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PREFACE

Abstraction-based program specialization (ABPS) was investigated so that it could
be applied to Java and make automated improvements to help with finite state verifi-
cation. Research was conducted on partial evaluation and abstract interpretation. A
prototype to do abstraction-based program specialization was constructed by Hatcliff,
Dwyer, and Laubach. This work scaled the prototype to a subset of Java and made
some general improvements. Today’s software is large and complex. Because of this
complexity, traditional validation and program testing techniques are hard to apply.
One method in use is finite-state verification (FSV). FSV requires a program to be
modeled as a finite-state transition system. Currently, the modeling is done by hand,
an error-prone process. Also, the state space of a non-trivial program is extremely
large (potentially infinite).

This thesis created an ABPS that uses partial evaluation and abstract interpre-
tation to reduce a program model’s state space. Partial evaluation performs sym-
bolic execution; it specializes programs by folding constants and pruning infeasible
branches from the computation tree. The abstract interpretation component replaces
program data types with small sets of abstract tokens that capture information rel-
evant to properties being verified. This can dramatically reduce a program’s state
space. Abstraction-based program specialization is a viable option for improving code
and automating the use of finite state verifiers. Much work still needs to be done to
completely scale abstraction-based program specialization to include all of Java and
to make the process more automatic. Finally, several examples illustrate how ABPS

can be applied to automatically create models of simple software systems.
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CHAPTER 1

INTRODUCTION

1.1 Modern Software Systems

Many of today’s software systems are large, concurrent systems developed by teams
of programmers. Because of their complexity, traditional validation and program
testing are hard to apply to these systems. Usually, one turns to systematic tools
that use semantic and formal methods. Proof-based methods usually involve proving
the partial or total correctness of the relevant piece of software. Model-based methods,
i.e., verification or model checking, check whether certain specified invariants hold.
Proof-based methods are often difficult to use because they require the user to
construct manually (with some degree of automated assistance) a complete proof of
the program’s correctness. While model-based methods cannot establish properties
as strong as proof-based methods can, model-based methods are highly automated

and relatively easy to use.

1.2 Finite State Verification

Model-based, finite-state verification (FSV) [18] techniques can be used to check that
a system satisfies certain properties. For example, FSV can verify that the system is
dead-lock free or that when the program arrives at a certain point a variable has a

particular value. To apply FSV, first one models the system to be reasoned about as a



finite-state transition system [18]. Then one describes the specification. Finally, one
gives the finite-state transition system and the specification to a verifier. The verifier
finds all the reachable states while ensuring that the specification is satisfied at each
state. If the specification does not hold, FSV will give a trace counter-example that
caused the check to fail.

FSV was originally developed for hardware verification [10], but is now being
applied to software to assure high quality. FSV has been used effectively to validate
many applications including network protocols [18, 25, 32|, graphical user interfaces
(10], railway interlocking systems [6], and industrial control systems [5, 14].

FSV is a promising technique for verifying software. However, it does have a large
drawback: the size of the state space. The state space for a software system can be
very large (potentially infinite), so it is difficult to check each state. One solution is to
map the software components to suitable abstractions with small finite state spaces
[17].

This has been done in the past by performing the mappings by hand [10, 14,
32]. This requires unfolding loops, in-lining methods (most FSV tools cannot handle
method calls), changing dynamic memory allocation to compile time, and other steps.
[n addition, the user must come up with valid, usable abstractions that safely abstract

or model the system. This works, but it is tedious, slow, and error prone.

1.3 Abstraction-Based Program Specialization

What is needed is an automatic tool for constructing abstract models. It appears
that this can be done with two semantic based techniques: partial evaluation and
abstract interpretation. Partial evaluation is an automatic technique for specializing
programs based on information known about the environment or expected patterns

of use. Abstract interpretation is a rigorous methodology for static program analysis



by manipulating abstract tokens. These together can reduce the state space by sym-
bolically executing portions of the program and by reducing the conditional branches.
The exact abstract representation used depends on the properties to be verified. It
seems possible to combine these methods into a tool: an abstraction-based program
specializer (ABPS). ABPS would be a set of automatic tools that can do partial
evaluation (see Section 2.1) and can do abstract interpretation (see Section 2.2) on

programs to create models for FSV.

1.3.1 ABPS Example

As an example, taken from [17], consider a connector used in the construction of
concurrent software [11, 12]. This connector describes the topology, inter-connection,
and communication constraints of replicated worker-style computations. The workers
communally accesses shared pool of work items. It is implemented in Ada.

Figure 1.1 illustrates a code skeleton for the pool component; significant detail
has been in-lined to streamline the example. Since FSV works by enumerating and
checking all possible program states, even the Natural domain for the single variable
wc that maintains the number of elements in the work pool causes state-space enu-
meration to be intractable. To obtain a usable state space, we abstract the values
of we : Natural can be abstracted using a counter abstraction whose abstract do-
main ranges over just four values: unknown, zero, and positive. Figure 1.2 gives the
ordering of these values and the associated abstract operators.

Figure 1.1 also illustrates the results of applying ABPS using the counter abstrac-
tion. The results of specialization are given in Ada comments (e.g., == wc : AbsNatural).
The type Natural and the associated operations are specialized to the type AbsNatural
(an enumerated type containing the values zero, positive, unknown) and associated

operations. In summary, ABPS yields a source-level abstraction of the original pro-




task body ActivePool is loop
wc : Natural; select when ... or wc > 0 =>
-- wc : AbsNatural; -- select when ... or wc = positive =>
begin accept Get(...) do
wec = 0; wc = wec - 1;
-- WC = Zero; -- wc := unknown;
Outer: 1loop end Get;
loop or accept Put(...) do
select accept ShutDown; WwC = wc + 1;
exit Outer; -- Wwc := positive;
or accept Start(...); end Put;
exit; or ...
or accept Put(...) do end select;
wec = wec + 1; if ... and wc=0 then
-- Wc := positive; -- if ... and wc=zero then
end Put; exit;
end select; end if;
end loop; end loop;
end loop Outer;
end ActivePool;
Figure 1.1: Skeletal Ada for Pool Task

gram’s behavior (see Section 3.2). Information about the specific number of workers
wc has been abstracted; we only maintain information about whether wc is 0, pos-
itive, or unknown. After the program has been abstracted, it can be automatically
translated into the input languages of SPIN, SMV, and other model checkers using
a tool set constructed by Jay Corbett [26]. The resulting model can then be checked

against specifications written in various model logics.

This simple use of ABPS enables, for example, verification of the specification,
“whenever the computation terminates the work pool is empty,” that is, whenever
the outer loop is exited wc=0. Furthermore, this abstraction does not require the user
to specify any bound on the size of the work pool. Other specifications may require

different abstractions for effective verification. Dwyer and Pasareanu [13] outline the



assignZero(v) = zero;
unknown

/ \ incPos(v) = positive;
o decPos(v) = unknown;
Zero positive
1sGtZero(v) = positive,
isEqZero(v) = zero;

identity(v) = v;

Figure 1.2: Counter Abstract Interpretation

methodology that we expect one to follow when choosing appropriate abstractions.

1.4 Goals of the Work

The long range goal of this work is to develop a full-scale abstraction-base program
specializer for Java Byte Code. The following steps summarize the approach taken

in this thesis.

1. Perform an initial investigation using a very simple flowchart language called

FCL. This is not the FCL by Wulf, et al. in [33].

2. Based on the experience gained, the work can be scaled to Java Byte Code.

3. The system can be run on various Java examples and the effectiveness and

usability of the system can be assessed.

1.4.1 Initial Investigation

The first step is to do the initial investigation on FCL (see Section 3.1). FCL is
small enough to allow a clean semantic presentation, but rich enough conceptually to

illustrate a multitude of issues associated with program specialization [15, 20, 19].

e Formalization of ABPS for FCL
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First, ABPS is formalized for FCL. This included describing the many rules

and functions needed for the ABPS system.

e Proving correctness for FCL
Next, ABPS is proved correct for FCL. This involved showing that the special-
ized program produced by ABPS is a safe abstraction of the original program.
e Prototype for FCL
Finally, a working prototype is created to work on FCL. This prototype works

with concrete and abstract examples.

1.4.2 Scaling to Java Byte Code

The second stage is to scale the ABPS for FCL to Java Byte Code. The system
is shown in Figure 1.3. Jimple is a set of tools and an intermediate representation

(IR) of Java source code and Java Byte Code developed by researchers at McGill



University was used. These tools are part of the Soot project, which can be found at
http://www.sable.mcgill.ca/soot/. Currently, Jimple is applied to Java Byte Code,
and a Jimple representation of the class is produced. The Jimple representation is
an abstract syntax tree (AST). It is the purpose of this work to create a set of ABPS
tools to work on this Jimple representation. FLAVERS, SPIN, INCA, and SMV are
all FSV’s. The dotted lines represent work being done by others. This work includes
a set of tools that translates a representation to a model that one of the FSV's will
be able to use. James Corbett, from the University of Hawaii, is currently working
on this development called BIRC [26].

Scaling to Java includes the following tasks.

e Appropriate intermediate language

Obtaining an appropriate IR is perhaps the most difficult aspect of scaling
ABPS to Java. Stack based code, such as Java Byte Code, is difficult to analyze
(31]. To solve this problem, the IR does not use a stack based representation,
but it converts all stack positions to variables to use in expressions. There is
still much code involved to remove the stack and convert the byte code to an

easier to use representation.

e Foundations of ABPS for Java Byte Code

Because a full ABPS system is beyond the scope of this thesis, the next step
included deciding what constructs to include and what to leave for later work.
It was decided to limit the Java to integer arithmetic, simple control flow (i.e.
goto’s, if’s, and return’s), and in-lining of static methods. Techniques were

then designed to handle the new constructs and to represent abstractions.



e Java implementation

Finally, an implementation of ABPS was written for a Java. Further research

will be required to get a full implementation working for Java.

1.4.3 Assessment

The last part of the system development is to evaluate the software. The full evalua-
tion cannot be done until a more complete implementation is done. There are some
tests that can be done but these are limited by the limits placed on the implementa-
tion. To do the evaluation, the resulting systems will be run on example programs.

Various aspects including the following will be assessed.

e Usability

The usability of the system, i.e., issues such as how difficult it is to use and
what types of problems the user encountered, will be assessed. This includes

the things the user must apply (the program and specification).

e Effectiveness

The question of whether the system worked well on a illustrative program. Plus,
it will determine whether the output needed any additional modifications, or

whether it could be passed straight to a verifier.

e Technological challenges

The execution of the system will be tested on an example. Slow and inefficient
parts will be identified and recorded to increase speed or decrease memory

usage. Also, difficult parts of the implementation will be discussed.
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1.5  Overview

The work on ABPS is part of a larger project, called the Bandera project, funded by
DARPA/NASA on automatically constructing models for finite-state verification of
software. Figure 1.4 diagrams the tools. This project includes the verification of Java
Byte Code, slicing, and mapping byte code to finite state machines. Other researchers
from the University of Hawaii, the University of Massachusetts, and Kansas State

University are collaborating on these projects [26].

1.6 What Follows

The rest of this thesis is organized as follows. Chapter II describes the basic principles
of partial evaluation and abstract interpretation. It highlights the techniques needed

to apply in this work. Chapter III gives a brief overview of abstraction-based pro-
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gram specialization. Chapter [V provides the system overview and the intermediate
representation used. Chapter V describes the use of Jimple and Jimple's conversion
to structures used by the specializer. Chapter VI contains a description of many of
the data structures used. Chapter VII describes the methods that make up the core
of the specializer. Chapter VIII describes the specialization operators used by the
specialization. Chapter IX presents the results of the work. Chapter X presents the

conclusion with a discussion of future work.



CHAPTER II

BACKGROUND

Abstraction-based program specialization is a combination of partial evaluation and
abstract interpretation. This chapter provides background material on these two

technologies.

2.1 Conventional Partial Evaluation

Historically, the main goal of partial evaluation is to generate efficient programs from
general ones by completely automatic methods [20]. Usually, general programs are

simpler but less efficient than a specialized program produced by a partial evaluator.

2.1.1 What Partial Evaluation Is

Partial evaluation (PE) is a technology for automatic program specializations and
customization. A partial evaluator is given a subject program p together with part
of its input data, in,. Its effect is to construct a new program p;,, which, when given
p’s remaining input iny, will yield the same result that p would have been produced
given both inputs [20]. Therefore, a partial evaluator is a program specializer, usually
called mix, as in Figure 2.1.

Figure 2.2 shows a two input program that computes m™. This program can be

specialized to the one in Figure 2.3, if n has a known value of 3. This is done by

11
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static input () data
inl
‘:] computation
— input
5 partial
subject —= output
evaluator
rogram X
Prog P (mix)
' residual
.dy nanpcg program \ output
input in Pin1
Figure 2.1: A Partial Evaluator

precomputing all expressions involving n and unfolding the loop. The unfolding can
be done because the control depends upon n. If, however, we tried to partial evaluate
where m = 3 and n is unknown, we would achieve nothing because the control flow

is not known (the partial evaluator would go into an infinite loop).

2.1.2 How Partial Evaluation Works

As Jones [20] notes, three main partial evaluation techniques are well known from
program transformation: symbolic computation, unfolding, and program point spe-
cialization. Figures 2.2 and 2.3 applied the first two techniques; the third was un-
necessary since the specialized program had no function calls. The idea of program
point specialization is that a single function or label in program p may appear in the
specialized program p;,, in several specialized versions, each corresponding to data
determined at partial evaluation time. For example, there are three versions of the
source program line result := result ¥+ m corresponding to situations where the line

was process with n = 3,2, 1.
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int pow(int m, int n)
{
result = 1;
while (n > 0)
{
result = result * m;
o= no- 1
}
return result;
}

Figure 2.2: Power Function

int pow3(int m)

{
result = 1;
result = result * m;
result = result * m;
result = result * m;
return result;

}

Figure 2.3: Specialized Power Function

To determine what to residualize (put into the output program) and what to
compute away, an analysis needs to be done. The analysis can be done while the
specializer is running, called on-line PE, or before it is run as preprocessing, called
off-line PE. During on-line PE, the values in the store are tagged whether they are
static or dynamic. Static data is known while dynamic data is unknown. The PE
uses this to determine if an expression is computable. During off-line PE, the analysis
is run before the specializer and determines whether each expression, statement, and

other language constructs are static or dynamic and tags the construct appropriately.
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Then during specialization, this information determines if the expression should be
evaluated or residualized [20)].

Partial evaluation uses two data structures to schedule programs pointers for
specialization: a pending list and a “seen-before” set. A pending list is a list of
program states to be specialized. The seen-before set contains all the states that
have been specialized.

At the start of specialization, a PE adds the start state to the pending list. The
start state is the initial label and the initial store. Each time through, the PE gets
the next state out of the pending list and checks to see if it is in the seen before set.
This stops the specializer from specializing a state more than once. If it is a new
state, the corresponding basic block is retrieved then specialized.

To specialize a block, each statement must be specialized. The specializer checks
to determine whether the statement is static or dynamic. If the statement is static,
the specializer evaluates the statement, otherwise, it residualizes the statement. Next,
the jump is specialized. If the jump is a goto or return, it is residualized as is. If
it is an if, it is checked to see if the expression is static or dynamic. If static, it
can be determined which branch to follow, so it can be residualized as a goto. If
the expression cannot be determined, it is residualized back as an if. Finally, all the
states reachable from the block are added to the pending. This continues until the

pending list is empty.

2.1.3 Related Work

2.1.3.1 C-mix. C-mix is a partial evaluator for ANSI C developed as part of An-
dersen’s Ph.D. dissertation [2]. It incorporates complex features of the imperative
language C, such as, structures, multidimensional arrays, and pointers, and it per-

forms sophisticated analysis to handle those features.




15

2.1.3.2 Tempo. Tempo was developed at University of Rennes/IRISA. Unlike C-
mix, Tempo focuses on system software written in C. This simplifies the structure

of the partial evaluator and enhances some solutions, but it cannot handle the full

range of ANSI C.

2.2 Abstract Interpretation

Much of the work on abstract interpretation was originally done by Cousot and Cousot
(8]. The discussion below is adapted from material in survey articles by Schmidt [27]
and Jones and Neilson [21].

The execution trace of a program when applied to its run-time data is a concrete
interpretation (CI). When the data are tokens that denote properties of run-time
data, the execution trace is an abstract interpretation (AI). In other words, Al is
a “symbolic execution” where the syvmbols have semantic content. For example, a
type inference implementation is an Al that uses tokens such as integer and boolean
instead of the concrete values 5 and false.

When the run-time data sets are replaced by tokens, the operators must be revised
to work on the tokens. For example, an addition operator for concrete integers must

be revised to define addition on the data tokens, such as:

) = ay = even
a; = ay = odd
a, = even,dy = odd

EVETL
ay +ay, =
odd

a, = odd, a, = even

A crucial issue of Al is termination. A CI of a program may terminate with
its run-time data, the Al may not. This is because the tokens are less precise and
nondeterminism arises. When a test cannot be decided on because the values are
tokens, both execution paths must be traversed. For example, if a test was = > 0 and

2’s value is an integer, then the result of the test is unknown and both the true and
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| Concrete Tr
@ ff Concrete Semantics: (:lnlf:r;%n :"-‘
Val = Nat U .
it (2n even ) = (2nF x := z div2) ; :: .r i dtv?
T = div2 (2n +1F even z) — (2n+ 1 exit) . = pUOC X
T A= SUCCT (2nF x := z div2) = (n+ z:= succ z) J‘F evgn &
—__J (ﬂ F suce I) — (n +1F 1 := even J-) 3 F exit

Figure 2.4: Flowchart and Concrete Interpretation

false branches must be traversed. This means loops have the potential to be traversed
forever. One strategy to solve this problem is for every infinite path in the program'’s
abstract tree to contain a repetition of a node seen earlier in the path (similar to the
seen-before set in a partial evaluator). This means the trace is a regular tree, a tree
where every infinite path has a repetition node [27], and the construction of the tree

can be terminated at these repetition nodes.

2.2.1 Abstract Interpretation of Flowchart Programs

Figure 2.4 shows a flowchart program [27] that uses a store with a single variable x.
A state is a store/program point pair, (v F pp), where v is the value of = and pp is
the current program point. The concrete semantics rules specific to the lowchart are
listed in the middle column of Figure 2.4. The program’s concrete tree has one path
when executed with input 4.

