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CHAPTER I

INTRODUCTION

(

Minerals are critical for most biochemical processes in the body and therefore are

essential to animals (Spears, 1996). In the past, feeding r,ecommendations for minerals

have been set to maximize animal growth rate, milk yield and pregnancy (Beede, 1998),

and in general have not considered their adverse impact on the environment. During the

last decades, public concern for environmental issues has led to regulations, codes or

laws. Each of these regulations that affect cattle producers have resulted in alterations in

management practices (Morse, 1996).

One ofthe key factors that can reduce the environmental impact from animal

operations is to optimize the level at which minerals that are added to diet and

minimizing excesses. Data from North Carolina Feed Testing Laboratory (Spears, 1996),

showed that the median value of minerals fed to dairy cattle generally exceeded the NRC

estimate of dietary requirements. The feeding:requirement ratio for some selected

minerals was Ca 1.77; P 1.32; Na 1.78, S 1.20; K 1.34). According to Spears (1996), even

though degree of excess of minerals in the diet may vary from state to state, overfeeding

of minerals is a common practice in most areas of the United States. By using more

accurate models to predict requirements, producers can maintain performance while

reducing environmental impacts (NRC, 1996). One model when applied in a dairy

reduced nitrogen excretion by 25% while also reducing feed costs (Fox et aI., 1995).



One ofthe new challenges facing animal nutritionists is to curtail adverse

environmental impact by reducing nutrient losses and increasing nutrient recovery in

edible products from the animal, while maintaining or enhancing productivity and/or

economical benefits. To estimate requirements more precisely, it is vital to understand the

function, metabolism and 'interaction of minerals in the animal.

The objective ofour research was I) to test the impact ofdietary salt

concentration on intake ofwater and feed, 'and on ruminal parameters; and in fecal dry

matter, urinary and blood (arterial and venous) measurements~ and 2) to examine the

effects of altering the dietary acid base balance (DCAB) ofa feedlot diet on the

measurements above.

. .\.
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CHAPTERH

REVIEW OF LITERATURE

Function and Metabolism ofthe Macrominerals in Ruminants

Based on the quantities present in the body and the amounts required by animals,

sodium (Na), chloride (CI), potassium (K). calcium (Ca), phosphorus (P), magnesium

(Mg) and sulfur (S) are considered to be macro mineral elements. All these minerals are

involved with body regulation presence or absence of any of them can affect the

metabolism. This review will discuss various functions and metabolism of macrominerals

in ruminants.

Sodium.

The major cation in extracellular fluid. sodium is irivolved in maintaining osmotic

pressure. controlling water balance and regulating acid-base balance (NRC. 1996).

Sodium (Na) also plays a major role in the transmission of nerve impulses and in muscle

contraction (Kincaid, 1993; NRC, 1996). In bone, Na represents 30 to 45 % of total body

Na, but only the small fraction ofNa that is bound to the surface of the bone is part of the

active labile Na pool (Ammerman and Goodrich, 1983).

Sodium is needed for the ATP-driven sodium-potassium pump that controls cell

volume and drives the active transport of sugars and amino acids (Stryer, 1995).

The regulation ofNa body concentration is controlled by aldosterone and

antidiuretic hormones in order to maintain a constant Na:K ratio (Mc Dowell, 1992). The
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former regulates resorption ofNa from the kidney tubules (Mc Dowell, 1992) while the

latter is responsive to changes in the osmotic pressure of extracellular fluid (NRC, 1980).

Sodium i.s absorbed principally from the small intestine through a transport I

system dependent on a system of passive leaks located in cell membranes (Me Dowell,

1992). Sodium also is absorbed from the rumen (Ammerman and Goodrich, 1983), with

its absorption rate proportional to its concentration in ruminal fluid (Warner and Stacy,

1972), due to simple passive diffusion rate ofNa occurs across cell membranes from

higher to lower concentrations (Ammerman and Goodrich, 1983). Thereby, Na

movement helps to maintain an osmotic balance among plasma, interstitial fluid and

cellular fluid in the animal (Carter and Grovum, 1990).

Sodium is excreted mainly in the urine (Guyton and Hall, 1996), with smaller

amounts being lost in feces and by perspiration (Mc Dowell, 1992). Under steady state

conditions excretion of sodium by the kidneys is proportional to Na intake (Guyton and

Hall, 1996), and on a long term basis all sodium ingested must be excreted.

Potassium.

The major cation in intracellular fluid, potassium is involved in the regulation of

osmotic pressure, water balance, muscle contraction, acid-base balance, nerve impulse

transmission and certain enzymatic reactions (Miller, 1995). Potassium also is important

in the transport of oxygen and carbon dioxide through blood, being responsible for at

least half of the carbon dioxide capacity of the blood (Mc Dowell, 1992). Potassium helps

to maintain the electrical neutrality before buffering of hydrogen ions by hemoglobin in

blood, by keeping an ion balance with the carboxyl groups (Reece, 1993a). After the
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ionization of the carboxyl groups is suppressed by hydrogen ions, electrical neutrality of

K ions is maintained by bicarbonate and chloride ions (Reece,1993a)

.Potassium, as well as sodium, is a component of the ATP-Na-K pump, which

maintains a concentration gradient important for the transport of substrates through the

cell membrane, and for the regulation of the osmotic pressure (Mc Dowell, 1992).

Potassium is mainly absorbed from the rumen, omasum and the lower

gastrointestinal tract (Me Dowell, 1992). Absorption from the intestine is by simple

diffusion (Ammerman and Goodrich, 1983). A large proportion ofK in the rumen is

derived from the saliva, which is continuously secreted and is rich in K (Mc Dowell,

1992).

Potassium balance d~pends mainly on the excretion by the kidneys, which adjusts

K excretion rapidly and precisely to a wide variation of intake (Guyton and Hall, 1996).

High Na intake may increase K urinary excretion (Ammerman and Goodrich, 1983).

Adrenal hormones including aldosterones increase potassium secretion by the renal

tubules (Mc Dowell, 1992) while increasing Na absorption (Ammerman and Goodrich,

1983). Extracellular fluid potassium concentration is regulated precisely at about 4.2 ±

0.3 mEq/liter (Guyton and Hall, 1996). According to these authors, precise control is

necessary because many cellular functions are dependent on extracellular potassium

concentration.

Chloride.

Chloride is the major anion in extracellular fluid and plays an important role in

maintaining osmotic pressure, normal extracellular fluid volume, blood pH, osmotic

pressure and regulating acid-base balance (Neathery, 1980). It is a comportent of
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hydrochloric acid secreted by the abomasum (Neathery, 1980 and Mc Dowell, 1992).

Intestinal amylase is activated by chloride (Ammerman and Goodrich, 1983). . (

Intake plays a minor role in chloride homeostasis since dietary chloride is

absorbed almost completely (Neathery, 1980). Except for the abomasum, where there is a

net secretion ofchloride, net absorption occurs in all other sections of the gastrointestinal

tract (Neathery, 1980). Urine is the main route of endogenous chloride secretion

(Neathery, 1980~ Guyton and Hall, 1996).

Calcium.

Most calcium present in the body mainly exists in teeth and bones (98% - 99%) as

calcium phosphate (Yano et al., 1991 and Soares, 1995a). Only 1-2 % of total calcium

(Ca) exists in the soft tissues and the extracellular fluid (Yano et al., 1991). Ca is

involved in blood clotting, membrane permeability, muscle contraction, transmission of

nerve impulses, secretion of certain hormones and activation of certain enzymes (NRC,

1996).

The concentration of Ca in blood ranges between 9-11 mg/dl (Hays and Swenson,

1993 and NRC, 1996). Calcium in plasma is presented in three forms: a) diffusable but

unionized calcium (9 %), non diffusable calcium proteinate (41 %) and ionized calcium

(Ca++) (50 %) (Guyton and Hall, 1996). Ionized calcium is the calcium form that is most

important metabolically (Guyton and Hall, 1996)

Two hormones, parathyroid hormone (pTH) and calcitonin maintain a delicate

relationship with dihydroxycalciferol (1 ,25-(OH)2D3) to control blood Ca and phosphorus

(P) levels within very narrow limits (Mc Dowell, 1992). PTH stimulates the production

of 1,25-(OlfhD3 which increases Ca absorption from the intestine (NRC, 1996) and
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stimulates bone resorption and renal tubular resorption ofCa (Fontenot et al., 1989).

Dihydroxycalciferol production stimulates transcellular active transport of dietary Ca

across the intestinal epithelium (Goff, 1992). In contrast, calcitonin down-regulates high

serum levels ofCa by depressing gut absorption, halting bone demineralization and

reducing resorption from the kidney (Mc Dowell, 1992).

The absorption ofCa takes place in the duodenum by both active transport

(mediated by vitamin D) and a passive process (De Luca, 1974; Braithwaite, 1984). Both

absorption systems may be saturable (Yano et al., 1991). Passive diffusion among the

intestinal epithelial cells is strictly related to the concentration ofCa ions in the lumen of

the gut (Goff, 1992). A low Ca diet may increase the production of 1,25-(OH)2D3 and

enhance Ca absorption (Yano et aI., 1991). The amount absorbed depends on the source

ofCa, the Ca:P ratio, intestinal pH, lactose intake, and dietary levels of Ca, P, vitamin D,

iron, aluminum, manganese and fatty acids (Hays and Swenson, 1993).

Most Ca is excreted in feces with fecal, Ca concentration being a product of

unabsorbed dietary Ca and absorbed endogenous Ca (Mc Dowell, 1992).

Phosphorus.

Phosphorus is the major anion of intracellular fluids and the second most

abundant mineral found in the animal body. About 80 % ofthe body phosphorus (P) is in

the skeleton with the remaining 20 % in nucleotides such as ATP, nucleic acids,

phospholipids and other phosphorylated compounds involved with metabolism (Soares,

1995b). Ruminal microorganisms require P for their growth and cellular metabolism

(Temouth et aI .• 1985; NRC, 1996).
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The levels of inorganic P in plasma are not under strict homeostatic control

(Kincaid, 1993). Vitamin D stimulates specific pump mechanisms in the intestine, bone

and kidney thereby elevating plasma P (Mc Dowell, 1992). Saliva is an additional source

ofP for the rumen, since with concentrations ranging from 370-720 mg/liter in mixed

saliva, a much higher concentration than that found in plasma (60 mg/liter) (Yano et al.,

1991). Thereby, saliva plays an important role in the regulation and homeostasis ofP.

