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PREFACE

Abstraction-based program specialization (ABPS) was inve tigated 0 that it ould

be applied to Java and make automated improvements to help with finit tate verifi­

cation. Research was conducted on partial evaluation and ab tract int rpretation. A

prototype to do abstraction-based program specialization was con tructed by Hatcliff,

Dwyer, and Laubach. This work scaled the prototyp to a ubset of Java and mad

some general improvements. Today's software is large and complex. Becau e of thi

complexity, traditional validation and program testing techniques are hard to apply.

One method in use is finite-state verification (FSV). FSV requires a program to be

modeled as a finite-state transition system. Currently, the modeling is done by hand,

an error-prone process. Also, the state space of a non-trivial program is extremely

large (potentially infinite).

This thesis created an ABPS that uses partial evaluation and abstract int rpr ­

tation to reduce a program model's tate pace. Partial evaluation p rforms sym­

bolic execution; it specializes programs by folding constants and pruning infeasibl

branches from the computation tree. The abstract interpretation ompon nt r plac s

program data types with small sets of abstract tokens that capture information rel­

evant to properties being verified. This can dramatically reduce a program's stat

space. Abstraction-based program specialization is a viable option for improving code

and automating the use of finite state verifiers. Much work still needs to be done to

completely scale abstraction-based program specialization to include all of Java and

to make the process more automatic. Finally, several examples illustrate how ABPS

can be applied to automatically create models of simple software systems.
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CHAPTER I

I TRODUCTIO

1.1 Modern Software Systems

Many of today's software systems are large, concurrent sy tern developed by teams

of programmers. Because of their complexity, traditional validation and program

testing are hard to apply to these systems. Usually, one turns to sy tematic tools

that use semantic and formal methods. Proof-based methods usually involve proving

the partial or total correctness of the relevant piece of software. Model-bas d methods

i. e., verification or model checking, check whether certain specified invariants hold.

Proof-based methods are often difficult to use b cause th y r quire th u r to

con truct manually (with some degree of automated as istance) a compl te proof of

the program's correctnes . While mod I-based methods annot e tabli h properti s

as strong as proof-based methods can, model-based methods are highly automated

and relatively easy to use.

1.2 Finite State Verification

Model-based, finite-state verification (FSV) [18] techniques can be u ed to check that

a system satisfies certain properties. For example, FSV can verify that the system is

dead-lock free or that when the program arrives at a certain point a variable has a

particular value. To apply FSV, fir t one models the sy tern to be reasoned about as a

1
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finite-state transition s stem [18]. Then one d cribes the p cifi tion. Finall , on

gives the finite-state transition stem and the p cification 0 a v rifi r. Th verifi r

finds all the reachable states while nsuring that th p cification i sati fi d at each

state. If the specification does not hold, FSV will give a trace coun er- ample that

caused the check to fail.

FSV was originally developed for hardware verification [10], but i now bing

applied to software to assure high quality. FSV has been us d eft ctively to validat

many applications including network protocols [18, 25, 32]' graphical user interface

[10], railway interlocking systems [6], and industrial control system [5, 14].

FSV is a promising technique for verifying software. However, it does have a larg

drawback: the size of the state space. The state space for a software sy tern can b

very large (potentially infinite), so it is difficult to check each state. One solution is to

map the software components to suitable abstractions with small finite state spaces

[17].

This has been done in the past by performing the mappings by hand [10, 14

32]. This requires unfolding loops, in-lining method (most FSV tools cannot handl

method calls), changing dynamic memory allocation to compile tim , and oth r step .

In addition, the user must come up with valid, usable abstractions that a£ ly abstract

or model the system. This works, but it is tedious, slow, and error pron .

1.3 Abstraction-Based Program Specialization

What is needed is an automatic tool for constructing abstract models. It appears

that this can be done with two semantic based techniques: partial evaluation and

abstract interpretation. Partial evaluation is an automatic technique for specializing

programs based on information known about the environment or expected patterns

of lise. Abstract interpretation is a rigorous methodology for static program analysis
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by manipulating abstract tokens. The e tog ther can r du e th state pa e b m­

bolically executing portions of the program and by reducing th onditional branch .

The exact abstract representation used depend on the properti to b v rifled. It

seems possible to combine these methods into a tool: an abstraction-based program

specializer (ABPS). ABPS would be a et of automatic tools that can do partial

evaluation (see Section 2.1) and can do abstract interpretation ( ee S ction 2.2) on

programs to create models for FSV.

1.3.1 ABPS Example

As an example, taken from [17], consider a connector used in the con truction of

concurrent software [11, 12]. This connector describes the topology, inter-connection,

and communication constraints of replicated worker-style computations. The workers

communally accesses shared pool of work items. It is implemented in Ada.

Figure 1.1 iJIustrates a code skeleton for the pool component; significant detail

has been in-lined to streamline th example. Since FSV works by enum rating and

checking all possible program states, even the Natural domain for th singl variabl

'Wc that maintains the number of elements in the work pool causes state-spa enu­

meration to be intractable. To obtain a usable state space, we ab tra t the values

of 'Wc : Natural can be abstracted using a counter abstraction who ab tract do­

main ranges over just four values: unknown, zero, and positive. Figur 1.2 gives the

ordering of these values and the associated abstract operators.

Figure 1.1 also illustrates the results of applying ABPS using the counter abstrac­

tion. The results of specialization are given in Ada comments (e. g., -- 'We : AbsNatural).

The type Natural and the associated operations are specialized to the type AbsNatural

(an enumerated type containing the values zero, positive, unknown) and associated

operations. In summary, ABPS yields a source-level abstraction of the original pro-



task body ActivePool is

wc: Natural;
-- wc AbsNatural;

begin

wc := OJ

-- wc .- zero;

Outer: loop
loop

select accept ShutDown;

exit Outer;
or accept Start( ... );

exit;
or accept Put( ... ) do

YC : = wc + 1 j

-- wc := positive;

end Put;

end select;

end loop;

loop
select when or wc > 0 =>

-- select when ... or wc = positive =>

accept Get( ... ) do

wc : = wc - 1;

-- wc := unknown;

end Get;
or accept Put( ... ) do

wc := wc + 1;

-- wc := positive;

end Put;

or ...

end select;

if ... and wc=O then

-- if ... and wc=zero then

exit;

end if;

end loop;
end loop Outer;

end ActivePool;

-

Figure 1.1: Skeletal Ada for Pool Task

gram's behavior (see Section 3.2). Information about the specific numb r of work r

we has been abstracted; we only maintain information about wheth r we i 0, pos-

itive, or unknown. After the program has been abstracted, it can be automati ally

translated into the input languages of SPIN, SMV, and other model check r using

a tool set constructed by Jay Corbett [26]. The resulting model can then be checked

against specifications written in various model logics.

This simple use of ABPS enables, for example, verification of the specification,

"whenever the computation terminates the work pool is empty," that is, whenever

the outer loop is exited wc=O. Furthermore, this abstraction does not require the user

to specify any bound on the size of the work pool. Other specifications may require

different abstractions for effective verification. Dwyer and Pasareanu [13] outline the
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a signZero(v) = zero;
unknown

/~
zero positive

incPos(v) =positive;

decPo (v) = unknown;

isGtZero(v) =positive;

isEqZero(v) =zero;

identity(v) = v;

Figure 1.2: Counter Abstract Interpretation

methodology that we expect one to follow when choosing appropriate abstraction .

1.4 Goals of the Work

The long range goal of this work is to develop a full-scale abstraction-base program

specializer for Java Byte Code. The following steps summarize the approach taken

in this thesis.

1. Perform (In initial investigation using a very simple flowchart language called

FCL. This is not the FCL by Wulf, et ai. in [33].

2. Based on the experience gained, the work can be scaled to Java Byte Code.

3. The system can be run on various Java example and the eft' ctivenes and

usability of the system can be assessed.

1.4.1 Initial Investigation

The first step is to do the initial investigation on FCL (see Section 3.1). FCL is

small enough to allow a clean semantic presentation, but rich enough conceptually to

illustrate a multitude of issues associated with program specialization [15, 20, 19} .

• Formalization of ABPS for FCL
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applies

another project

FLAVORS

SPIN FSV'
I CA s
SMV

- input

--

o appli tion

~ r pr entation14----It"'lpe ification "----.J

.~LAVOR~

. "". ".: :. (SPI )Convert to _.
L.-_M_o_d_e_l----1'! =::: :.( INCA)

"( SMV )

Java
Byte Code

Figure 1.3: System Diagram

First, ABPS is formalized for FCL. This included describing the many rules

and functions needed for the ABPS system.

• Proving correctness for FCL

Next, ABPS is proved corr ct for FCL. This involved showing that the special­

ized program produced by ABPS is a safe abstraction of the original program.

• Prototype for FCL

Finally, a working prototype is created to work on FCL. This prototype works

with concrete and abstract examples.

1.4.2 Scaling to Java Byte Code

The second stage is to scale the ABPS for FCL to Java Byte Code. The system

is shown in Figure 1.3. Jimple is a set of tools and an intermediate representation

(IR) of Java source code and Java Byte Code developed by researchers at McGill
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University was used. The e tools are part of the Soot project, which can be found at

http://www.sable.mcgill.ca/sootj. Currently, Jimple is applied to Java B t Cod,

and a Jimple representation of the class is produc d. The Jimpl repr entation i

an abstract syntax tree (AST). It is the purpose of this work to reate a et of ABPS

tools to work on this Jimple representation. FLAVERS, SPI , I CA, and SMV ar

all FSV's. The dotted lines represent work being done by other . This work includ

a set of tools that translates a representation to a model that one of the FSV's will

be able to use. James Corbett, from the University of Hawaii, is currently working

on this development called BIRC [26].

Scaling to Java includes the following tasks .

• Appropriate intermediate language

Obtaining an appropriate IR is perhaps the most difficult aspect of scaling

ABPS to Java. Stack based code, such as Java Byte Code, is difficult to analyze

[31]. To solve this problem, the IR does not use a stack based representation,

but it converts all stack positions to variable to us in expr ssions. Th r is

still much code involved to remove the stack and convert th byte code to an

easier to use representation .

• Foundations of ABPS for Java Byte Code

Because a full ABPS system is beyond the scope of this th sis, the next step

included deciding what constructs to include and what to leave for later work.

It was decided to limit the Java to integer arithmetic, simple control flow (i. e.

goto's, irs, and return's), and in-lining of static method. Techniques were

then designed to handle the new constructs and to represent abstractions.
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• Java implementation

Finally, an implementation of ABPS was writt n for a Java. Furth I' I' ar h

will be required to get a full implementation working for Java.

1.4.3 Assessment

The last part of the system development is to evaluate the software. The full evalua­

tion cannot be done until a more complete implementation is done. There are some

tests that can be done but these are limited by the limits placed on the impl menta­

tion. To do the evaluation, the resulting systems will be run on example programs.

Various aspects including the following will be assessed.

• Usability

The usability of the system, i.e.) issues such as how difficult it is to use and

what types of problems the user encountered, will be assessed. This include'

the things the user must apply (the program and pecification).

• Effectiveness

The question of whether the system work d well on a illustrative program. Plus,

it will determine whether the output needed any additional modifications, or

whether it could be passed straight to a verifier.

• Technological challenges

The execution of the system will be tested on an example. Slow and inefficient

parts will be identified and recorded to increase speed or decrease memory

usage. Also, difficult parts of the implementation will be discussed.
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Model
Constmctor

Model Checking Tools

Guarded
Assignments

Promela Promela (SPIN)
fun Ialo

,,
:--,

, '

'-TA~st..ctoolJava Source

\\

\

Java source Temporal Logic
_____ 1 / Specification
, ':11', ', ., ., .
: : AbstractionV Bindings

SMV TRANS (SMV)
Trans:!atQr

Figure 1.4: Bandera Tools

1.5 Overview

The work on ABPS is part of a larger project, called the Bandera project, funded by

DARPA/NASA on automatically constructing models for finite-state verification of

software. Figure 1.4 diagrams the tools. This project includes the verification of .Java

Byte Code, slicing, and mapping byte code to finite state machines. Othcr rcsearchers

from the University of Hawaii, the University of Massachusetts, and Kansas State

University are collaborating on these projects [26].

1.6 What Follows

The rest of this thesis is organized as follows. Chapter II describes the basic principle'

of partial evaluation and abstract interpretation. It highlights the techniques needed

to apply in this work. Chapter III gives a brief overview of abstraction-based pro-
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gram specialization. Chapter IV provides th y tern overvi wand th int rmediate

representation used. Chapt r V describes the u e of Jirnple and Jimpl s cony r ion

to structures used by the pecializer. Chapter VI contains a d scription of many of

the data structures used. Chapter VII de cribes the methods that make up th ore

of the specializer. Chapter VIII describes the specialization op rators used by the

specialization. Chapter IX presents the results of the work. Chapter X presents the

conclusion with a discussion of future work.



-

-

CHAPTER II

BACKGRO D

Abstraction-based program specialization is a combination of partial evaluation and

abstract interpretation. This chapter provides background material on these two

technologies.

2.1 Conventional Partial Evaluation

Historically the main goal of partial evaluation is to generate efficient programs from

general ones by completely automatic methods [20]. Usually, general programs arc

simpler but less efficient than a specialized program produced by a partial evaluator.

2.1.1 What Partial Evaluation Is

Partial evaluation (PE) is a technology for automatic program specializations and

customization. A partial evaluator is given a subject program p together with part

of its input data, into Its effect is to construct a new program PiTq which, when given

p's remaining input in2, will yield the same result that P would have been produced

given both inputs [20]. Therefore, a partial evaluator is a program specializer, usually

called mix, as in Figure 2.1.

Figure 2.2 shows a two input program that computes m n . This program can be

specialized to the one in Figure 2.3, if n has a known value of 3. This is done by

11
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C) data

CJ computation

----+- input

subject ----+- output----+-

program p

output

Figure 2.1: A Partial Evaluator

precomputing all expressions involving n and unfolding the loop. The unfolding can

be done because the control depends upon n. If, however, we tried to partial evaluate

where m = 3 and n is unknown, we would achieve nothing because the control flow

is not known (the partial evaluator would go into an infinite loop).

2.1.2 How Partial Evaluation Works

As Jones [20] notes, three main partial evaluation t chniques are well known from

program transformation: symbolic computation, unfolding, and program point pe-

cialization. Figures 2.2 and 2.3 applied the first two techniqu s; the third was un­

necessary since the specialized program had no function calls. The idea of program

point specialization is that a single function or label in program p may appear in the

specialized program PinJ in several specialized versions, each corresponding to data

determined at partial evaluation time. For example, there are three versions of the

source program line result := result * m corresponding to situations where the line

was process with n = 3,2 1.

-
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int pow(int m, int n)
{

result = 1;
while (n > 0)
{

result = result * m;
n = n - 1;

}

return result;
}

Figure 2.2: Power Function

int pow3(int m)
{

result = l'J
result = result * m;
result = result * m;
result = result * m;

return result;
}

Figure 2.3: Specialized Power Function

To determine what to residualize (put into the output program) and what to

compute away, an analysis needs to be done. The analysis can be done while the

specializer is running, called on-line PE, or before it is run as preprocessing, called

off-line PE. During on-line PE, the values in the store are tagged whether they are

static or dynamic. Static data is known while dynamic data is unknown. The PE

uses this to determine if an expression is computable. During off-line PE, the analysi

is run before the specializer and determines whether each expression, statement, and

other language constructs are static or dynamic and tags the construct appropriately.
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Then during specialization this information determine if th xpr ion hould b

evaluated or residualized [20].

Partial evaluation uses two data structures to chedule program poin er for

specialization: a pending list and a ,e een-before" set. A pending li t i a list of

program states to be pecialized. The seen-before set contains alI the tate that

have been specialized.

At the start of specialization, a PE adds the start state to th p nding Ii t. The

start state is the initial label and the initial store. Each time through, the PE g t

the next state out of the pending list and checks to see if it is in the seen befor set.

This stops the specializer from specializing a state more than once. If it is a new

state, the corresponding basic block is retrieved then specialized.

To specialize a block, each statement must be specialized. The specializer check

to determine whether the statement is static or dynamic. If the statement is static,

the specializer evaluates the statement, otherwise, it residualizes the statement. Next,

the jump is specialized. If the jump is a goto or return, it is residualized as is. If

it is an if, it is checked to see if the expression is static or dynamic. If static, it

can be determined which branch to follow, so it can be residualized as a goto. If

the expression cannot be determined, it is residualized back as an if. Finally, all the

states reachable from the block are added to the pending. This ontinues until the

pending list is empty.

2.1.3 Related Work

2.1.3.1 C-mix. C-mix is a partial evaluator for A 81 C developed as part of An­

dersen's Ph.D. dissertation [2]. It incorporates complex features of the imperative

language C, such as, structures, multidimensional arrays, and pointers, and it per­

forms sophisticated analysis to handle those features.
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2.1.3.2 Tempo. Tempo was developed at niversity of Rennes/IillS . nlik C-

mix, Tempo focuses on system software written in C. This simplifi the tructure

of the partial evaluator and enhances some solution , but it cannot handle the full

range of A TS1 C.

2.2 Abstract Interpretation

Much of the work on abstract interpretation was originally done by Cousot and Cousot

[8]. The discussion below is adapted from material in survey articles by Schmidt [27]

and Jones and eilson [21].

The execution trace of a program when applied to its run-time data is a concrete

interpretation (CI). When the data are tokens that denote properties of run-time

data, the execution trace is an abstract interpretation (AI). In other words, AI is

a "symbolic execution" where the symbols have semantic content. For example, a

type inference implementation is an AI that uses tokens such as integer and bool an

instead of the concrete values 5 and false.

When the run-time data sets are replaced by tokens, the operators must be revi.. ed

to work on the tokens. For example, an addition operator for concrete integ r must

be revised to define addition on the data tokens, such as:

-

A crucial issue of AI is termination. A CI of a program may terminate with

its run-time data, the AI may not. This is because the tokens are less precise and

nondeterminism arises. When a test cannot be decided on because the values are

tokens, both execution paths must be traversed. For example, if a test was x > 0 and

x's value is an integer, then the result of the test is unknown and both the true and
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x:= x div2
x := stice x

Concrete Semantic :
Val = Nat
(2n f-- even x) -+ (2n f-- x := x div2)
(2n + 11- even x) -+ (2n + 1 f-- exit)
(2n f-- x := x div2) -+ (n I- x := stice x)
(n f-- stice x) -+ (n + 1 f-- x := even x)

Concrete Tree

41- vln x
4 I- x := f div2
2 I- x := f'Ucc. x

3 f-- evln x
3 f-- exit

16

-

Figure 2.4: Flowchart and Concrete Interpretation

false branches must be traversed. This means loops have the potential to be trav rsed

forever. One strategy to solve this problem is for every infinite path in the program's

abstract tree to contain a repetition of a node seen earlier in the path (similar to the

seen-before set in a partial evaluator). This means the trace is a regular tree, a tr e

where every infinite path has a repetition node [27], and the construction of the tree

can be terminated at these repetition nodes.

