
11ffi BIOAVAILABILITY AND TOXICITY OF

CHLOROPHENOLS TO THE EARTHWORM,

EISENIA FETIDA

By

BRADLEY L. KNIGHT

Bachelor of Science

Southeastern Oklahoma State University

Durant, Oklahoma

1996

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1999



THE BIOAVAILABILITY AND TOXICITY OF

CHLOROPHENOLS TO THE EARTHWORM,

EISENIA FETIDA

Thesis Approved:

Thesis Adviser

@~

Lt)OtiQU g pcuMJ.)
----....:..D~e"-allll:llnlofo~f t~he-~duate College

ii



ACKNOWLEDGEMENTS

I would like to thank my principal advisor, Dr. Roman Lanno, for his patience,

guidance, and support throughout the research project and writing of this thesis. I would

also like to thank the members of my committee, Dr. Nick Basta, Dr. Dave Janz, and Dr.

Karen McBee for their assistance in preparation of the thesis.

The friendship and support of Jason Wells, Sherry LeBlanc, and Jason Conder,

fellow graduate students in the Ecotoxicology and Water Quality Research Laboratory,

has been invaluable to me during the completion of this project. Thanks to the graduate

students of the Department ofZoology for the camaraderie we share.

Financial support provided by the Environmental Institute and the Department of

Zoology is greatly appreciated.

Special thanks to my wife, Erin Knight, for her encouragement and understanding

throughout the course of these studies.

III



TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION .. .. . .. . .. . . .. .. . . . . . .. . .. .. . . .. . . . .. . .. . . . . .. . .. . . .. . .. .. . 1

A. Physical-Chemical Properties of Chlorophenols 2
B. Bioavailabi~ity and Toxicity... . .. . .. .. . .. .. . 3
C. Toxicity Evaluation 9
D. Critical Body Residues............ 12
E. Mode of Toxic Action ,. 15
F. Toxicity ofMixtures .. .. .. .. 16
G. Summary . .. . . . . . . . . . . . . . .. .. . . . . . . . . . . . . . .. . . . . . . . . .. . . . . . . .. . . . . . . . . . . .. . .. . . . . . . . . . . . .. 18

II. MATERIALS AND METHODS ..... , . . . .. . . . . ... . .. .. . . . . . . . . . . . . . . . . . .. . . . . . . . .. . . . . .. 20

A. Chemicals, Organisms, and Test Medium 20
B. General Toxicity Test Preparation 21
C. General Toxicity Test Outline " " '" '" 22
D. Range-finder Toxicity Tests 24
E. Definitive Toxicity Tests 24
F. Tissue Extraction and Sample Concentration ,................................... 25
G. Sample Cleanup .. . . . . . . . .. . . . . . . . . .. . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . .. 26
H. Spike Recoveries _ 27
I. Gas Chromatography 27
1. Data Analysis 28

III. RESULTS 30

A. Incipient Lethal Levels and Toxicity Half-Lives 30
B. Critical Body Residues 34

IV. DISCUSSION 39
A. MCP, TCP, and PCP 39

1. Toxicity Curve Analyses 39
2. Critical Body Residue Analyses , " ... . . .. . .. . . . . .. . .. 41

iv



B. Mixture Toxicity Tests.. .. .. 42
1.Toxicity Curve Analyses 42
2.Critical Body Residues. . . . . . . . . . . . . .. . .. . . . . .. .. . . .. . .. .. . . . . . . . . . . 43

C. Summary '.. 45

V. BIBLIOGRAPHY 46

VI. APPENDICES.............................................................................. 50

A. APPENDIX A - BODY RESIDUE DATA FOR
TCP TOXICITY TEST . . .. . . .. .. .. . . . . .. . . . . .. . .. 50

B. APPENDIX B - BODY RESIDUE DATA FOR
PCP TOXICITY TESTS 52

C. APPENDIX C - BODY RESIDUE DATA FOR
TCP/PCP MIXTURE TOXICITY TESTS 54

D. APPENDIX D - SAS CODE FOR ANALYZING
BODY RESIDUES FOR THE TCP TEST 57

E. APPENDIX E - SAS CODE FOR ANALYZING
BODY RESIDUES FOR THE PCP #1 TEST....................................... 58

F. APPENDIX F - SAS CODE FOR ANALYZING
BODY RESIDUES FOR THE PCP #2 TEST 59

G. APPENDIX G - SAS CODE FOR ANALYZING TCP AND
PCP BODY RESIDUES FOR THE TCP/PCP TEST 60

v



Table

LIST OF TABLES

Page

1. Chemical and physical properties of the homologous cWorophenol series 2

II. Modes of action for organic toxicants and associated CBR estimates in fish. . . . .. 16

III. ILLs and tll2S of the individual chemical toxicity tests and mixture toxicity
tests with correlation coefficient for curve fit .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30