The absorption ofP takes place, as with Ca, in the duodenum by both active and

passive absorption (Wasserman 1981~ Braithwaite, 1984; Kincaid, 1993). No matter how

P is ingested its absorption will depend on its solubility at the point ofcontact with the

absorbing membranes (Maynard et al., 1979). Phosphorus absorption also is influenced

by intestinal pH, animal age, and intake of Ca, iron, aluminum, K and Mg (Mc Dowell,

1992; Hays and Swenson 1993). P is absorbed in the ortho phosphate form (Kincaid,

1993). Phosphate absorption is increased by vitamin D3 which may change membrane

permeability, alter configuration of a phosphate carrier, stimulate pump sites, or by Ca

absorption, indirectly increase P absorption by decreasing the degree to which P is

insolubilized by Ca. (Kincaid, 1993)

In ruminants, P is excreted mainly in the feces. When plasma P level is high, 2.0

to 2.5 mmoilliter, the kidney will excrete P (Challa and Braithwaite, 1988). When high

concentrate diets are fed, more P is excreted in the urine of cattle (Preston, 1977 cited by

Me Dowell, 1992).

Magnesium.

Magnesium is the second most plentiful cation of intracellular fluid. Mg is widely

distributed with 65-70 % in bone, 15 % in muscle, 15 % in other soft tissues and 1 % in
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extracellular fluid (Mayland, 1993). Mg in the skeleton is important for maintaining the

integrity of bone and teeth (Me Dowell, 1992)

Magnesium is involved in the ATP-Mg complex; thereby, Mg is required for

thousands of enzymatic reactions in every major metabolic pathway (Fontenot et aI.,

1989). Magnesium also is involved in the maintenance of electrical potential across nerve

and muscle membranes and for nerve impulse transmission (Henry and Benz, 1995 and

NRC, 1996).

There is no endocrine system to maintain Mg concentration in blood there is for

Ca, and there is no a strong evidence to indicate that any single hormone or vitamin is

related directly with magnesium homeostasis or metabolism (Littledike and Goff, 1987).

However, PTH can affect Mg metabolism through decreasing urinary Mg excretion and

stimulating bone resorption (Fontenot et aI., 1989). During bone resorption 43 Ca ions are

released for every Mg ion released (Fontenot et aI., 1989).

For ruminants the major site for Mg absorption is the reticulorumen (Tomas and

Porter, 1976; Emanuele et at, 1991). The absorption ofMg postruminally is not enough

to maintain normal Mg status of the animal (Tomas and Potter, 1976). Increases in

ruminal availability and ruminal absorption of dietary Mg due to carbohydrates have been

reported (Giduck and Fontenot, 1987) and some authors (Greene et aI., 1977; Hom and

Smith 1978) have suggested ruminal acidity as one of the main reasons for enhanced this

Mg availability. However, Giduck et aI. (1988) simulating the acidity that is produced by

grains with HCI as one of the treatments suggested that the increased Mg absorption

observed with carbohydrates supplementation is not due to alterations in ruminal pH or

VFA levels, but perhaps related to effects such as osmotic changes or lactic acid
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concentrations in the rumen. The proportion ofMg absorbed decreases as dietary level

and the Mg status of the animal increase (Mc AJeese et aI., 1961). A number of dietary

factors can depress Mg absorption among which dietary potassium level has the most

consistent effect (Greene et aI., 1983). Urine is the major excretory pathway for absorbed

Mg (Mc Dowell, 1992) though most Mg appears in feces because true absorption of Mg

typically is very low.

Sulfur.

Sulfur is an essential component of proteins and other compounds in the body.

Sulfur (S) is a constituent of amino acids and of the disulfide bonds that maintain the

tertiary structure of protein molecules (Henry and Ammerman, 1995). Sulfur is a

component of methionine and B vitamins (thiamin and biotin) that cannot be synthesized

by animal tissue (NRC, 1989). Sulfur constitutes 0.15 % of body tissue (NRC, 1989).

The microbes in the rumen can incorporate S to S-containing amino acids

(Shirley, 1992). However, dietary S must be oxidized to sulfate or reduced to sulfide in

order to be utilized by the ruminant (Shirley, 1992). The reduction of sulfate to sulfide

has its peak at a pH of 6.5 (Kincai d, 1993). Sulfide can be absorbed directly from the

rumen and the small intestine whereas sulfate is minimally absorbed from the rumen

(Kincaid, 1993). However, when large quantities of sulfide are absorbed from the rumen

it can prove toxic (Ammerman and Goodrich, 1983).

Sulfur is excreted in both urine and feces (Shirley, 1992).
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Effects of Salt on Ruminal Metabolism and Animal Performance

Salt (NaCl) can be used as a means to limit feed intake of highly palatable feeds

such as grain and supplement (Lusby, 1993). When salt is provided ad libitum, ruminants

will consume more salt than is required due to their appetite for sodium (NRC, 1996).

According to the NRC (1996) the requirements for sodium ofgrowing and

finishing cattle are 0.06 to 0.08%. Daily salt requirements for mature cattle are less than

28 g /head (Rich et a1. 1985; Lusby 1993) and although the amount of salt is variable in

feedlot rations they amounts usually range between 112 to 224 g/headJday (Matsushima

and Phipps 1974) or between 0 and 1% of the diet (Hicks et a1. 1988b).

Effects ofNaCl on rumen metabolism.

Salt affects the osmotic pressure of fluids. Osmotic pressure is a quantitative

measure o(the tendency for water to osmose (Reece, 1993b). The osmotic pressure of

body fluids serve as a measure of the relationships among electrolytes and the degree to

which membranes allow free diffusion of elements. Water diffuses to any area where

osmotic pressure is greater. Normal1y, electrolytes and other compounds in body fluids

are maintained at a relative constant osmolality. When rumen or blood osmotic pressure

are altered, salivary flow generally is reduced (Church, 1993)

The most important cation affecting osmolality is Na; when given as a chloride

salt to ruminants it strongly correlates to osmolality, feed intake, water intake and

kinetics of rumina1fluid. Feed intake can be limited if the osmolality of the ruminal fluid

is increased during a meal (Carter and Grovum, 1990 and Forbes, 1992). NaCl increases

the osmolality of the ruminal fluid; this sensed in the wall of the rumino reticulum and

limits feed intake (Carter and Growm, 1990). Zorrilla Rios et aI., (1990) found that
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increasing NaCI from 0.5 to 5 % ofthe DM increased ruminal osmolality from 300 to

344 mOsm/kg. • J

Type of diet also can affect physiological responses to NaC!. Ruminal osmolality

for roughage and silage based diets reaches a maximum between 350 to 400 mOsm/kg

(Engelhardt, 1969; Bergen, 1972 and Bennink et al., 1978). However, values for ruminl\l

osmolality for roughages ranges from 240 to 265 mOsm/L with versus 280 to

300mOsm/L for concentrate diets (Garza et aI., 1989). Zorrilla Rios et a1. (1990) found

that kinetics of ruminal fluid is more susceptible to osmotically active substances when

added to concentrate than to roughage diets. Forbes et a1. (1992) observed an intake

reduction of grass silage on dairy cows when they were ruminally infused with NaCI;

they concluded that the major mode of action of saIt was via the elevation of osmolality

of ruminal fluid.

High levels of salt have shown some potential to increase the ruminal bypass of

dietary nutrients due in part to an increased water intake (Cheng et al., 1979; Croom et

aI., 1981; Zorrilla-Rios et a1., 1990). Usually high levels of salt increase ruminalliquid

dilution rate. Cheng et a!. (1979) concluded that adding 4% ofNaCI to a concentrate diet

increased the rate of flow material of liquid from the rumen and by doing so reduced

bloat conditions in the rumen. However, Eliman and 0rskov (1985) found that the

increase in water intake with the addition of salts did not increase the fractional outflow

ofdietary supplements (solids) from the rumen in dairy cows.

Croom et al. (1985) found that the acetate to propionate ratio in the rumen of

yearling steers after 62 days on feed was increased from 1.4 to 1.8 when 5% salt was

added to the diet. These authors also found differences in molar proportions of acetate
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(50.5 vs. 54.6) propionate (38.7 VS. 33.1) and butyrate (7.1 Vii. 8.7) when 5% NaCI was

added to the diet. However, by day 118 of the trial no effects of added salt were detected

for the acetate propionate ratio, or molar proportions of acetate, propionate and butyrate.

Rogers and Davis (1982) working with high grain diets observed increments in

the molar proportions of acetate (56.3,60.3 and 61.7) and butyrate (12.1, 13.5 and 14.2)

when Holsteins steers were infused with 8 liters of water, or 8 liters ofwater plus 200 or

600g ofNaCl, respectively.

Effects ofNaCI on Animal Performance

Feeding trial data that were reported in journals, experiment station publications

and feeder's day report were compiled to examine effects of added salt on average daily

gain (ADG), average daily feed intake (ADFI), feed/gain ratio (F/G), gain/feed ratio

(G/F), carcass yield (Yield), % of fat (Fat), and dressing percentage (OP). Information

was included if 1) there were at least two treatments within trial with percent of salt less

than .85; 2) Dietary salt percentage was presented or could be calculated. When some

variable was not reported but could be calculated from the other variables reported, it was

calculated and included in the database.

Proc GLM (1990) was used to regress the different dependent variables against

percentage of salt (linear) and percentage of salt and salt2 (quadratic) present in the diet.

Statistical analyses were weighted by the number of cattle per comparison within each

trial. Trial was used as a class variable. This adjustment was used because the precision

by which treatment mean is estimated depends on the number ofcattle per treatment

(Owens et aI., 1997). The number of cattle per comparison ranged from 3 to 40.
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Effect on ADG. Data from 11 trials were available to calculate the relation between salt

and salt and salt squared with ADG. 1 ,

Figure 1. Relation between ADG (Ibs/day) and the percentage of salt in the diet for each

of the experiments considered.
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As the percentage of salt in the feed increased from 0 to .6%, average daily gain

decreased by .037 Ib or 1.3%. Equations for the regressions were: linear ADG (Ibid) =

2.937 - .06289 %salt ± .0717 (P=.3935; r'-=.972) quadratic ADG (Ibid) = 2.9487-.4533%

salt ± .3695 + .7488 %salt squared ± .6953 (r'-=.974). Its lower ADG for this set of data

was found to be at .3% of salt.

Effects on ADFI. Again data from 11 trials were used to determine the relation between

ADFI and % of salt in the diet.

Figure 3. Relation between ADFI (Ib.DMJday) and the percentage of salt in the diet for

each of the experiments considered.
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There was a trend (P=.0317) for added salt to increase the ADFI from 0 to .6%,

average daily gain decreased by .55 lb. DM./head or 2.4%. Regression equations were:

linear ADFI (lb DM/head) = 20.943 + .8518 %salt ± .3612 (P=.03; ~=.979) while the

quadratic regression ADFI (lb.DM/head) = 20.985 - .5246 %salt ± 1.901 + 2.6398 %saJe

± 3.577 (~= .980). These equations imply that ADFI was increased by 2.4% (linear) or

3.0% (quadratic) by increasing salt supplementation from 0 to .6% ofthe diet.

Effects on feed/gain ratio. Data collected from eleven trials were used to examine the

relationship between percentage of salt in the feed and feed/gain ratio.

