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INTRODUCTION

Winter Wheat Importance. History. and Evolutionary Aspects

Wheat has been a keystone crop for thousands of years and continues to top the

list of dry matter food production the world over (Harlan, 1992). Wheat provides one­

fifth of the world's total food calories, 60 to 80 % ofthe world's carbohydrates, and 14 to

18 % of the world's protein (Zohary and Hop£, 1993). Triticum aestivum (bread wheat)

and Triticum durum (macaroni wheat) are the most widely grown wheat species today.

Triticum aestivum is distinguished above T. durum due to its high-rising ability, a desired

quality in bread baking. Currently, 90 % of the wheat grown is T. aestivum and it is

gleaned from 500 million ha ofland (Zohary and Hopf, 1993; Sauer, 1994).

Triticum aestivum is a self-pollinated, free-threshing plant from the Gramineae

(grass) family (Sauer, 1994). This hexaploid species probably originated in the Caspian

region and the area that is now Iran, through a cross ofAegilops squarrosa (a wild

diploid wheat) and T. turgidum (emmer wheat) (Harlan, 1992; Zohary and Hopf, 1993;

Sauer, 1994). This wheat soon became popular and spread through Asia and Europe and

was brought to the United States with the colonists. In the state of Oklahoma, most of the

cultivars grown today are descendents of Turkey Red, a hard red winter (HRW) wheat

cultivar that was brought to Kansas by Crimean immigrants in the late nineteenth century

(Sauer, 1994). Turkey is not grown by producers today, but it provided the germplasm to

become the cornerstone of what is now the breadbasket of the world.

Triticum aestivum breeding programs have been established at many land grant

institutions with the intention of improving cultivar yields for the state, nation, and world.

During the first couple of decades of breeding, these programs produced new HRW
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wheat cultivars and distributed the new seed to producers in their state without regard for

genetic diversity. Due to common ancestry from Turkey germplasm, the uniform

varieties were more susceptible to disease and pests (Cox et al., 1986~ Carver et al.,

1989). As a result, it soon became necessary to direct breeding programs not only toward

increasing yield, but also to disease and pest resistance. The development and proper use

of herbicides and pesticides had an important impact on grain yields in conjunction with

breeding efforts. Significant strides have been made toward increasing the number of

cultivars available to producers. The International Maize and Wheat Improvement

Center (CIMMYT) had more than 1.7 million wheat genotypes in its 1997 International

Wheat Information System (IWIS).

With the introduction ofgenetically improved cultivars, prominent morphological

characteristics have emerged. Cultivars have become shorter, moving from tall cuJtivars

like Turkey to shorter-stature cultivars known as semidwarfs (Austin et al., 1980~ Sauer,

1994). Khan and Tsunoda (1970) and Evans and Dunstone (1970) noticed larger leaves

had emerged throughout the evolution of semidwarfs. In contrast, Austin et al. (1980)

found no significant differences between old and modem leaf area indices (LA!) and

mass, but noted lower stem weights had developed. It appears modem cultivars have

shifted their emphasis from height to other important physical traits. Were these

morphologic changes brought upon by physiologic alterations designed to bring about

increased yields and disease resistance, or some other purpose? Cox and colleagues

(1988) evaluated cultivars released from 1919 to 1987 and found a 0.6 % increase in

yield per year (40.8 % total), and a little smaller increase per year in water stressed
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environments. Feyerherm et aI. (1984) estimated HRW wheat yield increases ranged

between 25 to 35 % from 1900 to 1970.

Most researchers in wheat evolution agree morphology has changed, resulting in

increased yields with year of release, but they don't agree as to the cause. Feyerherm et

al. (1984) argue that the large improvements in yield ofHRW wheat are due primarily to

genetically bred increases in stress resistance. An exception to this, however, is in areas

where environmental conditions limit soil moisture and produce high temperatures during

critical growth stages. These conditions have been improved in many areas by providing

the most limited resource, water, to cropland through irrigation (Boyer, 1982). In

addition, when genetic changes were made to improve the cultivars, if they weren't

photosynthetic in nature, they increased water requirements in relation to dry matter

increases (Austin et ai., 1980).

Other authors agree yield increases are due to the shorter stature of the modern

cultivars. This shorter stature allows them to be more effi.cient by reallocating energy

otherwise used for height to increase tillering and thus dry matter production (Simpson,

1968; Austin et aI., 1980; Sinha et aI., 1981). The increased grain yield has been credited

to variety improvement through increasing harvest index (ratio ofgrain yield to grain and

straw yield) (Austin et aI., 1980; Martin and Kiyomoto, 1985). The shorter cultivars also

benefited because they have decreased lodging (Austin et aI., 1980). According to Sinha

et aI. (1981), modem cultivars respond more to nitrogen fertilization than older varieties.

Furthermore, A was shown to increase with nitrogen fertilization in dwarf wheat. This

was possibly due to increased chlorophyll content, stomatal conductance (Bs) or ribulose­

],5-bisphosphate carboxylase (Rubisco) activity. Therefore, the photosynthetic carbon
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assimilation rate (A) not only provides assimilates for plant growth, but also affects water

status and ultimately wheat yields. In conclusion, the importance of T. aes/ivum to

nations around the world has directed the history and evolution of the species. Many

improvement programs have striven and are continuing to strive to optimize the

interactions between yield contributors ofwheat: A, water status, nutrient status,

morphological status (lodging), and other environmental and genetic factors.

Winter Wheat Importance and Impact on the southern Great Plains

Hard red winter wheat is widely grown throughout the southern Great Plains in

states such as Kansas, Oklahoma, and Texas. In these states, many acres are planted in

fall, grown throughout winter, and harvested in late spring. Many of the acres, however,

are planted late summer, grown through fall, grazed in winter, and harvested late spring.

This is a unique situation from which producers are able to achieve two crops: forage and

grain. In 1998, Epplin et al. estimated that 66% of Oklahoma's wheat acres were grazed

in this manner. With this dual-purpose practice, producers are given the opportunity to

divide their risk. Ifstocker cattle are priced well and grain returns are low, then

management can be shifted to utilize the wheat more for forage and vice versa.

Dual-purpose cropland continues to be a challenging management practice for

producers in the southern Great Plains. It is imperative to carefully select planting dates

and cultivars as well as optimum stocking rates and foraging timing. These added

concerns make the dual-purpose management system more complicated than the normal

rigors of a grain-only management system.
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Dependent upon location and weather conditions, producers normally plant their

HRW wheat in August or September for dual-purpose, and late September or October for

grain-only systems (Winter and Thompson, 1987). Planting dates are crucial to either

system; to have sufficient growth for winter foraging, the wheat must be planted early

without compromising stress, pest and disease tolerance. For instance, for wheat planted

in mid-August for a dual-purpose system, the cultivar seedling must be able to withstand

water stress (Redmon et aI., 1995), summer insect pressure, increased disease pressure,

and a whole host of other stresses it may not have been genetically designed to resist.

Selecting the correct cultivar to maximize economic return for the dual-purpose

management system also continues to challenge producers in the southern Great Plains.

Genetically, cultivars have not been developed for this type of management. Breeders

have selected and manipulated cultivars based on grain yield or stress resistance in a

grain-only system, not on maximizing forage dry matter production and grain yield

(Krenzer et aI., 1992; Hom et aI., 1995; Redmon et at, 1995; Krenzer et aI., 1996). It is

difficult, then, to select the best cultivar for both purposes. Only a few researchers have

tried to analyze the fitness ofgrain-only cultivars for dual-purpose systems. Carver and

colleagues evaluated twelve different cultivars (released from 1919 to 1997) near

Marshall, Oklahoma in 1997 and found no increase in yield per year of release under the

dual-purpose system (unpublished data). It has also been noted that grazed, tall cultivars

suffer less lodging and are able to withstand greater leaf area removal than semidwarf

cultivars (Redmon et aI., 1995). Semidwarf, dual-purpose yields have surpassed grain­

only yields only when grazing was terminated early in the season or poor soil fertility

could not support a grain-only system (Pumphrey, 1970; Dunphy et aI., 1982; Dunphy et

5



a1., 1984; Winter and Thompson, 1987; Redmon et aI., 1995). Clearly, more research

needs to be conducted to identify plant characteristics that maximize both grain and

forage yields. This would enable breeders to begin selecting cultivars for this specific

management system.

