
MULTIMEDIA DATA STRUCTURES

LEARNING SYSTEM

By

DONGBI (CARL) LUO

Bachelor of Science
Jiangsu University of Science and Technology

Jiangsu, China
1982

Master of Science
Jiangsu University of Science and Technology

Jiangsu, China
1989

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1999



MULTIMEDIA DATA STRUCTURES

LEARNING SYSTEM

Thesis Approved:

Thesis Adviser

Dean of the Graduate College

ii



ACKNO~DGEME TS

Praise be to God. Because of His Mercy I was finally able to finish my thesi.s.

I would like to express my sincere appreciation to all the p ople who assisted me

in this study. I am especially grateful to my major adviser, Dr. Jacques E. Lafrance, for

his encouragement and guidance throughout my academic study at Oklahoma State

University.

My sincere appreciation is also extended to Dr. 1. P. Chandler, Dr. G. E. Hedrick,

and Dr. H. K. Dai for serving on my graduate committee and providing valuable

suggestions, ideas, and support.

My respectful and very special thanks to my father Shuming Luo, my mother

Linzhen Gao, my wife Ningning Wang, and my daughter Xinmiao Luo for their love,

encouragement, support, and confidence in me. And I would like to thank all other

members of my family for their love and support.

Finally, [would like to thank Computer Science Department and Mechanical and

Aerospace Engineering Department for their support during these two and a half years of

study.

111



Chapter

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

II. LITERATURE REVIEW 4

2.1 Data Structures 4

2.2 Visualization 6

2.3 Multimedia 9

III. DESIGN AND IMPLEMENTATION. .. .. . 12

3.1 Hardware and Software 12

3.2 System Design ,,14

3.2.1 Design Strategies 14

3.2.2 Implementation 17
3.2.3 System Movie Making Procedure 21

3.3 Design MultimediaAvlTree Movie 27

3.4 Implement AVL Tree 41

3.5 MultimediaBSTree Movie 45

3.6 Source Code Design 48

IV. TESTmG AND RUNNIN"G 53

V. Sillv1MARY AND FUTURE WORK " 72

5.1 Summary 72

5.2 Future Work 71

BffiLIOGRAPH'Y 74

iv



Chapter Page

APPENDIXES 77

APPENDIX A: AVL Tree Lingo Code 78

A.I Main Script. 78

A.2 Insert Function 82

A.3 Delete Function 86

A.4 Search Function 100

A.5 Other Handlers 104

APPENDIX B: Binary Search Tree Lingo Code '" 121

B.l Main Script. 121

B.2 Insert Function 124

B.3 Delete Function 127

B.4 Search Function 137

B.5 Other Handlers 141

APPENDIX C: Programmer's Guide 150

v



Table

LIST OF TABLES

Page

2.1 Personal Computers Have Evolved Gradually to Include Multimedia

Capabilities 10

3.1 Lingo Script versus Object-oriented Programming Language 13

3.2 Sound Files 16

3.3 Director 6 Main Controlltems and Their Functions 18

3.4 All Contents of AVL Tree Definitions and Conceptions 40

3.5 The Contents of Binary Search Tree Definitions and Conceptions 46

VI



LIST OF FIGURES

R~re P~e

2.1 The Interface of Director 6.0 11

3.1 System Welcome Window 19

3.2 System Main Menu Window 20

3.3 Main Movie Internal Cast Window 21

3.4 System Movie Script Window " 22

3.5 System Text 7: AvlTree Window 23

3.6 System Script of Cast Member 7: AvlTree Window 23

3.7 System Score Behavior Window 24

3.8 System Score Script Window 24

3.9 System Score Window 25

3.10 Change Rollover Pointer Image Dialog Box ,. 27

3.11 AVL Tree Interface 29

3.12 The Options of Operations Menu 30

3.13 The Options of File Menu 30

3.14 The Options of Shows Menu 30

3.15 The Options of Help Menu 30

3.16 The Options of Speed Menu 30

3.17 The Example before Double Rotation 32

vii



Figure Page

3.18 The Example after Double Rotation.•............................................... 33

3.19 SingleRotateWithLeft Rotation Pattern 34

3.20 SingieRotateWithRight Rotation Pattern 34

3.21 DoubleRotateWithRight Rotation Pattern 34

3.22 AVL Tree Instruction Window 35

3.23 About AVL Tree Window 35

3.24 Definitions of AVL Tree Window 36

3.25 Select Movie Properties from "WinAB" Window 37

3.26 Text Cast Member Properties Window 37

3.27 Make Sure to Close Movie Window 40

3.28 AVL Tree Internal Cast Window 41

3.29 All the Objects on AVL Tree Movie Stage 43

3.30 The Sprite Number of the Objects on the Stage 44

3.31 MultimediaBSTree Movie Interface 47

3.32 Flow Chart for MultimediaAvlTree Movie 49

4.1 Full AVL Tree 55

4.2 Tree Full Message 56

4.3 Out of Stage Message 57

4.4 No Input Data Message 58

4.5 No Such Node in the Tree Message 59

4.6 This Node Is already in the Tree Message 60

4.7 Example after Insertion of Node 3, 2, 1 61

viii



Figure Page

4.8 Example after Insertion of Node 4, 5, 6, 7 62

4.9 Example after Insertion of NodeI6 63

4.10 Example after Insertion of NodeI5 .. . .. . .. .. .. . .. .. . .. . . .. . .. .. 64

4.11 Example after Insertion of NodeI4 65

4.12 Example after Insertion of NodeI3 66

4.13 Example after Insertion of Node12..................... .. 67

4.14 Example after Insertion of Nodell 68

4.15 Example after Insertion of Node10 69

4.16 Example after Insertion of Node 8 70

4.17 Example after Insertion of Node 9. .. . .. . .. .. ... . .. .. .. . . . ... .. . .. . .. . . .. . .. .. . . . . . .. 71

ix



CHAPTER I

INTRODUCTION

With the development of the modem computer, the need for programs becomes

more acute, and this requires students and programmers to give more careful attention to

data structures and algorithms. A data structure is a mathematical abstract model which

consists of data and the operations applied to the data. A model is a tentative description

of a theory or system that accounts for all of its known properties. Therefore, the model

must be proved, tested, and solved. A systematic tool for solving this well-specified

computational problem has been known as an algorithm [11]. To meet the needs for

modem techniques of programming, algorithms must be represented in a certain method

as clearly and effectively as possible.

Multimedia will play an important role in developing educational techniques.

With a large-screen projector and multimedia playback system, a teacher can use

multimedia titles to enhance classroom presentation and stimulate questions. The

students can further explore topics at home using a multimedia platform.

A multimedia system [16] [29] includes multiple information channels through

which communications can be made. The information presented to users can be

visualization (text, image, animation, video), audio, or other signals for human sensory

systems.



Visualization is the process of transforming information into a visual fonn [L4],

such as representing systems, concepts, or objects with computer multimedia, graphics,

and users' interfaces [23]. It enables users to observe their simulations and compll.tations.

Visualization is a very active and swiftly changing technique. This field has

tremendously affected such diverse areas as research, education, science, industry,

military, and entertainment. 'Applying visualization techniques can dearly and . I

effectively represent algorithms and help users improve the understanding of its complex

ideas.

Knowing these benefits of multimedia visualization technology rouses us to

develop this multimedia system as an assistant tool for learning.data structures. As we

know, data structures are so important for computer science that almost every pmgram

has one or more data structures. Since data structures can make data easy for storage,

transfer, retrieval, and maintenance in the program. The study of data structures would

be much easier if the learner could be able to visualize the representations of its various

complicated operations associated with its algorithm. Therefore, this system could be

definitely helpful for learning such abstract data structures.

The primary purpose of this thesis is to design and develop a flexible and user­

friendly software for simulating the animated operations of data structures as a teaching

and learning tool with multimedia technology. We name this software as Multimedia

Data Structures Learning System, or MDSL system. It can help the user to execute and

visualize the immediate effects of each step of an operation on each data structure, as

well as explain the changes in visualization with sound. The emerging representation

fonnats, such as sound and animation, are much less developed than those for static

2



graphics [5] [10]. I have explored both sound and animation representation formats in

this project. My major task for this thesis program is general design of the MDSL

system. Because of limited time for thesis study, I only developed MultimediaAvlTree

(AVL Tree; 2,450 lines lingo code, 46 handlers which is similar to the functions or

routines in C language) and MultimediaBSTree (Binary Search Tree; 1,650 lines lingo

code, 31 handers) software in the MDSL system. I have also modified some previous

visualization or multimedia data structures software and imported them to the MDSL

system.

The MDSL system has been developed by using MacroOledia Director version

6.0. The Lingo scripting language of Director can precisely handle the implementation of

this software. This multimedia system has been built on the Microsoft Windows 98

operating system. But it also can run on the MS Windows 95/NT and Mac operating

system.

In this thesis, Chapter II will present a discussion on previous work related to data

structures, visualization, and multimedia. I will describe all the designing and

implementing details and explain various problems which I met in designing the software

in Chapter m. Chapter VI will be the testing and running of the system. The summary

of the thesis and suggestions for future work are presented in Chapter V.

3



-

CHAPTER II

LITERATURE REVIEW

This study involves the design and implementation of an MDSL system in the

environment of Macromedia Director 6. The fields associated with its considerations of

this system could be grouped into the following three topics: Data Structures,

Visualization, and Multimedia.

2.1 Data Structures

Considerable research has been done to develop the study of data structures and

algorithms during the past years. Computer programming developed from a craft to an

academic discipline in the early 1970s. The pioneering work on the concept and study of

data structure was done by many authors such as Dahl [12] and Wirth [32]. Because of

their initial outstanding contributions toward this development, programs become the

concrete formulations of abstract algorithms based on particular representations and

structures of data. During 19808 and 1990s, with the development of the modem

computer, people realized the increasing role data structures and algorithms play in the

computer programming and its applications. Many scientists pay more attentions on the

development of data structures and algorithms.

4



-

For example, Reingold and Hansen [26] redifined the concept of data structures.

Based on his definition, the data structure could be represented in a set of function

associated operations, a storage structure implemented by the functions, and a set of

algorithms achieving the result for the corresponding functions.

Baron and Shapiro [6] described two ways for implementing data structures as

sequentially storing elements in contiguous memory locations and linked elements based

on some logical interconnections.

The tree-based data structures have the organization of linked structures. Aho and

Sethi [2] defined a tree as a collection of elements called nodes, one of which is

distinguished as a root, along with a relation ("parenthood") that places a hierarchical

structure on the nodes.

Adelson-Velskii and Landis [1] introduced the AVL tree as a binary search tree

with a balance condition that for every node in the tree, the heights of the left and right

subtrees can differ by at most 1.

Weiss [31] published his textbook in which the principle and implementation of

data structures were systematically analyzed, described, and coded in C.

Appleton [3] designed a tutorial and C++ implementation of AVL trees.

The full C++ source code distribution of AVL trees and AVL tree library was established

in web site: AvITrees.tar.gz (21KB, gzipped tar file). But there is no deletion function in

this web site.

Although considerable work has been done to develop the comprehension of data

structures, with some researchers even attempting to use a large number of examples and

5



graphic methods to show how the algorithm works, it is still not easy to understand the

implementation of those dynamic data structures. The keen learner would benefit

even more if the algorithms could be visualized and tested easily.

2.2 Visualization

Visualization technique is a method of presenting data and data structures, and is

an active research area. It enriches the process of scientific discovery and fosters

profound and unexpected insights. ~ince computers have become essential tools to

scientists, scientists have to formulate models of natural phenomena using mathematics.

In order to simulate complex events, they must automate their models as computer

algorithms. That is, scientists analyze their observations of nature in terms of

mathematical models, but the volumes of observed data dictate that these analyses be

automated as computer algorithms. Unlike hand computations, automated computations

are invisible, and their sheer volume makes them difficult to comprehend. Thus scientists

need tools to make their computations visible, and this has motivated active development

of scientific visualization systems.

In the early days, visualization systems were done more in films and video tapes.

The visualization was static and the users could not take part in the situation. Examples:

Knowlton [17] directed the first computer-generated movie which showed how an

assembly level language was implemented in 1966, Booth's movie [8] showed several

algorithms on PQ-trees in terms of different inputs using a hash table and a graph, and

Baecker's algorithm animation film [4] showed visualization of nine sorting algorithms.

6



-

-

Thus, since scientists have focused on representations of data structures and

created a variety of commercial systems, several visualization systems have been done to

display automatically some static graphs of a program's data structures, but they cannot

show how the data structure changes and which operation is being executed. These

systems can be called static displays which only show the image of data, relationship of

data, and overall data structures. For examples, Myers [24] built a system for displaying

a data structure which can allow users to specify the variable name to get its graphical

display and select one of the fonnats associated with each data type. Wilson Lee [18], in

his master thesis, designed a data structures display system which implements linked­

lists, binary search trees, and B-trees on VT100 type terminals. Zemik [33] introduced a

system named "Using Visualization Tools to Understand Concurrency" which uses

graphs to provide a logical view of execution according to computational threads,

messages, and synchronization events, and overcomes the concurrency bugs, as well as

giving the users a clear picture of concurrency. But these systems are rigid because they

display graphics as characters rather than as a combination of pixels. On the other hand,

these systems don't have the operations of deletion for any data structure. As is common

with many data structures, the hardest operation is deletion. Once we have found the

node to be deleted, we need to consider several possibilities with many complicated

cases. In my opinion, as a teaching and learning tool, a system has to include deletion

operations for data structures. Otherwise, the system is not a complete one. So, in the

MDSL system, I have developed two data structures movies (MultimediaBSTree and

MultimediaAvlTree) which have involved all of three operations ( insertion, deletion, and

search).

7



-

-

Nowadays, the visualization system has become one of the most exciting and

rapidly growing fields in computer science. In order to overcome the static display's

shortcomings, scientists have developed a variety of visualization systems of dynamic

displays which show the behaviors of the algorithms and indicate the sequences inside

the codes of the algorithms.

The VIS-AD (VISualization for Algorithm Development) system was designed

by Hibbard, Dyer, and Paul [15] to help scientists visualize their computations. This

system can be understood in terms of its data model, computational model, and display

model. Unfortunately, this visualization system focuses on the visual programming

paradigm in an algorithm oriented way. Data itself cannot be accessed by the user

directly, but exists only internally.

Shen's TBDSV (Tree-Based Data Structures Visualization) system [28] is built

on the X windows system. The TBDSV system simulated AVL tree, Red-Black tree, B­

tree, and Splay tree, but it cannot accept the user's input for visualization. In his system,

there is no deletion operation available.

Furthermore, researchers have realized that human perception also depends on the

other four senses besides the vision sense exploited by graphs, texts, and animations. The

exploitation of the other human senses will be a great benefit for presenting and

comprehending complex information. For example, Bly [7] found that graphics plus

sound annotation were more effective than just graphics. With the development of sound

hardware and software, it is now possible to use more sound and clearer sound in the

visualization system which can be called "Multimedia Visualization System" since

microphone input of voice annotation is a common feature of personal computers. The

8



-

Multimedia Visualization System is a useful tool both for interpreting image data fed into

a computer and for generating images for complex multi-dimensional data sets. It will

help users comprehend the task of an algorithm and explore different scenes in the

construction of the data structures. Therefore, this system is appropriate for lab exercises

and distance learning as a teaching and research tool.

Explicitly or implicitly, visualization systems are also based on a display model in

which data and information are communicated to users [27]. Clearly, there is a need for

implementations of interface to complex data structures. Director 6 Multimedia Studio is

a great platform as a display model to implement the visualization system for my project.

2.3 Multimedia

Multimedia is a collection of various media, such as animation, sound, graphics,

text, photography, and video, which come together to constitute a singular form of

communication [19]. It effectively creates a sequence of events that will communicate an

idea usually with both sound and visual support. Typically, multimedia productions are

developed and controlled by computers [9].

In the early days of multimedia, the presentation depended heavily on skillfully

designed support devices, such as drawings, charts, graphics, and actual products.

Nowadays, the art of multimedia is still the same. However, the method of multimedia

and the new support products have ushered in a new era of sight and sound that adds a

variety of stimulus to contemporary presentations. Table 2.1 shows that personal

computers have evolved gradually to include multimedia capabilities.

9



Multimedia, like the computer itself, is a tool. This tool wiH be helpful in the

promotion of ideas, concepts, and services for developers. There are no limits for its use.

Multimedia processes are especially beneficial in the education area.

Years multimedia capabilities

1984-1987 Simple; Slide Shows; Basic interactivitv
1988-1992 Faster Processors; Sophisticated graphical interface; Interactive

environments grow
1993-1999 Compact disk quality sound; 3-D animation; Presentation software

enhanced; Sophisticated authoring environments; Connection to
externals; Cross platform development

Table 2.1 Personal Computers Have Evolved Gradually to Include Multimedia Capabilities

Multimedia visualization systems allow their users to learn faster as well as

achieve better recall results. With computer-based learning techniques, the individual

can move at his own pace. In addition, a computer-based learning program has the

ability to change lessons and data for certain levels of staff learning. Another advantage

of these systems is that the content can include a variety of multimedia elements. The

integration of sound and visualization allows the learning technology to be a highly

effective medium. Such processes are particularly successful in the area of flight and

driving simulators [13].

There are many areas to consider when a multimedia project is planned. A few

are the hardware platform, the audience or user, and the design process. Perhaps the most

important event to consider is the choice of software. Software is like the engine of a car;

it takes you where you want to go. Having a software program that provides a workable

multimedia authoring environment can determine the success of your end project. There

are numerous software programs on today's market, each with their own unique features.

10



-

My project requires developing a serious interactive content that demands considerable

extensibility. Therefore, I chose Macromedia Director 6 as the software program.

Director allows the development of a wide range of presentation types from the

very basic to the extremely sophisticated. Director has great strength in animation and

interactivity. The score windows in Director 6 allow virtually any action to happen based

on information entered in the score script window (see Figure 2.1). Director also

contains a complete set of painting tools to allow both the creation of a graphic object as

well as the modification of imported graphics.

The study of multimedia user interfaces has not matured into an independent

discipline. We need to examine a range of research contributions in disparate areas

which contribute to our understanding of these new interfaces.

Figure 2.1 The Interface of Director 6.0

11



-

CHAPTERID

DESIGN AND IMPLEMENTAnON

As stated above, the primary goal of this project is to design and develop a

flexible and user-friendly software (MDSL system) for simulating the operations of data

structures as a teaching and learning tool with multimedia technology. In this chapter,

besides system design and implementation, we also describe the design and

implementation of two main data structures movies (MultimediaAvlTree and

MultimediaBSTree) in the MDSL system. In these two movies, both the AVL tree and

binary search tree can be implemented to simulate insertion, deletion, and search

operations, and to animate the trees of depth four, which has at most 31 nodes. This is

enough to show the principle of the trees' operations. Users can insert, delete, and search

any node they desire during the implementation of the AVL tree and Binary Search tree.

3.1 Hardware and Software

This software will be developed by using Macromedia Director 6 and will be a

32-bit application. Director 6.0 has the following requirements for the system [19]:

Windows System Requirements:

• 486 DX, SX or greater

11



-

-

• Windows 95/98, Windows NT 4.0, or later Direct 3D recommended

• 16 MB of available RAM

• 80 MB free hard disk space for installation

• 640x480(l3-inch) resolution and 8-bit color (256 colors) monitor or higher

• 8-bit or 16-bit sound card

Macintosh System Requirements:

• Power Macintosh

• System 7.5 or later with Quick Time extension. QuickDraw 3D recommended

• 16 MB of available RAM

• 80 ME free hard disk space for installation

• 640x480(l3-inch) resolution and 8-bit color (256 colors) monitor or higher

• 8-bit or 16-bit sound card

Macromedia Director 6 is the world's foremost powerful authoring tool for

multimedia production and for the Internet. It was introduced in March 1997. The Lingo

scripting language of Director 6 can precisely control text, sound, graphics, and digital

video. Lingo also has some concepts which are very similar to object-oriented

Common Term

Lingo Parent Child Property Handler Ancestor

Script script object variable

Object- Class Class Instance Method Super class

Oriented instance variable

Table 3.1 Lingo Script versus Object-oriented Programming Language

13



-

-

programming language. Table 3.1 shows common tenns between Lingo script and

object-oriented programming language. Therefore, we can develop my project by using

Director 6 on Windows or Macintosh and play back executables on the platfonn (such as

OS/2, SGI, OS/9), over the Internet via Shockwave plug-in or Java™, or many interactive

TV formats.

This multimedia system will be built and run on the Microsoft Windows 95/98 or

NT operating system, which have good software reusability, maintainability and

accessibility. These provides a smooth and flexible open system user interface at a time

that users are accustomed to window-style interfaces. This system can also run under

Windows 95/98/NT and MacOS.

3.2 System Design

The operation of the multimedia system can be of a supportive nature, allowing

the designer to concentrate on content, and not the technical aspects of presenting. A

good feature of software is its capability to be used easily. Toward the goal of building a

user-friendly and reliable MDSL system, this section will discuss some design strategies

and implementation decisions which I have considered and made during the process of

designing this system.

3.2.1 Design Strategies

People remember 20% of what they see, 40% of what they see and hear, and 70%

of what they see, hear and do. This is also the basis for the learn-by-doing philosophy

embedded in my thesis design. This system can accept the user's input algorithms for

14



-

multimedia visualization. That means the users can not only see and hear something but

also do something when they are learning. Actually, the implementations of the MDSL

system are controlled by users. The users can input the test data during the running time

and see the result.

As a teaching and learning tools, user interface has become very important.