2.2.1 Abstract Interpretation of Flowchart Programs

Figure 2.4 shows a flowchart program [27] that uses a store with a single variabl x.

A state is a store/program point pair, (v I- pp), where v is the value of x and pp is

the current program point. The concrete semantics rules specific to the flowchart ar

listed in the middle column of Figure 2.4. The program's concrete tree has one path

when executed with input 4.

Let us say better target code can be generated for commands whose inputs are

alway even numbers. Figure 2.5 displays the abstract semantics of such a situation.

The Val set is abstracted to AbsVat = {e, o}, denoting even and odd numbers,

respectively. Also each operator is revised to the abstract rules. For this example

the abstract semantics is nondeterministic for the interpretation of div2. This means



Ab tract tree:
e ~ efen x
~ x '= x div2
/' ~

o ~ x := uee x e F x := suee x
e ~ eten x 0 ~ fen x

o ~ exit

Abstract Transitions:
AbsVal = {e,o}
(e ~ even x) -t (e ~ x := x div2)
(0 ~ even x) -t (0 ~ exit)
(e ~ x := x div2) -t (e ~ x := succ x)
(e ~ x := x div2) -t (0 ~ x := succ x)
(e ~ succ x) -t (0 ~ x := even x)
(0 ~ succ x) -t (e ~ x := even x)

Figure 2.5: Abstract Interpretation of Flowchart
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-

that the abstract tree is nondeterministic. By nondeterministic interpretation it is

meant that the decision cannot be made as to what path in the tree should be taken.

The abstract tree contains more paths than the concrete tree and it is infinit .

There is, however, a repetition node in every infinite path. Thus the tree is regular

and has a finite representation, shown in Figure 2.5, meaning termination is not a

problem, because there is a finite number of nodes in the tree.

2.2.2 Relating Concrete to Abstract Trees

To establish the correctness of an AI, we need a function to map concrete data to the

abstract tokens that best represent them. Let {3 : Val -t AbsVal be uch a function.

In technical terms, the function {3 is a homomorphism between concrete and abstract

values. For the Figures 2.4 and 2.5, {3 would be (3(2n) -t e and (3(2n + 1) -t 0 for

n 2': O. For t he transition relation, the basic correctness property for transitions is:

for all program points, pp,pp', and c,e' E Val,

(c ~ pp) -t (c' ~ pp') implies there exists a' E AbsVal and there exists a

transition ((3(e) ~ pp) -t (a' ~ pp') such that (3(e') ~ a'
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where ~ is a partial order on the concrete and abstract value. Computation involv­

ing abstract values cannot be more precise that those involving actual value, 0 we

allow the values computed ab tractly to be less preci e than the re ult of exact com­

putation followed by abstraction. For example, if we cod d the div2 operator so that

it is deterministic, then (e f- x := X div2) -+ (T f- x := s'Ucc x) where T represents

even or odd. If we use the extra element T, then we need approximation ord ring on

AbsVal = {e, 0, T }: a ~ T and a ~ a, for all a E AbsVal. We require the abstract

transition relation to be monotonic with respect to the ordering:

(al f- pp) -+ (a'l f- pp') and al ~ a2 imply there exists a transition

(a2 f- pp) -+ (a~ f- pp') such that a; ~ a~

Intuitively, this means that the transition relation on abstract values preserves the

degree of information reflected in the tokens.

Let us define a binary relation safeVal ~ Val x Abs Val as

c safeYal a iff (3(c) ~ a

which means a safely approximates c. ow let us define a safety relation upon states

as

(c f- pp) safeS tate (a f- pp) iff c safeYal a

which says an abstract state safely approximates a concrete one if the input values

are related and the program points are the same pp.

Finally, for program points pp, pp' and values c, c' E Val,

c safeYal a and (c f- pp) -+ (c' f- pp') imply there exists a' E AbsVal and

there exits (a f- pp) -+ (a' f- pp') such that c' safeYal a'
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Pictorially, we have

(c f- pp) safeState
~

(c' L ppl) safe,-- State

(a f- pp)
~

(a' f- ppl)

-

So, for any concrete transition, there is a corresponding safe ab tract tran ition.

In other words, for any concrete trace of a program th re is a corresponding af

abstract transition.

Abstract interpretation can be used for binding time analysi , typ inf renee live

variable analysis and many other analyses [16].
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CHAPTER III

ABSTRACTIO -BASED PROGRAM SPECIALIZATIO

This chapter presents a formalization of ABPS using FCL from Hatcliff, Dwy r,

and Laubach [17]. This chapter is basically a minor revision of that article. This

author's main contribution to the work was the implementation of ABPS to FCL in

Java. This author also contributed advice on the semantics of ABPS. Oth r work,

on ABPS include Consel and Khoo [7] and Jones [19], which developed the formal

frameworks to support the idea. ABPS, however, has not been incorporated into

full-fledged implementations at the completion of this thesis.

3.1 Flowchart Language FCL

FCL is a simple flow chart language that can be used to tudy many of th feature of

a full language. This allows us to create methods for ABPS that is easy to understand

and use. It is also very easy to add features to FCL. This makes it easy to use and

allows us to scale gracefully.

3.1.1 Syntax

Figure 3.1 presents the syntax of an FCL program. An FCL program (l) b+ consists

of a list of basic blocks b+ and the label of the initial basic block. Each basic block

has a label, a list of assignments (possibly empty), and a jump. FCL has three kinds

20
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Syntax Domains:

P E Programs[L:]
b E Blocks[L:]
i E Block-Label [L:J
a E Assignments[L:]
ai E Assignment-Lists[L:]

Grammar:

x E Variable [L:]
e E Expre ion [L:]
J E Jump [L:]
o E Operation [L:]
t E Tests [L:]

-

P "- (i) b+..
b .. - i : ai j..

ai "- a ai I..

a "- x:= e;..
e "- x I o(e*)..

J "- goto i; I return; I if t(x*) then it else i2;..

Figure 3.1: Syntax of the Flowchart Language FCL

of jumps: an unconditional goto, a conditional jump if, and a special jump return

that terminates a program's execution. The output is the collective value of all the

program's variables for simplicity.

A signature L: parameterizes the syntax of FCL. L: contain operation, te t ,

and constants. L: specifies the set of operator symbols Op rations[L:] and a set of

test symbols Tests[L:]. Both have an associated arity arity(o). Constants are O-ary

operators and are denoted by Constants[L:].

3.1.2 Semantics

The meaning of a L:-program, a program to which L: is applied, is parameterized by

a L:-algebra A that provides an interpretation for the signature L:. A L:-algebra A

consists of a carrier set Values[AJ (e.g., an upper semi-lattice) with partial order ~A,

sets Operations[A] and Tests[AJ that contain functions implementing the operations

and tests of L:, and a map n~ that maps each operation and test symbol in L: to
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the corresponding implementation in Operations[A] and D t [A]. Different type of

traces (concrete and abstract) can be obtained by substituting differ nt 1:-algebras.

Figure 3.2 formalizes the semantics of a 1:-program with r pect to a 1:-algebra A

in terms of traces. A trace shows the transitions

a program can make between computational states (li, (/i) E States[A] wher li E

Labels[1:] is the label of the current basic block and (/i E Stores[A] i the current

store. A store (/ E Stores[A] is a partial function from Variables[1:] to Value [A]. Th

set of defined variables in the domain of (/ is written dom((/). A (/ is p-compatibl

when it defines only the variables contained in program p.

A special label halt is added to Block-Labels[1:] that maps a labell E Block-Labels[1:]

to a block b E Blocks[1:] to represent the terminal state. All finite branches of a trace

will end in a state (halt, (/) for some store (/.

A program is represented using a partial function r called a block-map that map

a label 1 E Block-Labels[1:] to a block b E Blocks[1:]. r is defi ned for exactly the

labels that name blocks in the program being interpreted.

3.2 Abstraction-Based Specialization

Our abstraction-based specialization framework combines the trace generation sys­

tem with code generation. The idea is to carry out the trace while simultaneously

generating code that is specialized with respect to the information accumulated in

the trace.

Figures 3.3 and 3.4 present the abstraction-based program specializer. The spe­

cializer is parameterized on a specialization structure



Semantic Domains:

v E Values[A] oA E Operations[A] tA E Te ts[A]
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If-- I IlL l /Ia assign a => a a IIassigns a => a
a If--assigns a al => a"

al\-assignX:= e; => a[x H v]

(J" E Stores[A]
l E Labels[~]

f E Block-Maps[FCL]

Expressions:

(J" If--expr x => a(x)

Assignments:

a If--expr e => v

Jumps:

a If-- jump goto l; => {(l, (J" )}

Variables[~] ---"" Values[A]
Block-Labels[~] U {halt}
Block-Labels[~] ---"" Blocks[

(J" If-- expr ej => Vi 0 A (VI ... Vn) = V

a If-- expr 0 ( e1 . . . en) => V

a I\-assigns . => a

al\-jumpreturn; => {(halt, a)}

Transitions:

f(l) = l: al j a If-- assigns al => a' a' If-- jump j => {(l~, a~), ... , (l~, a~)}

~,Alt-r(l,a) -t (l~,an Vi E {l, ... ,n}

-

Figure 3.2: Trace Semantics of ~-programs with Respect to ~-algebra A
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W E Spec-Values[A]
(J E Stores[A]
l E Labels[L:]
r E Block-Maps[FCL]

Values[A] x Expressions[L:]
Variables[L:] --I. Values[A]
Block-Labels[L:] U {halt}
Block-Labels[L:] --I. Blocks[

-

Expressions:

(J f- expr x=?( a (x) , x)

a f- expr ei =? (Vi , e~) 0 A (Vi ... Vn ) = V V E R
a f- expr o(eL'" en) =? (v, lift(v))

a f- expr ei =? (Vi, e~) 0 A (Vi ... Vn ) = v V rt. R
a f- expr o(el ... en) =? (v, o(e', ... ~l))

Assignments:

a f- expr e =? (v, e')
(J f-assign x := e; =? (alx M v] , [x:= ';])

(J f- assigns . =? (a, [])

a f- assign a=?( a' , al' ) a' f- assigns al =? (a" , al" )
a f- assigns a al =? (a" , al' * al" )

Figure 3.3: Abstraction-Based Specialization (part 1)
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Jumps:

c,-f-jump goto l; ::::} (Hl, an, goto 7T(l, a);)

a f- jump return; ::::} ( {(halt, (T)), return·)

(T f- jump if t(x*) then l1 else l2;
::::} ( {(II , a~), (l2' (T~)) , if t(x*) then 1r (ll ,aD else 1r (l2' a;); )

Blocks:

(T \-assigns al ::::} {(Tl , all)
(TI f- jump j ::::} ({(l2;, (T2.) liE {I, ... , n}}, h)

Specialization steps:

Co(") f-block r(1r-l(~))::::} ({(l~,(TD liE {I, ... , n}}, b')
f- r (S, Co r R) f----1 (Sn, Cn , r R[~ rl b'D if ~o = first(So)

where
"i = 1r (l~, (Tn
C

i
_ {Cl-1[~1 rl (J~(T~,Ci-l(~d)] ~f Ci-1("i)J- }

Ct-d~t rl (Ti] If Ci - I (~i) t
So remove-arcs(mark(S, ~), (,)

make-arc(Si_l,~, ~i·) if "i = halt
make-arc(Si_l' ~,~iO) if bi not in Si-l and

~i i= halt
Si = make-arc(Si_j, ~i, ~im) if ~im' in Si-I and

(,i i= halt where m = 0

if CO(~i) C Cn(~i) and
m = m' if Co(~d = Cn(~i)

for i E {I, ... , n}

for i E {I, . , . , n}

for i E {I, ... , n}

-

Figure 3.4: Abstraction-Based Specialization (part 2)
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where

• 2: is the signature of the program being specialized.

• 2:res is the signature of the residual program. If abstract tok n (e.g., even

odd) are being residualized, 2:res differs from 2: (e.g., 2:res contains con tants

even, odd). As another example, the signature for the residual version of the

Ada program of Figure 1.1 contains constant zero and positive, but the e

are not contained in the signature for the source program.

• A is a 2:-algebra with respect to which programs are specialized.

• 7r controls the degree of polyvariance by specifying which states are to be

merged.

• () is a widening operator used to merge stores.

• R is the set of values from Values[A] that can be residualized.

• lift generate code for values v E R, i.e., it maps a residualizable value v to a

constant in 2:res .

Each of these components is explained in the subsections below.

3.2.1 Residualization

Specialization transforms a 2:-program to a 2:res-program. The constants from 2:

and 2:res may be different. For example, if we allow residualization of even and odd

from previous examples, {even, odd} S;;; Constants[2:res ]. Otherwise, the non-constant

operations and tests must be the same in both 2: and 2:res .



27

The definition of the set of residualizable values R and the definition of lift con-

troIs whether specialization will preserve the concrete semantic or only the ab tra t

semantics of a program. Specialization preserves the semantics in expressions by us-

ing the code generation function lift: R -t Con tant [l:re ]. For example, to preserv

concrete semantics, we define Ra and lifta as:

{0,1,2, ... }
n "In ERe

If we wanted to preserve the abstract semantics, however, we can define Ra and

lifta as follows:

Ra

lifta(n)
lifta (even)
lifta(odd)

{even, odd, 0, 1, 2, ... }
n VnE {0,1,2, ... }
even
odd

-

3.2.2 Controlling Polyvariance

We saw earlier (Section 2.2) that abstract interpretation produces a series of states

(li, ai)' Maximally polyvariant specialization would produce a specialized basi' block

for each state. Usually, one does not want maximally polyvariance b cause thi causes

a large number of basic blocks (potentially infinite) to be specialized. Each variable

in the a's can have its full range of values and this causes the state explosion. For

example if there was a variable representing integers, a tate could possibly be made

for each value (0, 1, 2, ... ) the integer can have.

To avoid this, specialization is parameterized by a projection operator 'Tr : States[A] -t

Indices where Indices is some unspecified set of tokens that depend on the definition

of'Tr. Each specialized block will be labeled with index L, and 'Tr(l, a) yields the label

of the residual block associated with (l, a). This means the rules for jumps uses 'Tr

to determine the label of the jump destination in the residual program. We assume
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that Indices always includes an index halt and that for all store a, 7r(halt, a) = halt.

The degree of polyvariance is controlled by mapping on or more states to the

same index. For example, the following two definition would yi ld a maximall

polyvariant analysis and a monovariant analysis, respectively.

7r (l, a) def (l, a)
7r (l, a) def l

Vl E Block-Labels[E], Va E Stores[A] and State [A] ~ Indice

Vl E Block-Labels[E], Va E Store [A] and Labels[E] ~ Indices

-

If at least states (l, a) and (l, a') map to the same index, the associated residual

block must be general enough to handle both a and a'.

There are many variations between the two extremes above (maximally polyvari­

ant and monovariant) that can be done by 7r. For example, one might want to be

polyvariant on the live variables in a basic block but monovariant on the dead vari-

abIes in the block. Several default settings will be used in the full implementation.

3.2.3 Structuring the Residual Program

The specializer incrementally constructs a control-flow graph (program skeleton) S

with nodes n E Indices to represent the structure of the residual program. Each node

is annotated with a mark m E {o, e}. When a node is unmarked, 1-°, it indicat s

that th associated block is pending specialization. When the node is marked, I-
e

, the

associated basic block has current information flowing into the block. ew nodes are

automatically unmarked, and the marked nodes can be unmarked if new information

is formed for the block (widening). For example, if we have two states s = (l, a) and

s' = (l, a') and 1f maps both states to the same index 1-. If tate is encountered first

in the specialization, a specialized block will be generated. Later, if s' is encountered,

node I- will need to be unmarked so that it will be reprocessed.

The following operations are used to manipulate control flow graphs.

e mark(S, 1-): returns a graph identical to S except that the I- is now marked
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(similarly for unmark(S i)).

• make-arc(S, 1..1 1..2m): return a graph identical to S except that an arc from /..1

to /..2 is added. If the arc is already present, the set of arc is unchang d. If

node 1..2 is not already in the graph, then it is added with mark m. If node /..2 is

already in the graph, then its mark is changed to m .

• remove-arcs(S, i): returns a graph identical to S except all arcs leading out of

/., are removed (the set of nodes is unchanged). If node /., is not in the graph

then S is returned unchanged.

Information that can flow into each block /., in the residual program is collected

in a cache C E Indices -->. Stores [A]. A cache is a partial function that maps indices

to stores. It is a partial function because not all indices are defined for a cache. A

block-map r R maps a label (index /.,) to the associated specialized block.

The control-flow graph S and cache C play roles imilar to that of the "p nding

list" and "seen-before set" , respectively, in conventional presentations of sp cializers

[20], The control-flow graph contains the information about which nodes are pending

specialization (the unmarked nodes are pending), and the caches contains the program

points that have been created. The reason the control-flow graph is used instead of a

standard pending list is because of generalization. When a state is generalized, it may

have dependent states waiting to be specialized (these would be in th pending list).

Since generalization makes the information to a state be less precise, the dependent

nodes need to be removed from the pending list because the information flowing in

is out of date. The arcs in the control-flow graph give us the necessary dependency,

and the marks indicate whether the corresponding cache value is up-to-date.
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3.2.4 Specialization Steps

A specialization step begins with a topological sort on S to find an unmarked node

with no unmarked predecessor . By choosing this node, this method en ur that the

specializeI' does not waste time computing nodes that will later be changed. It also

prevents non-terminating specialization (provided 1f and the widening operator eare

chosen appropriately).

After a node &
0 is chosen, a specialized version b' of the source block is created

using the store C(&) currently held in the cache for node &. Information is propagated

by processing the set of descendent states as follows.

For each state, an index &j is obtained and the cache entry for &j i updated by

merging the new store (J~ with the previously cached store for node & (if it exists).

The merging is parameterized on a widening operator e.

The control-flow graph is updated by marking the node & just processed. All the

out-going arcs of & are removed because the in-coming information can be les precise.

For each descendent, the index &j is added to the children of &. If &j = halt, th n it is

a terminal node and can be marked. Otherwise, if &i is not in th cache it is added

to the cache. The index &j is unmarked, unless the in-coming store had not changed.

3.3 Illustrating ABPS

We illustrate ABPS by specializing the FCL program in Figure 3.5 using the even/odd

abstraction Aeo defined earlier (see Section 3.2). Two specializations are formed: the

first preserves concrete semantics by using liftc of Section 3.2.1, and the second only

preserves abstract semantics by using lifta of Section 3.2.1.

