/2

end if

end repeat
end adjustBalance
B Ik o o o o o o o e o o o S o S

g Delete Function +
B T o b

on delete
global gNodeList, gHistoryList, gSpeedGrade
global gKeyList, gOpNameList, gReplayFlag, gUndoFlag

--let Tokken = input data
set Token to value(the text of member"InputField")

86

--check if Token is blank or a space

if Token=""

alert
exit

end if

or Token=" " then
puppetsound "inputdata"
updateStage
"Please enter an data in the box."

--check if delete node is not in the Tree
if getOne(gNodeList, Token)=0 then

puppetsound "nodel"
updateStage
alert "This node is not in the tree, please try again!"

exit

end if

if gReplayFlag=0 and gUndoFlag=0 then
puppetsound "delete"
updateStage
end if

--remove input data from InputField

put
updateStage
--close "winAB"

close window "winAB"

window

“" into field "InputField"

--active compare,movingNode, and movingToken
puppetSprite 33, True
puppetSprite 34, True
puppetSprite 32, True

--set the backColor of movingNode to the backColor of stage
--set the backColor of sprite 8 to 43

--initialize current node and movingToken
set currentNum=1
set currentValue=value(the text of member "valuel")

set the text of member "movingToken" to string(Token)

--the root is the delete node
if currentValue=string(Token)

root

set the text of member

if gUndoFlag=0 then
--move compare,movingToken,

set
set
set
set
set
set

set

the
the
the
the
the
the

the

locH
locv
locH
locV
locH
locv

visi

of
of
of
of
of
of

ble

sprite
sprite
sprite
sprite
sprite
sprite

32
32
33
33
34
34

of sprite

then

to
to
to
to
to
to

32

87

" Compare " to "_n

and movingNocde to the right of

the right of sprite 1
the locV of sprite 1-6
the right of sprite 1+40
the locV of sprite 1

the locH of sprite 33-13
the locV of sprite 33-8

to True

set the visible of sprite 33 to True
set the visible of sprite 34 to True

updateStage
end if

set temp=gSpeedGrade
set gSpeedGrade = 6
wait

set gSpeedGrade=temp

--make compare field invisible

set the visible of sprite 32 to False

if gUndoFlag=0 then
--move delete node to the root

repeat with i=the locH of sprite 33 down to -

(the locH of sprite 1)

set the locH of sprite 33 to (the locH cof sprite 33-1)
set the locH of sprite 34 to (the locH of sprite 34-1)

walt
updateStage
end repeat
end if

end if

set TreeHeight=0

--this big loop is for finding delete node
repeat while currentValue<>string(Token)

set currentSprite=currentNum
set TreeHeight=TreeHeight+1l

1f gUndoFlag=0 then

--move compare,movingToken, and movingNode to the right of

--currentNode

set the locH of sprite 32 to the

set the locV of sprite 32 to the
currentSprite-6

set the locH of sprite 33 to the
currentSprite+40

set the locV of sprite 33 to the

set the locH of sprite 34 to the

set the locV of sprite 34 to the

end if

if currentValue > Token then

set the text of member "Compare"

set edge=currentNum+34

set currentNum=currentNum*2
else

set the text of member "Compare"

set edge=currentNum+49

set currentNum=currentNum*2+1
end if

88

right of sprite currentSprite
locv of sprite-

right of sprite-
locV of sprite currentSprite

locH of sprite 33-13
locV of sprite 33-8

to II>II

to " <ll

if gUndoFlag=0 then
set the visible of sprite 32 to True
set the visible of sprite 33 to True
set the visible of sprite 34 to True
updateStage

end if

set temp=gSpeedGrade
set gSpeedGrade = 6
wait

set gSpeedGrade=temp

--make compare field invisible
set the visible of sprite 32 to False

if gUndoFlag=0 then
--move delete node to the current node position
repeat with i=the locH of sprite 33 down to -
(the locH of sprite currentSprite)

set the locH of sprite 33 to (the locH of sprite 33-1)
set the locH of sprite 34 to (the locH of sprite 34-1)
wait
updateStage

end repeat

--move delete node to the child position of current node
set cnH=the locH of sprite currentNum

set cnV=the locV of sprite currentNum

set csH=the locH of sprite currentSprite

set csV=the locV of sprite currentSprite

if currentValue > Token then
--move to left child
moveOneNodelL.eftDown (csH, csV, cnH, cnV)
else
--move to right child
moveOneNodeRightDown (csH, csV, cnH, cnV)
end if

wait
end if

if the text of member (20+currentNum)=String(Token) then
set the locH of sprite 33 to the locH of sprite currentNum
set the locV of sprite 33 to the locV of sprite currentNum
set the visible of sprite 34 to False
wait
updateStage
exit repeat
else
set currentValue=the text of member (20+currentNum)
end if

end repeat

set deletFlag=0

89

set

node=currentNum

--delete this node in many cases
case TreeHeight of

4:

s

--deleted node is a leaf in deep 4

deleteNode (currentNum, edge)

--deleted node is a leaf

if (the wvisible of sprite (2*currentNum)=False and-
the visible of sprite (2*currentNum+l)=False) then
deleteNode (currentNum, edge)
set deletFlag=1

--deleted node has a left child

else if (the visible of sprite (2*currentNum)=True and-
the visible of sprite (2*currentNum+l)=False) then
set the visible of sprite (currentNum+34)=False
nodeRightUp((2*currentNum) , (currentNum) }
set deletFlag=0

--deleted node has a right child

else 1if (the visible of sprite (2*currentNum)=False and-
the visible of sprite (Z2*currentNum+l)=True) then
set the visible of sprite (currentNum+49)=False
nodeLeftUp((2*currentNum+1), (currentNum))
set deletFlag=0

--deleted node has both left and right child as leaf
else if (the visible of sprite (2*currentNum)=True and-

the visible of sprite (2*currentNum+l)=True) then

set the visible of sprite (currentNum+49)=False

nodeLeftUp ((2*currentNum+1), (currentNum))

set deletFlag=0

end 1f

:--deleted node is a leaf

if (the visible of sprite (2*currentNum)=False and-
the visible of sprite (2*currentNum+l)=False) then
deleteNode (currentNum, edge)
set deletFlag=1l

--deleted node only has a left subtree

else if (the visible of sprite (2*currentNum)=True and-
the visible of sprite (2*currentNum+l)=False) then
deleteNode (currentiNum)
set the visible of sprite (currentNum+34) to False
rightUp3node(2*currentNum, currentNum)
set deletFlag=1l