Let us say better target code can be generated for commands whose inputs are
always even numbers. Figure 2.5 displays the abstract semantics of such a situation.
The Val set is abstracted to AbsVal = {e, 0}, denoting even and odd numbers,
respectively. Also, each operator is revised to the abstract rules. For this example,

the abstract semantics is nondeterministic for the interpretation of dev2. This means
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Abstract Transitions:
AbsVal = {e,o} Abstract tree:

(e - even ) = (ek z:= x div2) e - epen x
(oF even x) — (ot exit) b= {EW?
(et 2 1=z div2) — (e := suce x) ol z:=succx ek z:=succe
(e z:=2div2) - (oF 1 := succ z) &= elens o g o
: o Fexit

(e succz) = (oF z :=even )
(oF sucex) — (et x:= even z)

Figure 2.5: Abstract Interpretation of Flowchart

that the abstract tree is nondeterministic. By nondeterministic interpretation, it is
meant that the decision cannot be made as to what path in the tree should be taken.

The abstract tree contains more paths than the concrete tree and it is infinite.
There is, however, a repetition node in every infinite path. Thus the tree is regular
and has a finite representation. shown in Figure 2.5, meaning termination is not a

problem, because there is a finite number of nodes in the tree.

2.2.2 Relating Concrete to Abstract Trees

To establish the correctness of an AL, we need a function to map concrete data to the
abstract tokens that best represent them. Let 3 : Val — AbsVal be such a function.
In technical terms, the function 4 is a homomorphism between concrete and abstract
values. For the Figures 2.4 and 2.5, # would be 3(2n) — ¢ and 3(2n + 1) — o for
n > 0. For the transition relation, the basic correctness property for transitions is:

for all program points, pp, pp', and ¢, € Val,

(cFpp) — (' pp') implies there exists a’ € AbsVal and there exists a

transition (3(c) - pp) — (a’ = pp') such that 3(¢) C o
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where C is a partial order on the concrete and abstract values. Computations involv-
ing abstract values cannot be more precise that those involving actual values, so we
allow the values computed abstractly to be less precise than the result of exact com-
putation followed by abstraction. For example, if we coded the div2 operator so that
it is deterministic, then (e - z := r div2) — (T b x:= suce x), where T represents
even or odd. If we use the extra element T, then we need approximation ordering on
AbsVal = {e,0,T}: a C T and a C a, for all a € AbsVal. We require the abstract

transition relation to be monotonic with respect to the ordering:

(ay Fpp) — (aibFpp') and @y C ay imply there exists a transition

(az F pp) — (db + pp') such that a) C df,

Intuitively, this means that the transition relation on abstract values preserves the
degree of information reflected in the tokens.

Let us define a binary relation safey,; € Val x AbsVal as
¢ safey,) a iff 3(c) C a

which means a safely approximates ¢. Now let us define a safety relation upon states
as

(et pp) safegiate (a b pp) iff ¢ safeyy,) a
which says an abstract state safely approximates a concrete one if the input values

are related and the program points are the same pp.

Finally, for program points pp, pp’ and values ¢, ¢’ € Val,

¢ safey,) a and (¢ pp) — (¢' = pp') imply there exists a' € AbsVal and

there exits (a - pp) — (@' F pp') such that ¢’ safey, @'
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Pictorially, we have

(ctpp) safegiate (atpp)
' t
(c'+pp') safegiate (a' - pp')
So, for any concrete transition, there is a corresponding safe abstract transition.
In other words, for any concrete trace of a program, there is a corresponding safe
abstract transition.

Abstract interpretation can be used for binding time analysis. type inference, live

variable analysis, and many other analyses [16].




CHAPTER III

ABSTRACTION-BASED PROGRAM SPECIALIZATION

This chapter presents a formalization of ABPS using FCL from Hatcliff, Dwyer,
and Laubach [17]. This chapter is basically a minor revision of that article. This
author’s main contribution to the work was the implementation of ABPS to FCL in
Java. This author also contributed advice on the semantics of ABPS. Other works
on ABPS include Consel and Khoo [7] and Jones [19], which developed the formal
frameworks to support the idea. ABPS, however, has not been incorporated into

full-fledged implementations at the completion of this thesis.

3.1 Flowchart Language FCL

FCL is a simple flow chart language that can be used to study many of the features of
a full language. This allows us to create methods for ABPS that is easy to understand
and use. It is also very easy to add features to FCL. This makes it easy to use and

allows us to scale gracefully.

3.1.1 Syntax

Figure 3.1 presents the syntax of an FCL program. An FCL program () b" consists
of a list of basic blocks 4" and the label of the initial basic block. Each basic block

has a label, a list of assignments (possibly empty), and a jump. FCL has three kinds

20
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Syntax Domains:
p € Programs[Y] x € Variables[Y)]
b € Blocks[X] e € Expressions|Y]
[ € Block-Labels[Z] j € Jumps[Z]
a € Assignments[Y] o € Operations[Y]
al € Assignment-Lists[X] t € Tests[Z]
Grammar:
g E= ()br
b w= l:ualj
al z= aal | -
& = Ti=E
= | ofe*)
= goto!l; | return; | ift(z*) then [, else [y;
Figure 3.1: Syntax of the Flowchart Language FCL

of jumps: an unconditional goto, a conditional jump if, and a special jump return
that terminates a program’s execution. The output is the collective value of all the
program’s variables for simplicity.

A signature ¥ parameterizes the syntax of FCL. ¥ contains operations, tests,
and constants. ¥ specifies the set of operator symbols Operations[¥] and a set of
test symbols Tests[Y]. Both have an associated arity arity(o). Constants are 0-ary

operators and are denoted by Constants[X].

3.1.2 Semantics

The meaning of a ¥-program, a program to which ¥ is applied, is parameterized by
a Y-algebra A that provides an interpretation for the signature ¥. A ¥-algebra A
consists of a carrier set Values[A] (e.g., an upper semi-lattice) with partial order C 4,
sets Operations[A] and Tests[A4] that contain functions implementing the operations

and tests of £, and a map [-]% that maps each operation and test symbol in T to
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the corresponding implementation in Operations[A] and Tests[A]. Different types of
traces (concrete and abstract) can be obtained by substituting different L-algebras.
Figure 3.2 formalizes the semantics of a £-program with respect to a £-algebra A

in terms of traces. A trace shows the transitions
(lo,o00) — (L1,00) — (L,o2) —

a program can make between computational states (l;,0;) € States[A] where [, €
Labels[X] is the label of the current basic block and o; € Stores[A] is the current
store. A store o € Stores|[A] is a partial function from Variables[X] to Values[4]. The
set of defined variables in the domain of o is written dom(o). A o is p-compatible
when it defines only the variables contained in program p.

A special label halt is added to Block-Labels[X] that maps a label [ € Block-Labels[¥]
to a block b € Blocks[X] to represent the terminal state. All finite branches of a trace
will end in a state (halt, o) for some store o.

A program is represented using a partial function I' called a block-map that maps
a label | € Block-Labels[Y] to a block b € Blocks[¥]. T' is defined for exactly the

labels that name blocks in the program being interpreted.

3.2  Abstraction-Based Specialization

Our abstraction-based specialization framework combines the trace generation sys-

tem with code generation. The idea is to carry out the trace while simultaneously

generating code that is specialized with respect to the information accumulated in
the trace.
Figures 3.3 and 3.4 present the abstraction-based program specializer. The spe-

cializer is parameterized on a specialization structure

== (E- Er{.‘m As . f’:’1 R: h’ﬂ)
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Semantic Domains:
v € Values|A] 04 € Operations[A] t4 € Tests[A]
Stores|A] = Variables[Z] — Values|A]

g €
| € Labels[Z] Block-Labels[$] U {halt}
I' € Block-Maps[FCL] = Block-Labels[£]— Blocks(Y]

Ezpressions:
o exor€i = W 0a(vy...up) =
ok e T = o(z) ohesprofer...e,) = v
Assignments:
obepme=v
O Fassign T 1= €; => o[z +— V] O Fapsigns - > @
OFusima=>0" o'Fusgstd =0"
assign assigns
o Fusgns ael => 6"
Jumps:
otjumpgoto I; = {(l,0)} 0 b jump return; = {(halt,o)}

ta(z* b, b, o) = {(l,01)s -y (Lhy0n)}
o F jump if t(z*) then [, else I; = {(I],0)), ..., (Ih,00)}

n'-n

Transitions:

Fi)={: alj okammeal=0" o' Fumed=>{lisa1); o o5 00)])

S, AFr(Lo) = (1Lo) Vie{L,...,n}

g

Figure 3.2: Trace Semantics of ¥-programs with Respect to Y-algebra A
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Semantic Domains:

v € Values[A] 04 € Operations|A] ta € Tests[A]

w € Spec-Values[4d] = Values[A4] x Expressions|X]
o € Stores[A] = Variables[Z] — Values[A4]
[ € Labels[] = Block-Labels[X] U {halt}
I' € Block-Maps[FCL] = Block-Labels[X] — Blocks[X]
Ezpressions:
0 Feapr T=>{0(2); T)
O Fegpr €= (V5,€,) oaltr...vn)=v 9VER
0 Fezpr 0(€1...€0) = (v, lift(v))
O Ferpr €= (Viy€;) oalvr...0)=v v&R
O Fezpr 0(€1.. .. €1) = (v, 0(¢] ...€}))
Assignments:

0 Fogpr €=2(0, €)
& Fagsign. £ = ¢€; = (o[z 9], [z :=¢j])

a l_assigﬂ.s = (0’, [])

O Fassign @ =0’ al') 0" Fopsigns 0l => (", al")
0 Fassigns a el = (0", al' H# al”)

Figure 3.3: Abstraction-Based Specialization (part 1)
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Jumps:

o Fjump goto l; = ({(l,0)}, goto 7(l,0);)

0 Fjump Teturn; = ({(halt,0)}, return;)

tA(l"‘ll,lQ,O') = {([-],OJ)}
0 Fjump if t(z*) then [, else ly; = ({(l1,0")}, goto 7 (l;,0');)

tA(I',zl,lg,O') = {(IQ!OJ)}
0 Fjump if t(z*) then I else l; = ({(l2,0")}, goto n(l2, a);)

tA('T*&th?}o‘) = {“lag’;)a (!2,0’;)}
0 Fjump if t(z*) then [ else ly;
= ({(l1,01), (l2,0%)}, if t(z*) then 7 (l,,0}) else 7(ls,d});)

Blocks:

a l_assigns (lf = {Jl s ail)
a l_JH.m]'J .} = <{(£2.a‘7'2,) | 1€ [11 vy n}} ) JJ)
0 Fpoek L2 al j = ({(ly,,00,) | t€{1,...,n}}, (l,0): aly j2)

Specialization steps:

CU(") |_block r(ﬂ'—l(“')) == ({(H‘U:) | i € {11 = n}} ’ br)

Fr (5 C(; , F") — <Sn, Cn 3 FR[L — b’]} if 1° = ﬁ‘!'-‘it(Su)
where
4 = w(ll,ol) forie {1,..., n}

- C;‘_l[L; —F G(U:,Ci_.[(l.;'n] if C;'_l(i-,).], . -
C; = { Co [ir3.] i C. (1)1 forie{l,..., n}
Sy = remove-arcs(mark(S, ), 1)
[ make-arc(S;_y,1,1*) if ; = halt |
make-arc(S;_,t,¢°) if 4; not in §;_; and
L # halt

S = < make-arc(S, 1, ;™) if 4™ in S;_; and ' forie {1, ..., n}

t; # halt where m = o
if CQ(L!) C Cn(l'a] and
m = m," lf Co(l-,‘) = Cn(bi) y

Figure 3.4: Abstraction-Based Specialization (part 2)
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where

e ¥ is the signature of the program being specialized.

e .. is the signature of the residual program. If abstract tokens (e.g., even,
odd) are being residualized, E,., differs from ¥ (e.g., ¥,y contains constants
even, odd). As another example, the signature for the residual version of the
Ada program of Figure 1.1 contains constants zero and positive, but these

are not contained in the signature for the source program.

A is a L-algebra with respect to which programs are specialized.

7 controls the degree of polyvariance by specifying which states are to be

merged.

f is a widening operator used to merge stores.

R is the set of values from Values[A] that can be residualized.

lift generates code for values v € R, i.e., it maps a residualizable value v to a

constant in X,.,.

Each of these components is explained in the subsections below.

3.2.1 Residualization

Specialization transforms a X-program to a X,.,-program. The constants from 2
and ¥,.; may be different. For example, if we allow residualization of even and odd
from previous examples. {even, odd} C Constants(X,.;|. Otherwise, the non-constant

operations and tests must be the same in both £ and ¥,.,.
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The definition of the set of residualizable values R and the definition of lift con-
trols whether specialization will preserve the concrete semantics or only the abstract
semantics of a program. Specialization preserves the semantics in expressions by us-
ing the code generation function lift : R — Constants|2,.,|. For example, to preserve
concrete semantics, we define R, and lift, as:

R, = {0,1,2,..<}
Lft.(n) = n Vn € R,

If we wanted to preserve the abstract semantics, however, we can define I?, and

lift, as follows:

R, = {even,0dd 0,1,2,...}
lft,(n) = n Vn e {0,1,2,...}
lift,(even) = even
lift,(odd) = odd

3.2.2 Controlling Polyvariance

We saw earlier (Section 2.2) that abstract interpretation produces a series of states
(l;, 0;). Maximally polyvariant specialization would produce a specialized basic block
for each state. Usually, one does not want maximally polyvariance because this canses
a large number of basic blocks (potentially infinite) to be specialized. Each variable
in the o’s can have its full range of values and this causes the state explosion. For
example, if there was a variable representing integers, a state could possibly be made
for each value (0, 1, 2, ...) the integer can have.

To avoid this, specialization is parameterized by a projection operator 7 : States[A]
Indices where Indices is some unspecified set of tokens that depend on the definition
of 7. Each specialized block will be labeled with index ¢, and 7(l, o) vields the label
of the residual block associated with (I, o). This means the rules for jumps uses 7

to determine the label of the jump destination in the residual program. We assume
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that Indices always includes an index halt and that for all stores o, w(halt,o) = halt.
The degree of polyvariance is controlled by mapping one or more states to the
same index. For example, the following two definitions would yield a maximally

polyvariant analysis and a monovariant analysis, respectively.

m(l,o) ¥ (I,0) VI e Block-Labels[X],Vo € Stores|A] and States[A] C Indices
rlo) ¥ 1 Vi € Block-Labels[X], Vo € Stores[4] and Labels[X] C Indices

If at least states (/,0) and (/,¢') map to the same index, the associated residual
block must be general enough to handle both ¢ and o,

There are many variations between the two extremes above (maximally polyvari-
ant and monovariant) that can be done by 7. For example, one might want to be
polyvariant on the live variables in a basic block but monovariant on the dead vari-

ables in the block. Several default settings will be used in the full implementation.

3.2.3 Structuring the Residual Program

The specializer incrementally constructs a control-flow graph (program skeleton) 8
with nodes n € Indices to represent the structure of the residual program. Each node

Q

is annotated with a mark m € {o,e}. When a node is unmarked, (°, it indicates
that the associated block is pending specialization. When the node is marked, ¢*, the
associated basic block has current information flowing into the block. New nodes are
automatically unmarked, and the marked nodes can be unmarked if new information
is formed for the block (widening). For example, if we have two states s = (/,0) and
s' = (I,0") and m maps both states to the same index ¢. If state s is encountered first
in the specialization, a specialized block will be generated. Later, if s’ is encountered,

node ¢ will need to be unmarked so that it will be reprocessed.

The following operations are used to manipulate control flow graphs.

e mark(S.t): returns a graph identical to S except that the ¢ is now marked
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(similarly for unmark(S,¢)).

e make-arc(S, ¢y, t,™): returns a graph identical to S except that an arc from ¢,
to ¢p is added. If the arc is already present, the set of arcs is unchanged. If
node ¢, is not already in the graph, then it is added with mark m. If node ¢, is

already in the graph, then its mark is changed to m.

e remove-arcs(S,¢): returns a graph identical to S except all arcs leading out of
¢ are removed (the set of nodes is unchanged). If node ¢ is not in the graph,

then S is returned unchanged.

Information that can flow into each block ¢ in the residual program is collected
in a cache C € Indices — Stores[A]. A cache is a partial function that maps indices
to stores. It is a partial function because not all indices are defined for a cache. A

block-map 'y maps a label (index ¢) to the associated specialized block.

The control-flow graph § and cache C play roles similar to that of the “pending
list” and “seen-before set”, respectively, in conventional presentations of specializers
[20]. The control-flow graph contains the information about which nodes are pending
specialization (the unmarked nodes are pending), and the caches contains the program
points that have been created. The reason the control-flow graph is used instead of a
standard pending list is because of generalization. When a state is generalized, it may
have dependent states waiting to be specialized (these would be in the pending list).
Since generalization makes the information to a state be less precise, the dependent
nodes need to be removed from the pending list because the information flowing in
is out of date. The arcs in the control-flow graph give us the necessary dependency,

and the marks indicate whether the corresponding cache value is up-to-date.
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3.2.4 Specialization Steps

A specialization step begins with a topological sort on S to find an unmarked node
with no unmarked predecessors. By choosing this node, this method ensures that the
specializer does not waste time computing nodes that will later be changed. It also
prevents non-terminating specialization (provided 7 and the widening operator # are
chosen appropriately).

After a node (° is chosen, a specialized version b’ of the source block is created
using the store C(¢) currently held in the cache for node «. Information is propagated
by processing the set of descendent states as follows.

For each state, an index ¢; is obtained and the cache entry for ¢; is updated by
merging the new store o; with the previously cached store for node ¢ (if it exists).
The merging is parameterized on a widening operator 6.

The control-flow graph is updated by marking the node ¢ just processed. All the
out-going arcs of ¢ are removed because the in-coming information can be less precise.
For each descendent, the index ¢, is added to the children of ¢. If +; = halt, then it is
a terminal node and can be marked. Otherwise, if ¢; is not in the cache it is added

to the cache. The index ¢; is unmarked, unless the in-coming store had not changed.

3.3 Illustrating ABPS

We illustrate ABPS by specializing the FCL program in Figure 3.5 using the even/odd
abstraction A, defined earlier (see Section 3.2). Two specializations are formed: the
first preserves concrete semantics by using lift, of Section 3.2.1, and the second only
preserves abstract semantics by using lift, of Section 3.2.1.