The first specialization uses the following specialization structure
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Source program

(bi)
bi: if equal?(x,y) then b2 else b3j

b2: y ;= 10j
z := *(z,3);

gata b4j

b3: x := +(x,2);
y := +(*(5,x),y);
gato b4j

b4: if «y,x) then bl else b5;

b5: if even?(x) then b6 else b1;

b6: return;

Figure 3.5: Sample Program

Since liftc does not residualize any abstractions, the signature of the source and

residual programs are both Enum . We choose the projection operator 7r so that it

illustrates several concepts at once. Specialization is specifi d to b monovariant at

some blocks and polyvariant (to various degrees) at other block . The program has

three variables x,y, and z so the store will have the shape (]' = [x t--+ vx, y t--+ vy, z t--+ vz]

(abbreviated [vx, Vy , vz]).

7r(bl, [vx, Vy , vz])
7r(b2, [vx, V y , Vz ])

7r(b3, [vx, V y , vz])
7r(b4, [vx, Vy,V z ])

7r(b5, [vx, Vy,V z ])

7r(b6, [vx, Vy, vzJ)

(bl, [vx, vy])
b2
(b3, [vyJ)
b4
b5
b6

polyvaTiant on x and y
monovariant
polyvariant on y
monovariant
monovariant
monovariant

--

Thus, the abstract set of indices contains block labels, and pairs of block labels and

stores. For widening, we simply define e _ U, where U is the least upper bound

operator.

Figure 3.6 shows some of the specialization steps that occurred when specializing
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Initial configuration

0 (bl, [0, T]) (bl, [0, T]) - [0, T, even]

After step 3

• (bl, [0, TJ) --t b2, (b3, [TJ) (bl, [0, T]) - [0, T, even]

• &2 --t &4 b2 - [0 0, even]

• (b3, [T]) --t b4 (b3, [T]) - [0, T even]
0 b4 b4 - [even, T, even]

After step 4

• (bl, [0, T]) --t b2, (b3, [T]) (bl, [0, T]) - [0, T, even]

• b2 --t b4 b2 - [0,0, even]

• (b3, [T]) --t b4 (b3, [TJ) - [0, T, even]

• b4 --t (bl, [even, TJ), b5 b4 - [even, T, even]
0 (bl, [even, T]) (bl, [even, T]) - [even, T, even]
0 b5 b5 - [even, T, even]

After step 5

• (bl [0, T]) --t b2, (b3, [T]) (bl, [0, T]) - [0, T, ev n]
0 b2 --t b4 b2 = [even, even, even]
0 (b3, [TJ) --t b4 (b3, [T]) = [even, T, even]

• b4 --t (bl, [even, T]), b5 b4 - [even, T, even]

• (bl, [even, T]) --t b2, (b3, [T]) (bl, [even, T]) - [even, T, even]
0 b5 b5 - [even, T, even]

After step 9

• (bl, [0, T]) --t b2, (b3, [T]) (bl, [0, T]) - [0, T, even]

• b2 --t b4 b2 - [even, even, even]

• (b3, [T]) --t b4 (b3, [TD - [even, T, even]

• b4 --t (bl, [even, TJ), b5 b4 - [even, T, even]

• (bl, [even, TJ) --t b2, (b3, [T]) (bl, [even, T]) - [even, T, even]

• b5 --t b6 b5 - [even, T, even]

• b6 --t halt b6 - [even, T, even]

• halt halt - [even, T, even]

Figure 3.6: Specialization Steps for Example Program (excerpts)

32
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Concrete residualization program Ab tract residualization program

(bl J [0, T] )

(bl, [O,T]): if equal?(x,y)
then b2
else (b3, [T]) ;

(bl, [0, T] )

(bl,[O,T]): if equal?(x,y)
then b2
else (b3, [T] ) j

b2: y := 10;
z := *(z,3);
goto b4;

b2: y := 10;
z := even;
goto b4;

(b3, [T]) :

b4:

x := +(x,2);

y := +(*(5,x),y);
gata b4;

if «y,x)
then (bl,[even,T])
else b5;

(b3,[T]): x:= even;
y := +(even,y)j
gota b4j

b4: if «y,x)
then (bl,[even,T])
else b5;

(bl,[even,T]): if equal?(x,y)
then b2
else (b3, [T] ) ;

(bl, [even,T]): if equal?(x,y)
then b2
else (b3, [T] ) ;

with an initial store of

Figure 3.7: Example Specialization Using ASPS

affects only the code generation, and not the information propagated.

b5: gato b6;

b6: return;

ainit = Ix f---1 0, Y f---1 T, z H even].

b6: return;

b5: goto b6;

The left column of Figure 3.7 shows the code generated using liftc' A block with

index L is specialized with respect to CL. In this example, the only specialization takes

These steps iIlustrate the information propagation aspects by giving the current values

of the control-flow graph (left) and the cache (right). The information propagated is

the same no matter what choice for lift used. This means that the definition of lift

-
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place is the resolution of the condition in b5. The as ignm nt y := 10; i r idualized

instead of being specialized away into the tore, becau e y is generalized to T at b4.

The right column of Figure 3.7 gives the code generated from th step abov

using the following specialization structure based on lifta'

~num-eo is identical to ~num except that it also contains constant even and odd.

To illustrate that an abstract trace can lose precision, we show what running the

original and residual programs on the store,

a = [:r f---7 0, Y f---7 1, Z f---7 4].

The original trace and the concrete trace mirror each other. The abstract trace,

however, diverges at b4. This is because the store at b4 is

a = [even f---7 0, odd f---7 1, Z f---7 4].

The concrete values have been lost and so the path cannot be chosen at the condi­

tional.

3.4 Related work

The ABPS work relies heavily on prevlOUS works. Consel and Khoo [7] give a

framework for abstraction-based partial evaluation of first-order functional languages.

Jones [19] provides an elegant language-independent framework for describing partial

evaluation and supercompilation. Other elements were inspired by Ashley's mecha­

nisms for controlling polyvariance and generalization in flow analyses [3], Schmidt's

presentation of abstract interpretation [27], and S0rensen and Gluck's work on gen­

eralization for tree-structured data [29].



35

Source program trace

Abstract residualization trace

(((bl, [0, T])), [0, 1,4])
t

(((b3, [T])), [0, 1,4])
t

(b4, [even, odd, 4])

Concrete residualization trace

"\,
(b5, [ ven, odd, 4])

t
(b6, [even, odd, 4])

t
(halt, [even, odd, 4])

(bl, [0,1,4])
t

(b3, [0, 1,4])
t

(b4, [2, 11,4])
t

(b5, [2, 11,4])
t

(b6, [2, 11,4])
.t

(halt, [2, 11,4])

-/
(( (b 1, [even, T])), [even, odd, 4])

t
(( (b3, [T])), [even, odd, 4])

t
(b4, [even, odd, 4])

.t

(((bl, [0, T])), [0, 1,4])
t

(((b3, [T])), [0, 1,4])
t

(b4, [2, 11,4])
t

(b5, [2, 11,4])
t

(b6, [2 11,4])
t

(halt, [2, 11,4])

Figure 3.8: Execution Traces of Source and Residual Programs



CHAPTER IV

SCALI G TO JAVA

The second stage of this work is to scale the current tools to Java. Many features

such as integers and their operators can easily scale to Java from the FCL prototype,

but others are more difficult. The FCL prototype does not deal with methods arrays,

dynamic allocation, and classes. All these constructs must be handled to get a full

Java specializeI' running, but many are too difficult to include in this thesis.

4.1 System Overview

Figure 4.1 illustrates the overall view of the ABPS tools encompassed by this thesis.

Specializing a method involves several steps. The method to be specialized is in

a Java class file. This file is read by the Soot tools and converted to a Jimplc

representation, discussed in more depth in Section 4.2. The ABPS tools takes the

Jimple representation and the definition of abstractions to be used and creates a

specialized method in Jimple. This can then be converted back into a Java class file.

This figure is similar to Figure 1.3 except the current figure shows the actual flow of

information from Java Byte Code back to Java Byte Code. Tools are being createn

that can also translate to FSV tools. Jimplification is the process of converting Java

to a Jimple representation.

The actual specialization process has a few steps. After jimplification, discussed

in Section 4.2, the Jimple method needs to be converted to something the specializeI'

36



--

Java
Byte Code

Jimple

Soot Tools

pecifications

ABPS Tool

37

IQ

-

Figure 4.1: System Diagram

can understand and manipulate. For this step, the code is in-lined and broken up

into basic blocks. Chapter 5 describes these processes. Chapters 7 and 8 discuss the

actual specialization process and the information they require.

4.2 Jimplification

The Soot tools are being developed by Raja Vallee-Rai under Laurie Hendren's ad­

visement at McGill University. The driving force for creating the Soot tool is to

simplify analyses and transformations of Java Byte Code. As. tated earlier, stack

based models, such as the Java Byte Code, are difficult to analyze because an op­

eration's effects might not be fully noticed until many instructions later. The Soot

project's aims to reduce these obstacles by creating an intermediate representation

of the Java Byte Code that does not rely on the stack.

The Jimple code is obtained by compiling the source file using javac, and then

jimplifying the class file. Figure 4.2 presents an example program and the corre-

•
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Java Code
public int power(int m, int n)
{

Jimple Code
public int power(int, int)
{

Figure 4.2: Java to Jimple Transformation

when it executes a method. One cannot see from the example that expr ssions in

the original code do not get recreated exactly in the Jimplified code. This happens

return result;

m := (DparameterO;
n := (Dparameter1;
result = 1;
goto label1;

int m, n, result;

label1 :
if n > 0 goto labelO;

labelO:
result = result * rn;
n = n + -1;

}

int result = 1;

return result;

for (;n > 0; n--)
result = result * m;

}

sponding Jimple code. A difference is the parameters are held in temporary variables

((DparameterO, @parameterl, ... ) and assigned explicitly to the formal param ters

appearing in the source method. The Java Virtual Machine does a similar process

partially because some of the information is lost in the transformation from Java

source code to Java Byte Code and then to Jimple code and because the Jimple code

is in three-address code [1].

4.2.1 Jimple Structures

The three key structures that are used in Jimple are methods, statements, and ex-

presslOns.

-
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4.2.1.1 Methods. Specialization works at the method level currentl. Thi i 0

reduce the amount of analysis that is required and because the proce of specializing

whole systems is very difficult and beyond the scope of this th i. Jimple m thod

contain five key components: method name, paramet r types return type, local

variables, and the Jimple statements. The first two components are the method

signature. The parameter types, local variables and Jimple statement are all li ts.

4.2.1.2 Statements. Statements are used to represent many of the constructs that

occur in a method body. These include assignments, goto's, irs, and return' .

Statements also include constructs for handling exceptions and thread synchroniza­

tion. Each of the handled statements has a particular structure.

• Assignment statements have two operands. The left operand represents the

left side of an assignment and the right operand represents the right side of an

assignment.

• goto statements have a pointer to the statem nt targeted by the goto.

• if statements have a conditional expression and a target statement. The target

is the statement the if jumps to if the conditional expression evaluate to TRUE.

If the expression eval uates to FALSE, the control goes to the next statement in

the list. This is not quite like the irs in FeL, which holds the destination of

the false branch.

• return statements take two forms. The first is when the return type is void.

In this case, the statement has no operands. The other case is when the return

type is not void, the statement then has one operand, the value to be returned.

This value can be a constant or as a variable.



Java Source

x = (y -- z);

Byte Code (as Jimple)
if (y == z) goto label!;
x = 0;
goto labe12;

label!:
x = !;

labe12:

Figure 4.3: Test Example

40
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4.2.1.3 Expressions. Expressions include constants, variables, operators, and method

invocations.

• Variables and constant operators are basic expressions. Variables get their value

from the store while constants contain their own value. All other expres ions

use variables and constants as the terminal end of the expression.

• Operators are expressions that are either unary or binary operators. Unary

operators, such as not and negate, have a single operand. Binary, such as +,

-, &, and <, operators have a left and right operand. Operators are used in

both operators and test. The key distinguishing feature is the ones used for

tests are operators that are used for comparison and Java places these in an

if. This occurs even when the test is in an assignment statement, like that in

Figure 4.3. Java does this breakdown so that all comparisons are the conditional

expression of an if. When it is in an assignment statement, such as that in the

same figure, the test is put in an if and then branche on the outcome to the

correct assignment.

• Method invocations are expressions that invoke a method and yield the value

returned by the method. These keep a pointer to the method so that the name,

parameters, etc., are easily accessed.
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Java Byte Code Plain Jimpl

Figure 4.4: Comparison of Java Byte Code and Jimple

1. Read Java Byte Code

4.2.2 Jimplification

m := ~parameterO;

n := ~parameter1;

opO = 1;
result = opO;
goto label!;

labelO:
opO result;
opl = m;
opO = opO * op1;
result = opO;
n = n + -1;

label1 :
opO = n;
if opO > 0 goto labelO;
opO = result;
return opO;

o iconst 1
1 istore_2
2 goto 12

5 iload_2
6 iload_O
7 imul
8 istore_2
9 iinc 1 -1

12 iload_l
13 ifgt 5
16 iload_2
17 ireturn

the final Jimple code.

The process ofjimplification includes many steps, from reading byte code to producing

The first step of jimplification is to read the Java Byte Code from the class

file. This is done with the Coffi component of the Soot tools. Coffi is a very

low level representation of Java Byte Code. A Byte Code representation of the

power method from Figure 4.2 is on the left side of Figure 4.4.

2. Remove Stack

For the next step, Jimple removes the stack and converts the Coffi represen-

tation to a Jimple representation. A simple analysis finds stack positions of

-
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the operands for each Java instruction. Thi is possible since the Java Virtual

Machine's verifier enforces that an operator works with the same position in

the stack each time it is executed. This is done ensure that the stack has a

fixed maximum size. Each instruction is changed to a Jimple statement. Th

references to the stack are changed to actual stack variables. This cr ate the

first Jimple representation, but it is without types and leav a large number

of variables sitting around. The right side of Figure 4.4 shows what the Jimple

code looks like after the initial jimplification.

3. Apply Types

After the initial jimplification, types are applied to the code. This starts out

with the initial types of values and iteratively works to a fix point.

4. Constant and Expression propagation

The next step is constant and expression propagation. Constant propagation is

very similar to that found in optimizing compilers. The expression propagation

is similar also, but it must keep the code as three address code. The expression

propagation is used to reduce the number of Jimple statements used to represent

a section of code.

5. Pack Variables

The final step is to pack the local variables. During the different processes,

the number of local variables can explode. To correct this problem, they are

packed as a final step. The packing algorithm is a common one used for register

allocation.

After all the steps of jimplification, the resulting code looks similar to that found

on the right side of Figure 4.2.
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4.2.3 Features

There are many useful features in the Soot tools that are used in the impl mentation

of ABPS. These are described in the following sections.

4.2.3.1 Class Manager. Soot contains a class manager. A class manager keeps track

of all classes loaded so that access can be quick if a elas is required more than once.

Also, the class manager is responsible for reading a class.

4.2.3.2 Code Creation. Jimple has an easy mechanism for creating, accessing, and

modifying structures used to represent classes, methods, statements, and expression .

• Classes

Classes for Jimple is the same for Soot, called Classes are presented in Jimple

by the Soot representation SootClass. The constructor for SootClass is called

to create a new instance. The arguments are the name of the new class and the

access flags, e.g., public, abstract. After creation, the super class and other

features of a class can be changed. It is usually wise to add the class to the

class manager so that it can be managed properly. Also, there are methods to

make sure that the class is written out to the file system.

• Methods

Creating a method is similar to creating a class, except that the method name,

parameters, return type, and access flags are passed to the constructor. After

this, the method is added to the correct class. The repre entation provides

methods to get the statement list add to the statement list, and to add local

variables to the method.
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• Statements

Statements are created by calling the onstructor for the stat ment I' pre en­

tation class. For example, the call Jimple.vO .newGotoStmt(target) creates

a new goto statement. The part Jimple. vO is a static method that is the

only way to get an instance of the Jimple class. The target is the target

statement of the goto. Statement that have been created can b added to

a statement list by calling the add method of th statement list, for xample

stmtList.add(stmt).

• Expressions

Expressions are always a part of a statement. Expressions are constructed and

accessed like statements.

4.2.3.3 Switches. A common design pattern for an AST is called a visitor pattern.

A visitor walks over an AST and performs some computation. Sometimes it is difficult

to write visitors because of the many cases that must be included and the difficulty

in matching a node with the correct functions. Jimple gives a grac ful method to

switch between different nodes, Switch classes. These define a method for each type of

node. These different switches are divided into switches for statements, expressions,

and types. Each node to be switched implements an apply method that takes an

instance of a switch that corresponds to the category of the node. The apply method

calls the corresponding method in the switch. For example, an AddExpr will call the

caseAddExpr method in a switch. In the default switches, all methods call a default

method that does nothing.

To implement a switch, one extends the default switch class and adds the method

for the nodes to be handled. There are some difficulties with passing arguments to

the methods, however. Each method only takes the node as an argument. A newer
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final List 1 = new List();
Stmt s = ...;
s.apply(new StmtSwitch() {

public void caseAssignStmt(AssignStmt s)
{

/1 Code to handle assignment
1. add( ... ) ;

}

II Dther methods can be added
}) ;

Figure 4.5: Anonymous Class Example

feature of Java allows a nice way around this, called anonymous classes. Anonymous

classes are basically a local class. One instantiates a normal class but adds methods

to the class. An example using a StmtSwitch can be seen in Figure 4.5. With an

anonymous class, variables defined when the class is instantiated are allowed in the

class, such as the List 1 in Figure 4.5. This allows one to pass values to a method

which instantiates the anonymous class and does the necessary analysis.

4.2.3.4 Utilitie. The Soot tools require a set of useful utilities that are also imple-

mented by the same people that implement Soot. The three most useful utilities are

lists, maps, and iterators; all of these are interfaces. In Java, an interface defines the

methods that must be implemented by a class .

• List

A list has methods to access, add, and remove elements. There are also methods

to search a list. Actual implementations of lists use arrays, vectors, and linked

list. This way, one can pick the implementation that best fits the use. Each

one uses the same interface so that code using the list does not need to know
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the particular implementation of the li t .

• Map

A map associates an object to another object. There are methods to put and

get associations, and to move through the values.

• Iterator

An iterator goes through a list sequentially. There are three methods in an

iterator: a method to check for more entries, a method to get the next entry

and a method to remove an entry. As with the other utilities, there are specific

iterators for the different implementations of lists and maps..

4.3 Breakdown of the ABPS Tools

The ABPS tools can be broken down into four distinct parts.

1. Jimple Interface, described in Chapter V.

2. Data Structures, described in Chapter VI.

3. Specializer, described in Chapter VII.

4. Specifications, described in Chapter VIII.
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CHAPTER V

JIMPLE I TERFACE

In Jimple, statements are held in a linear list. Jumps, like if and goto, are handled

by having a pointer to the target statement. This works well when the code is being

processed linearly, but ABPS collects information for blocks of tatements. A ba ic

block is therefore used by ABPS as the basic control structure. The control flow

graph ABPS uses is maintained in basic blocks in a block map. ABPS also creates

a group of basic blocks for the residual code and this is used to create the residual

statement list for Jimple.

5.1 Control Flow

The control flow graph is a graph with one entry point and at least one exit point.