--deleted node only has a right subtree

else if (the visible of sprite (2*currentNum)=False and-
the visible of sprite (2*currentNum+l)=True) then
deleteNode (currentNum)
leftUp3node((2*currentNum+1l) , currentNum)
set deletFlag=1

90

--deleted node has both left and right subtree
else if (the visible of sprite (2*currentNum)=True and-
rthe visible of sprite (2*currentNum+l)=True) then

if the visible of sprite (4*currentNum+2)=True then
--right child has a left leaf
set the visible of sprite (2*currentNum+35) to False
nodeLeftUp({ {(4*currentNum+2), (currentNum))
set deletFlag=0
else
--right child has not a left leaf
set the visible of sprite (currentNum+49) to False
nodeLeftUp((2*currentNum+1) , currentNum)
set node=(2*currentNum+1)
set deletFlag=1
if the visible of sprite (4*currentNum+3)=True then
--right child has a right leaf
set the visible of sprite (2*currentNum+50) to False
set the visible of sprite (currentNum+49) to True
nodeLeftUp((4*currentNum+3), (2*currentNum+1))
set deletFlag=0
end if
end if
end if

l:--deleted node is a leaf
if (the visible of sprite (2*currentNum)=False and-
the visible of sprite (2*currentNum+l)=False) then
deleteNode (currentNum, edge)
set deletFlag=1l

--deleted node only has a left subtree

else if (the visible of sprite (2*currentNum)=True and-
the visible of sprite (2*currentNum+1l)=False) then

set the visible of sprite (currentNum+34) to False
nodeRightUp (2 *currentNum, currentNum)
set deletFlag=1l

if the visible of sprite (4*currentNum+l)=True then
--left child has a right subtree
set the visible of sprite (2*currentNum+49) to False
set the visible of sprite (currentNum+49) to True
nodeRightUp((4*currentNum+1) , (2*currentNum+1))

if the visible of sprite (8*currentNum+3)=True then
--left child has a right left child
set the visible of sprite (4*currentNum+50) to False
set the visible of sprite (2*currentNum+50) to True
nodeRightUp((8*currentNum+3), (4*currentNum+3))
set deletFlag=0

end if

91

if the visible of sprite (8*currentNum+2)=True then
--left child has a right right child
set the visible of sprite (4*currentNum+35) to False
set the visible of sprite (2*currentNum+35) to True
nodeRightUp ((8*currentNum+2), (4*currentNum+2))
set deletFlag=0

end if

end if

--left child has a left subtree

if the visible of sprite (4*currentNum)=True then
set the visible of sprite (currentNum+34) to True
rightUp3node (4*currentNum, 2 *currentNum)

end if

--deleted node only has a right subtree
else if (the visible of sprite (2*currentNum)=False and-
the visible of sprite (2*currentNum+l)=True) then

set the visible of sprite (currentNum+49) to False
nodeLeftUp((2*currentNum+1l) , currentNum)
set deletFlag=1

if the visible of sprite (4*currentNum+2)=True then
--right child has a left subtree
set the visible of sprite (2*currentNum+35) to False
set the visible of sprite (currentNum+34) to True
nodeLeftUp((4*currentNum+2) , (2*currentNum))

if the visible of sprite (8*currentNum+4)=True then
--right child has a left left child
set the visible of sprite (4*currentNum+36) to False
set the visible of sprite (2*currentNum+34) to True
nodeLeftUp((8*currentNum+4), (4*currentNum))
set deletFlag=0

end if

if the visible of sprite (8*currentNum+5)=True then
--right child has a left right child
set the visible of sprite (4*currentNum+51) to False
set the visible of sprite (2*currentNum+49) to True
nodeLeftUp((B*currentNum+5), (4*currentNum+1))
set deletFlag=0

end if

end if

--right child has a right subtree

if the visible of sprite (4*currentNum+3)=True then
get the visible of sprite (currentNum+49) to True
leftUp3node((4*currentNum+3), (2*currentNum+1))

end if

92

--deleted node has both left and right subtree
else if(the visible of sprite (2*currentNum)=True and-
the visible of sprite (2*currentNum+l)=True) then

set minNocde=findMinFromRightSubtree (currentNum)
set node=minNode
set deletFlag=1

if minNode=(8*currentNum+4) then
--right child has a left left child
set the visible of sprite (4*currentNum+36) to False
nodeLeftUp((B*currentNum+4) , (currentNum))
set deletFlag=0

else if minNode=(4*currentNum+2) then
--right child has a left child
set the visible of sprite (2*currentNum+35) to False
nodeLeftUp((4d*currentNum+2) , (currentNum))

if the visible of sprite (8*currentNum+5)=True then
--right child has a left right child
set the visible of sprite (4*currentNum+51) to False
set the visible of sprite (2*currentNum+35) to True
nodeLeftUp((B8*currentNum+5), (4*currentNum+2))
set deletFlag=0

end if

else if minNode=(2*currentNum+l) then
--right child has not a left subtree
set the visible of sprite (currentNum+49) to False
nodeLeftUp((2*currentNum+1l) , currentNum)

if the visible of sprite (4*currentNum+3)=True then
--right child has a right subtree
set the visible of sprite (currentNum+49) to True
set the visible of sprite (2*currentNum+50) to False
leftUp3node((4*currentNum+3) , (2*currentNum+1))

end if

end if
end if

:--deleted node is a leaf

if (the visible of sprite (2*currentNum)=False and-
the visible of sprite (2*currentNum+l)=False) then
deleteNode (currentNum, edge)

--deleted node only has a left subtree
else if (the visible of sprite (2*currentNum)=True and-

the visible of sprite (2*currentNum+l)=False) then

set the visible of sprite (currentNum+34) to False
rightUp3node (2*currentNum, currentNum)

