
COMPARISON OF PLACE CODING AND THERMOMETER CODING

IN NEURAL NETWORKS

By

BEUM-SEUK LEE

Bachelor of Sicence

Seoul, South Korea

1996

Submitted to the faculty of
the Graduate College of

the Oklahoma State university
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE

May 1999

OKLAHOMA STATE UNIV SITY

COMPARISON OF PLACE CODING AND THERMOMETER CODING

fN NEURAL NETWORKS

Thesis Approved:

Thesis Adviser

Dean of the Graduate College

II

PREFACE

In neural network research, there have been many studies about optimization

weight updating methods, and various structures of networks. However, there also has

been some research on codings in neural networks used in solving the feature extracting

problem. Meaningful input representation allows a network to work efficiently because

of the specific way the network implements its function with given input samples. This

can be explained by the Categorical Perception (CP) effect inside of a neural network.

This thesis shows the significance of meaningful input representation by

comparing the behavior of a network trained with two different types of input codings

(place coding and thennometer coding). Tests are conducted using different numbers of

hidden nodes, different numbers of hidden layers, four types of transfer functions, and

four sets of real world data.

HI

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my major advisor, Dr. John P.

Chandler, for his intelligent guidance, constructive criticism, and in piration. I also wish

to thank my other committee members Drs. Blayne E. Mayfield and Mansur H.

Samadzadeh.

I also would like to expresS my sincere gratitude to my original advisor, Dr. W.

Nick Street for the direction of this research.

IV

TABLE OF CONTENTS

Chapter Page

INTFt()Dl]CTI()N --- 1

II LITERATUftE REVIEW --- 2

2.1 Artificial Neural Networks (ANN) ------------------------------------:----- 2

2.1.1 What Is an ANN? --- 2

2.1.2 What Kind of Architecture Does an ANN Have? -------- 2

2.1.3 How Does an ANN Learn? ---------------------------------- 4

2.1.4 How Can an ANN Work Better? ---------------------------- 8

2.2 Categorical Perception(CP) Effect -- 9

2.2.1 What Is the CP Effect? --------------------------------------- 9

2.2.2 How Does the CP Effect Related to Coding? ------------- 9

2.2.3 What Makes Thermometer Coding Better? -------------- 10

III RESULTS --- 12

3.1 Learning with Default Values for the Neural Network --------------- 12

3.1.1 Learning without Noise ------------------------------------- t3

3.1.2 Learning with Noise

(Gaussian Noise with Variance of 1/2) ------------------- 15

3.2 Learning with Different Transfer Functions ----------------------------- 17

3.3 Learning with Different Numbers of the Hidden Nodes --------------- 18

3.4 Learning with Different Numbers of Hidden Layers ------------------ 19

3.5 Learning with Different Data --- 21

3.6 Learning with Different Optimizations ------------------------------------ 21

IV CO CLUSIONS AND FUTURE WORK -- 23

\'

Chapter Page

REFERE CES --- 25

APPE DICES -- 27

APPENDIX A - A GLOSSARY -- 28

APPENDIX B - DATA SPECIFICATION ------------------------------------ 29

APPENDIX C - PROGRAM LISTING -- 41

VI

LIST OF TABLES

Table Page

Result of Learning without Noise --- 15

II Result of Learning with Noise --- 16

III Result of Learning with RADBAS Transfer Function ------------------------------ 17

IV Result of Learning with LOGSIG Transfer FlUlction -------------------------------- 17

V Result of Learning with TRIBAS Transfer Function -------------------------------- 18

VI Result of Learning with 6 Hidden Nodes -- 18

VII Result of Learning with 10 Hidden Nodes -- 19

VIn Result of Learning with 50 Hidden Nodes -- 19

IX Result of Learning with 2 Hidden Layers --- 20

X Result of Learning with 3 Hidden Layers -- 20

XI Result of Learning with 4 Hidden Layers --- 20

XII Result of Learning with Real World Data -- - 21

XIII Result of Learning with Different Optimizations ------------------------------------ 22

VIJ

LIST OF FIGURES

Figure Page

Types of decision regions fonned by different layers [22] ---------------------------- 3

2 A neural network with one hidden layer [19] -- 4

3 An ANN representation of a neuron [13] --- 5

4 Place coding and Thermometer coding -- 10

5 MSE graph of place coding without noise --- 14

6 MSE graph of thermometer coding without noise -------------------------------------- 14

7 MSE graph of place coding with noise --- 15

8 MSE graph of thermometer coding with noise -- 16

VIII

CHAPTER I

INTRODUCTION

This thesis concerns the representation of data in neural nets. The performance of

neural nets depends not only on the learning rule and the architecture but also on the

method of encoding (i.e., the representation). It is intuitively obvious that when a net is

trying to establish a mapping between a set of inputs and a set of outputs, the task will be

easier if similar inputs are mapped to similar outputs [8].

This thesis suggests that a proportional form of coarse encoding may be

appropriate for the representation of data for neural networks. We can observe some

biological systems using a proportional form of coarse coding. Each cell responds to a

range of input values, in-between but overlapping with those of its neighbors. Any given

input is influenced by the relative activity of a number of neighboring cells [7].

This thesis starts with the Categorical Perception (CP) effect inside neural

networks. I will conclude this paper by showing how the input representation of data in

an ANN can influence the network's behavior by comparing place code and thermometer

code from the viewpoint of the CP effects.

CHAPTER II

LITERATURE REVIEW

2.1 Artificial Neural Networks (ANN)

Neurons are neural cells and neural networks are networks of these cells (e.g.,

brain). The three important parts of a computational system based on Artificial Neural

Networks are the transfer function, the architecture, and the learning rule.

2.1.1 What Is an ANN?

An ANN is a distributed computational system with some number of processing

elements connected to each other and also may be defined as an adaptive, dynamic, and

parallel system with self-learning capabilities that can carry out information processing

tasks [13].

Artificial Neural Net models try to achieve good performance through

interconnection of simple computational elements. In this respect, ANN structures are

based on our present understanding of biological nervous systems.

2.1.2 What Kind of Architecture Does an ANN Have?

The architecture of the network is the manner of connections in an ANN through

which information in the network flows. There are useful architectural configurations like

single-layer, multi-layer, feedforward, feedback and lateral connectivity [15]. The

capabilities of multi-layer perceptrons come from the nonlinearities used within nodes.

2

3

Figure I. Types of decision regions formed by different layers [1 7J

As shown in Figure 1, a single layer perceptron used for a linearly separable

classification problem forms hyperplane-decision regions. A two-layer perceptron can

form any possibly unbounded region in the space generated by the inputs. Such regions

include polygons. In the two-layer perceptron, each node in the first layer behaves like a

single-layer perceptron and has a "high" output only for points on the side of the

hyperplane formed by its weights and offset. This works as a logical AND operation in

the output node and builds up a final decision region that is the common area of all the

hyperplane regions. Intersections of such hyperplanes form regions. The number of

these regions sides corresponds to the number of nodes in the first layer.

A three-layer perceptron can form arbitrary complex decision regions and can

separate the complicated classes. The output of second layer nodes will be "high" only

for inputs within each hypercube. We can observe similar behavior in multi-layer

perceptrons. with multiple output nodes with sigmoidal nonlinearities, and the decision

value is used to select the class corresponding to the output with the largest output.

4

As shown in Figure 2, the typical neural network with one hidden layer has

interconnections (with weights) between input nodes and hidden nodes and also between

hidden nodes and output nodes. Those interconnections are used to get an output given

an input by applying an activation function in the hidden layer and in the output layer.

With this actual output and the desired output, the weights are updated by the learning

rule, often through back propagation from the output layer to the input layer.

Figure 2. A neural network with one hidden layer [15]

2.1.3 How Does an ANN Learn?

Weights in an ANN function as memory in a conventional computer. The

learning rule is the method used to adjust the weights in the process of training the

network. That is, artificial neural systems are not programmed, rather they are taught.

The learning can be supervised or unsupervised. The most widely used supervised

learning rule is the back-propagation method, although this is not a very efficient emthod.

Fixed input

liD = -1'--~~

'WO .. Threshold

5

Figure 3. An ANN representation of a neuron [10]

All infonnation in an ANN is stored in the interconnection weights (Figure 3) and,

during the learning process. the weights are updated. A weight shows the strength of

association - that is, the co-occurrence of connected features, characteristics, properties.

or events during a training procedure. Tasks are typically understood as the minimization

of an energy function in weight space [10].

Back-propagation

The back-propagation (BP) learning method typically uses the Generalized Delta

Rule. First. the network outp"t is calculated with values from the input layer through

hidden layer(s) [16]. An error at the output layer is computed by comparing this output

and the desired output. Finally during a backward propagation of this error, to adjust

future outputs. each neuron updates the weights of its input connections to decrease the

error related to its output activation [1].

6

Generalized Delta Rule (Back Propagation)

The Generalized Delta Rule was originally intended for multi-layer, feed-forward

networks. With this rule, the error can be represented as a function of the network

weights and the mean squared error can be minimized by using a gradient descent method

[18]. Because the gradient is an essential part of this procedure, for the back-propagation

method to be able to work, the discriminator function must be differentiable. This

method has a problem of slow convergence as the system approaches a local minimum.

Calculation of the gradient at the output layer can be done easily because the

actual and desired outputs are available at the output layer. Such calculation becomes

difficult at the hidden layers where the desired outputs are not explicitly defined for them.

Using the generalized delta rule, one can derive the error term at the hidden layer from

the errors propagated back down through the network [7].

Wiener-Hopf Equations

Let's say that sensors produce individual signals, Xl' x2' ... , xp' These signals are

then applied to corresponding set of weights, wI, w2, ... , wp' The weighted signals are

then summed to produce the output signal "y".

p
y =2:: Wk:Xk

k=l

The object is to obtain the optimum setting of the weights, WI' w2' ... , wp' so as to

minimize the difference between the system output "y" and some desired response "d" in

a mean square sense [7].

1
.J = 2 E[(d-y)~

7

Error Minimization ProbLem

The question in this error minimization probLem is to determine the optimum set

of weights for which the mean-squared error is minimum. The cost function versus the

weights results in the error-performance surface, or simply "error surface". Ideally, the

error surface is bowl-shaped, with a well-defined bottom or global minimum where the

mean-squared error has its minimum value. To get this optimum condition, we

differentiate the cost function with respect to the weights and then set the result to zero

for all nodes. This derivatives of the cost function is called the gradient of the· error

surface with respect to the weights [7].

Method of Steepest Descent

The weights have a time-varying form, and their vaLues are adjusted in an

interactive way along the error surface, moving them progressively toward the optimum

soLution. The method of steepest descent continually seeks the bottom point of the error

surface. Successive changes are applied to the weights in the direction of steepest descent

of the error surface, that is, in a direction opposite to the gradient vector [7].