Each node in the control flow graph is a basic block. These blocks are combined into

a block map, which maps indices to the corresponding block. A statement list created

by Jimple contains the information needed to make a control flow graph. Between

the elements of the statement list, there are arcs corresponding to the jumps in the

method. The information about the arcs and the entry and exit points are used to

create the control flow graph and basic blocks.

47
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5.1.1 Labels

The name of a basic block is a label, represented by an index. There are two type

of indices used in ABPS. The first is Index class which gives the basic functionality

of an index. The second is Store Index class which adds store information into the

index.

5.1.1.1 Index. For a simple index, all that is kept is an integer. This allows for

quick comparisons of an index, since integers have a quicker equality operation in

Java than other types. Index has a constructor, equality operator, and a hash code

generator. The equality operator checks types and then the index number. The hash

code generator returns the index value as the hash code. The other method in Index

is a method that returns the base index. In Index, the base ind x is it elf. For other

indices, the base index returns an instance of Index with the index number. This

allows one to get the index other indices are based upon. For exam pi , a residual

block's index could be a combination of the original index and a store. If one needed

to find the original block, one can get the base index of the residual block's index,

which is the original block's index.

5.1.1.2 StoreIndex. Store Index is an extension of Index. It has the same meth­

ods, but the constructor takes either an integer and store or an Index and store. This

is used to distinguish between different residual basic blocks that come from the same

source basic block when there are differences in the input store.

5.1.2 Basic Block

A basic block is a node in the control flow graph. Each basic block consists of four

parts: a list of predecessors, an index, a list of statements, and a list of successors.
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Line umber Explicit Jump Implicit Jump
1 Predecessors {2,O} -) {1} -)

2 Index 1: 2:
3 Statement result = result * m
4 Statement if n ) °goto 2 n = n + -1

5 Successors -) {2,3} -) {1}

Figure 5.1: Basic Block Example

• The list of predecessors is used to know where control can come from. This

helps for analysis on reverse control flow.

• The index gives the block a name (as described in the previous section) and can

be thought of as a label. This is used to reference basic blocks in the predecessor

and successor lists and for block maps.

• The statement list stores the list of statements the block represents.

• The list of successors is used to decide where control can go from this block.

A couple of example basic blocks are shown in Figure 5.1. The left column has

line numbers and the type of information on the line. The other two columns are

actual examples of a basic block from the power function from earlier examples. A

basic block can have an explicit or an implicit jump. An explicit jump occurs when

the statement list ends with a statement that jumps to some other point, such as

goto's and if's. The successor list just reflects the successive block. In the case of an

if, the first successor is the index of the block when the conditional evaluates to TRUE.

The second is when it evaluates to FALSE. This is seen in the middle column of Figure

5.1. An implicit jump occurs when there is no jump at the end of the statement list.

Control falls through to the next block. The next block is gotten from the successor

list, which would have only one value. The right side of Figure 5.1 is an example of

an implicit jump.

oq
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5.1.3 Block Map

and successor information, so the block map is used to retrieve the predecessor and

used to help reconstruct a method from the blocks.

Exit: 3
{t}->
2:
result = result * rn
n = n + -1
-> {t}

{t}->
3:
return result
-> {}

Figure 5.2: Block Map Example

variables, and methods to retrieve and update information. The local variabl are

The block map associates each index to a basic block. Figure 5.2 shows the block

map for the power program of Figure 4.2. Each basic block contains the predecessor

Entry: 0
{}->

0:
rn := @parameterO
n := @parameter1
result = 1
goto <unnamed>
-> {t}

{2,O}->
1:

if n > °goto ?

-> {2,3}

successor blocks. The block map structure keeps the entry and exit points, the local

The block map has a few features that determines the output created. The first

is a flag to create a block level view or a statement level view. The block level creates

blocks in the normal fashion where there can be any number of statements in a block.

The statement level view forces each block to have only one statement. This gives

a finer granularity of the statements but adds more overhead to keep track of and

to move between blocks. The other feature is to produce a control flow graph that

is in hammock form or not. Hammock form is where there is exactly one entry and

one exit point. Certain types of analyses, such as slicing, require the graph to be in

hammock form. Currently, the specializer does not make use of statement level mock
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maps or hammock structure, however the slicing component of the Band fa tool set

(see Section 1.5) doe .

5.2 Input Processing

There are two key steps for the input processing needed to be done before p cializa­

tion: inline methods where possible and convert the statement list to a block map.

5.2.1 In-lining

It was decided to inline methods when possible to reduce the code complexity. A

partial reason was to remove method calls, reducing the overhead to do the call.

In-lining cannot be done for all methods. In Java, most methods are done in Java

Byte Code but some are in code native to the machine it is running upon. This code

cannot be in-lined. Because of the limited scope of the thesis, in-lining is currently

only performed for static methods in the same class. For this reduced case, in-lining

is not too difficult and follows a few easy steps.

1. Find a method call to a method that can be in-lined.

2. Replace the parameter references in the method to be in-lined with the actual

expressions with which the method is called. For example, if abs (b) is a method

call to be in-lined, the statement x = @parameterO in the in-lined method is

replaced with x = b.

3. Replace return's with an assignment of the return expression to the variable the

method takes place in and a goto to the statement after the call. For example,

if the method call is a = abs (b); a = 2 * a; then a return x; in the in-lined

Q
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method is replaced with a = x; goto <a = 2 * a;>. The <a = 2 * a;> i a

pointer to the statement contained in the <>' .

4. Add the code to the statement list. This can be added at the point of the call

to reduce goto's, or at the end. The current version places th code at the end

only a single method call is required to add statements to the end of a list.

5. Replace the method call with a goto to the start code just inserted. This is not

necessary, as mentioned earlier, if the code is inserted at the point of the call.

6. Repeat until there are no more method calls that can be in-lined.

5.2.2 Creating the Block Map

Jimple has a set of tools to create a control flow graph on the statements. This is

used to determine the start and end points of basic blocks. Basic blocks tak the

statements and are put together and placed in the block map. Th successors are

updated during this process. Finally, after all blocks have been created, th list f

blocks is processed to update the predecessor information.

5.3 Operation In-lining

The abstraction classes contain the information needed to implement the primitive

integer operations, but they do not plug into Jimple easily. This problem is circum­

vented by having the abstraction classes inherit from the Jimple constant class. This

solution allows Jimple to act as though abstractions are constants. This works well

for tools the know about abstractions, but in many cases, especially for outside tools,

the tools will not be extended to handle this functionality. To cope with this, the
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x = y + 1 if (y -- EVEN) gato labe11:

x = CHOOSE(EVEN, ODD);

T flows through the result in the residual code. The down stream tools that build

Figure 5.3 shows a couple of examples of operation in-lining. The top lines represent

if (y -- EVEN)
tmp = TRUE;

else
if (y == ODD)

tmp = FALSE;
else

tmp = CHOOSE(TRUE, FALSE);
if (tmp) gata labell;

Figure 5.3: Operation In-lining Examples

if (y == EVEN)
x = ODD;

else
if (y == ODD)

x = EVEN;
else

In Figure 5.3, the left side iJJustrates what happens when an operation occurs in

model checker inputs implement the CHOOSE expression.

abstraction. If y is known, the operation in-lining does not need to happen. For

example, if y is even, then the result would be x = odd and no operation in-lining is

The integer constant used to identify the value of an abstraction can be obtained

by the bit vector representing the set of tokens the abstraction represents. Section

6.2 discusses how these values are assigned and used. To in-line the abstraction

operations, checks 011 these values are done and the corresponding result is used.

Jimple, much like the abstraction classes. The CHOOSE expression is for the case when

done. But if y is T 1 then the inline happens. The code works by checking the possible

an assignment statement. The abstraction being used in the example is the even odd

given and extends Jimple's expression class. This allows it to be incorporated into

abstractions can be identified with an integer constant and the abstraction operations

can be in-lined using regular Java code.

the original code while the bottom section is the re 'ulting code. EVEN and ODD used

in the resulting code represent the integer value for EVEN and ODD. The expression

CHOOSE ( ... ) is an expression for nondeterministically choosing between the choices
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values of y and then doing the correct re ult. If both values are unknown, let u ay

x = y + z and both y and z are T, then both the value of y and z will need to be

checked to ensure that x is assigned the correct value. The right ide of the figure

demonstrates how a conditional is handled. The result of the test i assign d to a

temporary variable and then this is llsed to make the corre t jump. An expr SlOn

where both sides are unknown is handled as in the assignment statements.

This helps tools that do not know about abstractions to use the result from ABPS.

The CHOOSE expression can be converted into a method call that decides between the

choices.

5.4 Output Processing

Currently, the output processing consists of changing the block map back to a state­

ment list. This is done by combining blocks that have implicit jumps where possible

and basically putting the statements in the general order that they appear in the

control flow graph. When implicit jumps cannot be placed together, a goto is in­

serted to ensure the jump to the correct block. The main requirement for putting th

statements back together is that control flow is maintained.

-
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CHAPTER VI

DATA STRUCTURES

This chapter summarizes the implementation of tokens, sets of tokens, lookup tables,

states, stores, caches, control flow skeletons, and pecialization values.

6.1 Tokens

Tokens are used to represent a single abstract value. For example, even from the even

odd abstraction is a token. An actual token consists of a string, for the name, and an

identification number. The number is used to do any comparisons and calculations

using the token. The name i only used to print the token so it is easier to understand.

The number is used for the calculations for speed because checks on string are slow.

Different tokens can use the same identification number as long as the tokens will not

be mixed together.

6.2 Token Sets

A TokenSet represents a set of tokens. TokenSet uses a bit set to represent the set.

This allows the common set functions, such as union, intersection, and difference,

to be implemented using bitwise operators such as or, and, and xor. Using bitwise

operators makes the manipulation much faster than iteratively going through a list to

do the operators. An example of the negative zero positive set can be seen in Figure
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Tokens

Token ID Number
negative 001

zero 010
positive 100

egative Zero Positive Set
Set Representation

Bit Set Actual Set
000 {}
001 {negative}
110 {zero, positive}
101 {positive, negative}
111 {negative, zero, positive}
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Figure 6.1: TokenSet Example

6.1. The left column is the table of tokens and their identification number. The right

column represents a few bit set values and their corresponding sets.

A TokenSet takes an array of tokens representing the universe of tokens that

the set can contain. It goes through the array and assigns an unique identification

number to each token. The identification number for the token is the bit position that

represents the token. Each different token set is given its own identification number.

This is used to check to see if the sets represent the same universe. Because a token

set has a unique identification number and an array of possible tokens TokenSet has

a function that returns a new empty set from the same universe as the original set.

6.3 Lookup Tables

A lookup table is a table that associates a value with a particular key. There are

methods to add, update, and lookup values associated with keys. Lookup tables are

similar to maps in Section 4.2.3.4, but hash codes are not used. The original ABPS

prototype used lookup tables and many of the uses did not change for this ABPS

implementation so they are used instead of maps in some cases. For update and

lookups, a lookup table iterates through the table until it finds the key and then does

the necessary operation. The add places a new key at the end of the table. There

are also functions to get a Vector of keys or values.
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6.4 State

A state is a pair consisting of an index and a store. It it used to represent the current

state in a program s execution by having the position in the program' execution, the

index, and the current value of aU the variables, the store.

6.5 Store

The store is a lookup table that maps a variable to its value. Because the current

implementation does not deal with objects this can be a simple mapping. In the

future, when the implementation is expanded to include objects, the store will have

to have additional functionality to deal with objects and pointers. A store keep an

array of variable names and an array of their associated values. A store has many of

the same methods as a table. An additional function is a limit function which takes

a list of variables and returns a new store with only the variables that are in the list.

A little functionality is added to the store also. Because variabJ(~s are addpd at the

beginning of a program and their values need to be initialized, a value initializer can

be specified. This takes the type of the variable and returns the corresponding initial

value. Also, the equality method is modified to speed up an equality check. It uses

only the list of values because it assumes that the two stores have the variables in the

same order. This is the case with ABPS because the store has all variables added at

the beginning of specialization and all copies of the store are copies of the original.

Also, the limit functions keeps the variables in the same order, ignoring the order of

the list that is used to limit the store.

-
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6.6 Cache

Cache is the implementation of C for ASPS (C was defin d in Section 3.2.3). It is a

simple lookup table that associates stores to indices.

6.7 Control Flow Skeleton

In many partial evaluator , a pending list is kept (see Section 2.1.2). A problem with

using a simple pending list is when information is updated for a state that modifies

states already in the pending list. The updated state may need to be evaluated again

with the new information and this can flow down the control flow graph. This state

can be added to the pending list, but this may lead to problems since the other states

in the list can be evaluated before the updated state. If the information from the

updated state flows through the graph and makes the information at a state in the

pending list obsolete, this needs to be known or extra computation is done that may

not be used.

A control flow skeleton solves this problem. When the next node is required, the

control flow sk leton does a topological search to find the first node that is not up­

to-date. The topological search ensures that all nodes between the starting node to

the current node is up-to-date. The actual structure of the control flow skeleton is a

vector of nodes where each node contains the index of the basic block it repre ents,

whether it is up-to-date, and the children node positions in the vector (as in Section

3.2.3). A node is up-to-date ifit is marked, shown with the symbole, and not current

if is unmarked, shown with the symbol o. Each new node is added onto the end of

the vector. This makes the topological search become a sequential search for the first

unmarked node. The cost might be improved with a more clever data structure.

The control flow skeleton reuses the code from the FCL prototype with only a

-
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Skeleton Block
Index Index Mark Children*

Skeleton: Example 1
0 0 • 1
1 1 0 2
2 2 • 1

Skeleton: Example 2
0 0 • 1
1 1 • 2, 3
2 2 0 1
3 :3 0 -

* Usmg the skeleton index.

Figure 6.2: Skeleton Example

small modification of the package and class names. It has the methods to add nodes,

create arcs, and changed whether a node is marked or unmarked. It also has a method

to get the next node to evaluate and it has a few methods that are the same as the

steps needed by ABPS. For example, when a node is added to a parent, a node has

to be created, unmarked, and placed at the end of the list of nodes. Also, the child

needs to be added to the children list of the parent node. All these steps are included

in a method addDescendent.

In Figure 6.2, the left most and right most column numbers are indices into the

skeleton, but the block index column uses the indices associated with basic blocks.

The two examples are successive updates and demonstrate how the skeleton can

change. In example 1, there are only three nodes with node 1 getting evaluated. In

example 2, a new node is added that is a child of node 1 and the childr n of node 1

get unmarked. This unmarks 2 because it is a child of 1 (following the definitions in

Figure 3.4).
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6.8 Specialization Values

The value returned from an expression is a specialization value. A pe ialization value

originally consisted of the abstract value the expres ion evaluates to and a r idual

expression. This was used to decide what would get residualized by the pecializer.

If the abstract value can be residualized, it gets residualized. If, however, it cannot

be residualized, the residual expression gets residualized.

This works well for most situations, but if the operations of the abstractions need

to be in-lined (discussed in Section 5.3), more information needs to be returned.

This information includes the statements needed to represent the operation. This

prompted the creation of two other specialization values, one for assignments and

one for if statements. In all cases, the value of the expression is returned, but the

other data included in the specialization value depends on the context.

6.8.1 Expression Specialization Values

An expression specialization value contains the standard information of the expres­

sion's value and a residual expression.

6.8.2 Assignment Specialization Values

An assignment specialization value contains the standard value for the expression plus

two lists. The first is the list of statements that is created to inline the expression.

These look much like the examples in Figure 5.3 from Section 5.3. The second list

is a list of boxes. A box is basically a Java pointer so that a value can be changed

without recreating the whole statement or expression. These boxes point to the left

hand side of the assignments that use the assigned variable. The exact variable is not
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known during the creation of the code 0 it must be plugged in by the as ignment

statement. The list of boxes gives an easy way of doing thi. For xample, th

assignment x = y + 1 is being evaluated and the operation needs to bin-lined. Th

variable x is not passed down to the expression specializer so it has no knowledge of

what the actual variable is. It therefore passes a list of boxe ba k where the variable

needs to be plugged in and the assignment statement plugs the x into the e boxes.

6.8.3 If Specialization Values

The if specialization value contains a large amount of information besides the value

of the conditional. Like the expression specialization value, it keeps the residual

expression of the condition. Next, it keeps a list of statements to handle in-lining of

the test expressions and a list of boxes. It also keeps a separate store for each branch.

The if specialization value is used even when operation inline is not done. It is

used to keep the stores for the different branches. This works by having the different

pieces of code to be empty. The stores are updated with a new value of a variable

if it can be deduced. For example, imagine the value of x is T in a store when the

expression x == °is encountered. If the abstraction for x is the Integer Abstraction,

one if specialization value would be r turned. In the specialization value, the TRUE

store would be a[x 1---1 T]. The FALSE store would be unchanged. This is because

when x evaluates to 0, the true branch is followed ancl x must be °to go down the

branch, but it remain T for the false branch.
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CHAPTER VII

SPECIALIZER CORE

The specializer core does the necessary steps to specialize methods, basic block ,

statements, and expressions. Individual expressions are handled in the signature and

abstractions. These are discussed in more depth in Chapter 8. Each level of spe­

cialization proceeds through the same general steps. First, the structure is separated

into individual components. Each of these components are then specialized. Finally,

the specialized components are combined.

7.1 Method Specialization

The steps to specialize a method are very similar to the steps in standard partial

evaluation. These can be broken up into three separate section sections, con isting

of initialization, specialization and creation of residual basic block, and updating the

cache and control flow skeleton. The first step is done once; the second and third

steps are done repeatedly.

7.1.1 Initialization

The initialization step consists of the initialization of the different structures that are

used during specialization. The first is the creation of the initial store. This consists

of adding all the local variables to the store and initializing the parameter values to
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initialize(store);
state = new State (blockMap.initialLabel, store);
index = pi(state);
residualBlockMap.initialLabel = index;
C.update(index, theta(store, C.lookup(index)));
S.setStart(index) ;

Figure 7.1: Specialization Steps: Initialization

those that are passed into the specializer. Next, the initial state is created from the

initial label of the block map and the initial store. Then, the residual index is cr ated

using the operator IT (pi) (as defined in Section 3.2.2). This is used to set the initial

label of the residual block map. Next, the store in the cache for the initial index is

updated. Finally, the start of the control flow skeleton is set to the initial residual

index. This can be seen in the pseudo-code in Figure 7.1.

7.1.2 Specialization and Creation of Residual Basic Block

After initialization is completed, the specializer repeatedly specializes blocks (step 2

above) and updates the cache and skeleton (step 3 above) until ther are no unmarked

nodes in the skeleton. During each cycle, the next index is retrieved from the skeleton.

The index is used to look up the corresponding store from the cache. ext, the basic

block labeled by index is retrieved from the block map. After that anew, empty

residual basic block is created. This is passed to the basic block specializer along

with the store. The specializer then adds residual statements to the new basic block,

and the completed block is placed into the residual block map. The specializer also

returns a list of states that are reached from the specialized basic block. Figure 7.2

represents the code for this step.