Figure 5. Relation between feed/gain ratio and the percentage of salt in the diet for each

of the experiments considered.
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There is a trend (P=.0863) to increase the FIG ratio. For the linear regression

F/G= 7.299 + .4125 %salt ± .2257 (P=.086; r= .975) while the quadratic regression F/G=

7.301 + .3429 %salt ± 1.207 + .1336 %sale ±2.711 (r= .975). The linear regression
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implies that feed efficiency was 3.4% poorer with .6 than 0% dietary salt whereas the

quadratic equation indicates that it was 3.5% poorer.

Effects on GainlFeed ratio. Data from eleven trials were used to look for the relations

between percentage of salt in the feed and gain/feed ratio as gain/lOO units of feed.

Figure 7. Relation between gain/feed ratio and the percentage of salt in the diet for each

of the experiments considered.
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As percentage of salt in the diet increased, and gain/feed ratio tended (P = .071) to

decrease. Equations were: linear G/F as gain/IOO units of feed = 14.156 -.6922 %salt ±

.358 (P=.071; r= .986) and quadratic G/F as gain/IOO units of feed = 14.170 - 1.161

%salt ± 1.91 + .8985 %salt2 ±3.595 (r= .986). These equations imply that efficiency of

feed use was some 2.9 to 2.6 poorer with .6% than 0% salt added to the diet.

Effects on carcass yield. Data from eight trials was used to look for the relations between

percentage of salt in the feed and carcass yield.

Figure 9. Relation between carcass yield and the percentage of salt in the diet for each of

the experiments considered.
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The relation between percentage of salt and carcass yield shows a direct

relationship, while salt in feed increases the carcass yield increases. Equations were:

linear Carcass Yield = 3.016 +.1225 %salt ± .076 (P=.1334; r= .927) and quadratic

Carcass Yield = 3.031 + .0473 %salt ± .432 + .1437 %salt2 ± .811 (r= .927). These
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equations imply that carcass yield was increased in 2.4 % (linear) and 2.6 % (quadratic)

with .6% than 0% salt added to the diet.

Effects on dressing percentage. Data from seven trials were used to study the relation

between percentage of salt in the feed and dressing percentage ratio.

Figure 11. Relation between dressing percentage and the percentage of salt in the diet for

each of the experiments considered.
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Equations were: linear DP = 63.672 -.0859 %salt ± .2989 (p=.779; ~= .980) and

quadratic DP = 62.758 + .933 %salt ± 1.644 - 1.942 %salt2 ± 3.078 (~= .981). These

equations imply that dressing percentage was decreased in .08 % (linear) and 0.2 %

(quadratic) with .6% than 0% salt added to the diet. This change might be expected if

added salt increase the quantity of fluid in the digestive tract or in non-carcass tissues.

Effects on fat. Data from six different trials were pool together to study the relation

between percentage of salt in the feed and fat.

Figure 13. Relation between fat and the percentage of salt in the diet of the experiments

considered.
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Figure 14. Linear and quadratic relationship between fat and % of salt in the diet.
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Equations were: linear Fat = .6157 + .0149 %salt ± .0677 (P=.8318~ ~= .764)

while the quadratic Fat = .6196 - .1855 %salt ± .361 + .3853 %salt2 ± .681 (~= .775). The

linear regression implies that fat was increase by 1.4% with .6 than 0% dietary salt

whereas the quadratic equation indicates that it was increased by 4.4 %.

Effects on liver condemnation. Data from five different trials were pool together to study

the relation between percentage of salt in the feed and fat.

Figure 15. Relation between liver condemnation (%) and the percentage of salt in the diet

for each of the experiments considered.
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Equations were: linear Liver Condemnation (%) = 16.607 - .9919 %salt ± 6.99

(P=.8912; ~= .919) while the quadratic Liver Condemnation (%) = 15.659 - 46.352

%salt ± 41.9 - 89.367 %salt2 ± 78.029 (~= .934). The linear regression implies that the

percentage of liver condemnation was decreased by 3.7% with .6 than 0% dietary salt

whereas the quadratic equation indicates that it was increased by 38.6 %.

Effect of salt on water intake.

Several reviews have addressed the importance of water intake (Winchester and

Morris 1956; ARC, 1980; NRC, 1981; Squires, 1993). According to Shirley (1986) the

primary factor affecting water intake is dry matter intake. However, physiological

conditions, water availability, stage of growth of the animal, temperature ofwater, and

ambient temperature also can affect water intake (NRC, 1981).
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High intakes ofNaCI in concentrate diets will increase the intake of water (Bell

and Sly 1979; Linn et aI., 1987; and Zorrilla-Rios et aI., 1990) As a, practical rule, Rich

et aI. (1993) concluded that cattle on salt mixtures will drink 50 to 75 percent more water

or approximately 5 more gallons ofwater for each pound ofsalt consumed. This increase

in water intake is used to excrete the NaCl through the urine (Ha.milton and Webster,

1987).

Matsushima and Phipps (1974b) reported that the steers fed their highest level of

salt (6 oz. per day) consumed half a gallon more of water than the control steers. Water

consumption was 6.99, 6.94, 7.22 and 7.39 gallons/day for cattle given 0,2,4 and 6 oz.

daily salt (or approximately 0, .5, 1.04, and 1.52 % salt) respectively. Zorrilla-Rios et al.,

(1990) also found that when salt was increased from .5 to 5% of the diet, water intake

increased from 5.81 to 8.98 gallons per day.

In contrast, Hicks et al.(1988a) indicated that increasing dietary salt level from 0

to .5% decreased feed intake by about 5% and also tended to decrease water intake by

8%). Whether the reduced water intake can be ascribed to a lowered dry matter intake

rather than to salt intake alone is not clear.

Effect ofDietary Cation Anion Balance on Animal Physiology and Animal Performance

The concept of dietary cation anion balance (DCAB) is an empirical hypothesis

and not a physiological mechanism (Ramberg et aI., 1996). This concept of balancing

rations for cations and anions has been explained for poultry by Mangin (1981) and

reviewed for ruminants by Wheeler (1981). Most of the studies on DCAB in ruminants

involved dairy cattle, mainly preparturient cows; little research has been conducted with
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in other ruminants type of livestock. Dietary CAB can be calculated as (Na++ Kj - cr

with all minerals expressed as mEq /day or (per kg. ofDM. This equation uses tbe l;

concept of fixed ions (those bioavailable ions which are not further metabolized in the

body) that detennine acid base balance in biological fluids (Stewart, 1978). Block (1991)

included sulfur in the DCAB equation even though S is not a fixed ion, in this equation in

order to consider situations when sulfates are deliberately added to or protein is

oversupplied in the diet. Tucker et. al., (I 991) found that dietary sulfur and chloride had

similar effects on acid base status. In spite of their results, these same authors

recommended, that it may be necessary, when more research become available, to

include a modifying coefficient for S to adjust for differences in acid-generating potential

when comparing Cl and S. When S is included, the dietary cation anion balance equation

containing S (DCAB:S) will be (Na+ + Kj - (Cr + S2") mEq /day or kg. ofDM. (Note

sulfur is double minus, so per ion, sulfur is given only half as much weight as other ions).

Some other authors (Owens et al., 1998) have speculated that ammonia should be

included with Na and K due to its effect on increasing the base load. On the other hand,

chloride and sulfur increase the acid load. These anions and cations indirectly affect the

hydrogen ion concentration in the body via buffer systems, kidney function and cellular

respiration (Block, 1991); these are the primary systems that regulate the hydrogen ion

concentration in body fluids (Guyton and Hall, 1996). However, a number of variables

will contribute to the variation of the effect of the diet on the acid base; these include

bioavailability of the minerals to the animal, stage of animal production (lactation,

growing, etc.) and the animal's capacity to buffer any lack of adjustment of these anions.

and cations in the diet.
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Effect ofDCAB on blood..

The acid-base homeostatic mechanism in the animal helps to maintain blood pH

within very narrow limits. Almost aU enzymes in the body are influenced by hydrogen

ion concentration. A large alteration ofpH (out ofits normal limits 7.31-7.53) can kill

cells, while less severe alterations can affect cellular enzyme activity and the structure of

hormone receptors and thereby affect animal performance (Goff, 1992).

As DCAR or DCAB:S in the diet was increased, blood pH increased linearly in

dairy calves (Jackson et al., 1992) growing angus and crossbred angus steers (Ross et a).,

1994a) and dairy cows (Tucker et al., 1988) and quadratically in growing and finishing

angus and crossbred angus steers (Ross et aI., 1994ab). However, no trend was seen with

dairy cows by Tucker et at, (1991) or finishing steers after 84 days on trial (Ross et aI.,

1994b).

Blood bicarbonate (RCO)- ) was reduced by anion supplementation with chloride

or sulfur (Tucker et aI., 1991). Blood HC03- also was reduced from 23.2 to 19.3

mEq/liter when DCAB was reduced from +20 to -10 (Tucker et a1., 1988). Likewise,

blood HC03- increased linearly when DCAB was increased from 0 to 450 meqlkg.. ofDM

(Ross et aI., 1994a) and from 0 to 520 meqlkg. ofDM (Jackson et at., 1992) or

quadratically when DCAB was increased from 0 to 45 meq/IOO g. ofDM (Ross et aI.,

1994b).

Blood partial pressure of carbon dioxide (PC02) also increased as DCAB:S

increased (Tucker et aI., 1988) and DCAB increased (Den Hartog et al., 1989; Jackson et

at, 1992 and Ross et at, 1994b). However, no change was detected for pC02 in growing

steers (Ross et aI., 1994a).
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Effect ofDCAB on mineral metabolism.

The changes in pH of body fluids from feeding diets with more cations than

anions or vice versa may produce and may affect cellular enzyme activity and the

structure of honnone receptors; thereby) some changes in mineral metabolism can be

expected.

The acidifying effect ofanionic diets, would be expected to affect calcium

metabolism similarly to metabolic acidosis (Ramberg et al.) 1996); this should stimulate

Ca mobilization from the bone and elevate rate of Ca absorption from the lower gut

(Block) 1984; Freeden et aI., 1988 and Takagi and Block, 1991). Vagg et al., (1970)

suggest that 5 to 6 g. more Ca can be mobilized daily from the bones in cows when fed

high anionic salts.

Leclerc and Block (19~9) reported, whCfn using diets in which DCAB ranged from

400 to -50 mEq/kg. DM, a negative correlation (r = - .51) of DCAB to total plasma

calcium. These authors explained that the higher total plasm~ Ca when DCAB decreased

was dLJe to an increase in bone mobilization as verified by increased plasma

concentrations of hydroxyproline.

Under Ca stress, ruminants fed high anionic diets were capable of mobilizing

more Ca from the bones than those fed high cationic diets (Vagg and Payne, 1970 and

B1oc~ 1984). Wang and Beede (1992) also found that ionized calcium (Caj in blood

increased from 4.68 to 4.88 mg/dl DCAB:S was decreased from 69 to -428 meq/kg of

DM. However, plasma Ca increased linearly from 10.10 to 10.72 mg/100ml when DCAB

was increased from 0 to 520 meq/kg ofDM. (Jackson et al., 1992).
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Ross et al. (1994a) found a quadratic response in Cat+ after 84 days of treatment

feeding a higher DCAB diet (450 vs 0 meqlkg). However, Ross et aI., (l994b) with

finishing steers did not find any significant effect ofDCAB on Ca++ .