IV. Body residues in earthworms exposed to TCP in artificial soil. Means with
common superscripts are not significantly different (P> 0.05, differences
of least squares means); nd - not detected.......................................... 35

V. Body residues in earthworms exposed to PCP in artificial soil during the
first PCP toxicity test. Means with common superscripts are not
significantly different (P > 0.05, differences ofleast squares means);
nd - not detected........................................................................ 36

VI. Body residues in earthworms exposed to PCP in artificial soil during the
second PCP toxicity test. Means with common superscripts are not
significantly different (P> 0.05, differences of least square means);
nd - not detected. . . . . . . .. .. . . . . . ... . . . . . . . . ... ... . .. ... ... . .. . . . . . . .. . .. . . . . . . .. ... . . . .. 36

VII. Body residues in earthworms exposed to TCP and PCP in artificial oil
during the TCPIPCP mixture toxicity test. Means with common
superscripts are not significantly different (P > 0.05, differences of
least squares means); nd - not detected 37

VI



LIST OF FIGURES

Figure Page

1. Structural formulas of the homologous cWorophenol series...................... 2

II. Processes controlling uptake kinetics and body residues within an
earthworm, where ka is the sorption rate constant, 1«J is the desorption rate
constant, ks is the dietary uptake constant, k2 is the elimination rate
constant, km is the metabolic rate constant, k l is the uptake rate constant
from interstitial pore water, kg is the growth rate constant, and kr is the
reproduction rate constant ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

III. Generic toxicity curve created by plotting inverse LCso against time.
Toxicity half-life (tin) and incipient lethal level (ILL) are estimated
from nonlinear regression parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

IV. Toxicity curve for E. fetida exposed to MCP in artificial soil. Different
symbols at each time point represent replicates and the curve is fitted to
the points by nonlinear regression (r2 = 0.998) 31

V. Toxicity curve for E. [elida exposed to TCP in artificial soil. Different
symbols at each time point represent replicates and the curve is fitted to
the points by nonlinear regression (r2 = 0.999) ,........... 31

VI. Toxicity curve for E. fetida exposed to PCP # I in artificial soil. Different
symbols at each time point represent replicates and the curve is fitted to
the points by nonlinear regression (? = 0.998) ,......... 32

VII. Toxicity curve for E. fetida exposed to PCP #2 in artificial soil. Different
symbols at each time point represent replicates and the curve is fitted to
the points by nonlinear regression (? = 0.993) 32

\'11



VIII. Toxicity curve for E. fetida exposed to the MCPffCPIPCP #I mixture in
artificial soil. Different symbols at each time point represent replicates and
the curve is fitted to the points by nonlinear regression e = 1.000) ... ... .. .. .. 33

IX. Toxicity curve for E. fetida exposed to the MCPffCP/PCP #2 mixture in
artificial soil. Different symbols at each time point represent replicates and
the curve is fitted to the points by nonlinear regression (? = 0.999) 33

X. Toxicity curve for E. fetida exposed to the TCP/PCP mixture in artificial
soil. ~ifferent symbols .at each tim~ point repre~ent r;plicates and the
curve IS fitted to the pomts by nonhnear regresslOn (r = 0.999) 34

XI. Average body residues (± SE) in earthworms exposed to TCP in artificial
soil. The majority of the earthworms below the ILL were alive and those
above the ILL were dead .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 37

XII. Average body residues (± SE) in earthworms exposed to PCP in artificial
soil with the ILL and LCso values at termination of the PCP tests. The
majority of the earthworms below 0.1 mmol kg· 1 were alive and those
above 0.1 mmol kg'] were dead at the termination of the two PCP toxicity
tests 38

XIII. Average body residues (± SE) in earthworms exposed toTCP and PCP in
artificial soil with the calculated ILL. The majority of the earthworms
below 0.59 TU were alive and those above 0.59 TU were dead 38

XIV. Effects ofKow on ILL (e) and tll2 (_) with linear regression analysis 41

XV. Effects of vapor pressure on ILL (e) and tl/2 (_) with linear regression
Analysis 41

XVI. CBR TUs for TCP (e), PCPC-), and TCP+PCP (.6.) illustrating the
antagonistic effect of TCP and PCP .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

viii



LIST OF SYMBOLS

CBR critical body residue

ILL incipient lethal level

kd desorption rate constant

ka sorption rate constant

ks dietary uptake rate constant

k l uptake rate constant from interstitial water

k2 elimination rate constant

km metabolic rate constant

kg growth rate constant

kr reproduction rate constant

Kow octanol-water partition coefficient

MCP para-chlorophenol

MW molecular weight

pKa - log of the acid dissociation constant

PCP pentachlorophenol

TCP 2,4,S-trichlorophenol

tl/2 toxicity half-life

ix



CHAPTER ONE

INTRODUCTION

Soils are vital for sustaining terrestrial ecosystems and for agricultural production.