Foraging dates are crucial in determining dual-purpose success and failure. There

must be adequate fall growth before stocking. The grazing start date, however, does not

appear to be as imperative as the removal date. Dumphy et a1. (1982, 1984) conducted

studies in Texas and noted jointing as the critical stage for grazing termination. Jointing

is the stage that is often referred to as 'internode elongation' and produces the stem that

supports the grain head; this stage ends with the emergence of the flag leaf. They found

forage removed after jointing caused significant decreases in yield. Winter and

Thompson (1987) determined the variety TAM 105 could be grazed until the first of

February before losing yield. In Oklahoma, the most definitive paper on this subject

concluded that the most economically feasible time to terminate grazing HRW wheat is

the first hollow stem stage (Redmon et aI., 1996). This stage occurs before the wheat

crown (growing point of the young seedling) emerges from the soil. The authors believe

this is a superior method because it is more reliable than depending on calendar dates,

which can vary from year to year due to weather or other dynamic factors. The method

producers select to optimize forage and grain returns needs to depend on their ability to

identify wheat growth stages as well as their yield goals and resources.
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OBSERVATIONS

Past research is lacking on whether photosynthetic changes have occurred over

the past decades of breeding HRW wheat cultivars important to the southern Great Plains.

It is also unclear whether modern cultivar yields have increased due to better 'source'

capacity and efficiency, superior 'sink' allocation, or some other mechanism.

Photosynthetic organization and function ('source'), in particular, may be able to shed

much light onto mechanistic reasons for increasing yields. The chiefgoals of researchers

in this area are to make this primary function more efficient and maximal, while

optimizing carbon allocation to economically important plant organs.

Photosynthesis, or in more measurable terms, carbon assimilation (A), is

dependant on many factors. Maximal assimilation can be limited by photosynthetically

active radiation (PAR), leaf area, stomatal density and ~, chlorophyll concentrations and

distribution, Rubisco activity, ribulose-I, 5-bisphosphate (RuBP) regeneration and

carbohydrate demand, to name a few (Dunstone et aI., 1973; Shimshi and Ephrat, 1975;

Farquhar et aI., 1980; Sinha et aI., 1981; Austin et a\., 1982; Farquhar and Sharkey I 1982;

Ellison et aI., 1983; Rawson et aI., 1983; Austin et al. , 1984; Johnson et aI., 1987).

Photosynthesis and its components can be measured, quantified, and related to HRW

wheat cultivars grwon over the past century in the southern Great Plains to identify

significant differences and possible reasons for increases in yield.

The dual-purpose HRW wheat management system utilized in the southern Great

Plains has been under-served by land-grant breeding programs (Krenzer et aI., 1982;

Redmon et aI., 1995; Krenzer et al. , 1996). Very few cultivars have previously been

evaluated for superior forage and grain yield. Virtually no extensive studies have been
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conducted to quantify how basic 'source' differences impact both forage and grain yields

(Pumphrey, 1970; Dunphy et aI., 1982, Winter and Thompson, 1987; Krenzer et aI.,

1992; Hom et aI., 1995; Redmon et aI., 1995). These answers may be key in identifying

characteristics that maximize wheat forage and grain yields so that breeders can begin

selecting cultivars for both management systems in the southern Great Plains.

OBJECTIVES OF EXPERIMENTAL STUDY

1. Assess changes in A that may have occurred over the past decades of breeding HR.W

wheat cultivars important to the southern Great Plains.

2. Characterize and appraise dual-purpose production system effects on photosynthetic

components of cultivars grown throughout the century.

3. Identify which photosynthetic components are significantly correlated with yield.

4. Conclude whether the gas exchange and chlorophyll fluorescence techniques

employed in this study will be valuable tools for breeders to utilize in screening new

cultivars for grain-only and dual-purpose systems.

MATERIALS AND METHODS

Plant Materials and Experimental Design

Twelve cultivars were selected according to their importance to the history

of wheat breeding for the southern Great Plains and especi.ally for Oklahoma. Table 1

indicates the release date for each cultivar as well as the breeder(s) credited with

developing each cultivar, known disease resistance, and special characteristics
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The 1997-1998 and 1998-1999 experimental field site was located near Marshall,

Oklahoma, which is situated in the north-central region of the state, in the heart of dual­

purpose production acres. The soil mapping unit is kirkland silt loam (kb), with one to

three % slopes. Characteristic of these soils, the upper profile is slightly acidic, with

higher pH in the deeper subsoil region (Anonymous, 1960). For season 1997-1998, a soil

sample was collected from throughout the site on August 27, 1997, the planting date of

the dual-purpose plots. The soil pH was 5.2, with total available nitrogen at 27,776 kg

km-2 (248 lbs ac-I
) (after anhydrous ammonia applied at 13,440 kg km-2 (120 Ibs N ac- l»,

and phosphorus and potassium were sufficient for our yield goals. In season 1998-1999,

soil testing was done in July for the whole field. Soil pH was 4.7, leading to the decision

to lime with two tons ECC (effective calcium carbonate) in July. Anhydrous ammonia

was applied in August to bring the total available soil N to 20,832 kg km-2 (186 lbs ac- I
).

Once again, phosphorus and potassium were sufficient for our yield goals. The previous

cropping system on this land has been continuous wheat, a practice most producers in the

region employ.

The dual-purpose plots were planted September 3, 1997 and September 28,1998,

while the grain-only plots were p.Janted on October 7, 1997 and October 16, 1998.

Stocker cattle grazed the dual-purpose plots from October 28, 1997 to February 23, 1998

and November 17, 1998 to February 23, 1999.

Plots were arranged in two randomized complete block designs (RCBD) with five

blocks for each treatment (grain only and dual-purpose). One block consisted of twelve

plots (one of each cultivar) arranged at random. Plots had five rows each, were 1.2m

wide and 3m long. Plots were treated with "Tilt" fungicide at a rate of 29.2 L km-2 (4 fl.
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oz. per acre, at growth stage 8, when the flag leaf is emerging) in both years. "Baylaton"

fungicide was also applied in 1997 at a rate of 14.6 L krn-2 (2 fl. oz. per acre, at growth

stage 10.6, when heading is taking place). These applications were designed to decrease

disease interference. The blocks ofwheat were separated by fill rows of a cultivar not

included in the study. Plot rows were east-west facing in season 1997-1998, and north­

south facing in season 1998-1999. Only mid-plot plants were included in the study to

eliminate any edge effects. Yield data from each plot (reported in kg ha-1
) was collected

by Dr. B. F. Carver's group and was used by permission. During the spring of 1999,

plots were infected with soil borne mosaic and spindle streak mosaic viruses.

Evaluation olPlant Fitness in the Field

For the sake of convenience, relative water content, chlorophyll content, leaf area

index, and mean tilt angle are pooled under the term fitness.

Relative Water Content

Relative water content (RWC) provides a baseline to evaluate the plant fitness

under given environmental conditions. Sinclair and Ludlow (1985) argue physiological

responses ofplants are more highly correlated with RWC than with water potential.

Measurements ofRWC were conducted by clipping the last fully expanded leaf of one

plant per plot at mid-day, tightly sealing it in a vial, and placing it on ice. This was

completed for each plot, by sampling according to the randomization already present in

each block. Once back in the lab, fresh weights (Wr) were measured and the vials

partially filled with nanopure water. The turgid weights (WI) were taken 24 hours later,

followed by drying to constant weight in a 70°C oven to obtain dry weight (Wd).
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Relative water content was calculated as: RWC = 100 (Wr-Wd) (Wt - Wd)"l. Relative

water content was evaluated only during spring and fall of 1998. These sampling periods

were selected because meaningful differences between cultivars were anticipated only

under conditions of moderate water stress and the only times where these conditions were

present were during the spring and fall of 1998 (Oklahoma Mesonet Climatological

Data).