The first specialization uses the following specialization structure

& = (Eﬂum: 2rmm-} Aeo: m, 91 Rm hft.—;)
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Source program

(b1)
bl: if equal?(x,y) then b2 else b3;

b2: y := 10;
z = x(z,3);
goto b4;

b3: x := +(x,2);
y = +(*(5,x),y);
goto b4;

b4: if <(y,x) then bl else b5;
b5: if even?(x) then b6 else bi;

b6: return;

Figure 3.5: Sample Program

Since [ift, does not residualize any abstractions, the signature of the source and
residual programs are both ¥,,,,. We choose the projection operator @ so that it
illustrates several concepts at once. Specialization is specified to be monovariant at
some blocks and polyvariant (to various degrees) at other blocks. The program has
three variables z,y, and z so the store will have the shape o = [z > v,y /> vy, 2 > ]

(abbreviated [v,, v,. v;]).

m(bl, [z, vy, v.]) = (b1, [vg,vy])  polyvariant on x and y
7 (b2, [vz,vy,v:]) = b2 monovariant

7(b3, [vz, vy, v]) = (b3, [vy)) polyvariant on y

7(b4, [vz,vy,0;]) = b4 monovariant

(b5, [z, vy, v;]) = b5 monovariant

7 (b6, [ve, vy, v:]) = 06 monovariant

Thus, the abstract set of indices contains block labels, and pairs of block labels and
stores. For widening, we simply define # = U, where LI is the least upper bound
operator.

Figure 3.6 shows some of the specialization steps that occurred when specializing
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Initial configuration
o (b1,[0,T])

After step 3

o (b1,[0,T]) — b2,(b3,[T))
e b2 — b4
e (b3,[T]) — M
o b

After step 4
o (b1,[0,T)) — b2,(b3,[T))
e b2 — b4
o (b3,[T]) — b4
e b4 — (bl,[even, T]),b5
o (b1,[even, T])
o bd

After step 5
o (b1,[0,T]) — b2,(b3,[T])
o b2 — b4
o (b3,[T]) — ¥4
o b4 — (b1,[even, T]),b5
o (b1,[even, T]) — b2, (b3,(T])
o b5

After step 9

o (b1,[0,T]) — b2,(b3,[T))

o 02 — b4

o (83,[T]) — b4

e b4 — (bl,[even, T]),b5

o (bl,[even, T]) — b2,(3,[T])
e b5 — b6

e b6 — halt

e halt

(b1,[0, T))

Il

(b1,[0,T])
b2

(b3, [T])
b4

(01, [0, T))

b2

(63, [T))

b4

(b1, [even, T))
b5

(b1,(0,T])

b2

(83, [T))

b4

(b1, [even, T])

b5

(b1,[0,T])

b2

(63, [T])

b4

(b1, [even, T])
b5

b6

halt

[0, T, even]

[0, T, even]
0,0, even]
[0, T, even)
[even, T, even|

1

[

i1

[0, T, even|
0,0, even]
[0, T, even|
[even, T, even]
[even, T, even
[even, T, even)

[0, T, even]
[even, even, even)
[even, T, even|
leven, T, even|
[even, T, even|
[even, T, even]

(0, T, even]
[even, even, even)
[even, T, even]
[even, T, even)
[even, T, even)
[even, T, even]
(even, T, even)
[even, T, even)

Figure 3.6: Specialization Steps for Example Program (excerpts)
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Concrete residualization program Abstract residualization program
(b1, [0,T]) (b1,[0,T])
(b1,[0,T]): if equal?(x,y) (b1,[0,T]): if equal?(x,y)
then b2 then b2
else (b3,[T]); else (b3,I[T});
b2: y := 10; b2: y = 10;
z := %(2,3); z := even;
goto b4; goto b4;
(b3, [T]): x = #(x,2); (v3,[T]): x := even;
y = +(*(5,x),y); y := +(even,y);
goto b4; goto bé4; 9
|
b4: if <(y,x) bé4: if <(y,x)
then (b1, [even,T]) then (b1, [even,T])
else b5; else bb;
(b1, [even,T]): if equal?(x,y) (b1, [even,T]): if equal?(x,y)
then b2 then b2
else (b3,[T]); else (b3, [T]); {
H
b5: goto b6; bS: goto b6; '
b
b6: return; b6: return; i
f
4
Figure 3.7: Example Specialization Using ABPS

with an initial store of

Oinit = [+ 0,y — T,z — even).

B e e ey

These steps illustrate the information propagation aspects by giving the current values {
of the control-flow graph (left) and the cache (right). The information propagated is
the same no matter what choice for lift used. This means that the definition of lift
affects only the code generation, and not the information propagated.

The left column of Figure 3.7 shows the code generated using lift,. A block with

index ¢ is specialized with respect to C¢. In this example, the only specialization takes

TS STl S e
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place is the resolution of the condition in 65. The assignment y := 10; is residualized
instead of being specialized away into the store, because y is generalized to T at b4.
The right column of Figure 3.7 gives the code generated from the steps above

using the following specialization structure based on lift,.
8 = (Enums Enum—eat Aeoa T, 9; Ru: hﬂg)

Y num—eo 18 identical to ¥,.,,, except that it also contains constants even and odd.
To illustrate that an abstract trace can lose precision, we show what running the

original and residual programs on the store,
o=[z—0,y—12—4].

The original trace and the concrete trace mirror each other. The abstract trace,

however, diverges at b4. This is because the store at b4 is
o = |even — 0,0dd — 1,2z — 4].

The concrete values have been lost and so the path cannot be chosen at the condi-

tional.

3.4 Related work

The ABPS work relies heavily on previous works. Consel and Khoo [7] give a
framework for abstraction-based partial evaluation of first-order functional langnages.
Jones [19] provides an elegant language-independent framework for describing partial
evaluation and supercompilation. Other elements were inspired by Ashley’s mecha-
nisms for controlling polyvariance and generalization in flow analyses [3], Schmidt’s
presentation of abstract interpretation [27], and Serensen and Gliick’s work on gen-

eralization for tree-structured data [29].
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Source program trace

(b1, [0, 1,4])

I
(b3,[0,1,4])
!
(b4,[2,11, 4])
J
(65,[2,11,4])
e
(b6, [2,11,4])
il
(halt, [2,11,4])
Concrete residualization trace Abstract residualization trace
(b1, [0, T])). [0, 1,4) (b1, [0, T1)), [0,1,4)
+ I
(b3, [T]l)11011:4]] (((b3s[T])l)’[0,1,4]J
(b4, [2,11, 4]) (b4, [even, odd, 4])
1 z" Ny
(65,[2,11,4]) (((b1,[even, T])), [even, odd, 4]) (b5, [even, odd, 4])
J 1 1)
(6, [2,11,4]) (((b3,[T])), [even, odd, 4]) (b6, [even, odd, 4])
i} 4 i
(halt, [2,11, 4]) (b4, [even, odd, 4]) (halt, [even, odd, 4])

1

Figure 3.8: Execution Traces of Source and Residual Programs




CHAPTER IV

SCALING TO JAVA

The second stage of this work is to scale the current tools to Java. Many features
such as integers and their operators can easily scale to Java from the FCL prototype,
but others are more difficult. The FCL prototype does not deal with methods, arrays,
dynamic allocation, and classes. All these constructs must be handled to get a full

Java specializer running, but many are too difficult to include in this thesis.

4.1 System Overview

Figure 4.1 illustrates the overall view of the ABPS tools encompassed by this thesis.
Specializing a method involves several steps. The method to be specialized is in
a Java class file. This file is read by the Soot tools and converted to a Jimple
representation, discussed in more depth in Section 4.2. The ABPS tools takes the
Jimple representation and the definition of abstractions to be used and creates a
specialized method in Jimple. This can then be converted back into a Java class file.
This figure is similar to Figure 1.3 except the current figure shows the actual How of
information from Java Byte Code back to Java Byte Code. Tools are being created
that can also translate to FSV tools. Jimplification is the process of converting Java
to a Jimple representation.

The actual specialization process has a few steps. After jimplification, discussed

in Section 4.2, the Jimple method needs to be converted to something the specializer

36
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(é pecifications)
Byfea“&de Soot Tools ABPS Tools

C) representation Specialized

Jimple
|:| application

—— input/output

BIRC

Figure 4.1: System Diagram

can understand and manipulate. For this step, the code is in-lined and broken up
into basic blocks. Chapter 5 describes these processes. Chapters 7 and 8 discuss the

actual specialization process and the information they require.

4.2 Jimplification

The Soot tools are being developed by Raja Vallee-Rai under Laurie Hendren’s ad-
visement at McGill University. The driving force for creating the Soot tools is to
simplify analyses and transformations of Java Byte Code. As stated earlier, stack
based models, such as the Java Byte Code, are difficult to analyze because an op-
eration’s effects might not be fully noticed until many instructions later. The Soot
project’s aims to reduce these obstacles by creating an intermediate representation
of the Java Byte Code that does not rely on the stack.

The Jimple code is obtained by compiling the source file using javac, and then

jimplifying the class file. Figure 4.2 presents an example program and the corre-
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Java Code
public int power(int m, int n)
1

int result = 1;

for (Gbn > 0; n--)
result = result * m;

return result;

Jimple Code
public int power(int, int)

{

int m, n, result;

m := Qparameter0;
n := Qparameterl,
result = 1;
goto labell;

}
labelO:

result = result * m;
= m ok =13

labell:
if n > 0 goto labelO;

return result;

}

Figure 4.2: Java to Jimple Transformation

sponding Jimple code. A difference is the parameters are held in temporary variables
(@parameter0, @parameteri, ...)and assigned explicitly to the formal parameters
appearing in the source method. The Java Virtual Machine does a similar process
when it executes a method. One cannot see from the example that expressions in
the original code do not get recreated exactly in the Jimplified code. This happens
partially because some of the information is lost in the transformation from Java
source code to Java Byte Code and then to Jimple code and because the Jimple code

is in three-address code [1].

4.2.1 Jimple Structures

The three key structures that are used in Jimple are methods, statements, and ex-

pressions.
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4.2.1.1 Methods. Specialization works at the method level currently. This is to
reduce the amount of analysis that is required and because the process of specializing
whole systems is very difficult and beyond the scope of this thesis. Jimple methods
contain five key components: method name, parameter types, return type, local
variables, and the Jimple statements. The first two components are the method

signature. The parameter types, local variables, and Jimple statements are all lists.

4.2.1.2 Statements. Statements are used to represent many of the constructs that
occur in a method body. These include assignments, goto’s, if’s, and return’s.
Statements also include constructs for handling exceptions and thread synchroniza-

tion. Each of the handled statements has a particular structure.

e Assignment statements have two operands. The left operand represents the
left side of an assignment and the right operand represents the right side of an

assignment.

e goto statements have a pointer to the statement targeted by the goto.

o if statements have a conditional expression and a target statement. The target
is the statement the if jumps to if the conditional expression evaluates to TRUE.
[f the expression evaluates to FALSE, the control goes to the next statement in
the list. This is not quite like the if's in FCL, which holds the destination of

the false branch.

e return statements take two forms. The first is when the return type is void.
In this case, the statement has no operands. The other case is when the return
type is not void, the statement then has one operand, the value to be returned.

This value can be a constant or as a variable.
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Java Source Byte Code (as Jimple)
if (y == z) goto labell;
x = 0;
x = (y == 2); goto label?2;
labell:
X = 13
label2:

Figure 4.3: Test Example

4.2.1.3 Expressions. Expressions include constants, variables, operators, and method

invocations.

e Variables and constant operators are basic expressions. Variables get their value
from the store while constants contain their own value. All other expressions

use variables and constants as the terminal end of the expression.

e Operators are expressions that are either unary or binary operators. Unary
operators, such as not and negate, have a single operand. Binary, such as +,
—, &, and <, operators have a left and right operand. Operators are used in
both operators and test. The key distinguishing feature is the ones used for
tests are operators that are used for comparison and Java places these in an
if. This occurs even when the test is in an assignment statement, like that in
Figure 4.3. Java does this breakdown so that all comparisons are the conditional
expression of an if. When it is in an assignment statement, such as that in the
same figure, the test is put in an if and then branches on the outcome to the

correct assignment.

e Method invocations are expressions that invoke a method and yield the value
returned by the method. These keep a pointer to the method so that the name,

parameters, etc., are easily accessed.
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[

w0 0~ o,

12
13
16
17

Java Byte Code

iconst_1
istore_2

2 goto 12

iload_2
iload_0
imul
istore_2
iinc 1 -1

iload_1
ifgt 5

iload_2
ireturn

Plain Jimple

m := @parameterOQ;
n := Q@parameterl;
op0 = 1;

result = op0;
goto labell;

labelO:
op0 = result;
opl = m;

op0 = op0 * opl;

result = op0,

e R e ¥
labell:

op0 = n;

if op0 > 0 goto labelO;
op0 = result;

return op0;

Figure 4.4: Comparison of Java Byte Code and Jimple

4.2.2 Jimplification

The process of jimplification includes many steps, from reading byte code to producing

the final Jimple code.

1.

Read Java Byte Code

The first step of jimplification is to read the Java Byte Code from the class

file. This is done with the Coffi component of the Soot tools. Coffi is a very

low level representation of Java Byte Code. A Byte Code representation of the

power method from Figure 4.2 is on the left side of Figure 4.4.

Remove Stack

For the next step, Jimple removes the stack and converts the Coffi represen-

tation to a Jimple representation. A simple analysis finds stack positions of




42

the operands for each Java instruction. This is possible since the Java Virtual
Machine’s verifier enforces that an operator works with the same positions in
the stack each time it is executed. This is done ensure that the stack has a
fixed maximum size. Each instruction is changed to a Jimple statement. The '
references to the stack are changed to actual stack variables. This creates the
first Jimple representation, but it is without types and leaves a large number
of variables sitting around. The right side of Figure 4.4 shows what the Jimple

code looks like after the initial jimplification.

3. Apply Types

After the initial jimplification, types are applied to the code. This starts out

with the initial types of values and iteratively works to a fix point.

4. Constant and Expression propagation

2121¢C

The next step is constant and expression propagation. Constant propagation is
very similar to that found in optimizing compilers. The expression propagation
is similar also, but it must keep the code as three address code. The expression
propagation is used to reduce the number of Jimple statements used to represent

a section of code.

5. Pack Variables

The final step is to pack the local variables. During the different processes,
the number of local variables can explode. To correct this problem, they are
packed as a final step. The packing algorithm is a common one used for register

allocation.

After all the steps of jimplification, the resulting code looks similar to that found ; u

on the right side of Figure 4.2. ]
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4.2.3 Features

There are many useful features in the Soot tools that are used in the implementation

of ABPS. These are described in the following sections.

4.2.3.1 Class Manager. Soot contains a class manager. A class manager keeps track
of all classes loaded so that access can be quick if a class is required more than once.

Also, the class manager is responsible for reading a class.

4.2.3.2 Code Creation. Jimple has an easy mechanism for creating, accessing, and

modifying structures used to represent classes, methods, statements, and expressions.

e (Classes

Classes for Jimple is the same for Soot, called Classes are presented in Jimple
by the Soot representation SootClass. The constructor for SootClass is called
to create a new instance. The arguments are the name of the new class and the
access flags, e.¢., public, abstract. After creation, the super class and other
features of a class can be changed. It is usually wise to add the class to the
class manager so that it can be managed properly. Also, there are methods to

make sure that the class is written out to the file system.

e Methods

Creating a method is similar to creating a class, except that the method name,
parameters, return type, and access flags are passed to the constructor. After
this, the method is added to the correct class. The representation provides
methods to get the statement list, add to the statement list, and to add local

variables to the method.
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e Statements

Statements are created by calling the constructor for the statement represen-
tation class. For example, the call Jimple.v() .newGotoStmt (target) creates
a new goto statement. The part Jimple.v() is a static method that is the
only way to get an instance of the Jimple class. The target is the target
statement of the goto. Statements that have been created can be added to
a statement list by calling the add method of the statement list, for example

stmtList.add(stmt).

e Expressions

Expressions are always a part of a statement. Expressions are constructed and

accessed like statements.

4.2.3.3 Switches. A common design pattern for an AST is called a visitor pattern.
A visitor walks over an AST and performs some computation. Sometimes it is difficult
to write visitors because of the many cases that must be included and the difficulty
in matching a node with the correct functions. Jimple gives a graceful method to
switch between different nodes, Switch classes. These define a method for each type of
node. These different switches are divided into switches for statements. expressions,
and types. Each node to be switched implements an apply method that takes an
instance of a switch that corresponds to the category of the node. The apply method
calls the corresponding method in the switch. For example, an AddExpr will call the
caseAddExpr method in a switch. In the default switches, all methods call a default
method that does nothing.

To implement a switch, one extends the default switch class and adds the methods
for the nodes to be handled. There are some difficulties with passing arguments to

the methods, however. Each method only takes the node as an argument. A newer
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final List 1 = new List();
Stmt s = ...;
s.apply(new StmtSwitch() {
public void caseAssignStmt(AssignStmt s)
{
// Code to handle assignment
1.add(...);
i

// Other methods can be added
it

Figure 4.5: Anonymous Class Example

feature of Java allows a nice way around this, called anonymous classes. Anonymous
classes are basically a local class. One instantiates a normal class but adds methods
to the class. An example using a StmtSwitch can be seen in Figure 4.5. With an
anonymous class, variables defined when the class is instantiated are allowed in the
class, such as the List 1 in Figure 4.5. This allows one to pass values to a method

which instantiates the anonymous class and does the necessary analysis.

4.2.3.4 Utilities. The Soot tools require a set of useful utilities that are also imple-
mented by the same people that implement Soot. The three most useful utilities are
lists, maps, and iterators; all of these are interfaces. In Java, an interface defines the

methods that must be implemented by a class.

e List

A list has methods to access, add, and remove elements. There are also methods
to search a list. Actual implementations of lists use arrays, vectors, and linked
list. This way, one can pick the implementation that best fits the use. Each

one uses the same interface so that code using the list does not need to know
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the particular implementation of the list.

e Map

A map associates an object to another object. There are methods to put and

get associations, and to move through the values.

e [terator

An iterator goes through a list sequentially. There are three methods in an
iterator: a method to check for more entries, a method to get the next entry,
and a method to remove an entry. As with the other utilities, there are specific

iterators for the different implementations of lists and maps..

4.3 Breakdown of the ABPS Tools

The ABPS tools can be broken down into four distinct parts.

1. Jimple Interface, described in Chapter V.

2. Data Structures, described in Chapter VI.

3. Specializer, described in Chapter VII.

4. Specifications, described in Chapter VIIL

e —— e e - -

%
i I:




CHAPTER V

JIMPLE INTERFACE

In Jimple, statements are held in a linear list. Jumps, like if and goto, are handled
by having a pointer to the target statement. This works well when the code is being
processed linearly, but ABPS collects information for blocks of statements. A basic
block is therefore used by ABPS as the basic control structure. The control flow
graph ABPS uses is maintained in basic blocks in a block map. ABPS also creates
a group of basic blocks for the residual code and this is used to create the residual

statement list for Jimple.