Because back propagation is based on steepest descent, it is so slow that it is obsolete.

There are some methods like conjugate gradient methods, Marquardt's method, Newton's

method and Quasi-Newton methods, that are much faster than this method. But the

back-propagation method is useful when we try to understand the basic behavior of an

ANN because of its simple configuration. [7]

8

2.1.4 HQW Can an ANN WQrk Better?

Cross-ValidatiQn

A well-generalized netwQrk has a reasQnably accurate mapping for future

input-Qutput patterns that were nQt used in creating Qr training the network. If a neural

netwQrk has tQQ many weights, it will learin the training well but it will be less able to

generalize between untrained similar input-output patterns. The Cross-validation method

is Qften adQpted tQ sQlve this Qver-generalization prQblem [7].

In the Cross-validatiQn method, the available data set is partitioned into a training

set and a test set. The idea here is tQ measure the generalizatiQn perfQrmance of the

netwQrk Qn a data set different from the Qne used fQr training the network. In this way we

can select a network which learns enough about the past to generalize to the future. [7]

Momentum

By including a momentum term in the delta rule, we can increase the learning rate

while still keeping the network stable. When the partial derivative of the error function

with respect to the weight vector has the same sign on consecutive iterations, the

exponentially weighted sum increases, and so the weight is updated by a large amount,

accelerating change in a steady downhill direction in the error space. When the partial

derivative error function with respect to the weight vector has opposite signs on

CQnsecutive iterations, the exponentially weighted sum decreases, and so the weight is

changed by a small amount, stabilizing and avoiding long steps that oscillate in sign. [7]

Stopping Criteria

Tn generaL for the back-propagation algorithm there are no well-defined criteria

for stopping its operation. Rather, we can use some reasonable criteria to terminate the

weight updates.

The back-propagation algorithm is considered to have converged when the

Euclidean norm of the gradient vector reaches a sufficiently small gradient value (or II

9

step SIze II < 10-5) and when the generalization performance passes through a local

maximum and starts to decrease.

2.2 Categorical Perception (CP) Effect

2.2.1 What Is the CP Effect?

There is a method that learns the embedded regularities in samples of input by which

patterns are sorted and named. Hanson defined "The Categorical Perception (CP) effect

works as an interaction between discrimination (the capacity to tell pairs of stimuli apart

which is a relative judgment) and identification (the capacity to categorize or name

individual stimuli, which is an absolute judgment)" [3].

When a network is trained to classify input patterns into categories, it compresses

within-category distances and expands between-category distances. Such CP categories

may be the basic form with which higher-order categories are made up.

The supervised learning in an ANN adjusts the pairwise distance between the

inputs to sort them into the categories until it obtains sufficient within-category

compression and between-category separation to accomplish reliable categorization.

There are four factors for the categorization during the learning process in an

ANN:

(I) maximal separation between input patterns, (2) linear separability at the hidden layer

level, (3) repulsive force to widen the gap between category boundary, and (4) the

similarity of the input codings [6].

2.2.2 How Does the CP Effect Related to Coding?

All we expect an ANN to do for categorization, is to extract and encode relevant

properties (symbol tokens) from the input patterns. Those tokens, which are interpreted

only by their form (syntactic) rather than their meaning (semantic) must be reducible to

non-symbolic, shape-preserving (iconic) representations. Iconicity representations are

10

used for relative discrimination because they preserve the common character of the input

for same-different judgments and pattern-matching. The iconicity factor corresponds to

12/2/98the number of common features between patterns. Therefore, in order for the

network to show the CP effects, the patterns have to be represented in a "meaningful"

way [4].

2.2.3 What Makes Thermometer Coding Better?

Place coding is the simplest form of ANN codings. In place coding, there is only

one output of "1" where the value range ends, otherwise output is "0". Thernlometer

coding is very similar to place coding, except that each unit remains as "1" if the value is

equal to or less than the value range as shown in Figure 4 [7].

Figure 4. Place coding and Thermometer coding

The place code is more arbitrary and the thermometer code more analog because

the thermometer code preserves some multi-unit constraints where the place code does

110t [4]. These extra multi-unit constraints mean relevant information spilled over to

adjacent units, which is critical during categorization tasks. Usually an N+ i-parameter

account should be truer than an N-parameter account of the same data. in that more

redundant information is used for reliability, robustness or speed [5].

Thermometer code has the advantage that the net only has to learn to turn a unit

on when the stimulus increases without turning off the unit next to it, and that the number

of active units is proportional to the coded value, whereas the place representation often

11

separates patterns into categories by expanding the value of hidden units to its maximum

or minimum. Iconic factors build up internal representations in which similar patterns

share overall physical similarities of shape. In the hidden-unit space, the more iconic nets

(thermometer code) push similar patterns close to one another, whereas the more arbitrary

input codings (place code) tend to push patterns to maximal bounds.

With place codings, only the endpoints of the category range are trained while the

interior points within the category are left free to vary. whereas a thermometer

representation interpolates to the untrained region because of the common parts from the

structure-preserving form.

-

CHAPTER III

RESULTS

In this research work. a multi-layer perceptron was trained with the Generalized

Delta Rule (back-propagation algorithm). The implementation languages were Java [14,

12.9] and MATLAB [lIl-

To improve the learning, the initialization of the synaptic weights and the

threshold levels of the network are uniformly distributed inside a small range, and

pattem-by-pattem updating wwas done for on-line operation. The order in which the

training examples are presented to the network was randomized (i.e., shuffled) from on~

epoch to the next. Finally a momentum constant was added in the equation for weight

updating.

The performance of place coding and thermometer coding was checked by

comparing 1) Least-mean-squared error and generalization (cross validation) error, 2)

error for theoretical data and for real-world data, and 3) error with noise and without

noise with different transfer functions, the numbers of hidden nodes and the numbers of

hidden layers.

3.1 Learning with Default Values for the Neural Network

• Learning rule for the backpropagation Gradient descent with momentum and

adaptive learning rate backpropagation

• Transfer function in the hidden layer: Hyperbolic tangent sigmoid transfer function

• The number of the nodes in the hidden layer: 3

• The number of the hidden layer: I

• Maximum epochs to stop the training: 4000

12

13

• The number of input nodes: 100

• The number of output nodes: 1

• Minimum gradient value to stop the training: 5e-004

• Learning rate: 0.1

• Momentum constant: 0.9

Data ; Theoretical data (Classification) : the input of the data is 100 bits encoded

according to the type of coding. The output of data is the corresponding integer number

to the input value. For example for place coding, if the i-th of input bit is "1" and all

others are "0" then the ouput of this input is an integer "i". For the same output value of

thermometer coding, all input bits until the i-th bit is ''I'' and after the i-th bit all input

bits are "0'".

3. 1. I Learning Without Noise

Thermometer coding converged much slower but had much smaller MSE and

generalization MSE than place coding. For place code the error values didn't change

much even with more learning.

Performance IS 744:B5. Goal's a

14

, I

Figure 5. MSE graph of place coding without noise

J T'd,no"g w,lh TRr\INGOX II!!I~£J

.• 10~, '--~--~_----J_--'---'-----'---",---,-L--'
a 1m 200 300 400 500 600 700 tJlJ

85lJ Epoc~~

Figure 6. MSE graph of thermometer coding without noise

15

TABLE I

Result of Learning without Noise

Epoch MSE General MSE

Classification Place 155.7 829.86 897.65
(with more training) (875) (829.86) (897.60

Classification Therm 874.5 94.637 110.56

3.1.2 Learning with Noise (Gaussian Noise with Variance of 1/2)

For place coding, noise didn't affect the result much, whereas added nOlse

increased MSE and generalization MSE by a great measure for thermometer coding.

Again. increased training epochs didn't have much effect on the error of place coding.

I liaOning w,lh TAAIN£iUX ~~E!

. , .t...
'

Performance i!> 744.~. Goal,s 0
'Q~ r.---.----'---r--'''-r-"''--.--r-----.--.--~..,..---ri

20 40

Figure 7. MSE graph of place coding with noise

Pe/forrnance is 54 0463, Goal is 0

Figure 8. MSE graph of thermometer coding with noise

TABLE II

Result of Learning with Noise

16

Epoch MSE General MSE

Classification Place with Noise 168.1 829.8c 897.65
(with more training) (1140) (829.86) (910.58)

Classification Therm with Noise 1139.9 219,23 207.97

17

3.2 Learning with Different Transfer Functions in the Hidden Layer

For the TRIBAS and RADBAS transfer functions, there wasn t much difference between

place and thennometer coding, whereas the LOGSIG transfer function had almost the

same result as the TANSIG transfer function. This result shows the fonn of the transfer

function is closely related to the CP effect since the TRIB S and RADBAS transfer

functions have triangular shape while the forms of the other two transfer functions are

rectangular which is more similar to the input representation. Also from the result values,

we can see that at the expense of more epochs, the LOGSIG transfer function decreased

the MSE and the generalization MSE to about half of those of the network with TANSIG

transfer function which is less rectangular than the LOGSIG function.

TABLE III

Result of Learning with RADBAS Transfer Function

Epoch MSE General MSE

Classification Place 129 829.86 897,65

Classification Place with Noise 129 829.86 897.65

Classification Therm 174,8 829,72 900.57

Classification Therm with Noise 153,3 829.86 897,65

TABLE IV

Result of Learning with LOGSIG Transfer Function

Epoch MSE General MSE

Classification Place 160.8 829.86 897.65

C1assific~ltion Place with Noise 138,5 829.86 897,65

Classification Therm 3816.7 33.749 63.563

Classification Therm with oise 3690.4 43.742 72.862

-
18

TABLE V

Result of Leaming with TRIBAS Transfer Function

Epoch MSE General MSE

Classification Place 129 829.86 897.65

Classification Place with Noise \29 829.86 897.65

Classification Therm 129.\ 829.86 899.29

Classification Therm with Noise 135.\ 829.86 896.05

3.3 Learning with Different Numbers of the Hidden Nodes

The more hidden nodes the network has, the better we can see the CP effect of

thermometer coding by checking the fact that for thermometer coding, the MSE and

Generalization MSE keep decreasing in proportional to the number of hidden nodes while

the networks with place coding didn't have much change with different numbers of

hidden nodes.