Chlorophyll Content

Knowledge of chlorophyll content per unit leaf area (Chltot) is important in

providing information about the light harvesting machinery prevalent in each cultivar. A

cultivar's capacity to harvest light energy due to chlorophyll differences has been shown

to impact A (Austin et aI., 1982, Austin et aI., 1983, Ellison et aI., 1983). CWorophyli

content may also be an evolutionary important response to different types of stresses,

perhaps even foraging stress. Chlorophyll content was determined by collecting a sample

consisting of several fully expanded leaves from each plot. These samples were tightly

sealed in vials and kept in an ice chest until back in the lab, where leaf areas were

measured with a LI-3000 portable leaf area meter (LI-COR, Inc., Lincoln, NE). Total

chlorophyll (Chltot) was extracted according to the procedure of Arnon (1949). The

leaves were quantitatively homogenized in 80% acetone. The absorbencies of each

sample was analyzed by a Spectronic 1201 spectrophotometer (Spectronic Instruments,

Inc., Rochester, NY) using the multiple wavelength function set at these three points: 645

nm, 665 nm, and 720 nm. The first two wavelengths represent the absorption peaks of

chlorophyll b and a in 80% acetone respectively. The 720nm wavelength is included to
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correct for possible light scattering by subtracting the value from the value at each of the

other two wavelengths. The correction was always very small. In a perfect chlorophyll

solution, the absorbance at 720nm should be zero because chlorophyll doesn't absorb this

wavelength. Samples were collected and evaluated May and November, 1998 and also

March and May, 1999. These dates were selected so that differences in dual-purpose

production system effects could be noted (before foraging: November, 1998; after

foraging: March, 1999) and so that A at the important flag leaf stage could be assessed

(May, 1998 and 1999).

Growth Habit

Cultivars with different growth habits may have different photosynthetic

responses to foraging. We anticipated that plots with low forage health and dry matter

production would have low LAI, so we wanted to quantify these indices as well as the

mean tilt angles (MTA) of leaves from the soil surface. Although an indirect method

was employed in this study, these LAI measurements can be accurate, repeatable and

reliable estimates. The LAI-2000 Plant Canopy Analyzer (LI-COR, Inc., Lincoln, NE)

conveniently calculates LAI and MTA by measuring light transmittance through the leaf

canopy. It is equipped with circular detectors which measure five distinct angles of light

interception by the LAI-2050 optical sensor. To conduct plot LAI measurements, one

above-canopy measurement was combined with three below-canopy measurements and

repeated twice at different locations within each plot. The average LAI and MTA were

calculated for each plot. Growth habit determinations were made during March and May

of 1999 to quantify differences in spri.ng growth, recovery after grazing, and differences

in grain-filling characteristics of flag leaves.
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Evaluation ofPhotosynthetic Characteristics

Gas Exchange Measurements.

Leaf CO2 assimilation rate (A) was measured in 1998 using, the LI-6200 'closed

system' and in 1999 using the LI-6400 'open system' (LI-COR, Inc., Lincoln, NE). The

LI-6200 measures A by monitoring the length of time a leaf takes to draw down the CO2

concentration in the air by a fixed amount. The LI-6400 mixes CO2 into the air going

into the chamber so that it is at a set CO2 concentration, then measures the C02

concentration of air coming out of the chamber and calculates A from the difference in

the two CO2 concentrations and the air flow rate. Both of these systems were ideal for

our measurements in the field because we were able to monitor leaf environmental

characteristics such as PAR, relative humidity, and temperature. From this information,

we were able to keep variability between plot measurements and days to a minimum.

Along with A, other important factors were measured by the systems were stomatal

conductance to water vapor (&), transpiration (E), and water use efficiency (WUE). The

general equations used to calculate these parameters are given in appendix A.

All measurements were conducted at mid-day on the last fully expanded leaf

between 1000 and 1500 J.1mol photons m-2
S·I, which is at or above light saturation for

wheat (Austin et aI., 1984). The ieafwas equilibrated in the chamber for about 60

seconds before sampling. When using the LI-6200, the draw down was set at seven uL

C02 L- I air while the LI-6400 took an instantaneous reading after a brief equilibration

period. Between measurements, the chamber was shaded to minimize heating due to

direct sunlight.
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Fluorescence Measurements.

By studying fluorescence, the research was designed to try to visualize more

details involved in the biochemistry of photosynthesis. We utilized fluorescence

measurements as a method to assess the specific relationships between the two

photosystems ofthe light reaction of photosynthesis and between the light reaction and

dark reactions. At normal measurement temperatures, chlorophyll fluorescence is emitted

by photosystem II (PSII) and almost exclusively reflects its status. Through several

measured and derived parameters, however, fluorescence measurements can indicate

conditions of both systems. When the PS II harvests light energy, the energy can be

dissipated by several means: photosynthesis, heat, spillover to PSI, or fluorescence

(Schreiber and Bilger, 1987; Bolhar-Nordenkampf and Oquist, 1993; Bjorkman and

Demmig-Adams, 1995).

As an indicator of stress, PS II is ideal because it is one of the most susceptible

processes. Bolhar-Nordenkampfand Oquist (1993) have found it useful for indicating

stresses such as water limitations and temperature extremes. Karavaev et aI. (1997)

found positive correlations between the ratio of the fluorescence parameters Fv Fm- l to

the rate of A per mg chlorophyll. Bjorkman and Adams (1995) found fluorescence to be a

beneficial assay for stressed plants or plants with a lower photosynthetic capacity.

Fluorescence has become an essential tool to many researchers interested in

photosynthesis because these photosynthesis parameters currently can't be obtained in

any other way in vivo.

Two major types of fluorescence tests can be referred to as dark-adapted

measurements and modulated fluorescence kinetics measurements in the light (Schreiber
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et aI., 1987). The parameters gained from the first test are Fo, Fro and Fv; and the ones

gained from the second test are F, Fm', and Fo'. The tenn Fo refers to the minimum

fluorescence emitted by chlorophyll in dark-adapted leaves with all PSII reaction centers

open (Schreiber and Bilger, 1987~ Krause and Weis, 1991). Fm reflects the maximal

fluorescence value when all reaction centers are closed, as would be the case in a leaf

exposed to a very bright light pulse (Schreiber and Bilger, 1987; Krause and Weis, 1991).

F is the 'steady state' fluorescence from a sample that is being exposed to nonnal Light as

in the field, while Fm' is the maximal fluorescence produced when the illuminated

sample is exposed to a bright saturating light pulse (Anonymous, 1993). The tenn Fo'

should represent the same thing as Fo except some quenching ofFo might have

developed in the light, such as from photoinhibition. For an example of these concepts

and how key parameters are derived by pulse amplitude modulated chlorophyll

fluorescence techniques, please refer to Appendix A.

In this study, a method similar to that ofRikika et aI. (1997) was followed. The

OS-500 Modulated Fluorometer (Opti-Sciences, Haverhill, MA) was fitted with a

fiberoptic light guide and an open temperature/ PAR leafclip that angles the face of the

light pipe approximately 30 degrees relative to the plane of the leaf at a distance of 13

mm. To evaluate Fa and Fm, several fully expanded leaves were gathered from each plot

early in the morning (before PS II was activated in the morning sun) and packed on ice in

darkness. Once in the lab, dark-adapted fluorescence measurements were made. Leaves

were placed into the PARJ temperature clip and far-red light was applied for lOs. Then a

saturation pulse ofPAR 8,630 umol m-2 sol was used for 0.8 s. The modulation intensity

was fixed at a PAR of0.13 umol m-2 sol, while detector gain was at a setting of60. The
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fluorescence measurements in the field were conducted at mid-day in full sunlight with

the temperature/ PAR open clip in the same configuration as for the dark-adapted leaves.

The protocol in the field was a 0.8 s saturation pulse, followed by darkening under a

black cloth, 10 s far-red, and a Fo' measurement. In the dark-adapted test, the purpose of

the far-red light was to drain QA ofelectrons to obtain a correct Fo. During the kinetic

measurements in the field, pulses evaluated the quenching coefficients (discussed later)

under conditions of normal A in the field. The far-red light was used to drain QA of

electrons to allow measurement ofFo' (which should be the same as Fo unless

photoinhibition has occurred).

The information gained from fluorescence doesn't end with measured values.