Organic chemicals, such as pesticides, industrial chemicals, and petroleum byproducts,

can be found in soils of agricultural areas, manufacturing facilities, and oil refineries.

Many of these chemicals have known individual effects, but they often are present as

mixtures for which effects are undetermined.

The focus of this thesis is assessment of bioavailability of cWorophenols in soil by

use of earthworms (Eiseniafetida) as a model. Bioavailability will be assessed by

examining the relationship between body residues and nominal soil concentrations of

chlorophenols, both individually and as mixtures. Critical body residues (CBRs), body

residues associated with a toxicological endpoint, will be used to assess and compare the

toxicity of a homologous series of chlorophenols: para-chlorophenol (MCP), 2,4,5-

trichlorophenol (TCP), and pentachlorophenol (PCP). The questions I will be asking are:

I. How do CBRs relate to the assessment of bioavailability of chlorophenols
in soil?

2. Are CBRs an adequate tool to predict the additivity of the toxicity of
chlorophenols in a mixture?

3. How do the kinetics of uptake affect the body residues of each
chlorophenol in mixture assays?

These questions will be addressed by testing the null hypotheses that CBRs for

chlorophenols are constant at the biological endpoint of mortality and the effects of

mixtures of chlorophenols are additive.



Physical-Chemical Properties of Chlorophenols

Chlorophenols are found in the environment due to their varied industrial and

agricultural applications. MCP is an intermediate and/or impurity in production ofhigher

chlorinated phenols (Howard 1989). TCP has been used as a pesticide and pesticide

intermediate in the production of2,4,5-tricWorophenoxyacetic acid (2,4,5-T) (Howard

1991). PCP has been used primarily in the preservation of wood products, telephone

poles, and fence posts (Howard 1991). This series of chlorophenols differs in chemical

and physical properties due to the number of chlorine atoms substituted on the aromatic

ring (Fig. 1). As the degree of chlorination increases, molecular weight and log Kow

increase, while water solubility, pKa, and vapor pressure decrease (Table I).

Table 1. Chemical and physical properties of the homologous chlorophenol series.

MW pKa log Solubility in H2O vapor pressure (25°C)
Kaw (mg L- 1

) (mm Hg)

MCP 128.56 9.41 2.39 27,000 0.087

TCP 197.46 7.43 3.72 982 0.022

PCP 266.35 4.74 5.12 14 0.00011

Mep

OH
H~H

HYH
CI

TCP

OH
H~CI

CIYH
CI

PCP

OH
CI~CI

CIYCI
CI

Fig. 1. Structural formulas of the homologous chlorophenol series (Howard 1989, 1991).

Handbook of Environmental Fate and Exposure Data.



Also, modes of toxic action vary within this homologous series of chlorophenols. The

uncoupling effect on oxidative phosphorylation decreases with decreasing chlorination

(Ahlborg and Thunberg 1980), so that MCP and TCP may have other modes of toxic

action such as narcosis (McCarty et a1. 1992).

Bioavailability and Toxicity

One definition of bioavailability is the ability of a toxicant to move into or onto an

organism (Benson et al. 1994). The total amount of chemical in soil is separated into two

fractions, a bioavailable fraction and a biologically unavailable fraction. When the

bioavailable fraction becomes large enough and the length of exposure to an organism is

long enough, toxicity occurs. Bioavailability and toxicity cannot be determined by

measuring chemical levels in soil by solvent extraction, but are determined by examining

accumulation and effects of contaminants on living organisms using standardized

bioassays, toxicity tests, or field exposure assessments (Fitzgerald et a1. ]996, 1997;

Neuhauser et al. 1985, 1986). Uptake kinetics of the bioavailable fraction by organisms

are important in determining toxicity. Kinetics are controlled by the interaction of the

organism (biological modifying factors) with the toxicant and the soil (physicochemical

modifying factors). Biological modifying factors include test species, metabolic

transformation, and excretion, whereas physicochemical modifying factors include length

of exposure, pH, ionization, hydrophobicity, and sorption. These modifying factors

account for much of the variation in toxicity data found in the literature (Fitzgerald et al.