93

if the visible of sprite (8*currentNum+3)=True then
--left child has a right right subtree
set the visible of sprite (4*currentNum+50) to False
set the visible of sprite (2*currentNum+50) to True
nodeRightUp((8*currentNum+3), (4d*currentNum+3))

if the visible of sprite (l6*currentNum+7)=True then
--left child has a right right right leaf
set the visible of sprite (8*currentNum+52) to False
set the visible of sprite (4*currentNum+52) to True
nodeRightUp{ (16*currentNum+7), (8 *currentNum+7))

end if

if the visible of sprite (l6*currentNum+6)=True then
--left child has a right right left leaf
set the visible of sprite (8*currentNum+37) to False
set the visible of sprite (4*currentNum+37) to True
nodeRightUp((16*currentNum+6) , (8 *currentNum+6))

end if

end 1if

if the visible of sprite (8*currentNum+2)=True then
--left child has a right left subtree
set the visible of sprite (4*currentNum+35) to False
set the visible of sprite (2*currentNum+35) to True
nodeRightUp((8*currentNum+2) , (4*currentNum+2))

if the visible of sprite (l6*currentNum+5)=True then
--left child has a right left right leaf
set the visible of sprite (8*currentNum+51) to False
set the visible of sprite (4*currentNum+51) to True
nodeRightUp((16*currentNum+5), (B*currentNum+5))

end if

if the visible of sprite (l6*currentNum+4)=True then
--left child has a right left left leaf
set the visible of sprite (8*currentNum+36) to False
set the visible of sprite (4*currentNum+36) to True
nodeRightUp ((16*currentNum+4), (8*currentNum+4))

end if

end if

if the visible of sprite (8*currentNum+l)=True then
--left child has a left right subtree
set the visible of sprite (4*currentNum+49) to False
set the visible of sprite (2*currentNum+49) to True
nodeRightUp((8*currentNum+1l), (4*currentNum+1))

if the visible of sprite (lé6*currentNum+3)=True then
--left child has a left right right leaf
set the visible of sprite (B8*currentNum+50) to False
set the visible of sprite (4*currentNum+50) to True
nodeRightUp((16*currentNum+3), (8 *currentNum+3))

94

end if

if the visible of sprite (l6*currentNum+2)=True then
--left child has a left right left leaf
set the visible of sprite (B*currentNum+35) to False
set the visible of sprite (4*currentNum+35) to True
nodeRightUp((16*currentNum+2), (8 *currentNum+2))

end if

end if

--left child has a left left subtree

if the visible of sprite (8*currentNum)=True then
set the visible of sprite (2*currentNum+34) to True
rightUp3node (8*currentNum, 4 *currentNum)

end if

~--deleted node only has a right subtree
else if (the visible of sprite (2*currentNum)=False and-
the visible of sprite (2*currentNum+l)=True) then

set the visible of sprite (currentNum+49) to False
leftUp3node((2*currentNum+1l) , currentNum)

if the visible of sprite (8*currentNum+4)=True then
--right child has a left left subtree
set the visible of sprite (4*currentNum+36) to False
set the visible of sprite (2*currentNum+34) to True
nodeLeftUp((8*currentNum+4), (4*currentNum))

if the visible of sprite (l6*currentNum+8)=True then
--right child has a left left left leaf
set the visible of sprite (8*currentNum+38) to False
set the visible of sprite (4*currentNum+34) to True
nodeLeftUp((l6*currentNum+8), (8*currentNum))

end if

if the visible of sprite (lé6*currentNum+9)=True then
--right child has a left left right leaf
set the visible of sprite (8*currentNum+53) to False
set the visible of sprite (4*currentNum+49) to True
nodeLeftUp((l16*currentNum+9), (B*currentNum+1))

end if

end if

if the visible of sprite (8*currentNum+5)=True then
--right child has a left right subtree
set the visible of sprite (4*currentNum+51) to False
set the visible of sprite (2*currentNum+49) to True
nodeLeftUp((B*currentNum+5), (4*currentNum+1))

if the visible of sprite (l6*currentNum+10)=True then
--right child has a left right left leaf

set the visible of sprite (8*currentNum+39) to False
set the visible of sprite (4*currentNum+35) to True
nodeLeftUp((l6*currentNum+10), (8 *currentNum+2))

end if

if the visible of sprite (l6*currentNum+ll)=True then
--right child has a left right right leaf
set the visible of sprite (8*currentNum+54) to False
set the visible of sprite (4*currentNum+50) to True
nodeLeftUp((l6*currentNum+11l), (8 *currentNum+3))

end if

end if

if the visible of sprite (8*currentNum+6)=True then
--right child has a right left subtree
set the visible of sprite (4*currentNum+37) to False
set the visible of sprite (2*currentNum+35) to True
nodeLeftUp((8*currentNum+6) , (4*currentNum+2))

if the visible of sprite (l6*currentNum+12)=True then
--right child has a right left left leaf
set the visible of sprite (B*currentNum+40) to False
set the visible of sprite (4*currentNum+36) to True
nodeLeftUp((l6*currentNum+12), (8 *currentNum+4))

end if

if the visible of sprite (l6*currentNum+13)=True then
--right child has a right left right 1leaf
set the visible of sprite (8*currentNum+55) to False
set the visible of sprite (4*currentNum+51) to True
nodeLeftUp((l6*currentNum+13), (8*currentNum+5))

end if

end if

--right child has a right right subtree

if the visible of sprite (B8*currentNum+7)=True then
set the visible of sprite (2*currentNum+50) to True
leftUp3node((8*currentNum+7), (d*currentNum+3})

end if

--deleted node has both left and right subtree
else if(the visible of sprite (2*currentNum)=True and-
the visible of sprite (2*currentNum+l)=True) then

set minNode=findMinFromRightSubtree (currentNum)
set node=minNode

if minNode=(l6*currentNum+8) then
--right child has a left left left leaf
set the visible of sprite (8*currentNum+38) to False
nodeLeftUp((l6*currentNum+8) , currentNum)
set deletFlag=0