Several important factors can be calculated. Fv is known as the variable fluorescence and

is calculated as the difference between Fo and Fm. Two other important factors that were

detennined are qp (the photochemical quenching coefficient) and qN (the non­

photochemical quenching coefficient). Photochemical quenching represents the

oxidation state of the PS II electron acceptor (QA), while non-photochemical quenching is

thought to consist of several components: the build-up of the proton gradient across the

thylakoid membrane (qE), the 'state l' to 'state 2' transition related to phosphorylation of

some chlorophyll-protein complexes of the light harvesting antennae (qT), and

photoinhibition of photosynthesis (qI) (Schreiber and Bilger, 1987; Krause and Weis,

1991). The calculations for each are as follows: qP =(Fm'-F) (Fm'-FoT1
, qN =(Fm-Fm')

(Fm-Fo'yl. AdditionaLLy, the electron transport rate can be found by multiplying yield,

(Fm'-F) (Fm'r 1
, by 0.5 and 0.84 (Anonymous, 1993; Havaux et al., 1991). Because two

photons are needed to move one electron through both photosystems, 0.5 is included,
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while 0.84 represents the typical percentage ofPAR absorbed by photosynthetic

pigments.

Statistical Analyses

The field and laboratory data collected spring 1998 and 1999 for each

photosynthetic characteristic was compiled for each grazing treatment and an analysis of

variance was performed in SAS (Statistical Analysis System, SAS Institute, Inc., Cary,

NC) using the procedure 'Proc Mix.ed'. Dual-purpose blocks were analyzed separately

from grain-only blocks. Blocks and year (1998 and 1999) were considered random

effects while cultivar was the main effect in which this research was interested.

November, 1998 and March, 1999 sampling dates were also analyzed (separately) for

significant effects. Again, block was a random effect and cultivar was the main effect.

Least significant difference (LSD) tests were conducted when significant main effects

were found. In addition, simple linear regression/correlation using cultivar means was

applied when cultivar effects were significant. In these comparisons, the oldest cultivar,

Turkey, was omitted in the calculations due to high influence on the fitted line and

difficulties in assigning a meaningful year of release.

RESULTS

The grain yield results, averaged over both 1998 and 1999, illustrate the expected

and observed trends by producers and researchers alike. Figure 1 clearly demonstrates

how breeding has remarkably increased this plant trait This figure was produced from
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the means of each cultivar across both field seasons for each grazing treatment. Grain­

only yields were significantly and positively correlated with year of release (r= 0.72,

p=O.OOI). Dual-purpose managed grain yields were also significantly correlated with

year of release (.-2=0.52, p<O.05). If the mean grain yields for each cultivar between the

two grazing treatments is compared, every cultivar except 'Turkey' had higher grain

yield in the grain-only environment than in the dual-purpose environment. It should also

be recalled that the cattle were removed at the most desirable time, first hollow stem

stage, and there was still a marked difference between grain yields under the two

production systems.

GRAIN-ONLY RESULIS

Plant Fitness

There were no significant differences in plant fitness characteristics between

cultivars in fall 1998. Significant differences were found between cultivars in both pre

and postanthesis spring measurements as presented in Table 2. In March of 1999,

significant differences were found in Chltot and LA!. As shown in Table 3, cultivars

'Triumph 64', '2163', and 'Karl 92' had the lowest Chl,ot, and 'TAM W-I0l' had the

highest. Although the differences between cultivars were significant, there was no

significant correlation found with either year of release or grain yield. Significant,

positive relationships were found between postanthesis 1999 LA! and year of release

(r=o.37, p<O.05) and is represented in Figure 2. Also noted in Figure 2, the same

general trend was found in preanthesis 1999 measurements, but the trend was not found
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to be significant. Neither pre nor postanthesis LAl was found to be significantly related

to grain yield.

Cultivar effects for postanthesis, combined spring 1998 and 1999 were significant

(p<O.05) for ChI a b- I ratio in the grain-only environment (Table 2). The LSD results are

listed in Table 4. When tested for correlation, spring 1998 and 1999 Chi a b- I ratios were

not significantly correlated with year of release or grain yield. However, LSD results did

not appear consistent for each year alone. This led to the reason for testing whether

results were consistent over both virus and non-virus conditions. In order to do this,

cultivar by year interaction was examined. It was found that differences between

cultivars were significant in the spring of 1998, but not in 1999. Presumably, the virus

effects did impact these measurements.

Photosynthetic Characteristics

Once again, there were no fall 1998 characteristics that distinguished significant

differences among the twelve cultivars. In March of 1999, cultivars had significantly

different 8s values (Table 2). 'Scout 66' had the lowest values while Triumph 64 and

TAM 105 had the highest values (Table 3). March 1999 8s was not significantly related

to year of release or grain yield.

Several characteristics measured in both spring of 1998 and 1999 revealed

cultivar effects. Significant gas exchange parameters listed in Table 2 are ~, the water

use efficiency factor (1<), and A. Stomatal conductance to water uncovered highly

significant differences between cultivars (p<O.OOl). When LSD results were analyzed

(Table 4), it was discovered that the oldest cultivar Turkey had the lowest 8s values, and
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several of the more recent cultivars had the highest values. These results, however, did

not seem to represent both season's data. Upon examination of each season separately, it

was discovered that postanthesis gs in 1998 were lower than in 1999. As discussed

earlier, 1999 was a moist year, leading to the optimum conditions for virus effects. In

1998, there were significant differences between cultivars in &S, but not in 1999. Water

availability and possibly the presence ofviruses may have contributed to these

differences. Nevertheless, mean & over both seasons was significantly different between

cultivars. Figure 3 demonstrates that postanthesis &s is positively correlated with year of

release (~=0.43, p< 0.05). The characteristic & was also correlated with an increase in

grain yield at a p-value of 0.06.

K was calculated from the product ofWUE and VPD, and it is a method used to

'normalize' WUE to account for differences in VPD (Condon et aI., 1993). As shown in

Table 4, Karl 92 had the lowest WUE and the oldest cultivar Turkey had the highest

WUE. Represented in Figure 4, K proved to be negatively correlated (r2=-0.46, p<0.05)

with year of release, but not with grain yield. The difference revealed in A was due to

Turkey having a lower mean value of A than the newer cultivars, excluding Scout 66

(Table 4). Consequently, A was not significantly correlated to either year of release or

grain yield. The fluorescence characteristic, Fv Fm-), had significant cultivar effects as

well (Table 2). Triumph 64 had the lowest Fv Fm- I ratios but Karl 92 and Custer had the

highest (Table 4). As a result, Fv Fm-] was correlated with year of release (~=O.36,

p<O.05) but did not prove to be correlated to grain yield.
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DUAL-PURPOSE RESULTS

Piant Fitness

Noted in Table 2, there was only one sampling period that resulted in differences

between dual-purpose managed cultivars in plant fitness characteristics. In March of

1999, Chltot and Chl a b- I ratios had significant cultivar effects. Table 3 reveals the least

significant difference test details. One ofthe oldest cultivars had the lowest Chltot and

one of the most recent cuttivars had the highest values. As a result, Chltol was positively

correlated with year of release (~=O.53, p<O.05) as shown in Figure 6. Chltot was also

positively correlated with grain yield (~=0.40, p<O.05) as pictured in Figure 7. ChI a b- I

ratios were lowest in one of the newest cultivars and highest in the oldest cultivar (Table

3). The characteristic, Chltot, however, was not significantly correlated with either year of

release or grain yield. Additionally, no dual-purpose, postanthesis (spring 1998 and

1999) plant fitness characteristics had significant cultivar effects.

Photosynthetic Characteristics

There were no significant differences in plant fitness characteristics between

cultivars in fall 1998. In March of 1999, only qN was significantly different between

cultivars (Table 2) and the LSD results are listed in Table 3. Measured in March, 1999,

qN was not significantly correlated to year of release or grain yield.

Spring 1998 and 1999 measurements of flag leaves at anthesis brought to light

two photosynthetic characteristics with significant cultivar effects: K and qP (Table 2).