5.1 Control Flow

The control flow graph is a graph with one entry point and at least one exit point.
Each node in the control flow graph is a basic block. These blocks are combined into
a block map, which maps indices to the corresponding block. A statement list created
by Jimple contains the information needed to make a control flow graph. Between
the elements of the statement list, there are arcs corresponding to the jumps in the
method. The information about the arcs and the entry and exit points are used to

create the control flow graph and basic blocks.
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5.1.1 Labels

The name of a basic block is a label. represented by an index. There are two types
of indices used in ABPS. The first is Index class which gives the basic functionality

of an index. The second is StoreIndex class which adds store information into the

index.

5.1.1.1 1Index. For a simple index, all that is kept is an integer. This allows for
quick comparisons of an index, since integers have a quicker equality operation in
Java than other types. Index has a constructor, equality operator, and a hash code
generator. The equality operator checks types and then the index number. The hash
code generator returns the index value as the hash code. The other method in Index
is a method that returns the base index. In Index, the base index is itself. For other
indices, the base index returns an instance of Index with the index number. This
allows one to get the index other indices are based upon. For example, a residual
block’s index could be a combination of the original index and a store. If one needed
to find the original block, one can get the base index of the residual block’s index,

which is the original block’s index.

5.1.1.2 Storelndex. Storelndex is an extension of Index. It has the same meth-
ods, but the constructor takes either an integer and store or an Index and store. This
is used to distinguish between different residual basic blocks that come from the same

source basic block when there are differences in the input store.

5.1.2 Basic Block

A basic block is a node in the control flow graph. Each basic block consists of four

parts: a list of predecessors, an index, a list of statements, and a list of successors.

Loreery a5u) 3181C
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Line Number Explicit Jump Implicit Jump

1 Predecessors {2,0} —> {1} ->

2 Index 1: 25

3 Statement result = result * m
4 Statement if n > 0 goto 2 n=n+-1

5 Successors => {2,3} -> {1}

Figure 5.1: Basic Block Examples

The list of predecessors is used to know where control can come from. This

helps for analysis on reverse control flow.

The index gives the block a name (as described in the previous section) and can
be thought of as a label. This is used to reference basic blocks in the predecessor

and successor lists and for block maps.

The statement list stores the list of statements the block represents.

The list of successors is used to decide where control can go from this block.

A couple of example basic blocks are shown in Figure 5.1. The left column has
line numbers and the type of information on the line. The other two columns are
actual examples of a basic block from the power function from earlier examples. A
basic block can have an explicit or an implicit jump. An explicit jump occurs when
the statement list ends with a statement that jumps to some other point, such as
goto’s and if's. The successor list just reflects the successive block. In the case of an
if, the first successor is the index of the block when the conditional evaluates to TRUE.
The second is when it evaluates to FALSE. This is seen in the middle column of Figure
5.1. An implicit jump occurs when there is no jump at the end of the statement list.
Control falls through to the next block. The next block is gotten from the successor
list, which would have only one value. The right side of Figure 5.1 is an example of

an implicit jump.
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Entry: 0 Exit: 3
{}-> {1}->
0: 2:
m := Qparameter( result = result * m
n := Qparameterl n=n+ -1
result = 1 =3 {1}
goto <unnamed>
=> {1} {1}->
3:

{2,0}-> return result
p -> {}
if n > 0 goto ?
-> 12,3¥

Figure 5.2: Block Map Example

5.1.3 Block Map

The block map associates each index to a basic block. Figure 5.2 shows the block
map for the power program of Figure 4.2. Each basic block contains the predecessor
and successor information, so the block map is used to retrieve the predecessor and
successor blocks. The block map structure keeps the entry and exit points, the local
variables, and methods to retrieve and update information. The local variables are
used to help reconstruct a method from the blocks.

The block map has a few features that determines the output created. The first
is a flag to create a block level view or a statement level view. The block level creates
blocks in the normal fashion where there can be any number of statements in a block.
The statement level view forces each block to have only one statement. This gives
a finer granularity of the statements but adds more overhead to keep track of and
to move between blocks. The other feature is to produce a control flow graph that
is in hammock form or not. Hammock form is where there is exactly one entry and
one exit point. Certain types of analyses, such as slicing, require the graph to be in

hammock form. Currently, the specializer does not make use of statement level mock

(7]
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maps or hammock structure, however, the slicing component of the Bandera tool set

(see Section 1.5) does.

5.2 Input Processing

There are two key steps for the input processing needed to be done before specializa-

tion: inline methods where possible and convert the statement list to a block map.

5.2.1 In-lining

It was decided to inline methods when possible to reduce the code complexity. A
partial reason was to remove method calls, reducing the overhead to do the call.
In-lining cannot be done for all methods. In Java, most methods are done in Java
Byte Code but some are in code native to the machine it is running upon. This code
cannot be in-lined. Because of the limited scope of the thesis, in-lining is currently
only performed for static methods in the same class. For this reduced case, in-lining

is not too difficult and follows a few easy steps.

1. Find a method call to a method that can be in-lined.

2. Replace the parameter references in the method to be in-lined with the actual
expressions with which the method is called. For example, if abs (b) is a method

call to be in-lined, the statement x = @parameter0O in the in-lined method is

replaced with x = b.

3. Replace return’s with an assignment of the return expression to the variable the

method takes place in and a goto to the statement after the call. For example,

if the method callisa = abs(b); a = 2 * a; thenareturn x; in the in-lined
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method is replaced with a = x; goto <a = 2 * a;> The<a = 2 * a;>isa

pointer to the statement contained in the <>’s.

4. Add the code to the statement list. This can be added at the point of the call
to reduce goto’s, or at the end. The current version places the code at the end

only a single method call is required to add statements to the end of a list.

5. Replace the method call with a goto to the start code just inserted. This is not

necessary, as mentioned earlier, if the code is inserted at the point of the call.

6. Repeat until there are no more method calls that can be in-lined.

5.2.2 Creating the Block Map

Jimple has a set of tools to create a control flow graph on the statements. This is
used to determine the start and end points of basic blocks. Basic blocks take the
statements and are put together and placed in the block map. The successors are
updated during this process. Finally, after all blocks have been created, the list of

blocks is processed to update the predecessor information.
5.3 Operation In-lining

The abstraction classes contain the information needed to implement the primitive
integer operations, but they do not plug into Jimple easily. This problem is circum-
vented by having the abstraction classes inherit from the Jimple constant class. This
solution allows Jimple to act as though abstractions are constants. This works well
for tools the know about abstractions, but in many cases, especially for outside tools,

the tools will not be extended to handle this functionality. To cope with this, the
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=y + 1 if (y == EVEN) goto labell:
if (y == EVEN) if (y == EVEN)
x = 0DD; tmp = TRUE;
else else
if (y == 0DD) if (y == 0DD)
x = EVEN; tmp = FALSE;
else else
x = CHOOSE(EVEN, 0DD); tmp = CHOOSE(TRUE, FALSE);
if (tmp) goto labell;
Figure 5.3: Operation In-lining Examples

abstractions can be identified with an integer constant and the abstraction operations
can be in-lined using regular Java code.

The integer constant used to identify the value of an abstraction can be obtained
by the bit vector representing the set of tokens the abstraction represents. Section
6.2 discusses how these values are assigned and used. To in-line the abstraction
operations, checks on these values are done and the corresponding result is used.
Figure 3.3 shows a couple of examples of operation in-lining. The top lines represent
the original code while the bottom section is the resulting code. EVEN and 0DD used
in the resulting code represent the integer value for EVEN and 0DD. The expression
CHOOSE(. . .) is an expression for nondeterministically choosing between the choices
given and extends Jimple's expression class. This allows it to be incorporated into
Jimple, much like the abstraction classes. The CHOOSE expression is for the case when
T flows through the result in the residual code. The down stream tools that build
model checker inputs implement the CHOOSE expression.

In Figure 5.3, the left side illustrates what happens when an operation occurs in
an assignment statement. The abstraction being used in the example is the even odd
abstraction. If y is known, the operation in-lining does not need to happen. For
example, if y is even, then the result would be x = odd and no operation in-lining is

done. But if y is T, then the inline happens. The code works by checking the possible

B S .

gj(‘: -n.-.-f.f‘ﬂ f.lé"ill '

— e e

3 #
a

Lvoresrs 4500 3
—_— - ——

-
-

- e e - e —



54

values of y and then doing the correct result. If both values are unknown, let us say
z =y + z and both y and z are T, then both the values of y and z will need to be
checked to ensure that r is assigned the correct value. The right side of the figure
demonstrates how a conditional is handled. The result of the test is assigned to a
temporary variable and then this is used to make the correct jump. An expression
where both sides are unknown is handled as in the assignment statements.

This helps tools that do not know about abstractions to use the result from ABPS.
The CHOOSE expression can be converted into a method call that decides between the

choices.

5.4 Output Processing

Currently, the output processing consists of changing the block map back to a state-
ment list. This is done by combining blocks that have implicit jumps where possible
and basically putting the statements in the general order that they appear in the
control flow graph. When implicit jumps cannot be placed together, a goto is in-
serted to ensure the jump to the correct block. The main requirement for putting the

statements back together is that control flow is maintained.
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CHAPTER VI

DATA STRUCTURES

This chapter summarizes the implementation of tokens, sets of tokens, lookup tables,

states, stores, caches, control flow skeletons, and specialization values.

6.1 Tokens

Tokens are used to represent a single abstract value. For example, even from the even
odd abstraction is a token. An actual token consists of a string, for the name, and an
identification number. The number is used to do any comparisons and calculations
using the token. The name is only used to print the token so it is easier to understand.
The number is used for the calculations for speed because checks on strings are slow.
Different tokens can use the same identification number as long as the tokens will not

be mixed together.
6.2 Token Sets

A TokenSet represents a set of tokens. TokenSet uses a bit set to represent the set.
This allows the common set functions, such as union, intersection, and difference,
to be implemented using bitwise operators such as or, and, and xor. Using bitwise
operators makes the manipulation much faster than iteratively going through a list to

do the operators. An example of the negative zero positive set can be seen in Figure
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Negative Zero Positive Set

Tokens Set Representations
Bit Set Actual Set
Token | ID Number 000 {}
negative 001 001 {negative}
Zero 010 110 {zero, positive}
positive 100 101 {positive, negative}
111 | {negative, zero, positive}

Figure 6.1: TokenSet Example

6.1. The left column is the table of tokens and their identification number. The right
column represents a few bit set values and their corresponding sets.

A TokenSet takes an array of tokens representing the universe of tokens that
the set can contain. It goes through the array and assigns an unique identification
number to each token. The identification number for the token is the bit position that
represents the token. Each different token set is given its own identification number.
This is used to check to see if the sets represent the same universe. Because a token
set has a unique identification number and an array of possible tokens, TokenSet has

a function that returns a new empty set from the same universe as the original set.

6.3 Lookup Tables

A lookup table is a table that associates a value with a particular key. There are
methods to add, update, and lookup values associated with keys. Lookup tables are
similar to maps in Section 4.2.3.4, but hash codes are not used. The original ABPS
prototype used lookup tables and many of the uses did not change for this ABPS
implementation so they are used instead of maps in some cases. For updates and
lookups, a lookup table iterates through the table until it finds the key and then does
the necessary operation. The add places a new key at the end of the table. There

are also functions to get a Vector of keys or values.
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6.4 States

A state is a pair consisting of an index and a store. It it used to represent the current
state in a program’s execution by having the position in the program’s execution, the

index, and the current value of all the variables. the store.

6.5 Store

The store is a lookup table that maps a variable to its value. Because the current
implementation does not deal with objects, this can be a simple mapping. In the
future, when the implementation is expanded to include objects, the store will have
to have additional functionality to deal with objects and pointers. A store keeps an
array of variable names and an array of their associated values. A store has many of
the same methods as a table. An additional function is a limit function which takes
a list of variables and returns a new store with only the variables that are in the list.
A little functionality is added to the store also. Because variables are added at the
beginning of a program and their values need to be initialized, a value initializer can
be specified. This takes the type of the variable and returns the corresponding initial
value. Also, the equality method is modified to speed up an equality check. It uses
only the list of values because it assumes that the two stores have the variables in the
same order. This is the case with ABPS because the store has all variables added at

the beginning of specialization and all copies of the store are copies of the original.

Also, the limit functions keeps the variables in the same order, ignoring the order of

the list that is used to limit the store.
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6.6 Cache

Cache is the implementation of C for ABPS (C was defined in Section 3.2.3). It is a

simple lookup table that associates stores to indices.

6.7 Control Flow Skeleton

In many partial evaluators, a pending list is kept (see Section 2.1.2). A problem with
using a simple pending list is when information is updated for a state that modifies
states already in the pending list. The updated state may need to be evaluated again
with the new information and this can flow down the control flow graph. This state
can be added to the pending list, but this may lead to problems since the other states
in the list can be evaluated before the updated state. If the information from the
updated state flows through the graph and makes the information at a state in the
pending list obsolete, this needs to be known or extra computation is done that may
not be used.

A control flow skeleton solves this problem. When the next node is required, the
control flow skeleton does a topological search to find the first node that is not up-
to-date. The topological search ensures that all nodes between the starting node to
the current node is up-to-date. The actual structure of the control flow skeleton is a
vector of nodes where each node contains the index of the basic block it represents,
whether it is up-to-date, and the children node positions in the vector (as in Section
3.2.3). A node is up-to-date if it is marked, shown with the symbol e, and not current
if is unmarked. shown with the symbol o. Each new node is added onto the end of
the vector. This makes the topological search become a sequential search for the first
unmarked node. The cost might be improved with a more clever data structure.

The control flow skeleton reuses the code from the FCL prototype with only a
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Skeleton | Block
Index | Index Mark | Children*

Skeleton: Example 1

0 0 B 1

1 1 ° :

2 2 ® 1
Skeleton: Example 2

0 0 o 1

1 1 @ 2.3

2 2 o 1

3 3 o =

* Using the skeleton index.

Figure 6.2: Skeleton Example

small modification of the package and class names. It has the methods to add nodes,
create arcs, and changed whether a node is marked or unmarked. It also has a method
to get the next node to evaluate and it has a few methods that are the same as the
steps needed by ABPS. For example, when a node is added to a parent, a node has
to be created, unmarked, and placed at the end of the list of nodes. Also, the child
needs to be added to the children list of the parent node. All these steps are included
in a method addDescendent.

In Figure 6.2, the left most and right most column numbers are indices into the
skeleton, but the block index column uses the indices associated with basic blocks.
The two examples are successive updates and demonstrate how the skeleton can
change. In example 1, there are only three nodes with node 1 getting evaluated. In
example 2, a new node is added that is a child of node 1 and the children of node 1
get unmarked. This unmarks 2 because it is a child of 1 (following the definitions in

Figure 3.4).
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6.8 Specialization Values

The value returned from an expression is a specialization value. A specialization value
originally consisted of the abstract value the expression evaluates to and a residual
expression. This was used to decide what would get residualized by the specializer.
If the abstract value can be residualized, it gets residualized. If, however, it cannot
be residualized, the residual expression gets residualized.

This works well for most situations, but if the operations of the abstractions need
to be in-lined (discussed in Section 5.3), more information needs to be returned.
This information includes the statements needed to represent the operation. This
prompted the creation of two other specialization values, one for assignments and
one for if statements. In all cases, the value of the expression is returned, but the

other data included in the specialization value depends on the context.

6.8.1 Expression Specialization Values

An expression specialization value contains the standard information of the expres-

sion’s value and a residual expression.

6.8.2 Assignment Specialization Values

An assignment specialization value contains the standard value for the expression plus
two lists. The first is the list of statements that is created to inline the expression.
These look much like the examples in Figure 5.3 from Section 5.3. The second list
is a list of boxes. A box is basically a Java pointer so that a value can be changed
without recreating the whole statement or expression. These boxes point to the left

hand side of the assignments that use the assigned variable. The exact variable is not
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known during the creation of the code, so it must be plugged in by the assignment
statement. The list of boxes gives an easy way of doing this. For example, the
assignment r = y + 1 is being evaluated and the operation needs to be in-lined. The
variable z is not passed down to the expression specializer so it has no knowledge of
what the actual variable is. It therefore passes a list of boxes back where the variable

needs to be plugged in and the assignment statement plugs the x into these boxes.

6.8.3 If Specialization Values

The if specialization value contains a large amount of information besides the value
of the conditional. Like the expression specialization value, it keeps the residual
expression of the condition. Next, it keeps a list of statements to handle in-lining of
the test expressions and a list of boxes. It also keeps a separate store for each branch.

The if specialization value is used even when operation inline is not done. It is
used to keep the stores for the different branches. This works by having the different
pieces of code to be empty. The stores are updated with a new value of a variable
if it can be deduced. For example, imagine the value of x is T in a store when the
expression x == 0 is encountered. If the abstraction for x is the Integer Abstraction,
one if specialization value would be returned. In the specialization value, the TRUE
store would be a[x — T]. The FALSE store would be unchanged. This is because
when x evaluates to 0, the true branch is followed and x must be 0 to go down the

branch. but it remains T for the false branch.
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CHAPTER VII

SPECIALIZER CORE

The specializer core does the necessary steps to specialize methods, basic blocks,
statements, and expressions. Individual expressions are handled in the signature and
abstractions. These are discussed in more depth in Chapter 8. Each level of spe-
cialization proceeds through the same general steps. First, the structure is separated
into individual components. Each of these components are then specialized. Finally,

the specialized components are combined.

7.1 Method Specialization

The steps to specialize a method are very similar to the steps in standard partial
evaluation. These can be broken up into three separate section sections, consisting
of initialization, specialization and creation of residual basic block, and npdating the
cache and control flow skeleton. The first step is done once; the second and third

steps are done repeatedly.

7.1.1 Initialization

The initialization step consists of the initialization of the different structures that are
used during specialization. The first is the creation of the initial store. This consists

of adding all the local variables to the store and initializing the parameter values to
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initialize(store);

state = new State(blockMap.initialLabel, store);
index = pi(state);

residualBlockMap.initiallabel = index;
C.update(index, theta(store, C.lookup(index)));
S.setStart(index);

Figure 7.1: Specialization Steps: Initialization

those that are passed into the specializer. Next, the initial state is created from the
initial label of the block map and the initial store. Then, the residual index is created
using the operator 7 (pi) (as defined in Section 3.2.2). This is used to set the initial
label of the residual block map. Next, the store in the cache for the initial index is
updated. Finally, the start of the control flow skeleton is set to the initial residual

index. This can be seen in the pseudo-code in Figure 7.1.