Goffet al., (1992b) reported that as DCAB decreases, the responsiveness of target

tissue receptors to 1,25-(OH)zD3 increases. According to Wheeler (1981) metabolic

acidosis can impair the metabolism of vitarnin D. Gaynor et al (1989) measured 1,25

dihydroxyvitamin 0 in blood and reported that cows fed a high anionic salt had elevated

concentrations of these vitamin 3 days prepartum. They cited experiments with dogs and

rats that show that tissues are refractory to PTH during metabolic alkalosis (high DCAB

diets); thereby 1,25dihydroxyvitamin D production is reduced.

Jackson et al. (1992) found that plasma Mg and CI decreased linearly as DCAB

increased. Oetzel et aI.,.(1988) and Gaynor et aI., (1989) reported that serum Mg was

higher for cows receiving anionic diets than for those cows receiving cationic diets, but

serum P was not affected in either study. Tucker et al., (198&) detected no effect of

dietary supplementation with S or CIon plasma concentrations ofMg and P. However,

Block (1984) reported that an anionic diet, serum P ofperipartum cows increased.

According to Tucker et aI., (1988) iflowering DCAB increases PTH, P would be released

from the bone, but because the threshold for reabsorption in the kidney would be reduced,

more P would be excreted in the urine; thereby, plasma P concentration would not be

affected.

Chloride decreased linearly with the increase ofDCAB in growing steers (Ross et

al., 1994a) and dairy cows (Tucker et aI., 1988) but no change was found in finishing

steers after 84 days on diet (Ross et aI., 1994b). Den Hartog et al. (1989) observed an
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increase of the blood chloride for their lowest DCAB treatment (64 mEqlkg DM) when

compared to the other treatments (15.7,25.0,34.4 and 43.8 mEq/kg DM).

Effects ofDCAB on animal perfonnance. \ .

Altering DCAB can alter weight gain by chicks (Mongin, 1981), milk yield of

dairy cows (Tucker et aI., 1988), weight gain in steers (Wheeler, 1981), average daily

gain of steers (ADG, Ross et aI., 1994ab) and gain:feed ofgrowing steers (Ross et aI.,

1994a).

Wheeler (1981) summarized 5 experiments in which weight gain was increased

when DCAB was increased from 100 to near 500 mEqlkg ofDM. However, this same

author found little difference in weight gain from increasing DCAB from 200 to 500

mEqlkg diet. Diets containing DCAB balances 777 to 1181 mEqlkg ofDM resulted in

either no improvement or reduction in animal performance when compared to steers fed

control diets.

Ross et aI (1994a) reported that average daily feed intake increased linearly from

7.07 to 7.81 kg. when DCAB was increased from 0 to 450 meqlkg. and that ADG and

gain:feed increased quadratically.. These same authors (Ross et aI., 1994b) using finishing

steers, found quadratic responses in dry matter intake, ADG and marbling score when

DCAB was increased from 0 to 450 meqlkg. However, no differences were detected in

gain:feed, yield grade, ribeye area, hot carcass weight, kidney, pelvic and heart fat nor

backfat thickness. (Ross et aI., 1994b).

Den Hartog et aI., (1989) reported that ADG by veal calves was a significantly

increased when DCAB was increased from 64, to either 157, 250, and 344 mEqlkg of

DM (1.189 vs. 1.275, 1.293, and 1.298 kg respectively). However, no differences on
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ADG were observed between diets with DCAB of 64 Ys. 438 mEqlkg ofDM. No

statistical differences were found in carcass weight by these same authors, although

carcass weights for calves fed diets with DCAB of 157,250 and 344 niEqlkg ofDM were

7 to 10 kg greater than for calves fed the diet with a DCAB of64 mEqlkg ofDM.

1
t
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CHAPTER III

IMPACT OF DIETARY SALT INTAKE CONCENTRATION ON WATER INTAKE,
AND PHYSIOLOGICAL :MEASUREMENTS OF FEEDLOT CATILE

• l ~ • I

Abstract

Nine ruminally cannulated heifers (510 kg) in a triplicated 3 by 3 Latin square

were given ad libitum access to 85% concentrate feedlot diets based on cracked com with

one of three levels of supplemental salt (0, .25, .50% ofDM). Effects of salt level on

intake and blood and ruminal measurements were monitored. The period of each latin

square included two weeks'for diet adaptation and one week for sampling and

measurement. Although water intake was not significantly (P = .27) increased by added

salt, water intakes averaged 14 and 30% more with the .25 and .5% salt levels than

without added salt. Daily dry matter intakes also tended to increase with added salt (8.9,

10.2 and 10.4 kg with 0, .25, .50% salt, respectively). The water to dry matter intake ratio

was not altered (P = .55) significantly (4.45, 4.15 and 4.53 kg water/kg dry matter

consumed with 0, .25, .50% salt, respectively). Arterial blood pH tended to respond

quadratically (P =.09). Arterial partial pressure of oxygen increased (P =.08), while

carbon dioxide decreased (P = .07) linearly with added salt. Added salt linearly decreased

arterial blood potassium (P =.06). None of the serum macrominerals were altered by

added salt. Addition of salt linearly increased (P<.OI) the ruminal concentration of

sodium and linearly decreased the concentration of potassium (P=0.2). Magnesium and

chloride responded quadratically to increasing levels of salt (P<.OS and P=.02,
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respectively). Although total VFA concentrations were not altered, the butyrate

percentage was lower (p < .05) with the 0% salt diet than the diets with .25 and .5%

added salt (8.5 vS.I0.8 and 11.2%). Added salt linearly increased percentages of butyrate

(p = .03) and isobutyrate (p:::; .05) leading to an increased (P < .05) energy charge of

ruminal VFA. Effects of dietary salt concentration on ruminal pH, evacuated weights of

ruminalliquid and solids, and urinary pH were not significant.

Keywords: Salt, Feedlot Performance, Intake, Beef Cattle

Introduction

Dietary salt (NaC]) has been used for hundreds of years as an important mineral

supplement even before it's composition was known. Its low price, convenience and

availability has made it the preferred way of supplementing sodium and chloride. Salt IS

used frequently to limit feed intake of highly palatable feeds such as grain and

supplement (Lusby, 1993).

In the past, feeding recommendations for minerals have been set to maximize

animal growth rate, milk yield and pregnancy (Beede, 1998). However, high levels of

dietary salt increase sodium and chloride concentrations in urine and feces. These salt

nutrients in animal waste can limit its application to soils mainly in low rainfall or

irrigated areas due to increased salinity of the soil (Van Hom et aI., 1994; Eghball and

Power, 1994).

One of the challenges for animal nutritionists is to reduce the environmental

impact due to precise diet formulation while maintaining or enhancing productivity
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and/or economical benefits. Hence, we need to understand function, metabolism and

interaction of minerals in the animal.

The objectives of this experiment were 1) to test the impact of dietary salt

concentration on intake ofwater and feed by feedlot cattle 2) to examine the impact of

dietary salt on ruminal parameters and mineral concentrations and 3) to measure

physiological responses in fecal dry matter, urinary and blood (venous and ~erial) to

dietary salt level.

Materials and Methods

1 •

Animals and treatments

Nine 510 kg ruminally cannulated heifers were allocated randomly to individual

pens. The animals were given ad libitum access to a concentrate diet (Table 1) with fresh

feed added daily (0830) in each 21 day period of each Latin square (14 days adaptation, 7

days to sample and measure different factors). The treatments that were superimposed to

the diets were the addition of 0%, .25% and .50 % ofKansas rock salt # 4 (Cargill) with

at least 96 % NaCI. The analyzed chemical composition ofthe diet is shown in table 2.

Total amount offeed provided as well as refused was weighted daily. Water was

provided free choice in large barrels. Daily water intake was measured by reading water

to the barrel to a specified level through a water meter; residual water was measured with

a ruler and transformed to liters.

42



M.arker Preparation and dosing

Chromic oxide (Cr2OJ) was used as indigestible external marker to e timate fecal

output. Chromic oxide (15 g1dose in two doses each day at 0700 and 1800) was dosed

directly in the rumen for a seven-day preliminary period and three-day collection period.

Sample collection and RuminaI evacuation.

The first 14 days ofeach period were used for adaptation to the diets,. On day 18

ofeach period blood samples were collected for each animal. A 10 ml. sample ofarterial

blood was collected from an artery in the ear with a lithium heparinized syringe (Gas

Lyte, .Marquest Medical Products Inc. Englewood CO). The syringe was immediately put

on ice with a rubber stopper in the needle and analyzed within two hours of being drawn.

A 30 mI blood sample was also collected via jugulaF venipuncture, using vacuum

containers for serum collection with no additives. Samples were immediately put on ice,

and were centrifuged and frozen within two hours.

Urine samples were collected twice a day for three consecutive days using a

procedure of stimulating urination by massaging the ventral commissure of the vulva, A

sample of 200ml was obtained each time and pH was measured immediately with a pH

meter (Digi-sense, Cole Parmer Instrument Company, Chicago IL.). Urine samples were

then frozen immediately for later analysis.

Fecal samples were collected twice daily (0700 and 1900), for 3 consecutive days

and pH (Digi-sense, Cole Parmer Instrument Company, Chicago 11) was measured

immediately. Fecal samples were then frozen for later analysis.

On day 21 total ruminal contents were removed mechanically using a vacuum

device. Ruminal contents were screened twice (.63 x .63 and .31 x .31 em square pore
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mesh) manually to separate ruminal particulates from liquid contents. Rumina} fluid pH

was measured with a pH meter (Digi-sense, Cole Parmer Instrument Company, Chicago

11). Each phase was weighed, mixed thoroughly and sampled. Samples were immediately

frozen. After sampling the remaining ruminal contents were returned into the rumen. At

the same time a I L. subsample of the liquid phase was used to determine the density and

pH of ruminalliquid. Approximately 25 minutes per animal were used for the entire

ruminal evacuation-replacement procedure.

Laboratory analysis

Feed and feces contents were thawed, dried at 55°C for 48 h, air equilibrated and

ground using a Wiley mill equipped with a 2 mm screen. Two I gram sub-samples were

dried for 24 h. at 90°C to determine DM. Two subsamples of ruminal fluid and two of

ruminal solids from each heifer and period were dried at 100°C. Total DM in the rumen

was calculated by adding the DM present in the liquid phase to that in the solid phase.

Therefore, total ruminal DM includes solids from both the liquid and the solid phases,

and total ruminal liquid includes both imbibed and free liquid.