-
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index = S.next();
store = C.lookup(index);
bb = blockMap.get(index.getOriginalLabel(»;
currentBB = new BasicBlock(index);
states = evalBasicBlock(bb, store, currentBB);
residual.put(index, currentBB);

Figure 7.2: Specialization Steps: Specialization and Creation

7.1.3 Updating of the Cache and Skeleton

The third step is the updating of the cache and control flow skeleton. First, the index

is marked in the control How skeleton. Next, the states resulting from processing the

current basic block are processed. If the store (0') in a state is not equal to the store

(0") associated with the state in the cache, a new store (anew) is created by merging

0' and 0" using e. The cache is updated with anew and an arc is made from the parent

(the current basic block) to the child (a successor) in the skeleton. The child is . et

to unmarked. If the stores are the same, then an arc is made from the parent to th

child and the child is left as marked or unmarked. The code for this is in Figure 7.3.

7.2 Basic Block Specialization

Basic block specialization requires specializing each statement in the block. A residual

statement is created for each source statement during specialization, and the residual

statement is added to the residual basic block. The statements from the source

block are specialized in succession. Finally, when the last statement is reached, the

successors are determined and set. For each jump construct (goto, if, and return)

the successors of the residual basic block are determined using 1r and e.
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S.mark(index);
while (states.hasNext())
{

state = states.next();
if (!state.getStore() .equals(C.lookup(pi(state))))
{

store = theta(state.getStore(), C.lookup(pi(state)));
C.update(pi(state) , store);
S. makeArc(index , pi(state) , false);

}

else
S.makeArcCindex, pi(state));

}

Figure 7.3: Specialization Steps: Updating the Cache and Skeleton

7.2.1 Goto's

These can be implicit or explicit. Implicit goto's are in blocks that do not end with

any type of jump and just has a successor to go to. Explicit goto's are in blocks that

have an actual goto at the end of the block. In either case, the basic block contains

the successor and this is u ed to calculate the successor for the residual block.

7.2.2 If's

irs are one of the key points of specialization. If the conditional can be determined

during specialization, it can be turned into a goto. During the specialization of

an if, the possible targets are returned. A target is a state, which consists of the

label or index of the original target and the current store. If the conditional can be

determined, only the one target is returned. If the conditional cannot be determined,

both the TRUE and FALSE targets are returned. In the first case, the target is used to

calculate the successor and nothing is residualized for the statement, thus creating

-
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an implicit goto. In the latter case, both targets are u ed to cal ulate su c or and

a new if statement is created.

7.2.3 Return's

All return's must be residualized. There are, however, no ucce sors to be set.

7.3 Statement Specialization

There are two results from specializing a statement. The first is the creation of a

residual statement. The second is the return of any target blocks if the statement is

aJump.

7.3.1 Assignment Statement

Assignment statements are made of two parts, a left and right hand side. Because

currently only local variables that are integers are support d, the left hand side is just

a variable. The right hand side, however, contains an expressions that need pecial­

ized. The result of specializing an expression is a specialization value. There are two

kinds of specialization values that apply to assignments: one for normal operation

(an expression specialization value) and one for operation in-lining (an assignment

specialization value). If the specialization value is one for normal operation, then

the value of the expression is checked to see if it can be be re idualized. If so, the

assignment is residualized with the right hand side the same as the value. If not,

the right hand side is the residualized expression. For example, imagine the left

hand side being x and the specialization value of < POS, y * 2 >, where the POS

is the value of the expression and the y * 2 is the residual expressions. If POS is

residualizable then the residualized assignment would look something like x = POS.

-
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If, however, POS is not residualizable, then the residualiz d assignm nt would look

something like x = y * 2. More on expression specialization can be se n in S ction

7.4. The case when the specialization value is one for operation in-lining i explained

and demonstrated in Section 5.3.

7.3.2 Goto Statement

Goto statements are a special case. They do not get residualized, but are made

implicit in the residual block. This allows the function that creates a Ilew method

from the block map to put goto's wherever they are needed. Specializing the goto

statement simply returns the target index.

7.3.3 If Statement

There are two cases for an if statement: the conditional can be evaluated to TRUE

or FALSE, or the conditional evaluates to an unknown value. For the first two cases,

specialization proceeds in the same way. If the condition evaluates to TRUE or FALSE

then the if statement is not residualized, but instead it is converted to an implicit

goto. The specializeI' returns the target index of the TRUE or FALSE branch depending

on the value.

If the conditional evaluates to an unknown value, the residual expression returned

in the specialization value is used for the condi tional of the if. The specialization

value returned in the second case is one for if's (discussed in Section 6.8.3). This

new if statement is residualized and the TRUE and FALSE targets are returned. The

additional code in the specialization value is also residualized in its correct place.

The stores for the TRUE branch and the FALSE branch can be different by using

conditional constant propagation. Conditional constant propagation is where the

-
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form of a conditional expres ion is u ed to propagate values down difD rent branche .

For example, imagine that we had the expression x == 0 as a conditional and x i

unknown. For the execution to follow the TRUE branch then x mu t equal 0, th refore

o is propagated as the value for x down the TRUE branch. Down th FALSE branch,

the value of x can be anything but 0, the value of x is left as unknown.

7.3.4 Return Statement

There are two types of return statements in Java. The first is a return that returns

void. The second is a return that returns the value of the return expres ion. In the

first case, the return is residualized. In the second case, the expression i specialized

and residualized (along with the return) using the same process as with the assignment

statement. An empty set of targets returned.

7.4 Expression Specialization

There are a wide range of expressions used in Java, but all of these can be broken

down into two categories. The first are operators, i. e. +, -, *. This group also

includes constants, variables, and method calls. The second group are tests, which

consist of operations that return a boolean value, i.e. <, ==, and! =. All these are

dependent on the different abstractions so they are implemented in the L: and the

individual abstractions.

7.4.1 Operators

Operators return a specialization value, first mentioned in Section 6.8. Let us look at

a few examples of specialization values for expressions. Examples of assignment and

if specialization values are found in Section 5.3.
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• Constants

If one has a constant, such as 3 the value is 3 and the expres ion is also 3. The

specialization value would be < 3 3 >.

• Variables

If one has a variable x then the value would be O'(x) and th expres ion would

be x. The specialization value would be < 0' (x), x >.

• Operations

These have subexpressions which are specialized individually and the special­

ization values are used to make the operation's specialization value. There are

three cases of operations, one where the value is residualizable and two where

the value is not residualizable. The difference between the two i whether the

abstract operations are in-lined or not.

- Value is residualizable

An example of this is the expression x + 2 and .'E evaluates to 2. The value

would then be 4 and the residual expression would be 4, thus making the

specialization value to be < 4,4 >.

Value is not residualizable and operations are not in-lined

An example of this is the expression x + 2 and x evaluates to a value that

cannot be residualized, such as T. The value of the expression is T and

the residual expression is x + 2. The specialization value is < T x + 2 >.

Value is not residualizable and operations are in-lined

An example is similar to that above, but the specialization value is one

for assignments. It would look something like < T, code, [J >. The code is
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similar to that in Figure 5.3 and the [] is the list of boxe that need to b

filled with the variable x.

7.4.2 Tests

Test are similar to operations. There are two cases for tests. The first is when th

conditional can be determined. This creates an expression specialization value like th

ones for operations. The second case is when the conditional cannot be determined,

an if specialization value is returned. This works whether operations are in-lined or

not. When operations are not in-lined, the additional code sections are left empty,

but when operations are in-lined, the additional code sections are filled in. One of

the key parts of the if specialization value is it keeps store for the TRUE and FALSE

branches. This is used for conditional constant propagation (Section 7.3.3).
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CHAPTER VIII

SPECIALIZER OPERATORS

The specializer takes in a number of operators that determine diff rent aspects of the

specialization process. These include the abstractions, the signature E the proj ction

operator 1r, and the widening operator B.

8.1 Abstractions

The abstractions are one of the key controlling points of the specializer. Each abstrac­

tion is defined in a special abstraction class. These classes have methods to do the

different operators and tests. They also include methods to create the residual code

for the expression, to abstract value, and to lift and merge values of the abstraction.

This way, each abstraction can handle the operations and functions differently. For

example, in the int abstraction, the addition of two integers is the normal addition

operator for integers. For the even odd abstraction, however, the addition operator

depends on the abstract value. So if the expression even+ even is evaluated the result

should return even. The expression even+ odd, however, should return odd. All these

different cases must be implemented in the abstraction.

Currently, the abstraction classes are constructed by hand, but it is planned to

make their construction· more automatic. The abstractions that have been created

so far have started off in a simple abstraction specification language and then hand

compiled to Java code. The Bandera abstraction specification language (BASL) has

71
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Specification

tokens: NEG, ZERO, POS, T

Code

public final static Token NEG_TOKEN = new Token("NEG Il );
public final static Token ZERO_TOKEN = new Token(IZERO");
public final static Token POS_TOKEN = new Token("POSIl);
public final static Token T_TOKEN = new Token(i'T") ;

protected final static Token tokens[] = {NEG_TOKEN, ZERO_TOKEN,
POS_TOKEN, T_TOKEN};

public final static TokenSet TOKENSET = new TokenSet(tokens);

public final static SignsAbstraction NEG =
new SignsAbstraction(NEG_TOKEN);

public final static SignsAbstraction ZERO =
new SignsAbstraction(ZERO_TOKEN);

public final static SignsAbstraction pas =
new SignsAbstraction(POS_TOKEN);

public final static SignsAbstraction T =
new SignsAbstraction(T_TOKEN);

Figure 8.1: Header

not been formally defined yet. However, in this chapter example BASL specifications

are given as they are expected to be written once the language is formalized. Also, the

code expected to be produced by the BASL compiler is shown. The BASL compiler

automates the encoding; of the abstractions in Java. There are seven sections to

a BASL specification. The following sections discuss each of these using the signs

abstraction as an example. The signs abstraction keeps track of the signs of the

integer, but not the actual magnitude. The three tokens are NEG, ZERO, and

pos. NEG represents values less than zero and POS represents values greater

than zero.
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Specification

abstract
(n < 0)

(n == 0)
(n ) 0)

Code

-) NEG
-> ZERO
-) POS

public static SignsAbstraction abs(int n)
{

if (n < 0)

return NEG;
else

if (n == 0)

return ZERO;
else

if (n > 0)

return PoS;
else

return T;
}

Figure 8.2: Abstraction Function

8.1.1 Header

This section specifies the tokens of the abstraction. For example, in the signs abstrac-

tion the tokens are NEG, ZERO, POS, and T. The BASL header section appears

in the top of Figure 8.1. The code produced would look like that in the bottom of

Figure 8.1.

8.1.2 Abstract Function

The abstract function section defines how to abstract the values. This is called to

abstract constants and create a new instance of the abstraction. For example, if the

constant 2 was abstracted for the signs abstraction, the result would be POS. An
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Specification

merge
POS POS -> POS
ZERO ZERO -> ZERO
NEG NEG -> NEG
default -> T

Code

public static Abstraction merge(SignsAbstraction il,
SignsAbstraction i2)

{

if (il.sarne(POS) && i2.same(POS))
return POS;

else
if (il.same(ZERO) && i2.same(ZERO))

return ZERO;
else

if (il.same(NEG) && i2.same(NEG))
return NEG;

else
return T;

}

Figure 8.3: Merge Function

example of the specification and resulting code can be seen in Figure 8.2.

8.1.3 Merge Function

The merge function is used to merge two values from the same abstraction. In many

cases, this is the least upper bound operator. The specification defines a set of cases

on what to return. The code uses an if-then-else approach. This can be seen in Figure

8.3.
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Specification

lift NEG, ZERO, POS

Code

public Value lift()
{

if (same(NEG»
return NEG;

else
if (same(ZERO»

return ZERO;
else

if (same (POS)
return POS;

else
return null;

}

Figure 8.4: Lift Function

8.1.4 Lift Function

The lift function returns a Jimple expression if the value can be residualized and

lifted, otherwise it returns null. In the case of the signs abstraction, we want to be

able to residualize NEG, ZERO, and POS but not T in our example. Figure 8.4

contains the appropriate lift function.

8.1.5 Operators

The BASL specifications for operations and tests use patterns to defined the different

cases. Cases are processed from top to bottom and the result is given by the fir t

pattern matched. The specification section of Figure 8.5 show a few new features

used to define an abstraction. The first is the wildcard pattern (*). The second is the

op1 and op2 values. The e represent the left and right operands, respectively. These
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Specification

Code

Abstraction vi = opi.getValue();
Abstraction v2 = op2.getValue();

pas
NEG
opi
op2

-> T
ZERO *
default

if (vi.same(POS) && v2.sameCpaS))
return new SpecValue(POS);

else
if (vl.same(NEG) && v2.same(NEG»

return new SpecValue(NEG);
else

if (vi.same(ZERO»)
return op2;

else
if (v2.same(ZERO)

return opi;
else

return new SpecValue(T);

operator +
pos pas -)
NEG NEG -)
* ZERO ->

->

public static SpecValue add(ExprSpecValue opi, ExprSpecValue op2)
{

}

Figure 8.5: Addition Example
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are used in this example becau e anything added to zero i its If. The value r turn d

is a simple specialization value. The re idual expre sian i added by the ignature.

This is done in one of three way .

• Value is liftable

The residual value is created by lifting the value when it i liftable.

• Value is not liftable and operations are not in-lined

When the value is not liftable and operations are not in-lined, the signature

creates the residual value by making a new operand with the residual values of

the arguments.

• Value is not liftable and operations are in-lined

When operations are in-lined, another call to the abstractions makes the residual

code that replaces the operand and is passed back in an assignment specializa­

tion value.

The extra method in the abstraction matches the patterns for the rules and cre­

ates the code for the particular case. For example, if the expression was x + 2 for

the rules in Figure 8.5 and x was T, then all the rules where the right operand is

POS apply. These are the first, fourth, and fifth rule. The code for each check

is appended together to take care of all the cases. This creation of code is actually

handled by a method in the base Abstraction class. This method is u ed in all the

abstractions currently. This makes the creation of the different methods easy to do,

either automatically or by hand.
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test ==

pos pas -)

NEG NEG -)

ZERO ZERO -)

T * -)

* T -)

default -)

T (- , -) (-, -)

T (- , -) (- , -)

TRUE (- , -) (- , -)

T (op2, -) (- , -)

T (-, opt) (- , -)

FALSE (- , -) (- , -)

Figure 8.6: Equality Example: Specification

8.1.6 Tests

Tests work similar to operators but there are a few key differences. First, they are

used to determine a branch in the execution. Second, if they cannot be determined,

different values can flow down different paths. This made the creation of the spec-

ification a little more difficult. The solution was to create a spot for each possibl

value flowing down each branch. These are the values of the argum nts to the te t.

For example, in the expression x == y, x and yare the arguments. These are the

variables that can have values flow down different branches. If th Y was a 2, then

only the x could have its value changed. Also, there is only two branches. This made

the specification for a test to have the two values of the pattern to match, a boolean

value or T as the result, and two pair of the values that can flow down the branches.

Figure 8.6 shows the specification for the equality test. The values returned are

tokens for the boolean abstraction. The items in parenthesis represent the new values

for the operator arguments in the true branch and false branch respectively. The ­

is an empty token which represents that on operator does not change its value. If

you look at the fourth pattern, the true branch is (op2, -). This says that the left

operand gets the same value as the right operand (op2). Figure 8.7 shows the code

created for the specification.
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public static SpecValue eq(ExprSpecValue op1, ExprSpecValue op2,
Store trueStore, Store falseStore)

{

Abstraction v1 = op1.getValue();
Abstraction v2 = op2.getValue();

if (v1.same(POS) && v2.same(POS))
return new IfSpecValue(BooleanAbstraction.T,

new ArrayList(), new ArrayList(),
trueStore, falseStore);

else
if (v1.same(NEG) && v2.sarne(NEG))

return new IfSpecValue(BooleanAbstraction.T,
new ArrayList(), new ArrayList(),
trueStore, falseStore);

else
if (vl.sarne(ZERO) && v2.same(ZERO))

return new IfSpecValue(BooleanAbstraction.TRUE,
new ArrayList(), new ArrayList(),
trueStore , falseStore);

else
if (vi.same(T))

{

trueStore.update(EVariable.convert(opl.getExpr()) ,
op2.getValue()) ;

return new IfSpecValue(BooleanAbstraction.T,
new ArrayList(), new ArrayList(),
trueStore, falseStore);

}

else
if (v2. same (T))

{

trueStore.update(EVariable.convert(op1.getExpr()),
op1.getValue()) ;

return new IfSpecValue(BooleanAbstraction.T,
new ArrayList(), new ArrayList(),
trueStore, falseStore);

}

else
return new IfSpecValue(BooleanAbstraction.FALSE,

new ArrayList(), new ArrayList(),
trueStore, falseStore);

}

Figure 8.7: Equality Example: Code
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Tests are also like operators becau e there ar two method in ach ab traction

for each test. The second method, like for operator for when operator in-lining

is done. It creates the code necessary to in-line the test and ensure that the corr t

jump point is reached. It also ensures that the residual ode make the corr ct

assignment. As in the previous example, when the left operand gets as igned the

value of the right operand, this assignment must be residualized when the operation

are in-lined to ensure correct transformation.

8.1.7 Other Functions

There are other functions associated with abstractions. These include retrieving the

bit set that represents the set. This is also the unique number used when operation

in-lining is done ( ee Section 5.3). There are also methods to create a new in tance

of the abstraction which represents the empty set. This is used when a new instance

of an abstraction is needed. Finally, there is a method that creates the CHOICE

expression with the values the abstraction represents.

8.2 Signature - 2:

The signature determines which method gets called for a particular operator or test.

It extends Jimple's ValueSwitch which works as a switch between each expression. It

works by having a separate method for each expression that needs to be implemented.

Each method goes through the same set of steps.

1. Evaluate Subexpressions

This step calls upon the signature to evaluate subexpressions. Some type of

expressions do not need to do this step because they do not have any subex-

pressions, i. e. variable lookup and constants.

I
I
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if (vl.ID == SignsAbstraction.absID &&
v2.ID == SignsAbstraction.absID)

res = SignsAbstraction.add(svl, sv2);
else

if (vl.ID == ZeroPosAbstraction.absID &&
v2.ID == ZeroPosAbstraction.absID)

res = ZeroPosAbstraction.add(svl, sv2);

Figure 8.8: Determining the Abstraction

2. Evaluate Expression

For simple expressions, such as variable lookup and constants the signature

evaluates the expression itself. For more complicated expressions such as ad-

dition, subtraction, etc., the values of the subexpressions are used to determine

what abstraction is used to handle the expressions. For example, if both subex-

pressions evaluate to even odd abstractions and the expression is addition, then

the addition method in the even odd abstraction will be called. An example

of this can be seen in Figure 8.8. Each possible combination of abstractions

must be handle for each possible operation. When two different abstractions

come together, one must have a special method to handl the combination or

convert one abstraction to the other and then call the corresponding method.