7.1.2 Specialization and Creation of Residual Basic Block

After initialization is completed, the specializer repeatedly specializes blocks (step 2
above) and updates the cache and skeleton (step 3 above) until there are no unmarked
nodes in the skeleton. During each cycle, the next index is retrieved from the skeleton.
The index is used to look up the corresponding store from the cache. Next, the basic
block labeled by index is retrieved from the block map. After that a new, empty
residual basic block is created. This is passed to the basic block specializer along
with the store. The specializer then adds residual statements to the new basic block,
and the completed block is placed into the residual block map. The specializer also
returns a list of states that are reached from the specialized basic block. Figure 7.2

represents the code for this step.
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index = S.next();

store = C.lookup(index);

bb = blockMap.get(index.getOriginalLabel());
currentBB = new BasicBlock(index);

states = evalBasicBlock(bb, store, currentBB);
residual.put(index, currentBB);

Figure 7.2: Specialization Steps: Specialization and Creation

7.1.3 Updating of the Cache and Skeleton

The third step is the updating of the cache and control flow skeleton. First, the index
1s marked in the control How skeleton. Next, the states resulting from processing the
current basic block are processed. If the store (o) in a state is not equal to the store
(0') associated with the state in the cache, a new store (opew) is created by merging
o and o’ using f. The cache is updated with opew and an arc is made from the parent
(the current basic block) to the child (a successor) in the skeleton. The child is set
to unmarked. If the stores are the same, then an arc is made from the parent to the

child and the child is left as marked or unmarked. The code for this is in Figure 7.3.

7.2 Basic Block Specialization

Basic block specialization requires specializing each statement in the block. A residual
statement is created for each source statement during specialization, and the residual
statement is added to the residual basic block. The statements from the source
block are specialized in succession. Finally, when the last statement is reached, the
successors are determined and set. For each jump construct (goto, if, and return)

the successors of the residual basic block are determined using 7 and 6.
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S.mark(index) ;
while (states.hasNext())
{
state = states.next();
if (!state.getStore().equals(C.lookup(pi(state))))
{
store = theta(state.getStore(), C.lookup(pi(state)));
C.update(pi(state), store);
S.makeArc(index, pi(state), false);
}
else
S.makeArc(index, pi(state));

Figure 7.3: Specialization Steps: Updating the Cache and Skeleton

7.2.1 Goto's

These can be implicit or explicit. Implicit goto’s are in blocks that do not end with
any type of jump and just has a successor to go to. Explicit goto’s are in blocks that
have an actual goto at the end of the block. In either case, the basic block contains

the successor and this is used to calculate the successor for the residual block.

7.22 If's

if's are one of the key points of specialization. If the conditional can be determined
during specialization, it can be turned into a goto. During the specialization of
an if, the possible targets are returned. A target is a state, which consists of the
label or index of the original target and the current store. If the conditional can be
determined, only the one target is returned. If the conditional cannot be determined,
both the TRUE and FALSE targets are returned. In the first case, the target is used to

calculate the successor and nothing is residualized for the statement, thus creating
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an implicit goto. In the latter case, both targets are used to calculate successors and

a new if statement is created.

7.2.3 Return's

All return’s must be residualized. There are, however, no successors to be set.

7.3 Statement Specialization

There are two results from specializing a statement. The first is the creation of a
residual statement. The second is the return of any target blocks if the statement is

a jump.

7.3.1 Assignment Statement

Assignment statements are made of two parts, a left and right hand side. Because
currently only local variables that are integers are supported, the left hand side is just
a variable. The right hand side, however, contains an expressions that needs special-
ized. The result of specializing an expression is a specialization value. There are two
kinds of specialization values that apply to assignments: one for normal operation
(an expression specialization value) and one for operation in-lining (an assignment
specialization value). If the specialization value is one for normal operation, then
the value of the expression is checked to see if it can be be residualized. If so, the
assignment is residualized with the right hand side the same as the value. If not,
the right hand side is the residualized expression. For example, imagine the left
hand side being z and the specialization value of < POS,y * 2 >, where the POS
is the value of the expression and the y * 2 is the residual expressions. If POS is

residualizable then the residualized assignment would look something like z = POS.
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If, however, POS is not residualizable, then the residualized assignment would look
something like z = y x 2. More on expression specialization can be seen in Section
7.4. The case when the specialization value is one for operation in-lining is explained

and demonstrated in Section 5.3.

7.3.2 Goto Statement

Goto statements are a special case. They do not get residualized, but are made
implicit in the residual block. This allows the function that creates a new method
from the block map to put goto’s wherever they are needed. Specializing the goto

statement simply returns the target index.

7.3.3 If Statement

There are two cases for an if statement: the conditional can be evaluated to TRUE
or FALSE, or the conditional evaluates to an unknown value. For the first two cases,
specialization proceeds in the same way. If the condition evaluates to TRUE or FALSE
then the if statement is not residualized, but instead it is converted to an implicit
goto. The specializer returns the target index of the TRUE or FALSE branch depending
on the value.

If the conditional evaluates to an unknown value, the residual expression returned
in the specialization value is used for the conditional of the if. The specialization
value returned in the second case is one for if's (discussed in Section 6.8.3). This
new if statement is residualized and the TRUE and FALSE targets are returned. The
additional code in the specialization value is also residualized in its correct place.

The stores for the TRUE branch and the FALSE branch can be different by using

conditional constant propagation. Conditional constant propagation is where the
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form of a conditional expression is used to propagate values down different branches.
For example, imagine that we had the expression r == 0 as a conditional and z is
unknown. For the execution to follow the TRUE branch then x must equal 0, therefore
0 is propagated as the value for # down the TRUE branch. Down the FALSE branch,

the value of z can be anything but 0, the value of x is left as unknown.

7.3.4 Return Statement

There are two types of return statements in Java. The first is a return that returns
void. The second is a return that returns the value of the return expression. In the
first case, the return is residualized. In the second case, the expression is specialized
and residualized (along with the return) using the same process as with the assignment

statement. An empty set of targets returned.

7.4 Expression Specialization

There are a wide range of expressions used in Java, but all of these can be broken
down into two categories. The first are operators, i.e. +, — . This group also
includes constants, variables, and method calls. The second group are tests, which
consist of operations that return a boolean value, ¢.e. <, ==, and ! =. All these are
dependent on the different abstractions so they are implemented in the ¥ and the

individual abstractions.

7.4.1 Operators

Operators return a specialization value, first mentioned in Section 6.8. Let us look at
a few examples of specialization values for expressions. Examples of assignment and

if specialization values are found in Section 5.3.
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e Constants

If one has a constant. such as 3, the value is 3 and the expression is also 3. The

specialization value would be < 3,3 >.

Variables

If one has a variable z then the value would be o(z) and the expression would

be z. The specialization value would be < o(z),x >.

Operations

These have subexpressions which are specialized individually and the special-
ization values are used to make the operation’s specialization value. There are
three cases of operations, one where the value is residualizable and two where
the value is not residualizable. The difference between the two is whether the

abstract operations are in-lined or not.

— Value is residualizable
An example of this is the expression » + 2 and & evaluates to 2. The value
would then be 4 and the residual expression would be 4, thus making the
specialization value to be < 4,4 >.
— Value is not residualizable and operations are not in-lined
An example of this is the expression = + 2 and & evaluates to a value that
cannot be residualized, such as T. The value of the expression is T and
the residual expression is « + 2. The specialization value is < T,z + 2 >.
— Value is not residualizable and operations are in-lined
An example is similar to that above, but the specialization value is one

for assignments. It would look something like < T, code, | >. The code is



similar to that in Figure 5.3 and the [| is the list of boxes that need to be

filled with the variable .

7.4.2 Tests

Test are similar to operations. There are two cases for tests. The first is when the
conditional can be determined. This creates an expression specialization value like the
ones for operations. The second case is when the conditional cannot be determined,
an if specialization value is returned. This works whether operations are in-lined or
not. When operations are not in-lined, the additional code sections are left empty,
but when operations are in-lined, the additional code sections are filled in. One of
the key parts of the if specialization value is it keeps stores for the TRUE and FALSE

branches. This is used for conditional constant propagation (Section 7.3.3).



CHAPTER VIII

SPECIALIZER OPERATORS

The specializer takes in a number of operators that determine different aspects of the
specialization process. These include the abstractions, the signature 3, the projection

operator m, and the widening operator 8.

8.1 Abstractions

The abstractions are one of the key controlling points of the specializer. Each abstrac-
tion is defined in a special abstraction class. These classes have methods to do the
different operators and tests. They also include methods to create the residual code
for the expression, to abstract values, and to lift and merge values of the abstraction.
This way, each abstraction can handle the operations and functions differently. For
example, in the int abstraction, the addition of two integers is the normal addition
operator for integers. For the even odd abstraction, however, the addition operator
depends on the abstract value. So if the expression even+ even is evaluated the result
should return even. The expression even+ odd, however, should return odd. All these
different cases must be implemented in the abstraction.

Currently, the abstraction classes are constructed by hand, but it is planned to
make their construction more automatic. The abstractions that have been created
so far have started off in a simple abstraction specification langnage and then hand

compiled to Java code. The Bandera abstraction specification language (BASL) has
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Specification
tokens: NEG, ZERO, P0OS, T
Code

public final static Token NEG_TOKEN = new Token("NEG");
public final static Token ZERO_TOKEN = new Token("ZER0");
public final static Token POS_TOKEN = new Token("POS");
public final static Token T_TOKEN = new Token("T");

protected final static Token tokens[]

{NEG_TOKEN, ZERO_TOKEN,
POS_TOKEN, T_TOKEN};

public final static TokenSet TOKENSET = new TokenSet(tokens);

public final static SignsAbstraction NEG =

new SignsAbstraction(NEG_TOKEN) ;
public final static SignsAbstraction ZERO =

new SignsAbstraction(ZERO_TOKEN) ;
public final static SignsAbstraction PGS =

new SignsAbstraction(POS_TOKEN) ;
public final static SignsAbstraction T =

new SignsAbstraction(T_TOKEN) ;

Figure 8.1: Header

not been formally defined vet. However, in this chapter example BASL specifications
are given as they are expected to be written once the language is formalized. Also, the
code expected to be produced by the BASL compiler is shown. The BASL compiler
automates the encoding of the abstractions in Java. There are seven sections to
a BASL specification. The following sections discuss each of these using the signs
abstraction as an example. The signs abstraction keeps track of the signs of the
integer, but not the actual magnitude. The three tokens are NEG, ZERO, and
POS. NEG represents values less than zero and POS represents values greater

than zero.



73

Specification

abstract
(n < 0) -> NEG
(n == 0) -> ZERO
(n >0) ->POS

Code

public static SignsAbstraction abs(int n)
{
if (n < 0)
return NEG;
else
if (n == 0)
return ZERO;
else
if (n > 0)
return POS;
else
return T;

Figure 8.2: Abstraction Function

8.1.1 Header

This section specifies the tokens of the abstraction. For example, in the signs abstrac-
tion the tokens are NEG, ZERO, POS, and T. The BASL header section appears

in the top of Figure 8.1. The code produced would look like that in the bottom of

Figure 8.1.

8.1.2 Abstract Function

The abstract function section defines how to abstract the values. This is called to
abstract constants and create a new instance of the abstraction. For example, if the

constant 2 was abstracted for the signs abstraction, the result would be POS. An
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Specification

merge
POS POS -> POS
ZEROD ZERD -> ZERO
NEG NEG -> NEG
default =2 o

Code

public static Abstraction merge(SignsAbstraction ii,
SignsAbstraction i2)
{
if (i1.same(P0OS) && i2.same(P0S))
return P0OS;
else
if (i1.same(ZERO) && i2.same(ZERD))
return ZERO;
else
if (i1.same(NEG) && i2.same(NEG))
return NEG;
else
return T;

Figure 8.3: Merge Function

example of the specification and resulting code can be seen in Figure 8.2.

8.1.3 Merge Function

The merge function is used to merge two values from the same abstraction. In many
cases, this is the least upper bound operator. The specification defines a set of cases
on what to return. The code uses an if-then-else approach. This can be seen in Figure

8.3.
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Specification
1lift NEG, ZERO, POS
Code

public Value 1lift()
{
if (same(NEG))
return NEG;
else
if (same(ZERD))
return ZERO;
else
if (same(P0S))
return POS;
else
return null,;

Figure 8.4: Lift Function

8.1.4 Lift Function

The lift function returns a Jimple expression if the value can be residualized and
lifted, otherwise it returns null. In the case of the signs abstraction, we want to be
able to residualize NEG, ZERO, and POS but not T in our example. Figure 8.4

contains the appropriate lift function.

8.1.5 Operators

The BASL specifications for operations and tests use patterns to defined the different
cases. Cases are processed from top to bottom and the result is given by the first
pattern matched. The specification section of Figure 8.5 show a few new features
used to define an abstraction. The first is the wildcard pattern (*). The second is the

opl and op2 values. These represent the left and right operands, respectively. These
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Specification
operator +
P0S POS ->
NEG NEG ->
* ZERO ->
ZERD * ->

default ->
Code

public static Sp
{
Abstraction vl
Abstraction v2

if (v1.same (PO
return new S
else

POS
NEG
opl
op2

ecValue add(ExprSpecValue opl, ExprSpecValue op2)

1]

opl.getValue();
op2.getValue();

S) && v2.same(P0S))
pecValue(P0OS);

if (v1.same(NEG) && v2.same(NEG))

return new
else

SpecValue (NEG) ;

if (v1.same(ZERO))
return op2;

else

if (v2.same(ZERD))

return
else
return

opl;

new SpecValue(T);

Figure 8.5: Addition Example
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are used in this example because anything added to zero is itself. The value returned
is a simple specialization value. The residual expression is added by the signature.

This is done in one of three ways.

e Value is liftable

The residual value is created by lifting the value when it is liftable.

e Value is not liftable and operations are not in-lined

When the value is not liftable and operations are not in-lined, the signature
creates the residual value by making a new operand with the residual values of

the arguments.

e Value is not liftable and operations are in-lined

When operations are in-lined, another call to the abstractions makes the residual
code that replaces the operand and is passed back in an assignment specializa-

tion value.

The extra method in the abstraction matches the patterns for the rules and cre-
ates the code for the particular case. For example, if the expression was « + 2 for
the rules in Figure 8.5 and 2z was T, then all the rules where the right operand is
POS apply. These are the first, fourth, and fifth rules. The code for each check
is appended together to take care of all the cases. This creation of code is actually
handled by a method in the base Abstraction class. This method is used in all the
abstractions currently. This makes the creation of the different methods easy to do,

either automatically or by hand.
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test ==

POS POS ->T e =Y =5 =2

NEG NEG -> T k= =) K=y ™)

ZERO ZERO -> TRUE (-, -) (-, =)

T « -> T (op2; =) (=; =)

* T -> T (=5 0pl) (=, =)

default -> FALSE (-, -) (-, -)

Figure 8.6: Equality Example: Specification

8.1.6 Tests

Tests work similar to operators but there are a few key differences. First, they are
used to determine a branch in the execution. Second, if they cannot be determined,
different values can flow down different paths. This made the creation of the spec-
ification a little more difficult. The solution was to create a spot for each possible
value flowing down each branch. These are the values of the arguments to the test.
For example, in the expression r == y, z and y are the arguments. These are the
variables that can have values flow down different branches. If the y was a 2, then
only the = could have its value changed. Also, there is only two branches. This made
the specification for a test to have the two values of the pattern to match, a boolean
value or T as the result, and two pair of the values that can flow down the branches.

Figure 8.6 shows the specification for the equality test. The values returned are
tokens for the boolean abstraction. The items in parenthesis represent the new values
for the operator arguments in the true branch and false branch respectively. The -
is an empty token which represents that on operator does not change its value. If
you look at the fourth pattern, the true branch is (op2, -). This says that the left
operand gets the same value as the right operand (op2). Figure 8.7 shows the code

created for the specification.
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public static SpecValue eq(ExprSpecValue opl, ExprSpecValue op2,
Store trueStore, Store falseStore)
£
Abstraction vl
Abstraction v2

opl.getValue();
op2.getValue();

if (v1i.same(P0S) && v2.same(P0S))
return new IfSpecValue(BoocleanAbstraction.T,
new ArrayList(), new ArrayList(),

trueStore, falseStore);
else

if (vl1.same(NEG) && v2.same(NEG))
return new IfSpecValue(BooleanAbstraction.T,
new ArrayList(), new ArrayList(),

trueStore, falseStore);
else

if (v1.same(ZERO) && v2.same(ZERO))
return new IfSpecValue(BooleanAbstraction.TRUE,
new ArrayList(), new ArrayList(),
trueStore, falseStore);

else
if (vi.same(T))
{
trueStore.update(EVariable.convert(opl.getExpr()),
op2.getValue());
return new IfSpecValue(BooleanAbstraction.T,
new ArrayList(), new ArrayList(),
trueStore, falseStore);
}
else
if (v2.same(T))
{
trueStore.update (EVariable.convert (opl.getExpr()),
opl.getValue());
return new IfSpecValue(BooleanAbstraction.T,
new ArrayList(), new ArrayList(),
trueStore, falseStore);
¥
else

return new IfSpecValue(BooleanAbstraction.FALSE,
new ArrayList(), new ArrayList(),
trueStore, falseStore);

Figure 8.7: Equality Example: Code
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Tests are also like operators because there are two methods in each abstraction
for each test. The second method, like for operators, is for when operator in-lining
is done. It creates the code necessary to in-line the tests and ensure that the correct
jump point is reached. It also ensures that the residual code makes the correct
assignment. As in the previous example, when the left operand gets assigned the
value of the right operand, this assignment must be residualized when the operations

are in-lined to ensure correct transformation.

8.1.7 Other Functions

There are other functions associated with abstractions. These include retrieving the
bit set that represents the set. This is also the unique number used when operation
in-lining is done (see Section 5.3). There are also methods to create a new instance
of the abstraction which represents the empty set. This is used when a new instance
of an abstraction is needed. Finally, there is a method that creates the CHOICE

expression with the values the abstraction represents.

8.2 Signature - ¥

The signature determines which method gets called for a particular operator or test.
It extends Jimple's ValueSwitch which works as a switch between each expression. [t
works by having a separate method for each expression that needs to be implemented.

Each method goes through the same set of steps.

1. Evaluate Subexpressions

This step calls upon the signature to evaluate subexpressions. Some types of
expressions do not need to do this step because they do not have any subex-

pressions, i.e. variable lookup and constants.
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if (

v1.ID == SignsAbstraction.absID &&
v2.ID == SignsAbstraction.absID)

res = SignsAbstraction.add(svl, sv2);

else

if (v1.ID =

ZeroPosAbstraction.absID &&
v2.ID == ZeroPosAbstraction.absID)
res = ZeroPosAbstraction.add(svl, sv2);

[}

Figure 8.8: Determining the Abstraction

2.