LeafWUE was lowest in 2163 (Table 4) and highest in Custer and 2174. In Figure 5,

mean WUE under both grain-only and dual-purpose management is compared with year

of release. Under the grain-only managed system, a negative correlation with year of
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release exists. In the dual-purpose system, on the other hand, WUE doesn't appear to

have any systematic relationship with year of release or grain yield. The qP, averaged

over spring 1998 and 1999, was significantly different between cultivars as shown in

Table 2. Vona had the lowest values, while Triumph 64 had the highest (Table 4). The

characteristic qP was not significantly related to year of release or grain yield.

DISCUSSION

During the spring of 1999, the experimental plots had both wheat soilborne

mosaic and spindle streak mosaic virus (WSBMV and WSSMV, respectively)

infestations. Both viruses are members of the potyvirus family, and it is thought that they

are transmitted by the fungus Polymyxa graminis (Lommel et al., 1986; Cunfer et aI.,

1988; Rumjaun et aI., 1996; Carroll et al., 1997). There is no treatment for these viruses.

so the best way to combat them, if their presence is suspected, is to plant resistant wheat

cultivars. The wet, cool spring conditions in 1999 were optimal for virus symptom

development. Due to the nature of this study, however, this option was not viable and as

a result many ofthe cultivars were affected. The infected plants were able to recover

later in the spring, and symptoms began to decrease when the temperatures warmed, as

reported previously (Bays et aI., 1985; Lommel et al., 1986; Carroll et al., 1997). Little is

known about how these viruses affect plant physiology, and photosynthesis specifically.

Symptoms of these viruses include patches or spindle-shaped chlorosis development on

the leaves. Thus, due to the presence ofthese viruses in 1999, the chlorophyll content

data may not reflect normal, virus-free field conditions. Considering prior knowledge of
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these effects in 1999, cultivar by season interaction in this data was considered and

discussed below.

GRAIN-ONLY

Plant Fitness

Significant differences were detected in preanthesis (March, 1999) Chltot and in

postanthesis (spring 1998 and 1999) ChI a b- I ratio. The differences found in Chltot

content were that three cultivars, unrelated to year of release or grain yield, had lower

values than the others, while TAM W-lOl had higher values. Although there were

significant cultivar effects, there simply was not a systematic relationship between

cultivars and year of release or grain yield. It follows, then, that breeders do not appear

to have indirectly selected for Chltot . Because Chi a b- t ratios from postanthesis 1999

measurements did not appear different from each other, the cultivars were analyzed for

season by cultivar interaction. Interaction was found and may be explained by the

presence of viruses in 1999. In 1998, significant differences between cultivars were

detected. In 1999, differences between cultivars were not evident, probably due to a

leveling of differences between cultivars on account of the virus effects. Higher Chi a b
ol

ratios result as the proportion of core and peripheral pigments change in order to optimize

the light harvesting capacity relative to the capacity of photochemistry, i.e. to optimize

the photosynthetic unit size (Demig-Adams and Adams, 1996). The highest postanthesis

ChI a b- t ratio in 1998 and in the combined analysis, was noted in the oldest cultivar,

Turkey and a newer cuJtivar Karl 92, while 2163 had the lowest values. There was not a

correlation between Chl a b- I ratio and either year of release or grain yield. From these
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results, it can be concluded that breeders have not altered chlorophyll content or

composition during selection of southern Great Plains HRW wheat cultivars for a grain­

only production systtem. Therefore, as has been proposed earlier, there doesn't appear to

be mechanistic differences between old and modem cultivars in either Chltot content or

ChI a b-1 ratios (Sinha et al., 1981).

Postanthesis LA! appear to have increased in these cultivars over the past decades

of breeding as depicted in Figure 2. In fact, the 1997 release, 2174, has a mean LA! that

is a 33 % increase over one of the oldest releases in the study, Triumph 64. Although not

significant, cultivars measured preanthesis appear to have the same general LA! trend,

but lower overall values. TAM 105 had the lowest mean LA! measured both pre- and

postanthesis, while 2174 and Karl 92 had consistently high mean values at both sampling

times. It has been previously established that maximum photosynthetic tissue is needed

at anthesis to achieve maximum yields in semidwarf cultivars (Dunphy et al., 1984;

Redmon et aI., 1995). In this regard, however, there was not a significant correlation

between LA! and grain yield. It is an interesting finding that although not numerically

significant from other cultivars, TAM 105 had the highest rates of A measured pre and

postanthesis in 1999 (27.12 and 15.43 umol m·2 s'], respectively) as well as the lowest

LA!. These findings would tend to confirm the negative relationship between A and leaf

area found by others (Austin et aI., 1982; Rawson et aI., 1983; Bhagsari and Brown,

1986).
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Photosynthetic Characteristics

Stomatal conductance to water was found to be significantly different between

cultivars in the combined, postanthesis spring 1998 and 1999 measurements. The LSD

values listed in Table 3, however, did not appear to represent both seasons well. When

compared, the values of8s in 1998 were lower than in 1999. Significant differences

between cultivars in gs were only found in 1998. Thus water availability and virus effects

may have contributed to this interaction. At the Marshall Mesonet weather station,

rainfall from September 1997 to February 1998 was 11.98 inches and from March to May

1998 was 12.16 inches. Rainfall from Septemeber 1998 to February 1999 was 15.81

inches and March to May 1999 was 12.69 inches (Oklahoma Mesonet Climatological

Data). It is likely that under more water-limited conditions, as in 1998, differences in 8s

become evident, but under less water limitation, as in 1999, differences are not detected.

Virus effects on &s have not been amply studied to account for their contribution to this

interaction. Because it is impossible to elucidate all potential season effects, or replicate

them, conclusions must be based on both seasons' results.

Under the combined conditions of spring 1998 and 1999, flag leaf &s appears to

have increased with year of release as illustrated in Figure 3. Our results contrast with

those of Sinha and others (1981) who found little difference in 8s between old and

modern wheat cultivars. On the other hand, our results are consistent with the report of

Fischer et al. (1998) who noted a 63% increase in &s was correlated to a six-year yield

progress in spring wheat. These researchers also concluded &s should be further

examined as an indirect yield selection criterion. An older paper of Shimshi and Ephrat

(1975) also found a positive relationship between 8s and yield in spring wheat. Under the
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field conditions measured in this study, 8s was correlated with grain yield at a p-value of

0.06 (~=0.33). Therefore, breeders may have indirectly selected southern Great Plains

HRW wheat cultivars for increased in 8s, which may have contributed to increased grain

yields.

Stomatal conductance affects the supply of carbon dioxide to mesophyll cells,

where it is fixed, and then ultimately used to make carbohydrates and other products.

Stomatal conductance also controls the amount of water vapor lost from plants through E.

Gas exchange factors dependant on~, A and WUE, also revealed insight into how

breeders have indirectly manipulated HRW wheat cultivars these past four decades.

Carbon assimilation rates did not appear to differ much between cultivars, except that the

oldest cultivar in the study, Turkey, had the lowest value. This is interesting, due to the

fact that nearly 50 % of the variability in A was accounted for by changes in 8s, which

has significantly increased in cultivars grown throughout the past century. Turkey had

the highest WUE, which decreased with year of release (Figure 4). It stands to reason

that because the oldest cultivar, Turkey, has the lowest g., value, the amount of carbon

dioxide that can be fixed and the amount of water that can be lost is the smallest. In this

way, Turkey may employ a 'conservative' approach while the more modem cultivars

may be 'opportunistic' as described earlier (Siddique et aI., 1990). Opportunistic cultivars

have high 8s and thus high A when soil moisture is plentiful, but decrease 8s and A

dramatically when soil moisture becomes limiting. Conservative cultivars have relatively

low ~ and also A when soil moisture is high, and only gradually decrease 8s and A when

moisture becomes limiting. Stomatal limitations to A and WUE have been found by

many (Dunstone, et aI., 1973; Planchon and Fesquet, 1982; Lal et a1., 1996; Van Den
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Boogaard et aI., 1997). Farquhar and Sharkey (1982) point out that the primary function

of the stomata is in preventing severe water loss from the plant. Therefore, even though

the stomatal limitation to C02 diffusion into the leaf is large, it still may only marginally

limit A under some conditions. Our results indicate there may have been a stomatal

limitation to A and WUE under the conditions of this experiment. A was positively

associated with & (p<O.OOl) and K was negatively associated with 8s (p<O.OOI). We can

not conclude go; limitation absolutely, however, because A-Ci (C02concentration in the

internal air spaces of the leaf) curves were not conducted due to the large number of plots

included in the study.