TABLE vr

Result of Learning with 6 Hidden Nodes

.Epoch MSE General MSE

Classification Place \56.1 829.49 904.76

C1assi fication Place with Noise \70.8 829.49 904.76
,

Classification Therm 2688 158.37 216.29

Classification Therm with Noise \29\ 157.41 284.84

-

19

TABLE VII

Result of Learning with 10 Hidden Nodes

Epoch MSE General MSE

Classification Place 248 829.86 897.65

Classification Place with Noise 259.8 829.86 897.65

Classification Tberm 2381 87.013 125.54

Classification Therm with Noise 1125.8 116.58 181.82

TABLE VIII

Result of Learning with 50 Hidden Nodes

Epoch MSE General MSE

Classification Place 695.4 829.86 897.65

Classification Place with Noise 939.4 761.25 980.85

Classification Therm 4000 16.288 76.551

Classification Therm with Noise 4000 27.282 87.323

3.4 Learning with Different Numbers of Hidden Layers

More hidden layers in a network hindered the CP effect for thermometer coding

while it didn't affect place coding.

-

TABLE IX

Result of Learning with 2 Hidden Layers

Epoch IMSE General MSE

Classification Place 152.2 829.86 897.65

Classification Place with Noise 536.6 829.86 897.69

Classification Therm 2812.6 \91.88 224.73

Classification Therm with Noise 3555.\ 203.91 252.4

TABLE X

Result of Learning with 3 Hidden Layers

20

Epoch MSE General MSE

Classification Place 160 829.86 897.65

Classification Place with Noise 558.5 829.86 897.65

Classification Therm 2717.3 241.63 371.5

Classification Therm with Noise 1819.7 344.43 459.47

TABLE XI

Result of Learning with 4 Hidden Layers

Epoch MSE General M E

Classification Place 199.7 829.86 897.65

Classification Place with Noise 206.6 829.86 897.65

Classification Therm 1498.9 519.9 562.9

Classification Therm with oise 1158.2 496.08 560.44

21

3.5 Learning with Different Data

ormalized real-world data (Hayes-Roth, Balance-Scale, Glass and Breast-Cancer

data) is llsed. Each column of data was encoded as one block with five bits and those bits

are marked according to the data value and coding type. All the data is trained by

networks with aU the default values specified in this chapter. The appendix of this paper

contains detailed specification for each data.

Thermometer coding gave the networks better MSE and generalization MSE with

real-world data.

TABLE XII

Result of Learning with Real World Data

Epoch MSE General MSE

Hayes-Roth Place 3228 0.17 0.169

Hayes-Roth Thermometer 4000 0.059 0.0985

Balance-Scale Place 4000 0.0109 0.0143

Balance-Scale Thermometer 1898.4 0.0006 0.0011

Glass Place 3216.1 1.1 J 26 2.8815

Glass Thermometer 4000 0.2747 2.0299

Breast-Cancer Place 2830.3 1.2353 6.2711

Breast-Cancer Thermometer 3726.6 0.5064 4.4451

3.6 Learning with Different Optimization

Using three different optimizations which are BFGS quasi-Newton (Q-Newton),

Scaled Conjugate Gradient (SCG) and Gradient Descent (GDX) Optimizations, input

samples are trained with different range of desired output values. We can see that

Q-Newton optimization converged quite faster than others with good results.

-

TABLE XIII

Result of Learning with Different Optimizations

22

Output Range Data Optimization Epoch MSE General MSE

GDX 3727.4 0.0988 1.6889

ClassificationI(,)-Newton lJ:l.1 U.U'J~~ 1.2:'78

Place SCG 398.2 0 1.4307
-l to 1 GDX 40795 0 0.3565

ClassificationI(,)-Newton)L u 0.4072

Therm SCG 871.9 (0.3036·

GDX 4117.4 0.0618 0.899
Classification !Q-Newton 46.7 0.1 'J~ I 1.5721

Place SCG 390.3 0 0.9887
() to 2 GDX 92787 0 0.0857

Classification I(,)-Newton IS'J .':1 U 0.2833

Therm SCG 1493.1 0 0.1128

-

CHAPTER IV

CONCLUSIONS AND FUTURE WORK

I have anayzed from these results, how thermometer coding shows much more CP

effect than place coding by comparing them with different data, learning rule , transfer

functions and network structures. Thermometer coding converged much slower but had

much smaller MSE and generalization MSE than place coding. For place code the error

values didn't change much even with more learning. This also can mean that

thermometer coding has an ability to overcome small local minima while place coding

doesn"t. For place coding, noise didn't affect the result much, whereas added noise

increased the MSE and generalization MSE by a great measure for thermometer coding.

This added noise may have changed the shape of the input samples, which slowed down

learing and increased errors for thermometer coding.

As for comparison of the different transfer functions, this result showed the form

of the transfer function is closely related to the CP effect since transfer functions more

similar to the input representation gave better results. The input data had retangular form

so transfer functions (e.i., the LOGSIC and TANSIG transfer functions) with retangular

form results in smaller error than transfer functions (e.i., the RADBAS and TRIBAS

transfer functions) with triangular shape.

The more hidden nodes the network has. the better we can see the CP effect of

thermometer coding by checking the fact that for thermometer coding, the MSE and

Generalization MSE keep decreasing in proportion to the number of hidden nodes. while

the networks with place coding didn't have much change with different numbers of

hidden nodes. This can be explained by the role of weights in a network as storage places

fl,r features of inputs. When a network tries to extract features from the given inputs and

23

-
24

to store them as weights, it is easy to see that more storage places can store more detailed

information about input patterns. However if the input pattern itself doesn t have enough

features to be stored, extra storage places don't mean much for this representation.

More hidden layers in a network hindered the CP effect for thermometer coding

while it didn't affect place coding. The first hidden layer from the input layer does all

the job of extracting features from the input pattern. Adding more hidden layers than one

between the input layer and the output layer will minimize the effort of the first hidden

layer.

Thermometer coding also gave the networks better MSE and better generalization

MSE with real-world data. This is no surprise since we can think real-world data as

theoretical data with noise, which already has been discussed.

Because of the particular way the weigh~ updating method works in the hidden

layers, some representations of input data work better than others. When similar inputs

have more common factors in their coding representation, an ANN is expected to show

better mapping result with its outputs than when there are not many common units

between similar inputs. For example, with thermometer coding a line of length "4"

(11110000) will share those four bits with a line of length "5" (11111000), whereas a

place coding (00010000 for "4" and 0000 I000 for "5") would not preserve any similarity

between these two lines. The place code is more arbitrary and the thermometer code

more iconic, in that with the thermometer eodings, some of the analog structure is

preserved through multi-unit constraints.

Further work could usefully investigate the construction of a neural network to

encode its input by itself with the result of the training [2] and comparison of

thermometer coding and place coding with different optimization algorithms like genetic

algorithms and simulated annealing. Comparison of different types of codings other than

thermometer coding and place coding like interpolation, continuous thermometer,

proportional coarse coding also could enrich these results.

-

REFERENCES

[I] Cowan, J. D. and Sharp, D. H. (1988) Artificial Intelligence, Journal of the American

Academy of Arts and Sciences VoLlI7, No.1. pp. 11-57

[2] Hancock, P. 1. (1989) Data Representation in Neural Nets. Connectionist Models

Summer School, San Mateo, CA. M.. Kaufmann pp. 11-20.

[3] Hanson, H. S. (1991) Categorical Perception and the Evolution of Supervised

Learning in Neural Nets. In D.W. Powers & L. Reeker (Eds.), "Working Papers of

the AAAI Spring Symposium on Machine Learning of Natural Language and

Ontology", pp. 65-74.

[4] Hamad, S. (1987) Categorical Perception: The Groundwork of Cognition New

York: Cambridge University Press.

[5] Hamad, S. (1991) The Symbol Grounding Problem and Categorical Perception.

AAAI Symposium on Symbol Grounding: Problem and practice, pp. 65-73.

[6] Hamad, S. (1994) Symbol Processors and Connectionist Network Models in Artificial

Intelligence and Cognitive Modelling: Steps Toward Principled Integration. Learned

Categorical Perception in Neural Nets: Implications for Symbol Grounding. In: V.

Honavar & L. Uhr (Eds.), Academic Press.

l7] lIaykin, S. (1944) Neural Networks: A Comprehensive Foundation. IEEE Computer

Society Press, pp. 1-40, 121-128,138-184.

[8] Hush, D. R. and Home B. G. (1993) Progress in Supervised Neural Networks. IEEE

Signal Processing Magazine, pp. 8-39.

[9] Karanjit, S. (1997) Inside Java. Indianapolis IN. New Riders.

[10] Lippmann, R. P. (1987) An Introduction to Computing with Neural Nets. IEEE

ASSP Magazine, VolA. No.2, pp. 4-22.

25

-
26

[II] Littlefield, B. and Hanselman, D. (1997) The Student Editon of MATLAS. the math

works Inc, pp. 42-149.

[12] Martin, L. (1997) Java Programming with Visual J++. M&T Books, New York,

.Y.

[13] McClelland, L. and Rumelhart, D. E. (1988) Explorations in Parallel Distributed

Pro(;essing. MIT Press, Cambridge, Mass. pp. 121-141.

[14] MichaeL M. (1996) Java Unleashed. Sams.net, Indianapolis. IN.

[15] Russell, S. and Norvig, P. (1995) Artificial Intelligence a Modern Approach.

Prentice-Hall, Upper Saddle River, New Jersey.

[16] Street, W. N. (1998) Proceedings of the Fifteenth International Conference on

Machine Learning. A Neural Network Model for Prognostic Prediction. In 1. Shavlik,

editor, Morgan Kaufmann, San Francisco, CA. pp. 540-546.

[17] Vemuri, V. R.(l992) Artificial Neural Networks: Concepts and Control

Applications. IEEE Computer Society Press, pp. 1-9.

[18] Widrow, B. and Stearns, S. D. (1985) Adaptive Signal Prowessing. Prentice-Hall,

Englewood Cliffs, N.J. pp. 1-54.

-

APPENDICES

27

Appendix A

A GLOSSARY

A : Artificial Neural Network

BP: Back Propagation

CP: Categorical Perception

Cross-validation method: a method to measure the generalization performance of the

network on a data set different from the one used for training the network

GDX : Gradient Descent Optimization

LOGSIG : Log sigmoid transfer function

Momentum: a constant value in the delta rule to increase the learning rate while still

keeping the network stable

MSE: Mean Squared Error

Place coding: a coding in which there is only one output of" 1" where the value range

ends, otherwise output is "0".

Thermometer coding: a coding in which each unit remains as "I" if the value is equal to

or less than the value range

RADBAS : Radial basis transfer function

SCG: Scaled Conjugate Gradient Optimization

TANSIG : Hyperbolic tangent sigmoid transfer function

TRIBAS : Triangular basis transfer function

Q- ewton: BFGS quasi-Newton Optimization

28

Appendix B

DATA SPECIFICATION

The following real world data is presented in this appendix.