1996; Sprague 1995, 1970).



Knowledge of the amount and time course of chemical exposure is critical for

toxicological evaluation (McCarty and Mackay 1993). Concentration and length of

exposure, along with rate of chemical uptake, determine the time to reach a toxicological

endpoint or whether one will be reached at all. Regardless of the toxic potency of a

chemical, without sufficient exposure duration, toxic endpoints will not be reached.

Toxicity estimates based on fixed exposure-time toxicity tests neglect the importance of

the time course of accumulation (toxicokinetics) as separate from that of toxic action

(toxicodynamics) (McCarty et aI. 1992). Uptake of a chemical by an organism is

dependent on both rate of uptake and length of exposure, making time-independent

toxicity assessments important for accurate toxicological assessments.

An important modifying factor affecting the toxicity of weak organic acids, such as

chlorophenols, is ionization (Sprague 1995). The pH of the exposure medium causes

changes in toxicity, solubility, and uptake of ionizable organics (Mayer et al. 1994;

Hamelink 1977; Sprague 1970), whereas toxicity of neutral nonpolar organics is not

greatly modified by pH. The pKa of a chemical is the pH at which the chemical is 50

percent ionized. For weak organic acids, toxicity and bioaccumulation should decrease

with increasing pH for pH > pKa and be roughly constant for pH < pKa as the neutral

phenolic form is better able to diffuse across membranes. This trend indicates that

toxicity and bioaccumulation increase as the fraction of the neutral form of the chemical

increases. Modeling mixtures ofchlorophenols is complicated by the impact of

ionization on uptake kinetics and the effective toxic residue level, as the unionized form

is thought to be substantially more toxic because it can readily diffuse across membranes

(Sprague 1995; Mayer et al. 1994; McCarty et al. 1992). Effects of pH on the toxicity of
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ionizable chemicals to soil organisms is dependent on the pKa of the chemical in question

and the pH of the soil.

Hydrophobic organic chemicals have the ability to bioaccumulate within organisms

making it possible to compare chemicals based on their accumulation potential.

Bioaccumulation is the cumulative uptake of a chemical from the test medium and

ingested matter and is a measure of the ability of a chemical to accumulate in an

organism. During bioaccumulation tests, organisms are exposed to a chemical at a

constant concentration well below the LCso to minimize toxic effects that could alter

chemical uptake kinetics. Accumulation of chemicals in exposed organisms usually

follows first-order kinetics, increasing quickly for a time and then reaching a plateau or

steady state. As body residues reach steady state, the sorption rate (ks) and the desorption

rate (~) are approximately equal and the uptake from interstitial pore water (k)) and the

dietary uptake (ks) are equal to the elimination rate (k2) and the metabolic rate (km). The

growth rate constant (kg) and the reproduction rate constant (kr) are relativ Iy

insignificant over the short duration of a bioaccumulation test (Fig. 2).

Steady state is the point in time where the chemical residue in the organism does not

change over time. The bioaccumulation factor (BAF) is estimated at steady state by

dividing the chemical concentration within the test organism by the chemical

concentration in the exposure medium (Equation 1). Due to their toxicological

significance, residue measurements are now often incorporated into toxicological

assessments to provide more information about toxicokinetics and toxicodynamics.

BAFs can be calculated for chemicals used in toxicity tests in which body residues are

5



measured. Body residues may be a better estimate of the amount of chemical at the site

of toxic action than surrogate measurements based on exposure medium concentrations.

Worm

Bioaccurnulation factor (BAF) = [organism] I [soil]

.----------
I
I
I
I
I
I
I
I I

.. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - _I

(Equation I)

Figure 2. Processes controlling uptake kinetics and body residues within an earthworm,
where ka is the sorption rate constant, kd is the desorption rate constant, k5 i the dietary
uptake constant, k2 is the elimination rate constant, km is the metabolic rate constant, k l is
the uptake rate constant from interstitial pore water, kg is the growth rate constant, and kr

is the reproduction rate constant (adapted from Belfroid 1994).

Temperature of the test medium potentially could be a physicochemical modifying

factor (Sprague 1995). For ectothermic aquatic organisms, metabolism doubles for every

10°C change in temperature affecting respiration, metabolic rates, and diffusion across

epithelial surfaces (Fitzgerald et a1. 1996; Mayer et a1. 1994). Increasing temperature

increases respiration rates, increasing accumulation rates and leading to shorter survival

times than at lower temperatures. Temperature differences should be noted when

comparing differences in toxicity between species. For example, the differential between
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optimal temperatures for Lumbricus terrestris and Eisenia fetida ranges from 5 to 10°C

(Fitzgerald et al. 1996) and may influence LCso values.