96

else if minNode=(8*currentNum+4) then
--right child has a left left subtree
set the visible of sprite (4*currentNum+36) to False
nodeLeftUp((8 *currentNum+4) , currentNum)
set deletFlag=1

if the visible of sprite {l6*currentNum+9)=True then
--right child has a left left right leaf
set the visible of sprite (8*currentNum+53) to False
set the visible of sprite (4*currentNum+36) to True
nodeLeftUp((l6*currentNum+9), (B*currentNum+4))
set deletFlag=0

end if

else if minNode=(4*currentNum+2) then
--right child has not a left left subtree
set the visible of sprite (2*currentNum+35) to False
nodeLeftUp ((4*currentNum+2) , currentNum)
set deletFlag=1

if the visible of sprite (B*currentNum+5)=True then
--right child has a left right subtree
set the visible of sprite (2*currentNum+35) to True
set the visible of sprite (4*currentNum+51) to False
leftUp3ncde((8*currentNum+5) , (4*currentNum+2))

end if

else if minNode=(2*currentNum+l) then
--right child has not a left subtree
set the visible of sprite (currentNum+49) to False
nodelLeftUp((2*currentNum+1l) , currentNum)
set deletFlag=1l

if the visible of sprite (4*currentNum+3)=True then
--right child has a right subtree
set the visible of sprite (2*currentNum+50) to False
set the visible of sprite (currentNum+49) to True
nodeLeftUp((4*currentNum+3), (2*currentNum+1))

if the visible of sprite (8*currentNum+6)=True then
--right child has a right left subtree
set the visible of sprite (4*currentNum+37) to False
set the visible of sprite (2*currentNum+35) to True
nodeLeftUp((8*currentNum+6) , (4*currentNum+2))

if the visible of sprite (l6*currentNum+12)=True then
--right child has a right left left leaf
set the wvisible of sprite (B*currentNum+40) to False
set the visible of sprite (4*currentNum+36) to True
nodeLeftUp((l6*currentNum+12), (8*currentNum+4))
set deletFlag=0

end if

1f the visible of sprite (l6*currentNum+13)=True then
--right child has a right left right leaf

97

set the visible of sprite (8*currentNum+55) to False
set the visible of sprite (4*currentNum+51) to True
nodeLeftUp((l6*currentNum+13), (8*currentNum+5))
set deletFlag=0

end if

end if

if the visible of sprite (8*currentNum+7)=True then
--right child has a right right subtree
set the visible of sprite (2*currentNum+50) to True
leftUp3node((8*currentNum+7), (4*currentNum+3))

end if

end if

end if
end if

end case

if deletFlag=1 then
deletReBalance (node)

end if

if gReplayFlag=0 and gUndoFlag=0 then
add gKeyList, Token
add gOpNameList, "delete"

end if

add gHistoryList, "Delete " &string(Token)
deleteCne gNodelList, Token

history

end delete

e b o e e o o o
on deletReBalance thisNum
if (thisNum mod 2)=0 then

set GP=thisNum/2
set thisP=2*GP+1

if the wvisible of sprite (2*thisP+1l) = True then
set thisNum =2*thisP+1
else
set thisNum=2*thisP
end if
else

set GP=thisNum/2
set thisP=2*GP

if the visible of sprite (2*thisP) = True then
set thisNum =2*thisP
else

98

set thisNum=2*thisP+1
end if
end if

if GP<1l then
exit
end if

repeat while GP<>0
if GP=1 then
if (getLeftHeigh(l)-getRightHeigh(1l))=2 then
set thisP=2
set GP=1
if (getLeftHeigh(2)>= getRightHeigh(2)) then
set thisNum=4
else
set thisNum=5
end if
else if (getLeftHeigh(1l)-getRightHeigh(l))=-2 then
set thisP=3
set GP=1
if (getLeftHeigh(3)<= getRightHeigh(3)) then
set thisNum=7
else
set thisNum=6
end if
end if
end if

if (abs (getLeftHeigh (GP) -getRightHeigh (GP))=2) then

--need rotation
if((thisP mod 2)=0 and (thisNum mod 2)=0) then
--case 1
puppetsound "slrotate"
SLrotation
wait
updateStage
singleRotateWithLeft (GP)
else if ((thisP mod 2)<>0 and (thisNum mod 2)=0) then
--case 2
puppetsound "drrotate"
DRrotation
wait
updateStage
DoubleRotateWithRight (GP)
else if((thisP mod 2)=0 and (thisNum mod 2)<>0) then
--case 3
puppetsound "dlrotate"
DLrotation
wait
updateStage
DoubleRotateWithLeft (GP)
else if((thisP mod 2)<>0 and (thisNum mod 2)<>0) then
--case 4
puppetsound "srrotate"

99

SRrotation

wait

updateStage

singleRotateWithRight (GP)
end if

else
--up one level
set thisNum=thisP
set thisP=thisNum/2
set GP=thisP/2

end if

end repeat
end deletReBalance
e R Em et L e e e
= Search Function +
R o o e S e e e St
on search

global gNodeList, gHistoryList, gSpeedGrade

global gKeyList, gOpNameList, gReplayflag

--let Tokken = input data
set Token to value(the text of member"InputField")

--check if Token is blank or a space

if Token="" or Token=" " then
puppetsound "inputdata"
updateStage
alert "Please enter an data in the box."
exit
end if

--check if search node is not in the Tree
if getOne(gNodeList, Token)=0 then
puppetsound "nodel"

updateStage
alert "This node is not in the tree, please try again!"
exit

end if

if gReplayFlag=0 then
puppetsound "search”
updateStage

end if

--remove input data from InputField
put "" into field "InputField"
updateStage

~--close "winAB" window
close window "winAB"

100

--active compare,movingNode,and movingToken
puppetSprite 33, True
puppetSprite 34, True
puppetSprite 32, True

--set the backColor of movingNode to the backColor of stage
set the backColor of sprite 8 to 43

--initialize current node and movingTcken

set currentNum=1

set currentValue=value(the text of member "valuel")
set the text of member "movingToken" to string(Token)

--the root is the search ncde
if currentValue=string(Token) then
set the text of member "Compare" to "="

--move compare,movingToken, and movingNode to the right of root
set the locH of sprite 32 to the right of sprite 1

set the locV of sprite 32 to the locV of sprite 1-6

set the locH of sprite 33 to the right of sprite 1+40

set the locV of sprite 33 to the locV of sprite 1

set the locH of sprite 34 to the locH of sprite 33-13

set the locV of sprite 34 to the locV of sprite 33-8

set the visible of sprite 32 to True
set the visible of sprite 33 to True
set the visible of sprite 34 toc True
updateStage

set temp=gSpeedGrade
set gSpeedGrade = 6
wait

set gSpeedGrade=temp

--make compare field invisible
set the visible of sprite 32 to False

--move delete node to the root
repeat with i=the locH of sprite 33 down to -
(the locH of sprite 1}
set the locH of sprite 33 to (the locH of sprite 33-1)
set the locH of sprite 34 to (the locH of sprite 34-1)
wait
updateStage
end repeat