B. L. Glass Identification Database

B.2. Balance Scale Weight & Distance Database

8.3. Hayes-Roth & Hayes-Roth (1977) Database

B.4. Wisconsin Prognostic Breast Cancer (WPBC)

29

B.l . Glass Identification Database

1. Title: Glass Identification Database

2. Sources:
(a) Creator: B. German

-- Central Research Establishment
Home Office Forensic Science Service
Aldermaston, Reading, Berkshire RG7 4PN

(b) Donor: Vina Spiehler, Ph.D., DABFT
Diagnostic Products Corporation
(213) 776-0180 (ext 3014)

(c) Date: September, 1987

3. Past Usage:
-- Rule Induction in Forensic Science

-- Ian W. Evett and Ernest 1. Spiehler
-- Central Research Establishment

Home Office Forensic Science Service
Aldermaston, Reading, Berkshire RG7 4PN

-. Unknown technical note number (sorry, not listed here)
-- General Results: nearest neighbor held its own with respect to the

rule-based system

4. Relevant Information:n
Villa conducted a comparison test of her rule-based system, BEAGLE, the
nearest-neighbor algorithm, and discriminant analysis. BEAGLE is
a product available through VRS Consulting, Inc.; 4676 Admiralty Way,
Suite 206: Marina Del Ray, CA 90292 (213) 827-7890 and FAX: -3189.
In determining whether the glass was a type of "float" glass or not,
the following results were obtained (# incorrect answers):

Type of Sample Beagle NN DA
Windows that were float processed (87) 10 12 2 I
Windows that were not: (76) 19 16 22

The study of classification of types of glass was motivated by
criminological investigation. At the scene of the crime, the glass left
can be used as evidence.. .if it is correctly identified!

5. Number of Instances: 214

(). Number of Attributes: 10 (including an Id#) plus the class attribute
-- all attributes are continuously valued

30

-

7. Attribute Information:
I. ld number: I to 214
2. Rl: refractive index
3. a: Sodium (unit measurement: weight percent in corresponding oxide as

are attributes 4-10)
4. Mg: Magnesium
5. AI: Aluminum
6. Si: Silicon
7. K: Potassium
8. Ca: Calcium
9. Ba: Barium
10. Fe: Iron
II. Type of glass: (class attribute)

-- 1 building_windows_floatyrocessed
-- 2 building_windows_non_float---'processed
-- 3 vehicle_windows_float---.processed
-- 4 vehicle_windows_non_float---.processed (none in this database)
-- 5 containers
-- 6 tableware
-- 7 headlarnps

8. Missing Attribute Values: None
Summary Statistics:
Attribute: Min Max Mean SD Correlation wi th class
2. RI: 1.5112 1.5339 1.5184 0.0030 -0.1642
.,

a: 10.73 17.38 13.4079 0.8166 0.5030J.

4. Mg: 0 4.49 2.6845 1.4424 -0.7447
5. AI: 0.29 3.5 1.4449 0.4993 0.5988
6. Si: 69.81 75.41 72.6509 0.7745 0.1515
7. K: 0 6.21 0.4971 0.6522 -0.0100
8. Ca: 5.43 16.19 8.9570 1.4232 0.0007
9. Ba: 0 3.15 0.1750 0.4972 0.5751
10. Fe: 0 0.51 0.0570 0.0974 -0.1879

9. Class Distribution: (out of214 total instances)
-- 163 Window glass (building windows and vehicle windows)

-- 87 float processed
-- 70 building windows
-- 17 vehicle windows

-- 76 non-float processed
.- 76 building windows
-- 0 vehicle windows

-- 51 Non-window glass
_. 13 containers
-- 9 tableware
-- 29 headlamps

31

-

B.2. Balance Scale Weight & Distance Database

1. Title: Balance Scale Weight & Distance Database

2. Source Infonnation:
(a) Source: Generated to model psychological experiments reported

by Siegler, R. S. (1976). Three Aspects of Cognitive
Development. Cognitive Psychology, 8, 481-520.

(b) Donor: Tim Hume (hllme@ics.uci.edu)
(c) Date: 22 April 1994

3. Past Usage: (possibly different fonnats of this data)
- Publications

1. Klahr. D., & Siegler, R.S. (1978). The Representation of
Children's Knowledge. In H. W. Reese & L. P. Lipsitt (Eds.),
Advances in Child Development and Behavior, pp. 61-116. New
York: Academic Press

2. Langley,P. (1987). A General Theory of Discrimination
Learning. In D. Klahr, P. Langley, & R. Neches (Eds.),
Production System Models of Learning and Development, pp.
99-161. Cambridge, MA: MIT Press

]. Newell, A. (1990). Unified Theories of Cognition.
Cambridge, MA: Harvard University Press

4. McClelland, J.L. (1988). Parallel Distibuted Processing:
Implications for Cognition and Development. Technical
Report AIP-47. Department of Psychology, Carnegie-Mellon
University

S. Shultz, T., Mareschal, D., & Schmidt. W. (1994). Modeling
Cognitive Development on Balance Scale Phenomena. Machine
Learning, Vol. 16, pp. 59-88.

4. Relevant Information:
This data set was generated to model psychological
experimental results. Each example is classified as having the
balance scale tip to the right, tip to the left, or be
balanced. The attributes are the left weight, the left
distance, the right weight, and the right distance. The
correct way to find the class is the greater of
(left-distance * left-weight) and (right-distance *
right-weight). If they are equal, it is balanced.

5. Number of Instances: 625 (49 balanced, 288 left, 288 right)

6. umber of Attributes: 4 (numeric) + class name =5

7. Attribute Information:

32

-

1. Class arne: 3 (L, 8, R)
2. Left-Weight: 5 (1, 2, 3, 4, 5)
3. Left-Distance: 5 (1,2,3,4,5)
4. Right-Weight: 5 (1, 2 3, 4, 5)
5. Right-Distance: 5 (1,2,3,4,5)

8. Missing Attribute Values:
none

9. Class Distribution:
1.46.08 percent are L
2.07.84 percent are 8
3.46.08 percent are R

"'3

-

B.3. Hayes-Roth & Hayes-Roth (1977) Database

1. Title: Hayes-Roth & Hayes-Roth (1977) Database

2. Source Information:
(a) Creators: Barbara and Frederick Hayes-Roth
(b) Donor: David W. Aha (aha@ics.uci.edu) (714) 856-8779
(c) Date: March. 1989

3. Past Usage:
I. Hayes-Roth, B., & Hayes-Roth, F. (1977). Concept learning and the

recognition and classification of exemplars. Journal of Verbal Learning
and Verbal Behavior, 16,321-338.
-- Results:

-- Human subjects classification and recognition performance:
I. decreases with distance from the prototype,
2. is better on unseen prototypes than old instances, and
3. improves with presentation frequency during learning.

2. Anderson, J.R., & Kline, P.J. (1979). A learning system and its
psychological implications. In Proceedings of the Sixth International
Joint Conference on Artificial Intelligence (pp. 16-21). Tokyo, Japan:
Morgan Kaufmann.
-- Partitioned the results into 4 classes:

1. prototypes
2. near-prototypes with high presentation frequency during learning
3. near-prototypes with low presentation frequency during learning
4. instances that are far from protoypes

-- Described evidence that ACT's classification confidence and
recognition behaviors closely simulated human subjects' behaviors.

3. Aha. D.W. (1989). Incremental learning of independent, overlapping, and
graded concept descriptions with an instance-based process framework.
Manuscript submitted for publication.
-- Used same partition as Anderson & Kline
-- Described evidence that Bloom's classification confidence behavior

is similar to the human subjects' behavior. Bloom fitted the data
more closely than did ACT.

4. Relevant Information:
This database contains 5 numeric-valued attributes. Only a subset of
3 are used during testing (the latter 3). Furthermore, only 2 of the
3 concepts are "used" during testing (i.e., those with the prototypes
000 and 111). I've mapped all values to their zero-indexing equivalents.

Some instances could be placed in either category 0 or 1. I've followed
the authors' suggestion, placing them in each category with equal
probability.

34

-

I've replaced the actual values of the attributes (i.e., hobby has values
chess, sports and stamps) with numeric values. I think. this is how
the authors' did this when testing the categorization models described
in the paper. I find this unfair. While the subjects were able to bring
background knowledge to bear on the attribute values and their
relationships, the algorithms were provided with no such knowledge. I'm
uncertain whether the 2 distractor a.ttributes (name and hobby) are
presented to the authors' algorithms during testing. However, it is clear
that only the age, educational status, and marital status attributes are
given during the human subjects' transfer tests.

5. Number ofInstances: 132 training instances, 28 test instances

6. Number of Attributes: 5 plus the class membership attribute. 3 concepts.

7. Attribute Information:
-- 1. name: distinct for each instance and represented numerically
-- 2. hobby: nominal values ranging between I and 3
-- 3. age: nominal values ranging between 1 and 4
-- 4. educational level: nominal values ranging between I and 4
-- 5. marital status: nominal values ranging between 1 and 4
-- 6. class: nominal value between I and 3

9. Missing Attribute Values: none

lO. Class Distribution: see below

11 . Detailed description of the experiment:
1. 3 categories (1, 2, and neither -- which I call 3)

-- some of the instances could be classified in either class I or 2, and
they have been evenly distributed between the two classes

2. 5 Attributes
-- A. name (a randomly-generated number between 1 and 132)
-- B. hobby (a randomly-generated number between 1 and 3)
-- C. age (a number between 1 and 4)
-- D. education level (a number between 1 and 4)
-- E. marital status (a number between 1 and 4)

3. Classification:
-- only attributes C-E are diagnostic; values for A and B are ignored
-- Class Neither: if a 4 occurs for any attribute C-E
-- Class 1: Otherwise, if(# of l's»(# of2's) for attributes C-E
-- Class 2: Otherwise, if (# of2's»(# of 1's) for attributes C-E
-- Either lor 2: Otherwise, if(# of2's)=(# of l's) for attributes C-E

4. Prototypes:
-- Class 1: III

35

-

-- Class 2: 222
-- Class Either: 333
-- Class Neither: 444

5. Number of training instances: 132
-- Each instance presented 0, 1, or 10 times
-- None of the prototypes seen during training
-- 3 instances from each of categories I. 2, and either are repeated

10 times each
-- 3 additional instances from the Either category are shown during

learning
5. umber of test instances: 28

-- All 9 class 1
-- All 9 class 2
-- All 6 class Either
-- All 4 prototypes

28 total

Observations of interest:
1. Relative classification confidence of

-- prototypes for classes 1 and 2 (2 instances)
(Anderson calls these Class 1 instances)

-- instances of class 1 with frequency 10 during training and
instances of class 2 with frequency 10 during training that
are I value away from their respective prototypes (6 instances)
(Anderson calls these Class 2 instances)

-- instances of class 1 with frequency 1 during training and
instances of class 2 with frequency 1 during training that
are I value away from their respective prototypes (6 instances)
(Anderson calls these Class 3 instances)

-- instances of class 1 with frequency 1 during training and
instances of class 2 with frequency 1 during training that
are 2 values away from their respective prototypes (6 instances)
(Anderson calls these Class 4 instances)

2. Relative classification recognition of them also

Some Expected results:
Both frequency and distance from prototype will effect the classification
accuracy of instances. Greater the frequency, higher the classification
confidence. Closer to prototype, higher the classification confidence.