All this can get difficult to implement by hand, but much of the code can be

reused. It is planned to make this automatic in the future to remove much of

the difficulty.

The signature can also determine when to change the abstraction of a particular

value. The only case currently used is for an expression such as x + 2. The

x will be the abstraction assigned to it but the two will be a concrete integer

value. This need to be converted to the same abstraction (in many cases) as
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x. A check is made to see if a value is a concret int grand th n, if 0, it i

abstracted to the correct abstraction. In the future, thi will be u ed to convert

from one abstraction to another when it makes en e to do o.

3. Create Residual Expression

The result of the operation is next lifted to an expre ion. If the value is

residualizable, then this step is finished. If the value is not residualizable, then

a new expression must be created. For example, if the value of .r * 2 is even

and even is residualizable, an expression representing even is returned by the

lift function and it is done. If, however, even is not residualizable, then the

expression must be recreated with the residualized subexpressions put together

with the operator, i.e. x * 2. This is handled by the signature when operation

in-lining is not done. When operation in-lining is done, however, a separate

method is called in the abstraction that creates the correction specialization

value with the correct code to represent the expression.

4. Creation of the Specialization Value

A specialization value is created for an operation expression by th signature

when operation in-lining does not occur. In all other cases, the specialization

values are created by the methods in the abstraction class. This makes the work

of the signature stay basically a test for the types of abstractions to determine

the correct abstraction and method to call.

8.3 Pi - 7f

The operator 7f is used to create an index from a state. Becau e a state contains an

index and a store, these can be used i.n different combinations to create the new index.

..
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7f is implemented in it own class, and to create a new instance of 7f on xtends he

class. The key function to implement is the pi function:

public Index pi(State s)

This function is what is called to create a new index. Thi function can be configured

in a number of ways but the three most common are

• Monovariant Analysis - Only one residual ba ic block for each original basic

block. This works by returning the index of the original basic block.

return s.getlndex();

• Maximally Polyvariant Analysis - A residual basic block for each different store

and index pair. This works by creating a new index that combines the index

and store.

return new Storelndex(s.getlndex(), s.getStore(»;

• Variable Polyvariant Analysis - This is where polyvariance is done only on a

elect group of variables. It limits, or reduces, the store to the number or

variables and then combines it with the index.

return new Storelndex(s.getlndex(), s.getStore() .limit(vars»;

More complicated notions of polyvariance can also be encoded. For example, il'

a live variable analysis was done for each block, one might want the ABPS to be

polyvariant on the live variables for a particular basic block. This would make the

implementation do a different limit of the store depending on the index of the original

basic block. The call might look something like

return new Storelndex(s.getlndex(),
s.getStore() .1imit(liveVars(s.getlndex(»»;

where the function call1iveVars(s.getlndexO) returns the live variables for a

given basic block.

III
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.4 Theta - B

The eoperator performs a component-wise merge on two store. The merge function

is usually defined in the class representing the abstraction of the particular value. The

main u er defined function in the operator determines which function to call to merge

the two values. For example, if the two values are from the even odd abstraction

then it would call merge in the even odd abstraction. An example of the merge

function can be seen in Figure 8.9. This checks to see if two values are either both

int abstractions (IntAbstraction) or even odd abstractions (EOAbstraction).

Other features can be added to the merge function. One common occurance is

where the value is an int abstraction in one store and an even odd abstraction in the

other. In the code in Figure 8.9, an exception would be thrown. To solve this, the

code in Figure 8.10 would be put into the if-then-else statements.

•
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public class SimpleTheta extends Theta
{

public Abstraction merge (Object 01, Object 02)
{

if (01 instanceof IntAbstraction &&
02 instanceof IntAbstraction)

return IntAbstraction.merge((IntAbstraction)ol,
(IntAbstraction)02) ;

else
if (01 instanceof EOAbstraction &&

02 instanceof EOAbstraction)
return EOAbstraction.merge((EOAbstraction) 01 ,

(EOAbstraction)02) ;
else

throw new RuntimeException("Unhandled case in merge: "+

01 + "\t" + 02);
}

}

Figure 8.9: (j Example

if (01 instanceof EOAbstraction &&
02 instanceof IntAbstraction)

return EOAbstraction.merge((EOAbstraction)ol,
EOAbstractlon.abs(

((IntAbstraction)02) .value);
else

if (01 instanceof IntAbstraction &&
02 instanceof EOAbstraction)

return EOAbstraction.merge(EOAbstraction.abs(
((IntAbstraction)ol) .value)

(EOAbstraction)02) ;

Figure 8.10: Addition Code for (j
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CHAPTER IX

RESULTS

The ABPS tools processes a small subset of Java. This includes integers alld their

operators. The tools can only specialize a method so this limits the application, but

there are still some interesting examples that can be treated. This chapter consists

of examples using a concurrent readers/writers control code.

9.1 Reader/vVriter Controller

A COli troller for concurrent readers/wri tel'S keeps track of the llumber of r('ader pro-

cesses and the number of writer processes. This is to ensure that there an' uo read('rs

while there is a writer process. Also, that there can be no more thaI} Oll(~ writ(~r

process. The example has been modified to keep only the features needed for this

line of tests. This is a common procedure in FSV to red lice the state spac(' and tbe

complexity of the problem.

Figure 9.1 shows the Java source code for the reader writer controLler. The code

loops until it gets a request to stop. Model. choose (4) nondcterministidy chooses a

value between a and 4. The value is assigned to req. Figure 9.2 shows the actions

represented by the request values. The resulting Jimple code is in Figures 9.3 and

9.4.
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public static void controller()
{

boolean writerPresent = false;
int req = 1;
int activeReaders = 0;
boolean errorFlag = false;

while (req!=O)
{

req = Model.choose(4); II controller@7

if (req == 1)

{

if (lwriterPresent)
++activeReaders;

II startRead ()
II controller@13 START_READ

: .11, .· ,
I

I '

---

}

else
if (req == 2) II else of case 1

{

if (activeReaders>O)
{

activeReaders = activeReaders - 1;
if (writerPresent) errorFlag = true;

}

}

else
if (req == 3) II else of case 2

{

if (activeReaders==O && 'writerPresent)
writerPresent = true; II controller@19 START_WRITE

}

else
if (req == 4) Ilelse of case 3

if (writerPresent)
{

writerPresent = false; II controller@21 STOP_WRITE
if (activeReaders>O) errorFlag = true;

}

}

}

Figure 9.1: Reader Writer Java Code

I :
I I

I -,

I II,
I I
f ••
: I

·"-.
I,
•-·"It· •

·", ~l

I Loll
· II, 't



req
o
1
2
3
4

Step
Ends the loop
Add a new reader
Remove a reader
Adds a ne'v\' wri tel'
Removes the writer

Figure 9.2: Reader Writer Requests

9.2 Abstractions

88

---

There were three different abstractions used for these examples. For all the abstrac-

tions, only the operators and tests that are needed are implemented.

9.2.1 Boolean Abstraction

A boolean abstraction keeps track of the boolean values TRUE and FALSE. Thry can

also have an unknown, T. These were used for the wri terpresent va.riahlC'.

9.2.2 Zero Positive Abstraction

The zero-positive abstraction is similar to the signs abstraction. The only Tlotable

difference is the lack of a negative token. It is used for the activereaders variable

which keeps a count of the number of active readers. It is safe to use th~ zero-positive

abstraction because the number of active readers can never fall lwlow U. Also, all

tests on active readers need to know only if the value is 0 or greatr~r thal1 zero.
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public static void controller()
{

int iO, writerPresent, req, activeReaders;

writerPresent = 0;
req = 1;
activeReaders = 0;
goto labe14;

labelO:
iO = Model.choose(4);
req = iO;
if req != 1 goto labe11;

if writerPresent != 0 goto labe14;

activeReaders = activeReaders + 1;
goto labe14;

label!:
if req != 2 goto labe12;

if activeReaders <= 0 goto labe14;

iO = activeReaders - 1;
activeReaders = iO;
if writerPresent == 0 goto labe14;

goto labe14;

labe12:
if req 1= 3 goto labe13;

if activeReaders 1= 0 goto label4;

89

.11-,.
"
"

I~

•",
I
II.
t

-,.,
I
"•
"

if writerPresent

writerPresent
goto labe14;

1= 0 goto labe14;

1·
I

Figure 9.3: Reader \iVriter .Jimple Code (Part 1)
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labe13:
if req != 4 goto labe14;

if writerPresent -- 0 goto labe14;

writerPresent = 0;
if activeReaders <= 0 goto labe14;

labe14:
if req 1= 0 goto labelO;

return;
}

Figure 9.4: Reader Writer Jimple Code (Part 2)

9.2.3 Range 0-4 Abstraction

The last abstraction used is a range abstraction. A range abstraction has tok ns to

represent values in a particular range, in this case between 0 and 4. This is used for

the req variable because that is the range of its values.

9.3 Signature and Theta

ABPS also requires specification of the signature and theta. These are straight for-

ward because they basically choos between which abstraction to call. Signatures

were discussed in Section 8.2 and theta in Section 8.4.

9.4 Running the ABPS Tools

Unfortunately the current implementation only takes a few command line arguments.

These include the class and method names and three possible options. The class
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names is the fully qualified clas name. This is the combination of the pa kage

and class name in Java. ABPS currently does not di tingui h betwe n ov rloaded

methods. It will simply specialize the first method with the giv n name. Th two

options are -poly and -inline. The -poly option chooses polyvariant analysis

instead of the default monovariant analysis. To do operation in-lining, the option

-inline is used. The other options must be implemented by changing the code in

Main. java or the different specializeI' operators.

Two changes can be made by modifying the code in the Main class. The first

IS the arguments passed as the parameters of the method. These arguments are

passed as an array, one entry for each parameter. One can change the value and the

abstraction used for these arguments. Also, there is a table passed to th specializeI'

that associates variables with abstractions. One can add new entries into this table.

In the future, these will be retrieved from the command line or from an options file.

9.5 Results

The following section presents the results of running ABPS in several different modes:

monovariant, polyvariant, and monovariant with operation in-lining.

9.5.1 Monovariant Case

The monovariant case is the easiest to understand. For each label in the source

program, there is exactly one label in the residual program. A table to show the rela­

tionship between the source labels and residual labels is in Figure 9.5. The resulting

code can be seen in in Appendix C starting on page 111.

Figure 9.6 contains a piece of the residual code that corresponds to label1 in

Figure 9.6. One of the first noticeable differences between the code in Figure 9.3
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Source Labels Monovariant Case Polyvariant Case
labell label5, label7, la-
bellO, labell 1 label17,

labelO label1
label22 label23, label29
label32, labe134, label39,
label41, label43, label44,
label47, label51

label3, label4, labe1l3,
labell label2 labe1l5, labe1l8, label30,

label46
label9, labe1l2, label20,

label2 label3 label24, label26, label36,
label48
labe116, labe119, label28,

label3 label4 label31, label33, label40,
label49
label25, label27, label35,

label4 labelO label37, label38, labe145,
labe150

Figure 9.5: Source and Residual Labels

labe12:
if req 1= R2 goto labe13;

if activeReaders <= ZERO gate labelO;

il = POS - POS;
activeReaders = i1;
if writerPresent FALSE goto labelO;

goto labelO;

Figure 9.6: Excerpt of Monovariant Results
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and the source code in Figure 9.3 is the inclusion of tokens. The token repre ent

abstractions which are considered Jimple constants ( ee Section 5.3). R call from

Section 3.2.1, that the user can control which token are re idualized and which

tokens are not residualize.

Another difference is the conversion of the expres lOn activeReaders - 1 to

pas - pas in Figure 9.6. This conversion occurs because the result of POS - POS

is T (subtracting two positive natural numbers can give either a zero or a positive

number). The expression was residualized because T is not residualizable.

9.5.2 Polyvariant Case

The polyvariant case is probably the most difficult example to follow (see Appendix

C on page 112). Part of the reason is the code explosion that occun d. The code

explosion is a result of the creation of a new residual basic block for the combination

of each source basic block and variable values. Figure 9.7 is an excerpt of residual

code that demonstrates multiple residual blocks. These pieces of code is some of the

specialized versions of the code found under label! in Figure 9.3. Each lab 1, except

labe114, represents the specialized entry point to labell. labell4 is the body of

the same block. Figure 9.8 helps explain why each block is different. The figure

shows the ent ring values at each entry point. With these values, each case can be

explained.

• labe13: The number of active readers is ZERO in this case. This means the

check activeReaders <= ZERO is true and the rest of the block is skipped.

• labe14: The number of active readers is POS. The check is fal e and so the

rest of the block is specialized.

• label13: The number of active readers is T. The check is unknown, so each

• ~I
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labe13:
if req != R2 gata labe19;

il = Madel.chaase({RO,Rl,R2,R3,R4});
req = il;
if req != Rl gata labe13;

gata labelO;

labe14:
if req != R2 gata label12;

iO = pos - pos;
activeReaders = iO;

label13:
if req != R2 gata labe120;

if activeReaders <= ZERO gata labelS;

labe114:
iO = POS - pas;
activeReaders = iO;
gata labelS;

labe115 :
if req 1= R2 gato labe124;

gata labe114;

Figure 9.7: Excerpt of Polyvariant Results

94

~III

• I'
"~I



95

label req activeReaders
labe13 T ZERO
labe14 T POS

label13 T T
labe114 T POS
labe115 T POS

Figure 9.8: Variable Values Upon Block Entry

possible branch must be taken. To follow the false branch, the number of active

readers must be positive. This information is propagated down the path and is

an example of conditional constant propagation (see Section 7.3.3). The control

then flows down into the body of the block.

• labe115: The number of active readers is POS. The check is false so the rest of

the block is specialized. The values flowing into the body match those flowing

into the body from labe113, allowing the two blocks to be merged.

The differences between the cases where the number of active readers is POS is from

the different values of the other variables. These are not the only residual blocks

created for the source blocks. The rest can be seen in Figure 9.5.

9.5.3 Monovariant Case with Operation In-Lining

The examples for monovariant specialization with operation in-lining uses some dif-

ferent code than the other examples because the reader/writers code is not a good

example of what can happened during operation in-lining. The example code used

for operation in-lining is in Figure 9.9, It contains an assignment where a positive

value is added to the variable x. ABPS creates the residual code in Figure 9.9 when

operation in-lining is set and x is T.

••
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Source Code

iO = 3 + x;

Residual Code

if x != pas gato labelO;

iO = POS;
goto labe12;

labelO:
if x != ZERO goto label!;

iO = POS;
goto labe12;

label! :
iO = Model.choose({NEG,ZERO,POS});

labe12:

Figure 9.9: Monovariant with In-lining Example

When x is pas or ZERO, the result is pas. When:1: is NEG, th re-

suIt is T., which gets residualized as a nondeterministic choice. All these cases

needs to be handled when operation in-lining is done in this case. To do this

ABPS creates code that checks for each possible value of x that does not result

in T. For each of these cases, it creates code to assign the correct value for the

assignment. When the result is T, ABPS creates a nondeterministic assignment,

iO = Model.choose({NEG,ZERO,POS}).

9.5.4 BIRC Output

One of the main goals of ABPS was for the output to be processed by BIRC, the

translator that converts Jimple code to code for a FSV. Figure 9.10 is a sample
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atomic { ((req == Rl) && (writerPresent -- FALSE)) -)
req = {RO, Rl, R2, R3, R4};
activeReaders = POS;
goto 10c2; }

atomic { ((req == R2) && (activeReaders ) ZERO) &&
(writerPresent == FALSE)) -)

req = {RO, Rl, R2, R3, R4}~

activeReaders = {POS, ZERO};
goto 10c_2; }

atomic { ((req == R3) && (activeReaders 1= ZERO) -)
req = {RO, Rl, R2, R3, R4};
goto 10c_2; }

atomic { ((req == R3) && (activeReaders
(writerPresent 1= FALSE) -)

req = {RO, Rl, R2, R3, R4};
gato 10c_2; }

atomic { ((req 1= R3) && (activeReaders
(writerPresent == FALSE) -)

req = {RO, Rl, R2, R3, R4};
writerPresent = TRUE;
goto 10c_2; }

Figure 9.10: Promela Code from BIRC

of the output created by BIRC for the readers/writers example. This output has

been optimized by hand to make it more readable. Trivial tests, i.e. 0 == 0 and

l! = 0, have been removed. Also, the equations have been rearranged. For example,

(!(activeReaders! = ZERO)) was changed to (activerReaders == ZERO). Finally,

extraneous parentheses were removed, The output was obtained by putting the resid-

ual method into a Java class that BIRC then processed. Spin was used to check the

readers/writers with the promela output. The re ults were not what was expected

because the current version of BIRC did not allow static invoke expressions in the

Jimple code.



CHAPTER X

CO CLUSIO

This work has demonstrated that partial evaluation and abstract interpretation can

be combined to obtain a tool that automatically generates abstract models of simple

software systems. These models can be fed into existing finite state verification tools.

The ABPS has been integrated into the larger Bandera verification system. An initial

release of the Bandera tool set (including ABPS) is being tested by researchers at

ASA Ames Stanford, University of Massachusetts, and University of Hawaii.

10.1 Assessment

• Usability

In its current stat 1 the system is not too difficult to use if the abstractions

remain simple and the Java code lies in the subset of what is implemented.

However, there are several limitations that can be improved immediately. There

are not many options that can be passed on the command line. One can see

some nice examples, but if a different method with different parameters or

variables is to specialized, one must change some ABPS code by hand. Also,

abstractions and the signature are still difficult to implement. This is because

they must be done by hand. This makes it tedious to add much functionality,

or even a new abstraction, to the current code. The structure was designed so
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that it would be relatively easy for a tool to automatically con truct these from

a specification file.

• Effectiveness

The effectiveness seems to be pretty good for the example it was tri d on. The

results matched up to models that would be constructed by hand. To b fully

effective, objects and arrays need to be handled, plus a way to pecialize whole

systems. The system is currently not as efficient as it could be but this will be

addressed in the fu ture.

• Technical Challenges

Creating modular abstractions became the biggest technical challenge. The

ABPS tools needed to be able to change abstractions without much hassle.

Also, in the future, they need to be created automatically. This meant that

they needed a regular structure that would be easy to specify and easy to use.

The structure of abstractions and the signature changed ov r the course of

working on the implementation. Each one came closer to the desired goal of

being more automatic, but there are still changes that can be made to make it

more so.

10.2 Future Work

There is much to be done in the future on this system. The two primary goals are

to make it more automated, and to scale it up to a wider range of Java features.

Many aspects of the first goal can be handled without much difficulty. To make the

creation of abstractions and signatures more automated, an abstraction specification

language needs to be developed. Some work has been done for this, and the specifi­

cation language looks much like the sample specifications presented in Chapter VIII.
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After this, a compiler needs to be written that compiles the pecification to Java

source code that can be used by the system. Further work al 0 n ds to be done on

the structures of the abstractions to aid in the creation of the ignature and other

operations passed to the ABPS tools. These include structures that hold the op r­

ators and tests implemented along with their method names. This would allow the

signature to be created automatically from the names of the abstra tion to be used.