The rate of transformation of organic chemicals through photolysis or hydrolysis can

be affected by the association of the chemical with certain types of organic matter (Gobas

and Zhang 1994). Pentachlorophenol biodegrades quickly in the presence of UV light

when dissolved in relatively clean, clear water to produce quinones and acids or tetra-

and trichlorophenols (Crosby 1994). Chemicals that are sorbed to organic matter may be

degraded less than freely dissolved chemicals. Sorbed chemicals are less subject to the

diffusion-controlled process of volatilization and diffusion between organic matter and

the aqueous phase of soil. To characterize or estimate the extent a chemical will be in

association with organic matter, it is important to understand the nature of the interactions

between organic chemicals and organic matter (Gobas and Zhang 1994). Chlorophenol

anions are more mobile than the unionized foml (You and Liu 1996). The adsorption of

chlorophenols increases with increasing hydrophobicity of the adsorbent (soil organic

matter) and the chlorophenol.

Earthworms compete with soil organic matter for accumulation of lipophilic organic

chemicals (Fig. 2). The amount of organic matter present in the soil can affect the toxicity

of chemicals (van Gestel and van Dis 1988). Sorption (ka) and desorption (kd), are

especially important to tissue residue dynamics and toxicity as they affect the

bioavailability and uptake of chemicals from the diet and interstitial water by

earthworms. Soil organic matter is the primary soil property controlling the adsorption of

organic chemicals in soils (Bhandari et al. 1996) with the hydrophobic nature of the

chlorophenols as the driving force of the adsorption reactions (You and Liu 1996). The
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amount of chlorophenol sorbed to soil organic matter decreases from PCP to TCP to

dichlorophenol (DCP) (You and Liu 1996). Oxidative coupling of MCP to soil organic

matter results in a non-desorbable fraction of MCP in soil (Bhandari et al. 1996). Benoit

et al. (1996) found that DCP and MCP sorption to humic acid was strong. Sorption of

ionizable organic compounds cannot be predicted by using the organic carbon fraction

due to variation in ionization at different pH values. Processes other than partitioning can

affect the behavior oforganic acids. Most attention has been given to studying the

partitioning or sorption of organics to suspended or solid organic matter. Natural

inorganic phases such as clays, silicates, and metal oxides have the ability to sorb

organics, although their ability to do so is much weaker. There is a great bulk of these

inorganic phases in the environment and cumulative sorption could greatly impact the

bioavailability of organic chemicals and the amount of chemical reaching the organism

(Gobas and Zhang 1994).

Dose estimation is very important to the science oftoxicology. Paracelsus stated in

the 16th century that "All substances are poisons; there is none which is not a poison. The

right dose differentiates a poison from a remedy" (Paracelsus 1567). Do e-response

theory forms the basis of toxicological study and involves three assumptions. First, the

amount of chemical at the site of toxic action is proportional to the concentration and

nature of exposure. Second, biological responses occur when the chemical is present at

the site of toxic action. Third, the biological response is proportional to the amount of

chemical at the site of toxic action after the toxic threshold has been reached (McCarty

and Mackay 1993). These three principles concern the uptake and depuration rates of the

chemical of interest. Accumulation occurs when the uptake rate is greater than the



elimination rate. Organic chemicals accumulate within the organism at the site of toxic

action until a threshold is reached and then biological response(s) begin to occur. The

biological response(s) is proportional to the amount of chemical at the site of toxic action.

Measuring the amount of chemical at the site of toxic action is difficult thu the amount

of chemical in the exposure medium is generally used as a surrogate (McCarty and

Mackay 1993).

Toxicity Evaluation

Three factors interact to produce a toxic response: exposure, toxicokinetics, and

toxicodynamics (McCarty and Mackay 1993). The toxicity information on mortalities is

used to compute LCso values from which comparisons of toxic potencies of chemicals are

made. Kinetic behavior, bioavailability, and biotransformation can influence the results

of LCso tests (de Bruijn et al. 1991). Use of a simple LCso at a single defined time can be

a misleading indicator of toxicity due to slow uptake kinetics of a chemical. Erroneous

conclusions about the toxicity and potency of chemicals may be drawn if the test has not

reached a steady state with cessation of mortalities (Lanno et al. 1997; Mackay et al.