36

-

BA. Wisconsin Prognostic Breast Cancer (WPBC)

1. Title: Wisconsin Prognostic Breast Cancer (WPBC)

2. Source Information

a) Creators:

Dr. William H. Wolberg, General Surgery Dept., University of
Wisconsin, Clinical Sciences Center, Madison, WI 53792
wolberg@eagle.surgery.wisc.edu

W. Nick Street, Computer Sciences Dept., University of
Wisconsin, 1210 West Dayton St., Madison, WI 53706
street@cs.wisc.edu 608-262-6619

Olvi L. Mangasarian, Computer Sciences Dept., University of
Wisconsin, 1210 West Dayton St., Madison, WI 53706
olvi@cs.wisc.edu

b) Donor: Nick Street

c) Date: December 1995

3. Past Usage:

Various versions of this data have been used in the following
publications:

(i) W. N. Street, O. L. Mangasarian, and W.H. Wolberg.
An inductive learning approach to prognostic prediction.
In A. Prieditis and S. Russell, editors, Proceedings of the
Twelfth International Conference on Machine Learning, pages
522--530, San Francisco, 1995. Morgan Kaufmann.

(ii) O.L. Mangasarian, W.N. Street and W.H. Wolberg.
Breast cancer diagnosis and prognosis via linear programming.
Operations Research, 43(4), pages 570-577, July-August 1995.

(iii) W.H. Wolberg, W.N. Street, D.M. Heisey, and O.L. Mangasarian.
Computerized breast cancer diagnosis and prognosis from fine
needle aspirates. Archives of Surgery 1995;130:511-516.

(iv) W.H. Wolberg, W.N. Street, and O.L. Mangasarian.
Image analysis and machine learning applied to breast cancer
diagnosis and prognosis. Analytical and Quantitative Cytology

37

-

and Histology, Vol. 17 No.2, pages 77-87, April 1995.

(v) W.H. Wolberg, W.N. Street D.M. Heisey, and O.L. Mangasarian.
Computer-derived nuclear "grade" and breast cancer prognosis.
Analytical and Quantitative Cytology and Histology, Vol. 17,
pages 257-264,1995.

See also:
http://www.cs.wisc.edu/-olviluwmp/mpml.html
http://www.cs.wisc.edu/-olvi/uwmp/cancer.html

Results:

Two possible learning problems:

I) Predicting field 2, outcome: R = recurrent, N =nonrecurrent
- Dataset should first be filtered to reflect a particular
endpoint; e.g.. recurrences before 24 months = positive.
nonrecurrence beyond 24 months = negative.
- 86.3% accuracy estimated accuracy on 2-year recurrence using
previous version of this data. Learning method: MSM-T (see
below) in the 4-dimensional space of Mean Texture, Worst Area,
Worst Concavity, Worst Fractal Dimension.

2) Predicting Time To Recur (field 3 in recurrent records)
- Estimated mean error 13.9 months using Recurrence urface
Approximation. (See references (i) and (ii) above)

4. Relevant information

Each record represents follow-up data for one breast cancer
case. These are consecutive patients seen by Dr. Wolberg
since 1984, and include only those cases exhibiting invasive
breast cancer and no evidence of distant metastases at the
time of diagnosis.

The tirst 30 features are computed from a digitized image of a
tin~ needle aspirate (FNA) of a breast mass. They describe
characteristics of the cell nuclei present in the image.
A few of the images can be found at
http://www.cs.wisc.edu/-street/images/

The separation described above was obtained using
Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree
Construction Via Linear Programming." Proceedings of the 4th
Midwest Artificial Intelligence and Cognitive Science Society,

38

-

pp. 97-101, 1992], a classification method which uses linear
programming to construct a decision tree. Relevant features
were selected using an exhaustive search in the space of 1-4
features and 1-3 separating planes.

The actual linear program used to obtain the separating plane
in the 3-dimensiona1 space is that described in:
[K. P. Bennett and O. L. Mangasarian: "Robust Linear
Programming Discrimination of Two Linearly Inseparable Sets",
Optimization Methods and Software 1, 1992,23-34].

The Recurrence Surface Approximation (RSA) method is a linear
programming model which predicts Time To Recur using both
recurrent and nonrecurrent cases. See references (i) and (ii)
above for details of the RSA method.

This database is also available through the UW CS ftp server:

ftp ftp.cs.wisc.edu
cd math-prog/cpo-dataset/machine-learn/WPBC/

5. Number of instances: 198
6. Number of attributes: 34 (10, outcome, 32 real-valued input features)
7. Attribute information
I) 10 number
2) Outcome (R = recur, N = nonrecur)
3) Time (recurrence time iffield 2 = R, disease-free time if

field 2 = N)
4-33) Ten real-valued features are computed for each cell nucleus:

a) radius (mean of distances from center to points on the perimeter)
b) texture (standard deviation of gray-scale values)
c) perimeter
d) area
e) smoothness (local variation in radius lengths)
t) compactness (perimeterl\2 I area - 1.0)
g) concavity (severity of concave portions of the contour)
h) concave points (number ofcnncave portions of the contour)
i) symmetry
j) fractal dimension ("coastline approximation" - I)

Several of the papers listed above contain detailed descriptions of
how these features are computed.
The mean, standard error, and "worst" or largest (mean of the three
largest values) of these features were computed for each image,
resulting in 30 features. For instance. field 4 is Mean Radius. field
14 is Radi us SE, field 24 is Worst Radius.
Values for features 4-33 are recoded with four significant digits.

39

-

34) Tumor size - diameter of the excised tumor in centimeters
35) Lymph node status - number of positive axillary lymph nodes
observed at time of surgery
8. Missing attribute values:

Lymph node status is missing in 4 cases.
9. Class distribution: 151 nonrecur, 47 recur

40

-

Appendix C

PROGRAM LISTING

The following program files are presented in this appendix.

Cl. Neural network in Matlab (ann.m)

C2. Encoder in Matlab (encode.m)

C3. Neural network in Java (ann.java)

41

-

C.I. Neural network in Matlab (ann.m)

\ * Author Beum-Seuk, Lee
\ * Created date Oct. 21, 1998
\ * Last updated date Oct. 31, 1998
\ * Require file: none except this file itself (Ann.m) - Matlab ver 5.2
\ * Function : Backpropagation neural network with different transfer functions
% and learning rule
\ * Reference : Duane Hanselman (1997) Matlab Version 5 User Guid, Prentice-Hall
Inc.

\ clear all the previous variables
clear all
% the input and output type
sCodeType ='place';
% Transfer function in the hidden layer
\RADBAS Radial basis transfer function
%T~~SIG Hyperbolic tangent sigmoid transfer function
%LOGSIG Log sigmoid transfer function
%TRIBAS Triangular basis transfer function
sTransPunc ='TANSIG';

% Learning rule for the backpropagation
sLearnMethod = 'TRAINGDX';
%TRAINBPG BFGS quasi-Newton backpropagation.
%TRAINCGB Conjugate gradient backpropagation with Powell-Beale updates.
%TRAINCGF Conjugate gradient backpropagation with Fletcher-Reeves updates.
%TRAINCGP Conjugate gradient backpropagation with Polak-Ribiere updates.
\TRAINGDX Gradient descent w/momentum & adaptive lr backpropagation.
%TRAINOSS One step secant backpropagation.
%TRAINRP RPROP backpropagation.
%TRAINSCG Scaled conjugate gradient backpropagation.
%TRAINWB By-weight-and-bias network training function.

12/2/98\
\ Initialization of input and output data
%

\ load the input and ouput file and save the data to the each variables
load hay_in.dat
load hay_out.dat
Originlnput = hay_in';
OriginOutput = hay_out';

%initialize the evaluation variables
GeneralizationError = 0;
OverallError = 0;
TrEpoch = 0;
TrPerf = 0;

\ set the number of learning steps
iStep = 10;

% get the data number and output nodes number
[iOutputNode,iDataNum) = size (OriginOutput) ;
[ilnputNode,iDataNum] = size (Originlnput) ;
iSeparate = iDataNum/iStep;

aLayer = [3 iOutputNode];
%shuffle the Originlnput and OriginOutput
for klndex = l:iDataNum

iRand = round«(rand(I,I)*iDataNum);
if iRand ,,= 0

iRand = 1;
elseif iRand >= iDataNum

iRand = iDataNum;
end
clnTmp = Originlnput(:,iRand);

42

-
43

cOutTmp = OriginOutput(:,iRand);
Originlnput (: ,iRand) = [);
OriginOutput(:,iRand) = [];
Originlnput = [clnTmp Originlnput) ;
OriginOutput = [cOutTmp OriginOutputl ;

end

'\

'\ main function of network
'\

for ilteration = l:iStep
ilteration
input = [) ;
output = [] ;
Untrainedlnput = [];
UntrainedOutput = [];
iTrainlndex = 1;
iTestlndex = 1;
% separate input date into training data and test data
for ilndex = l:iDataNum

i~ ilndex > iSeparate*(ilteration-1) & ilndex <= iSeparate*ilteration
Untrainedlnput(:,iTestlndex) = Originlnput(:,ilndex);
UntrainedOutput(:,iTestlndex) = OriginOutput(:,ilndex);
iTestlndex =iTestlndex + 1;

"!lse
input(:,iTrainlndex) = Originlnput(:,ilndex);
output(:,iTrainlndex) = OriginOutput(:,ilndex);
iTrainlndex = iTrainlndex+1;

end
end
input = encode (sCodeType, input,S) ;
Untrainedlnput = encode (sCodeType,Untrainedlnput, 5) ;
%

'\ initialize the network
'\ 1) maximum and minimum input range

'\ 2) Construction of a network with 1 hidden layer with 2 hidden nodes
'\ 3) transfer functions and learnling rule
%

net newf f ([min (input (: , :) ,) -1;
max (input (: , :) ,) +1] , ,aLayer, {sTransFunc, 'purelin' } , sLearnMethod) ;

%net
net.trainParam.show = 1000;
net.trainParam.epochs =4000;
net.trainParam.min_grad = se-004;

the net
net.trainParam.lr=O.l;
net.trainParam.mc=0.9;

'\ output the status of net every 100 epoch
'\ maximum epochs to stop the training

'\ minimum gradient value to stop the training

'\ Learning rate
'\ Momentum constant.