end if

repeat while currentValue<>string(Token)
set currentSprite=currentNum

--move compare,movingToken, and movingNode to the right of
--currentNode

101

set the locH of sprite 32 to the right of sprite currentSprite

set the locV of sprite 32 to the locV of sprite currentSprite-6

set the locH of sprite 33 to the right of sprite-
currentSprite+40

set the locV of sprite 33 to the locV of sprite currentSprite

set the locH of sprite 34 to the locH of sprite 33-13

set the locV of sprite 34 to the locV of sprite 33-8

if currentValue > Token then
set the text of member "Compare" to ">"
set currentNum=currentNum*2

else
set the text of member "Compare" to "<"
set currentNum=currentNum*2+1

end if

set the wvisible of sprite 32 to True
set the visible of sprite 33 to True
set the visible of sprite 34 to True
updateStage

set temp=gSpeedGrade
set gSpeedGrade = 6
wait

set gSpeedGrade=temp

--make compare field invisible
set the visible of sprite 32 to False

--move delete node to the current node position
repeat with i=the locH of sprite 33 down to -
(the locH of sprite currentSprite)
set the locH of sprite 33 to (the locH of sprite 33-1)
set the locH of sprite 34 to (the locH of sprite 34-1)
wait
updateStage
end repeat

--move delete node to the child position of current node
set cnH=the locH of sprite currentNum

set cnV=the locV of sprite currentNum

set csH=the locH of sprite currentSprite

set csV=the locV of sprite currentSprite

set Hmove=abs (csH-cnH)

set Vmove=abs (csV-cnV)

if currentValue > Token then

--move to left child

set yy=0.00

repeat with i=1 to Hmove
set the locH of sprite 33 to (the locH of sprite 33-1)
set the locH of sprite 34 to the locH of sprite 33-13
if (i mod 4)=0 then

set xx=integer (4*Vmove/Hmove)

102

--following five lines fix the errors
set yy=yy+(4.00*Vmove/Hmove) -xx
1f yy>=1 then
set yy=yy-i
set Xx=xx+1
end if

set the locV of sprite 33 to (the locV of sprite 33+xx)
set the locV of sprite 34 to the locV of sprite 33-8
wait

updateStage

end 1if
end repeat

else

--move to right child

set yy=0.00

repeat with i=1 to Hmove
set the locH of sprite 33 to (the locH of sprite 33+1)
set the locH of sprite 34 to the locH of sprite 33-13

if (i mod 4)=0 then

set xx=integer (4*Vmove/Hmove)

--following five lines fix the errors
set yy=yy+(4.00*Vmove/Hmove) -xx
if yy>=1 then
set yy=yy-1
set xx=xx+1
end if

set the locV of sprite 33 to (the locV of sprite 33+xx)
set the locV of sprite 34 to the locV of sprite 33-8
wait

updateStage

end if

end repeat
end if

wait

if the text of member (20+currentNum)=String(Token) then
set the locH of sprite 33 to the locH of sprite currentNum
set the locV of sprite 33 to the locV of sprite currentNum
set the visible of sprite 34 to False
wait
updateStage
exit repeat

else

set currentValue=the text of member (20+currentNum)
end 1if

end repeat

if gReplayFlag=0 then
add gKeyList, Token
add gOpNameList, "Insert"

end if

add gHistoryList, "Search " &string(Token)

history

--flash the arrow to show the node is found

repeat with i=1 to 8

set the locH of sprite 96 to the right of sprite currentNum+12
set the locV of sprite 96 to the locV of sprite currentNum
set the visible of sprite 96 to True

set
set
wait
set gSpeedGrade=temp

temp=gSpeedGrade
gSpeedGrade = 4

updateStage
set the visible of sprite

set temp=gSpeedGrade
set gSpeedGrade = 4
wait

set gSpeedGrade=temp

updateStage
end repeat

end search

96 to False

e T e e o i o o B o e o o o e e e

—

Other Handlers +

B B e e o o o S

on getLeftHeigh thisNum
--get thisNum left subtree heigh
set leftHeigh=0
set T=2*thisNum

if the visible of sprite T =True and T<=31 then
--it has left subtree
set leftHeigh=1

if T=2 or T=3 then
set T _Heigh=1

else if T>3 and T<=7 then
set T_Heigh=2

else if T>7 and T<=15 then
set T_Heigh=3

else if T>15 and T<=31 then
set T_Heigh=4

end if

case T_Heigh of
4:
exit
3z
if

(the visible of sprite (2*T)=True-

104

or the visible of sprite (2*T+1)=True) then
set leftHeigh=2
end if

if (the visible of sprite (4*T)=True-
or the visible of sprite (4*T+1)=True-
or the visible of sprite (4*T+2)=True-
or the visible of sprite (4*T+3)=True) then
set leftHeigh=3

else if (the visible of sprite (2*T)=True-
or the visible of sprite (2*T+1)=True) then
set leftHeigh=2

end if

if (the visible of sprite (8*T)=True-

or the visible of sprite (8*T+1)=True-

or the visible of sprite (B8*T+2)=True-

or the visible of sprite (8*T+3)=True-

or the visible of sprite (8*T+4)=True-

or the visible of sprite (8*T+5)=True-

or the visible of sprite (8*T+6)=True-

or the visible of sprite (8*T+7)=True) then
set leftHeigh=4

else if (the visible of sprite (4*T)=True-
or the visible of sprite (4*T+1)=True-
or the visible of sprite (4*T+2)=True-
or the visible of sprite (4*T+3)=True) then
set leftHeigh=3

else if (the visible of sprite (2*T)=True-
or the visible of sprite (2*T+1)=True) then
set leftHeigh=2
end it
end case
end if
return leftHeigh
end getLeftHeigh