Evaluate Expression

For simple expressions, such as variable lookup and constants, the signature
evaluates the expression itself. For more complicated expressions, such as ad-
dition, subtraction, etc., the values of the subexpressions are used to determine
what abstraction is used to handle the expressions. For example, if both subex-
pressions evaluate to even odd abstractions and the expression is addition, then
the addition method in the even odd abstraction will be called. An example
of this can be seen in Figure 8.8. Each possible combination of abstractions
must be handle tor each possible operation. When two different abstractions
come together, one must have a special method to handle the combination or
convert one abstraction to the other and then call the corresponding method.

All this can get difficult to implement by hand, but much of the code can be

reused. It is planned to make this automatic in the future to remove much of

the difficulty.

The signature can also determine when to change the abstraction of a particular
value. The only case currently used is for an expression such as r + 2. The
x will be the abstraction assigned to it but the two will be a concrete integer

value. This needs to be converted to the same abstraction (in many cases) as
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z. A check is made to see if a value is a concrete integer and then, if so, it is
abstracted to the correct abstraction. In the future, this will be used to convert

from one abstraction to another when it makes sense to do so.

3. Create Residual Expression

The result of the operation is next lifted to an expression. If the value is
residualizable, then this step is finished. If the value is not residualizable, then

a new expression must be created. For example, if the value of r % 2 is even

and even is residualizable, an expression representing even is returned by the "y
. . . . - : S
lift function and it is done. If, however, even is not residualizable, then the S o
3 P
expression must be recreated with the residualized subexpressions put together >
with the operator, i.e. x * 2. This is handled by the signature when operation 9
. a by
in-lining is not done. When operation in-lining is done, however, a separate Uh
a!
. > T i i % . 1 M}
method is called in the abstraction that creates the correction specialization 1
| i|.
value with the correct code to represent the expression. it
!
L
1 . T § " LT
4. Creation of the Specialization Value .l
.
- "
G v : ; ; y 14
A specialization value is created for an operation expression by the signature = ;Ij_
L]}

when operation in-lining does not occur. In all other cases, the specialization
values are created by the methods in the abstraction class. This makes the work
of the signature stay basically a test for the types of abstractions to determine

the correct abstraction and method to call.

83 Pi-m

The operator 7 is used to create an index from a state. Because a state contains an

index and a store, these can be used in different combinations to create the new index.
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7 is implemented in its own class, and to create a new instance of = one extends the

class. The key function to implement is the pi function:
public Index pi(State s)

This function is what is called to create a new index. This function can be configured

in a number of ways but the three most common are

e Monovariant Analysis - Only one residual basic block for each original basic

block. This works by returning the index of the original basic block.
return s.getIndex();
e Maximally Polyvariant Analysis - A residual basic block for each different store

and index pair. This works by creating a new index that combines the index

and store.
return new StoreIndex(s.getIndex(), s.getStore());
e Variable Polyvariant Analysis - This is where polyvariance is done only on a

select group of variables. It limits, or reduces, the store to the number of

variables and then combines it with the index.

return new StoreIndex(s.getIndex(), s.getStore().limit(vars));

More complicated notions of polyvariance can also be encoded. For example, if

a live variable analysis was done for each block, one might want the ABPS to be
polyvariant on the live variables for a particular basic block. This would make the
implementation do a different limit of the store depending on the index of the original
basic block. The call might look something like

return new StoreIndex(s.getIndex(),
s.getStore() .limit(liveVars(s.getIndex())));

where the function call liveVars(s.getIndex()) returns the live variables for a

given basic block.
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84 Theta- 4

The & operator performs a component-wise merge on two stores. The merge function
is usually defined in the class representing the abstraction of the particular value. The
main user defined function in the operator determines which function to call to merge
the two values. For example, if the two values are from the even odd abstraction,
then it would call merge in the even odd abstraction. An example of the merge
function can be seen in Figure 8.9. This checks to see if two values are either both
int abstractions (IntAbstraction) or even odd abstractions (EOAbstraction).
Other features can be added to the merge function. One common occurance is
where the value is an int abstraction in one store and an even odd abstraction in the
other. In the code in Figure 8.9, an exception would be thrown. To solve this, the

code in Figure 8.10 would be put into the if-then-else statements.
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public class SimpleTheta extends Theta
{
public Abstraction merge (Object ol, Object 02)
£
if (ol instanceof IntAbstraction &&
02 instanceof IntAbstraction)
return IntAbstraction.merge((Intﬂbstraction)ol,
(IntAbstraction)o?2);
else
if (ol instanceof EOAbstraction &&
02 instanceof EOAbstraction)
return EOAbstraction.merge ({(EDAbstraction)ol,
(EOAbstraction)o?2);
else
throw new RuntimeException("Unhandled case in merge:
ol #+ "\t“ + 02);

"

Figure 8.9: § Example

-+

if (ol instanceof EDAbstraction &&
02 instanceof IntAbstraction)
return EDAbstraction.merge((EDAbstraction)ol,
EOAbstraction.abs(
((IntAbstraction)o?2) .value)) ;
else
if (ol instanceof IntAbstraction &&
02 instanceof EOAbstraction)
return EOAbstraction.merge(EOAbstraction.abs(
((IntAbstraction)ol) .value)
(EDAbstraction)o?) ;

Figure 8.10: Addition Code for ¢
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CHAPTER IX

RESULTS

The ABPS tools processes a small subset of Java. This includes integers and their
operators. The tools can only specialize a method so this limits the application, but
there are still some interesting examples that can be treated. This chapter consists

of examples using a concurrent readers/writers control code.

9.1 Reader/Writer Controller

A controller for concurrent readers/writers keeps track of the nmmber of reader pro-
cesses and the number of writer processes. This is to ensure that there are no readers
while there is a writer process. Also, that there can be no more than one writer
process. The example has been modified to keep only the features needed for this
line of tests. This is a common procedure in FSV to reduce the state space and the
complexity of the problem.

Figure 9.1 shows the Java source code for the reader writer controller. The code
loops until it gets a request to stop. Model.choose (4) nondeterministicly chooses a
value between 0 and 4. The value is assigned to req. Figure 9.2 shows the actions
represented by the request values. The resulting Jimple code is in Figures 9.3 and

9.4.

L1l
S
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public static void controller()
{
boolean writerPresent = false;
int req = 1;
int activeReaders
boolean errorFlag

I

0;
false;

while (req!=0)
{
req = Model.choose(4); // controller@7

if (req == 1)
{
if (!writerPresent) // startRead()
++activeReaders; // controller@13 START_READ

¥
else
if (req == 2) // else of case 1
{
if (activeReaders>0)
{
activeReaders = activeReaders - 1;
if (writerPresent) errorFlag = true,
}
}
else
if (req == 3) // else of case 2
1
if (activeReaders==0 && !writerPresent)
writerPresent = true; // controller@l9 START_WRITE
}
else

if (req == 4) //else of case 3
if (writerPresent)
{
writerPresent = false; // controller@21 STOP_WRITE
if (activeReaders>0) errorFlag = true;

3

et

i

Figure 9.1: Reader Writer Java Code
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req Step
0 Ends the loop
1 Add a new reader
2 Removes a reader
3 Adds a new writer
4 Removes the writer

Figure 9.2: Reader Writer Requests

9.2  Abstractions

There were three different abstractions used for these examples. For all the abstrac-
I

tions, only the operators and tests that are needed are implemented.

9.2.1 Boolean Abstraction

A boolean abstraction keeps track of the boolean values TRUE and FALSE. They can

also have an unknown, T. These were used for the writerpresent variable.

9.2.2 Zero Positive Abstraction

The zero-positive abstraction is similar to the signs abstraction. The only notable
difference is the lack of a negative token. It is used for the activereaders variable
which keeps a count of the number of active readers. It is safe to use the zero-positive
abstraction because the number of active readers can never fall below 0. Also, all

tests on active readers need to know only if the value is 0 or greater than zero.
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p
!

ublic static void controller()

int 10, writerPresent, req, activeReaders;

writerPresent
req = 1;
activeReaders
goto label4;

0;

0.

n

labelO:
i0 = Model.choose(4);
req = 10;
if req !'= 1 goto labell,;

if writerPresent != O goto label4;

activeReaders = activeReaders + 1;
goto label4;

labell:
if req !'= 2 goto label?2;

if activeReaders <= 0 goto label4;
10 = activeReaders - 1;
activeReaders = 10;

if writerPresent == 0 goto label4;

goto label4;

label2:
if req '= 3 goto label3;

if activeReaders != 0 goto label4;
if writerPresent !'= 0 goto label4;

writerPresent = 1;
goto label4d;

Figure 9.3: Reader Writer Jimple Code (Part 1)
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label3:
if req != 4 goto label4;

if writerPresent == 0 goto label4;

writerPresent = 0;
if activeReaders <= 0 goto label4;

label4:
if req != 0 goto labelO;

return;

Figure 9.4: Reader Writer Jimple Code (Part 2)

9.2.3 Range 0-4 Abstraction

The last abstraction used is a range abstraction. A range abstraction has tokens to
represent values in a particular range, in this case between 0 and 4. This is used for

the req variable because that is the range of its values.

9.3 Signature and Theta

ABPS also requires specification of the signature and theta. These are straight for-
ward because they basically choose between which abstraction to call. Signatures

were discussed in Section 8.2 and theta in Section 8.4.

9.4 Running the ABPS Tools

Unfortunately, the current implementation only takes a few command line arguments.

These include the class and method names and three possible options. The class

oll
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names is the fully qualified class name. This is the combination of the package
and class name in Java. ABPS currently does not distinguish between overloaded
methods. It will simply specialize the first method with the given name. The two
options are -poly and -inline. The -poly option chooses polyvariant analysis
instead of the default monovariant analysis. To do operation in-lining, the option
-inline is used. The other options must be implemented by changing the code in
Main. java or the different specializer operators.

Two changes can be made by modifying the code in the Main class. The first
is the arguments passed as the parameters of the method. These arguments are
passed as an array, one entry for each parameter. One can change the value and the
abstraction used for these arguments. Also, there is a table passed to the specializer
that associates variables with abstractions. One can add new entries into this table.

In the future, these will be retrieved from the command line or from an options file.

9.5 Results

The following section presents the results of running ABPS in several different modes:

monovariant, polyvariant, and monovariant with operation in-lining.

9.5.1 Monovariant Case

The monovariant case is the easiest to understand. For each label in the source
program, there is exactly one label in the residual program. A table to show the rela-
tionship between the source labels and residual labels is in Figure 9.5. The resulting
code can be seen in in Appendix C starting on page 111,

Figure 9.6 contains a piece of the residual code that corresponds to labell in

Figure 9.6. Omne of the first noticeable differences between the code in Figure 9.3

M |
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Source Labels

Monovariant Case

Polyvariant Case

labelQ

labell

labell, label5, labelT. la-
bell0, labelll, labellT7,
label22, label23, label29,
label32, label34, label39,
label41, label43, label44,
label47, label51

labell

label2

label3, labeld, labell3,
labelld, labell8, label30,
label46

label2

label3

label9, labell2, label20),
label24, label26. label 36.
label48

label3

label4

labell6, labell9, label28.
label31, label33. label40.
label49

label4

labelD

label25, label27, label 35,
label37, label38, label45,
label50

Figure 9.5: Source and Residual Labels

label2:

if req !'= R2 goto label3;

if activeReaders <= ZERQ goto label0;

il = POS - POS;
activeReaders = il;

if writerPresent == FALSE goto labelO,

goto labelO;

Figure 9.6: Excerpt of Monovariant Results
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and the source code in Figure 9.3 is the inclusion of tokens. The tokens represents
abstractions which are considered Jimple constants (see Section 5.3). Recall from
Section 3.2.1, that the user can control which tokens are residualized and which
tokens are not residualize.

Another difference is the conversion of the expression activeReaders - 1 to
POS - POS in Figure 9.6. This conversion occurs because the result of POS — POS
is T (subtracting two positive natural numbers can give either a zero or a positive

number). The expression was residualized because T is not residualizable.

9.5.2 Polyvariant Case

The polyvariant case is probably the most difficult example to follow (see Appendix
C on page 112). Part of the reason is the code explosion that occurred. The code
explosion is a result of the creation of a new residual basic block for the combination
of each source basic block and variable values. Figure 9.7 is an excerpt of residual
code that demonstrates multiple residual blocks. These pieces of code is some of the
specialized versions of the code found under labell in Figure 9.3. Each label, except
labelil4, represents the specialized entry point to labell. labell4 is the body of
the same block. Figure 9.8 helps explain why each block is different. The figure
shows the entering values at each entry point. With these values, cach case can be

explained.

e label3: The number of active readers 1s ZERO in this case. This means the

check activeReaders <= ZERO is true and the rest of the block is skipped.

e label4: The number of active readers is POS. The check is false and so the

rest of the block is specialized.

e label13: The number of active readers is T. The check is unknown, so each

wll
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label3:
if req != R2 goto label9;

il = Model.choose({RO,R1,R2,R3,R4});
req = il;

if req != R1 goto label3;

goto labelO;

label4d:
if req '= R2 goto labell?2;

i0 = PDS - POS;
activeReaders = 1i0;

labell3:
if req !'= R2 goto label20;

if activeReaders <= ZERO goto label5;
labell4:

i0 = POS - POS;

activeReaders = i0;

goto label5;

labell5:
if req '= R2 goto label24;

goto labell4;

Figure 9.7: Excerpt of Polyvariant Results
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label | req | activeReaders
labeld | T ZERO
labeld | T POS
label1d | T X
labelid | T POS
labell5 | T POS

Figure 9.8: Variable Values Upon Block Entry

possible branch must be taken. To follow the false branch, the number of active
readers must be positive. This information is propagated down the path and is
an example of conditional constant propagation (see Section 7.3.3). The control

then flows down into the body of the block.

e labell5: The number of active readers is POS. The check is false so the rest of
the block is specialized. The values flowing into the body match those flowing

into the body from label13, allowing the two blocks to be merged.

The differences between the cases where the number of active readers is POS is from
the different values of the other variables. These are not the only residual blocks

created for the source blocks. The rest can be seen in Figure 9.5.

9.5.3 Monovariant Case with Operation In-Lining

The examples for monovariant specialization with operation in-lining uses some dif-
ferent code than the other examples because the reader/writers code is not a good
example of what can happened during operation in-lining. The example code used
for operation in-lining is in Figure 9.9. It contains an assignment where a positive
value is added to the variable r. ABPS creates the residual code in Figure 9.9 when

operation in-lining is set and x is T.

sl
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Source Code
i0 = 3 + x;
Residual Code

if x !'= POS goto labelO;

10 = POS;
goto label2;

labelO:
if x != ZERO goto labell;

i0 = POS;
goto label2;

labell:
i0 = Model.choose ({NEG,ZERD,P0OS});

label2:

Figure 9.9: Monovariant with In-lining Example

When r is POS or ZERO, the result is POS. When = is NEG, the re-
sult is T., which gets residualized as a nondeterministic choice. All these cases
needs to be handled when operation in-lining is done in this case. To do this,
ABPS creates code that checks for each possible value of & that does not result
in T. For each of these cases, it creates code to assign the correct value for the
assignment. When the result is T, ABPS creates a nondeterministic assignment,

i0 = Model.choose ({NEG,ZERO,P0S}).

9.5.4 BIRC Output

One of the main goals of ABPS was for the output to be processed by BIRC, the

translator that converts Jimple code to code for a FSV. Figure 9.10 is a sample

i
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atomic { ((req == R1) && (writerPresent == FALSE)) ->
req = {R0O, R1, R2, R3, R4};
activeReaders = POS;
goto loc_2; }
atomic { ((req == R2) &% (activeReaders > ZERO) &&
(writerPresent == FALSE)) ->
req = {RO, R1, R2, R3, R4};
activeReaders = {P0S, ZERO};
goto loc_2; }
:: atomic { ((req == R3) && (activeReaders != ZERD)) ->
req = {R0, R1, R2, R3, R4};
goto loc_2; }
atomic { ((req == R3) &% (activeReaders == ZERD) &&
(writerPresent '= FALSE)) ->
req = {RO, R1, R2, R3, R4},
goto loc_2; }
atomic { ((req !'= R3) && (activeReaders == ZER0) &&
(writerPresent == FALSE)) ->
req = {RO, R1, R2, R3, R4};
writerPresent = TRUE;
goto loc_2; }

Figure 9.10: Promela Code from BIRC

of the output created by BIRC for the readers/writers example. This output has
been optimized by hand to make it more readable. Trivial tests, z.e. 0 == 0 and
I! = 0, have been removed. Also, the equations have been rearranged. For example,
(Y(active Readers! = ZERQ)) was changed to (activer Readers == ZERO). Finally,
extraneous parentheses were removed. The output was obtained by putting the resid-
nal method into a Java class that BIRC then processed. Spin was used to check the
readers/writers with the promela output. The results were not what was expected
because the current version of BIRC did not allow static invoke expressions in the

Jimple code.



CHAPTER X

CONCLUSION

This work has demonstrated that partial evaluation and abstract interpretation can
be combined to obtain a tool that automatically generates abstract models of simple
software systems. These models can be fed into existing finite state verification tools.
The ABPS has been integrated into the larger Bandera verification system. An initial
release of the Bandera tool set (including ABPS) is being tested by researchers at

NASA Ames, Stanford, University of Massachusetts, and University of Hawaii.

10.1 Assessment

e Usability

In its current state, the system is not too difficult to nse if the abstractions
remain simple and the Java code lies in the subset of what is implemented.
However, there are several limitations that can be improved immediately. There
are not many options that can be passed on the command line. One can see
some nice examples, but if a different method with different parameters or
variables is to specialized, one must change some ABPS code by hand. Also,
abstractions and the signature are still difficult to implement. This is because
they must be done by hand. This makes it tedious to add much functionality,

or even a new abstraction, to the current code. The structure was designed so
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that it would be relatively easy for a tool to automatically construct these from

a specification file.

e Effectiveness

The effectiveness seems to be pretty good for the examples it was tried on. The
results matched up to models that would be constructed by hand. To be fully
effective, objects and arrays need to be handled, plus a way to specialize whole
systems. The system is currently not as efficient as it could be but this will be

addressed in the future.

e Technical Challenges

Creating modular abstractions became the biggest technical challenge. The
ABPS tools needed to be able to change abstractions without much hassle.
Also, in the future, they need to be created automatically. This meant that
they needed a regular structure that would be easy to specify and easy to use.
The structure of abstractions and the signature changed over the course of
working on the implementation. Each one came closer to the desired goal of
being more automatic, but there are still changes that can be made to make it

more s0.

10.2 Future Work

There is much to be done in the future on this system. The two primary goals are
to make it more automated, and to scale it up to a wider range of Java features.
Many aspects of the first goal can be handled without much difficulty. To make the
creation of abstractions and signatures more automated, an abstraction specification
language needs to be developed. Some work has been done for this, and the specifi-

cation language looks much like the sample specifications presented in Chapter VIII.