'\ train the network with input and output on the initialized net
[net,tr]=train(net,input,outputJ;

'\
'\ simulation the network with the untrained input (test samples)
%
check = sim(net,Untrainedlnput);
'\ get the MSE (Mean Square Error) to calculate generalization error
iDiffer = UntrainedOutput-check; '\ difference

iDiffer iDiffer.
A

2; '\ square
iSum sum(iDiffer,l); '\ sum
iSum sum(iSum,2l/iOutputNode; '\ sum

GeneralizationError = GeneralizationError + iSum/iSeparate;

'\ print out epoch and the MSE for trained samples after each step
TrEpoch = TrEpoch + tr.epoch(end);
TrPerf = TrPerf + tr.perflend);

end \-ilteration
\- print out overall result
\-

sCodeType
sLearnMethod
sTransFunc
aLayer
TrEpoch = TrEpoch/iStep \- 8poch
TrPerf = TrPerf/iStep \ Error
GeneralizationError = GeneralizationError/iStep \ Generalization error

44

-
45

C.2. Encoder in Matlab (encode.m)

\ • Author Beum-Seuk, Lee
\ • Created date Oct. 28, 1998
\ * Last updated date Nov. OS, 1998
\ * Require file: none except this file itself (encode.m) - Matlab ver 5.2
\ * Function : Normalize and encode the array
\ * Reference : Duane Hanselman (1997) Matlab version 5 User Guid,
\ Prentice-Hall Inc.

function aOutput = encode(sKind,aInput,iStep)
\function aOutput = encode(sKind,alnput,iStep)
Originlnput = aInput';
iDataNum =size(OriginInput,l);
iColNum =size(Originlnput,2);
\get mean
for iIndex = l:iColNum

iMinTmp(iIndex) = min(Originlnput(:,iIndex));
iMaxTmp(ilndex) = max(Originlnput(:,iIndex»);

end

for iIndex = l:iDataNum
for jlndex = l:iColNum
if iMaxTmp(jlndex) == iMinTmp(jlndex)

Originlnput (ilndex, jIndex) Originlnput (iIndex, jIndexl *100;
else

OriginInput(ilndex,jlndex)
round(IOriginlnput(ilndex,jlndex)-iMinTmp(jlndex»*iStep/(iMaxTmp(jlndex)-iMinTmp(jlndex»
) ;

end
end

end

Last = -ones(iDataNum,iColNum*iStep);
for klndex = l:iDataNum

for lIndex = l:iColNum
iOriginlnput = -ones(l,iStep);
for ilndex = l:iStep

switch sKind
case 'place'

\place
if Originlnput(klndex,lIndex) >~ 1

Last Iklndex, (lIndex-ll *iStep+Originlnput (kIndex, lIndex)) 1;
end

otherwise
\therm

for jlndex = 1:0riginInputlklndex,lIndex)
if jlndex >= 1

Last (klndex, (lIndex-ll*iStep+jlndex) = 1;
end

end
end \ if i Kind

end
end

end
aOutput = Last';

a class with information of each node
a class with information of weights of each connection
a class for input and output nodes
the main java applet with all neural network function

C.3. Neural network in Java (ann.java)

• Author Beum-Seuk, Lee
• Created date Feb. 07, 1998
• 'Last updated date Oct. 31, 1998
• Require file: none except this file itself (Ann.java) - JDK 1.0
• Function : Backpropagation neural network with momentum constant

Neurons are trained by Gradient descent method
1. the number of Hidden layers can be changed
2. the number of Hidden nodes for each Hidden layers

be changed with different values
3. Rescaling the input values by using
Value = (Value· Min)/(Max - Min)

4. Cross evaluation
Seperating test sets with training sets

5. Back propagation learning
6. It can have more than one Error functions
7. Shuffling training set at every epoch
8. The Error function is Mean-Square function

• Global variables :
1. cNode
2. cWeight
3. cIa
4. Ann

* Reference

can

46

1. Russell Norvig (1995) Artificial Intelligence: A Modern Approach
Prentice-Hall, Inc.pp. 563-584

2. Lippmann R. P. (1987) An Introduction to Computing with Neural Nets.
IEEE ASSP Magazine, Vol.4. No.2, pp. 4-22.

*1
II include some library files
import java.applet.*;
import java.awt.";
import java.lang.Math;
import java.io.*;
import java.util.Vector;
import java.lang.Math;
Ilclass for each node
class cNode

II synapse(weight) toward input layers
Vector vSynapse new Vector(O);
Ilcurrent output node value ai = g(ini) g(dSumOfWa)
double dSoma = 0.0; II aj = stepO(Wjk*ak)
lithe error factor
double dError = 0.0;
II the sum of all the multiplication of weight and node values
double dSumOfWa = 0.0; II Sum of Wjk*ak

}
II class for weight between two nodes
class cWeight

l
II current weight
double dWeight = 0.0;
II change of the weight
double dChangeWeight = 0.0;

II constructor
public cWeight(double dWeight)
{

this.dWeight = dWeight;
this.dChangeWeight = 0.0;

set of input and output vector
class cIO

-
47

boolean bTest = true;
boolean bRecur = false;
int iRecur = 0;
Vector vIn = new Vector(O);
Vector vOut = new Vector(O);

)
II main class to perform the neural network
public class Ann extends Applet
(

/Isum of the test errors
private static double dTestError 0;
Ilaverage ephoche
private static int iAveEpoche = 0;
lIthe number of item to be split to training and test set
private static int iSplitItems = 5;
Iltotal average error of the test sets
private static double dTotalError = 0;
II hidden layer vector which contains all the hidden layer
private static Vector vNumOfHidNode new Vector() ;
II count number for error limit
private static int iCumulativeCount 0;
II current error value which is Average Sum of square of all errors at the output nodes
private static double dError = 0;
II contain all the set of input and output values
private static Vector vIO = new Vector() ;
II the number of test set in all the set
p.ivace static int iMaxGroupSet = 0;
Iltraing set or test set
private static boolean bTraining = false;
II graphic object
private static Graphics m_Graphics;
II Base path of directory where Ann.html resides
private static String sBase = ""I
II data file name
private static String m_FileName ""I
II the number of input nodes
private static int m_iInput = 0;
II the number of output nodes
private static int m_iOutput = 0;
II the number of hidden layers
private static int m_iHiddenLayer = 0;

II the current training set index of the training set
public static int iCurrentSet = 0;
II count of the every set
public static int iCount = 0;
II count for error graph to draw dots
public static int iErrorCount = 0;
Ilmomentum for backpropagation
public static double dMomentum = 0.0;
I/learning rate
public static double dLearningRate = 0.0;
II hidden layers and output layer in the network
public static Vector vNodeLayer = new Vector(O);
II current output vlues(Target values)
public stacic Vector vOutput = new Vector(O} ;
flcurrent input values (input nodes)
public static Vector vInput = new Vector(O);
:1 Training set
public static Vector vTrainingSet new Vector(O) ;
/ 'test set
public static Vector vTestSet = new Vector(Ol;

il Parameter names. To change a name of a parameter, you need only make
.: a single change. Simply modify the value of the parameter string below.

:' /- -- - - - ----- ----- ---- ------- - ---- - -- - - --- - - --- - - -- - - -- ---- - - - --. - _. - - - -- _.-
pr~vate final String PARAM_sMyFileName = "sMyFileName";
private final String PARAM_iMyInput = "iMyInput";

-
48

PARAM_iMyOutput = " iMyOutput " ;
PARAM_iMyHiddenLayer = "iMyHiddenLayer";
PARAM_iMyHiddenNode = "iMyHiddenNode";
PARAM_iSeperate = "iSeperate";

String
String
String
String

private final
private final
private final
private final
public Ann ()
{
}
II applet information

public String getAppletlnfo()
{

return "Name: Ann\.r\n" +
"Author: Rom\.r\n" +
"Created with Microsoft Visual J++ Version 1.1";

}
1°

function : get variable from the HTML parameter tags
parameters : none
return value : each information

*/
public String [I [J getParameterlnfo ()
{

String (] [] info =
(

PARAr1 sMyFileName, "String", "Parameter description"),
PARAM-iMylnput, "int", "Parameter description" },
PARAM=iMyoutput, "int", "Parameter description" },
PARAM_iMyHiddenLayer, "int", "Parameter description" },
PARAM iMyHiddenNode, "String", "Parameter description" },
PARAM=iseperate, "int", "Parameter description" },

) ;

return info;

I
/*

function : initialize the applet
parameters : none
return value : none

*/
public void init()
(

String paramo
Ilget parameters from html file
param = getParameter(PARAM_sMyFileName);
if (param != null)

m_FileName = paramo

param = getParameter(PARAM_iMylnput);
if (param != null)

m_ilnput = Integer.parselnt(param);

param = getParameter(PARAM_iMyOutput);
if (param != null)

m_iOutput = Integer.parselnt(param);

param = getParameter(PARAM_iMyHiddenLayer);
if (param != null)

m_iHiddenLayer = Integer.parselnt(param);

param = getParameter(PARAM_iMyHiddenNode);
//parse the number of nodes in each hidden layer
if (param != null)

String sAll = paramo
String sCur :=1111;

int ilndex = 0;
for(int i = 0; i< m_iHiddenLayer; i++)

ilndex = sAll.indexOf(', ');
if(ilndex==-ll

-

ilndex : sAll.length();
sCur : sAll.substring(O,ilndex);
if(sCur.length()==O)

return;
if(ilndex != sAll.length())

sAIl sAll.substring(ilndex+l,sAll.length());
else

sAIl 1111;

vNumOfHidNode.addElement(new Integer(sCur));

param getParameter(PARAM_iSeperate);
iSplitltems = Integer.parselnt(param);

//get the base address of the html for file access
sBase = nO+getOocumentBase();
int iBase = sBase.lastlndexOf('/');
sBase sBase.substring(O,iBase+l);
iBase = sBase.indexOf('/');
sBase = sBase.substring(iBase+l,sBase.length());

resize(700, 34.0);

/*
function ; called when the applet is deleted
parameters : none
return value : none

*/
public void destroy()
{
}

/*
function : paint the applet

when the applet starts, it
will call this function to start main function

parameters ; Graphics class
return value ; none

*/
public void paint (Graphics g)
{

if (! bTraining)
(

rn_Graphics g;
maine) ;

/*
function ; called when the applet starts
parameters : none
return value : none