Therefore this system is developed in windows environment and on the Macromedia

Director 6.0 platform, which have more benefits for designing the system user interface.

It can follow all user interface principles formulated by Sommerville [30]. That is, the

user interface should use terms and concepts which anticipated users are familiar with, be

appropriately consistent, include some mechanism which allows users to recover from

their errors, incorporate some form of user guidance, and the user should not be surprised

by the system.

Color can enrich the implementations of visualization and communicate

information presented to users more efficiently [15]. In my program, the current node

always is red and other nodes are all black. When the current node moves and animates

in the stage, the red current node can vividly show the operations of data structures in

order to hold audiences' attention.

Audio can improve a multimedia presentation in many ways, but the most

important way is that it is used to enhance or augment the presentation of information and

instruction. In my program, sound effects have been merged into the program from a

different channel controlled by Lingo script. These sound effects (see Table 3.1) are

particularly related to programs that have an instructional message. For example, when

the user inserts, deletes, or searches a node from a data structure, there is a voice message

15



-

L

which says" You inserted, deleted, or searched a node". If the user performs some

megal operations, such as trying to search a node when there is no such node in the tree,

there will be an alarm dialog box which pops up with a text message, a system beep and a

voice message which says ''This node is not in the tree, please try again".

Sound file name Sound contents

StartWelcome Welcome to multimedia data structures learning system.
Please click one of the movies in main menu, and enjoy it.

Inputdata Sorry, please click input data field and enter a data.
Instruction Please read this instruction.
outStage Oops, out of the stage, please try again.
treeful Oops, this tree is full.
Insert You insert a new node.
Delete You delete a node.
Search You search a node.
Nodel This node is not in the tree, please try again.

Noinsert This node is already in the tree. ._.

Slrotate Need single rotation with left.
Srrotate Need single rotation with right.
Dlrotate Need double rotation with left.
Drrotate Need double rotation with right.

Table 3.2 Sound Files

Animation offers the temporal juxtapositions that graphics lack. Unlike print or

graphics, animation is a dynamic medium. We get a sense of relative timing, position,

direction, and speed of action. We need no captions, because the message is conveyed by

motion and image[25]. Therefore, we can get the most impressive smooth motion

with the animation technique.

People are always looking for new ways to educate their children. If they are

having fun, they learn better. Computer animation can be used to make exciting and fun

movies into which education can be easily incorporated. It is much more interesting to

learn math, for example, when the letters are nice, colorful, and flying on your TV screen.

16



You don't need to solve problems on plain black and white paper. Actually, there is

much more to animation than fun. Animation has grown from being purely an

entertainment medium to being one of the most powerful ways to get your point across.

Whether you aim to deliver complex visual infonnation or simply to keep the viewer's

attention, animation is truly a powerful medium. Another reason for using computer

animation to simulate events as opposed to models is that variables can be programmed

into a computer and then very easily changed with a stroke of a button or select a menu

item in the interface.

In my project, the operations of data structures are implemented by using

animation techniques. For example, in MultimediaAvlTree movie, animation techniques

are used in the movement of the nodes in the tree. That is, animation has been used to

show the user the tree's operations and rotations. The speed actions of animation are

controlled by the "wait" handler in Lingo Script (see Appendix A), which has 18 speed

grades. Since different computers might have different speeds, the users can simply click

the SpeedUp and SpeedDown buttons on the stage to adjust the animation speed in the

running time, which makes the system more flexible and user-friendly.

3.2.2 Implementation

Since the MDSL system is developed by using Macromedia Director 6.0, we first

have to know Director 6.0 Control items [20] [21] [22] shown in Table 3.3.

The MDSL system consists of two main windows: System Welcome Window

and System Main Menu Window.

Figure 3.1 shows" System Welcome Window". When users run this system, the

17



-

-

system first shows this window. With beautiful music, this window will gradually

Control item Functions

Paint window provides the same tools in a paint application such as Microsoft paint,
supports Photoshop filters and new tweenable filters for graphic effects,
and be used to create and edit the user interface.

Cast window a multimedia database of graphics, text, sound effects, music and Lingo
scripts, and contains all the infonnation in a movie.

Score window keeps track of each cast member on the stage in each frame of a movie and
controls tempo and the timing of sounds, transitions, and palette changes.

Control panel provides a set of controls similar to those on a VCR. The user
can use them to play, stop, or rewind a movie.

Stage window Stage in which movie appears. It is always open.
Sound control The user can import the sounds and music into a movie and can

control it with Lingo script language or a temp setting.
Lingo script director's scripting language that adds interactivity to the multimedia

project. It can combine animation and sound in ways that score alone
cannot.

Table 3.3 Director 6 Main Control Items and Their Functions

move from the center to the top of stage. After this window disappears on the top of

stage, the system starts to run sound file "startWelcome" (see Table 3.2). The sound

explanation that is "Welcome to Multimedia Data Structures Learning System. Please

click one of the movies in the main menu, and enjoy it" will speak out from the

computer microphone. Accompanying this sound explanation, next window

"System Main Menu Window" (shown in Figure 3.2) appears in the center of stage. And

the data structures movies appear on the stage one by one. This time, users can select one

of these movies to play just according to the instruction of this sound explanation.

18



-\0

..uti. IIieDSLSfde...
-os:

Figure 3.1 System Welcome Window



Multimedia nata Structures Learning System

tvo

....... QldieDSlSyate._

MJItimedj.RSIree VuualHe.Sort

MuldmdiaAvlTree Y¥ulMemSort

YilJalRe(81MkTree VnalQpkSort

MJ1m.Hi.B..Tree VlIuIB.JaetSort

M1I1timeltiaADT VwpJ"",m.nSert

VwulSJ!larTree Vil1lalLeftiftHut

ViIlIalBiuuHeJI

VJfU1SheuStrt ViluIBiMaialQ_

Figure 3.2 System Main Menu Window



L

3.2.3 System Movie Making Procedure

The main system movie making procedure is much simpler than its data

structures' movies because of its simple Lingo script code. First, we should do the

"Internal Cast" window of this movie, which shown in Figure 3.3. We can see that

Figure 3.3 Main Movie Internal Cast Window

the total cast number used is 28. Cast 1 is the movie script. Click it and click the script

window button in Director 6.0 window. The script window will pop up as Figure 3.4.

We can directly code the movie script in this window, which is shown in Figure 3.4.

Then close the script window and save it. Cast 1 is done.

Cast 2 is a picture file. It is made by using MS PowerPoint. Save it as a picture

file, copy, and paste to the Paint window. Then import it into cast 2. The picture used

the library tower of Oklahoma State University and the American flag as background.

Type "Welcome to Multimedia Data Structures Learning System" by using "wordArt... "



-

-

puppetSound "welcomeMusic2"
updateStage

puppetSprite 1. True
set the stageColar to 0

end startMovie

on Prompt
set the ink of sprite (the currentSpriteNu~) to 256
updateStage

end Prompt

on Nopro~pt

set the ink af sprite (the currentSpriteNum) to 1
updateStage

end noprompt

Figure 3.4 System Movie Script Window

from PowerPoint insert menu> picture. And type author, adviser, school name and date

by clicking "Text Box" button in the bottom of the PowerPoint window. If we use

Director Paint window or MS word window to make this picture, the text box cannot be

the same color of picture as the background. This is why we use MS PowerPoint to make

cast 2. In the same way, we can make cast 5 which is another picture file.

Cast 6-21 are ''Text'' messages on the stage, which can connect to data structures

movies. For example, when you make cast 7 (named AvITree), first click cast 7, and

click text window button in the Director 6.0 window. The text window will pop up as

Figure 3.5. We can type text content (MultimediaAvlTree) in the text window. Then

click the Cast Number Script button in the text window. There is a script of cast member

7: AvlTree window will pop up as shown in Figure 3.6. We can code cast script in this

window as shown in Figure 3.6. Then close these windows and save them.

22



-

ultimediaAvlTree (Dongbi Luo)

Figure 3.5 System Text 7: AvlTree Window

on mouseUp
play movie "MultimediaAvlTree"

end

on mouseEnter
Prompt

end

on mouseLeave
Noprompt

end\

Figure 3.6 System Script of Cast Member 7: AvlTree Window

Cast 22-24 are all score behavior. If you click one of them, the Behavior

Inspector window will show up as Figure 3.7. When we click the script window in

this window, there will be a score script window pop up as Figure 3.8. We can see this

time consumer score behavior from Lingo script. They are put into the script channel in

the score window shown as Figure 3.9. The script channel stores behaviors or

instructions written in Lingo that are executed when the movie reaches a particular frame.

23



b

Figure 3.7 System Score Behavior Window

on exitFrame
startTimer
repeat while the timer <60

nothing
end repeat

end

Figure 3.8 System score Script Window

Therefore, these score behaviors are put into different frames in the script channel

in order to control every data structures movie entering the stage at a different time.

When the playback head reaches frame 25, the movie will loop here because Lingo in the

score script window is:

on exitFrame
go to the frame
puppetSprite 1, False
set the visible of sprite 1 to False
puppetSprite 2, True

set the soundEnabled to False

--set the main menu to the window
set the locV of sprite 2 to 196
set the locH of sprite 2 to 260

24



set the visible of sprite 2 to True
updateStage

end

Figure 3.9 System Score Window

This handler names exitFrame because it is executed when the playback head will

exit frame 25. Obviously, the first line Lingo "go to the frame" causes the movie loop in

the frame 25.

When the movie starts, the playback head is in frame 1. The Lingo script stored

in the script channel of frame 1 is:

on enterFrame
--move the welcome window and instruction window
--into or off the stage
puppetSprite 1, True
set the visible of sprite 2 to False

25



-

set the locV of sprite 1 to 190
set the locH of sprite 1 to 245
set the visible of sprite 1 to True
updateStage

startTimer
repeat while the timer <3*60

nothing
end repeat
--move the welcome window
repeat with i = 1 to 300

set the locV of sprite 1 to
(the locv of sprite 1 - 1)

updateStage
end repeat
set the visible of sprite 1 to False
updateStage

startTimer
repeat while the timer <60

nothing
end repeat

set soundEnabled to True
puppetSound " s tartwelcome"
updateStage

startTimer
repeat while the timer <60

nothing
end repeat

end

on exitFrame
puppetSprite 1, FALSE
set the visible of sprite 1 to False

end

This phrase Lingo controls the "System welcome window" to display, move, and

sound explanation.

In addition, we have used the behavior of Cursor Rollover and Mouse Down in

the System Main Menu Window that cursor changes from Arrow to Hand when the

user's mouse cursor points to the text box of one of data structures movies. This cursor

26



-

change benefits for reminding user that the pointed data structure movie will be selected

to implement if he clicks mouse. In order to do so, we need to select the Behavior

Library from Director menu item Xtras. The Behavior Library Cast window will pop up.

Drag cast 47 ( behavior of pointer rollover and mouse down) into system cast 26 (see

Figure 3.10 Change Rollover Pointer Image Dialog Box

Figure 3.3). Then drag system cast 26 to every text box of data structures movies in the

stage. When we drag system cast 26 to one of these text boxes, there is a dialog box that

will pop up as shown in Figure 3.10. Click first pull-down arrow and select "Hand" item

instead of "I-Beam" item. Click OK. This behavior has been attached to this text box.

When the user points to this text box, the cursor will change from arrow to hand image.

3.3 Design MultimediaAvlTree Movie

MultimediaAvlTree is one of the main data structures movies in the .MDSL

system. The user can implement the AVL tree by selecting MultimediaAvlTree from the

main menu (see Figure 3.2). In the meantime, an empty data structure of the AVL tree

27



-

is created automatically by calling the newTree handler in startMovie (see Appendix A:

Lingo source code) script. The user can work on the AVL tree interface shown in Figure

3.11. Then the user is able to select anyone of the operations of the AVL tree. But the

user has to select the insertion operation first for the empty tree. The user is also able to

input the data at running time, to execute an operation, to watch the animation of the

operation, and to listen to the explanation, which can enhance the user to understand the

concept of the AVL tree. In order to use the system conveniently for users, I have

developed three ways for users to input data. Firstly, users are able to select the options

of operations from the pull-down menu shown in Figure 3.12. Secondly, users are able to

select the options of operations by using combined keys. From Figure3.12, you can see

that users press "Ctrl + D" for insertion, "Ctrl + D" for deletion, and "Ctrl + S" for

searching. Thirdly, users able to select the options of operations by clicking the buttons

in the AVL tree interface (see Figure 3.11).

Besides the "Operations" menu item, there are three other menu items which are

"File", "Shows", "Help", and "Speed" shown in Figure 3.13, 3.!4, 3.15, and 3.16

respectively.

From Figure 3.14, we can see that there are five options in the "Shows" of the

pull-down menu item. If users select the option" Operations History" in the running

time, the "Operations history" text box and "Close" button will display on the stage (see

Figure 3.11). They will disappear if users click the "Close" button. The other fOUf

options in the menu "Shows" are all rotation patterns which will display on the stage to

show users clearly how the rotation could be executed when the AVL tree needs to do

these rotations. These rotations patterns will cover the "Operation history" text box,

28



tv
'D

Figure 3.11 AVL Tree Interface

l . - OEf.lJolDa <Sl.t. Un;;'. Ll'7kaq .j



-

Figure 3.12 The Options of Operations Menu

Figure 3.13 The Options of File Menu

Figure 3.14 The Options of Shows Menu

Figure 3.15 The Options of Help Menu

Figure 3.16 The Options of Speed Menu

30



-

-

which means these patterns don't hamper users to visualize the implementations of the

AVL tree when they are displayed on the stage. For example, if users want to insert

node 14 into the AVL tree as shown in Figure 3.17, the AVL tree balance condition wiJl

be destroyed. To rebalance the AVL tree, system will call doubleRotateWithLeft handler

to do double rotation. Before the insertion, users could display this rotation pattern by

clicking doubleRotateWithLeft option in the "Shows" menu item. The left side is the

pattern before rotation, and the right side is the pattern after rotation. Obviously, users

can easily compare the example with the rotation pattern to find out that node 6 is kl,

node 15 is k3, and node 7 is k2. Therefore, users already know the rotation result from

the rotation pattern. Figure 3.18 shows the resul t of the example after double rotation.

Figure 3.19, Figure 3.20, and Figure 3.21 show the singleRotateWithLeft,

singleRotateWithRight, and doubleRotateWithLeft rotation patterns respectively

(doubleRotateWithRight rotation pattern is shown in Figure 3.17).

Figure 3.22 shows the "Instruction" which guide users how to implement the

AVL tree movie because the "Instruction" shows all functions and properties of the

buttons and menu options in the AVL tree interface.

31



'..-J
N

Figure 3.17 The Example before Double Rotation

1



....,....,

Figure 3.18 The Example after Double Rotation

1



-

• singleR olaleW'ilhLe!1 ~ i

Figure 3.19 SingleRotateWithLeft Rotation Pattern

-------
; singleRolaleW'ithRight ~

Figure 3.20 SingleRotateWithRight Rotation Pattern

; doubleRolale'WithLeU IW

Figure 3.21 DoubleRotateWithRight Rotation Pattern

34



-

...

Iostructioos
1. This software is limited to 31 nodes for each AVL tree, which is

sufficient to illustrate the principles ofthe three operations. When a
user clicks the play button, there willbe a prompt in the input data
field. Ifthere is no prompt in the input data flel.d, the user should
click on the input date fIeld fll'St, then input the data.

2 The input data should be a number less than 4 digits.
3. Click on the Insert, Delete, or Searchbutton ( or select them from

menu or use combined key) to perform an operation.
4. Click on the Reset or Newbutton to erase an old tree and build a new

one.
5. Click on the Exit button to quit the MultirnediaAvlTree window.
6. Select menu item File :> backMainJo go back to main menu.
7. Select one ofthe rotations menu item from Show to display the

corresponding rotation pattern ofAVL tree.
8. Select menu item OperationHistory to display the operations that

have already been performed on the current tree.
9. Select menu item Defmitions of AVL Tree to show the basic concepts

of AVL tree.
10. The animation speeds are divided into 18 grades, grade 1 is the lowest

speed, and grade 18 is the highest speed.

Figure 3.22 AVL Tree Instruction Window

If users select the AboutMultimediaAvlTree or Definition of AVL Tree in the

"Help"menu item, Figure 3.23 or Figure 3.24 will pop up at the upper left comer of the

stage.

• aboutAvlTfee ~:

MULTIMEDIA AVL TREE

Venion 1.0

Diredor: Carl LllO
Advisor: Dr. LaFrance

Compu1er Sdente Department
Oklahoma Sta1e UniveDitv

Figure 3.23 About AVL Tree Window

35

-



Definitions and Conceptions
of AVL Trees

-

""'1

ililll
mm

An AVL lr < is a binary earch lr W itII a balM III~
condition in which for every node in th tree, the heigh of th mm
left and rig~t ubtree can differ by at most 1. Th height of an lil!i!
empry [rOO lS defined. to be - L) i!i!l!

AD the tree operations (insertion, deletion, and searching) Ill!!!
can be performed in r.llis program. iii!!!

iilll!
IDsertloll 19oritbm

Figure 3.24 Definitions of AvlTree Window

Users can read definitions and conceptions of the AVL tree from "Definitions of

AVL Tree Window" if they don't know about the AVL tree. Actually, the contents of the

AVL tree definitions and conceptions are shown in Table 3.4, which are more than users

can see in Figure 3.24. In order to save the "Definitions of AVL Tree Window" space

and make the users read the contents of the AVL tree definitions and conceptions

conveniently, I have made the scrolling bar in the right side of "Definitions of AVL Tree

Window". This Window is supported by the "WinAB" movie. I can put the scrolling bar

in this window as follows:

1. Type all contents of the AVL tree definitions and conceptions in the text

message window of the "WinAB" movie.

2. Store this tex.t message into the "winAB" internal cast window as a cast

member.

3. Drag this cast member and put it at the comer of the upper left stage.

36



--

4. Select the internal properties from the movie menu, which is shown in Figure

3.25. There will be a ''Text Cast Member Properties" window that will pop up

(as shown in Figure 3.26). Click the pull-down arrow at the right side of the

framing text box. Select the "Scrolling" item instead of "Adjust to Fit" item.

Then click OK.

5. Adjust the side of "Definitions of AVL Tree Window" to look like Figure

3.24.

Figure 3.25 Select Movie Properties from "WinAB" Window

Figure 3.26 Text Cast Member Properties Window

37



-

--------------------------------,
Definitions and conceptions

of AVLTree

An AVL tree is a binary search tree with a balance
condition in which for every node in the tree; the height of the
left and right subtree can differ by at most 1. (The height of an
empty tree is defined to be -1.)

All the tree operations (insertion, deletion, and
searching) can be perfonned in this program.

Insertion Algorithm
I When we do an insertion, we need to update all the
balancing infonnation for the nodes on the path back to the
root, but the reason that insertion is potentially difficult is that
inserting a node could violate the AVL tree property. It turns
out that this can always be done with a simple modification to
the tree, known as a rotation. After an insertion, only nodes that
are on the path from the insertion point to the root might have
their balance altered because only those nodes have their
subtree altered. As we follow the path up to the root and update
the balancing infonnation, we may find a node whose new
balance violates the AVL condition and do the rotation to
rebalance the tree.

Rotation
Let us call the node X that must be rebalanced. Since

the X's two subtrees' height differs by two, it is easy to see that
a violation might occur in the following four cases in which we
need to do corresponding rotation (see fOUf rotations patterns
by selecting them from Menu> Show) :

case 1: An insertion into the left subtree of the left child
of X. We need a single rotation to rebalance it
(called single rotation with left).

case 2: An insertion into the right subtree of the left
child of X. We need double rotation to
rebalance it (called double rotation with left).

case 3: An insertion into the left subtree of the right
child of X. We need double rotation to
rebalance it (called double rotation with right).

case 4: An insertion into the right subtree of the right
child of X. We need single rotation to rebalance
it (called single rotation with right).

38



-

Single rotation:
The pattern singleRotateWithLeft shows single rotation

that fixes case 1. The before picture is on the left, and the after
picture is on the right. Node k2 violates the AVL tree balance
property because its left subtree is two levels deeper than its
right subtree. The situation depicted is the only possible case 1
scenario that allows k2 to satisfy the AVL property before an
insertion but violate it afterwards. Subtree X has grown to an
extra level, causing it to be exactly two levels deeper than Z. Y
cannot be at the same level as the new X because then k2
would have been out of balance before the insertion, and Y
cannot be at the same level as Z because then k1 would be the
first node on the path toward the root that was in violation of
AVL balancing condition.

In order to ideally rebalance the tree, we would like to
move X up a level and Z down a level. Note that this is
actually more than the AVL property would require. To do this
, we rearrange nodes into an equivalent tree as shown in the
second part of this pattern.

Here is an abstract scenario: visualize the tree as being
flexible. Grab the child node kl, close your eyes, and shake it,
letting gravity take hold. The result is that kl will be the new
root. k2>kl, so k2 becomes the right child of kl in the new
tree. X and Y remain as the left child of kl and right child of
k2, respectively. Subtree Y, which holds items that are between
kl and k2 in the original tree, can be placed as k2's left child iJl
the new tree and satisfy all the ordering requirements.

The pattern singleRotateWithright shows single rotation I

that fixes case 4 which represents a symmetric case.

Double rotation:
The pattern doubleRotateWithLeft shows double

rotation that fixes case 2. In this case, it includes following two
single rotations:

1. Single rotate between kl and k2,
k3->Left=singlerotateWithRight(k3-Left);

2. Single rotate between k3 and k2,
return singleRotateWithLeft(k3);

The pattern doubleRotateWithRight shows double
rotation that fixes case 3 which represents a symmetric case.