1992). Toxicity curves provide information about the toxicity half-lives (tII2S) and

incipient lethal levels (ILLs) and as they are measurements made at a steady state with

respect to time, they are less dependent on external modifying factors. The ILL is a time

independent LCso value or concentration at which half of the exposed organisms will live

indefinitely with the tl/2 being the time necessary to achieve half the ILL (Fitzgerald et al.

1997, 1996; Sprague 1995).
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Toxicity curves are developed using raw toxicity data to aid in evaluating of the

inherent toxicity of chemicals and can provide important information about toxicant

kinetics. They are based on LCso values derived from mortality observations over the

course of the toxicity test. A mathematical estimate of the LCso is calculated for each

observation time where greater than 50% mortality has occurred (Lanno et a1. 1997;

Hamilton et a1. 1977). Confidence limits on the LCso can be obtained when there is partial

mortality in some of the replicates. The approach used for construction of the toxicity

curves is to plot LCsos (or lILCsos) for a geometric series of inspection times against time

(Lanno et a1. 1997). The ILL and t1l2 can be estimated by nonlinear regression with the

ILL as the asymptotic value of the curve and tll2 as the time necessary to obtain half of

the ILL (Fig. 3) (Fitzgerald et al. 1997, 1996). The ILL provides information on toxicity

and potency and allows toxicities of different chemicals to be compared easily and

meaningfully because they are time-independent lethality values (Lanno and McCarty

1997). The t\12 indirectly provides information on the kinetics of toxicant uptake and can

be used to compare the kinetics between different toxicants.

r--.

(3
0.8

E 0.6E
eo
~ 0.4

--;
0.., 0.2u

...l

0

0

ILL = 1.28 mmol kg- J

24 48 72 96 120 144 168 192 216 240

Time (hours)

Fig. 3. Generic toxicity curve created by plotting inverse LCso against time. Toxicity
half-life (t\l2) and incipient lethal level (ILL) are estimated from nonlinear regression
parameters.
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Short-term toxicity tests focus on acute effects of a chemical and lethality is often the

desired endpoint (Abdul Rida and Bouche 1997). Standardized acute toxicity tests with

E. fetida are usually conducted for 7-28 days (ASTM 1995). Tests should continue until

mortality has ceased in order to obtain a complete toxicity curve for evaluation of ILLs

and t1l2S (Fitzgerald et at. 1996). Earthworm soil toxicity tests with some hydrophobic

chemicals may not achieve an ILL in 14 days, the suggested duration for acute lethality

tests with earthworms (Lanno and McCarty 1997). ILLs are usually attained after 4-5

t1l2S (Lanno and McCarty 1997). Only toxicity data up to 14 days were used to model

toxicity and estimate the ILL for Eudrilus eugeniae and L. terrestris exposed to PCP

because very few mortalities occurred after 14 days and the ILL had been reached

(Fitzgerald et al. 1996). Tests longer than 14 days may exhibit inconsistencies in the

LCso data due to mortalities other than from exposure to test chemicals, such as reduced

food intake (Fitzgerald et at. 1996). Evaluation of the effect of supplemental feeding on

earthworms in 21-day tests showed significant differences in growth and reproductive

response (cocoon production) between fed and unfed groups (Gibbs et al. 1996).

Standardized toxicity tests are merely tools designed to compare the relative toxicity

of chemicals. However, they cannot be used to predict the effects of toxicants in real

world field situations without adequate validation in the field (Abdul Rida and Bouche

1997). The contact filter paper test, a standardized protocol for earthworm toxicity

testing, gives consistent and reproducible results; however, these results do not correlate

well to results from other types of toxicity tests (Neuhauser et at. 1986; Callahan et al.

1985). This test system also does not describe what will happen within a soil system

(Neuhauser et al. 1985). The ASTM artificial soil toxicity test better mimics what

I J



happens in soil systems because the test medium is a repres ntative artificial soil made up

of organic matter, sand, and clay. This standard, reproducible "soil gives consistent

results among laboratories. Results of the artificial soil test should not be extrapolated to

the field, but toxicity test results using field soils with similar chemical-physical

characteristics to the artificial soil may be well correlated.