*/
public void start()
{
}

/*
function : called when the applet stops
parameters ; none
return value : none

*/
public void stope)
(
}

/*
function : main program of learning process
parameters : none
return value : none

• i

49

-

public static void main()
(

Ilget data from input data file
if (! bGetData ())

return;
lido for loop until get to the last one
for(int i = O;i<iMaxGroupSet;i++)
(

II seperate set of data to tra~n~ng and test set
vSeperateTrainigAndTestSet(i) ;
while (true)
(

Iishuffle the training set after training of all the set
i:(ibGetTraininSet(»

break;
Ilfoward
vRunNetwork() ;
Ilbackward propagation
if (! bTrainingl

vUpdateWeight() ;
Ilcalculate error
vErrorCalculate(} ;
Ilprint out the result
if (bTraining! liCurrentSet==vTrainingset.size())

vPrintOutput();
ii/while

lilfor
iAveEpoche = iAveEpoche liMaxGroupSet;
dTotaIEr=o= = dTotalError/iMaxGroupSet;
dTestError = dTestError/iMaxGroupSet;

vPrintToFile (" Average Test Set Error : "+dTestError);
vPrintToFile("Average Training Set Error: "+dTotalError);
vPrintToFile '" Averag.e Training Set Epoche : "+iAveEpoche);

1*
function : calculate error ... square, sum and average
parameters : none
return value : none

*1
public static void vErrorCalculate()
{

if(vTrainingSet.sizel)==O)
return;

double tError = 0.0;
Ilget the output layer
Vector vHidLay = (Vector)vNodeLayer.elementAt(vNodeLayer.size()-l);
II Everage of Sum(Error**2)
for(int i = O;i<vHidLay.size() ;i++)
(

double tmpError =«Double)vOutput.elementAt(i)) .doubleValue()
- «cNode)vHidLay.elementAt(i» .dSoma;

tmpError = Math.pow(tmpError,2);
tError += tmpError;

}
dError += tError;

function : seperating training set and test set
parameters : the index of the part to seperated
return value : none

°1
public static void vSeperateTrainigAndTestSet(int ilndex)
{

Ilinitialize some values for a new learning
·"lnitValues (, ;

50

-
51

Iiseperating from the index until get the set of size of iMaxGroupSet
for{int i=O;i<vIO.size() ;i++)
(

cIO io = new cIO() ;
io.VOut = (Vector) «(Vector) «cIO)vIO.elementAt(i») .VOut) .clone();
iO.vIn = (Vector) «Vector) «cIO)vIO.elementAt(i» .vIn) .clone(};
if (i >= (ilndex * iSplitItems) && i < ((iIndex+l) • iSplitltems)

vTestSet.addElement(io) ;
else

vTrainingSet.addElement(io) ;

1*
function : get the training set data from a file
parameters : none
return value : return true when there is no error in reading the file

*/
public static boolean bGetDatal1
{

m FileName

try

sBase+m_FileName;

(
Ilcheck if there exist the data file

if(new File (m_FileName) .exists())
(

RandomAccessFile raf = new
RandomAccessFile(m_FileName, "r") ;

String sFile = "";
String sCur :: "";
int ilndex = 0;
while ((sFile = raf. readLine ()) ! =null I

Ilif no input or malformat. quit
if(sFile.length()<2)

break;

cIO io a new cIO();

Ilget input values
for(int i = O;i < m_iInput;i++1
{

iIndex = sFile. indexOf (, ');
if (iIndexa=-l)

ilndex = sFile.length();
sCur = sSubString(sFile,O,ilndex);
if(sCur.length()==O)

return false;
if(iIndex != sFile.length())

sFile =
sSubString(sFile,ilndex+l,sFile.length();

else
sFile = u";

iO.vIn.addElement(new Double(sCur));

/Iget output values
for(int i = O;i < m iOutput;i++J
{ -

iIndex = sFi e. indexOf (. .);
if (ilndex==-l)

iIndex = sFile . length () ;
sCur = sSubString(sFile,O,iIndex);
if(sCur.length()==O)

return false;
if(iIndex != sFile.length())

system.err.println(e);

vIO.size() I iSplitItems;

-

sFile
sSubString(SFile.iIndex+1,sFile.length(»;

else
sFile = "";

io.vOut.addElement(new
Double(sCur) ;

vIO.addElement(io) ;

Illwhile
raf.close();

Illexist
else

System.err.println(m_FileName+" Not found!");
return false;

Illtry
catch (FileNotFoundException e)
(

System.err.println(e);

I
catch (IOException e)
(

I
Ilcalculate the iMaxGroupSet by dividing it by 5
if(iSplitItems!=O)

iMaxGroupSet
else

iMaxGroupSet 1;

if (iMaxGroupSet==O)
iMaxGroupSet 1·

return true;

function : reset the input and output value in scale
parameters: vec is the vector to be scaled Test or Training set
return value : none

./
public static void vScaleReset(Vector vec)
(

if{vec.size()==O)
return;

Vector vMax = new Vector();
Vector vMin = new Vector();
int iInputSize = ((cIO)vec.elementAt(O) .vIn.size();
//initialize the max as the smallest num and min as the biggest one
forlint i = O;i<iInputSize;i++)
(

vMax.addElement(new Double(Double.MIN_VALUE»);
vMin.addElement(new Double(Double.MAX_VALUE»);

}
//get the max and min for each column
for(int i = O;i<vec.size() ;i++)
(

cIO io = (cIO)vec.elementAt(i);
forlint j = O;j<io.vIn.size() ;j++)
(

double dTmp = (Double)io.vln.elementAt(j») .doubleValue();
if(dTmp > «(Double)vMax.elementAtlj» .doubleValue(»)

vMax.setElementAt(new Double(dTmp). j);
else if I dTmp < «DoublelvMin.elementAtlj») .doubleValue()

vMin.setElementAt(new Double(dTmp). j);

52

vOutput.addElement(new Double(O.O));

-

I
I'

·1

Illfor i

Ilrescale the input values
Ilget the max and min for each colmn
for(int i = O;i<vec.size();i++)

cIO io = (cIO)vec.elementAt(i);
double dMin 0;
double dMax = 0;
double dVal = 0;
for(int j = O;j<io.vIn.size() ;j++l
(

dVal «Double)io.vln.elementAt(j)) .doubleValue();
dMin «Double)vMin.elementAt(j)) .doubleValue();
dMax «Double)vMax.elementAt(j)) .doubleValue();
if ((dMax-dMin) ! =0)

dVal = (dVal - dMin) I (dMax-dMin) ;

io.vIn.setElementAt(new Double (dVal) .j);

vec.setElementAt(io, i) ;

function : initiate values
parameters : none
return value : none

pUblic static void vInitValues()
{

vNodeLayer.removeAllElements() ;
vlnput.removeAllElements();
vOutput.remo~eAllElements();
vTestSet.removeAllElements();
vTrainingSet.removeAllElements() ;

iCumulativeCount = 0;
iCount = 0;
iCurrentSet 0;
iErrorCount 0;

bTraining = false;

dLearningRate = 0.1;
dMomentum = 0.9;

int iMaxInput = m_ilnput;113;
int iLastNodeSize = m_iOutput;117;

int iNodeLayer = m_iHiddenLayer+l;
int iNode = 0;

Ilinit input layer
for(int i = O;i<iMaxlnput;i++)
{

vlnput.addElement(new Double(O.O));

I
lithe bias node
vlnput.addElement(new Double(O.O));

Ilinit output layer
for(int i = O;i<iLastNodeSize;i++)
(

I

/ hni t Nodelayer
for(int i=O;i<iNodeLayer;i++1

53

-
54

Vector vTempNode = new Vector(O);
Ilfor the output
if(i==(iNodeLayer-l»

iNode iLastNodeSize;
else

iNode ((Integer)vNumOfHidNode.elementAt(i» .intValue();
for(int j = O;j<iNode;j •• l
(

cNode cTempNode = new cNode(;
Ilupdate the vSynapse
lithe first Node layer set the synapse with input nodes
if (i==O)

vSetSynapse(vInput.size() ,cTempNode);
else

vSetSynapse((Vector)vNodeLayer.elementAt(i-l» .size() ,cTempNode);

vTempNode.addElement(cTempNode) ;
)
vNodeLayer.addElement(vTempNode) ;

function ; run network with given inputs and weights
parameters : none
return value ; none

~I

public static void vRunNetwork()
(

if IvTrainingSet.size() ==0)
return;

for(int i = 0; i<vNodeLayer.size () ;i+.l
(

Vector vTmpNode = (Vector) vNodeLayer. elementAt (i) ;
for(int j = O;j<vTmpNode.sizel) ;j ••)
(

cNode cHid = (cNode)vTmpNode.elementAtlj);
cHid.dSumOfWa = 0;

for(int k = O;k<cHid.vSynapse.size();k++)
I

double dWeight

«(cWeight)cHid.vSynapse.elementAt(k») .dWeight;

lithe first hidden node
if (i==0)

cHid.dSumOfWa +=

dWeight+«DoublelvInput.elementAtlk») .doubleValue();
else

cHid.dSumOfWa += dWeight+

{(cNode) « ectorlvNodeLayer.elementAt(i-l) .elementAt(k» .dSoma;

1 C J usc for bias

}llk
Ilomit the last node of hidden layers to be updated, because

if(i '= vNodeLayer.size(l-l && j==vTmpNode.sizel)-l)
cHid.dSoma 1.0;

else
cHid.dSoma dActivationFunct~on(cHid.dSumOfWa);

-

55

vTmpNode.setElementAt(cHid,j);
}llj
vNodeLayer.setElementAt (vTmpNode, i) ;

}lli

I-
function : update weights with the error values
parameters : none
return value : none

"I
public static void vUpdateWeight()
(

double tLearningRate = dLearningRate:

IINode layers
for(int k = vNodeLayer.size()-l;k>-l;k--)
{

Vector vHidLay = (Vector)vNodeLayer.elementAt(k);
for(int i = O;i<vHidLay.size() ;i++)
(

cNode hid = (cNode) vHidLay. elementAt (i) ;
lIthe last layer gets the error from the output layer
Ilit it is the output layer (T-O) "g' (Inil
if(k == vNodeLayer.size()-l)
(

hid.dError = dErrorFunction(true,k,i);

else
II Error(i) [Result(i) - OutPut(il]"g' (SumOfWa(i))

I I Error(j) g' (SumOfWa (jl 1+SumOf (W(i, j) +Error(i»)
hid.dError = dErrorFunction(false,k,il;

for(int j = 0; j< hid.vSynapse.size() ;j++)
(

IIWk,j = Wk,j +a *Ik*Ej
double dSoma = 0.0;
if(k==Ol

dSoma =
({Doublelvlnput.elementAt(j») .doubleValue();

else
Ilget the node input value of toinput
dSoma

= ((cNode) ((Vector) vNodeLayer. elementAt (k-ll) . elementAt (j) I . dSoma;