B o b e et o b T o i o o o b o o o o

on getRightHeigh thisNum
--get thisNum right subtree heigh
set rightHeigh=0
set T=2*thisNum+1

if the visible of sprite T =True and T<=31 then
--it has right subtree
set rightHeigh=1

if T=2 or T=3 then

set T_Heigh=1
else if T>3 and T<=7 then

105

set T_Heigh=2

else if T>7 and T<=15 then
set T_Heigh=3

else if T>15 and T<=31 then
set T_Heigh=4

end if

case T_Heigh of

4:
exit
3:
if (the visible of sprite (2*T)=True-
or the visible of sprite (2*T+1)=True) then
set rightHeigh=2
end if
iz
if (the visible of sprite (4*T)=True-
or the visible of sprite (4*T+1)=True-
or the visible of sprite (4*T+2)=True-
or the visible of sprite (4*T+3)=True} then
set rightHeigh=3
else if (the visible of sprite (2*T)=True~
or the visible of sprite (2*T+1)=True) then
set rightHeigh=2
end if
4 B
if (the visible of sprite (8*T)=True-
or the visible of sprite (8*T+1l)=True-
or the visible of sprite (8*T+2)=True-
or the visible of sprite (8*T+3)=True-
or the visible of sprite (8*T+4)=True-
or the visible of sprite (8*T+5)=True-
or the visible of sprite (8*T+6)=True-
or the visible of sprite (8*T+7)=True) then
set rightHeigh=4
else if (the visible of sprite (4*T)=True-
or the visible of sprite (4*T+1)=True-
or the visible of sprite (4*T+2)=True-
or the visible of sprite (4*T+3)=True) then
set rightHeigh=3
else if (the visible of sprite (2*T)=True-
or the visible of sprite (2*T+1)=True) then
set rightHeigh=2
end if
end case
end if

return rightHeigh

end getRightHeigh

S o o o o b e e o o e S S F T & ' TF T S S A eSS RS

106

on singleRotateWithLeft K2

if the visible of sprite (2*K2+1) =True then
if the visible of sprite (4*K2+3) =True then
nodeRightDown((4*K2+3), (B*K2+7))
set the visible of sprite (4*K2+52) to True

set the visible of sprite (2*K2+50) to False
end if

if the visible of sprite (4*K2+2) =True then
nodeRightDown ((4*K2+2), (8*K2+6))
set the visible of sprite (4*K2+37) to True
set the visible of sprite (2*K2+35) to False
end if

nodeRightDown ((2*K2+1), (4*K2+3))
set the visible of sprite (2*K2+50) to True
set the visible of sprite (K2+49) to False
wait
updateStage

end if

nodeRightDown (K2, (2*K2+1))
set the visible of sprite (K2+49) to True
set the visible of sprite (K2+34) to False

nodeRightUp (2*K2,K2)
set the visible of sprite (2*K2+34) to False

if ((4*K2+1)<=31 and the wvisible of sprite (4*K2+1l) =True) then
set the visible of sprite (2*K2+49) to False
set the visible of sprite (2*K2+35) to True
rightUp3node((4*K2+1), (4*K2+2))

end if

if ((4*K2)<=31 and the visible of sprite (4*KZ) =True) then
set the visible of sprite (K2+34) to True
set the visible of sprite (2*K2+34) to False
nodeRightUp((4*K2), (2*K2))

if ((B8*K2+1)<=31 and the visible of sprite (8*K2+1) =True) then
set the visible of sprite (4*K2+49) to False
set the visible of sprite (2*K2+49) to True
rightUp3node((8*K2+1), (4*K2+1))

end if

if (8*K2)<31l and the wvisible of sprite (8*K2) =True then
set the wvisible of sprite (4*K2+34) to False
set the visible of sprite (2*K2+34) to True
rightUp3node ((8*K2), (4*K2))

end if

end if

wait
updateStage

107

end

—=+++++++tttt+tr++F bbbttt bbb bbb bbb+
on singleRotateWithRight K2

if the visible of sprite (2*K2) =True then
if the visible of sprite (4*K2) =True then
nodeLeftDown ((4*K2), (B*K2))
set the visible of sprite (4*K2+34) to True
set the visible of sprite (2*K2+34) to False
end if

if the visible of sprite (4*K2+1) =True then
nodeLeftDown ((4*K2+1), (8*K2+1))
set the visible of sprite (4*K2+49) to True
set the visible of sprite (2*K2+49) to False
end if

nodeLeftDown((2*K2), (4*K2))
set the visible of sprite (2*K2+34)=True
set the wvisible of sprite (K2+34) to False
wait
updateStage

end if

nodeLeftDown (K2, 2*K2)
set the visible of sprite (K2+34)=True
set the visible of sprite (K2+49) to False

nodeLeftUp ((2*K2+1) ,K2)
set the visible of sprite (2*K2+50) to False

if (4*K2+2)<=31 and the visible of sprite (4*K2+2) =True then
set the visible of sprite (2*K2+35) to False
set the visible of sprite (2*K2+49) to True
leftUp3node((4*K2+2), (4*K2+1))

end if

if {(4*K2+3)<=31 and the visible of sprite (4*K2+3) =True then
set the visible of sprite (2*K2+50) to False
set the visible of sprite (K2+49) to True
nodeLeftUp({4*K2+3), (2*K2+1))

if ((8*K2+6)<=31 and the visible of sprite (8*K2+6) =True) then
set the visible of sprite (4*K2+37) to False
set the visible of sprite (2*K2+35) to True
leftUp3node ((B*K2+6), (4*K2+2))

end if

if ((8*K2+7)<=31 and the visible of sprite (8*K2+7) =True) then
set the visible of sprite (4*K2+52) to False
set the visible of sprite (2*K2+50) to True
leftUp3node((B8*K2+7), (4*K2+3))

end if

108

end if

walit
updateStage

end

i e o A e o o S e o o o ok o o
on doubleRotateWithRight K1

--rotate between K3 and K2
singleRotateWithLeft (2*K1+1)

--rotate between K1 and ¥2
singleRotateWithRight (K1)

wait
updateStage

end

e e o o ol o o o b o o o o o o S

on doubleRotateWithLeft K3

--rotate between K1 and K2
singleRotateWithRight (2*K3)

--rotate between K3 and K2
singleRotateWithLeft (K3)

wait
updateStage

end

B b e e o o b o o o o o SR o o
on wait
global gSpeedGrade

case gSpeedGrade of
1: --lowest animation speed
startTimer
repeat with x=1 to 1000000
nothing
end repeat

startTimer

repeat with x=1 to 500000
nothing

end repeat

startTimer
repeat with x=1 to 250000

109

nothing
end repeat
4:
startTimer
repeat with
nothing
end repeat
Bz
startTimer
repeat with
nothing
end repeat
6:
starctTimer
repeat with
nothing
end repeat
e
startTimer
repeat with
nothing
end repeat
B:
startTimer
repeat with
nothing
end repeat
9;
startTimer
repeat with
nothing
end repeat
10:
startTimer
repeat with
nothing
end repeat
11:
startTimer
repeat with
nothing
end repeat
12
startTimer
repeat with
nothing
end repeat
13:
startTimer
repeat with
nothing
end repeat
14
startTimer
repeat with
nothing
end repeat

x=1

x=1

x=1

=]