I
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After this, a compiler needs to be written that compiles the specifications to Java
source code that can be used by the system. Further work also needs to be done on
the structures of the abstractions to aid in the creation of the signature and other
operations passed to the ABPS tools. These include structures that hold the oper-
ators and tests implemented along with their method names. This would allow the
signature to be created automatically from the names of the abstractions to be used.
Other information could also be included to determine if it is possible to change one
abstraction into another.

The degree of automation can also be increased by passing more options to ABPS.
Options can be supplied on the command line or in an options file. With these tech-
niques, one can remove the need to change actual ABPS code for different configura-
tions of the system.

Scaling up the system to include additional Java features will be more challenging.
This is because specialization will occur on objects, not just methods and variables.
There is little information in the literature on the ways to scale up to a object oriented
language. There are four main areas to be included to scale to a full Java systems,

each with its own plan.

1. Composite Data

Composite data includes arrays and structures. In both, different parts of each
can have different binding times. For example, a structure with variables x and
y can have z and y static, x static and y dynamic, r dynamic and y static, or
both could be dynamic. This problem is discussed in the literation and possible
solutions are presented (2, 20]. More research needs to be done to include

composite data into the system.
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2. Object Flow

Object flow plays a major roll in object oriented languages. This is because
methods can be inherited or overridden from the parent class. When a method
call is made on a particular object, if the exact object type is not known, a
virtual method call has to be made. For a virtual method call, the type of the
object has to be determined at runtime and then the corresponding method.
In Java, virtual method calls are considered slow. An object flow analysis
is being developed for Jimple [30]. To understand the possible analyses and
to determine the best course, the Jimple analysis, Mossin’s PhD Thesis [24],
and other possible sources need to be studied and the best course of action

implemented.

3. Partial Evaluation of Object Oriented Languages

Partial evaluation of object oriented languages is new and many of the problems
do not have good solutions. Studying the literature [4, 9, 28] and developing
methods to incorporate object oriented features into partial evaluation will need

to be done.

. Partial Evaluation of Languages with Concurrent Features

Java includes primitives and functions for concurrent software. A look at the
literature for partial evaluation of concurrent languages has been reported in
the literature [22, 23] and more research needs to be done to be able to partially

evaluate Java.

“
|

.

More research and study of the literature needs to be done in each of the areas to
develop a plan to scale up to the other features to Java.

|
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ABPS

Al

AST

Abstract Interpretation

Abstract Interpreter

BASL

BIRC

Basic Block

Box

CI
Concrete Interpretation

Conditional Constant Prop-
agation

Dynamic

APPENDIX A

GLOSSARY

Abstraction-Based Program Specialization.
Abstract Interpretation.

Abstract Syntax Tree.

Interpretation of a program using abstract values.

A rigorous methodology for static program analysis by
manipulating abstract tokens.

Bandera Abstraction Specification Language. A lan-
guage that is used to define abstractions for ABPS. It
is currently in the development stages.

A part of the Bandera toolset that translates Java into
FSV input.

Sequence of consecutive statements in which flow of con-
trol enters at the beginning and leaves at the end without
halt or possibility of branching except at the end [1].

A reference to an expression in Jimple that allows one to
change its value without affecting the rest of the struec-
ture.

Concrete Interpretation.
[nterpretation of a program using concrete values.

Where the values of a conditional expression are used to
propagate values down different branches.

Unknown.
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FCL
FSV

Finite State Verification

Hammock Form
IR

In-lining

Jimnple

Jimplification

Label

Lift

Maximally Polivariant

Monovariant

Off-line Partial Evaluation

On-line Partial Evaluation

PE

Partial Evaluator

Pending List

Polyvariance
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Flow Chart Language.

Finite State Verification.

Model-based techniques that can be used to check that

a system satisfies certain properties.

Form where there is only one entry and exit point.
Intermediate Representation.

Process of moving a method body into another method
to eliminate the overhead of call the moved method.

Intermediate representation of Java produced by the
Sable group at McGill University in Canada (see Section
1.4.2).

The process of converting Java to a Jimple representa-
tion.

A program point.

A method that converts a value to a corresponding ex-
pression.

Polyvariance where each state in the program has a cor-
responding residual basic block.

Analysis where there is only one residual basic block for
each original basic block.

Partial evaluation where the analysis is done before the
evaluator runs.

Partial evaluation where the analysis is done while the
evaluator is running.

Partial Evaluator.

A technique for specializing programs based on informa-
tion known about the environment or expected patterns
of use.

List of states waiting to be analyzed.

Analysis where there can be more than one residual basic
block for each original basic block.



Residualize
Seen-Before Set

Signature

State
Static

Store

Three Address Code
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Place the code into the output code.
Set of states that have been analyzed.

Operator that parameterizes the syntax. [t contains op-
erations, tests, and constants.

A combination of a label and a store.
Known.

The representation of memory, it is a lookup table for
variables and their values.

A representation where each statement has at most three
operands. Method invocation is an exception to this.
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APPENDIX B

NOTATION

Representation for an unmarked node.
Representation for a marked node.

Partial function.

Transition between states or a total function.

Used in representation of stores to associate a variable to
a value.

Subset or equal.

Partial order.

Specialization structure.

A function that maps a state to an index.
Store.

A function that merges two stores.

Upper bound, represents all possible values or unknown.
Signature, contains the operators and tests.
Block-map, maps a label to a basic block.
Residual block-map.

Map symbols in ¥ to operations in A.

Algebra, contains values, operations, and tests.
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Aeo
AbsVal

3

lift

n

Val

110

The algebra for the even/odd abstraction.
Abstract value.

Abstraction function.

Basic block.

Cache, maps indices to stores.

Set of defined variables for the store.
Even abstract value.

Index.

An unmarked index pending specialization.
A marked index that is up-to-date.

Label.

Maps a residualizable value to a constant.
A mark, either o or e.

Node.

Odd abstract value.

Set of values that can be residualized.
Program skeleton.

State.

Concrete value.



APPENDIX C

SPECIALIZATION OUTPUT

This appendix contains the output of ABPS with the readers/writers. This output

is descussed in more depth in Chapter IX.

e Monovariant Output - the output created when monovariance is chosen for the

readers/writers.
e Polyvariant Output - the output created when polyvariance is chosen for the

readers/writers.

Monovariant Output R

void controller$abps_mono ()

{

int i1, 10, activeReaders, writerPresent, req;

writerPresent = FALSE;

req = R1;

activeReaders = ZERO;

labelO:

if req !'= RO goto labell;

return,;

labell:

i0 = Model.choose({RO,R1,R2,R3,R4});

req = i0;

if req !'= R1 goto label?2;

if writerPresent !'= FALSE goto labelO;
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activeReaders = POS;
goto labelO;

label2:
if req != R2 goto label3;

if activeReaders <= ZERO goto labelO;
il = POS - POS;

activeReaders = ii;

if writerPresent == FALSE goto labelO;
goto label0;

label3:
if req != R3 goto label4;

if activeReaders != ZERO goto labelO;
if writerPresent != FALSE goto labelO;

writerPresent = TRUE;
goto labelO;

label4:
if req != R4 goto labelO;

1f writerPresent == FALSE goto labelO;

writerPresent = FALSE;
if activeReaders <= ZERO goto labelO;

goto labelO;

Polyvariant Output

void controller$abps_poly()

{
int 11, 10, activeReaders, writerPresent, req;
writerPresent = FALSE;
req = Ri;
activeReaders = ZERO,;
il = Model.choose({RO,R1,R2,R3,R4});
req = il;
if req '= R1 goto label3;
labelO:

activeReaders = POS;
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labell:
il = Model.choose({RO,R1,R2,R3,R4});
req = 11}

if req !'= R1 goto label4;

label?2:
activeReaders = POS;
goto labell;

label3:
if req !'= R2 goto label9;

il = Model.choose({RO,R1,R2,R3,R4});
req = ii;

if req !'= R1 goto label3;

goto labelO;

labelé:
if req != R2 goto labell2;

i0 = POS - POS;
activeReaders = 10;

labelb:
i1l = Model.choose({R0O,R1,R2,R3,R4}) ;
req = il;

if req !'= R1 goto labell3;

label6:

activeReaders = POS;

label7:

i1 = Model.choose({RO,R1,R2,R3,R4});
req = il;

if req '= R1 goto labellb;

label8:
activeReaders = P0OS;
goto label7;

label9:
if req '= R3 goto labell6;

writerPresent = TRUE;

labellO:

il = Model.choose({RO,R1,R2,R3,R4});
req = il;

if req != Rl goto labell8,;

labelill:
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il = Model.choose({RO,R1,R2,R3,R4});
req = il;
if req != R1 goto labell8;

goto labelll;

labell2:
if req != R3 goto labell9;

il = Model.choose({RO,R1,R2,R3,R4});
req = ii,;

if req != R1 goto label4;

goto label?2;

labell3:
if req != R2 goto label20;

if activeReaders <= ZERO goto labelb;
labell4:

i0 = POS - POS;

activeReaders = i0;

goto label5;

labell5:
if req != R2 goto label24;

goto labell4;

labelil6:

if req !'= R4 goto label25;

labell7:

il = Model.choose({RO,R1,R2,R3,R4});
req = 1il;

if req != Rl goto label3;
goto labelO;

labell8:
if req != R2 goto label26;

il = Model.choose({RO,R1,R2,R3,R4});
req = il;

if req != R1 goto labell8,

goto labelll;

labell9:
if req '= R4 goto label27,

il = Model.choose({RO,R1,R2,R3,R4});
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req = il;
if req != Rl goto label4;

goto label2;

label20:
if req != R3 goto label28;

if activeReaders != ZERD goto label29;

label21:

writerPresent = TRUE;

label?22:

il = Model.choose({R0O,R1,R2,R3,R4});
req = 1il;

if req != R1 goto label30;

label23:

il = Model.choose({RO,R1,R2,R3,R4});
req = il;

if req !'= R1 goto label30;

goto label23;

label24:
if req != R3 goto label3l;

il = Model.choose({RO,R1,R2,R3,R4});
req = 11; :

if req != R1 goto labell5;

goto label8;

label25:
if req '= RO goto label32;

return,

label?26:
if req != R3 goto label33;

goto labellO;

label27:
if req != RO goto label34;

return,;

label?28:
if req !'= R4 goto label35;

il = Model.choose({RO,R1,R2,R3,R4});
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req = 11;
if req '= R1 goto labell3;

goto label6;

label29:

il = Model.choose({RO,R1,R2,R3,R4});
req = il;

if req != R1 goto labell3;

goto label6;

label30:
if req != R2 goto label36;

il = Model.choose({RO,R1,R2,R3,R4});
req = il;
if req '= R1 goto label30;

goto label23;

label31:
if req != R4 goto label37,

il = Model.choose({RO,R1,R2,R3,R4});
req = il;
if req !'= R1 goto labell5;

goto label3;

label32:

i1 = Model.choose({RO,R1,R2,R3,R4});
req = it;

if req !'= R1 goto label3;

goto labelO;

label33:
if req !'= R4 goto label38;

writerPresent = FALSE;
goto labell7;

label34:

i1 = Model.choose({RO,R1,R2,R3,R4});
req = iil;

if req != R1 goto label4;

goto label2;

label35:
if req '= RO goto label39,
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returno;

label36:
if req != R3 goto label40;

goto label22;

label37:
if req !'= RO goto label43;

return;

label38:
if req '= RO goto label44;

return;

label39:

i1 = Model.choose({RO,R1,R2,R3,R4});
req = il;

if req !'= R1 goto labell3;

goto label6;

labeldO:
if req != R4 goto label45;

writerPresent = FALSE;

labeldl:

i1 = Model.choose({RO,R1,R2,R3,R4});
req = il;

if req != R1 goto label4t;

labeléd?2:
activeReaders = POS;
goto label7,

labeld3:

il = Model.choose({RO,R1,R2,R3,R4});
req = 1il;

if req '= Rl goto labell5;

goto label8;

label4dd:

il = Model.choose({RO,R1,R2,R3,R4});
req = il;

if req != Rl goto labell8;

goto labelll;

labelé45:
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if req !'= RO goto labeld7,;
return;

label46:
if req != R2 goto label48;

il = Model.choose({RO,R1,R2,R3,R4});
req = iil;

if req '= R1 goto label46;

goto label4d?2,
labeld7:

il = Model.choose({RO,R1,R2,R3,R4});
req = 1iil;

if req '= R1 goto label30;

goto label23;

label48:
if req '= R3 goto label49;

goto label2l;

label49:
if req != R4 goto label50;

goto labeldl;

label50:
if req !'= RO goto labelbli,;

return;
labelb51:
il = Model.choose({RO,R1,R2,R3,R4});

req = il
if req '= Rl goto label46;

goto labeld?2;



APPENDIX D

PROGRAM LISTING

The program files are presented in this appendix. The following files contain code
written in Java. The files with extension .java are Java files. The files succeeded by
a * is not included in the appendix. The order of the files in the f[ollowing pages is

given below:
edu.ksu.cis.bandera.util
Table java *
Token java *
TokenSet java *
edu.ksu.cis.bandera.prog
BasicBlock.java *
BlockMap.java *
CFGSkel.java *
*

Cache.java

EValue.java *
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EVariable java *

Index.java *

Inline.java *

State.java *

Store.java *

Storelndex.java *

Valuelnitializer.java *

edu.ksu.cis.bandera.jext

ChooseExpr.java *

edu.ksu.cis.bandera.abps

ABPS.java

ABPSArgs.java *

Abstraction.java *

ExprSpecValue.java *
[fSpecValue.java *

Int Abstraction.java *

Main.java
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Pi.java *

Signature.java

SpecType.java *

SpecValue.java *

StmtSpecValue.java *

Theta.java *

edu.ksu.cis.bandera.abps.lib

BooleanAbstraction.java *

Concretelnt.java *

Range(O4Abstraction.java *

SignsAbstraction.java *

SimplePi.java *

SimpleSignature. java *

SimpleTheta.java *

ZeroPosAbstraction. java *
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//ABPS. java
package edu.ksu.cis.bandera.abps;

import

import
import
import

import
import

import

YEL

#* ¥ # * ¥ *

*/
public
{

/[ **

java.io.*;

ca.mcgill.sable.soot.*;
ca.mcgill.sable.soot.jimple. ¥,
ca.mcgill.sable.util.*;

edu.ksu.cis.bandera.abps.lib.*;
edu.ksu.cis.bandera.prog.*;
edu.ksu.cis.bandera.util.Table;

This is the core of the specializer. It does the specialization of
methods, blocks, statemetns, and the initial call for expressions.

Q@author <a href="mailto:laubach@cis.ksu.edu">Shawn Laubach</a>

@version 0.1

class ABPS

* The Soot Class Manager that is used for everything.

*/

public static SootClassManager cm = new SootClassManager();

protected SootMethod method; // The method being specialized

protected SootClass cls; // The class the method is in

protected BlockMap bm; // The block map

protected BlockMap residual = new BlockMap(); // The residual block map
protected Store initStore; // The initial store

protected Cache ¢ = new Cache(); // The cache
protected CFGSkel S = new CFGSkel(); // The control flow skeleton

protected Abstraction result; // The result of the method

// A map of the residual statements to original statements
protected Map residualToOriginalStmts;

// A map of the residual labels to the original labels
protected Map residualToOriginalLabels;

VET

* Option to inline the operations.
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*/

public static boolean inlineAbstractions = false;

[k

* Option for monovariant.

*/

public static boolean monovariant = true;

/

* %

* This constructs a new specializer that loads in the class and
* method and make the block map.

*

* @param clsStr the name of the class

* @param met the name of the method

*/
public ABPS(String clsStr, String met)
{

// SootClass cls;

Object m{];

int i;

cls = cm.getClass(clsStr);

cls.resolveIfNecessary();

m = cls.getMethods().toArray();

for (i = 0; i < m.length &&

! ((SootMethod)m[i]) .getName() .equals(met); i++);
BuildAndStoreBody bd =
new BuildAndStoreBody(Jimple.v(),

new StoredBody(ClassFile.v()),
BuildJimpleBodyOption.NO_PACKING) ;

if (i == m.length)
{
System.out.println('"Method not found: " + met +
" in " + clsStr);
System.exit(0);
¥

method = (SootMethod)m[i];
bd.resolveFor (method) ;
method = Inline.inline(method);
method.getBody (Jimple.v()) .printTo(new PrintWriter (System.out,
true),
BuildJimpleBodyOption.NO_PACKING) ;
bm = new BlockMap(method, 0);
residual.setLocals(bm.getLocals());
residualToOriginalStmts = new HashMap();



/
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* %
* This constructs a new specializer that uses the class and
* method and make the block map.
*
* @param ¢ the class
* Qparam met the name of the method
*/
ublic ABPS(SootClass c, String met)
Object m[];
int 1i;
cls = c;

cls.resolvelfNecessary();

m = cls.getMethods().toArray();

for (i = 0; i < m.length &&

' ((SootMethod)m[i]).getName() .equals(met); i++);
BuildAndStoreBody bd =
new BuildAndStoreBody(Jimple.v(),

new StoredBody(ClassFile.v()),
BuildJimpleBodyOption.NO_PACKING) ;

[}

if (i == m.length)
{
System.out.println("Method not found: " + met +
" in " + c.getName());
System.exit(0);

}

method = (SootMethod)m[i];

bd.resolveFor (method) ;

method = Inline.inline(method);

method.getBody(Jimple.v()) .printTo(new PrintWriter(System.out, true),
BuildJimpleBodyOption.NO_PACKING) ;

bm = new BlockMap(method, 0);

residual.setlLocals(bm.getLocals());

residualToOriginalStmts = new HashMap();

* Xk

*« Evaluates the method that the abps is specializing.