II W{j,k) = W(j,k)
+a"SumOf (g' (SumOfWa (j) "SumOf (W (i, j I "Error (il) I I

cWeight wt = (cWeightlhid.vSynapse.elementAt(j);
double dChangeWeight = wt.dChangeWeight"dMomentum +

tLearningRate " dSoma • hid.dError;
wt.dWeight = wt.dWeight+dChangeWeight;
wt.dChangeWeight = dChangeWeight:
hid.vSynapse.setElementAt(wt,jl;

}llj
vHidLay.setElementAt(hid,i) ;

}lli
vNodeLayer.setElementAt(vHidLay,kl;
tLearningRate 1= 2;

}llk

I -
function : set the bias and synnections with weight
parameters : iNum is the Synapes

hid is the hidden node
class

./
return value none

56

public static void vSetSynapse(int iNum,cNode hid)
{

for(int i = O;i<iNum;i++)
{

Ilrandom from -1.0 to 1.0
hid.vSynapse.addElement(new

cWeight(Math.random()-0.5»,II(newDouble«(Math.random()*2.0)-1.0);
}

+/

function
paramet.ers
ret.urn value

if reach the end of t.he testset., shuffle it
none
mark bit to check if t.he t.raining should be finished or not

vlnput.setElementAt«Double)cur.vIn.elementAt(i) ,i) ;

public static boolean bGetTraininSet()
{

if(iCurrent.Set >= vTrainingSet..size(»
{

Ilif it finished t.he checking t.he training set.,
if (!bErrorGraph ())

return false;

Ilif Trainingset no need to shuffle
if (!bTraining)
{

Vector vec = new Vector(O) ;
while(vTrainingSet.size() !=O)
{

int ilndex
(int) (Mat.h. random () • (vTrainingSet. size ())) ;

cIO t.est. = new cIO();
test = (cIO)vTrainingSet.elementAt(ilndex);
vec.addElement.(test) ;
vTrainingSet.removeElementAt(ilndexl;

}
vTrainingSet= new Vector();
vTrainingSet = (Vector)vec.clone();

)
else

dError = 0;
if(vTrainingSet.size()==O)

return false;

iCurrentSet = 0;
}
if(vTrainingSet.size() <= iCurrentSet)

return false;
cIO cur (cIO)vTrainingSet.elementAt(iCurrentSetl;
for(int. i = O;i<cur.vIn.size() ;i~+)

{

}
for(int. i = O;i<cur.vOut.size() ;i~+)

{
vOutput.setElementAt((Double) cur.vOut.element.At (i) ,il;

iCurrentSet~+;

return true;

+ '

function
paramet.ers
return 'Jalue

print out. t.he input and output after do net working
none
none

57

public static void vPrintOutput()
{

if (vTrainingSet.size() ==0)
return;

String sTraining = (!hTraining) ?"Train: ": "Test : "
String st = "\r\n"+sTraining+iCount++ + "\r\nlnput ";
String sTmp= "";
//input nodes

forlint i O;i<vlnput.size()-l;i++)
{

if (((Double)vlnput. elementAt (i») . toString() .indexOf (, -') ==-1)
sTmp = ((Double) vlnput. elementAt Ii) . toString I) + "

else
sTmp ((Double)vlnput.elementAt(i)) .toString()+ •

sTmp
st +=

+=-" " j

sTmp.suhstring(O,S) .. "

st += "\r\nOutput Result\r\n";
//Target values of output nodes

Vector vLastNode =
(Vector)vNodeLayer.elementAt(vNodeLayer.size()-l) ;

for(int i ~ O;i<voutput.size() ;i++)
(

cNode nod = IcNode)vLastNode.elementAt(i);
String sDouble = «Double)vOutput.elementAt(i) .toString();
if(sDouble.indexOf('-')==-l)

sTrop II II +5Double+ II II ;

else
sTmp " "+sDouble+ " " j

sTmp +="
st += sTmp.substring(O,S)+" "+nod.dSoma+"\r\n";

st += "\r\nError : " +dError / vTrainingSet.size()i
vPrintToFile(st) ;

0/

function
parameters
return value

print out a string to a default output file
String to print out
none

public static void vPrintToFile(String st)
{

//store the value to the output file
try
(

RandomAccessFile fOut = new
RandomAccessFile(sBase+"output","rw") ;

//move the file pointer to the last of the file to append
rather than to overwrite

fOut.seek(fOut.length(») ;
fOut. wri teBytes (st+" \r\n") ;
fOut.close() ;

)//try
//check the exceptions
catch (FileNotFoundException e)

System.err.println(e),.

catch (IOException e)

System.err.println(e);

-
58

1*
function
parameters
return value

Activation function
dSum is the Sum of Weighted inputs
double value of the result of activation function

*1
public static double dActivationFunction(double dSum)
{

double dResult = 0,
Iistandard sigmoid

dResult = (l/(l+Math.exp(-dSum)));
return dResult;

}
1*

function
parameters
return value

Derivate Activation function
dSum is the Sum of Weighted inputs
double value of the result of der~vative activation function

*1
public static double dDerivativeActivationFunction(double dSum)
(

double dActiveFunc = dActivationFunction(dSum);
Ilg' = g(l-g)

return dActiveFunc*(l-dActiveFunc);

1*

is node index

function
parameters

return value

Error function
bLast means the last layer, iLayer is the layer index, iNode

double value of the result of error function
*1
public static double dErrorFunction(boolean bLast,int iLayer,int iNode)
(

double dSum = 0.0;
Vector vToOutput = new Vector();
vToOutput = (Vector)vNodeLayer.elementAt(iLayer);

cNode cError = (cNode)vToOutput.elementAt(iNode);
if (bLast)

dSum = (((Double)vOutput.elementAt(iNode») .doubleValue()
cError.dSoma)*

dDerivativeActivationFunction(cError.dSumOfWa) ;
else

vToOutput
for lint i

(Vector)vNodeLayer.elementAt(iLayer+1) ;
O;i<vToOutput.size();i++)

cNode hid = (cNode)vToOutput.elementAt(i);
II Error(j) = g' (SumOfWa(j»)*SumOf(W(j,i)*Error(i)
IISum of (Wji*Erroi)
dSum += hid.dError*

({cWeight)hid.vSynapse.elementAt(iNode») .dWeight;
}
dSum *= dDerivativeActivationFunction(cError.dSumOfWa);

return dSum;
}
1*

.,

function
parameters
return value

draw a dot after learning one set
none
mark bit to check if this is the last graph print or not

public sta ic boolean bErrOrGraph()
(

drawLines() ;
iErrorCount++;
dError 1= vTrainingSet.size();
double dTmpError = dError;
dError *= 300;11300,2000

59

1nt ix = 100;
int iy = 300;
if (dError :> iy)

dError iy;

if (! bTraining)
{

11m_Graphics. drawString (" "+dTmpError, iErrorCount/4+ix+10, (int) (iy-dError+10)) ;

m_Graphics.drawLine(iErrorCount/4+ix, (int) (iy-dError),iErrorCount/4+ix-l, (int) (iy-dError
)} ;

)
else

m_Graphics.drawLine<lOO, lint) (iy-dErrorl ,700, (int) (iy-dErrorl);

Iidon't need to shuffle after finishing Trainingset
if lbTraining)
{

dTestError += dTmpError;
return false;

}
Ilif the error reach a certain value, stop and check the trainingset
Ilif the error reach a certain value, stop and check the trainingset
if (dTmpError < 0.001 I I iErrorCount:>1000)1128,40
{

if(iCumulativeCount :> 81 I iErrorCount:>1000)118
{

iAveEpoche += iErrorCount;
dTotalError += dTmpError;
dError = 0;
bTraining = true;
vGetTrainingSet() ;
I/don't need to shuffle after get a trainingset
return true;

)
iCumulativeCount++;

l
else

iCumulativeCount 0;
dError = 0;
return true;

}
I'

function
parameters
return value

put the traing set into test set
none
none

°1
public static void vGetTrainingSetl)
(

vTrainingSet.removeAllElementsll;
vTrainingSet = new Vector() ;
vTrainingSet = (Vector)vTestSet.clonel);
Ilreset the currentSet number as 0
iCurrentSet = 0;
m_Graphics. setColor (Color. red) ;

, i

function
parameters
return value

draw graph axis
none
none

public static void drawLinesl)
(

m_Graphics.setColorlColor.black) ;

m_Graphics.drawLinellOO, 0, 100,304) ;
m_Graphics.drawLine(100,304,700,304)

60

m_Graphics. drawString ("Error", 40,10) ;
for(int i=0;i<10;i++)

I
m_Graphics.drawLine(95,i*30,lOO,i*30) ;
double itmp = lO-i;
itmp 1= 10;
m_Graphics.drawString(" "+itmp,60,i*30);

m_Graphics.drawString("Iteration",650,335);
for(int i=0;i<l2;i++)

I
m_Graphics.drawLine(i*50+100,304,i*50+l00,3l0l;
int itmp = i*200;
m_Graphics.drawString(" "+itmp,i*50+l00,316);

function
parameters
return value

message event process
evt is the event class
bit mark to propagate this error to the parent event

• I
public boolean handleEvent (Event evt)

I
Ilfor the dubble click, move the pushabel block while moving
Ilor if the clicked point is the Me, release the traped cells from it
if(evt.id == Event.MOUSE DOWN)
I -

if(evt.clickCount == 2)

I
dError=O;
iCumulativeCount= 20;

return false;

function
parameters

index of the substring

of the substring
return value

Get the substring
sIn is the input string

the substring of the input string

is tart is the start

iEnd is the end index

°1
public static String sSubString(String sIn,int iStart, int iEndl
(

String sTmp = "";
for(int j = iStart;j<iEnd;j++)

sTmp += sIn.charAt(jl;
return sTmp;

/1 end of ANN class

-

VIT

Beum-Seuk Lee

Candidate for the Degree of

Master of Science

Thesis: COMPARlSON OF PLACE CODING AND THERMOMETER CODING
I NEURAL NETWORKS

MeYor Field: Computer Science

Biographical:

Personal Data: Born in Chunbook, South Korea, On April 21, 1973, son of Mr.
Seong-Hee Lee and Mrs. Hyeon-Duck Hong.

Education : Received Bachelor of Science Degree from Konkuk University,
Seoul, South Korea in February 1996; completed the requirements for the
Master of Science Degree at Oklahoma State University in May 1999.

Professional Experience: From December 1995 to August 1997 worked as
Research and Development Coordinator for Choongwae Medical
Corporation, Seoul, South Korea.