Critical Body Residues

Chemical residues in an organism that are linked to ecologically relevant endpoints

such as survival, growth, and reproduction are termed critical body residues (CBRs)

(Fitzgerald et a1. 1996; Belfroid et a1.1993) and are determined using bioassays and

toxicity tests (McCarty and Mackay 1993). CBRs show that uptake kinetics are largely

responsible for the differences in ILLs (Fitzgerald et a1. 1996). Whole-body residues are

better surrogates for estimating the amount of chemical at the site of toxic action than

ILLs. As an example, a difference in toxicity among species of earthworms, expressed as

LCso values, demonstrates that smaller earthworms are more sensitive to PCP than larger

earthworms (Fitzgerald et a1. 1996). This may not be the case, however as the internal

body concentration or residue at lethality in these different species of earthworms is

similar and accounts for hioavailabiJity since organism uptake defines the bioavailable

fraction. Three earthworm species, E. felida, L. lerreslris, and E. eugeniae, varying in

size by an order of magnitude, were exposed to PCP in artificial soil. ILLs for L.

lerrestris and E. eugeniae, 0.72 and 0.63 mmol kg-I respectively, were significantly

higher than ILLs for E. ftlida, 0.14 mmol kg- l
, the smallest of the three species

(Fitzgerald et al. 1996). However, CBRs for E. felida were 0.33-2.65 mmol kg-I while the

combined residues of L. terrestris and E. eugeniae were 0.47-2.18 mmol kg l
. CBRs were

12



not significantly different for the PCP exposures for the three speci s even though there

were significant differences in the ILLs. CBR assessment of toxicity and bioavailability

of chemicals helps to overcome erroneous conclusions about the potency of chemicals

based on exposure medium concentrations due to modifying factors of toxicity.

CBRs have several advantages over the expression of toxicity based on external

ambient concentrations. Bioavailability is incorporated into CBRs and uptake kinetics

can be determined by measuring residues and mortalities over time. Toxic potencies are

expressed more clearly with internal concentrations, possibly allowing for detennination

of different modes of toxic action since chemicals with specific modes of action often

have lower CBRs than chemicals with non-specific modes of action (e.g. narcosis).

Chemical residues for acute narcosis appear to be approximately constant among

species and range from 2 to 8 mmol kg-I (Table 2). The differences in CBRs associated

with narcosis among different species may be due to differences in proximate

composition or physiology rather than differences in target site concentration. Organism

with very high lipid content can store chemical in neutral lipid, minimizing the amount

reaching the site of toxic action and resulting in a higher CBR for the same biological

response as organisms with a low lipid content. Toxicity estimates using CBRs are less

variable than LCso data based on external soil concentrations (McCarty and Mackay

1993). Fitzgerald et al. (1996) observed ILLs among three earthwonn species in different

test soils spiked with PCP to be significantly different. The ILLs varied seven-fold

whereas CBRs for the same earthworms varied less than three-fold (Fitzgerald et al.

1996). The differences in toxicity expressed as exposure concentrations and CBRs

illustrate how CBRs can reduce variation in toxicity data.
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CBRs can help overcome many problems associated with toxicity testing. However

there are some disadvantages to using CBRs. Metabolic breakdown or activation,

internal distribution, lipid types and content, and temperature may impose problems on

the toxicological evaluation (McCarty and Mackay 1993). These toxicokinetic factors

also cause many problems with standard approaches to toxicity assessment (e.g. LCsos).

CBRs may bias the apparent toxicity of a chemical if it is metabolized and detoxified

readily. In such a case, the body residues of the parent compound will be decreased and

therefore the apparent toxicity may be overestimated (Mackay et a1. 1992). Activation of

chemicals by mixed function oxidase enzymes can result in metabolites that are more

toxic than the parent chemicals and can complicate toxicity interpretation (Mackay et al.

1992). Because earthworms have a mixed function oxidase system similar to that of

other invertebrates, but less active than that of vertebrates (Lee 1998), activation should

pose little problem to the use of CBRs. When irreversible damage occurs to the organism

from a single dose or sustained exposure, it would be incorrect to use CBR , as the

residue would not be indicative of toxicant at the site of toxic action. The damage

sustained could significantly affect the sensitivity of the organism to the chemical and

result in variable CBRs that are not necessarily indicative of the nature of the exposure.

The chemical residue needs to act as its own marker or descriptor of exposure (McCarty

and Mackay 1993).
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Mode of Toxic Action

The mechanism by which a large class of organic chemicals exert their toxic action is

by a nonspecific narcotic effect or anesthetic mode of action (narcosis) (Abernethy et aI.