Deletion Algorithm
Binary search tree deletion algorithm:
case 1: If the deleted node is a leaf, it can be deleted

immediately

39



-

case 2: If the deleted node only has one child, the node
can be deleted after its parent adjusts a pointer
to bypass the node.

case 3: If the deleted node has both the left child and
right child, exchange this node with the smallest
node of the right subtree. Then delete the node.

Deletion in AVL trees is the same as in a binary search
tree, as above described. The rebalancing is as follows:

First, case 3 needs one more thing. After the exchange,
the deletion continues down the right subtree and eventually
deletes the exchanged node.

Second, after a deletion, only nodes that are on the path
from the deleted node or exchange node to the root might have I

their balance altered because only those nodes have their
subtree altered. As we foHow the path up to the root and update
the balancing infonnation, we may find a node whose new
balance violates the AVL condition and do the rotation to
rebalance the tree.

Table 3.4 All Contents of AVL Tree Definitions and Conceptions

If users click "Exit" button on the stage, select "Exit" option from menu "File"

item, or press combined keys "Ctrl + E", there will be a "Close This Movie?" window

(as show in Figure 3.27) that will pop up at the upper left corner of the stage. This

Are you sure to close This Movie '!

Yes

Figure 3.27 Make Sure to Close Movie Window

40



-
window wants users to make sure whether they really need to close the movie they are

working on or not.

3.4 Implement AVL Tree

First, I have made the AVL Tree "Internal Cast" Window shown in Figure 3.28.

Cast 3 is the "Menu" Lingo script for MultimediaAvlTree movie. Other main Lingo

scripts are stored in Cast 1, Cast 4, and Cast 5 (see Appendix A). Cast 11, Cast 12, and

Cast 13 represent respectively the AVL tree's node, left edge, and right edge. I have

Figure 3.28 AVL Tree Internal Cast Window

41

, .



-

..

dragged 31 of them into the movie stage shown in Figure 3.29. In order to code the

simulation of the AVL tree operations easily, I have put all objects (called sprite in

Director movie) on the stage into the first frame in the score window in order and

controlled them visibly or invisibly by Lingo script when users implement the AVL

tree. For example, 31 nodes are stored from channel 1 to channel 31. The compare

signal (cast 8) is stored in channel 32, which is used to compare the insert node or search

node with the current node. If the insert node or search node is larger than the current

node, the insert node or search node will go to the right child of the current node.

Otherwise, it will go to the left child of the current node. The moving node is made up of

Sprite redCircle (cast 9) stored in channel 33 and sprite movingToken (cast 10) stored in

channel 34. This red moving node plays an important role in the animation of the AVL

tree operations. Actually, all movements of the insertion, deletion, searching, and

rotation have been completed by this moving node. Thirty one numbers of left edges are

stored from channel 35 to channel 49 in order. Thirty one numbers of right edges are

stored from channel 50 to channel 64 in order. Sprites "value 1" - "value 31" ( cast 21­

cast 51) are all fields stored from channel 65 to channel 95 in order, which are used to

show the values for each node respectively. Sprite "Arrow" (cast 32) is stored in channel

96, which is used to show searched node flashily. Sprite "showOpHi" (cast 53) is stored

in channel 97, which is used to show all operations history. Sprite "c1oseButton" (cast

54) is stored in channel 98, which is used to close the operations history text box on

the stage. Cast 14 is a text type cast stored in channel 99, which has "Input Data"

content. Sprite "inputField" (cast 15) is stored in channel 100, which is used to show

input data on the stage. Sprites "insertButton" (cast 16), "deleteButton" (cast 17),

42



.j:>.
w

Figure 3.29 All Objects on the AVL Tree Movie Stage

,



r

~

Figure 3.30 The Sprite number of the objects on the Stage

,

-



-

"ExitButton" (cast 18), "ResetButton" (cast 19), and "searchButton" (cast 20) are stored

in channel 101, channel 102, channel 103, channel 104, and channel 105 in order, whose

functions are shown in Figure 3.22. These buttons always are visible on the stage. In

general, all sprite numbers (channel numbers) on the stage are shown in Figure 3.30.

3.5 MultimediaBSTree Movie

MultimediaBSTree is another data structures movie in the MDSL system. It

implements and simulates the operations of animated binary search trees on the Director

stage. The implementation and design of the MultimediaBSTree movie is similar to that

of the MultimediaAvlTree movie. The main differences are their algorithms, such as

binary search trees don't have balance conditions, so they don't need the rotation

operations to rebalance the trees after users insert or delete some nodes from the trees.

Table 3.5 shows the binary search trees algorithm which is the contents of "Definitions of

BSTree Window" in the MultimediaBSTree movie. The readers can compare it with

Table 3.4 to see the details of their different algorithms.

Figure 3.31 shows MultimediaBSTree movie interface in which all objects on the

stage are visible before starting this movie.

Definitions and conceptions
of Binary Search Tree

The property that makes a binary tree into a binary
search tree is that for every node, X, in the tree, the values of
all the keys in its left subtree are smaller than the key value in
X, and the values of aU the keys in its right subtree are larger
than the key value in X.

45



---

L

All the tree operations (insertion, deletion, and
searching) can be performed in this program.

Insertion Algorithm
The insertion is conceptually simple. To insert X into

tree T, proceed down the tree as you would with a Find. If X is
found, do nothing. Otherwise, insert X at the last spot on the
path traversed. The Insertion into a binary search tree C code is
as following:
Insert(ElementType X, SearchTree T)
{

if(T= =NULL)
{

/*Create and return a one-node tree */
T = malloc(sizeof(struct TreeNode));
if(T= =NULL)

FatalError("Out of space!! !");
else
{

T- >Element=X;
T- >Left=T->Right=NULL;

}
}
else
if(X< T->Element)

T->Left=Insert(X, t->Left);
else
if(X>T->Element)

T->Right=Insert(X, T->Right);
/* Else X is in the tree already; we'l do nothing */

return T;
}

Deletion Algorithm
. case 1: If the deleted node is a leaf, it can be deleted

immediately
case 2: If the deleted node only has one chi Id, the node can be

deleted after its parent adjusts a pointer to bypass the
node.

case 3: If the deleted node both has the left child and right
child, exchange this node with the smallest node

of the right subtree. Then delete the node.

Table 3.5 The Contents of Binary Search Tree Definitions and Conceptions

46



r

oj>.
-.I

Figure 3.31 MultimediaBSTree Movie Interface

•
•



-

3.6 Source Code Design

I have described the system source code design in Section 3.2.3. The source code

of the MultimediaBSTree movie is simi lar to that of the MultimediaAvITree movie.

Therefore, I will focus on the MultimediaAvlTree movie's source code design in this

section. Figure 3.32 shows the flow chart for the MultimediaAvlTree movie. As

mentioned before, this source code has 46 handlers. I will describe the following main

handlers and their pseudocode. They are the insert handler, the delete handler, and the

adjustbalance handler. The search handler is the same as the insert handler except for no

adjustBalance handler call. Other handlers source code can be seen for details in the

Appendix A of this thesis. There are two global linked lists in this program. One is

gNodeList which is used to link every node in the tree in order. Another is gHistoryList

which is used to store operation history in order. The AVL tree insertion and deletion

algorithm is shown in the Table 3.4. Its insert, delete, and adjustBalance handlers

pseudocode are as follows:

Insert handler:

On Insert
global gHistoryList, gNodeList
--check if the tree is full
--check if input data is blank or space

if input data is not in the tree

set input data=Token
set root=currentValue
while loop (current node has value)

if currentValue>Token
insert node move to left child
set current node= left child

else
insert node move to right child
set current node=right child

end if

48

, I

C

--



-

System Welcome
Window and Audio Message

Back Main Select to play
MultimediaAvlTree Movie

New AVL

Yes

AVL Tree Interface

Operation AnimationNo

Figure 3.32 Flow Chart for MultimediaAvlTree Movie

About AVL Tree

Concepts of AVL

Rotation Patterns

49

L



L

end while loop

adjustblance(current node)

add Token into gNodeList
add Insert and string(Token) into gHistoryList

else
alert This node already in the tree

end if
end insert

adjustbalance handler:

on adjustBalance(currentNode)
set parent=(currentNode)/2
set GP=parent/2

if no grandparent
exit

end if

while loop (grandparent exist)
if (GP's height difference between left

and right =2)
--need rotation

if parent is left child of GP and
currentNode is left child of parent
--case 1
singleRotateWithLeft(GP)

else if parent is right child of GP and
currentNode is left child of parent
--case 2
doubleRotateWithRight(GP)

else if parent is left child of GP and
currentNode is right child of parent
--case 3
doubleRotateWithLeft(GP)

else if parent is right child of GP and
currentNode is right child of parent
--case 4
singleRotateWithRight(GP)

end if

else
--up one level
set currentNode=parent
set parent=currentNode/2
set GP=parent/2

end if

50



L

end while loop
end adjustBalance

delete handler:

on delete
global gHistoryList, gNodeList
--check if input data is a blank or space
--check if deleted node is not in the tree
while loop
find deleted node position and treeHeight

end while loop

--delete this node in many cases
if deleted node is a leaf
deletenode
else if deleted node only has a left subtree
deleteNode
move left subtree up one level
else if deleted node only has a right subtree
deleteNode
move right subtree up one level
else if deleted node have both left and

right subtree
find minimum node in the right subtree
exchange the positions between deleted

node and minimum node
deleteNode
if current deleted node only has a

left subtree
move right subtree up one level

else
move left subtree up one level

end if
end if

deleteBalance

add deleted node into gNodeList
add Insert and string(deleted node) into

gHistoryList
end delete

In addition, Undo and Replay functions are very important for this system. If

users make a mistake, do a wrong operation, or don't see clearly last step action of the

movie playing, they can select the Undo option from the menu operations item to go back

one step, then play again, or select the Replay from menu to replay the movie. Therefore,

51



L

-----------

we add the Undo and Replay functions in the system. The Replay function is similar to

the Undo function. The Undo will set on flag with which all operations have no

animations and delete the last element from gKeyList and gOpNameList. The Replay

will do all animation operations (see Appendix A for details). The following code is the

Undo function pseudocode.

on undo
declare global variables

set gUndoFlag=l
reset

set the highest gSpeedGrade

delete the last element of gKeyList and gOpNameList

--recover AVL tree except last element
x=numbers of the elements in gKeyList
loop from i=l to i=x

Token= ith elements in gKeyList

if Operation = "Insert" then
insert operation

else if Operation = "Delete" then
delete operation

else
search operation

end if
end loop

set the normal gSpeedGrade
set gUndoFlag=O

end undo

52



--

CHAPTER IV

TESTING AND RUNNING

We dedicate the first part of this chapter to testing the MultimediaAvlTree

movie's error message. Then we are running the MultimediaAvlTree movie with the

example in book [31] ( pp114-pp119). Following is error message testing:

1. Figure 4.1 shows the full AVL tree. If the user wants to insert another node

32 into this full AVL tree, system will beep, pop up the error message "Sorry,

this tree is full !" as shown in Figure 4.2, and audio message "Oops, this tree

is full".

2. If the user wants to insert a node 9 in to the AVL tree as shown in Figure 4.3,

this node will go to level 5. It is over system level limited: level 4. So, the

system will beep, pop up the error message "Sorry, Out of Stage, Try again",

and audio message "Oops, out of stage, please try again".

3. If the user doesn't type data in the input data field, then do anyone of

operations, there will be an error message that will pop up as shown in Figure

4.4.

4. If the user wants to delete or search a node which is not in the tree, system

will beep, pop up the error message ''This node is not in the tree, please try

again !" as shown in Figure 4.5, and audio message" This node is not in the

tree, please try again".

53



5. If the user wants to insert a node which is already in the tree, system will

beep, pop up the error message "This node is already in the tree" as shown in

Figure 4.6, and audio message ''This node is already in the tree".

Running insertion operation with an example:

Insert the nodes 3,2,1, (as shown in Figure 4.7) and then 4 though 7 in sequential

order (the result is shown in Figure 4.8). Then we continue our previous example by

inserting the nodes 10 though 16 in reverse order (as shown in Figure 4.9, 4.10, 4.11,

4.12,4.13,4.14,4.15 respectively), followed by inserting node 8 (as shown in Figure

4.16) and then inserting node 9 (as shown in Figure 4.17). Since node 8 is in level 4,

node 9 should be node 8 right child in level 5. So insertion of node 9 caused "Sorry, Out

of stage! Try again!" message to pop up.

Besides running the insertion operation, we were also testing and running deletion

and search operations continuously during the development of this program.

54



r

VI
VI

Figure 4.1 Full AVL Tree

,



r

VI
0'1

Figure 4.2 Tree full Message

-1



r

VI
-..J

Figure 4.3 Out of Stage Message

1



r

VI
00

Figure 4.4 No Input Data Message



r

VI

'"

Figure 4.5 No Such Node in the Tree Message



r

0'a

Figure 4.6 This Node Is already in the Tree Message

1

•••• - '"'"a £.~uiUi -



r

0\-

Figure 4.7 Example after Insertion of Node 3, 2, 1



r

0'1
N

Figure 4.8 Example after Insertion of Node 4, 5, 6, 7

-- -;:;';,-- ,I.u.t: -



r

'"w

Figure 4.9 Example after Insertion of Node 16



r

~

Figure 4.10 Example after Insertion of Node 15

1

..... e .0::



r

0­
Vl

Figure 4.11 Example after Insertion of Node 14

1



r

0­
0-

Figure 4.12 Example after Insertion of Node 13

1



r

0'.
-J

Figure 4.13 Example after Insertion of Node 12

-~



r

~

0­
00

Figure 4.14 Example after Insertion of Node 11

.,



r

0­
\0

Figure 4.15 Example after Insertion of Node 10

1

~
'"



r

-..J
o

Figure 4.16 Example after Insertion of Node 8

~

•



r

-.I

Figure 4.17 Example after Insertion of Node 9

1

.... ., "'~....



-

CHAPTER V

SUMMARY AND FUTURE WORK

5.1 Summary

As mentioned earlier, the primary purpose of this thesis is to design and develop,

with scientific visualization and multimedia technology, an flexible, interactive, and user-

friendly MDSL system for simulating the animated operations of abstract data structures

as a teaching and learning tool. We have developed the MDSL system on the Microsoft

Windows 98/NT operating system with Macromedia Director 6.0 platfonn which has

good software accessibility, reusability, and maintainability.

For better understanding of the abstract data structures concepts and algorithms,

we have explored not only the human vision sensory system by using text, image, and

animation but also the human audio sense by using the sound message. In order to get

the best learning result, the MDSL system provides a good interactive user interface to let

users take part in simulations while they are learning.

The use of color animation in the MDSL system enriches the implementation of

the visualization and communicates information to users more efficiently. In general,

users can get more infonnation during their learning because of the good environment

provided by the MDSL system.

72

•..
lit..

..



5.2 Future Work

This implementation performs the good features and fulfills requirements for the

MDSL system. However, there are some other features and schemes that could be

developed for the future works which are listed below:

1. Currently, only the MultimediaAvlTree, MultimediaBSTree,

VisualRedBlackTree, MultimediaB-Tree, and MultimediaADT are available.

The others (shown in Figure 3.2) are not available yet. Therefore, we have a

lot of work to do. In the appendix, there is a programmer's guide. If anyone

develops a data structure movie, he/she can follow this guide to add the movie

into the system.

2. Use the video technology in this multimedia system.

3. Add some examinations and quizzes into every data structure movie to test the

users' learning results. The examinations and quizzes should be divided into

four or five levels for the different level learners.

4. Publish the MDSL system to OSU Computer Science Department web site,

and use the Shockwave plug-in as Internet multimedia movie for distance

learning.

73

•......
•,
•



BIBLIOGRAPHY

[1] Adelson-Velskii, G. M. and E. M. Landis. An algorithm for the organization of

information. Soviet. Mat. Doklady, 3(3): pp. 1259-1263, 1962.

[2] Aho, A. V., R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and

Tools. Reading. Massachusetts. Addison-Wesley, 1985.

[3] Appleton, B. URL: http://www.enteract.com/-bradapp/ftp/src/libs/CH/AvlTree .htr.

[4] Baecker, Ronald. Sorting Out Sorting. 16rnrn color film with sound (25 minutes),

The Dynamic Graphics Project Computer Systems Research Group, University of

Toronto, Toronto, Canada, 1981.

[5] Baecker, R. M. and W. A. S. Buxton. Reading in Human-Computer Interaction. Los

Altos, CA: Morgan Kaufmann,1987.

[6] Baron, R. J. and L.G. Shapiro. Data Structures and Their Implementations. New

York. Van Nostrand Reinhold, 1983.

[7J Bly, B. A. Presenting information in sound. Proceeding ofCHl'85 Conference on

Human Factors in Computing Systems. New York: ACM Press, pp. 371-375, 1985.

[8] Booth, K. PQ-Trees. 16mm color silent films (12 minutes), 1975.

[9] Buford, J.F.K. Multimedia Systems. University of Massachusetts, Lowell, New

York, ACM Press, 1994.

[10] Buxton, W., S. A. Bly, S. P. Frysinger, and D. Lunney. Communications with

sound. Proceedings afthe ACM SIGCHI Human Factors in Computing Systems

Conference. New York: ACM Press, pp. 115-119, 1984.

..
•..
II

•
•



L

[11] Connen, T. H., C. E. Leiserson, and R. L. Rivest. Introduction to

Algorithms. MIT Press; New York, McGraw-Hili, 1990.

[12] Dahl, OJ., E. W. Dijkstra, and C. A. R. Hoare. Structured Programming. New

York, Academic Press, 1972.

[13] Earnshaw, R. A. and 1. A. Vince. Multimedia System & Applications. San Diego,

CA, Academic Press Inc, pp. 133-140, 1995.

[14] Gershon, N. D. From perception to visualization. Computer Graphics. 27(5):

pp. 414-417, 1992.

[15] Hibbard, W., C. Dyer and B. Paul. Display of scientific data structures for algorithm

visualization. Visualization, Boston, IEEE, pp. 139-146.1992.

[16] Keyes, Jessica. The McGraw-Hill Multimedia Handbook. New York, R. R.

Donnelley & Sons Company. 1994.

[17] Knowlton, K. C. L6: Bell Telephone Laboratories Low-level Linked List Language,

Two Black and White Sound Films. 1966.

[18] Lee, Wilson. An Implementation ofa Data Structures Display System. M.S. Thesis.

Computer Science Department, Oklahoma State University, Stillwater, OK, 1988.

[19] Lopuck, Lisa. Designing Multimedia: A Visual Guide To Multimedia and Online

Graphic Design. Berkeley, CA, Peachpit Press, 1996.

[20] Macromedia Director 6 Lingo Dictionary. Macromedia, Inc., 1997.

[21] Macromedia Director 6 Using Director. Macromedia, Inc., 1997.

[22] Macromedia Director 6 Using Lingo. Macromedia, Inc., 1997.

[23] McCormick, B. H., T. A. DeFanti, and M. D. Brown. Visualization in scientific

computing. Computer Graphics. 21 (6): pp. 1-14, 1987.

75

••
••

•
•



L

[24] Myers, B. A. INCENSE: A system for displaying data structures. Computer

Graphics. 17 (3): pp. 115-125, 1983.

[25] Petrik, Paula and Dubrovsky, Ben. Creating and Designing Multimedia with

Director Version 5.0. New Jersey, Prentice-Hall, Inc., 1997

[26] Reingold, E. M. and W. J. Hansen. Data Structures. Boston. Little, Brown and

Company, 1983.

[27] Robertson, R. K., R.A. Earnshaw, D. Thalman, M. Grave, J. Gallup, and E. M. De

long. Research issues in the foundations of visualization. Computer Graphics and

Applications. 14 (2): pp. 73-76, 1994.

[28J Shen, Hung-che. A Visual Aidfor the Learning ofTree-based Data Structure. M.S.

Thesis. Computer Science Department, Oklahoma State University, Stillwater, OK,

1994.

[29] Sheu, Bing., and Ismail, Mohammed. Microsystems Technologyfor Multimedia

Applications. New York, The Institute of Electrical and Electronics Engineers, Inc.,

1995.

[30] Sommerville, I., Software Engineering (third edition), Reading, MA: Addison-

Wesley Publishing Co., 1989.

[31] Weiss, M. A. Data Structures and Algorithm Analysis in C. Menlo Park. CA:

Addison-Wesley Publising Co., 1996.

[32] Wirth, N. Systematic PmRramming: An introduction. Englewood Cliffs, NJ,

Prentice-Hall Inc., 1973.

[33] Zemik, D., M. Snir, and D. Malki. Using visualization tools to understand

concurrency. IEEE Software. 9 (3): pp. 87-92, 1992.

76

••
)

~..

"III..



APPENDIXES

77

•·••
••
I
•

":



--

APPENDIX A

AVL TREE LINGO CODE

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++
--+
--+

--+

Main Script
+
+
+

on startMovie

-- global variable declarations
global gNodeList,gHistoryList,gSpeedGrade
global gKeyList, gOpNameList, gUndoFlag, gReplayFlag

set gKeyList = [J
set gOpNameList = [J
set gUndoFlag=O
set gReplayflag=O

newTree

set the stageColor to 43
set the backColor of sprite 96 to 43
set gSpeedGrade to 9
set the text of member "speedField" to string (gSpeedGrade)

installMenu 3

end startMovie

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on reset
global gHistoryList, gNodeList
global gKeyList, gOpNameList, gUndoFlag, gReplayFlag

set gHistoryList [J
set gNodeList = [J
history

if gUndoFlag=O and gReplayFlag=O then
set gKeyList= [ I
set gOpNameList=[]

end if

repeat with i=l to 98
puppetSprite i,True
set the visible of sprite i to False

end repeat

78

•II
•It
......