The conservative behavior of the older cultivars and the opportunistic behavior of

the more modem cultivars may also relate to the increase in LA! with year of release.

Leaf growth is more sensitive to stress than & or A (Farquhar and Sharkey, 1994).

Therefore, a reason for the differences in LAJ between the older and more modem

cultivars may be due to their strategies. Oider, conservative cultivars may compromise

leaf area in order to maintain other leaf factors such as internal C02 and carbohydrate

concentrations. Newer, opportunistic cultivars may be able to maintain higher LA! under

more optimal conditions, and reduce it when under stress (i. e. the differences in LAl

disappeared under the dual-purpose production system).

Chlorophyll fluorescence also appears to shine light onto differences between old

and modem HRW wheat A. Postanthesis Fv Fm-) increased with year of release under

the field conditions in this study. Fv Fm-1 is thought to reflect the effi.ciency of excitation

capture with all PSII reaction centers open (Genty et aI., 1989; Krause and Weis, 1991;

Farquhar and Sharkey, 1994). In other words, when PSII efficiencies are impacted by

27

)

~
)



-

stresses, Fv Fm-1 decreases. In this research, though, the difference uncovered between

the highest efficiency to lowest efficiency was only three %. Lu and Zhang (1998) make

the point that Fv Fm-1 values decrease in senescing wheat leaves. Therefore, when

measured postanthesis, these small differences may have appeared due to variation in

senescence between the cultivars. Photosystem II efficiencies in using light were not

significantly correlated with grain yield increases. These results indicate that breeders

probably have not indirectly selected cultivars for any meaningful increase in efficiency

ofPSII excitation capture.

DUAL-PURPOSE

Plant Fitness

Preanthesis chlorophyll differences were detected in cultivars managed under the

dual-purpose system, but not detected in postanthesis measurements. This difference in

chlorophyll content may be explained as a consequence of postanthesis senescence. If

the leaves had begun to senesee before the postanthesis samples were collected,

cWorophyll may have started to break down and reduction in Chl a b- I ratios may have

occurred (Lu and Zhang, 1998). This may be quite likely in the postanthesis

measurements, as has been suggested in several reports thus far. As discussed earlier, the

presence of both WSBMV and WSSMV in the spring of 1999 may also have affected the

thylakoid membranes, causing changes in chlorophyll content and composition. In the

spring of 1998, under virus-free conditions, there were also significant chlorophyll effects

detected. Of particular interest, preanthesis Chltot was found to increase with year of

release and may also be responsible for about 40 % of the variability in dual-purpose
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managed grain yield. In fact, the highest Chitot found was in Custer and was a 60 %

increase over the lowest ChIto!.

The role of chlorophyll is to harvest light energy to be used in A. Chlorophyll a

b-' reflects the ratio ofcore to peripheral light-harvesting complexes (Demmig-Adams

and Adams, 1996). In other words, if Chi a b-I ratios are higher, there might be less

emphasis on light collection due to high light pressure. Custer had both the highest mean

Chltot and the lowest mean Chi a b- I ratio suggesting much peripheral chlorophyll and a

large photosynthetic unit size. Under dual-purpose management, this cultivar was

focusing much of its preanthesis energy on light harvesting, resulting in high yield.

Triumph 64 had the lowest Chltot content and one of the highest Chi a b- I ratios

suggesting little peripheral chlorophyJl and a small photosynthetic unit size. At

preanthesis, this cultivar may have been experiencing high light stress and was trying to

focus on using the absorbed light energy in carbon assimilation (although not statistically

significant, it did have one of the highest A values). This behavior might have been

expressed in chlorophyll content and composition and resulted in lower grain yield. Even

though differences were detected, Chi a b- I ratios do not appear to have changed

systematically in cultivars released each year and are not correlated with grain yield.

Photosynthetic Characteristics

There were a few pre and postanthesis cultivar effects under the dual-purpose

management system. Two fluorescence parameters and one gas exchange parameter

were found to differ between cuhivars. Preanthesis qN was found to differ between

cultivars, but was not correlated to year of release or grain yield. The qN is related to the
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fluorescence quenching that is non-photochemical in nature. When light is absorbed by

chlorophyll, it can either be used for charge separation (qp) or it can be given offas heat

or fluorescence (Seaton and Walker, 1990; Bolhar-Nordenkampf and Oquist, 1993;

Bjorkman and Demmig-Adams, 1995). When there are low-light conditions, most of the

light energy is used in photochemistry (leading to high quantum yields) and very little is

emitted as heat and fluorescence. Under high light conditions when PSII centers are

closed, much of the absorbed light energy is emitted as heat, and there is an increase in

the fluorescence intensity (Bolhar-Nordenkampf and Oquist, 1993). There are several

components of qN: the build-up of the proton gradient across the thylakoid membrane

(qE), the 'state l' to 'state 2' transition related to phosphorylation ofLHCII (qT), and

photoinhibition of photosynthesis (qI) (Krause and Weis, 1991). The method used to

measure qN in this study does not allow us to differentiate which components

significantly differ between the cultivars. The results of the LSD test between cultivars

for qN did differentiate 2163 as having the lowest values and Vona having the highest.

The qN was also high in the cultivar Custer, which had high Chltot and low Chi a b- I as

discussed earlier. The cultivar 2163 had the lowest qN values along with one of the

highest ChI a b- I and lowest Chltot . As mentioned previously, Custer appeared to be

focusing much of its energy on light harvesting. It follows, that there was a mechanism

observable by qN, that was able to dissipate excessive radiation, if necessary. This was

done in order to match ETR to other limiting components of photosynthesis (Farquhar

and Sharkey, 1994). Havaux et al. (1991) stated that a possible function of non-

photochemical energy dissipation is to avoid over-excitation of the reaction centers. This

is accomplished by adjusting the photochemical reactions to better fit carbon metabolism
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needs. Custer may have displayed this process to match the greater light harvesting to its

metabolic needs by maintaining high rates of qN. In fact, qN has been directly related to

the amount of excess photon flux density (PFD) (Bjorkman and Demmig-Adams).

Likewise, qN has been found to tightly correlate with the formation of zeaxanthin, a

carotenoid ofthe xanthophyll type. The xanthophyll cycle has been shown to be

involved with protection under high light conditions (Shuangsong and Daquan, 1997).

Many other authors have confirmed the xanthophyll cycle has a role in photoproteetion

and thermal dissipation of excess energy (i.e. Niyogi, 1999). Postanthesis qN values were

much higher and not significantly different, so they did not aid in elucidating the

relationships behind preanthesis qN values. They may have risen in value because

temperatures and light intensities were greater under postanthesis conditions. In

conclusion, even though it does not appear breeders have selected cultivars indirectly

based on preanthesis qN, the relationships between other measured parameters and

cultivars explain many ofthe possible complex interactions behind photosynthesis and

plant fitness.

Postanthesis K and qP had significant cultivar effects under the dual-purpose

management system, but were not significantly correlated with year of release or grain

yield. These results differ from the grain-only management system in that K was

negatively correlated with year of release. K was again correlated to and largely a

function of postanthesis g~. Under dual-purpose management, the newest cultivars had

the highest WUE. This would appear to indicate that once again, modem cultivars are

opportunistic: the two newest cultivars had the lowest WUE under the non-stressed,

grain-only system and the highest WUE under the stressed, dual-purpose system. In this
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way, Custer emerges as a seemingly well-adjusted cultivar for these conditions. The

cultivar is able to focus on light harvesting, utilize non-photochemical dissipation

processes, and still maintain high WUE under foraging stress. Cultivar 2163 had high

ChI a b· l
, low ChItot, low qN, and low WUE.