Other information could also be included to determine if it i possible to change on

abstraction into another.

The degree of automation can also be increased by passing more options to ABPS.

Options can be supplied on the command line or in an options file. With th se tech-

niques, one can remove the need to change actual ABPS code for different configura­

tions of the system.

Scaling up the system to include additional Java features will be more challenging.

This is because specialization will occur on objects, not just methods and variables.

There is little information in the literature on the ways to scale up to a object oriented

language. There are four main areas to be included to ale to a full Java systems,

each with its own plan.

1. Composite Data

Composite data includes arrays and structures. In both, diff rent parts of each

can have different binding times. For example, a structure with variables x and

y can have x and y static, x static and y dynamic, x dynamic and y static, or

both could be dynamic. This problem is discussed in the \iteration and possible

solutions are presented [2, 20]. More research needs to be done to include

composite data into the system.

!~ ~ Ii
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2. Object Flow

Object flow play a major roll in object ori nted languag . Thi i becau e

methods can be inherited or overridden from the parent class. When a method

call is made on a particular object if the exact object type i not known, a

virtual method call has to be made. For a virtual method call th type of the

object has to be determined at runtime and then the corre ponding method.

In Java virtual method calls are considered slow. An object flow analysis

is being developed for Jimple [30]. To understand the possible analy es and

to determine the best course, the Jimple analysis, Mossin's PhD Th is [24],

and other possible sources need to be studied and the best course of action

implemented.

3. Partial Evaluation of Object Oriented Languages

Partial evaluation of object oriented languages is new and many of the problems

do not have good solutions. Studying the literature [4, 9, 28] and developing

methods to incorporate object oriented features into partial evaluation will need

to be done.

t Partial Evaluation of Languages with Concurrent Features

Java includes primitives and functions for concurrent software. A look at the

literature for partial evaluation of concurrent languages has b en reported in

the literature [22, 23] and more research needs to be done to be able to partially

evaluate Java.

More research and study of the literature needs to be done in each of the areas to

develop a plan to scale up to the other features to Java.

III
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APPE DIX A

GLOSSARY

ABPS

AI

AST

Abstract Interpretation

Abstract Interpreter

BASL

BIRC

Basic Block

Box

CI

Concrete Interpretation

Abstraction-Based Program Specialization.

Abstract Interpretation.

Abstract Syntax Tree.

Interpretation of a program using abstract values.

A rigorous methodology for static program analysi by
manipulating abstract tokens.

Bandera Abstraction Specification Language. A lan­
guage that is used to define abstractions for ASPS. It
is currently in the development stag s.

A part of the Bandera toolset that translates Java into
FSV input.

Sequence of consecutive statements in which flow of con­
trol enters at the beginning and leaves at the end without
halt or possibili ty of branching except at the end [1].

A reference to an expression in Jimple that allows one to
change its value without affecting the rest of the struc­
ture.

Concrete Interpretation.

Interpretation of a program using concrete values.

"'ll

,,,

Conditional Constant Prop- vVhere the values of a conditional expression are used to
agation propagate values down different branches.

Dynamic Unknown.
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FCL

FSV

Finite State Verification

Hammock Form

IR

Ill-lining

Jimple

Jimplification

Label

Lift

Maximally Polivariant

Monovariant
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Flow Chart Language.

Finite State Verification.

Model-based techniques that can be used to ch ck that
a system satisfies certain properties.

Form where there is only one entry and exit point.

Intermediate Representation.

Process of moving a method body into another method
to eliminate the overhead of call the moved method.

Intermediate representation of Java produced by th
Sable group at McGill University in Canada (see Section
1.4.2).

The process of converting Java to a Jimple representa­
tion.

A program point.

A method that converts a value to a corresponding ex­
preSSlOn.

Polyvariance where each state in the program has a cor­
re 'poneling residual basic block.

Analysis where there is only one residual basic block for
each original basic block. ,-

Ofl"-line Partial Evaluation Partial evaluation where the analysis is clone before the
evaluator runs.

On-line Partial Evaluation Partial evaluation where the analysis is clone while the
evaluator is running.

PE Partial Evaluator.

Partial Evaluator A technique for specializing programs based on informa­
tion known about the environment or expected patterns
of use.

Pending List List of states waiting to be analyzed.

Polyvariance Analysis where there can be more than one residual basic
block for each original basic block.



Resid ualize

Seen-Before Set

Signature

State

Static

Store

Three Addre s Code

10

Plac the code into the output code.

Set of ate that have been analyzed.

Operator that paramet rize th s ntax. It contain op­
erations tests and constant .

A combination of a label and a store.

Known.

The representation of memory, it is a lookup table for
variables and their value .

A representation where ach statement has at most thr e
operands. Method invocation is an exception to this.
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APPE DIX B

OTATIO

Representation for an unmarked node.

Representation for a marked node.

Partial function.

Transition between states or a total function.

Used in representation of stores to associate a variable to
a value.

Subset or equal.

Partial order.

Specialization structure.

A function that maps a state to an index.

Store,

A function that merges two stores.

Upper bound, represents all possible values or unknown.

Signature, contains the operators and tests.

Block-map, maps a label to a basic block.

Residual block-map.

Map symbols in l: to operations in A.

Algebra, contains values operations, and tests.
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AbsVal

b

c

dom(a)

e

lift

m

n

a

R

s

s

Val

The algebra for the even/odd ab tra tion.

Ab tract value.

Abstraction function.

Basic block.

Cache, map indice to store .

Set of defined variables for the store.

Even abstract value.

Index.

An unmarked ind x pending pe ialization.

A marked index that is up-to-date.

Label.

Maps a residualizable value to a constant.

A mark, either 0 or •.

ode.

Odd abstract value.

Set of values that can be residualized.

Program keleton.

State.

Concrete value.
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APPE DIX C

SPECIALIZATIO 0 TPUT

This appendix contains the output of ABPS with the readers/writers. Thi output

is descussed in more depth in Chapter IX.

• Monovariant Output - the output created when monovariance is chosen for the

readers/writers .

• Polyvariant Output - the output created when polyvariance is chosen for the

readers/writers.

Monovariant Output

void controller$abps_ffiono()
{

int il, iO, activeReaders, writerPresent, req;

writerPresent = FALSE;
req = Rl;
activeReaders = ZERO;

labelO:
if req 1= RO goto labell;

return;

labell:
iO = Model.choose({RO,Rl,R2,R3,R4});
req = iO;
if req != Rl goto label2;

if writerPresent 1= FALSE goto labelO;
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activeReaders = POS;
gata labelO;

labe12:
if req != R2 gato labe13;

if activeReaders <= ZERO gate labelO;

i1 = POS - POS;
activeReaders = il;
if writerPresent FALSE goto labelO;

gota labelO;

labe13:
if req ,= R3 geta labe14;

if activeReaders 1= ZERO gote labelO;

if writerPresent t= FALSE gete labelO;

writerPresent = TRUE;
gote labelO;

labe14:
if req != R4 goto labelO;

if writerPresent == FALSE gote labelO;

writerPresent = FALSE;
if activeReaders <= ZERO goto labelO;

goto labelO;
}

Polyvariant Output

void controller$abps_pely()
{

int il, iO, activeReaders, writerPresent, req;

writerPresent = FALSE;
req = Rt;
activeReaders = ZERO;
i1 = Madel.choose({RO,R1,R2,R3,R4});
req = i 1;
if req 1= R1 goto labe13;

labelO:
activeReaders = POS;
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label! :
i1 = Madel.chaose({RO,R1,R2,R3,R4});
req = i1;
if req != R1 gata labe14;

labe12:
activeReaders = pos;
gate label1;

labe13:
if reg != R2 gato label9;

i1 = Madel.choose({RO,R1,R2,R3,R4});
reg = i1;
if req != R1 gato label3;

gato labelO;

labe14:
if reg != R2 gato labe112;

iO = pos - pos;
activeReaders = iO;

labe15:
i1 = Model.choase({RO,R1,R2,R3,R4});
req = i 1;
if req != Rl goto labe113;

labe16:
activeReaders = pos;

label7:
i1 = Model.choose({RO,R1,R2,R3,R4});
req = i1;
if req != Rl gota labe115;

label8:
activeReaders = pos;
goto labe17;

label9:
if req 1= R3 goto label16;

writerPresent = TRUE;

label10:
i1 = Model.choose({RO,R1,R2,R3,R4});
req = i1;
if req 1= R1 gate labe118;

labell1 :
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il = Model.choose({RO,Rl,R2,R3,R4});
req = i1;
if req != Rl goto label18;

gato label 11 ;

labe112 :
if req != R3 goto label19;

il = Model.choose({RO,Rl,R2,R3,R4});
req = il;
if req != Rl goto labe14;

goto labe12;

labe113 :
if req != R2 goto labe120;

if activeReaders <= ZERO goto labelS;

label14:
iO = pas - POS;
activeReaders = iO;
goto labe15;

labe115:
if req != R2 goto labe124;

goto label14;

labe116 :
if req != R4 goto labe125;

labe117 :
il = Model.choose({RO,Rl,R2,R3,R4});
req = il;
if req != Rl goto labe13;

goto labelO;

labe118 :
if req != R2 goto labe126;

il = Model.choose({RO,Rl,R2,R3,R4});
req = il;
if req != Rl goto label18;

gota labelll;

labe119 :
if req 1= R4 goto labe127;

il = Model.choose({RO,Rl,R2,R3,R4});
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req = i1;
if req != R1 goto labe14;

goto label2;

label20:
if req != R3 goto label28;

if activeReaders != ZERO goto labe129;

label21 :
writerPresent = TRUE;

label22:
i1 = Model.choose({RO,R1,R2,R3,R4});
req = i 1;
if req != R1 goto labe130;

label23:
i1 = Model.choose({RO,R1,R2,R3,R4});
req = i1;
if req != Rl goto labe130;

goto label23;

label24:
if req t= R3 goto labe131;

i1 = Model.choose({RO,R1,R2,R3,R4});
req = il;
if req ,= Rl goto label15;

goto labe18;

labe125:
if req 1= RO goto label32;

return;

label26:
if req 1= R3 goto label33;

goto labe110;

label27:
if req ,= RO goto labe134;

return;

labe128:
if req 1= R4 goto labe135;

il = Model.choose({RO,Rl,R2,R3,R4});
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req = i1;
if req != Rl goto label13;

gate labe16;

labe129:
i1 = Model.choose({RO,Rl,R2,R3,R4});
req = il;
if req != Rl goto label13;

gate labe16;

labe130:
if req != R2 gato labe136;

i1 = Model.choose({RO,R1,R2,R3,R4});
req = il;
if req != Rl goto labe130;

goto labe123;

labe131 :
if req != R4 goto labe137;

il = Model.choose({RO,Rl,R2,R3,R4});
req = il;
if req 1= Rl goto label15;

goto labe18;

labe132:
i1 = Model.choose({RO,Rl,R2,R3,R4});
req = i 1;
if req 1= Rl goto labe13;

gato labelO;

labe133:
if req 1= R4 gata labe138;

writerPresent = FALSE;
goto label17;

labe134:
i1 = Model.chaase({RO,Rl,R2,R3,R4});
req = il;
if req 1= Rl gata labe14;

gota labe12;

labe135:
if req 1= RO goto labe139;
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return;

labe136:
if req != R3 gata labe140;

gata labe122;

labe137:
if req != RO gata labe143;

return;

labe138:
if req != RO gata labe144;

return;

labe139:
i1 = Madel.chaase({RO,R1,R2,R3,R4});
req = i1;
if req != R1 gate labe113;

gato labe16;

labe140:
if req f= R4 goto labe145;

writerPresent = FALSE;

labe141 :
i1 = Madel.choose({RO,R1,R2,R3,R4});
req = i1;
if req != R1 goto labe146;

labe142 :
activeReaders = POS;
gato label7;

labe143:
i1 = Model.chaose({RO,R1,R2,R3,R4});
req = i1;
if req 1= R1 gate labe115;

gota labe18;

labe144:
i1 = Madel.choase({RO,R1,R2,R3,R4});
req = i 1;
if req 1= Rl gato labe118;

gata labe111;

labe145:
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if req 1= RO gata labe147;

return;

labe146:
if req 1= R2 gata labe148;

i1 = Madel.chaase({RO,R1,R2,R3,R4});
req = i1;
if req 1= Rl gata labe146;

gate labe142;

label47:
il = Model.chaase({RO,Rl,R2,R3,R4});
req = i1;
if req 1= R1 goto labe130;

gata labe123;

labe148:
if req 1= R3 gata labe149;

gata labe121;

labe149:
if req != R4 gata labe150;

gata labe141;

labe150:
if req != RO gata labe151;

return;

labe151:
il = Madel.chaase({RO,Rl,R2,R3,R4});
req = il;
if req 1= Rl gata labe146;
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APPENDIX 0

PROGRAM LISTI G

The program files are presented in this appendix. The following files contain code

written in Java. The files with extension .java are Java files. The files succeeded h.y

a * is not included in the appendix. The order of the files in the following pages is

given below:

edu.ksu.cis. bandera. util

Table.java *

Token.java *

TokrnSet.j ava *

edu. ksu.cis. bandera. prog

BasicBlock.java *

Block:Ylap.java *

CFGSkcLjava *

Cache.java *

EValu€.java *

119



EVariable.java *

Index.java *

Inline.java *

State.java *

Store.java *

StoreIndex.java *

ValueInitializer.java *

edu.ksu.cis. bandera.jext

ChooseExpr.java *

edu. ksu.cis. balldera.abps

ABPS.java

ABPSArgs.java *

Abstraction.java *

ExprSpecValue.java *

IfSpecValue.java *

[ntAhstractiou.java *

l"d ain .java
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Pi.java *

Signature.java

SpecType.java *

SpecValue.java *

StmtSpecValue.java *

Theta.java *

edu.ksu.cis. bandera.abps.lib

BooleanAbstraction.java *

Concretelnt.java *

Range04Abstraction.java *

SignsAbstraction.java *

SimplePi.java *

SimpleSignaturc.java *

SimpleThcta.java *

ZeroPosAbstraction.java *
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IIABPS.java
package edu.ksu.cis.bandera.abps;

import java.io.*;

import ca.mcgill.sable.soot.*;
import ca.mcgill.sable.soot.jimple.*;
import ca.mcgill.sable.util.*;

import edu.ksu.cis.bandera.abps.lib.*;
import edu.ksu.cis.bandera.prog.*;
import edu.ksu.cis.bandera.util.Table;

1**
* This is the core of the specializer. It does the specialization of
* methods, blocks, statemetns, and the initial call for expressions.

*
* <Oauthor <a href=lmailto:laubach@cis.ksu.edu">Shawn Laubach</a>

*
* <Overs ion 0.1
*1

public class ABPS
{

1**
* The Soot Class Manager that is used for everything.

*1
public static SootClassManager em = new SootClassManager();

protected SootMethod method;
protected SootClass cIs;

protected BlockMap bm;
protected BlockMap residual
protected Store initStore;

II The method being specialized
II The class the method is in

II The block map
new BlockMap(); II The residual block map
II The initial store

protected Cache c
protected CFGSkel S

new Cache(); II The cache
new CFGSkel(); II The control flow skeleton

protected Abstraction result; II The result of the method

II A map of the residual statements to original statements
protected Map residualToOriginalStffits;
II A map of the residual labels to the original labels
protected Map residualToOriginalLabels;

1**
* Option to inline the operations.

J



*1
public static boolean inlineAbstractions

1**
* Option for monovariant.
*1

public static boolean monovariant = true;

false;

123

1**
* This constructs a neW' specializer that loads In the class and
* method and make the block map.

*
* ~param clsStr the name of the class
* ~param met the name of the method

*1
public ABPS(String clsStr, String met)
{

II
Object
int i;

SootClass cIs;
m[];

cIs = cm.getClass(clsStr)j
cls.resolveIfNecessary();
m = cls.getMethods().toArray();
for (i = 0; i < m.length ~&

!((SootMethod)m[i]).getName() .equals(met); i++);
BuildAndStoreBody bd =

neW' BuildAndStoreBody(Jimple.v(),
new StoredBody(ClassFile.v()).
BuildJimpleBodyOption.NO_PACKING);

if (i == m.length)
{

System.out.println("Method not found: "+ met +
" in " + clsStr);

System.exit(O);
}

method = (SootMethod)m[i];
bd.resolveFor(method);
method = Inline.inline(method);
method.getBody(Jimple.v()) .printTo(neW' PrintWriter(System.out.

true),
BuildJimpleBodyOption.NO_PACKING);

bm = neW' BlockMap (method , 0);
residual.setLocals(bm.getLocals());
residualToOriginalStmts = new HashMap() ;

J
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}

1**
* This constructs a new specializer that uses the class and
* method and make the block map.

*
* ~param c the class
* ~param met the name of the method
*1

public ABPS(SootClass c, String met)
{

Object m[] ;
int i;

cIs = c;
cls.resolvelfNecessary();
m = cls.getMethods().toArray();
for (i = 0; i < m.length &&

I «SootMethod)m[i]).getName() .equals(met); i++);
BuildAndStoreBody bd =

new BuildAndStoreBody(Jimple.v(),
new StoredBody(ClassFile.v(),
BuildJimpleBodyOption.NO_PACKING);

if (i == m.length)
{

System.out.println("Method not found: II + met +
II in II + c.getName();

System.exit(O);
}

method = (SootMethod)m[i];
bd.resolveFor(method);
method = Inline.inline(method);
method.getBody(Jimple.v(» .printTo(new PrintWriter(System.out, true),

BuildJimpleBodyOption.NO_PACKING);
bm = new BlockMap(method, 0);
residual.setLocals(bm.getLocals(») ;
residualToOriginalStmts = new HashMap () ;

}

1**
* Evaluates the method that the abps is specializing.