-

set the text of member "InputField" to ""

repeat with i=21 to 51
set the text of member i to ""

end repeat
end reset

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on newTree
reset

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on backMain
play done

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on stopmovie
repeat with i=l to 98

set the visible of sprite i to False
end repeat

set the text of member "InputField" to ""

repeat with i=21 to 51
set the text of member i to ""

end repeat
end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on closeWin
set the modal of window "WinAB" to False
set the windowtype of window "WinAB" to 4
set the rect of window "WinAB" to rect(10,50,330,180)

tell window "WinAB" to go to frame "Exit"
open window "WinAB"

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on instruction
puppetsound "instruction"
updateStage
set the modal of window "WinAB" to False
set the windo'J/type of window "WinAB" to 4
set the rect of window "WinAB" to rect(10,50,380,345)

tell window "WinAB" to go to frame "Instruction"
open window "WinAB"

end

79

•

•
It..
•



-

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on SLrotation
set the modal of window "WinAB" to False
set the windowtype of window "WinAB" to 4
set the rect of window "WinAB" to rect(247,490,777,620)

tell window "WinAB" to go to frame "SLrotation"
open window "WinAB"

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on SRrotation
set the modal of window "WinAB" to False
set the windowtype of window "WinAB" to 4
set the rect of window "WinAB" to rect(247,490,777,620)

tell window "WinAB" to go to frame "SRrotation"
open window "WinAB"

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on DLrotation
set the modal of window "WinAB" to False
set the windowtype of window "WinAB" to 4
set the rect of window "WinAB" to rect(247,490,777,620}

tell window "WinAB" to go to frame "DLrotation"
open window "WinAB"

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on DRrotation
set the modal of window "WinAB" to False
set the windowtype of window "WinAB" to 4
set the rect of window "WinAB" to rect(247,490,777,620)

tell window "WinAB" to go to frame "DRrotation"
open window "WinAB"

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on aboutAvlTree
set the modal of window "WinAB" to True
set the windowtype of window "WinAB" to 4
set the rect of window "WinAB " to rect(lO,5CJ,300,280}

tell window "WinAB" to go to frame "AboutAvlTree"
open window "WinAB"

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

80

,
I

J
•••

•



on definition
set the modal of window "WinAB" to True
set the windowtype of window "WinAB" to 4
set the rect of window "WinAB" to rect(lO,50,390,300l

tell window "WinAB" to go to frame "Definition"
open window "WinAB"

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on history
global gHistoryList

set operationNum to count (gHistoryList)
if operationNum=O then

set operations="Operations history:
else

set operations="Operations history: "-.
& getAt(gHistoryList, 1)
repeat with i=2 to operationNum

put", "& getAt (gHistoryList , i) after operations
end repeat

end if

puppetSprite 97, True
puppetSprite 98, True
set the visible of sprite 97 to True
set the visible of sprite 98 to True
set the text of member "showOpHi" to operations
updateStage

end history

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on closeButton
puppetSprite 97, False
puppetSprite 98, False
set the visible of sprite 97 to False
set the visible of sprite 98 to False

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

,
I

•

--+ Menu Script +

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

menu: File
New/N[newTree
Reset/Rlreset
BackMenu/BlbackMain

( -
Exit/EI closeWin
menu: Operations
undo/ulundo

81



Replay/P!replay
Insertion/II inserc
Deletion/Dj delete
Searching/sl search
menu: Speed
SpeedUp/vi speedUp
SpeedDown/WlspeedDown
CloseSpeedButton IcloseSpeed
ShowSpeedButtonlshowSpeed
menu: Shows
singleRotateWithLeftl SLrotation
singleRotateWithRightl SRrotation
doubleRotateWithLeft! DLrotation
doubleRotateWithRightl DRrotation
Operation Historyl history
menu: Help
Instructionl instruction
Definitions of AVL Treel Definition
AboutMultimediaAvlTreel aboutAvlTree

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++
--+ Insert Function +
--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on insert
global gNodeList, gHistoryList, gSpeedGrade
global gKeyList, gOpNameList, gUndoFlag, gReplayFlag

--check if the NodeList is full
if count(gNodeList)=31 then

puppetsound "treeful"
updateStage
alert "Sorry, The Tree is full!"
exit

end if

--let Token input data
set Token to value(the text of member"InputField")

--check if Token is blank or a space
if Token="" or Token=" " then

puppetsound "inputdata"
updateStage
alert "Please enter a data value in the box."
exit

end if

--remove input data from InputField
put "n into field "InputField"
updateStage

if gUndoFlag=O then
puppetsound "insert"
updateStage

end if

82

I,
••
~
I



......

--active compare , movingNode , and movingToken
puppetSprite 33, True
puppetSprite 34, True
puppetSprite 32, True

--close "winAB" window
close window "winAB"

if count(gNodeList)=O then
set the visible of sprite 1 to True
set the visible of sprite 65 to True
set the text of member "valuel" = string(Token)
set the enabled of rnenultem "undo" of menu "Operations" to True
set the enabled of rnenultem "Replay" of menu "Operations" to.

True
updateStage

if gUndoFlag=O then
add gKeyList, Token
add gOpNameList, "Insert"

end if

add gNodeList, Token
add gHistoryList, "Insert " & string (Token)
history

else
if getOne(gNodeList,Token) =0 then

set currentNum=l
set currentValue=value(the text of member "valuel")

set the text of member "movingToken" to string(Token)

set TreeLevelcount=-l

repeat while voidP(currentValue)=False
set currentSprite=currentNum
set TreeLevelcount=TreeLevelcount+l

--Check if tree levels are more than 4
if TreeLevelcount>=4 and the visible of sprite (currentNum)·

=True then
set the visible of sprite 32 to False
set the visible of sprite 33 to False
set the visible of sprite 34 to False
puppetsound "outStage"
updateStage
alert "Sorry, Out of stage! Try again!"
exit

end if

if gUndoFlag=O then
--move compare ,movingToken , and movingNode to the right of
--currentNode
set the locH of sprite 32 to the right of sprite.

currentSprite
set the locV of sprite 32 to the locv of sprite.

currentSprite-6

83

,
I



set the locH of sprite 33 to the right of sprite""
currentSprite+40

set the locV of sprite 33 to the locV of sprite...,
currentSprite

set the locH or sprite 34 to the locH of sprite 33-13
set the locv of sprite 34 to the locv of sprite 33-8

end if

if currentValue > Token then
set the text of member "Compare" to ">"
set edge=currentNum+34
set currentNum=currentNum*2

else
set the text of member "Compare" to "<"

set edge=currentNum+49
set currentNum=currentNum*2+1

end if

if gUndoFlag=Q then
set the visible of sprite 32 to True
set the visible of sprite 33 to True
set the visible of sprite 34 to True
updateStage

end if

set temp=gSpeedGrade
set gSpeedGrade = 6
wait
set gSpeedGrade=temp

--make compare field invisible
set the visible of sprite 32 to False

--move insert node to the current node position
repeat with i=the locH of sprite 33 down to

(the locH of sprite currentSprite)
set the locH of sprite 33 to (the locH of sprite 33-1)
set the locH of sprite 34 to (the locH of sprite 34-1)
wait
updateStage

end repeat

if gUndoFlag=O then
--move insert node to the child position of current node
set cnH=the locH of sprite currentNum
set cnV=the locV of sprite currentNum
set csH=the locH of sprite currentSprite
set csV=the locv of sprite currentSprite

if currentValue > Token then
--move to left child
moveOneNodeLeftDown(csH,csV,cnH,cnV)

else
- --move to right child
moveOneNodeRightDown(csH,csV,cnH,cnV)

84

,
I



end if
end if

wait

if the visible of sprite (currentNum)=False then
--make the edge and current node visible
set the visible of sprite edge to True
set the visible of sprite currentNum to True
set the visible of sprite currentNum+64 to True
set the text of member 20+currentNum=string(Token)
wait
updateStage
exit repeat

else
set currentValue=the text of member (20+currentNum)

end if
end repeat

updateStage
wait

adjustbalance(currentNum)

set the visible of sprite 33 to False
set the visible of sprite 34 to False

if gUndoFlag=O and gReplayFlag=O then
add gKeyList, Token
add gOpNameList, "Insert"

end if

add gNodeList, Token
add gHistoryList, "Insert" & string(Token)

else
puppetsound "noinsert"
updateStage
alert "This node is already in the tree."

end if
end if

history

end insert

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on adjustBalance thisNum

set thisParent=thisNum/2
set GP=thisParent/2

if GP<l then
exit

end if

repeat while GP<>O

85



-

if(abs(getLeftHeigh(GP)-getRightHeigh(GP) )=2) then

--need rotation
if((thisParent mod 2)=0 and (thisNum mod 2)=0) then

--case 1
puppetsound "slrotate"
SLrotation
updateStage
wait
singleRotateWithLeft(GP)

else if( (thisParent mod 2)<>0 and (thisNum mod 2)=0) then
--case 2
puppetsound "drrotate"
DRrotation
updateStage
wait
DoubleRotateWithRight (GP)

else if( (thisParent mod 2)=0 and (thisNum mod 2)<>0) then
--case 3
puppetsound "dlrotate"
DLrotation
updateStage
wait
DoubleRotateWithLeft(GP)

else if( (thisParent mod 2)<>0 and (thisNum mod 2)<>0) then
--case 4
puppetsound "srrotate"
SRrotation
updateStage
wait
singleRotateWithRight(GP)

end if

else
--up one level
set thisNum=thisParent
set thisParent=thisNum/2
set GP=thisParent/2

end if

end repeat

end adjustBalance

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

- -+ Delete Function +
--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on delete
global gNodeList, gHistoryList:, gSpeedGrade
global gKeyList, gOpNarneList, gReplayFlag, gUndoFlag

--let Tokken = input data
set Token to value(the text of member"InputField")

86



L

--check if Token is blank or a space
if Token="" or Token=" " then

puppetsound "inputdata"
updateStage
alert "Please enter an data in the box."
exit

end if

--check if delete node is not in the Tree
if getOne(gNodeList, Token)=O then

puppet sound "nodel"
updateStage
alert "This node is not in the tree, please try again!"
exit

end if

if gReplayFlag=O and gUndoFlag=O then
puppetsound "delete"
updateStage

end if

--remove input data from InputField
put "" into field "InputField"
updateStage

--close "winAB" window
close window "winAB"

--active compare,movingNode, and movingToken
puppetSprite 33, True
puppetSprite 34, True
puppetSprite 32, True

--set the backColor of movingNode to the backColor of stage
--set the backColor of sprite 8 to 43

--initialize current node and movingToken
set currentNum=l
set currentValue=value(the text of member "value1"}
set the text of member "movingToken" to string (Token)

--the root is the delete node
if currentValue=string(Token) then

set the text of member "Compare" to

if gUndoFlag=O then
--move compare,movingToken, and movingNode to the riqht of

root
set the locH of sprite 32 to the right of sprite 1
set the locv of sprite 32 to the locV of sprite 1-6
set the locH of sprite 33 to the right of sprite 1+40
set the locV of sprite 33 to the locV of sprite 1
set the locH of sprite 34 to the locH of sprite 33-13
set the locv of sprite 34 to the locv of sprite 33-8

set the visible of sprite 32 to True

87



set the visible of sprite 33 to True
set the visible of sprite 34 to True
updateStage

end if

set temp=gSpeedGrade
set gSpeedGrade = 6
wait
set gSpeedGrade=temp

--make compare field invisible
set the visible of sprite 32 to False

if gUndoFlag=O then
--move delete node to the root
repeat with i=the locH of sprite 33 down to ..,

(the locH of sprite 1)
set the locH of sprite 33 to (the locH of sprite 33-1)
set the locH of sprite 34 to (the locH of sprite 34-1)
wait
updateStage

end repeat
end if

end if

set TreeHeight=O

--this big loop is for finding delete node
repeat while currentValue<>string(Token)

set currentSprite=currentNum
set TreeHeight=TreeHeight+l

currentSprite
33-13
33-8

sprite
sprite
sprite

33 to the locv of
34 to the locH of
34 to the locv of

if gUndoFlag=O then
--move compare,movingToken, and movingNode to the right of
--currentNode
set the locH of sprite 32 to the right of sprite currentSprite
set the locv of sprite 32 to the locv of sprite.

currentSprite-6
set the locH of sprite 33 to the right of sprite.

currentSprite+40
set the locV of sprite
set the locH of sprite
set the locV of sprite

end if

if currentValue > Token then
set the text of member "Compare" to ">"

set edge=currentNum+34
set currentNum=currentNum*2

else
set the text of member "Compare" to "<"

set edge=currentNum+49
set currentNum=currentNum*2+1

end if

88



--
if gUndoFlag=O then

set the visible of sprite 32 to True
set the visible of sprite 33 to True
set the visible of sprite 34 to True
updateStage

end if

set temp=gSpeedGrade
set gSpeedGrade = 6
wait
set gSpeedGrade=temp

--make compare field invisible
set the visible of sprite 32 to False

if gUndoFlag=O then
--move delete node to the current node position
repeat with i=the locH of sprite 33 down to ~

(the locH of sprite currentSprite)
set the locH of sprite 33 to (the locH of sprite 33-1)
set the locH of sprite 34 to (the locH of sprite 34-1)
wait
updateStage

end repeat

--move delete node to the child position of current node
set cnH=the locH of sprite currentNum
set cnV=the locv of sprite currentNum
set csH=the locH of sprite currentSprite
set csV=the locV of sprite currentSprite

if currentValue > Token then
--move to left child
moveOneNodeLeftDown(csH,csV,cnH,cnV)

else
--move to right child
moveOneNodeRightDown(csH,csV,cnH,cnV)

end if

wait
end if

if the text of member (20+currentNum)=String(Token) then
set the locH of sprite 33 to the locH of sprite currentNum
set the locv of sprite 33 to the locv of sprite currentNum
set the visible of sprite 34 to False
wait
updateStage
exit repeat

else
set currentValue=the text of member (20+currentNum)

end if

end repeat

set deletFlag=O

89



set node=currentNurn

--delete this node in many cases
case TreeHeight of

4:--deleted node is a leaf in deep 4
deleteNode (currentNurn, edge)

3:--deleted node is a leaf
if (the visible of sprite (2*currentNum)=False and~

the visible of sprite (2*currentNum+l'=False) then
deleteNode(currentNurn,edge)
set deletFlag=l

--deleted node has a left child
else if (the visible of sprite (2*currentNurn)=True and~

the visible of sprite (2*currentNum+l'=Falsel then
set the visible of sprite (currentNum+34)=False
nodeRightUp[ (2*currentNum), (currentNurn))
set deletFlag=O

--deleted node has a right child
else if (the visible of sprite (2*currentNurn)=False and..,

the visible of sprite (2*currentNurn+ll=True) then
set the visible of sprite (currentNum+49)~False

nodeLeftUp( (2*currentNum+l), (currentNum))
set deletFlag=O

--deleted node has both left and right child as leaf
else if (the visible of sprite (2*currentNurn)=True and..,

the visible of sprite (2*currentNum+l)=True) then
set the visible of sprite (currentNum+49)=False
nodeLeftUp( (2*currentNum+l), (currentNurn))
set deletFlag=O

end if

2:--deleted node is a leaf
if (the visible of sprite (2*currentNum)=False and..,

the visible of sprite (2*currentNurn+l)=Falsel then
deleteNode(currentNum,edge)
set deletFlag=l

--deleted node only has a left subtree
else if (the visible of sprite (2*currentNum)=True and..,

the visible of sprite (2*currentNum+l)=False) then
deleteNode(currentNurn)
set the visible of sprite (currentNum+34) to False
rightUp3node (2*currentNum, currentNum)
set deletFlag=l

--deleted node only has a right subtree
else if (the visible of sprite (2*currentNum)=False and~

the visible of sprite (2*currentNum+l)=True) then
deleteNode(currentNurn)
leftUp3node«2*currentNurn+l) ,currentNurn)
set deletFlag=l

90



--deleted node has both left and right subtree
else if (the visible of sprite (2*currentNum)=True and.

the visible of sprite (2*currentNum+l)=True) then

if the visible of sprite (4*currentNum+2)=True then
--right child has a left leaf
set the visible of sprite (2*currentNum+35) to False
nodeLeftUp({4*currentNum+2), (currentNum))
set deletFlag=O

else
--right child has not a left leaf
set the visible of sprite (currentNum+49) to False
nodeLeftUp((2*currentNum+l) ,currentNum)
set node=(2*currentNum+l)
set deletFlag=l
if the visible of sprite (4*currentNum+3)=True then

--right child has a right leaf
set the visible of sprite (2*currentNum+50) to False
set the visible of sprite (currentNum+49) to True
nodeLeftUp((4*currentNum+3), (2*currentNum+ll)
set deletFlag=O

end if
end if

end if

l:--deleted node is a leaf
if (the visible of sprite (2*currentNuml=False and·

the visible of sprite (2*currentNum+ll=False) then
deleteNode(currentNurn,edgel
set deletFlag=:l

--deleted node only has a left subtree

else if (the visible of sprite (2*currentNum)=True and·
the visible of sprite (2*currentNum+l)=Falsel then

set the visible of sprite (currentNum+34I to False
nodeRightUp(2*currentNum,currentNum)
set deletFlag=l

if the visible of sprite (4*currentNum+l)=True then
--left child has a right subtree
set the visible of sprite (2*currentNum+49) to False
set the visible of sprite (currentNum+491 to True
nodeRightUp ( (4 *currentNum+l) , (2 *currentNum+l) )

if the visible of sprite (8*currentNum+31=True then
--left child has a right left child
set the visible of sprite (4*currentNum+501 to False
set the visible of sprite (2*currentNum+50) to True
nodeRightUp( (8*currentNum+3), (4*currentNum+31)
set deletFlag=O

end if

91



-
if the visible of sprite (8*currentNurn+2)=True then

--left child has a right right child
set the visible of sprite (4*currentNurn+35) to False
set the visible of sprite (2*currentNurn+35) to True
nodeRightUp«8*currentNum+2), (4*currentNurn+2)
set deletFlag=D

end if

end if

--left child has a left subtree
if the visible of sprite (4*currentNum)=True then

set the visible of sprite (currentNum+34I to True
rightUp3node(4*currentNum,2*currentNurn)

end if

--deleted node only has a right subtree
else if (the visible of sprite (2*currentNurn)=False and..,

the visible of sprite (2*currentNum+l)=True) then

set the visible of sprite (currentNum+49) to False
nodeLeftUp«2*currentNuffi+l) ,currentNum)
set deletFlag=l

if the visible of sprite (4*currentNum+2)=True then
--right child has a left subtree
set the visible of sprite (2*currentNum+35) to False
set the visible of sprite (currentNurn+34) to True
nodeLeftUp«4*currentNum+2), (2*currentNum»

if the visible of sprite (8*currentNuffi+4)=True then
--right child has a left left child
set the visible of sprite (4*currentNum+36) to False
set the visible of sprite (2*currentNum+34) to True
nodeLeftUp«8*currentNum+4), (4*currentNum))
set deletFlag=O

end if

if the visible of sprite (8*currentNum+5)=True then
--right child has a left right child
set the visible of sprite (4*currentNurn+5l) to False
set the visible of sprite (2*currentNum+49) to True
nodeLeftUp ( (8 *currentNum+5) , (4 *currentNum+l) )
set deletFlag=O

end if

end if

--right child has a right subtree
if the visible of sprite (4*currentNum+3)=True then

set the visible of spr i te (c11rrentNum+49) to True
leftUp3node«4*currentNum+3). (2*currentNum+l)

end if

92



--deleted node has both left and right subtree
else if(the visible of sprite (2*currentNurn)=True and,

the visible of sprite (2*currentNurn+l)=True) then

set rninNode=findMinFrornRightSubtree(currentNurn)
set node=rninNode
set deletFlag=l

if rninNode=(8*currentNurn+4) then
--right child has a left left child
set the visible of sprite (4*currentNurn+36) to False
nodeLeftUp((S*currentNurn+4), (currentNurn))
set deletFlag=O

else if rninNode=(4*currentNurn+2) then
--right child has a left child
set the visible of sprite (2*currentNurn+35) to False
nodeLeftUp( (4*currentNurn+2), (currentNurn))

if the visible of sprite (S*currentNurn+5)=True then
--right child has a left right child
set the visible of sprite (4*currentNurn+51) to False
set the visible of sprite (2*currentNurn+35) to True
nodeLeftUp((S*currentNurn+5), (4*currentNurn+2))
set deletFlag=O

end if

else if rninNode=(2*currentNurn+l) then
--right child has not a left subtree
set the visible of sprite (currentNurn+49) to False
nodeLeftUp((2*currentNurn+l) ,currentNurn)

if the visible of sprite (4*currentNurn+3)=True then
--right child has a right subtree
set the visible of sprite (currentNurn+49) to True
set the visible of sprite (2*currentNum+50) to False
leftUp3node( (4*currentNurn+3), (2*currentNurn+1))

end if
end if

end if

O:--deleted node is a leaf
if (the visible of sprite (2*currentNurn)=False and~

the visible of sprite (2*currentNurn+l)=False) then
deleteNode(currentNurn,edge)