to

to

to

to

to

to

to

to

to

to

to

125000

62500

31250

15600

7800

33800

2000

1000

500

300

200

110

15
startTimer
repeat with x=1 to 100
nothing
end repeat
16:
startTimer
repeat with x=1 to 50
nothing
end repeat
b G i
startTimer
repeat with x=1 to 25
nothing
end repeat
18:
startTimer
repeat with x=1 to 2
nothing
end repeat

end case
end

s s e e T o o

on speedUp
global gSpeedGrade

if gSpeedGrade>=18 then
alert "This is the highest animation speed"
exit

else
set gSpeedGrade=gSpeedGrade+l

end if

set the text of member "speedField" to string(gSpeedGrade)
end

B e e o ol o o o o o o e

on speedDown
global gSpeedGrade

if gSpeedGrade<=1 then
alert "This is the lowest animation speed"
exit
else
set gSpeedGrade=gSpeedGrade-1
end if
set the text of member "speedField" to string(gSpeedGrade)

end

B s o o o o o o e i o T e o i e ot ab o o o oS

111

on closeSpeed
set the visible of sprite 106 to False
set the visible of sprite 107 to False
set the visible of sprite 108 to False

set the visible of sprite 109 to False
end

S R T T T T T T T e e R S e

on showSpeed
set the visible of sprite 106 to True
set the visible of sprite 107 to True
set the visible of sprite 108 to True
set the visible of sprite 109 to True
end

B e o e e e e e R R

on undo
global gNodeList,gHistoryList,gSpeedGrade
global gKeyList, gOpNameList, gUndoFlag

set gUndoFlag=1
reset

set temp=gSpeedGrade
set gSpeedGrade = 18
closeButton

--delete the last element of gKeyList and gOpNameList
set x=count (gKeyList)

deleteAt gKeyList,x

deleteAt gOpNameList,x

--recover AVL tree except last element
repeat with i=1 to (x-1)

set y=getAt (gKeyList, i)
set the text of member "InputField" to string(y)

if getAt (gOpNameList,i) = "Insert" then
insert

else if getAt(gOpNameList,i) = "Delete" then
delete

else
add gHistoryList, "Search " &string(y)
history

end if

end repeat

if count (gKeyList)=0 then
set the enabled of menulItem "undo" of menu "Operations" to False

end if

set gSpeedGrade=temp
set gUndoFlag=0

112

end undo
B e e o i a a o el S o o

on replay
global gNodeList,gHistoryList,gSpeedGrade
global gKeyList, gOpNameList, gReplayFlag

set gReplayFlag=1
reset

--delete the last element of gKeyList and gOpNameList
set x=count (gKeyList)

--recover AVL tree except last element
repeat with i=1 to x

set y=getAt (gKeyList,i)
set the text of member "InputField" to stringly)

if getAt(gOpNameList,i) = "Insert" then
insert

else if getAt (gOpNameList,i) = "Delete" then
delete

else
search

end 1if

end repeat

if count (gKeyList)=0 then
set the enabled of menultem "Replay" of menu "Operations"-
to False
end if

set gReplayFlag=0
end replay

B o o o e e o o o o o o e e e e e

on deleteNode thisNode, thisEdge
set the text of member (20+thisNode) to ""
wait
set the visible of sprite thisNode to False
set the visible of sprite (thisNode+64) to False
set the visible of sprite thisEdge to False
set the visible of sprite 33 to False
set the visible of sprite 34 to False
wait
updateStage

end

B o o o st b b b o

on moveOneNodeLeftUp fromH, fromV, toH, toV
global gUndoFlag

if gUndoflag=0 then

113

set Hmove=abs(fromH-toH)
set Vmove=abs (fromV-toV)

--move movingNode to start node

set
set
set
set
set
set

wait

the
the
the
the
the
the

locH of
locV of
locH of
locv of
visible
visible

updateStage

set yy=0.00
repeat with i=1 to Hmove
set the locH of sprite 33 to (the locH of sprite 33-1)
set the locH of sprite 34 to the locH of sprite 33-13
{i mod 4)=0 then
set xx=integer (4*Vmove/Hmove)

if

end if

end

set
set
set
set
wait

sprite 33
sprite 33
sprite 34
sprite 34
of sprite
of sprite

to
to
to
to
33
34

fromH

fromV

the locH of sprite 33-13
the locV of sprite 33-8
to True

to True

--following five lines fix the errors

set yy=yy+(4.00*Vmove/Hmove) -xx

if yy>=1 then
set yy=yy-1
set xXx=xx+1

end if

set the locV of sprite 33 to (the locV of sprite 33-xx)
set the locV of sprite 34 to the locV of sprite 33-8

wait

updateStage

repeat

the
the
the
the

locH of
locH of
locV of
locV of

updateStage

set the visible

set the visible

end if

sprite 33
sprite 34
sprite 33
sprite 34

of sprite
of sprite

end moveOneNodeLeftUp

to
to
to
to

33
34

toH
the locH of sprite 33-13
toV
the locV of sprite 33-8

to False
to False

ko o I o o o I L e S S o b o o o o S SR S S o

on moveOneNodeRightDown fromH, fromV, toH, toV
global gUndoFlag

if gUndoflag=0 then
set Hmove=abs (fromH-toH)
set Vmove=abs (fromV-toV)

114

--move movingNode to start node

set
set
set
set
set
set

wait

the
the
the
the
the
the

locH of
locVv of
locH of
locv of
visible
visible

updateStage

set yy=0.00
repeat with i=1 to Hmove
set the locH of sprite 33 to (the locH of sprite 33+1)
set the locH of sprite 34 to the locH of sprite 33-13
if (i mod 4)=0 then
set xx=integer (4*Vmove/Hmove)

end

set
set
set
set

sprite 33
sprite 33
sprite 34
sprite 34
of sprite
of sprite

to
to
to
to
33
34

fromH

fromv

the locH of sprite 33-13
the locV of sprite 33-8
to True

to True

--following five lines fix the errors

set yy=yy+(4.00*Vmove/Hmove) -xx

if yy>=1 then
set yy=yy-1
set xx=xx+1

end

if

set the locV of sprite 33 to (the locV of sprite 33+xx)
set the locV of sprite 34 to the locV of sprite 33-8
wait
updateStage
end if

repeat

the
the
the
the

wait
updateStage

end if

locH of
locH of
locVv of
locv of

sprite 33
sprite 34
sprite 33
sprite 34

end moveOneNodeRightDown

to
to
to
to

toll
the locH of sprite 33-13
toV
the locV of sprite 33-8

b o o o o T o e o o S TE S Ao ¥

on moveOneNodeRightUp fromH, fromV, toH, toV
global gUndoFlag

if gUndoflag=0 then
set Hmove=abs (fromH-toH)
set Vmove=abs(fromV-toV)