Arterial blood was analyzed within two hours after being drawn in a Critical

Blood Analyte (CBA Data Mate, Ciba Corning) for pH, partial pressure of carbon

dioxide (pC02), partial pressure of oxygen (p02), total hemoglobin (thb), bicarbonate

(HC03), total carbon dioxide (tC02), oxygen saturation (02sat), base excess (BE),

sodium (Na") and potassium (K"). Later, serum blood samples were thawed, and then

analyzed for Ca, Mg, P, Na, CI and K using the Blood Chemistry Automated Analyzer

(Roche-Cobas Mira, Roche Diagnostics Systems Inc, Montclair, NJ.)
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Rumina! fluid samples were prepared for VFA analysis by adding .05 g. of meta

phosphoric acid to 5 ml aliquots of ruminal fluid for initial deproteinazation and then

centrifuged at 10,000 x g for 20 minutes. The ruminal fluid samples obtained were later

analyzed for VFA concentrations using a Perkin-Elmer Autosystem gas chromatograph

(perkin-Elmer 9000 model series, Norwalk, eN) with 2-ethylbutyric acid added as an

internal standard. High purity helium was used as the carrier gas, with a 8 ml/minute flow

rate and the column used was Megabore phase DB-FFAP (J&W Scientific). Energy

charge (EC) was calculated as (2 x butyrate)/acetate. The non glucogenic ratio (NGR)

was calculated as (acetate + 2 x butyrate)/propionic.

Rumen fluid samples were centrifuged for 30 minutes at 20,000 x g. The resulting

pellet was discarded, with the supernatant fluid being separated in two subsamples. One

subsample was analyzed for Ca, Mg, P, Na, Sand K using an Inductively Coupled

Plasma Spectrometer (Spectroflame FTM-08, Spectro Analytical Instruments, Fitchburg,

Ma.). The second subsample of 30mI of rumen fluid was dried at 100°C and then ashed

at 600°C for 8 hours. Then 30m) of deionized water was added and the resulting solution

was analyzed for chloride in a Flow Injector analyzer (Model Quick Chern 8000, Lachat

Instruments Mo.).

Ten ml of nitric acid were added to one gram samples of feces and one g samples

of feed that were digested in a Microwave (model MDS 2000 CEM Corporation,

Matthews MN.). Then, 20 m] of deionized water was added and this sample was

analyzed for Ca, Mg, P, Na, S and K using also the same Inductively Coupled Plasma

Spectrometer. Another 1 gram sample of feed and feces were dried at 100°C and then

ashed at 600°C for 8 hours. Thirty ml of deionized water was added and the resulting
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solution was analyzed for chloride in a, Flow Injector analyzer (Model Quick Chern 8000,

Lachat Instruments Mn.).

Statistical analysis

The nine rurninaUy cannulated heifers were stratified by weight and assigned to

three 3 x 3 latin squares. The three latin squares included both of the possible

arrangement of treatments in order to balance for potential carry-over effects. Period,

animal, and treatment were used as a source of variation and the statistical analyses were

performed using the GLM procedure ofSAS (1990). Linear and quadratic effects of salt

were tested using contrast statements.

Results and Discussion

Dry matter and water intake

Average DMI (Table 3.) was not significantly (P=.37) altered by dietary salt

concentration. Dry matter intake tended to increase 8.94, 10.25 and 10.42 kglhead/day as

level ofdietary salt was increased. The increase in DMI from 0 to .5 % of salt was of 16

%. This 16% increase in DMI, although numerically higher, follows the same trend of

higher DMI with an increased level ofdietary salt from 0 to .5 % ofDM, that detected

both linear (2.0 %) and quadratic (1.9 %) regressions as dis~ussed in the literature review.

Neither linear nor quadratic effects in this trial were significant.

Although water intake (WI) tended to increase with dietary salt concentration (36,

42, and 48 Lid for 0, .25%, and .5% dietary salt, water intake (WI) was not altered

(P=.27) altered by dietary salt concentration, and neither linear nor quadratic effects were
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found significant. Differences in WI between 0 and .50 % of salt, although non

significant ( P=.11) were about 30.5%. Despite lack of statistical significance, this

magnitud~ ofdifference, nevertheless, may be physiologically important from the

standpoint of amounts offluid that animals must excrete and dilution ofurinary

components that may cause urinary calculi Matsushima and Phipps (1974a and b) found

smaller increments (1 and 8.90.10 for their two studies, respectively) on WI from

increasing salt level from 0 to near .5% of salt. However, Hicks et al. (1988) found a

decrease on Wl of about 8 % from increasing the dietary salt level from 0 to.5 %.

However, DMI tended to be lower in their study with the higher dietary salt

concentration, and one might expect a correlation between WI and DMI.

The ratio WIlDMJ did not detect either significant treatment effects (P=.55) or

linear or quadratic responses. The WIfDMI was 8-9 % less for the .25% of salt treatment

(4.15) when compared to the 0 and .5()oJO treatments (4.45 and 4.53% respectively).

Therefore, less water per kg. ofDM was consumed by the animals on the .25% treatment.

To examine this relationship more closely, WI was regressed on DMI; the regression

equation after removing the effects of animal and period was WI(lts)= .075 + 4.234x(kg

ofDM) ± 1.15 (P<.01; ~=.86). Thus, there was a close relationship between DMI and WI

in this experiment. This suggests that the response ofWl to DMI is closer than the

response ofWI to the level ofdietary salt. Presumably with these levels of salt, which are

not high enough to reduce feed intake, ruminants may show a preference consuming

more salt due to their appetite for sodium (NRC, 1996). Hicks et al. (1988) also

speculated that the reduction in water intake seen in their. 5% salt treatment when

compared with the control (0%) could be in part due to a decrease in the DMI. Murphyet
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al. (1983) detennined the amount ofwater consumed during-the first 16 w eks of

lactation by dairy cows fed a 40% com silage and 60% concentrate diet. In their study

dry matter intake explained more variation than any other variable although DMI was

closely correlated with milk production. The other parameters that were included after a

stepwise regression were minimum temperature, production, and sodium intake being

theirs contribution to the increment of~ of .154, .040 and .006 respectively.

Ruminal parameters

Total volatile fatty acids (VFA) and their molar proportions are presented in Table

4. Neither total VFA's, acetate, propionate nor acetate to propionate ratio (AlP) was

affected by the treatments. These results differ with Croom et aI. (1985) who reported a

significant on day 62 (p<.05) from adding 5 % salt in fattening diets with an increase in

the molar proportion of acetate and also a significant (p<.05) decrease in propionate

though they detected no significant differences on day 118 of that same study. However,

the maximum level of salt in their experiment was 10 times greater than in ours.

The molar proportion of butyrate was lower (p<.05) for the control (8.47) than for

the .25 and .50 % treatments (10.81 and 11.17 respectively). There was a linear trend for

butyrate and isobutyrate to increased (P < .03 ~ P < .06) with level of dietary salt. This

change in the butyrate molar proportion led to a linear increase (P<.05) in the energy

charge (Be; butyrate to acetate ratio) of ruminaI VFA. No differences were found either

in valerate, isovalerate and NGR (table 4).

Ruminal pH, amounts and proportion of total ruminal contents in liquid and solid

phases were not affected by the (dietary salt level (Table 4). Zorrilla Rios et aI. (1990)
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found that rumen contents (solids and liquids) were decreased when salt wasjncreased

from .5 to 5% of the diet. t

In Table 5 the least square means for rumen fluid mineral concentration are

presented. Ruminal fluid is very important since it is the biological active and soluble

fraction (Owens and Goetsch, 1993). The soluble concentrations of macrominerals in the

fluid fraction can affect ruminal characteristics such as rate ofpassage, osmolality,

biological activity and buffering capacity (Durand and Kawashima, 1980). The sodium

concentration increased linearly (P<.O1) with level ofdietary salt. Levels of sodium were

significantly higher (P<.01) for .25% and .50% salt treatments (2402 and 2390 ppm)

when compared with the 0% treatment (1162 ppm). This difference in Na concentration

between the 0% and the .25 and .50% treatments levels can be explained by the

difference in sodium intake. No Na concentration differences were found between the

.25% and .50% treatments. Sodium may be absorbed from the rumen (Ammerman and

Goodrich, 1983), with its absorption rate proportional to its concentration (Warner and

Stacy, 1972); therefore increased absorption of sodium in the .50% treatment may explain

why there was no difference between .25 and .5% dietary salt.

Potassium decreased (P<.05) as level of dietary salt increased. If the dietary

supply ofNa is inadequate, K replaces Na in the parotid saliva in order to reduce the Na

fecal loss (Bailey and Balch, 1961; Morris and Gartner, 1971). This increase in the ratio

ofK to Na in saliva would increase the potassium concentration in the rumen fluid since

more of70 % of the water entering the rumen does so via saliva (Church, 1993).

Furthermore, an increase in the concentration ofone of these ions in the rumen is

49



..

accompanied by a decrease in the other (Scott, 1967) resulting in an almost constant

concentration of the sum ofK and Na (Martens and Blume, 1987).

Chloride concentrations responded quadratically to increasing level of salt

(P<.05). Chloride concentration with 0 % salt (432.0 ppm) was significantly greater

(P<.01 and P<.05) than with .25 % (272.9 ppm) and .50% (320.9 ppm) dietary salt,

respectively. Martens and Blume (1987) found that Na and CI transport are somehow

coupled and they demonstrated that the transport of one ofthe ions depends on the

presence of the other. These authors found using an isolated rumen of sheep that

replacing Na by lithium and leaving K constant, resulted in a negative net absorption of

C1. Likewise, Dobson (1959) showed that when the concentration ofpotassium in the

rumen was high and that of sodium low, chloride moved from the blood into the rumen

against the electrochemical gradient. AJthough two mechanisms have been proposed for

Na and CI coupling transport during the absorption, these have not been demonstrated for

the rumen. However, based on the literature, it is accepted that the absorption of CI in the

rumen is concurrent with Na absorption. A low concentration of sodium and the high K

concentration in the rumen fluid of the 0 % treatment presumably would decrease the

absorption of CI and might even increase its secretion into the rumen. If so, this could

explain the higher CI concentrations in the rumen in the 0% treatment even when the CI

intake were low.

An increase in the dietary concentration of K has been shown to decrease

absorption ofMg and to increase ruminal Mg concentrations (Tomas and Porter 1976~

Greene et aI., 1983; Fontenot et aI., 1989). The site ofthis depression in absorption

apparently is the rumen (Tomas and Porter 1976; Wylie et aI., 1985). Hence, the increase
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in K concentration in rumen fluid in this study can readily explain the increased ruminal

Mg we detected. Magnesium concentration was significantly (P<.05) higher in the 0 %

treatment (223 p,pm) than in the .25 and .50% treatments (132.1 and 165.5 ppm,

respectively), presumably because high ruminal K concentrations with the 0% treatment

decreased Mg absorption which thereby increased its concentration in ruminal fluid. The

ratio Na/K in the rumen showed a linear (P<.05) trend. The control treatment was

significantly (P<.05) different from the .25% and .5% salt treatments. However, no

differences were found in serum Na concentration. There were no effects (P>.10) on Ca,

P and S concentrations in the rumen fluid. \ .