--deleted node only has a left subtree

else if (the visible of sprite (2*currentNurn)=True and,
the visible of sprite (2*currentNum+l)=False) then

set the visible of sprite (currentNurn+34) to False
rightUp3node (2*currentNurn, currentNum)

93



-

if the visible of sprite (8*currentNum+3)=True then
--left child has a right right subtree
set the visible of sprite (4*currentNum+50) to False
set the visible of sprite (2*currentNum+50) to True
nodeRightUp( (8*currentNum+3) , (4*currentNum+3) )

if the visible of sprite (16*currentNum+7)=True then
--left child has a right right right leaf
set the visible of sprite (8*currentNum+52) to False
set the visible of sprite (4*currentNum+52) to True
nodeRightUp((16*currentNum+7), (8*currentNum+7))

end if

if the visible of sprite (16*currentNum+6)=True then
--left child has a right right left leaf
set the visible of sprite (8*currentNum+37) to False
set the visible of sprite (4*currentNum+37) to True
nodeRightUp((16*currentNum+6), (8*currentNum+6))

end if

end if

if the visible of sprite (8*currentNum+2)=True then
--left child has a right left subtree
set the visible of sprite (4*currentNum+35) to False
set the visible of sprite (2*currentNum+35) to True
nodeRightUp((8*currentNum+2), (4*currentNum+2))

if the visible of sprite (16*currentNum+5)=True then
--left child has a right left right leaf
set the visible of sprite (8*currentNum+51) to False
set the visible of sprite (4*currentNum+51) to True
nodeRightUp ( (16*currentNum+5) , (8*currentNum+5) )

end if

if the visible of sprite (16*currentNum+4)=True then
--left child has a right left left leaf
set the visible of sprite (8*currentNum+36) to False
set the visible of sprite (4*currentNum+36) to True
nodeRightUp( (16*currentNum+4), (8*currentNum+4))

end if

end if

if the visible of sprite (8*currentNum+l)=True then
--left child has a left right subtree
set the visible of sprite (4*currentNuffi+49) to False
set the visible of sprite (2*currentNum+49) to True
nodeRightUp((8*currentNum+l). (4*currentNum+l))

if the visible of sprite (16*currentNum+3)=True then
--left child has a left right right leaf
set the visible of sprite (8*currentNum+50) to False
set the visible of sprite (4*currentNum+50) to True
nodeRightUp((16*currentNuffi+3), (8*currentNum+3))

94



end if

if the visible of sprite (16*currentNum+2)=True then
--left child has a left right left leaf
set the visible of sprite (8*currentNurn+35) to False
set the visible of sprite (4*currentNurn+35) to True
nodeRightUp( (16*currentNurn+2). (8*currentNum+2)

end if

end if

--left child has a left left subtree
if the visible of sprite (8*currentNum)=True then

set the visible of sprite (2*currentNum+34) to True
rightUp3node (8*currentNum, 4*currentNum)

end if

--deleted node only has a right subtree
else if (the visible of sprite (2*currentNuml=False and~

the visible of sprite (2*currentNum+l)=True) then

set the visible of sprite (currentNuID+49) to False
leftUp3node((2*currentNurn+l),currentNum)

if the visible of sprite (8*currentNum+4)=True then
--right child has a left left subtree
set the visible of sprite (4*currentNum+36) to False
set the visible of sprite (2*currentNum+34) to True
nodeLeftUp((8*currentNum+4), (4*currentNum)

if the visible of sprite (16*currentNum+8)=True then
--right child has a left left left leaf
set the visible of sprite (8*currentNum+38) to False
set the visible of sprite (4*currentNum+34) to True
nodeLeftUp((16*currentNum+8), (8*currentNum»)

end if

if the visible of sprite (16*currentNum+9l=True then
--right child has a left left right leaf
set the visible of sprite (8*currentNum+53) to False
set the visible of sprite (4*currentNum+49) to True
nodeLeftUp((16*currentNum+9). (8*currentNum+l))

end if

end if

if the visible of sprite (8*currentNum+5)=True then
--right child has a left right subtree
set the visible of sprite (4*currentNum+51) to False
set the visible of sprite (2*currentNum+49) to True
nodeLeftUp( (8*currentNum+5). (4*currentNum+l»)

if the visible of sprite (16*currentNum+10)=True then
--right child has a left right left leaf

95



-
set the visible of sprite (8*currentNum+39) to False
set the visible of sprite (4*currentNum+35) to True
nodeLeftUp( (16*currentNum+l0), (8*currentNum+2))

end if

if the visible of sprite (16·currentNum+ll)=True then
--right child has a left right right leaf
set the visible of sprite (8*currentNum+54) to False
set the visible of sprite (4*currentNum+50) to True
nodeLeftUp((16*currentNum+l1), (8*currentNum+3))

end if

end if

if the visible of sprite (8*currentNum+6)=True then
--right child has a right left subtree
set the visible of sprite (4*currentNum+37) to False
set the visible of sprite (2*currentNum+35) to True
nodeLeftUp((8*currentNum+6), (4*currentNum+2))

if the visible of sprite (16*currentNum+12)=True then
--right child has a right left left leaf
set the visible of sprite (8*currentNum+40) to False
set the visible of sprite (4*currentNum+36) to True
nodeLeftUp ( (16*currentNum+12) , (8 *currentNum+4) )

end if

if the visible of sprite (16*currentNum+13)=True then
--right child has a right left right leaf
set the visible of sprite (8*currentNum+55) to False
set the visible of sprite (4*currentNum+51) to True
nodeLeftUp((16*currentNuID+13), (8*currentNum+5))

end if

end if

--right child has a right right subtree
if the visible of sprite (8*currentNum+7)=True then

set the visible of sprite (2*currentNum+50) to True
leftUp3node( (8*currentNum+7), (4*currentNum+3))

end if

--deleted node has both left and right subtree
else if(the visible of sprite (2*currentNum)=True and,

the visible of sprite (2*currentNum+l)=True) then

set minNode=findMinFromRightSubtree(currentNum)
set node=minNode

if minNode=(16*currentNum+8) then
--right child has a left left left leaf
set the visible of sprite (8*currentNum+38) to False
nodeLeftUp ( (16*currentNum+8) ,currentNum)
set c1E:letFlag=O

96



else if minNode=(8*currentNum+4) then
--right child has a left left subtree
set the visible of sprite (4*currentNum+36) to False
nodeLeftUp( (8*currentNum+4) ,currentNum)
set deletFlag=l

if the visible of sprite (16*currentNum+9)=True then
--right child has a left left right leaf
set the visible of sprite (8*currentNum+53) to False
set the visible of sprite (4*currentNum+36) to True
nodeLeftUp((16*currentNum+9), (8*currentNum+4))
set deletFlag=O

end if

else if minNode=(4*currentNum+2) then
--right child has not a left left subtree
set the visible of sprite (2*currentNum+35) to False
nodeLeftUp((4*currentNum+2) ,currentNum)
set deletFlag=l

if the visible of sprite (8*currentNum+5)=True then
--right child has a left right subtree
set the visible of sprite (2*currentNum+35) to True
set the visible of sprite (4*currentNum+51) to False
leftUp3node( (8*currentNum+5), (4*currentNum+2))

end if

else if minNode=(2*currentNum+l) then
--right child has not a left subtree
set the visible of sprite (currentNum+49) to False
nodeLeftUp((2*currentNum+l) ,currentNum)
set deletFlag=l

if the visible of sprite (4*currentNum+3)=True then
--right child has a right subtree
set the visible of sprite (2*currentNum+50) to False
set the visible of sprite (currentNum+49) to True
nodeLeftUp((4*currentNum+3), (2*currentNum+l))

if the visible of sprite (8*currentNum+6)=True then
--right child has a right left subtree
set the visible of sprite (4*currentNum+37) to False
set the visible of sprite (2*currentNum+35) to True
nodeLeftUp ( (8*currentNum+6) , (4 *currentNum+2) )

if the visible of sprite (16*currentNum+12)=True then
--right child has a right left left leaf
set the visible of sprite (8*currentNum+40) to False
set the visible of sprite (4*currentNum+36) to True
nodeLeftUp( (16"currentNum+12). (8*currentNum+4))
set deletFlag=O

end if

if the visible of sprite (16*currentNum+13)=True then
--right child has a right left right leaf

97



set the visible of sprite (8*currentNum+55) to False
set the visible of sprite (4*currentNum+51) to True
nodeLeftUp((16*currentNum+13), (8*currentNum+5))
set deletFlag=O

end if

end if

if the visible of sprite (8*currentNum+7)=True then
--right child has a right right subtree
set the visible of sprite (2*currentNum+50) to True
leftUp3node( (8*currentNurn+7), (4*currentNum+3))

end if

end if

end if
end if

end case

if deletFlag=l then
deletReBalance(node)

end if

if gReplayFlag=O and gUndoFlag=O then
add gKeyList, Token
add gOpNameList, "delete"

end if

add gHistoryList, "Delete" &string(Token)
deleteOne gNodeList,Token

history

end delete

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on deletReBalance thisNum

if (thisNum mod 2)=0 then
set GP=thisNum/2
set thisP=2*GP+l
if the visible of sprite (2*thisP+l) True then

set thisNum =2*thisP+l
else

set thisNum=2*thisP
end if

else
set GP=thisNum/2
set thisP=2*GP
if the visible of sprite (2*thisP) = True then

set thisNum =2*thisP
else

98



set thisNurn=2*thisp+l
end if

end if

if GP<l then
exit

end if

repeat while GP<>O
if GP=l then

if (getLeftHeigh(l)-getRightHeigh(1))=2 then
set thisp=2
set GP=l
if (getLeftHeigh(2»= getRightHeigh(2)) then

set thisNurn=4
else

set thisNum=5
end if

else if (getLeftHeigh(l)-getRightHeigh(1))=-2 then
set thisp=3
set GP=l
if (getLeftHeigh(3)<= getRightHeigh(3)) then

set thisNum=7
else

set thisNurn=6
end if

end if
end if

if(abs(getLeftHeigh(GP)-getRightHeigh(GP))=2) then

--need rotation
if ( (thisP mod 2) =0 and (thisNum mod 2) =0) then

--case 1
puppetsound "slrotate"
SLrotation
wait
updateStage
singleRotateWithLeft(GP)

else if(thisP mod 2)<>0 and (thisNurn mod 2)=0) then
--case 2
puppetsound "drrotate"
DRrotation
wait
updateStage
DoubleRotateWithRight(GP)

else if((thisP mod 2)=0 and (thisNum mod 2)<>0) then
--case 3
puppetsound "dlrotate"
DLrotation
wait
updateStage
DoubleRotateWithLeft(GP)

else if( (thisP mod 2)<>0 and (thisNurn mod 2)<>0) then
--case 4
puppetsound "srrotate"

99



SRrotation
wait
updateStage
singleRotateWithRight(GP)

end if

else
--up one level
set thisNum=thisP
set thisp=thisNum/2
set GP=thisPI2

end if

end repeat

end deletReBalance

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++
--+ Search Function +
--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++
on search

global gNodeList, gHistoryList, gSpeedGrade
global gKeyList, gOpNameList, gReplayflag

--let Tokken = input data
set Token to value(the text of member"InputField")

--check if Token is blank or a space
if Token="" or Token=" " ·then

puppetsound "inputdata"
updateStage
alert "Please enter an data in the box."
exit

end if

--check if search node is not in the Tree
if getOne(gNodeList, Token)~O then

puppet sound "nodel"
updateStage
alert "This node is not in the tree. please try again!"
exit

end if

if gReplayFlag=O then
puppetsound "search"
updateStage

end if

--remove input data from InputField
put "" into field "InputField"
updateStage

--close "winAB" window
close window "winAB"

100



--active compare, movingNode , and movingToken
puppetSprite 33, True
puppetSprite 34, True
puppetSprite 32, True

--set the backColor of movingNode to the backColor of stage
set the backColor of sprite 8 to 43

--initialize current node and movingToken
set currentNum=l
set currentValue=value(the text of member "valuel")
set the text of member "movingToken" to string (Token)

--the root is the search node
if currentValue=string(Token) then

set the text of member "Compare" to "="

--move compare,movingToken, and movingNode to the right of root
set the locH of sprite 32 to the right of sprite 1
set the locv of sprite 32 to the locV of sprite 1-G
set the locH of sprite 33 to the right of sprite 1+40
set the locv of sprite 33 to the locV of sprite 1
set the locH of sprite 34 to the locH of sprite 33-13
set the locv of sprite 34 to the locV of sprite 33-8

set the visible of sprite 32 to True
set the visible of sprite 33 to True
set the visible of sprite 34 to True
updateStage

set temp=gSpeedGrade
set gSpeedGrade = 6
wait
set gSpeedGrade=temp

--make compare field invisible
set the visible of sprite 32 to False

--move delete node to the root
repeat with i=the locH of sprite 33 down to •

(the locH of sprite 1)
set the locH of sprite 33 to (the locH of sprite 33-1)
set the locH of sprite 34 to (the locH of sprite 34-1)
wait
updateStage

end repeat

end if

repeat while currentValue<>string(Token)
set currentSprite=currentNum

--move compare,movingToken, and movingNode to the right of
--currentNode

101



set the locH of sprite 32 to the right of sprite currentSprite
set the locv of sprite 32 to the locv of sprite currentSprite-6
set the locH of sprite 33 to the right of sprite'"

currentSprite+40
set the locV of sprite 33 to the locv of sprite currentSprite
set the locH of sprite 34 to the locH of sprite 33-13
set the locv of sprite 34 to the locv of sprite 33-8

if currentValue > Token then
set the text of member "Compare" to ">"

set currentNum=currentNum*2
else

set the text of member "Compare" to "<"
set currentNum=currentNum*2+1

end if

set the visible of sprite 32 to True
set the visible of sprite 33 to True
set the visible of sprite 34 to True
updateStage

set temp=gSpeedGrade
set gSpeedGrade = 6
wait
set gSpeedGrade=temp

--make compare field invisible
set the visible of sprite 32 to False

--move delete node to the current node position
repeat with i=the locH of sprite 33 down to ..,

(the locH of sprite currentSprite)
set the locH of sprite 33 to (the locH of sprite 33-1)
set the locH of sprite 34 to (the locH of sprite 34-1)
wait
updateStage

end repeat

--move delete node to the child position of current node
set cnH=the locH of sprite currentNum
set cnV=the locv of sprite currentNum
set csH=the locH of sprite currentSprite
set csV=the locv of sprite currentSprite
set Hmove=abs(csH-cnH)
set Vmove=abs(csV-cnV)

if currentValue > Token then
--move to left child
set yy=O.OO
repeat with i=l to Hmove

set the locH of sprite 33 to (the locH of sprite 33-1)
set the locH of sprite 34 to the locH of sprite 33-13
if (i mod 4)=0 then

set xx=integer(4*Vmove/Hmove)

102



-
--following five lines fix the errors
set ~J=yy+(4.00*Vmove/Hmove)-xx

if ~J>=l then
set yy=yy-:'
set xx=xx+l

end if

set the locV of sprite 33 to (the locv of sprite 33+xx)
set the locV of sprite 34 to the locv of sprite 33-8
wait
updateStage

end if
end repeat

else
--move to right child
set yy=O.OO
repeat with i=1 to Hmove

set the locH of sprite 33 to (the locH of sprite 33+1)
set the locH of sprite 34 to the locH of sprite 33-13
if (i mod 4)=0 then

set xx=integer(4*Vmove/Hmove)

--following five lines fix the errors
set yy=yy+(4.00*Vmove/Hmove)-xx
if yy>=l then

set yy=yy-l
set xx=xx+l

end if

set the locV of sprite 33 to (the locv of sprite 33+xx)
set the locv of sprite 34 to the locv of sprite 33-8
wait
updateStage

end if
end repeat

end if

wait

if the text of member (20+currentNum)=String(Token) then
set the locH of sprite 33 to the locH of sprite currentNum
set the locV of sprite 33 to the locv of sprite currentNum
set the visible of sprite 34 to False
wait
updateStage
exit repeat

else
set currentValue=the text of member (20+currentNum)

end if

end repeat

if gReplayFlag=O then
add gKeyList, Token
add gOpNameList, "Insert"

end if

103



add gHistoryList, "Search n &string(Token)
history

--flash the arrow to show the node is found
repeat with i~l to 8

set the locH of sprite 96 to the right of sprite currentNum+12
set the locV of sprite 96 to the locv of sprite currentNum
set the visible of sprite 96 to True

set temp~gSpeedGrade

set gSpeedGrade ~ 4
wait
set gSpeedGrade~temp

updateStage
set the visible of sprite 96 to False

set temp=gSpeedGrade
set gSpeedGrade ~ 4
wait
set gSpeedGrade~temp

updateStage
end repeat

end search

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++
--+ Other Handlers +
--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on getLeftHeigh thisNum
--get thisNum left subtree heigh
set leftHeigh~O

set T~2*thisNum

if the visible of sprite T ~True and T<=31 then
--it has left subtree
set leftHeigh~l

if T=2 or T~3 then
set T_Heigh=l

else if T>3 and T<=7 then
set T_Heigh=2

else if T>7 and T<~15 then
set T_Heigh=3

else if T>15 and T<=31 then
set T_Heigh=4

end if

case T_Heigh of
4:

exit
3 :

if (the visible of sprite (2*T)=True~

104



or the visible of sprite (2*T+ll=Truel then
set leftHeigh=2

end if
2:

if (the visible of sprite (4*Tl=True,
or the visible of sprite (4*T+l)=True,
or the visible of sprite (4*T+2l=True,
or the visible of sprite (4*T+3l=Truel then
set leftHeigh=3

else if (the visible of sprite (2*Tl=True,
or the visible of sprite (2*T+ll=True) then
set leftHeigh=2

end if
1:

if (the visible of sprite (8*Tl=True,
or the visible of sprite (8*T+1l=True,
or the visible of sprite (8*T+2l=True,
or the visible of sprite (8*T+3l=True,
or the visible of sprite (8*T+4l=True,
or the visible of sprite (8*T+5l=True,
or the visible of sprite (8*T+6l=True,
or the visible of sprite (8*T+7)=True) then
set leftHeigh=4

else if (the visible of sprite (4*Tl=True,
or the visible of sprite (4*T+ll=True,
or the visible of sprite (4*T+2)=True,
or the visible of sprite (4*T+3l=Truel then
set leftHeigh=3

else if (the visible of sprite (2*Tl=True,
or the visible of sprite (2*T+ll=Truel then
set leftHeigh=2

end it

end case

end if

return leftHeigh

end getLeftHeigh

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on getRightHeigh thisNum
--get thisNum right subtree heigh
set rightHeigh=O
set T=2*thisNum+1

if the visible of sprite T =True and T<=31 then
--it has right subtree
set rightHeigh=l

if T=2 or T=3 then
set T_Heigh=l

else if T>3 and T<=7 then

L05



set T_Heigh=2
else if T>7 and T<=15 then

set T_Heigh=3
else if T>15 and T<=31 then

set T_Heigh=4
end if

case T_Heigh of
4 :

exit
3:

if (the visible of sprite (2*T)=True'
or the visible of sprite (2*T+ll=True) then

set rightHeigh=2
end if

2:
if (the visible of sprite (4*T)=True'

or the visible of sprite (4*T+ll=True~

or the visible of sprite (4*T+2l=True,
or the visible of sprite (4*T+3l=Truel then
set rightHeigh=3

else if (the visible of sprite (2*T)=True,
or the visible of sprite (2*T+ll=Truel then
set rightHeigh=2

end if
1 :

if (the visible of sprite (8*Tl=True'
or the visible of sprite (8*T+ll=True'
or the visible of sprite (8*T+2)=True'
or the visible of sprite (8*T+3)=True,
or the visible of sprite (8*T+4l=True'
or the visible of sprite (8*T+5l=True'
or the visible of sprite (8*T+6l=True'
or the visible of sprite (8*T+7l=True) then
set rightHeigh=4

else if (the visible of sprite (4*T)=True'
or the visible of sprite (4*T+ll=True,
or the visible of sprite (4*T+2l=True'
or the visible of sprite (4*T+3l=True) then
set rightHeigh=3

else if (the visible of sprite (2*T)=True,
or the visible of sprite (2*T+l)=True) then
set rightHeigh=2

end if

end case

end if

return rightHeigh

end getRightHeigh

--+++++++++++++ ••• +++++++++++++++++++++++++++++++++++++++++

106



on singleRotateWithLeft K2

if the visible of sprite (2*K2+1) =True then
if the visible of sprite (4*K2+3) =True then

nodeRightDown( (4*K2+3), (8*K2+7»)
set the visible of sprite (4*K2+52) to True
set the visible of sprite (2*K2+50) to False

end if

if the visible of sprite (4*K2+2) =True then
nodeRightDown( (4*K2+2), (8*K2+6)}
set the visible of sprite (4*K2+37) to True
set the visible of sprite (2*K2+35) to False

end if

nodeRightDown( (2*K2+1), (4*K2+3»
set the visible of sprite (2*K2+50) to True
set the visible of sprite (K2+49) to False
wait
updateStage

end if

nodeRightDown(K2, (2*K2+1»)
set the visible of sprite (K2+49) to True
set the visible of sprite (K2+34) to False

nodeRightUp(2*K2,K2)
set the visible of sprite (2*K2+34) to False

if ((4*K2+1)<=31 and the visible of sprite (4*K2+1) =True) then
set the visible of sprite (2*K2+49) to False
set the visible of sprite (2*K2+35) to True
rightUp3node«(4*K2+1), (4*K2+2))

end if

if «4*K2)<=31 and the visible of sprite (4*K2) =True) then
set the visible of sprite (K2+34) to True
set the visible of sprite (2*K2+34) to False
nodeRightUp( (4*K2), (2*K2))

if «(8*K2+1)<=31 and the visible of sprite (8*K2+1) =True) then
set the visible of sprite (4*K2+49) to False
set the visible of sprite (2*K2+49) to True
rightUp3node( (8*K2+1), (4*K2+1»)

end if

if (8*K2}<31 and the visible of sprite (8*K2) =True then
set the visible of sprite (4*K2+34) to False
set the visible of sprite (2*K2+34) to True
rightUp3node«8*K2), (4*K2))

end if

end if

wait
updateStage

107



end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on singleRotateWithRight K2

if the visible of sprite (2*K2) =True then
if the visible of sprite (4*K2) =True then

nodeLeftDown((4*K2), (8*K2))
set the visible of sprite (4*K2+34) to True
set the visible of sprite (2*K2+34) to False

end if

if the visible of sprite (4*K2+1) =True then
nodeLeftDown((4*K2+1), (8*K2+1))
set the visible of sprite (4*K2+49) to True
set the visible of sprite (2*K2+49) to False

end if

nodeLeftDown( (2*K2), (4*K2))
set the visible of sprite (2*K2+34)=True
set the visible of sprite (K2+34) to False
wait
updateStage

end if

nodeLeftDown(K2,2*K2)
set the visible of sprite (K2+34)=True
set the visible of sprite (K2+49) to False

nodeLeftUp( (2*K2+1) ,K2)
set the visible of sprite (2*K2+50) to False

if (4*K2+2)<=31 and the visible of sprite (4*K2+2) =True then
set the visible of sprite (2*K2+35) to False
set the visible of sprite (2*K2+49) to True
leftUp3node( (4*K2+2), (4*K2+1))

end if

if (4*K2+3)<=31 nnd the visible of sprite (4*K2+3) =True then
set the visible of sprite (2*K2+50) to False
set the visible of sprite (K2+49) to True
nodeLeftUp( (4*K2+3), (2*K2+1))

if ((8*K2+6)<=31 and the visible of sprite (8*K2+6) =True) then
set the visible of sprite (4*K2+37) to False
set the visible of sprite (2*K2+35) to True
leftUp3node( (8*K2+6), (4*K2+2))

end if

if ((8*K2+7)<=31 and the visible of sprite (8*K2+7) =True) then
set the visible of sprite (4*K2+52) to False
set the visible of sprite /2*K2+50) to True
leftUp3node( (8*K2+7), (4*K2+3))

end if

108



end if

wait
updateStage

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on doubleRotateWithRight Kl

--rotate between K3 and K2
singleRotateWithLeft(2*K1+1)