--move movingNode to start node

set
set
set
set
set
set

the
the
the
the
the
the

locH of
locV of
locH of
locVv of
visible
visible

sprite 33
sprite 33
sprite 34
sprite 34
of sprite
of sprite

to
to
to
to
33
34

fromH

fromv

the locH of sprite 33-13
the locV of sprite 33-8
to True

to True

115

wait
updateStage

set yy=0.00
repeat with i=1 to Hmove
set the locH of sprite 33 to (the locH of sprite 33+1)
set the locH of sprite 34 to the locH of sprite 33-13
if (i mod 4)=0 then
set xx=integer (4*Vmove/Hmove)

--following five lines fix the errors
set yy=yy+ (4.00*Vmove/Hmove) -xXx
if yy>=1 then
set yy=yy-1
set xx=xx+1
end if

set the locV of sprite 33 to (the locV of sprite 33-xx)
set the locV of sprite 34 to the locV of sprite 33-8
wait
updateStage
end if
end repeat

set the locH of sprite 33 to toH

set the locH of sprite 34 to the locH of sprite 33-13
set the locV of sprite 33 to toV

set the locV of sprite 34 to the locV of sprite 33-8
wait

updateStage

set the visible of sprite 33 to False
set the visible of sprite 34 to False
end if

end moveOneNodeRightUp

B I o T o L L i T T o o e o i o o e o o S SR S S

on moveOneNodeLeftDown fromH, fromV, toH, toV
global gUndoFlag

if gUndoflag=0 then
set Hmove=abs (fromH-toH)
set Vmove=abs (fromv-toV)

--move movingNode to start node

set the locH of sprite 33 to fromH

set the locV of sprite 33 to fromV

set the locH of sprite 34 to the locH of sprite 33-13
set the locV of sprite 34 to the locY of sprite 33-8
set the visible of sprite 33 to True

set the visible of sprite 34 to True

wait

updateStage

set yy=0.00

L6

repeat with i=1 to Hmove
set the locH of sprite 33 to (the locH of sprite 33-1)
set the locH of sprite 34 to the locH of sprite 33-13
if (i mod 4)=0 then
set xx=integer (4*Vmove/Hmove)

--following five lines fix the errors
set yy=yy+(4.00*Vmove/Hmove) -xx
if yy>=1 then
set yy=yy-1
set xx=xx+1
end if

set the locV of sprite 33 to (the locV of sprite 33+xx)
set the locV of sprite 34 to the locV of sprite 33-8
wait
updateStage
end if
end repeat

set the locH of sprite 33 to toH
set the locH of sprite 34 to the locH of sprite 33-13
set the locV of sprite 33 to toV
set the locV of sprite 34 to the locV of sprite 33-8
wailt
updateStage

end if

end moveOneNodeLeftDown

e e e o o o o o o O S S
on nodeRightUp thisNum, thatNum

--move this node right up to that node

set the visible of sprite thisNum to False

set the visible of sprite (thisNum+64) to False

set the text of member 10 to the text of member-
(thisNum+20)

set the text of member (20+thisNum) to ""

wait

updateStage

moveOneNodeRightUp(the locH of sprite thisNum, -
the locV of sprite thisNum,the locH of sprite-
thatNum, the locV of sprite thatNum)

--set that node
set the text of member (thatNum+20) to the text-
of member 10
set the visible of sprite thatNum to True
set the visible of sprite (thatNum+64) to True
wait
updateStage
end

117

e e o b o o i o o o o o
on nodeLeftUp thisNum, thatNum

--remove the right child and move the right child up

set the visible of sprite thisNum to False

set the visible of sprite thisNum+64 to False

set the text of member 10 to the text of member-
(thisNum+20)

set the text of member (thisNum+20) to ""

wait

updateStage

moveOneNodeLeftUp(the locH of sprite thisNum, -
the locV of sprite thisNum,the locH of sprite-
thatNum, the locV of sprite thatNum)

--set this node

set the text of member (thatNum+20) to the text-
of member 10

set the visible of sprite thatNum to True

set the visible of sprite (thatNum+64) to True

wait

updateStage

end

——tt+++t+t+t+ttt+++ bttt bttt bbb+
on nodeRightDown thisNum, thatNum

--move this node right up to that node

set the visible of sprite thisNum to False

set the visible of sprite (thisNum+64) to False

set the text of member 10 to the text of member-
(thisNum+20)

set the text of member (20+thisNum) to "

wait

updateStage

moveOneNodeRightDown (the locH of sprite thisNum, -
the locV of sprite thisNum,the locH of sprite-
thatNum, the locV of sprite thatNum)

--set that node

set the text of member (thatNum+20) to the text-
of member 10

set the visible of sprite thatNum to True

set the visible of sprite (thatNum+64) to True

wait

updateStage

end

R R R R T & L L L T e R GRS

118

on nodeLeftDown thisNum, thatNum

--remove the right child and move the right child up

set the visible of sprite thisNum to False

set the visible of sprite thisNum+64 to False

set the text of member 10 to the text of member-
({EhisNum+20)

set the text of member (thisNum+20) to ""

wait

updateStage

moveOneNodeLeftDown (the locH of sprite thisNum, -
the locV of sprite thisNum,the locH of sprite-
thatNum, the locV of sprite thatNum)

--set this node

set the text of member (thatNum+20) to the text-
of member 10

set the visible of sprite thatNum to True

set the visible of sprite (thatNum+64) to True

wait

updateStage

end

e i o e S S i o L o o o R o S

on findMinFromRightSubtree thisNum
set minNode=2*thisNum+1l
set lefrNode=2*minNode

repeat while (the visible of sprite leftNode =True and-
leftNode<=31)
set minNode=leftNode
set leftNode=leftNode*2

end repeat

return minNode

end

B s o e e o e o e e e o o o T o S S o o o o o o o o o o o o o T o o S o S o o o o
on rightUp3node fromN, toN
nodeRightUp (fromN, toN)

if the visible of sprite (2*fromN+1)=True then
set the visible of sprite (fromN+49) to