The cultivars Custer and 2163 had relatively high qP values, but Triumph 64 had

the highest and Vona had the lowest. The qp marks changes in the degree ofopenness of

PSII reaction centers as compared to having all centers open as in the dark (no excitation

pressure) (Havaux, Strasser, and Greppin, 1991). The qp is a good estimate ofPSn

electron transport rate (ETR) (Schreiber and Bilger, 1987). Quantum yields (electrons

per photon) are high under low light conditions and decrease at elevated PAR (Bolher-

Nordenkampf and Oquist, 1993). Therefore, under postanthesis conditions, these three

cultivars are able to maintain high quantum yields, while other cultivars (Le. Vona) are

not. Once again, although qN, K and qP were not correlated with year of release and grain

yield, they do further explain how these vary in a logical way among cultivars.

CONCLUSIONS

Grain yields of southern Great Plains HRW wheat cultivars grown in a grain-only

production system have significantly increased over the past decades of breeding.

Although increases are present, the magnitude of the increases have not been as great

under dual-purpose management.

The first objective of this study was to determine whether A of southern Great

Plains cultivars (grain-only) have changed over the past four decades ofbreeding. We

can not conclude that Chltot or CW a b- l ratios have changed due to breeding in these
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twelve cultivars under grain-only management. Postanthesis LA! has increased 33 % in

the 1997 release over the 1964 release. This increase in LA! was not correlated with

grain yield. Stomatal conductance appears to have increased with year of release under

more water-limited conditions. At the same time, leafWUE has decreased in these

twelve cultivars grown throughout this century. Carbon assimilation rate was not

correlated with year of release, but the oldest cultivar, Turkey, had a significantly lower

A than the other cultivars. Lastly, it is possible that postanthesis maximum efficiency of

excitation capture with all PSII reaction centers open (Fv Fm- I
) may have increased

slightly with year of release. These differences were so small, however, that indicates

breeders have not indirectly selected cultivars with meaningful increases in PSII

excitation capture efficiency.

The second objective was to characterize and appraise dual-purpose production

system effects on photosynthetic parameters of southern Great Plains cultivars grown

throughout this past century. Under the conditions measured in this study, preanthesis

Chltot seems to have increased in cultivars with year of release when managed for a dual-

purpose system. Preanthesis Chltot was also correlated with increases in dual-purpose

grain yields and may account for about 40 % ofthe variability. Significant differences

were detected between dual-purpose cultivars, but were neither related to year of release

nor grain yield. Overall, differences noted between cultivars in the grain-only system

were reduced or nonexistent in the dual-purpose environment. The important trends due

to breeding found under the grain-only system, namely the increases in leaf~ and LA!

and the decrease in leaf WUE, were not apparent under the dual-purpose system.
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Identifying which photosynthetic components significantly correlate to grain yield

was the third objective of this research. Under a grain-only management, go; was

correlated with grain yield at a p-value of 0.06. Due to the fact that g, increased

significantly with year of release, as did grain yields, this parameter should not be

overlooked as an important grain yield component. Other researchers have found a

similar relationship between gs and grain yield (Shimshi and Ephrat, 1975; Fischer et aI.,

1981; Fischer et aI., 1998). Under the conditions of this study, it was revealed that

preanthesis ChIlo! was a considerable determinant of dual-purpose grain yield.

Finally, the last objective of this study was to determine whether the gas exchange

and chlorophyll fluorescence techniques employed in this study would be valuable tools

for breeders to utilize in screening new cultivars for grain-only and dual-purpose systems.

Under the field conditions ofthis study, it does not appear these measurements explained

yield increases adequately enough for breeders to utilize them for screening high-yielding

cultivars. Under the conditions of studies. done by others, the same techniques have

proved useful. Therefore, these techniques should be further tested to determine whether

they would be useful, rapid tools for southern Great Plains HR.W wheat breeders.

Obviously, if breeders were interested in achieving expression of certain characteristics

like leaf WUE (which has been correlated to whole plant WOE), selecting premium

cultivars with instruments should be quite useful.

The yield increases over the past decades of breeding southern Great Plains HR.W

wheat cultivars does not appear to be due to significant increases in photosynthesis, or its

major parameters (i.e. g;, WOE, Fv Fm- l
, etc.). Mann (1999) reported in Science that

studies since the 1970s have failed to link grain yields to A and the reason might be due
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to high-yielding cultivars possessing more leaf area. Larger leaf area increases shading

and thus lowers mean A. Nelson (1988) concluded that results from studies such as this

have been disappointing due to high genotype by environment interaction and other non-

photosynthetic characteristics that tend to over-shadow the yield vs. photosynthesis

relationship. He concluded that genetic increases in leaf A are certainly possible, but that

the genetic advantages come from improving the dark reactions during mid-day, high

light conditions. These increases would need to be achieved by increasing protein

synthesis or selecting cultivars for higher RuBP carboxylase, which has not been very

promising. It has been shown that postanthesis A of wheat is affected by the source/sink

ratio and depends on both cultivar and time after anthesis (Yin et al., 1998). This is

perhaps the crux ofthis research, that 'source' may have been manipulated in cultivars

the past four decades to optimize water availability conditions. Many researchers agree

that with harvest indices nearing values as high as 50% and optimization of carbon

partitioning ('sinks'), much of the future grain yield increases will need to come from

maximizing A (' source') without raising water requirements (Nelson, 1988; Boote and

Tollenaar, 1994; Sinclair, 1994; Malik and Wright, 1997; Mann, 1999).
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Gas Exchange Parameters Evaluated

K=WUE*VPD

VPD = (saturated vapor pressure at sample air temp.)-(v. press. in sample cell)

E is the transpiration rate ofa leaf in mmol m-2
S-l The terms ei and e8 are the

concentrations of water vapor in the leaf intercellular air space and in the air respectively.

Total diffusive resistance to water vapor is rt, rs is the stomatal diffusive resistance to

water vapor, rc is the cuticular diffusive resistance to water vapor, and ra is the boundary

layer resistance to water vapor. A is carbon assimilation rate ofa leaf in umol m-2
S·I.

The terms Cj and Ca are the concentrations of CO2 in the leaf intercellular air space and in

the air respectively. Also note, the diffusive resistance to CO2 is calculated from the

product of 1.6 and the diffusive resistance to H20 vapor. K is a measure ofWUE

normalized to avoid differences due to different VPD (Condon et aI., 1993).
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Fluorescence Parameters Defined
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A: Fluorescence level of dark-adaptated plant, with all PSII reaction centers
'open' (QA fuUy oxidized) (Fo)

B: Application of a saturating pulse, so that all reaction centers 'close'
(QA fully reduced) (Fro)

Arrow: Point at which actinic light was turned on to drive photosynthesis

c: A series of saturating pulses were applied to determine changes in the
quenching coefficients of the sample (F and Fm' are steady state and
maximal fluorescence values just before and during these pulses)

Important Derived Equations (Anonymous. 1993; VanKooten and Snel. 1990)

Fv Fm-1==(Fm-Fo) Fm-I
, Fv' (Fm')"I==(Fm'-Fo') (Fm,)"I, Y=(Fm'-F) (Fm'rl

, ETR==Y*PAR*O.S*O.84

qP==(Fm'-F) (Fm'-Fory', qN=(Fm-Fm') (Fm-Fo'r l
, NPQ=(Fm-Fm') (Fm'r]
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Table 1. Triticum aestivum cultivars utilized in e~eriments.

Cultivar CI Release Breeder(s) Disease Other
Date Resistance Traits

Reference

..............~ .
Turkey CIl558 1919 Kansas Bunt Late Quisenberry

*(1874) Mennonites maturity, & Reitz,
high lodging 1974~ Cox et

aI., 1988

Triumph
64

Scout 66

TAMW­
JOI

CIl3679

CI13996

CIl5324

1964

1967

1971

Joseph
Danne

Nebraska
Age. Exp.
Sta.,
USDA­
ARS

Texas Agr.
Exp. Sta.,
USDA­
ARS

WSM, tan
spot,
powdery
mildew

Stem rust

Bunt

Early
maturity,
high lodging,
high test
weight

Late
maturity,
high lodging

Late
maturity,
water stress
tolerant, good
fall forage

Schlehuber &
Johnson,
1965~

Bowden &
Brooks,
1997;
Krenzer et
aI., 1997a

Schmidt et
aI., 1971;
Bowden &
Brooks,
1997;
Krenzer et
aI., 1997a

Porter, 1974;
Krenzer et
aI., 1997a

Vona CI17441

TAM 105 CIJ7826

1976

1979

Colorado Stem rust
State U.
Exp. Sta.