*
* ~param args array of abstractions for the parameters of the
* method
* @param sign the signature to be used

I



* @param pi the pi to use
* @param theta the theta to use
* @param init the table of initial abstractions

*
* ~return The result of the method.
*1

public Abstraction eval(Abstraction args[], Signature sign,
Pi pi, Theta theta, Table init)
{

BasicBlock bb;
int i;
Index ind;
Iterator varSj
ABPSArgs evalArgs new ABPSArgs();
List list;
State state;
Store store;
BasicBlock currentBB;

II Sets up the arguments to be used during specialization
evalArgs.abps = this;
evalArgs.signature = sign;
evalArgs.pi = pi;
evalArgs.theta = theta;

II Initializes the store
{

store = new Store();

for (i = 0; i < method.getParameterCount(); i++)
{

store.add(new EVariable("'.Oparameter" + i,
method.getParameterType(i»,

args[i]);
}

vars bm.getLocals().iterator();
for (; vars.hasNext();)

{

EVariable v = new EVariable«Local)vars.next(»;
if (init.lookup(v.getName(» != null)
store.add(v, (EValue)init.lookup(v,getName(»);
else

store.add(v);
}

System.out.println(store,vars(»;
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System.out.println(store);
}

II Create the initial state and index
state = new State(bm.getInit(). store.copy(»;
ind = pi.pi(state);

II Initializes the cache and skeleton
if (!state.getStore().equals(c.lookup(pi.pi(state»»

{

residual.setInit(ind);
c.update(ind, theta.theta(state.getStore() .copy(), c.lookup(ind»);
S.start(ind)j

}

II System,out.println(S);
II System.out.println(c);
IISystem.out.println(bm);

II While there are still nodes to specialize
while ((ind = S.next(» != null)

{

store = c.lookup(ind).copy(); II Get the store
bb = (BasicBlock)bm.get(ind.baseIndex(»; II Get the block
currentBB = new BasicBlock(ind); II Create the residual block
evalArgs.basicblock = currentBB; II Set the arguments
list = evalBasicBlock(bb, store, evalArgs)j II Evaluate the block

residual.put(ind, currentBB); II Put the residual block in the map

II System.out.println("Residual Block\n" + currentBB)j

II System.out.println("Next states: II + list);

II For all the states returned, update the cache, skeleton
Iterator states = list.iterator();
while (states.hasNext(»

{

state
store

(State)states.next();
theta.theta(state.getStore(),

c.lookup(pi.pi(state»)j

if (lstate.getStore().equals(c.lookup(pi.pi(state»»
{

c.update(pi.pi(state), store)j
S.makeArc(ind, pi.pi(state), false) j
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}

else
S.makeArc(ind, pi.pi(state));

}

S.mark(ind);

IISystem.out.println(c);
IISystem.out.println(S);
IISystem.out.println(currentBB);

}

II System.out.println(residual);

return null;
}

1**
* Specializes a basic block.

*
* @param bb the basic block to specialize
* @param store the store to use
* @param the arguments

*
* @return The list of next states.
*/

protected List evalBasicBlock(BasicBlock bb, Store store, ABPSArgs args)
{

int i, op, np;
Iterator iterator;
Stmt s;
List list = null;
List stmtResult = null;
List stores = new VectorList();
State state;
Pi pi = args.pi;
BasicBlock currentBB args.basicblock;

op = 0;

II For all the statements
for (i = 0; i < bb.size(); i++)

{

s = bb.get(i); II Get the statement
II System.out.println("Evaluating statement: II + s);
stmtResult = evalStmt(s, store, bb, args);11 Evaluate it
np = currentBB.get().size(); II update the maps of res to orig

•



for (; op < np; op++)
residuaIToOriginaIStmts.put(currentBB.get(op), s);

}

II If there are no next states
if (stmtResult == null)

{

list = new VectorList(); II Make an empty list
list.add(new State(bb.getSuccs(O), store.copy(»);
if (bb.size() == 0)

{

if (bb.getSuccs().size() > 0)

{

currentBB.addSuccs(pi.pi(new State(bb.getSuccs(O) ,
store. copy () ) ) ) ;

}

}

}

else
{

II Else make them all states
iterator = stmtResult.iterator();
while (iterator.hasNext(»

{

state = (State)iterator.next();
if (state.getlndexO 1= null)

{

if (list == null)
list = new VectorList();

list.add(state);
}

}

II If the results are null then make add the stuff
if (list == null)

{

list = new VectorList();
if (bb.getSuccs().size() > 0)

{

list.add(new State(bb.getSuccs(O) , store.copy(»);
current8B.addSuccs(pi.pi(new State(bb.getSuccs(O),

store. copy 0» ) ;
}

}

}

return list;
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}

/**
* Evaluates an expression.

*
* @param v the expression to specialize.
* ~param store the store to use
* @param the arguments

*
* @return A specialization value for the expression.
*/

public SpecValue evalExpr(Value v, Store store, final ABPSArgs args)
{

Signature sign = args.signature;
args.store = store;
Signature ns = sign.nevSignature(args);
// System.out.println("\tEvaluating: II + v);
v.apply(ns); // Call the signature to specialize
// System.out.println("\t" + ns.getResultO);
return (SpecValue)ns.getResult();

}

/**
* Gets the 1 expression

*
* @param v the expression

*
* @return The variable it represents
*/

protected EVariable evalLExpr(Local v)
{

return EVariable.convert(v);
}

/**
* Specializes a statement.

*
* @param s the statement to specialize
* @param store the store to use
* @param bb the basic block it is from
* @param args the arguments

*
* @return A list of next states.
*/

protected List evalStmt(Strnt s, final Store store,
final BasicBlock bb, final ABPSArgs args)

{
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AbstractStmtSwitch sw;
final Signature sign = args.signature;
final Pi pi = args.pi;
final Theta theta = args.theta;
final BasicBlock currentBB = args.basicblock;

args.abstraction = null;

sw = new AbstractStmtSwitch()
{

II The identent statement. Works much like an assignment.
public void caseldentityStmt(IdentityStmt s)

{

EVariable 1 = evalLExpr«Local)s.getLeftOp(»;
List list = new VectorList();
SpecValue sv = evalExpr(s.getRightOp(), store, args);
Value v;

if (sv instanceof ExprSpecValue)
{

ExprSpecValue esv = (ExprSpecValue)sv;
v = esv.getValue().lift();
if (v == null)

{

currentBB.addStmt(Jimple.v()
.newldentityStmt«Local)s.getLeftOp(),

esv.getExpr(»);
}

else
{

currentBB.addStmt(Jimple.v()
.newAssignStmt«Local)s.getLeftOp(),

v) ) ;

}

}

else
if (sv instanceof StmtSpecValue)

{

StmtSpecValue ssv = (StmtSpecValue)sv;
Iterator it = ssv.getStmts().iterator();
while (it.hasNext(»

currentBB. addStmt «Stmt) it. next () ;

it = ssv.getBoxes().iterator();
while (it.hasNext(»

«ValueBox)it.next(».setValue(s.getLeftOp(»;
}

•



131

list. add (new State (null J store. update (1, sv. getValue 0») ;
setResult (list) ;

}

II Assignment statement. It first specializes the expression
II and then checks the result. If it is an expression
II specialization value, then it make the residual assignment
II with the residual expression and updates the store. If

II operation inlining is done, it adds the code and fills the
II boxes with the variable assigned to. It then updates the
II store.
public void caseAssignStmt(AssignStmt s)

{

EVariable 1 = evalLExpr«Local)s.getLeftOp(»;
args.abstraction = (Abstraction)store.lookup(l);
List list = new VectorList();
SpecValue sv = evalExpr(s.getRightOp(), store, args);
Value v;

if (sv instanceof ExprSpecValue)
{

ExprSpecValue esv = (ExprSpecValue)sv;
v = esv.getValue().lift();
if (v == null)

{

currentBB.addStmt(Jimple.v() .
newAssignStmt«Local)s.getLeftOp(),

esv. getExpr ()) ;
}

else
{

currentBB.addStmt(Jimple.v()
.newAssignStmt«Local)s.getLeftOp().

v»;
}

}

else
if (sv instanceof StmtSpecValue)

{

StmtSpecValue ssv = (StmtSpecValue)sv;
Iterator it = ssv .getStmts () . iterator();
while (it.hasNext(»

currentBB.addStmt«Stmt)it.next(» ;

it = ssv.getBoxes().iterator();
while (it.hasNext(»

•



( (ValueBox)it. next 0) . setValue (s. getLeftOp (» ;
}

if (store.lookup(l) != null &&
«Abstraction) store .lookup(l» . ID ! = sv. getValue () . ID)

throw new RuntimeException("Assignment from one II +

"abstraction to another in "
+ s + II with II +
store.lookup(l).getClass() +
" and " +
sv.getValue().getClass() +
II . II) ;
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else
list.add(new State(null. store.update(l, sv.getValue(»»;

setResult (list) ;
}

II Goto statement. It just updates the next list.
public void caseGotoStmt(GotoStmt s)

{

List list = new VectorList()j
State state = new State(bb.getSuccs(O). store);

II Check out the goto
currentBB.addSuccs(pi.pi(state»;

list.add(state)j
setResult (list) j

}

II If statement. It evaluates the conditional and gets an if
II specialization value back. It then fills the boxes and
II adds the code. It then uses the value to determine whether
II to the next state(s) and returns them.
public void caseIfStmt(IfStmt s)

{

List list = new VectorList();
SpecValue sv = evalExpr(s.getCondition(). store, args);
State state;
if (sv instanceof IfSpecValue)

{

IfSpecValue ssv = (IfSpecValue)svj
Iterator it = ssv.getStmts().iterator();
Local tmp = args.abps.getLocal("bool$tmp$");
while (it.hasNext(»

currentBB.addStmt«Stmt)it.next(»;

it = ssv.getBoxes().iterator();
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while (it.hasNext(»
«ValueBox)it.next(» .setValue(tmp);

if (ssv.getValue().same(BooleanAbstraction.TRUE»
{

state = new State(bb.getSuccs(O) ,
ssv.getTrueStore(»;

list.add(state);
currentBB.addSuccs(pi.pi(state»;

}

else
if (ssv.getValue().sarne(BooleanAbstraction.FALSE»

{

state = new State(bb.getSuccs(l),
ssv.getFalseStore(»;

list. add(state) ;
currentBB.addSuccs(pi.pi(state»;

}

else
{

list.add(new State(bb.getSuccs(O) ,
ssv.getTrueStore(»);

list.add(new State(bb.getSuccs(l),
ssv.getFalseStore(»);

currentBB.addSuccs(pi.pi«State)list.get(O»);
currentBB.addSuccs(pi.pi«State)list.get(l»);

}

}

else
throw new RuntimeException("Unhandled spec value in if."

+ sv + " II + sv. getClass () ) ;

setResult (list) ;
}

II Return void. Adds the residual and sends back an empty
II next list.
public void caseReturnVoidStrnt(ReturnVoidStrnt s)

{

currentBB.addStrnt(Jirnple.v().newReturnVoidStmt(»;
setResult(new VectorList(»;

}

II Return expr. Specializes the expression and creates a
II residual return and sets no next states
public void caseReturnStmt(ReturnStrnt s)
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{

ExprSpecValue sv =
(ExprSpecValue)evalExpr(s.getReturnValue(), store,

args);

mergeResult(sv.getValue(). theta);

currentBB.addStmt(Jimple,v().newReturnStmt(sv.getExpr()»;
setResult(new VectorList(»;

}

II Default case.
public void defaultCase(Object s)

{

throw new RuntimeException(I??\t" + s + "\t" + S .getClass();
}

};

s.apply(sy); II Apply the different statemens

}

return (List)sy.getResult();

1**
* Gets the initial index from the block map.
*1

public Index getInitIndex()
{

return bm.getInit();
}

1**
* Creates a ney method from the residual block map.
*1

public SootMethod getMethod()
{

SootMethod res = residual. createMethod(method.getName0 + "$abps ",
method.getParameterTypes(),
method.getReturnType(»;

if (cls.declaresMethod(res,getName(),
res,getParameterTypes(»)

cls.removeMethod(cls.getMethod(res.getName(),
res.getParameterTypes(»);

cls.addMethod(res);

setupTable«JimpleBody)method.getBody(Jimple.v(»,
(JimpleBody)res.getBody(Jimple.v(»);



return res;
}

/**
* Gets the list of residual statements.
*/

public List getResidualStatements()
{

return residual.collapse();
}

/**
* Gets the residual initial index.
*/

public Index getReslnitIndex()
{

return residual.getInit();
}

/**
* Merges the results of the method.
*/

protected void mergeResult(Abstraction a, Theta theta)
{

if (result -- null)
result a;

else
result theta.merge(result, a);

}

/**
* Gets the specialized result of the method.
*/

public Abstraction result()
{

return result;
}

/**
* Sets the initial store.

*
* @param p the store to set to.
*/

public void setStore(Store p)
{

initStore = p;
}
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1**
* Gets the particular local from the residual method.

*
* ~param name the name of the local
*1

public Local getLocal(String name)
{

return residual.getLocal(name);
}

1**
* Sets up the table between the original label and residual label.

*
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* ~param_o

* @param r
*1

public void
{

the original jimple body
the residual jimple body

setupTable(JimpleBody 0, JimpleBody r)

Map ostn
Map rstn

= new HashMap();
new HashMap();

II Create statement name table
{

Iterator boxIt = o.getUnitBoxes().iterator();

Set labelStmts = new HashSet();

II Build labelStmts
{

while(boxIt.hasNext(»
{

UnitBox box = (UnitBox) boxIt.next();
Stmt stmt = (Stmt) box.getUnit();

labeIStrnts.add(stmt);
}

}

II Traverse the stmts and assign a label if necessary
{

int labelCount = 0;

Iterator stmtIt = o.getStmtList().iterator();

while(stmtIt.hasNext()
{



Stmt s = (Stmt) stmtlt.next();

if(labelStmts.contains(s))
ostn.put(s, "label" + (labelCount++));

}

}

}

II Create statement name table
{
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Iterator boxlt r.getUnitBoxes() .iterator();

Set labelStmts = new HashSet();

II Build labelStmts
{

while(boxlt.hasNext())
{

UnitBox box = (UnitBox) boxlt.next();
Stmt stmt = (Stmt) box.getUnit();

labelStmts.add(stmt);
}

}

II Traverse the stmts and assign a label if necessary
{

int labelCount = 0;

Iterator stmtlt = r.getStmtList().iterator();

while(stmtlt.hasNext())
{

Stmt s = (Stmt) stmtlt.next();

if(labelStmts.contains(s))
rstn.put(s, "label" + (labelCount++));

}

}

}

residualToOriginalLabels = new HashMap();

Iterator it = rstn.keySet().iterator();
while (it.hasNext())

{

Object 01, 02;
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01 = it .next();
02 = residuaIToOriginaIStmts.get(ol);
if (02 != null &&

ostn.get(02) != null)
residuaIToOriginaILabels.put(rstn.get(ol),

ostn.get(02)) ;
}

}

/**
* Prints the table.
*/

public void printTable()
{

int i, count = residuaIToOriginalLabels.keySet().size();

for (i = 0; i < count; i++)
if (residuaIToOriginaILabels.get("label" + i) null)

count++;
else

System.out.println("label" + i + "\t" +
residuaIToOriginalLabels.get("1abel" + i»;

}

public String toStringO
{

return initStore + "\n" +
c + "\n" + S + "\n" +
residual + "\n" + result;

}

}

/ /Main. java
package edu.ksu.cis.bandera.abps;

import java.io.*;
import edu.ksu.cis.bandera.abps.*;
import edu.ksu.cis.bandera.abps.lib.*;
import edu.ksu.cis.bandera.jext.*;
import edu.ksu.cis.bandera.util.*;
import ca.mcgill.sable.soot.jimple.Jimple;
import ca.mcgill.sable.soot.StoredBody;

/**
* Main class and method to run ABPS. It takes in the class name and
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* method name on the command line. It can also take options to
* determine polyvariant analysis, operation inlining, and whether the
* output should be pure Jimple.

*
* tOauthor <a href="mailto:laubach(Qcis.ksu.edu">Shawn Laubach</a>

*
* tOversion 0.1
*1

public class Main
{

public static void main(String args[])
{

String cIs, method;
ABPS abps;
Abstraction ABPSargs[];
int i;
Table table = new Table();

if (args.length < 2)
{

System.out.println("Main class method [options]");
return;

}

cIs = args[O];
method args[1] ;

for (i = 2; i < args.length; i++)
if (args[i] .equals("-inline"»

ABPS.inlineAbstractions = true;
else

if (args[i] .equals("-poly"»
ABPS.monovariant = false;

else
System.out.println("Unknown option: II + args[i]);

try {
II ABPS takes the class and method
II This can be changed to take a sootclass, abps takes both
abps = new ABPS(cls, method);

II This is where you populate the method parameters
II First set of the size of the array. It must equal the number
II of parameters.
ABPSargs = new Abstraction [0] ;
II ABPSargs[O] = SignsAbstraction.T;
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II Then put in the arguments into the positions of an array. The
II first one is an example of declaring an actual token from the
II abstraction. The second is ho~ to have it abstract a value.
II ABPSargs[O] = SignsAbstraction.T;
II ABPSargs[1] = SignsAbstraction.empty().abs(4);

II You can initialize other variables in the ccde. Just call add
II on the table with adds a nam.e I value pair into the table.
II This is looked up when the initial store is created.
table. add ( "wri terPresent", BooleanAbstraction. empty () .abs (0») ;
table.add("req", Range04Abstraction.emptyO .abs(O»;
table.add("activeReaders", ZeroPosAbstraction.emptyO .abs(O»);

II Call eval with the arguments, a signature, a pi, and theta.
II The only changes to theta you'll want to make is to add more
II abstractions if you are adding abstractions. Pi has three
II options that you can change by hand in the constructor between
II monovariant, maximally polyvariant, and limited polyvariance on
II certain variables. You could add other features but all this
II is currently done by hand. The signature was computer
II generated with the addition of the package name and the
II handling of static invoking, which currently returns T.
abps.eval(ABPSargs, new SimpleSignature(),

new SimplePi(), new SimpleTheta(),
table);

II abps.getMethod() gets the new method created by abps. It is
II named method + "$abps". You could add it back to the class
II file or just pass it on depending on the information you need.
II The rest gets the body and prints it out to the screen
abps.getMethod().getBody(Jimple.v(»)

.printTo(new PrintWriter(System.out,
true), 0);

abps.printTable();
} catch (Exception e) {

System.out.println(e);
e.printStackTrace();

}

}

}

IISignature.java
package edu.ksu.cis.bandera.abps;

import ca.mcgill.sable.soot.jimple.*;
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import ca.mcgill.sable.soot.*;
import ca.mcgill.sable.util.*;

import edu.ksu.cis.bandera.prog.*;

1**
* This is the base class for all signatures. It makes sure they
* inherit from the proper switches and then has the proper methods.

*
* COauthor <a href=lmailto:laubach~cis.ksu.edu">Shawn Laubach</a>

*
* COversion 0.1
*1

public class Signature extends AbstractJimpleValueSwitch
implements Cloneable

{

protected volatile ABPSArgs args; II The arguments being passed around

1**
* The current working class.

*1
public static SootClass workingClass;

1**
* Creates a new copy of the signature.
*/

protected Object clone()
{

try {
return super.clone();

} catch (Exception e) {
e.printStackTrace();
return null;

}

}

1**
* This handles the default case. It throws an exception because it
* must be overridden.

*1
public void defaultCase(Object v)
{

throw new RuntimeException("Unhandle expression: II + V + " II +

V . getClass 0) ;
}
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}

... Creates a new signature with the arguments set.

*
* <Oparam a the argument s

*
* ~return A new signature.
*/

public Signature newSignature(ABPSArgs a)
{

Signature sig = (Signature)clone();
sig.args = a;
return sig;

}
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