--rotate between Kl and Y-2
singleRotateWithRight(K1)

wait
updateStage

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on doubleRotateWithLeft K3

--rotate between Kl and K2
singleRotateWithRight(2*K3)

--rotate between K3 and K2
singleRotateWithLeft(Y-3)

wait
updateStage

end

--+++++~+++++++++++++++++++++++++++++++++++++++++++++++++++

on wait
global gSpeedGrade

case gSpeedGrade of
1: --lowest animation speed

startTimer
repeat with x=l to 1000000

nothing
end repeat

2:
startTimer
repeat with x=l to 500000

nothing
end repeat

3:
startTimer
repeat with x=l to 250000

109



nothing
end repeat

4:
startTimer
repeat with x=l to 125000

nothing
end repeat

5:
startTimer
repeat with x=l to 62500

nothing
end repeat

6 :
startTimer
repeat with x=l to 31250

nothing
end repeat

7:
startTimer
repeat with x=l to 15600

nothing
end repeat

8 :
startTimer
repeat with x=l to 7800

nothing
end repeat

9:
startTimer
repeat with x=l to 3900

nothing
end repeat

10:
startTimer
repeat with x=l to 2000

nothing
end repeat

11:
startTimer
repeat with x=l to 1000

nothing
end repeat

12:
startTimer
repeat with x=l to 500

nothing
end repeat

13:
startTimer
repeat with x=l to 300

nothing
end repeat

14:
startTimer
repeat with x=l to 200

nothing
end repeat

110



15:
startTimer
repeat with x=l to 100

nothing
end repeat

16:
startTimer
repeat with x=l to 50

nothing
end repeat

17:
startTimer
repeat with x=l to 25

nothing
end repeat

18:
startTimer
repeat with x=l to 2

nothing
end repeat

end case
end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on speedUp
global gSpeedGrade

if gSpeedGrade>=18 then
alert "This is the highest animation speed"
exit

else
set gSpeedGrade=gSpeedGrade+l

end if

set the text of member "speedField" to string (gSpeedGrade)

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on speedDown
global gSpeedGrade

if gSpeedGrade<=l then
alert "This is the lowest animation speed"
exit

else
set gSpeedGrade=gSpeedGrade-l

end if

set the text of member "speedField" to string (gSpeedGrade)

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

III



on closeSpeed
set the visible of sprite 106 to False
set the visible of sprite 107 to False
set the visible of sprite 108 to False
set the visible of sprite 109 to False

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on showSpeed
set the visible of sprite 106 to True
set the visible of sprite 107 to True
set the visible of sprite 108 to True
set the visible of sprite 109 to True

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on undo
global gNodeList,gHistoryList,gSpeedGrade
global gKeyList, gOpNameList, gUndoFlag

set gUndoFlag=l
reset

set temp=gSpeedGrade
set gSpeedGrade = 18
closeButton

--delete the last element of gKeyList and gOpNameList
set x=count(gKeyList)
deleteAt gKeyList,x
ueleteAt gOpNameList,x

--recover AVL tree except last element
repeat with i=l to (x-i)

set y=getAt(gKeyList,i)
set the text of member II InputField" to string(y)

if getAt(gOpNameList, i) = "Insert" then
insert

else if getAt (gOpNameList , i) = "Delete" then
delete

else
add gHistoryList, "Search" &string(y)
history

end if
end repeat

if count (gKeyList) =0 then
set the enabled of menuItem "undo" of menu "Operations" to False

end if

set gSpeedGrade=temp
set gUndoFlag=O

112



end undo

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on replay
global gNodeList,gHistoryList,gSpeedGrade
global gKeyList, gOpNameList, gReplayFlag

set gReplayFlag=l
reset

--delete the last element of gKeyList and gOpNameList
set x=count(gKeyList)

--recover AVL tree except last element
repeat with i=l to x

set y=getAt(gKeyList,i)
set the text of member "InputField" to string(y)

if getAt(gOpNameList, i) = "Insert" then
insert

else if getAt(gOpNameList, i) = "Delete" then
delete

else
search

end if
end repeat

if count(gKeyList)=O then
set the enabled of menuItem "Replay" of menu "Operations"""

to False
end if

set gReplayFlag=O
end replay

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

to II 11

thisNode to False
(thisNode+64) to False
thisEdge to False
33 to False
34 to False

sprite
sprite
sprite
sprite
sprite

of
of
of
of
of

visible
visible
visible
visible
visible

on deleteNode thisNode,thisEdge
set the text of member (20+thisNode)
wait
set the
set the
set the
set the
set the
wait
updateStage

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on moveOneNodeLeftUp fromH,fromV,toH,toV
global gUndoFlag

if gUndoflag=O then

i 13



set Hmove=abs(fromH-toH)
set Vmove=abs(fromV-toV)

--move movingNode to start node
set the locH of sprite 33 to fromH
set the locv of sprite 33 to fromV
set the locH of sprite 34 to the locH of sprite 33-13
set the locv of sprite 34 to the locV of sprite 33-8
set the visible of sprite 33 to True
set the visible of sprite 34 to True

wait
updateStage

set yy=O.OO
repeat with i=l to Hmove

set the locH of sprite 33 to (the locH of sprite 33-1)
set the locH of sprite 34 to the locH of sprite 33-13
if (i mod 4)=0 then

set xx=integer(4*Vmove/Hmove)

--following five lines fix the errors
set yy=yy+(4.0Q*Vmove/Hmove)-xx
if yy>=l then

set yy=yy-l
set xx=xx+l

end if

set the locv of sprite 33 to (the locV of sprite 33-xx)
set the locv of sprite 34 to the locv of sprite 33-8
wait
updateStage

end if
end repeat

set the locH of sprite 33 to toH
set the locH of sprite 34 to the locH of sprite 33-13
set the locv of sprite 33 to toV
set the locv of sprite 34 to the lo<:.V of sprite 33-8
wait
updateStage

set the visible of sprite 33 to False
set the visible of sprite 34 to False

end if

end moveOneNodeLeftUp

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on moveOneNodeRightDown fromH,fromV,toH,toV
global gUndoFlag

if gUndoflag=O then
set Hmove=abs(fromH-toH)
set Vmove=abs(fromV-toV)

114



--move movingNode to start node
set the locH of sprite 33 to fromH
set the locv of sprite 33 to fromV
set the locH of sprite 34 to the locH of sprite 33-13
set the locv of sprite 34 to the locV of sprite 33-8
set the visible of sprite 33 to True
set the visible of sprite 34 to True
wait
updateStage

set yy=O.OO
repeat with i=l to Hmove

set the locH of sprite 33 to (the locH of sprite 33+1)
set the locH of sprite 34 to the locH of sprite 33-13
if (i mod 4)=0 then

set xx=integer(4*Vmove/Hmove)

--following five lines fix the errors
set yy=yy+(4.00*Vmove/Hmove)-xx
if yy>=l then

set yy=yy-1
set xx=xx+l

end if

set the locV of sprite 33 to (the locv of sprite 33+xx)
set the locv of sprite 34 to the locV of sprite 33-8
wait
updateStage

end if
end repeat

set the locH of sprite 33 to toH
set the locH of sprite 34 to the locH of sprite 33-13
set the locV of sprite 33 to toY
set the locv of sprite 34 to the locV of sprite 33-8
wait
updateStage

end if

end moveOneNodeRightDown

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on moveOneNodeRightUp frornH,fromV,toH,toV
global gUndoFlag

if gUndoflag=O then
set Hmove=abs(fromH-toH)
set Vmove=abs(fromV-toV)

--move movingNode to start node
set the locH of sprite 33 to frornH
set the locV of sprite 33 to fromV
set the locH of sprite 34 to the locH of sprite 33-13
set the locv of sprite 34 to the locv of sprite 33-8
set the visible of sprite 33 to True
set the visible of spri r.e 34 to True

115



wait
updateStage

set yy=O.OO
repeat with i=l to Hmove

set the locH of sprite 33 to (the locH of sprite 33+1)
set the locH of sprite 34 to the locH of sprite 33-13
if (i mod 4)=0 then

set xx=integer(4*Vmove/Hmove)

--following five lines fix the errors
set yy=yy+{4.00*Vmove/Hmove)-xx
if yy>=l chen

set yy=yy-l
set xx=xx+l

end if

set the locv of sprite 33 to (the locv of sprite 33-xx)
set the locV of sprite 34 to the locV of sprite 33-8
wait
updateStage

end if
end repeat

set the locH of sprite 33 to toH
set the locH of sprite 34 to the locH of sprite 33-13
set the locV of sprite 33 to toV
set the locv of sprite 34 to the locv of sprite 33-8
wait
updateStage

set the visible of sprite 33 to False
set the visible of sprite 34 to False

end if

end moveOneNodeRightUp

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on moveOneNodeLeftDown fromH,fromV,toH,toV
global gUndoFlag

if gUndoflag=O then
set Hmove=abs(fromH-toH)
set Vmove=abs{fromV-toV)

--move movingNode to start node
set the locH of sprite 33 to fromH
set the locv of sprite 33 to fromV
set the locH of sprite 34 to the locH of sprite 33-13
set the locv of sprite 34 to the locv of sprite 33-8
set the visible of sprite 33 to True
set the visible of sprite 34 to True
wait
updateStage

set yy=O.OO

116



repeat with i=l to Hrnove
set the locH 0: sprite 33 to (the locH of sprite 33-1)
set the locH o~ sprite 34 to the locH of sprite 33-13
if (i mod 4)=0 then

set xx=integer(4*Vmove/Hrnove)

--following five lines fix the errors
set yy=yy+(4.00*Vmove/Hrnove)-xx
if yy>=l then

set yy=yy-1
set xx=xx+l

end if

set the locv of sprite 33 to (the locv of sprite 33+xx)
set the locv of sprite 34 to the locv of sprite 33-8
wait
updateStage

end if
end repeat

set the locH of sprite 33 to toH
set the locH of sprite 34 to the locH of sprite 33-13
set the locv of sprite 33 to toV
set the locv of sprite 34 to the locv of sprite 33-8
wait
updateStage

end if

end moveOneNodeLeftDown

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on nodeRightUp thisNum,thatNum

--move this node right up to that node
set the visible of sprite thisNum to False
set the visible of sprite (thisNum+64) to False
set the text of member 10 to the text of member~

(thisNum+20)
set the text of member (20+thisNum) to nn

wait
updateStage

moveOneNodeRightUp(the locH of sprite thisNum,~

the locV of sprite thisNum,the locH of sprite~

thatNum,the locV of sprite thatNum)

--set that node
set the text of member (thatNum+20) to the text~

of member 10
set the visible of sprite thatNum to True
set the visible of sprite (thatNum+64) to True
wait
updateStage

end

117



--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on nodeLeftUp thisNum,thatNum

--remove the right child and move the right child up
set the visible of sprite thisNum to False
set the visible of sprite thisNum+64 to False
set the text of member 10 to the text of member~

(thisNum+20)
set the text of member (thisNum+20) to IOn

wait
updateStage

moveOneNodeLeftUp(the locH of sprite thisNum,~

the locV of sprite thisNum.the locH of sprite~

thatNum,the locv of sprite thatNum)

--set this node
set the text of member (thatNum+20) to the text~

of member 10
set the visible of sprite thatNum to True
set the visible of sprite (thatNum+64) to True
wait
updateStage

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on nodeRightDown thisNum,thatNum

--move this node right up to that node
set the visible of sprite thisNum to False
set the visible of sprite (thisNum+64) to False
set the text of member 10 to the text of member~

(thisNum+20)
set the text of member (20+thisNum) to ""
wait
updateStage

moveOneNodeRightDown(the locH of sprite thisNum,~

the locv of sprite thisNum.the locH of sprite~

thatNum.the locv of sprite thatNum)

--set that node
set the text of member (thatNum+20) to the text,

of member 10
set the visible of sprite thatNum to True
set the visible of sprite (thatNum+64) to True
wait
updateStage

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

118



on nodeLeftDown thisNum,thatNum

--remove the right child and move the right child up
set the visible of sprite thisNum to False
set the visible of sprite thisNum+64 to False
set the text of member 10 to the text of member~

(thisNum+20)
set the text of member (thisNum+20) to ""
wait
updateStage

moveOneNodeLeftDown(the locH of sprite thisNum,~

the locV of sprite thisNum,the locH of sprite~

thatNum,the locV of sprite thatNum)

--set this node
set the text of member (thatNum+20) to the text·

of member 10
set the visible of sprite thatNum to True
set the visible of sprite (thatNum+64) to True
wait
updateStage

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on findMinFromRightSubtree thisNum
set minNode=2*thisNum+1
set leftNode=2*minNode

repeat while (the visible of sprite leftNode =True and~

leftNode<=31)
set minNode=leftNode
set leftNode=leftNode*2

end repeat

return minNode
end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on rightUp3node fromN,toN

nodeRightUp(fromN,toN)

if the visible of sprite (2*fromN+1)=True then
set the visible of sprite (fromN+49) to False
set the visible of sprite (toN+49) to True
nodeRightUp( (2*fromN+1) , (2*toN+l) )

end if

if the visible of sprite (2*fromN)=True then
set the visible of sprite (fromN+34) to False
set the visible of sprite (toN+34) to true

119



nodeRightUp( (2*fromN), (2*toN)}
end if

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on leftUp3node fromN,toN

nodeLeftUp(fromN,toN)

if the visible of sprite (2*fromN)=True then
set the visible of sprite (frornN+34) to False
set the visible of sprite (toN+34) to True
nodeLeftUp( (2*fromN), (2*toN))

end if

if the visible of sprite (2*fromN+l)=True then
set the visible of sprite (frornN+49l to False
set the visible of sprite (toN+49) to true
nodeLeftUp((2*fromN+l), (2*toN+l))

end if

end

120



APPENDIX B

BINARY SEARCH TREE LINGO CODE

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++
--+ +
--+ Main Script +
--+ +
--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on startMovie

-- global variable declarations
global gNodeList,gHistoryList,gSpeedGrade
global gKeyList, gOpNameList, gUndoFlag, gReplayFlag

set gKeyList = []
set gOpNameList = []
set gUndoFlag=O
set gReplayflag=O

newTree

set gSpeedGrade =9
set the text of member "speedField" to string (gSpeedGrade)
set the stageColor to 43
set the backColor of sprite 103 to 43

installMenu 3

end startMovie

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on reset
global gHistoryList, gNodeList
global gKeyList, gOpN<.l.meList, gUndoFlag, gReplayFlag

set gHistoryList []
set gNodeList = []
history

if gUndoFlag=O and gReplayFlag=O then
set gKeyList= []
set gOpNameList=[]

end if

repeat with i=1 to 95
puppetSprite i,True
set the visible of sprite i to False

end repeat

set the visible of sprite 103 to False

repeat with i=21 to 51

i21



set the text of member i to ""
end repeat

set the text of member "InputField" to ""
end reset

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on newTree
reset

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on backMain
play done

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on stopmovie
repeat with i=l to 95

set the visible of sprite i to False
end repeat

set the text of member "InputField" to ""

repeat with i=21 to 51
set the text of member i to ""

end repeat
end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on instruction
puppetsound "instruction"
updateStage
set the modal of window "WinAB" to False
set the windowtype of window "WinAB" to 4
set the rect of window "WinAB" to rect(lO,50,380,320)

tell window "WinAB" to go to frame "instructionl"
open window "WinAB"

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on aboutBSTree
set the modal of window "WinAB" to True
set the windowtype of window "WinAB" to 4
set the rect of window "WinAB" to rect (la, 50, 340, 290)

tell window "WinAB" to go to frame "aboutBSTree"
open window "WinAB"

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on closeWin
set the modal of window "WinAB" to False
set the windowtype of window "WinAB" to 4
set the rect of window "WinAB" to rect(10,50,330,180)

tell window "WinAB" to go to frame "Exit"

122



open window "WinAB"
end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on definition
set the modal of window "WinAB" to True
set the windowtype of window "WinAB" to 4
set the rect of window "WinAB" to rect(10,50,390,300)

tell window "WinAB" to go to frame "Definition1"
open window "WinAB"

end

--++++++++++++++++++r+++++++++++++++++++++++++++++++++ +++++

on history
global gHistoryList

set operationNum to count(gHistoryList)
if operationNum=O then

set operations="Operations history:
else

set operations="Operations history: "..,
& getAt(gHistoryList, 1)
repeat with i=2 to operationNum

put ", "& getAt(gHistoryList,i) after operations
end repeat

end if

puppetSprite 104, True
puppetSprite 105, True
set the visible of sprite 104 to True
set the visible of sprite 105 to True
set the text of member "showOpHi" to operations
updateStage

end history

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on closeButton
puppetSprite 104, False
puppetSprite 105, False
set the visible of sprite 104 to False
set the visible of sprite 105 to False

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++
- -+ Menu Script +
--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

menu: File
New/N InewTree
ResetiR Ireset
BackMenu/BI backMain

( -

Exit/EI closeWin
menu: Speed
Speedup/vi speedUp
SpeedDown/WlspeedDown
CloseSpeedButtonlcloseSpeed
ShowSpeedButtonlshowSpeed

123



---

menu: Operations
Undo/Ulundo
Replay/pi replay
Insertion/II insert
Deletion/DI delete
Searching/SI search
menu: Shows
Operation Historyl history
menu: Help
Instructionl instruction
Definitions of BSTreel Definition
AboutVisualBSTreel aboutBSTree

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++
--+ Insert Function +
--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on insert
global gNodeList, gHistoryList, gSpeedGrade
global gKeyList, gOpNameList, gUndoFlag, gReplayFlag

--check if the NodeList is full
if count(gNodeList)=31 then

puppetsound "treeful"
updateStage
alert "Sorry, The Tree is full!"
exit

end if

--let Token = input data
set Token to value(the text of member"InputField")

--check if Token is blank or a space
if Token="" or Token=" " then

puppetsound "inputdata"
updateStage
alert "Please enter a data value in the box."
exit

end if

if gUndoFlag=O and gReplayFlag=O then
puppetsound "insert"
updateStage

end if

--remove input data from InputField
put "" into field "InputField"
updateStage

--close "winAB" window
close window "winAB "

--active compare,movingNode,and movingToken
puppetSprite 33, True
puppetSprite 34, True
puppetSprite 32. True

--set the backColor of movingNode to the backColor of stage
set the backColor of sprite B to 43

if count (gNodeList)=0 then
set the visible of sprite I to True

124



set the visible of sprite 65 to True
set the text of member "valuel" = string(Token)
set the enabled of menuItem "undo" of menu "Operations" to True
set the enabled of menuItem "Replay" of menu "Operations" to True
updateStage

if gUndoFlag=O and gReplayFlag=O then
add gKeyList, Token
add gOpNameList, "Insert"

end if

add gNodeList, Token
add gHistoryList, "Insert " & string (Token)

else
if getOne(gNodeList,Token)=O then

set currentNum=l
set currentValue=value(the text of member "valuel")

set the text of member "movingToken" to string(Token)

set TreeLevelcount=-l

repeat while voidP(currentValue)=False
set currentSprite=currentNum
set TreeLevelcount=TreeLevelcount+1