Arterial blood parameters.

The arterial pH responded quadratically (P<.1 0) to the level of dietary salt (Table

6). Although differences from 7.42 to 7.44 are oflittle physiological importantce since

its normal range is 7.35 to 7.45 (Stanton and Koeppen, 1998), these pH changes were

consistent through the trial. Base excess refers to an empirical expression which

approximates the amount of acid or base which would be needed to titrate one liter of

blood back to a normal pH of 7.40. Base excess also tended to respond quadratically

(P=.1O) to dietary salt level. No changes on blood pH or BE were expected since the

addition ofNaCl to the diet has,no effect on the dietary W concentration, because the

number of cations and anions added are the same (Goff, 1992). However, when the

amount of salt in the diet is increased, sodium concentration in the body, that is in close

homeostatic control (Guyton and Hall, 1996) may increase within limits. IfNa increases

continuously, this will trigger the kidney control mechanisms to increase Na excretion in

order to keep blood Na levels within its normal range. On the other hand, dietary CI that
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is absorbed almost completely (Neathery, 1980) is not subjected to as strict control as

sodium. Hence, chloride tends to increase in the blood in essence, increasing the acid

load of the organism. This increase in CI while Na is strictly maintained within liMits

could explain the differences between treatments in pH and BE. For control of acid

excess, if pH tends to decrease, the animal's primary alteration is to reduce HC03

concentration in blood (Stanton and Koeppen, 1998). Following this decrease in HC03

concentration in blood, additional defense mechanisms will are triggered in the animal

that do may not correct the acid-base disturbance but instead are designed to minimize

the change in pH imposed by the disturbance (Stanton and Koeppen, 1998). Such defense

mechanisms include an increase of intra and extracellular buffers, hyperventilation,

which results in an increase of p02 and in a reduction of pC02; however, if the acid base

disorder is excessive, it will increase a renal acid excretion (Guyton and Hall, 1996;

Stanton and Koeppen, 1998). In this trial, the partial pressure of carbon dioxide (pC02)

decreased linearly (P=.08) while partial pressure ofoxygen (P02) increase linearly

(P=.07) with increasing level of salt (Table 6). However, because no differences in urine

pH were detected (Table 6), homeostatic mechanisms were adequate to maintain blood

pH within the normal range.

Potassium concentration of blood decreased linearly (P=.06) as dietary salt level

was increased (Table 6). Potassium in blood is strictly controlled for avoiding excess

concentrations; however, decreases in K concentration are not controlled (Mc Dowel,

1992). Considering the statistical design used each heifer served as its own control. Ifwe

also conclude that, WI equals total urine output during this trial, then we can calculate K

output. On that basis, the total urine output was higher with increasing levels of salt and
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this would increase the total potassium output (Stanton and Koeppen, 1998). High levels

ofNa intake can also increase the K urinary excretion (Ammerman and Goodrich, 1983).

Aldosterones increase potassium secretion by the renal tubules (Mac Dowell, 1992) and

Na resorption through increasing the K output in the urine (Ammerman and Goodrich,

1983).

Serum minerals

No differences were observed in serum macrominerals with various salt intakes

(Table 7.) These results agree with Croom et al. (1985) who found no significant

differences in Na and K either on day 62 or day 118 of the experiment. Sodium in blood

is maintained constant because of close regulation mechanisms (Guyton and Hall, 1996)

and was not affected by differences in dietary Na (Morris and Gartner, 1971; Morris and

Murphy, 1972).

Implications

The addition of salt to the diet increased ruminal fluid concentration of sodium

but reduced the ruminal concentrations of potassium, magnesium and chloride. Addition

of salt to the diet also linearly decreased arterial potassium and tended to acidify blood.

The molar proportion ofbutyrate was increased by the addition of salt to the diet and Jed

to an increased energy charge for the VFA's in the rumen.
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Table 1. Composition ofconcentrate diet (dry matter basis)

._!!!8!~~i~.~!. ._._.__..._.._..._...._._.._~__..._.._.
Dry rolled com 63.40
Dehydrated alfalfa pellets 6.17
Cottonseed hulls 14.76
Soybean meals (44 %) 10.19
Cane molasses 4.25
Ground limestone 0.57
Dicalcium phosphate 0.55
Urea (46%) 0.11
TotaI 100.00

Table 2. Analyzed chemical composition of the diet (Dry basis)

Mineral %...._-~.~._._ _ _..-
Sodium 0.02
Potassium 0.83
Chloride 0.13
Calcium 0.55
Phosphorus 0.32
Magnesium 0.13
Sulfur 0.15
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Table 3. Dry matter intake, water intake and ratio WIlDMI in heifers receiving different
levels of salt.

Treatments (% salt) Probability

0 0.25 0.50 Linear Quadratic

DMI, kg. 8.94 10.25 10.47 .20 .56
WI,L. 36.46 41.60 47.58 .11 .94
WIlDMI, L/kg 4.45 4.15 4.52 .83 .29

Table 4. Least square means of ruminaI VFA, pH and liquid and solid contents from
heifers receiving 0, .25 and .50 % salt per kg ofDM.

Treatment (%salt) Probability
~_.~.._ __..__---_..--_ _---- _-------_._-----_._---_._._ _._..-_ .

o 0.25 0.50 Linear Quadratic

VFA (molar %)
Acetate 57.71 57.15 55.09 .33 .74
Propionate 28.32 26.40 27.89 .89 .53
Butyrate 8.47b 1O.81a 11.17a .03 .31
Isobutyrate 1.19d 1.2800 1.33c .06 .70
Isovalerate 2.86 3.029 3.04 .80 .90
Valerate 1.44 1.32 1.47 .84 .31
AlP 2.18 2.42 2.11 .86 .43

Total VFA, mmollL 117.0 122.9 123.4 .54 .77
NGR 2.81 3.32 2.95 .80 .34
BC 0.30bd 0.38aOO 0.41 a .03 .49
Rumen pH 5.78 5.96 5.81 .86 .24
Rumen Contents

Total kg. 36.24 40.76 37.04 .85 .29
Solid % 17.6 1~.9 17.6 .99 .14
Liquid % 82.4 84.1 82.4 .99 .14

abMeans with different superscripts within row P<.05
cd Means with different superscripts within row P<. 10
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Table 5. Least square means ofmineral concentration centrifuged ruminal fluid from
heifers receiving 0, .25 and .50 % salt per kg ofDM.

h Treatment (%salt)
o 0.25 0.50

Probability
Linear Quadratic

.11

.26

.02

.40

.78

.05

.74
,08

.01

.02

.03

.59

.39

.19

.38

.02

2131.5b

2420.3d

320.98bd

111.4
1174.4
181.800

73.2
1.00d

Ruminal fluid
Na, ppm 1392.68 2125.0b

K, ppm 3410.6° 2520.0d

Cl, ppm 432.080 272.9b

Ca, ppm 97.5 85.5
P, ppm 1092.1 1110.6
Mg, ppm 210.8° 156.2d

S, ppm 64.1 71.6
Ratio Na/K, ppm/ppm 0.54c 1.00d

abMeans with different superscripts within row P<.OI
cd Means with different superscripts within row P<.05
efMeans with different superscripts within row P<.1 0

Table 6. Arterial blood parameters from heifers receiving 0, .25 and .50 % salt ofDM.

o
Treatments

.25 .5
Probability

Linear Quadratic

pH 7.422 7.440 7.421
PC02 mmHg 38.56° 37.62cd 36.83d

p02 mmHg 92.23° 96.1300 98.36d

Na mmollL 139.1 139.7 139.2
K mmollL 4.30° 4.0800 3.99d

HC03 mmoVL 25.11 c 25.61 00 23.93d

BE mmollL 1.4800 2.33c 0.48d

.94

.08

.06

.86

.06

.17

.27

.08

.55

.74

.50

.65

.14

.10
Cd Means with different superscripts within row P<. 10
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Table 7. Serum macrominerals from heifers receiving 0, .25 and .50 % salt ofDM.
Treatments (% salt) Probability

o .25 .5 Linear Quadratic

CI mmollL 106.2 107.5 107.9 .30 .76
Na mmollL 146.3 148.3 147.9 .36 .50
K mmollL 4.32 4.36 4.36 .69 .83
Ca mg/dl 9.09 8.96 9.05 .83 .45
P mg/dl 7.17 6.77 6.55 .21 .85
Mg meqlL 2.12 2.22 2.08 ." .68 .22

Table 8. Urine and fecal pH from heifers receiving 0, .25 and .50 % salt ofDM.
Treatments (% salt) Probability

o .25 .5 Linear Quadratic

Urine pH
Fecal pH

6.71
6.16

6.55
5.84
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Chapter IV

IMPACT OF DIETARY CATION ANION BALANCE ON WATER !NTAKE AND
PHYSIOLOGICAL MEASl.JREJ\tfENTS OF FEEDLOT CATTLE

Abstract

Nine ruminally cannulated heifers (525 kg) in a triplicated 3 by 3 Latin square

were given ad libitum access to 85% concentrate feedlot diets based on cracked com.

Diets were modified only by addition of either.46 % ammonium chloride (NJi4CI), .50%

plain salt (SALT) or .61 % sodium sulfate (Na2S04) to achieve dietary cation-anion

balances (DCAB) of 98, 186 and 270 mEq/kg DM for NH..Cl, SALT and Na2S04

respectively. Although water intake was not significantly (P = .49) altered by any ofthe

treatments, the ratio ofwater intakes to dry matter intake linearly increased DCAB was

increased being 28% (P<.05) and 24 % (P<.1O) greater for NH..Cl than SALT and

Na2S04, respectively. Increasing DCAB linearly increased partial pressure of carbon

dioxide (P<.05) and bicarbonate (P<.10) in arterial blood; with~CI being significantly

different (P < .10) from Na2S04for all of these measurements. Although Serum chloride

decreased linearly (P<.05) as DCAB was increased, none of the other macrominerals in

serum were not affected by DCAB. Increasing DCAB linearly increased (P<.05) urine

pH. NH..CI addition to the diet increased (P<. 05; P<.l 0) ruminal fluid concentrations of

chloride and potassium when compared to the other two treatments. Sodium

concentration in ruminal fluid was increased linearly (P<.05) by the addition of SALT or

Na2S04 (P<.05) when compared to addition ofNlLCI to the diet. Total weight and liquid

weight of ruminal contents were increased (P<.l 0) by the SALT treatment when
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compared to the other two treatments. Total ruminal concentrations ofVFA and molar

proportions ofacetate, propionate and butyrate were not affected by DCAB.

Keywords: DCAB, Intake, Minerals, Beefcattle

Introduction

Altering the dietary cation anion balance (DCAB) has been shown to alter weight

gain ofchicks (Mongin, 1981), milk yield ofdairy cows (Tucker et aI., 1988a), average

daily gain of steers (Wheeler, 1981; Ross et al., 1994a and b) and swine (patience et aI.

1987), and gain:feed ratio ofgrowing steers (Ross et aI., 1994a).