Texas Agr. Some stem
Exp. Sta., rust
USDA-
ARS

Early
maturity

Welsh et aI.,
1978

Porter et aI.,
1980

:

...
r"
I
)

1

Chisholm PI486219 1983 OKAgr.
Exp. Sta.,
USDA­
ARS

Fair fall
forage

Smith et aI.,
1985;
Krenzer et
aI., 1997a

2157 PVP
8400027

1987 Pioneer Hi Some leaf & Hessian fly
Bred Infl. stem rust, resistant

SBM
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Cultivar CI Release
Date

Breeder(s) Disease
Resistance

Other
Traits

Reference

*1874 was the date Turkey was brought to Kansas, and 1919 is the date when producers
actually began crude selection

2163

Karl 92

Custer

2174

PVP
890025

Pl564245

N/A

N/A

1989

1992

1994

1997

Pioneer Hi
Bred inCl.

KS Agr.
Exp. Sta.,
USDA­
ARS

OK Agr.
Exp. Sta.

OK Agr.
Exp. Sta.

SBM,
WSSM,
powdery
mildew,
stem rust

SBM,
WSSM,
powdery
mildew

Leaf & stem
rust, tan
spot,
powdery
mildew,

SBM,
WSSM, leaf
rust,
powdery
mildew

Hessian fly
resistant,
good fall
forage, low
pH tolerant

High test
weight, good
fall forage

Good fall
forage

Hessian fly
resistant,
good fall
forage, some
low pH
tolerance

Bowden &
Brooks,
1997~

Krenzeret
aI., 1997a

Bowden &
Brooks,
1997;
Krenzer, et
aI.,1997a;
Sears et aI.,
1997

Bowden &
Brooks,
1997~

Krenzer et
al., 1997a~

Anonymous,
1994

Bowden &
Brooks,
1997~

Krenzer et
aI., 1997a;
Krenzer et
al.

l
1997b

:

...
r'
1
)

S
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Table 2. The cultivar effects found for major characteristics evaluated.
Sample Date March 1999 Spring 1998 & 1999

Combined
Treatment Grain-only Dual-purpose Grain-only Dual-purpose
A os ns P < 0.05 ns
(umol m-2 sol)

& P < 0.05 ns P < 0.001 ns
(mol m-2 S·I)

K os ns P <0.05 P < 0.01

Fv Fm- I ns ns P < 0.01 ns

Fv' (Fm'rl ns ns ns os

NPQ ns ns ns ns

qP os os os P < 0.05

qN os P < 0.05 ns ns

ChI a b- I os P < 0.05 P < 0.05 ns

CWtot P < 0.05 P < 0.05 ns ns
(g m02

)

LAI P < 0.01 ns
(m2 foliage ;'

(m2 groundrl
) I

I
I

MTA ns ns
(degrees from
horizontal)

ns = not significant at a. = 0.05
- = not measured, or not measured in both years

49



V1
o

Table 3. Cultivar means and least significant differeneeyallJ~sJ!QJ!lj>reanthesis measurements in March, 1999.
Grain~Only Dual-Pu[g0se

Cultivar Chltot 8s Chitot Chi a b" qN

............... -- ·:1·········································.. ~":! ··1························ ····,·1················· .. ······ -- -- -- .
gm mol m s gm

Turkey 0.72 0.43 0.63 3.67 0.54
ab bed ab e be

Triumph 64 0.66 0.51 0.61 3.40 0.41
a d a abede abc

Seout 66 0.73 0.30 0.72 3.25 0.52
ab a abe ab be

TAM W-I01 0.90 0.44 0.78 3.53 0.39
e bed abed bcde ab

Vona 0.76 0.45 0.72 3.33 0.60
abc bed abc abed e

TAM 105 0.70 0.52 0.83 3.51 0.39
ab d bed bede ab

Chisholm 0.77 0.40 0.79 3.59 0.56
abe abed abed de be

2157 0.77 0.46 0.80 3.29 0.49
abe cd abed abc be

2163 0.65 0.43 0.67 3.58 0.24
a bed ab ede a

Karl 92 0.65 0.33 0.75 3.47 0.49
a ab abed bede be

Custer 0.83 0.41 0.98 3.15 0.54
be abed d a be

2174 0.79 0.36 0.91 3.49 0.37
abe abc cd bede ab

Cultivars with the same letter are not significantly different
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Table 4. Cultivar means and least significant difference results from postanthesis measurements from combined spring 1998
and 1999.

Chi a b-1
Grai~·~nlz: Dual.Pu!E0se

Cultivar A & K FvFm'! K qP
.. _--_._----~ ..

umol m-~ s·l mol m·2 s-l
.~~~~.~~_ ....._....._....._...._...__.__._---

Turkey 3.98 9.7 0.15 64.9 0.827 65.7 1.16
b a a d abed cd ab

Triumph 64 3.81 13.1 0.24 60.8 0.817 59.5 2.40
a b b cd a abed e

Scout 66 3.83 12.6 0.27 53.6 0.822 55.2 1.56
a ab be abe abe abc ab

TAMW- 3.84 13.8 0.29 51.6 0.830 56.0 1.68
101 a b be abc bed abe abe
Vona 3.83 13.7 0.33 47.0 0.822 53.7 0.92

v. a b e ab abe abc a......
TAM 105 3.81 15.4 0.34 55.6 0.819 61.0 1.78

a b e bed ab bed be
Chisholm 3.84 13.4 0.30 49.6 0.830 59.3 1.47

a b be ab bed abed ab
2157 3.80 14.2 0.32 47.8 0.826 62.3 1.31

a b e ab abc bed ab
2163 3.78 14.2 0.30 52.2 0.827 50.4 1.67

a b be abe abed a abc
Karl 92 3.88 13.1 0.31 44.4 0.832 53.4 1.13

ab b be a ed ab ab
Custer 3.79 14.6 0.33 49.7 0.838 68.6 1.78

a b e ab d d be
2174 3.79 14.8 0.31 47.8 0.826 67.3 0.95

a b be ab abe d ab
III ... A

Cultivars with the same letter are not signifieantly different
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Figure 1. The relationship of mean grain yield to year of release for twelve
southern Great Plains cultivars grown throughout this past century, evaluated
near Marshall, Oklahoma in 1998-1999. 'TK' represents the cultivar Turkey
and is not included in the trend lines.
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o post-anthesis LA! (1999), ~=0.37, p<0.05
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Figure 2. The relationships between pre and postanthesis mean LAI
measured in 1999 and year of release for twelve southern Great Plains HRW
wheat cultivars grown throughout this past century. 'TK' is the mean value for
the cultivar 'Turkey' and is not included in the trend line.
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Figure 3. The relationship of mean leaf stomatal conductance measured in
1998-1999 to year of release for twelve southern Great Plains cultivars
grown throughout this past century. 'TK' represents the cultivar 'Turkey'
and is not included in the trend line.
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Figure 4. Progress in mean postanthesis K measured in 1998-1999 of twelve
southern Great Plains wheat cultivars grown throughout this past century. 'TK'
represents the cultivar 'Turkey' and is not included in the trend line.
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Figure 5. LeafK of dual-purpose and grain-only plotsofflag leaves measured
spring 1998 and 1999. 'TK' is the meanvalue of the cultivar 'Turkey' and is not
included in the trend line.

55



-

1.0

r2=0.53, p<0.05 •
~ •'i' 0.9E
eo
'-'......c::
Q).....

0.8c::
0

U

>-..s::: TK0..
0 0.7"'"0:s:u TK
~ •...... •0 0.6E-t

202020001980196019401920

0.5 +----+----+----f-------4------4----+
1900

Year of Release

Figure 6. The progress of mean preanthesis total chlorophyll content measured
in 1999 of twelve dual-purpose southern Great Plains wheat cultivars. 'TK' is
the mean value of the cultivar 'Turkey' and is not included in the trend line.
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Figure 7. The relationship between mean preanthesis total chlorophyll content
and grain yield of dual-purpose managed cultivars evaluated in 1999. 'TK' is the
cultivar 'Turkey' and is not induded in the solid trend line.
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