--Check if tree levels are more than 4
if TreeLevelcount>=4 and the visible of sprite (currentNum)'

=True then
set the visible of sprite 32 to False
set the visible of sprite 33 to False
set the visible of sprite 34 to False
puppetsound "outStage"
updateStage
alert "Sorry, Out of stage! Try again!"
exit

end if

if gUndoFlag=O then
--move compare,movingToken, and movingNode to the right of
--currentNode
set the locH of sprite 32 to the right of sprite'

currentSprite
set the locV of sprite 32 to the locV of sprite~

currentSprite-6
set the locH of sprite 33 to the right of sprite~

currentSprite+40
set the locv of sprite 33 to the locV of sprite'

currentSprite
set the locH of sprite 34 to the locH of sprite 33-15
set the locV of sprite 34 to the locv of sprite 33-7

end if

if currentValue > Token then
set the text of member "Compare" to ">"
set edge=currentNum+34
set currentNum=currentNum*2

else
set the text of member "Compare" to "<"
set edge=currentNum+49
set currentNum=currentNum*2+1

125



---

end if

if gUndoFlag=O then
set the visible of sprite 32 to True
set the visible of sprite 33 to True
set the visible of sprite 34 to True
updateStage

end if

set temp=gSpeedGrade
set gSpeedGrade = 4
wait
set gSpeedGrade=temp

--make compare field invisible
set the visible of sprite 32 to False

if gUndoFlag=O then
--move insert node to the current node position
repeat with i=the locH of sprite 33 down to ~

(the locH of sprite currentSprite)
set the locH of sprite 33 to (the locH of sprite 33-1)
set the locH of sprite 34 to (the locH of sprite 34-1)
wait
updateStage

end repeat
end if

if gUndoFlag=O then
--move insert node to the child position of current node
set cnH=the locH of sprite currentNum
set cnV=the locV of sprite currentNum
set csH=the locH of sprite currentSprite
set csV=the locv of sprite currentSprite

if currentValue > Token then
--move to left child
rnoveOneNodeLeftDown(csH,csV,cnH,cnV)

else
--move to right child
moveOneNodeRightDown(csH,csV,cnH,cnV)

end if

wait
end if

if the visible of sprite (currentNum)=False then
--make the edge and current node visible
set the visible of sprite edge to True
set the visible of sprite currentNum to True
set the visible of sprite currentNum+64 to True
set the text of member 20+currentNum=String(Token)
wait
updateStage
exit repeat

else
set currentValue=the text of member (20+currentNum)

end if
end repeat

set the visible of sprite 33 to False

126



set the visible of sprite 34 to False

if gUndoFlag=O and gReplayflag=O then
add gKeyList, Token
add gOpNameList, "Insert"

end if

add gNodeList, Token
add gHistoryList, "Insert" & string (Token)

else
puppetsound "noinsert"
updateStage
alert "This node is already in the tree."

end if
end if

history

end insert

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++
--+ Delete Function +
--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on delete
global gNodeList, gHistoryList, gSpeedGrade
global gKeyList, gOpNameList. gUndoFlag, gReplayFlag

--let Tokken = input data
set Token to value<the text of member"InputField")

--check if Token is blank or a space
if Token="" or Token=" " then

puppetsound "inputdata"
updateStage
alert "Please enter an data in the box."
exit

end if

--check if delete node is not in the Tree
if get One (gNodeList, Token)=O then

puppetsound "nodel"
updateStage
alert "This node is not in the tree, please try again!"
exit

end if

if gReplayFlag=O and gUndoFlag=O then
puppetsound "delete"
updateStage

end if

--remove input data from InputField
put "" into field "InputField"
updateStage

--close "winAB" window
close window "winAB"

--active compare,movingNode,and movingToken
puppetSprite 33, True
puppetSprite 34, True
puppetSprite 32. True

1:27

I



--set the backColor of movingNode to the backColor of stage
set the backColor of sprite 8 to 43

--initialize current node and movingToken
set currentNum=l
set currentValue=value(the text of member "value1")
set the text of member "movingToken" to string (Token)

--the root is the delete node
if currentValue=string(Token) then

set the text of member "Compare" to "="

if gUndoFlag=O then
--move compare,movingToken, and movingNode to the right of root
set the locH of sprite 32 to the right of sprite 1
set the locV of sprite 32 to the locv of sprite 1-6
set the locH of sprite 33 to the right of sprite 1+40
set the locv of sprite 33 to the locv of sprite 1
set the locH of sprite 34 to the locH of sprite 33-15
set the locV of sprite 34 to the locv of sprite 33-7

set the visible of sprite 32 to True
set the visible of sprite 33 to True
set the visible of sprite 34 to True
updateStage

repeat with i=l to 30
wait

end repeat
end if

--make compare field invisible
set the visible of sprite 32 to False

if gUndoFlag=O then
--move delete node to the root
repeat with i=the locH of sprite 33 down to '

(the locH of sprite 1)
set the locH of sprite 33 to (the locH of sprite 33-1)
set the locH of sprite 34 to (the locH of sprite 34-1)
wait
updateStage

end repeat
end if

end if

set TreeHeight=O

--this big loop is for finding delete node
repeat while currentVa1ue<>string(Token)

set currentSprite=currentNum
set TreeHeight=TreeHeight+l

if gUndoFlag=O then
--move compare,movingToken, and movingNode to the right of
--currentNode
set the locH of sprite 32 to the right of sprite currentSprite
set the locV of sprite 32 to the locv of sprite currentSprite-6
set the locH of sprite 33 to the right of sprite,

currentSprite+40
set the locv of sprit8 33 to the locv of sprite currentSprite
set the locH of sprite 34 to the locH of sprite 33-15

i2R



set the locV of sprite 34 to the locV of sprite 33-7
end if

if currentValue > Token then
set the text of member "Compare" to ">"
set edge=currentNum+34
set currentNum=currentNum*2

else
set the text of member "Compare" to "<"
set edge=currentNum+49
set currentNum=currentNum*2+1

end if

if gUndoFlag=O then
set the visible of sprite 32 to True
set the visible of sprite 33 to True
set the visible of sprite 34 to True
updateStage

end if

set temp=gSpeedGrade
set gSpeedGrade = 6
wait
set gSpeedGrade=temp

--make compare field invisible
set the visible of sprite 32 to False

if gUndoFlag=O then
--move delete node to the current node position
repeat with i=the locH of sprite 33 down to ~

(the locH of sprite currentSprite)
set the locH of sprite 33 to (the locH of sprite 33-1)
set the locH of sprite 34 to (the locH of sprite 34-1)
wait
updateStage

end repeat

--move delete node to the child position of current node
set cnH=the locH of sprite currentNurn
set cnV=the locV of sprite currentNum
set csH=the locH of sprite currentSprite
set csV=the locv of sprite currentSprite

if currentValue > Token then
--move to left child
moveOneNodeLeftDown(csH,csV,cnH,cnV)

else
--move to right child
moveOneNodeRightDown(csH,csV,cnH,cnV)

end if

wait
end if

if the text of member (20+currentNum)=String(Token) then
set the locH of sprite 33 to the locH of sprite currentNurn
set the locv of sprite 33 to the locV of sprite currentNum
set the visible of sprite 34 to False
wait
updateStage
exit repeat

129

•



---

else
set currentValue=the text of member (20+currentNurn)

end if

end repeat

--delete this node in many cases
case TreeHeight of

4:--deleted node is a leaf in deep 4
deleteNode (currentNurn, edge)

3:--deleted node is a leaf
if (the visible of sprite (2*currentNurn)=False and.

the visible of sprite (2*currentNurn+l)=False) then
deleteNode(currentNurn,edge)

--deleted node has a left child
else if (the visible of sprite (2*currentNurn)=True and.

the visible of sprite (2*currentNurn+l)=False) then
set the visible of sprite (currentNurn+341=False
nodeRightUp(2*currentNurnl, (currentNurn))

--deleted node has a right child
else if (the visible of sprite (2*currentNum)=False and·

the visible of sprite (2*currentNurn+l)=True) then
set the visible of sprite (currentNum+49)=False
nodeLeftUp«2*currentNurn+l), (currentNurn))

--deleted node has both left and right child as leaf
else if (the visible of sprite (2*currentNum)=True and,

the visible of sprite (2*currentNurn+l1=True) then
set the visible of sprite (currentNurn+49)=False
nodeLeftUp( (2*currentNurn+l), (currentNurn))

end if

2:--deleted node is a leaf
if (the visible of sprite (2*currentNurnl=False and·

the visible of sprite (2*currentNum+l)=False) then
deleteNode(currentNum,edge)

--deleted node only has a left subtree
else if (the visible of sprite (2*currentNum)=True and·

the visible of sprite (2*currentNurn+ll=False) then
deleteNode{currentNurn)
rightUp3node(currentNurn)

--deleted node only has a right subtree
else if (the visible of sprite (2*currentNurn)=False and·

the visible of sprite (2*currentNurn+l)=True) then
deleteNode(currentNurn)
leftUp3node(currentNum)

--deleted node has both left and right subtree
else if (the visible of sprite (2*currentNum)=True and~

the visible of sprite (2*currentNum+l)=True) then

if the visible of sprite (4*currentNum+2)=True then
--right child has a left leaf
set the visible of sprite (2*currentNurn+35) to False
nodeLeftUp( (4*currentNurn+2), (currentNum))

else
--right child has not a left leaf

130

•



set the visible of sprite (currentNum+49) to False
nodeLeftUp((2*currentNum+l) ,currentNum)
if the visible of sprite (4*currentNum+3)=True then

--right child has a right leaf
set the visible of sprite (2*currentNum+5D) to False
set the visible of sprite (currentNurn+49) to True
nodeLeftUp( (4*currentNum+3), (2*currentNum+l))

end if
end if

end if

l:--deleted node is a leaf
if (the visible of sprite (2*currentNum)=False and,

the visible of sprite (2*currentNurn+l)=False) then
deleteNode(currentNum,edge)

--deleted node only has a left subtree

else if (the visible of sprite (2*currentNum)=True and~

the visible of sprite (2*currentNum+l)=False) then

set the visible of sprite (currentNum+34) to False
nodeRightUp(2*currentNum,currentNum)

if the visible of sprite (4*currentNum+l)=True then
--left child has a right subtree
set the visible of sprite (2*currentNum+49) to False
set the visible of sprite (currentNurn+49) to True
nodeRightUp( (4*currentNum+l), (2*currentNum+l))

if the visible of sprite (B*currentNum+3)=True then
--left child has a right left child
set the visible of sprite (4*currentNum+5D) to False
set the visible of sprite (2*currentNum+50) to True
nodeRightUp( (B*currentNum+3), (4*currentNum+3))

end if

if the visible of sprite (B*currentNum+2)=True then
--left child has a right right child
set the visible of sprite (4*currentNum+35) to False
set the visible of sprite (2*currentNum+35) to True
nodeRightUp( (8*currentNum+2), (4*currentNum+2))

end if

end if

--left child has a left subtree
if the visible of sprite (4*currentNum'=True then

set the visible of sprite (currentNum+34) to True
rightUp3node(2*currentNum)

end if

--deleted node only has a right subtree
else if (the visible of sprite (2*currentNum)=False and,

the visible of sprite (2*currentNum+l)=True) then

set the visible of sprite (currentNum+49) to False
nodeLeftUp( (2*currentNum+l) ,currentNum)

131

•



if the visible of sprite (4*currentNum+2)=True then
--right child has a left subtree
set the visible of sprite (2*currentNum+35) to False
set the visible of sprite (currentNum+34) to True
nodeLeftUp( (4*currentNum+2), (2*currentNum))

if the visible of sprite (8*currentNum+4)=True then
--right child has a left left child
set the visible of sprite (4*currentNum+36) to False
set the visible of sprite (2*currentNum+34) to True
nodeLeftUp( (8*currentNum+4) , (4*currentNum) )

end if

if the visible of sprite (8*currentNum+5)=True then
--right child has a left right child
set the visible of sprite (4*currentNum+51) to False
set the visible of sprite (2*currentNum+49) to True
nodeLeftUp( (8*currentNum+5), (4*currentNum+l))

end if

end if

--right child has a right subtree
if the visible of sprite (4*currentNum+3)=True then

set the visible of sprite (currentNum+49) to True
leftUp3node(2*currentNum+l)

end if

--deleted node has both left and right subtree
else if(the visible of sprite (2*currentNum)=True and·

the visible of sprite (2*currentNum+l)=True) then

set minNode=findMinFromRightSubtree(currentNum)

if minNode=(8*currentNum+4) then
--right child has a left left child
set the visible of sprite (4*currentNurn+36) to False
nodeLeftUp( (8*currentNum+4), (currentNum))

else if minNode=(4*currentNum+2) then
--right child has a left child
set the visible of sprite (2*currentNum+35) to False
nodeLeftUp( (4*currentNum+2). (currentNum))

if the visible of sprite (8*currentNum+5)=True then
--right child has a left right child
set the visible of sprite (4*currentNum+51) to False
set the visible of sprite (2*currentNum+35) to True
nodeLeftUp( (8*currentNum+5). (4*currentNum+2))

end if

else if minNode=(2*currentNurn+l) then
--right child has not a left subtree
set the visible of sprite (currentNum+49) to False
nodeLeftUp( (2*currentNum+l) ,currentNum)

if the visible of sprite (4*currentNum+3)=True then
--right child has a right subtree
set the visible of sprite (currentNum+49) to True

132

•



leftUp3nade(2*currentNwm+l)
end if

end if
end if

O:--deleted node is a leaf
if (the visible of sprite (2*currentNwm)=False and.,

the visible of sprite (2*currentNwm+l)=False) then
deleteNade(currentNum,edge)

--deleted node only has a left subtree

else if (the visible of sprite (2*currentNwm)=True and.,
the visible of sprite (2*currentNwm+l)=False) then

set the visible of sprite (currentNum+34) to False
rightUp3nade(currentNum)

if the visible of sprite (8*currentNum+3)=True then
--left child has a right right subtree
set the visible of sprite (4*currentNwm+50) to False
set the visible of sprite (2*currentNwm+50) to True
nadeRightUp( (8*currentNum+3), (4*currentNwm+3»

if the visible of sprite (16*currentNwm+7)=True then
--left child has a right right right leaf
set the visible of sprite (8*currentNum+52) to False
set the visible of sprite (4*currentNum+52) to True
nadeRightUp((16*currentNwm+7), (8*currentNum+7»

end if

if the visible of sprite (16*currentNum+6)=True then
--left child has a right right left leaf
set the visible of sprite (B*currentNum+37) to False
set the visible of sprite (4*currentNum+37) to True
nadeRightUp((16*currentNwm+6). (8*currentNum+6»

end if

end if

if the visible of sprite (B*currentNum+2)=True then
--left child has a right left subtree
set the visible of sprite (4*currentNum+35) to False
set the visible of sprite (2*currentNwm+35) to True
nadeRightUp( (8*currentNwm+2), (4*currentNwm+2»)

if the visible of sprite (16*currentNwm+5)=True then
--left child has a right left right leaf
set the visible of sprite (8*currentNum+51) to False
set the visible of sprite (4*currentNum+51) to True
nadeRightUp((16*currentNum+5), (8*currentNum+5»

end if

if the visible of sprite (16*currentNum+4)=True then
--left child has a right left left leaf
set the visible of sprite (8*currentNwm+36) to False
set the visible of sprite (4*currentNwm+36) to True
nadeRightUp( (16*currentNum+4), (8*currentNum+4»

end if

end if

133

•



if the visible of sprite (8*currentNurn+l)=True then
--left child has a left right subtree
set the visible of sprite (4*currentNum+49) to False
set the visible of sprite (2*currentNum+49) to True
nodeRightUp( (8*currentNurn+l), (4*currentNum+l»)

if the visible of sprite (16*currentNum+3}=True then
--left child has a left right right leaf
set the visible of sprite (8*currentNum+50) to False
set the visible of sprite (4*currentNum+50) to True
nodeRightUp( (16*currentNum+3), (8*currentNum+3»

end if

if the visible of sprite (16*currentNurn+2}=True then
--left child has a left right left leaf
set the visible of sprite (8*currentNurn+35) to False
set the visible of sprite (4*currentNum+35) to True
nodeRightUp( (16*currentNum+2), (8*currentNum+2»

end if

end if

--left child has a left left subtree
if the visible of sprite (8*currentNUlll)=True then

set the visible of sprite (2*currentNumr34) to True
rightUp3node(4*currentNum)

end if

--deleted node only has a right subtree
else if (the visible of sprite (2*currentNurn)=False and,

the visible of sprite (2*currentNum+l)=True) then

set the visible of sprite (currentNum+49) to False
leftUp3node(currentNum)

if the visible of sprite (8*currentNum+4)=True then
--right child has a left left subtree
set the visible of sprite (4*currentNum+36) to False
set the visible of sprite (2*currentNum+34) to True
nodeLeftUp( (8*currentNum+4), (4*currentNum»

if the visible of sprite (16*currentNum+8)=True then
--right child has a left left left leaf
set the visible of sprite (8*currentNum+38) to False
set the visible of sprite (4*currentNum+34) to True
nodeLeftUp«16*currentNurn+8), (8*currentNurn})

end if

if the visible of sprite (16*currentNum+9)=True then
--right child has a left left right leaf
set the visible of sprite (8*currentNum+53) to False
set the visible of sprite (4*currentNum+49) to True
nodeLeftUp«16*currentNum+9), (8*currentNum+l»)

end if

end if

if the visible of sprite (8*currentNum+5)=True then
--right child has a left right subtree
set the visible of sprite (4*currentNum+51) to False

134

•



set the visible of sprite (2*currentNum+49) to True
nodeLeftUp( (8*currentNum+5). (4*currentNum+l))

if the visible of sprite (16*currentNum+10)=True then
--right child has a left right left leaf
set the visible of sprite (8*currentNum+39) to False
set the visible of sprite (4*currentNum+35) to True
nodeLeftUp((16*currentNurn+10). (8*currentNum+2))

end if

if the visible of sprite (16*currentNum+ll)=True then
--right child has a left right right leaf
set the visible of sprite (8*currentNum+54) to False
set the visible of sprite (4*currentNurn+50) to True
nodeLeftUp( (16*currentNurn+ll). (8*currentNum+3))

end if

end if

if the visible of sprite (8*currentNum+6)=True then
--right child has a right left subtree
set the visible of sprite (4*currentNurn+37) to False
set the visible of sprite (2*currentNurn+35) to True
nodeLeftUp((8*currentNurn+6). (4*currentNurn+2))

if the visible of sprite (16*currentNurn+12)=True then
--right child has a right left left leaf
set the visible of sprite (8*currentNurn+40) to False
set the visible of sprite (4*currentNum+36) to True
nodeLeftUp ( (16*currentNum+12) . (8 *currentNurn+4) )

end if

if the visible of sprite (16*currentNurn+13)=True then
--right child has a right left right leaf
set the visible of sprite (8*currentNurn+55) to False
set the visible of sprite (4*currentNum+51) to True
nodeLeftUp((16*currentNurn+13), (8*currentNum+5))

end if

end if

--right child has a right right subtree
if the visible of sprite (8*currentNuffi+7)=True then

set the visible of sprite (2*currentNum+50) to True
leftUp3node(4*currentNum+3)

end if

--deleted node has both left and right subtree
else if(the visible of sprite (2*currentNum)=True and~

the visible of sprite (2*currentNurn+l)=True) then

set minNode=findMinFromRightSubtree(currentNum)

if minNode=(16*currentNurn+8) then
--right child has a left left left leaf
set the visible of sprite (8*currentNurn+38) to False
nodeLeftUp( (16*currentNurn+8) ,currentNum)

else if minNode=(8*currentNum+4) then
--right child has a left left subtree

135

•



set the visible of sprite (4*currentNum+36) to False
nodeLeftUp((8*currentNum+4) ,currentNum)

if the visible of sprite (16*currentNum+9)=True then
--right child has a left left right leaf
set the visible of sprite (8*currentNum+53) to False
set the visible of sprite (4*currentNum+36) to True
nodeLeftUp((16*currentNum+9), (8*currentNum+4»)

end if

else if minNode=(4*currentNum+2) then
--right child has not a left left subtree
set the visible of sprite (2*currentNum+35) to False
nodeLeftUp( (4*currentNurn+2) ,currentNum)

if the visible of sprite (8*currentNum+5)=True then
--right child has a left right subtree
set the visible of sprite (2*currentNum+35) to True
leftUp3node(4*currentNurn+2)

end if

else if rninNode=(2*currentNurn+l) then
--right child has not a left subtree
set the visible of sprite (currentNurn+49l to False
nodeLeftUp( (2*currentNurn+l),currentNum)

if the visible of sprite (4*currentNum+3l=True then
--right child has a right subtree
set the visible of sprite (2*currentNurn+50) to False
set the visible of sprite {currentNum+49l to True
nodeLeftUp( (4*currentNurn+3), (2*currentNum+l»)

if the visible of sprite (8*currentNum+6)=True then
--right child has a right left subtree
set the visible of sprite (4*currentNum+37) to False
set the visible of sprite (2*currentNum+35) to True
nodeLeftUp( (8*currentNurn+6), (4*currentNum+2))

if the visible of sprite (16*currentNurn+12)=True then
--right child has a right left left leaf
set the visible of sprite (8*currentNurn+40) to False
set the visible of sprite (4*currentNurn+36) to True
nodeLeftUp( (16*currentNurn+12), (8*currentNum+4))

end if

if the visible of sprite (16*currentNum+13)=True then
--right child has a right left right leaf
set the visible of sprite (8*currentNum+55) to False
set the visible of sprite (4*currentNum+51) to True
nodeLeftUp ( (16*currentNurn+13) , (8*currentNurn+5) )

end if

end if

if the visible of sprite (8*currentNum+7)=True then
--right child has a right right subtree
set the visible of sprite (2*currentNum+50) to True
leftUp3node(4*currentNum+3)

end if
end if

end if
end if

136

•



end case

if gUndoFlag=O and gReplayFlag=O then
add gKeyList, Token
add gOpNameList, "Delete"

end if

add gHistoryList, "Delete" &string(Token)
deleteOne gNodeList,Token

history

end delete

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++
--+ Search Function +
--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on search
global gNodeList, gHistoryList, gSpeedGrade
global gKeyList, gOpNameList, gReplayFlag