Presumably, modifying the dietary cation anion balance has an effect on animals

through altering blood acid base balance and mineral status. Most of the studies on

DCAB in ruminants have involved dairy cattle, mainly preparturient cows. Research has

been limited with other ruminants type of livestook.

The objectives of this experiment were 1) to test the impact ofDCAB

concentration on intake of water and feed by feedlot cattle 2) to examine the impact of

DCAB on ruminal parameters and mineral concentrations and 3) to measure

physiological responses in fecal dry matter, urinary and blood (venous and arterial) to

DCAB.

Materials and Methods
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Animals and treatments

Nine 525 kg ruminaHy cannulated heifers were allocated randomly to individual

pens. The animal$ were given ad libitum access to a concentrate diet (Table 1) with fresh

feed added daily (0830) during each 21 day period of each latin square (14 days for

adaptation,; 7 days for sampling and measurements. The dietary modifications included

addition of either .46% ammonium chloride ~Cl), .61% of sodium sulfate (Na2S04)

.50% ofKansas rock salt # 4 (Cargill) with at least 96 % NaCI (SALT). The first two

diets provided equal amounts of dietary chloride while the second and third diets

provided equal amounts of dietary sodium. Analyzed chemical compositions of these

diets are shown in Table 2.

Daily water and feed intake were recorded as it was described in chapter 3.

Marker preparation and dosing

Chromic oxide (Cr203) was prepared and dosing of heifers was done as described

in the first trial. Complexes of Co-EDTA were prepared as specified by Uden et al.

(1980). Animals were dosed with Co-EDTA at 0800 on day 20, and ruminal contents

were sampled at 2, 5, 7 and 24 h later using a vacuum pump. These samples obtained

were frozen immediately.

Sample collection and ruminal evacuation

Arterial and venous blood, urine and fecal samples and rumen evacuation and

sampling were done as described in the first trial.

Laboratory analysis

Feed, feces, arterial blood, serum, ruminal VFA and mineral concentration lab

procedures were done as described in the first trial.
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Ruminal samples were thawed and centrifuged at 10,000 x g for 30 minutes. The

supernatant fluid was analyzed for Co concentration using an Atomic Absorption

spectrophotometer (Model 4000, Perkin Elmer, Norwalk CN) with samples being diluted

with water to ensure that the marker concentration remained in the detection range of the

spectrophotometer. Calculations for dilution rate were done according to Galyean (1997).

Statistical analysis

The nine ruminally cannulated heifers were stratified by weight and assigned to

three 3 x 3 latin squares. The three latin squares included both of the possible

arrangements to avoid biasing results by potential carry-over effects. Period, animal and

treatment were used included as class variables and the statistical analyses were

performed using the GLM procedure of SAS (1990) as it was for trial 1. Treatments were

assumed to be equally spaced so that linear and quadratic effects ofDCAB could be

tested by using contrast statements.

Results and Discussion

Dry matter and water intake

Treatments did not significantly (P=.32) alter DMI. Neither lin.ear nor quadratic

effects ofDCAB were significant (Table 3). Although not significant, DMI for heifers

fed the Nl4CI diet (7.9 kg.) tended to be lower than for heifers fed the SALT and

Na2S04diets (9.0 and 8.5 kg respectively). Ross et al. (1994 a and b) found a linear

increase in DMI with growing steers and a quadratic response peaking at the 150 mEq/kg

with finishing steers, respectively, on DMI when they increased DCAB from 0 to 450

mEqlkg DM. Jackson et al. (1992) also found a quadratic response peaking at the150
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mEqlkg treatment, in DMI when they increased DCAB from 0 to 520 mEq/kg DM.

Takagi and Block (1991) reported non significant lower intakes in wethers with' their

lowest DCABS treatment (63 mEqlkg DM) when compared to their higher DCABS

treatments (218 and 343 mEqlkg DM).

Water intake (WI) was not significantly different (P=.48) among treatments.

Neither linear nor quadratic effects were significant (Table 3).

The ratio WIlDMI was significantly (P<.05 and P<.lO) higher for the N&Cl diet

(5.00 L/kg) than for the SALT (3.91 Llkg) and Na2S04 (4.03 Llkg) diets. This was

detected as a linear decrease (P<.l 0) as DCAB was increased. On the average, animals

fed the~CI diet drank 24 to 28 % more water per kg ofDM.

Rumina] parameters

Total volatile fatty acids and their molar proportions are presented in Table 4.

Neither total VFA's, acetate, propionate, butyrate nor acetate to propionate ratio (AlP)

was affected by the treatments. Similarly, Ross et al. (1992a) detected no effect of

increasing DCAB on the molar proportions of acetate, propionate and butyrate on day 28

in growing steers. However, On day 84 these same authors found that increasing DCAB

resulted in a linear (P<.05) increase in the molar proportion ofpropionate and a linear

(P<. 10) decrease in butyrate, but no effect was found on acetate. This contrasts with

results ofRoss et a1. (1992b) who found a linear in the molar proportion ofacetate while

increasing nCAB from 0 to 450 mEqlkg DM on day 42. These authors found no effect of

DCAB on propionate, butyrate, or AlP ratio on days 42 and 84, and no effect on acetate

on day 84 didn't.
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The molar proportion ofvalerate responded quadratically (P<.05) to increasing

level ofDCAB. The molar proportion ofvalerate was higher (P<.05) for NI4CI than for

SALT. This contrast with results ofRoss et al. (1992a) who on day 28 found a linear

increase ofvalerate with increasing DCAB, for growing steers fed a com silage diet.

However, Ross et at (1992b) found no significant differences in the molar proportion of

valerate with finishing steers.

Ruminal pH was not affected by the treatments (P=.99). This is in agreement with

Ross et al (1992a) who didn't find any trend on day 84 and Ross et at (1992b). However,

Ross et al (1992a) observed a linear increase on day 28, in ruminal pH with increasing

level ofDCAB. Tucker et al. (1988) also found that ruminal pH increased when DCAB

was increased from -100 mEq/kg DM (6.45) to 0 (6.63) and 100 (6.73) mEq/kg DM.

They suggested that this was a result of the acidogenic properties of the diets. Likewise,

Freeden et al. (1988) observed that anionic diets increased W.concentrations in the

rumen. However, in our experiment neither linear nor quadratic effects on ruminal pH

were detected as being significant (Table 4).

Total ruminal contents and liquid ruminal contents responded quadratically to

increasing DCAB (P=.05; P<.05 respectively; Table 4). Total weight of ruminaI contents

(kg) was higher (P<.10) for the SALT treatment (35.65) when compared with Nl4CI

(29.69) and Na2S04 (28.81). The higher liquid content that the SALT treatment exhibit

when compared with the other two explains this larger amount of rumen contents in the

SALT treatment. According to Owens and Goetsch (1993) as level of feed intake

increases, ruminal volume increases as well. Though the response was not significant,

dilution rates tended to decrease as DCAB increased (Table 4).
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Least square means of the rumen soluble minerals for the three treatments are

presented in Table 5. Sodium increased linearly (P<.05) with increasing level ofDCAB

as a result of sodium concentration in the rumen being lower (p<.05) in the~CI

treatment than in the SALT and Na2S04 treatments. This response may simply be a result

ofgreater sodium intake being greater with the SALT and Na2S04 diets. Ross et aI.

(1992a) found a linear increment in ruminal sodium concentration with increasing

DCAB. However, again in their experiment sodium intake increased as DCAB was

increased. On day 84 they detected no linear trend but instead noted that ruminal Na was

lower with the 0' and 150 mEqlkg (.07 and .08% sodium in the diet) but no differences

between 300 and 450 mEqlkg (.48 and .74% sodium in the diet).

Ruminal potassium concentration was lower (p<.05) for the ~Cl treatment

when compared to the other two treatments. Neither linear nor quadratic responses were

observed (Table 5). Tucker et aI. (1988a) reported that ruminal Na and K were inversely

related. A similar trend was reported by Scott (1967). Martens and Blume (l987)

reported that the sum ofK and Na in the rumen remained surprisingly constant. As

discussed in trial 1, if the dietary supply of sodium is inadequate is replaced by potassium

in the parotid saliva in order to reduce the Na fecal loss (Bailey and Balch, 1961; Morris

and Gartner, 1971). This would increase the potassium concentration in the rumen fluid

since at least 70 % ofthe water entering the rumen does so via saliva (Church, 1993).

The ruminal concentration of chloride was lower (P<.05) in the SALT (279.8

ppm) treatment than in the NfuCI (358.4 ppm) treatment. Neither linear nor quadratic

responses were observed (Table 5). No differences were found between Na2S04 and the

other two treatments (Table 5). Ross et al (l992a) found that chloride concentration in the
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rumen tended to decrease with increasing DCAB. Likewise, Tucker et a1. (1988) found

that CI tended to decrease with increasing nCAB. Martens and Blume (1987) suggested

that Na and CI transport and absorption are c{)upled. Dobson (1959) showed that when

the concentration of potassium in the rumen was high and that of sodium was low,

chloride moved from the blood into the rumen against the electrochemical gradient. If

this is so, one would expect to find a higher ruminal absorption of chloride in the SALT

treatment, decreasing its concentration of chloride. The higher concentration ofpotassium

and the higher chloride intake with low sodium might explain the higher value in chloride

ruminal concentration obtained by the~CI treatment. Although the concentration of

dietary Na was similar for Na2S04 and SALT diets, the higher concentration ofpotassium

in the rumen, could be partially responsible for the slight increase in the ruminal chloride

concentration with the SALT treatment.

There were no effects (P>.10) of dietary alteration'on ruminal concentrations of

Ca, P, S and Mg. Neither linear nor quadratic responses were observed (Table 5). Ross et

a1. (1992a), on day 84, didn't find any trend of increasing DCAB on the ruminal

concentrations of Ca and Mg, however, they detected a linear trend for ruminal

concentration ofP to decrease as 'DCAB was increased. The ratio Na:K tend to increase

linearly with increasing DCAB (P<.1O).

Arterial blood parameters

Arterial blood pH increased as DCAB was increased. However, neither linear

nor quadratic effects were significant (table 6). Tucker et aI. (1988 b) found that blood

pH was not affected by DCAB and DCABS, although both Sand CI supplementation

tended to lower pH. Tucker et al. (1988a) observed a significantly lower blood pH with a
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lower DCAB diet. Likewise, Den Hartog et aI. (1989) also found a significantly lower

pH in the 64 mEq/kg DM treatment when compared with the 157,250,344 and 438

mEq/kg DM treatments. Jackson et aI. (1992) found that blood pH increased when

DCAB was increased from 0 to 520 mEq/lcg DM. Likewise, as DCAB was increased,

blood pH increased linearly in growing angus and crossbred angus steers (Ross et aI.,

1994a) and quadratically in growing and finishing angus and crossbred angus steers

(Ross et al., 1994ab). However, no pH response to DCAB was detected with dairy cows

by Tucker et aI., (1988b) or finishing steers after 84 days (1m trial (Ross et al., 1994b).