*

* @param args array of abstractions for the parameters of the
* method

* @param sign the signature to be used
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* Qparam pi the pi to use

* @param theta the theta to use

* @Qparam init the table of initial abstractions
*

*

@return The result of the method.
x/

public Abstraction eval(Abstraction args(], Signature sign,

P
{

i pi, Theta theta, Table init)

BasicBlock bb;

int i;

Index ind;

Iterator vars;

ABPSArgs evalArgs = new ABPSArgs();
List list;

State state;

Store store;

BasicBlock currentBB;

// Sets up the arguments to be used during specialization
evalArgs.abps = this;

evalArgs.signature = sign;

evalArgs.pi = pi;

evalArgs.theta = theta;

// Initializes the store
{

store = new Store();

for (i = 0; i < method.getParameterCount(); i++)
{
store.add(new EVariable("@parameter" + i,
method.getParameterType(i)),
args[il);

vars = bm.getLocals().iterator();
for (; vars.hasNext();)
{
EVariable v = new EVariable((Local)vars.next());
if (init.lookup(v.getName()) != null)
store.add(v, (EValue)init.lookup(v.getName()));
else
store.add(v);

System.out.println(store.vars());



System.out.println(store);

}

// Create the initial state and index
state = new State(bm.getInit(), store.copy());
ind = pi.pi(state);

// Initializes the cache and skeleton
if (!state.getStore().equals(c.lookup(pi.pi(state))))
{

residual.setInit(ind);
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c.update(ind, theta.theta(state.getStore().copy(), c.lookup(ind)));

S.start(ind);
}

1/ System.out.println(S);
// System.out.println(c);
//System.out.println(bm);

// While there are still nodes to specialize
while ((ind = S.next()) !'= null)
{
store = c.lookup(ind).copy(); // Get the store
bb = (BasicBlock)bm.get(ind.baseIndex()); // Get the block
currentBB = new BasicBlock(ind); // Create the residual block
evalArgs.basicblock = currentBB; // Set the arguments

list = evalBasicBlock(bb, store, evalArgs); // Evaluate the block

residual.put(ind, currentBB); // Put the residual block in the map

//  System.out.println("Residual Block\n" + currentBB);
//  System.out.println("Next states: " + list);

// For all the states returned, update the cache, skeleton
Iterator states = list.iterator();
while (states.hasNext())
{
state
store

(State)states.next();
theta.theta(state.getStore(),
c.lookup(pi.pi(state)));

if (!state.getStore().equals(c.lookup(pi.pi(state))))
{
c.update(pi.pi(state), store);
S.makeArc(ind, pi.pi(state), false);
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}

else
S.makeArc(ind, pi.pi(state));

S.mark(ind);

//System.out .println(c);

//System.out.println(S);

//System.out.println(currentBB) ;
// System.out.println(residual);

return null;

}

[ xx
Specializes a basic block.

@param bb the basic block to specialize
@param store the store to use
@param the arguments

#* ¥ H ¥ * #* *

@return The list of next states.
*/
protected List evalBasicBlock(BasicBlock bb, Store store, ABPSArgs args)
t
int i, op, np;
Iterator iterator;
Stmt s;
List list = null;
List stmtResult = null;
List stores = new VectorList();
State state;
Pi pi = args.pi;
BasicBlock currentBB = args.basicblock;

op = 0;

// For all the statements
for (i = 0; i < bb.size(); i++)
{
s = bb.get(i); // Get the statement
//  System.out.println("Evaluating statement: " + s);
stmtResult = evalStmt(s, store, bb, args);// Evaluate it
np = currentBB.get().size(); // update the maps of res to orig



for (; op < np; op++)
residualTo0riginalStmts.put (currentBB.get(op), s);

// If there are no next states
if (stmtResult == null)
{
list = new VectorList(); // Make an empty list
list.add(new State(bb.getSuccs(0), store.copy()));
if (bb.size() == 0)

{
if (bb.getSuccs().size() > 0)
{
currentBB.addSuccs(pi.pi(new State(bb.getSuccs(0),
store.copy())));
¥
}
}
else
{

// Else make them all states
iterator = stmtResult.iterator();
while (iterator.hasNext())
{
state = (State)iterator.next();
if (state.getIndex() != null)
{
if (list == null)
list = new VectorList();
list.add(state);
}

// 1f the results are null then make add the stuff
if (list == null)
{
list = new VectorList();
if (bb.getSuccs().size() > 0)
{
list.add(new State(bb.getSuccs(0), store.copy()));
currentBB.addSuccs(pi.pi(new State(bb.getSuccs(0),

store.copy())));

return list;
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* Evaluates an expression.

*
* @param v the expression to specialize.
* Qparam store the store to use
* @param the arguments
*
* @return A specialization value for the expression.
*/
public SpecValue evalExpr(Value v, Store store, final ABPSArgs args)
{
Signature sign = args.signature;
args.store = store;
Signature ns = sign.newSignature(args);
// System.out.println("\tEvaluating: " + v);
v.apply(ns); // Call the signature to specialize
// System.out.println("\t" + ns.getResult());
return (SpecValue)ns.getResult();
}
Ve

* Gets the 1 expression
*

* @param v the expression
*
* @return The variable it represents
*/
protected EVariable evalLExpr(Local v)
{
return EVariable.convert(v);

;

Sy
*

* % ¥ * * #* * * *

Specializes a statement.

Q@param s the statement to specialize
@param store the store to use

@param bb the basic block it is from
Qparam args the arguments

@return A list of next states.
*/
protected List evalStmt(Stmt s, final Store store,
final BasicBlock bb, final ABPSArgs

args)
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AbstractStmtSwitch sw;

final Signature sign = args.signature;

final Pi pi = args.pi;

final Theta theta = args.theta;

final BasicBlock currentBB = args.basicblock;

args.abstraction = null;

sw = new AbstractStmtSwitch()
{
// The identent statement. Works much like an assignment.
public void caseldentityStmt(IdentityStmt s)
{

EVariable 1 = evalLExpr((Local)s.getLeftOp());
List list = new VectorList();
SpecValue sv = evalExpr(s.getRightOp(), store, args);
Value v;

if (sv instanceof ExprSpecValue)
{

ExprSpecValue esv = (ExprSpecValue)sv;

v = esv.getValue().1lift();

if (v == null)

{
currentBB.addStmt (Jimple.v()
.newIdentityStmt((Local)s.getLeftOp(),
esv.getExpr()));

else

{
currentBB.addStmt (Jimple.v()
.newAssignStmt ((Local)s.getLeftOp(),

v));
}
3
else
if (sv instanceof StmtSpecValue)
{

StmtSpecValue ssv = (StmtSpecValue)sv;
Iterator it = ssv.getStmts().iterator();
while (it.hasNext())

currentBB.addStmt ((Stmt)it.next());

it = ssv.getBoxes().iterator();
while (it.hasNext())
((ValueBox)it.next()).setValue(s.getLeftOp());



list.add(new State(null, store.update(l, sv.getValue())));
setResult(list);
}

// Assignment statement. It first specializes the expression
// and then checks the result. If it is an expression
// specialization value, then it make the residual assignment
// with the residual expression and updates the store. If
// operation inlining is done, it adds the code and fills the
// boxes with the variable assigned to. It then updates the
// store.
public void caseAssignStmt(AssignStmt s)
{
EVariable 1 = evalLExpr({(Local)s.getLeftOp());
args.abstraction = (Abstraction)store.lookup(l);
List list = new VectorList();
SpecValue sv = evalExpr(s.getRightOp(), store, args);
Value v;

if (sv instanceof ExprSpecValue)
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{
ExprSpecValue esv = (ExprSpecValue)sv;
v = esv.getValue().1lift();
if (v == null)
{
currentBB.addStmt (Jimple.v().
newAssignStmt ((Local)s.getLeftOp(),
esv.getExpr()));
}
else
{
currentBB.addStmt (Jimple.v()
.newAssignStmt ((Local)s.getLeftOp(),
v));
}
}
else
if (sv instanceof StmtSpecValue)

{
StmtSpecValue ssv = (StmtSpecValue)sv;
Iterator it = ssv.getStmts().iterator();
while (it.hasNext())
currentBB.addStmt ((Stmt)it.next());

it = ssv.getBoxes().iterator();
while (it.hasNext())



}
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((ValueBox)it.next()).setValue(s.getLeftOp());
}
if (store.lookup(l) != null &&
((Abstraction)store.lookup(1l)).ID !'= sv.getValue().ID)
throw new RuntimeException("Assignment from one " +
"abstraction to another in "
+ 8 + " with " +
store.lookup(l).getClass() +

Ll and " +
sv.getValue() .getClass() +
" u) :

else
list.add(new State(null, store.update(l, sv.getValue())));
setResult(list);

// Goto statement. It just updates the next list.
public void caseGotoStmt (GotoStmt s)

{

List list = new VectorList();
State state = new State(bb.getSuccs(0), store);

// Check out the goto
currentBB.addSuccs(pi.pi(state));

list.add(state);
setResult(list);

// 1f statement. It evaluates the conditional and gets an if
// specialization value back. It then fills the boxes and

// adds the code. It then uses the value to determine whether
// to the next state(s) and returns them.

public void caselfStmt(IfStmt s)

{

List list = new VectorList();
SpecValue sv = evalExpr(s.getCondition(), store, args);
State state;
if (sv instanceof IfSpecValue)
1
IfSpecValue ssv = (IfSpecValue)sv;
Iterator it = ssv.getStmts().iterator();
Local tmp = args.abps.getLocal("bool$tmp$");
while (it.hasNext())
currentBB.addStmt ( (Stmt)it.next());

it = ssv.getBoxes().iterator();
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while (it.hasNext())
((ValueBox)it.next(}) .setValue(tmp);

if (ssv.getValue().same(BooleanAbstraction.TRUE))
{
state = new State(bb.getSuccs(0),
ssv.getTrueStore());
list.add(state);
currentBB.addSuccs(pi.pi(state));
}
else
if (ssv.getValue().same(BooleanAbstraction.FALSE))
{
state = new State(bb.getSuccs(1),
ssv.getFalseStore());
list.add(state);
currentBB.addSuccs(pi.pi(state));

else
{
list.add(new State(bb.getSuccs(0),
ssv.getTrueStore()));
list.add(new State(bb.getSuccs(1),
ssv.getFalseStore()));

currentBB.addSuccs(pi.pi((State)list.get(0)));
currentBB.addSuccs(pi.pi((State)list.get(1)));
}
}

else
throw new RuntimeException("Unhandled spec value in if."
+ 8v + " " 4+ gv.getClass());

setResult(list);
}

// Return void. Adds the residual and sends back an empty
// next list.
public void caseReturnVoidStmt (ReturnVoidStmt s)
{
currentBB.addStmt (Jimple.v() .newReturnVoidStmt());
setResult(new VectorList());

}

// Return expr. Specializes the expression and creates a
// residual return and sets no next states
public void caseReturnStmt(ReturnStmt s)
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{

ExprSpecValue sv =
(ExprSpecValue)evalExpr (s.getReturnValue(), store,
args) ;

mergeResult(sv.getValue(), theta);
currentBB.addStmt (Jimple.v() .newReturnStmt (sv.getExpr()));
setResult (new VectorList());

}

// Default case.
public void defaultCase(Object s)

{
throw new RuntimeException("?77?\t" + s + "\t" + s.getClass());
}
}
s.apply(sw); // Apply the different statemens

return (List)sw.getResult();

}

[ %
* Gets the initial index from the block map.
*/

public Index getInitIndex()

{
return bm.getInit();

}

[ xx
* Creates a new method from the residual block map.
*/

public ScotMethod getMethod()

{

SootMethod res = residual.createMethod(method.getName() + "$abps",
method.getParameterTypes(),
method.getReturnType());

if (cls.declaresMethod(res.getName(),

res.getParameterTypes()))
cls.removeMethod(cls.getMethod(res.getName(),

res.getParameterTypes()));
cls.addMethod(res);

setupTable ((JimpleBody)method.getBody(Jimple.v()),
(JimpleBody)res.getBody(Jimple.v()));
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return res;

}

[ **
* Gets the list of residual statements.
*/

public List getResidualStatements()

{

return residual.collapse();

}

[ Ak
* Gets the residual initial index.
x/

public Index getResInitIndex()

{
return residual.getInit();

}

eSS
* Merges the results of the method.
*/
protected void mergeResult(Abstraction a, Theta theta)
{
if (result == null)
a;

result
else
result

I

theta.merge(result, a);

[/ %k
* Gets the specialized result of the method.
+/

public Abstraction result()

{

return result;

}

[ **
* Sets the initial store.
*
* Qparam p the store to set to.
*/
public void setStore(Store p)
{
initStore = p;

}
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/&%

* Gets the particular local from the residual method.
*

* @param name the name of the local
*/

public Local getLocal(String name)

{
return residual.getLocal (name);

}

[ **

*

Sets up the table between the original label and residual label.

* Qparam o the original jimple body
* @param r the residual jimple body

*/
public void setupTable(JimpleBody o, JimpleBody r)
{

Map ostn = new HashMap();

Map rstn = new HashMap();

// Create statement name table
{
Iterator boxIt = o.getUnitBoxes().iterator();

Set labelStmts = new HashSet();

// Build labelStmts

{
while(boxIt.hasNext())
{
UnitBox box = (UnitBox) boxIt.next();
Stmt stmt = (Stmt) box.getUnit();
labelStmts.add(stmt);
}
}

// Traverse the stmts and assign a label if necessary

o
int labelCount = 0;

Iterator stmtIt = o.getStmtList().iterator();

while(stmtIt.hasNext())
{
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Stmt s = (Stmt) stmtIt.next();

if(labelStmts.contains(s))
ostn.put(s, "label" + (labelCount++));

// Create statement name table

{

Iterator boxIt

I

r.getUnitBoxes() .iterator();

Set labelStmts = new HashSet();

[

// Build labelStmts

{
while(boxIt.hasNext())
{
UnitBox box = (UnitBox) boxIt.next();
Stmt stmt = (Stmt) box.getUnit();
labelStmts.add(stmt) ;
}
}

// Traverse the stmts and assign a label if necessary

{
int labelCount = 0;

Iterator stmtIt = r.getStmtList().iterator();

while(stmtIt.hasNext())
£
Stmt s = (Stmt) stmtIt.next();

if (labelStmts.contains(s))
rstn.put(s, "label" + (labelCount++));

}
}

residualToOriginalLabels = new HashMap();

Iterator it = rstn.keySet().iterator();
while (it.hasNext())
{
Object o1, 02;



0ol = it.next();
02 = residualToOriginalStmts.get(ol);
if (02 != null &&
ostn.get(02) != null)
residualToOriginalLabels.put(rstn.get(ol),
ostn.get(02));

[ **

* Prints the table.

*/
public void printTable()
{

int i, count = residualToOriginallLabels.keySet().size();

for (i = 0; i < count; i++)
if (residualToOriginallLabels.get("label" + i) == null)
count++;
else
System.out.println("label" + i + "\t" +

residualToOriginallabels.get("label" + i));

}

public String toString()
{
return initStore + "\n" +
c + It\ntl + S + “\I'I." +
residual + "\n" + result;

//Main. java
package edu.ksu.cis.bandera.abps;

import java.io.x;

import edu.ksu.cis.bandera.abps.x*;

import edu.ksu.cis.bandera.abps.lib.x;
import edu.ksu.cis.bandera.jext.x*;

import edu.ksu.cis.bandera.util.x;

import ca.mcgill.sable.soot.jimple.Jimple;
import ca.mcgill.sable.soot.StoredBody;

VAL
* Main class and method to run ABPS. It takes in the class

name and

138
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method name on the command line. It can also take options to
determine polyvariant analysis, operation inlining, and whether the
output should be pure Jimple.

Qauthor <a href="mailto:laubach@cis.ksu.edu">Shawn Laubach</a>

#* * % * * ¥ *

@version 0.1
*/
public class Main

{

public static void main(String args[])
{

String cls, method;

ABPS abps;

Abstraction ABPSargsl[];

int 1i;

Table table = new Table();

if (args.length < 2)
{
System.out.println("Main class method [options]");
return;

}

cls = args[0];
method = args[1];

for (i = 2; i < args.length; i++)
if (args[i].equals("-inline"))
ABPS.inlineAbstractions = true;
else
if (args[i].equals("-poly"))
ABPS .monovariant = false;
else
System.out.println("Unknown option: " + argsl[il);

try {

// ABPS takes the class and method

// This can be changed to take a sootclass, abps takes both
abps = new ABPS(cls, method);

// This is where you populate the method parameters

// First set of the size of the array. It must equal the number
// of parameters.

ABPSargs = new Abstraction[0];

// ABPSargs[0] = SignsAbstraction.T;



// Then put in the arguments into the positions of an array. The
// first one is an example of declaring an actual token from the
// abstraction. The second is how to have it abstract a value.
£ ABPSargs[0] = SignsAbstraction.T;

// ABPSargs[1] = SignsAbstraction.empty().abs(4);

// You can initialize other variables in the ccde. Just call add
// on the table with adds a name / value pair into the table.

// This is looked up when the initial store is created.
table.add("writerPresent", BooleanAbstraction.empty().abs(0));
table.add("req", RangeO4Abstraction.empty().abs(0));
table.add("activeReaders", ZeroPosAbstraction.empty().abs(0));

// Call eval with the arguments, a signature, a pi, and theta.
// The only changes to theta you’ll want to make is to add more
// abstractions if you are adding abstractions. Pi has three
// options that you can change by hand in the constructor between
// monovariant, maximally polyvariant, and limited polyvariance on
// certain variables. You could add other features but all this
// is currently done by hand. The signature was computer
// generated with the addition of the package name and the
// handling of static invoking, which currently returns T.
abps.eval (ABPSargs, new SimpleSignature(),

new SimplePi(), new SimpleTheta(),

table) ;

// abps.getMethod() gets the new method created by abps. It is
// named method + "$abps". You could add it back to the class
// file or just pass it on depending on the information you need.
// The rest gets the body and prints it out to the screen
abps.getMethod() .getBody(Jimple.v())

.printTo(new PrintWriter(System.out,

true), 0);

abps.printTable();
} catch (Exception e) {

System.out.println(e);

e.printStackTrace();

2

//Signature. java
package edu.ksu.cis.bandera.abps;

import ca.mcgill.sable.soot.jimple.*;

140



import ca.mcgill.sable.soot.*;
import ca.mcgill.sable.util.*;

import edu.ksu.cis.bandera.prog.x*;

This is the base class for all signatures. It makes sure they
inherit from the proper switches and then has the proper methods.

Qauthor <a href="mailto:laubach®@cis.ksu.edu">Shawn Laubach</a>

@version 0.1

*/
public class Signature extends AbstractJimpleValueSwitch
implements Cloneable

{

protected volatile ABPSArgs args; // The arguments being passed around

[ **
* The current working class.
*/
public static SootClass workingClass;

[ *k
* Creates a new copy of the signature.
*/

protected Object clone()

{
try {

return super.clone();

} catch (Exception e) {
e.printStackTrace();
return null;

}

/ Hox
* This handles the default case. It throws an exception because it
* must be overridden.

*/
public void defaultCase(Object v)
{
throw new RuntimeException("Unhandle expression: " + v + " " +
v.getClass());
}

[ **
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Creates a new signature with the arguments set.

*
*
* Qparam a the arguments
*
*

@return A new signature.
*/
public Signature newSignature(ABPSArgs a)
{
Signature sig = (Signature)clone();
sig.args = a;
return sig;

}
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