--let Tokken = input data
set Token to value(the text of member"InputField")

--check if Token is blank or a space
if Token="" or Token=" " then

puppet sound "inputdata"
updateStage
alert "Please enter an data in the box."
exit

end if

--check if search node is not in the Tree
if getOne(gNodeList, Token)=O then

puppetsound "nodel"
updateStage
alert "This node is not in the tree, please try again!"
exit

end if

if gReplayFlag=O then
puppetsound "search"
updateStage

end if

--remove input data from InputField
put "" into field "InputField"
updateStage

--close "winAB" window
close window "winAB"

--active compare,movingNode, and movingToken
puppetSprite 33, True
puppetSprite 34, True
puppetSprite 32, True

--set the backColor of movingNode to the backColor of stage
set the backColor of sprite 8 to 43

--initialize current node and movingToken
set currentNum=l

137

•



set currentValue=value{the text of member "valuel"}
set the text of member "movingToken" to string (Token)

--the root is the search node
if currentValue=string{Token} then

set the text of member "Compare" to "="

--move compare,movingToken, and movingNode to the right of root
set the locH of sprite 32 to the right of sprite 1
set the locV of sprite 32 to the locv of sprite 1-6
set the locH of sprite 33 to the right of sprite 1+40
set the locv of sprite 33 to the locv of sprite 1
set the locH of sprite 34 to the locH of sprite 33-15
set the locv of sprite 34 to the locv of sprite 33-7

set the visible of sprite 32 to True
set the visible of sprite 33 to True
set the visible of sprite 34 to True
updateStage

set temp=gSpeedGrade
set gSpeedGrade = 6
wait
set gSpeedGrade=temp

--make compare field invisible
set the visible of sprite 32 to False

--move delete node to the root
repeat with i=the locH of sprite 33 down to '

(the locH of sprite I)
set the locH of sprite 33 to (the locH of sprite 33-1)
set the locH of sprite 34 to (the locH of sprite 34-1)
wait
updateStage

end repeat

end if

repeat while currentValue<>string(Token)
set currentSprite=currentNum

right of sprite currentSprite
locv of sprite currentSprite-6
right of sprite currentSprite+40
locV of sprite currentSprite
locH of sprite 33-15
locV of sprite 33-7

movingNode to the right of

the
the
the
the
the
the

to
to
to
to
to
to

sprite 32
sprite 32
sprite 33
sprite 33
sprite 34
sprite 34

--move compare,movingToken, and
--currentNode
set the locH of
set the locv of
set the locH of
set the locV of
set the locH of
set the locV of

if currentValue > Token then
set the text of member "Compare" to ">"
set currentNum=currentNum*2

else
set the text of member "Compare" to "<"
set currentNum=currentNum*2+1

end if

set the visible of sprite 32 to True
set the visible of sprite 33 to True
set the visible of sprite 34 to True

138

•



updateStage

se~ temp=gSpeedGrade
set gSpeedGrade = 6
wait
set gSpeedGrade=temp

--make compare field invisible
set the visible of sprite 32 to False

--move delete node to the current node position
repeat with i=the locH of sprite 33 down to ~

(the locH of sprite currentSprite)
set the locH of sprite 33 to (the locH of sprite 33-1)
set the locH of sprite 34 to (the locH of sprite 34-1)
wait
updateStage

end repeat

--move delete node to the child position of current node
set cnH=the locH of sprite currentNum
set cnV=the locv of sprite currentNum
set csH=the locH of sprite currentSprite
set csV=the locv of sprite currentSprite
set Hmove=abs(csH-cnH}
set Vmove=abs(csV-cnV)

if currentValue > Token then
--move to left child
set yy=O.OO
repeat with i=1 to Hmove

set the locH of sprite 33 to (the locH of sprite 33-l)
set the locH of sprite 34 to the locH of sprite 33-15
if (i mod 4}=O then

set xx=integer(4*Vmove/Hmove)

--following five lines fix the errors
set yy=yy+(4.00*Vrnove/Hmove}-xx
if yy>=1 then

set yy=yy-1
set xx=xx+1

end if

set the locV of sprite 33 to (the locv of sprite 33+xx)
set the locv of sprite 34 to the locV of sprite 33-7
wait
updateStage

end if
end repeat

else
--move to right child
set yy=O.OO
repeat with i=1 to Hmove

set the locH of sprite 33 to (the locH of sprite 33+1)
set the locH of sprite 34 to the locH of sprite 33-15
if (i mod 4)=0 then

set xx=integer(4*Vmove/Hmove)

--following five lines fix the errors
set yy=yy+(4.00*Vmove/Hrnove}-xx
if yy>=l then

set yy=yy-1
set xx=xx+l

119

•



end if

set the locv of sprite 33 to (the locv of sprite 33+xx)
set the locv of sprite 34 to the locV of sprite 33-7
wait
updateStage

end if
end repeat

end if

wait

if the text of member (20+currentNum)=String(Token) then
set the locH of sprite 33 to the locH of sprite currentNum
set the locV of sprite 33 to the locV of sprite currentNum
set the visible of sprite 34 to False
wait
updateStage
exit repeat

else
set currentValue=the text of member (20+currentNum)

end if

end repeat

if gReplayFlag=O then
add gKeyList, Token
add gOpNameList, "Search"

end if

add gHistoryList, "Search " &string(Token)

history

--flash the arrow to show the node is found
repeat with i=1 to 8

set the locH of sprite 103 to the right of sprite currentNum+12
set the locv of sprite 103 to the locv of sprite currentNum
set the visible of sprite 103 to True

set temp=gSpeedGrade
set gSpeedGrade = 6
wait
set gSpeedGrade=temp

updateStage
set the visible of sprite 103 to False

set temp=gSpeedGrade
set gSpeedGrade = 6
'Nai t
set gSpeedGrade=temp

updateStage
end repeat

end search

140

•



--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++
--+ Other Handlers +
--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on wait
global gSpeedGrade

case gSpeedGrade of
1: --lowest animation speed

startTimer
repeat with x=l to 1000000

nothing
end repeat

2:
startTimer
repeat with x=l to 500000

nothing
end repeat

3 :
startTimer
repeat with x=l to 250000

nothing
end repeat

4 :
startTimer
repeat with x=l to 125000

nothing
end repeat

5:
startTimer
repeat with x=l to 62500

nothing
end repeat

6:
startTimer
repeat with x=l to 31250

nothing
end repeat

7:
startTimer
repeat with x=l to 15600

nothing
end repeat

8:
startTimer
repeat with x=l to 7800

nothing
end repeat

9 :
startTimer
repeat with x=l to 3900

nothing
end repeat

10:
startTimer
repeat with x=l to 2000

nothing
end repeat

11:
startTimer
repeat with x=l to 1000

nothing
end repeat

12:

141

•



startTimer
repeat with x=l to 500

nothing
end repeat

13:
startTimer
repeat with x=l to 300

nothing
end repeat

14:
startTimer
repeat with x=l to 200

nothing
end repeat

15:
startTimer
repeat with x=l to 100

nothing
end repeat

16:
startTimer
repeat with x=l to 50

nothing
end repeat

17:
startTimer
repeat with x=l to 25

nothing
end repeat

18:
startTimer
repeat with x=l to 2

nothing
end repeat

end case
end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on speedUp
global gSpeedGrade

if gSpeedGrade>=18 then
alert "This Highest animation speed"
exit

else
set gSpeedGrade=gSpeedGrade+l

end if

set the text of member "speedField" to string (gSpeedGrade)

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on speedDown
global gSpeedGrade

if gSpeedGrade<=l then
alert "This Lowest animation speed"
exit

else

142

-



set gSpeedGrade=gSpeedGrade-1
end if

set the text of member "speedField" to string (gSpeedGrade)

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on closeSpeed
set the visible of sprite 106 to False
set the visible of sprite 107 to False
set the visible of sprite 108 to False
set the visible of sprite 109 to False

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on showSpeed
set the visible of sprite 106 to True
set the visible of sprite 107 to True
set the visible of sprite 108 to True
set the visible of sprite 109 to True

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on undo
global gNodeList,gHistoryList,gSpeedGrade
global gKeyList, gOpNameList, gUndoFlag

set gUndoFlag=l
reset

set temp=gSpeedGrade
set gSpeedGrade = 18
closeButton

--delete the last element of gKeyList and gOpNameList
set x=count(gKeyList)
deleteAt gKeyList,x
deleteAt gOpNameList,x

--recover AVL tree except last element
repeat with i=l to (x-1)

set y=getAt(gKeyList,i)
set the text of member "InputField" to string(y)

if getAt(gOpNameList,i) = "Insert" then
insert

else if getAt(gOpNameList, i) = "Delete" then
delete

else
add gHistoryList, "Search" &string(y)
history

end if
end repeat

if count(gKeyList}=O then
set the enabled of menuItem ·undo" of menu ·Operations" to False

end if

set gSpeedGrade=temp

14J

-



set gUndoFlag=O
er:d undo

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on replay
global gNodeList,gHistoryList,gSpeedGrade
global gKeyList, gOpNameList, gReplayFlag

set gReplayFlag=l
reset

--delete the last element of gKeyList and gOpNameList
set x=count(gKeyList)

--recover AVL tree except last element
repeat with i=l to x

set y=getAt(gKeyList,i)
set the text of member "InputField" to string(y)

if getAt(gOpNameList, i) = "Insert" then
insert

else if getAt(gOpNameList, i) -= "Delete" then
delete

else
search

end if
end repeat

if count(gKeyList)=O then
set the enabled of menuItem "Replay" of menu "Operations" to

False
end if

set gReplayFlag=O
end replay

to Ill!

thisNode to False
(thisNode+64) to False
thisEdge to False
33 to False
34 to False

sprite
sprite
sprite
sprite
sprite

of
of
of
of
of

visible
visible
visible
visible
visible

on deleteNode thisNode,thisEdge
set the text of member (20+thisNode)
wait
set the
set the
set the
set the
set: the
wait
updateStage

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on moveOneNodeLeftUp fromH,fromV,toH,toV
global gUndoFlag

if gUndoFlag=O then
set Hmove=abs(fromH-toH)
set Vmove=abs(fromV-toV)

--move movingNode to start node
set the locH of sprite 33 to fromH
set the locv of sprite 33 to fromV
set the locH of sprite 34 to the locH of sprite 33-15
set the locV of sprite 34 to the locV of sprite 33-7

144

•



set the visible of sprite 33 to TRUE
set the visible of sprite 34 to TRUE

wait
updateStage

set yy=O.OO
repeat with i=l to Hmove

set the locH of sprite 33 to (the locH of sprite 33-1)
set the locH of sprite 34 to the locH of sprite 33-15
if (i mod 4)=0 then

set xx=integer(4*Vmove/Hmove)

--following five lines fix the errors
set yy=yy+(4.00*Vmove/Hmove)-xx
if yy>=1 then

set yy=yy-1
set xx=xx+1

end if

set the locV of sprite 33 to (the locV of sprite 33-xx)
set the locv of sprite 34 to the locV of sprite 33-7
wait
updateStage

end if
end repeat

set the locH of sprite 33 to toH
set the locH of sprite 34 to the locH of sprite 33-15
set the locv of sprite 33 to toV
set the locv of sprite 34 to the locV of sprite 33-7
wait
updateStage

set the visible of sprite 33 to False
set the visible of sprite 34 to False

end if

end moveOneNodeLeftUp

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on moveOneNodeRightDown fromH,fromV,toH,toV
global gUndoFlag

if gUndoFlag=O then
set Hmove=abs(fromH-toH)
set Vmove=abs(fromV-toV)

--move movingNode to start node
set the locH of sprite 33 to fromH
set the locv of sprite 33 to fromV
set the locH of sprite 34 to the locH of sprite 33-15
set the locv of sprite 34 to the locV of sprite 33-7

wait
updateStage

set yy=O.OO
repeat with i=1 to Hmove

set the locH of sprite 33 to (the locH of sprite 33+1)
set the locH of sprite 34 to the locH of sprite 33-15
if (i mod 4)=0 then

set xx=integer(4*Vmove/Hmove)

145 -



--following five lines fix the errors
set yy=yy+{4.00*Vmove/Hmove)-xx
if yy>=l then

set yy=yy-1
set xx=xx+1

end if

set the locv of sprite 33 to (the locV of sprite 33+xx)
set the locv of sprite 34 to the locv of sprite 33-7
wait
updateStage

end if
end repeat

set the locH of sprite 33 to toH
set the locH of sprite 34 to the locH of sprite 33-15
set the locv of sprite 33 to toV
set the locv of sprite 34 to the locV of sprite 33-7
wait
updateStage

end if

end moveOneNodeRightDown

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on moveOneNodeRightUp fromH,fromV,toH,toV
global gUndoFlag

if gUndoFlag=O then
set Hmove=abs{frornH-toH)
set Vmove=abs{fromV-toV)

--move movingNode to start node
set the locH of sprite 33 to fromH
set the locv of sprite 33 to fromV
set the locH of sprite 34 to the locH of sprite 33-15
set the locV of sprite 34 to the locv of sprite 33-7
set the visible of sprite 33 to TRUE
set the visible of sprite 34 to TRUE
wait
updateStage

set yy=O.OO
repeat with i=l to Hmove

set the locH of sprite 33 to (the locH of sprite 33+1)
set the locH of sprite 34 to the locH of sprite 33-15
if (i mod 4)=0 then

set xx=integer(4*Vmove/Hmove)

--following five lines fix the errors
set yy=yy+{4.00*Vmove/Hmove)-xx
if yy>=l then

set yy=yy-l
set xx=xx~l

end if

set the locV of sprite 33 to (the locv of sprite 3J-xx)
set the locV of sprite 34 to the locv of sprite 31-7
wait
updateStage

end if
end repeat

146 -



set the locH of sprite 33 to toH
set the locH of sprite 34 to the locH of sprite 33-15
set the locV of sprite 33 to toV
set the locv of sprite 34 to the locv of sprite 33-7
wait
updateStage

set the visible of sprite 33 to False
set the visible of sprite 34 to False

end if

end moveOneNodeRightUp

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on moveOneNodeLeftDown frornH,fromV,toH,toV
global gUndoFlag

if gUndoFlag=O then
set Hmove=abs(frornH-toH)
set Vmove=abs(fromV-toV)

--move movingNode to start node
set the locH of sprite 33 to frornH
set the locv of sprite 33 to fromV
set the locH of sprite 34 to the locH of sprite 33-15
set the locv of sprite 34 to the locv of sprite 33-7

wait
updateStage

set yy=O.OO
repeat with i=l to Hmove

set the locH of sprite 33 to (the locH of sprite 33-1)
set the locH of sprite 34 to the locH of sprite 33-15
if (i mod 4)=0 then

set xx=integer(4*Vmove/Hmove)

--following five lines fix the errors
set yy=yy+(4.00*Vmove/Hmove)-xx
if yy>=l then

set yy=yy-1
set xx=xx+1

end if

set the locV of sprite 33 to (the locv of sprite 33+xx)
set the locV of sprite 34 to the locv of sprite 33-7
wait
updateStage

end if
end repeat

set the locH of sprite 33 to toH
set the locH of sprite 34 to the locH of sprite 33-15
set the locv of sprite 33 to toV
set the locV of sprite 34 to the locv of sprite 33-7
wait
updateStage

end if

end moveOneNodeLeftDown

147

-



--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on nodeRightUp thisNurn,thatNurn

--move this node left up to that node
set the visible of sprite thisNurn to False
set the visible of sprite (thisNurn+64) to False
set the text of member 10 to the text of member,

(thisNurn+20)
set the text of member (20+thisNurn) to ""
wait
updateStage

moveOneNodeRightUp(the locH of sprite thisNurn,'
the locV of sprite thisNurn,the locH of sprite.
thatNum,the locv of sprite thatNum)

--set that node
set the text of member (thatNurn+20) to the text'

of member 10
set the visible of sprite thatNurn to True
set the visible of sprite (thatNurn+64) to True
wait
updateStage

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on nodeLeftUp thisNurn,thatNurn

--remove the right child and move the right child up
set the visible of sprite thisNum to False
set the visible of sprite thisNurn+64 to False
set the text of member 10 to the text of member'

(thisNurn+20)
set the text of member (thisNurn+20) to ""
wait
updateStage

moveOneNodeLeftUp(the locH of sprite thisNum,'
the locv of sprite thisNum,the locH of sprite.
thatNum,the locv of sprite thatNurn)

--set this node
set the text of member (thatNurn+20) to the text,

of member 10
set the visible of sprite thatNurn to True
set the visible of sprite (thatNurn+64) to True
wait
updateStage

end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on findMinFrornRightSubtree thisNum
set minNode=2*thisNurn+l
set leftNode=2*minNode

repeat while <the visible of sprite leftNode =True and·
leftNode<=31)
set minNode=leftNode
set leftNode=leftNode*2

148

-



end repeat

return minNode
end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on rightUp3node toNode
set the visible of sprite (toNode+34) to False
nodeRightUp ( (2 * toNode) , toNode)

if the visible of sprite (4*toNode)=True then
set the visible of sprite (2*toNode+34) to False
set the visible of sprite (toNode+34) to true
nodeRightUp( (4*toNode), (2*toNode))

end if

if the visible of sprite (4*toNode+l)=True then
set the visible of sprite (2*toNode+49) to False
set the visible of sprite (toNode+49) to True
nodeRightUp( (4*toNode+ll, (2*toNode+1))

end if
end

--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

on leftUp3node toNode
set the visible of sprite (toNode+49) to False
nodeLeftUp( (2*toNode+l) ,toNode)

if the visible of sprite (4*toNode+3)=True then
set the visible of sprite (2*toNode+50) to False
set the visible of sprite (toNode+49) to true
nodeLeftUp«4*toNode+3), (2*toNode+ll)

end if

if the visible of sprite (4*toNode+2)=True then
set the visible of sprite (2*toNode+35) to False
set the visible of sprite (toNode+34) to True
nodeLeftUp ( (4 * toNode+2) , (2 * toNode) )

end if
end

149 -



APPENDIX C

PROGRAMMER'S GUIDE

1. Description

The MDSL system is designed and developed for simulation the animated

operations of abstract data structures as a teaching and learning tool with scientific

visualization and multimedia technology. We have developed the MDSL system on the

Microsoft Windows 98/NT operating system with Macromedia Director 6.0 platform. I

have developed two data structures movies which are the MultimediaAvlTree (46

handlers) and the MultimediaBSTree (31 handlers) movie in this system. These movie

programs were coded in Lingo script language. There are other three movies available in

the system, which are VisualB-Tree, VisualRedBlackTree, and VisualADT. The MDSL

system provides a good interactive user interface to let users select data structures

algorithm for the multimedia simulations while they are learning.

2. Implementation

Any new data structures developed on Macromedia Director platform can be

added into the MDSL system as following way:

I. Choose a data structures movie name from the Main Menu as shown in Figure

3.2 ( programmer also can change the name in the Main Menu).

150

-



II. Add the backMain menu option in the menu File item or put the backMain

button on the stage.

iii. Write the backMain handler in the source code as:

on backMain

Playdone

end backMain

VI. Open MultimediaDSLSystem movie "Internal Cast" window, double click the

cast whose name is the same as that of your movie. Then click "Cast member

Script" button in the "Text Cast Member Properties Window", and type your

movie name instead of "NotAvailableMovie" in the mouseUp hander.

v. Put the new data structures movie in the same directory as the system in.

151

-



VITA

Dongbi (Carl) Luo

Candidate for the Degree of

Master of Science

Thesis: MULTIMEDIA DATA STRUCTURE LEARNING SYSTEM

Major Field: Computer Science

Biographical:

Personal Data: Born in Jiangsu, China, January 21, 1957, the son of Shurning
Luo and Linzhen Gao.

Education: Graduated from Zhanjiang 51h High School, Jiangsu, China, in June
1975; Received Bachelor of Science degree and Master of Science degree
in Mechanical Engineering from Jiangsu University of Science and

Technology in June 1982 and June 1989, respectively. Completed the
requirements for the Master of Science degree with a major in computer
Sceince at Oklahoma State University in May 1999.

Professional Experience: Mechanical Engineer, Zhanjiang Mechanical
Manufacturing Plant, Jiangsu, China, July, 1982, to August, 1986;
Assistant Professor! Programmer! Researcher, East China Shipbuilding
University, Jiangsu, China, July, 1989, to January, 1995; Employed by
Computer Information Services as a Computer Lab Consultant, Oklahoma
State University, August, 1997, to present.

Professional Memberships: Member of the Association for Computing Machinery
(ACM)

-