Base excess tended to increase linearly (P=.12) as DCAB was increased (Table

6). Den Hartog et al. (1989) aIso observed an increase in base excess when DCAB was

increased. These increase in base excess would be expected due to the reduced

acidogenic characteristics of the diets with higher DCAB.

When challenged with an acid load, the animal will minimize the change in blood

pH by increasing intra and extracellular buffers, hyperventilation (to increase p02 and

decrease pC02 under acid conditions) and can ipcreasing the renal acid excretion

(Stanton and Koeppen, 1998). As couid be expected, p02 tended to decrease (P =.47)

with increasing DCAB while pC02 increased linearly (P=.05) with increasing DCAB.

Partial pressure of carbon dioxide was significantly lower (P<.1 0) in the ~CI treatment

when compared to the highest DCAB treatment Na2S04. Blood concentration ofHC03

also increased linearly (P<.10) with increasing DCAB. These results are in agreement

with Den Hartog et aI. (1989), Jackson et al. (1992) and Tucker et al. (l988b). Ross et aI.

(1994b) found a linear increase on day 84 in pC02 and RC03 from increasing DCAB but

they detected no trends in p02 and pC02 in their experiment.
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Urinary pH tended to increase with increasing nCAB (Table 8). The heifers

excreted their acid excess and via urine, urinary pH is considered to be a reliable index

of the effeetivenessofDCAB programs (Sanchez et aI. 1997). Urine pH decreased

linearly (P<.05) with increasing nCAB. The urine pH in the NRtCI treatment (5.95) was

significant different (P<.05) than the Na2S04 treatment (6.91). Tucker et aI. (1988a and

1991) and Jackson et a1. (1992) also reported that increasing DeAB inoreased urine pH.

No difference (P>.l0) in arterial concentrations ofNa and K were detected (table

6). Ifwe assume that. WI equals total urine output during this trial and that the urine

sample was representative of total urine excreted, then we can calculate K output. On that

basis, K concentration excretion via urine was slightly smaller in the NRtCI treatment

perhaps due to a slightly higher water intake than in the other two treatments.

No differences were found in ionic calcium (Ca+l among treatments. Ross et aI.,

(l994b) with finishing steers similarly did not find a significant effect ofDCAB on Ca++.

In contrast, Ross et al. (1994a) found a quadratic in Cart after 84 days of treatment

being its peak around 300 mEqlkg. However, Wang and Beede (1992) found that ionized

calcium (Ca++) in blood increased from 4.68 to 4.88 mgldl as DCAB:S was decreased

from 69 to -428 mEqlkg ofDM.

Serum minerals

Concentration ofCI in the serum decreased with increasing level ofDCAB (table

7). Although, neither linear (P=.l8) nor quadratic (P=.12) responses were significant

(Table 7), the serum Cl was higher (P < .05) with the NHtCI treatment than the Na2S04

treatment. Linear decreases of chloride concentration in blood with increasing levels of

DCAB had been observed by Ross et aI. (1992 a and b), Jackson et al (1992) and Tucker
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et al. (1988a). An increased intake of chloride typically will increase serum CI (Coppock

et al., 1979; Neathery et aI., 1981; Fettman et al., 1984 a and b). Fettman (1984b)

reported a significant decline in serum chloride while reducing intake chloride

concentration from .42 to .10 %. Differences in chloride concentrations in blood serum

among treatments in our experiment can be explained by DCAB and chloride intake.

No differences were detected in serum Na, K, Mg, Ca, and P among treatments

(Table 7.) and no linear or quadratic effects were observed. Similarly, Tucker et al

(1988a) found no differences in serum in Na and K concentrations as DCAB was altered.

As discussed in trial 1, sodium in blood remains constant because of homeostatic

regulation mechanisms (Guyton and Hall, 1996) and was not affected by differences in

dietary Na (Morris and Gartner, 1971; Morris and Murphy, 1972).

Implications

The ratio ofwater intake dry matter ratio decreased linearly as DCAB was

increased. Additions of ammonium ch oride increased the this ratio by 24 to 28 % when

compared to the other treatments. Lower DCAB tended to acidify arterial blood and

linearly decreased bicarbonate and partial pressure of oxygen. Chloride concentration on

venous serum decreased linearly as DCAB was increased. Addition of ammonium

chloride to the diet to decrease DCAB increased ruminal concentrations ofboth

potassium and chloride. Increasing DCAB by replacing ammonium chloride with salt or

sodium sulfate linearly increased with ruminal concentrations of sodium.
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Table I. Composition of concentrate fed (dry matter basis)

Ingredient %
Dry rolled com
Dehydrated alfalfa pellets
Cottonseed hulls
Soybean meals (44 %)
Cane molasses
Ground limestone
Dicalcium phosphate
Urea (42%)
Total

63.40
6.17

14.76
10.19
4.25
0.57
0.55 .
0.11

100.00

..
Table 2. Chemical composition analysis of the diets (%) (Dry basis)

Treatments

0.22
0.82
0.13
0.55
0.32
0.13
0.29

270.2
90.9

0.22
0.83
0.43
0.55
0.32
0.13
0.15
185.8
92.5

Sodium 0.02
Potassium 0.83
Chloride 0.43
Calcium 0.55
Phosphorus 0.32
Magnesium 0.13
Sulfur 0.15
DCAB mEqIKg DM I 98.2
DCABS mEqIKg DM2 6.5
IDCAB mEqIKg DM = mEq(Na + K)-mEqCI
2DCABS mEqIKg DM = mEq(Na + K)- rnEq(CI + S)
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Table 3. Dry matter intake, water intake and ratio WIJDMI in heifers receiving
ammonium chloride CNH4Cl), salt and sodium sulfate (Na2S04).

Treatments
~CI SALT Na2S04

DMl, kg. 7.90 8.99 8.51
WI, It. 35.97 33.19 33.09
WIJD:MI 4.95bd 3.88& 4.00·

Linear
.42
.31
.09

Probability
Quadratic

.22

.57

.20
&bMeans with different superscripts within row P<.05
cd Means with different superscripts within row P<. 10
Na= (salt and Na2S04 ) vs NatCI ; CI= (salt and NatCI) vs Na2S04~** P<.05

Table 4. Least square means of ruminaI VFA, pH and liquid and solid contents in heifers
receiving ammonium chloride (NR,CI), salt and sodium sulfate (Na2S04).

Treatments Probabilty
~CI SALT Na2S04 Linear Quad.

VFA(molar%)
Acetate 51.02 54.67 53.30 .51 .40
Propionate 31.64 28.33 29.73 .64 .49
Butyrate 12.54 ]2.60 12.57 .98 .97
Isovalerate 2.49 2.86 2.58 .77 .23
Valerate 2.3 ]a 1.53b 1.82ab .11 .04 Na**
AlP 1.81 2.01 2.04 .58 .81

Total VFA 118.3 117.9 129.3 .33 .52
mmol/L
NGR 2.66 2.92 3.02 .55 .88
EC 0.51 0.46 0.47 .54 .62
Methane 23.87 26.55 25.51 .59 .49
Rumen pH 5.82 5.8] 5.79 .91 .98
Rumen Contents

Total kg. 29.69d 35.65c 28.81 d .81 .05
Solids kg 4.65 5.35 4.24 .68 .23
Liquids kg 25.04d 30.30c 24.57 d .87 .04
Solid % ]5.6 14.9 14.8 .66 .87
Liquid % 84.4 85.1 85.2 .66 .87

Co-EDTA 3.93 3.62 3.35 .43 .98
Dilution rate

BbMeans with different superscripts within row P<.05
cd Means with different superscripts within row P<.1 0
Na= (salt and Na2S04) vs NatCl ~ CI= (salt and Natel) vs Na2S04~··P<.05
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Table 5. Centrifuged ruminal fluid parameters in heifers receiving ammonium chloride
(Nl4CI ), salt and sodium sulfate (Na2S04).

N~CI

Treatment
SALT

Probability
Linear Quad.

Na*'"

.10

.18

.12

.77

.29

.99

.32

.05

.10

.18

.46

.89

.67

.98

1638.2 b

2355.8d
305.81b

110.2
984.6
164.6
60.9

0.92 d

1723.3 b

2237d
279.8 b

86.02
1059.8

158.7
66.6

0.99 bd

1128.5 a

3052.5c
358.4 a

81.2
972.19
152.9
60.4

0.45 ae

Ruminal fluid
Na, ppm
K,ppm
CI, ppm
Ca, ppm
P,ppm
Mg,ppm
S,ppm

Ratio Na/K,
ppm/ppm

16 Means with different superscripts within row P<.05
cd Means with different superscripts within row P<.l 0
Na= (salt and Na2S04) vs Nt4CI; CI= (salt and N~CI) vs Na2S04;*'" P<.05; *P<.10

Table 6. Arterial blood parameters in heifers receiving ammonium chloride (NH4CI), salt
and sodium sulfate (Na2S04)'

Treatments Probability
Linear Quad.

.92

.88

.95

.34

.71

.69

.96

.32

.05

.47

.67

.27

.55

.09

7.430
37.63

102.8
4.74

140.38
4.30

24.99

7.422
35.91

104.5
4.88

140.10
4.30

23.43

7.409
34.57

106.7
4.80

139.39
4.24

22.00

pH
pC0 2

mmHg
p0 2 mmHg
Ca++
Nammol/L
Kmmol/L
HC03
mmol/L
BEmmol/L -1.33 0.12 1.58 .13 .99
Na= (salt and Na2S04) vs NRtCI ; CI= (salt and NRtCl) vs Na2S04;+ P<.10
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Table 7. Serum macrominerals in heifers receiving ammonium chloride (Nli4CI), salt and
sodium sulfate (Na2S04).

.........................................................................!~..~~~~~!!!~ _ _ _._ _ ~E~.!?~.~.!!!!.Y... _ ..
N:H4CL SALT Na2S04 Linear Quad.

CI mmollL 113.1 111.5 109.0 .04 .73 Cf·
Na mmollL 145.3 146.4 144.7 .73 .28
K mmollL 4.18 4.32 4.29 .41 .43
Ca mg/dl 9.26 9.14 9.20 .74 .62
P mg/dl 5.65 5.83 5.71 .91.76
Mg meqlL 2.03 2.07 1.98 .55.42
Na= (salt and Na2S04) vs ~CI ; CI= (salt and ~CI) vs Na2S04;* P<.10

Table 8. Urine and fecal pH in heifers receiving ammonium chloride (NRJCI), salt and
sodium sulfate (Na2S04).

Na**
Quad.
.76
.44

Probability
Linear

.04

.87

Treatments
NH4CI SALT Na2S04

Urine pH 5.958 6.S3ab 6.91 b

Fecal pH 5.67 5.91 5.73
aT) Means with different superscripts within row P<.05
Na= (salt and Na2S04) vs ~CI ; CI= (salt and ~Cl) vs Na2S04;u P<.05
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