1988). The actual toxic mechanism and site of action remain unclear for narcosis. Two

theories used to explain narcosis are the critical volume theory and the protein binding

theory. The critical volume theory hypothesizes that narcosis results from changes in the

structure of the lipid bilayer in nerve cell membranes due to an increase in volume caused

by dissolved toxicant. The membrane accumulates a high volume of the chemical so that

it 'swells', interfering with the structure and function of the cell membrane (Abernethy et

al. 1988). A critical volume of approximately 1% was found to result in narcosis in many

organisms (Mullins 1954). Further work by Miller et al. (1983) has shown the critical

volume to be as low as 0.5%. Increasing atmospheric pressure has been observed to

reduce or eliminate the narcotic effect and supports the critical volume theory because the

reduction of volume with increasing pressure decreases the critical volume (Abernethy et

al. 1988; Franks and Lieb 1982). According to the protein binding theory, narcosis

occurs due to binding of the chemical to specific receptor sites located in hydrophobic

regions of proteins found in nerve membranes (Abernethy et al. 1988). Franks and Lieb

(1982) suggest that narcosis occurs from chemicals binding to a sensitive protein and

inhibiting its normal function

Chemicals with modes of toxic action other than narcosis often are associated with

differing ranges of body residues (Table 2) (McCarty and Mackay 1993).

Pentachlorophenol is a metabolic inhibitor (uncoupler of oxidative phosphorylation) and

not a narcotic (Ahlborg and Thunberg 1980). Because it has a specific mode of action

15



and a high log Kow, it is more potent than other chlorophenols that act by narcosis and

will subsequently have lower CBRs. When assuming that narcosis results from a minimal

effect, it follows that organisms dying of exposure to chemicals with specific modes of

action will have a lower CBR than those that die from narcotics. Even if lethal levels of a

chemical are similar for fish and aquatic invertebrates, it must not be assumed that the

mode of action is the same (Sprague 1970). Modes of action may differ between species

in relation to different physiologies. Modes of action also can have negative impacts on

the accurate assessment of mixtures of chemicals.

Table 2. Modes of action for organic toxicants and associated CBR estimates in fish.
Adapted from McCarty and Mackay (1993).

Mode of action

Narcosis
acute - summary

Polar narcosis
Acute - summary
Acute - 2,3,4,5-tetrachloroaniline

Respiratory uncoupler
acute - pentachlorophenol
acute - 2,4-dinitrophenol
acute - pentachlorophenol

Toxicity of Mixtures

Estimated residue (mmol kg· l
)

2-8

0.6 - 1.9
0.7 - 1.8

0.3
0.2
0.11

Assessing the toxicity of chemical mixtures often is difficult because chemical

interactions are not well understood. Chemicals in mixtures may have different modes of

action, prompting many different biological responses which may result in toxicological

effects that are substantially different from any of the individual components (McCarty et

al. 1992). The effects of mixtures of chemicals can be described best using the terms

antagonistic, additive, and synergistic (Sprague 1970). Antagonism occurs when the
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effects of two chemicals combined is much less than the sum of their effects individually.

Additivity of toxicity occurs when combined the effect of two or more chemicals is equal

to the sum of the effects of each chemical alone. Synergism is when the combined effect

is much greater than the sum of individual effects. The time course of toxicity in a

mixture will be the result of the kinetics of uptake of each individual chemical. CBRs

may facilitate the toxicological assessment of mixtures of chemicals since body residues

can be established for each component of the mixture to determine which chemical(s) is

responsible for the toxicity (McCarty and Mackay 1993). The proportion of each

chemical contributing to the CBR will vary with time until all have attained a steady-state

body residue or the organism dies.

The "toxic unit" model is a commonly used approach for assessing the toxicity of

mixtures (Deneer et a1. 1988; Sprague 1970). The toxic unit (TV) is defined as the

concentration of a particular toxic chemical in a mixture divided by the ILL for the

biological response endpoint in question (McCarty et a1. 1992; Sprague 1970). This

approach can also be expanded to include TUs expressed as CBRs (Equation 2).

Toxic Unit = [Medium or Solution]
[Incipient Lethal Level]

Body residue in organism (quation 2)
Critical body residue

Toxic units are dimensionless and can be added together for every component in a

mixture allowing for a sum of all of the body residues (McCarty et a1. 1992; Sprague

1970). Toxic units are based only on toxicity to one species of organism used in the

toxicity tests, due to the fact that ILLs could vary between species of organisms (Sprague

1970). Organic chemicals will contribute to the narcotic effect of the mixture even at

concentrations as low as 0.0025 TO. Therefore, any chemical that acts by narcosis,

according to its hydrophobicity and concentration, should contribute to the toxicity of the
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mixture even at extremely low concentrations (Deneer et al. 1988). For large mixtures of

chemicals, Hermens et al. (1984) and has shown that the larger the number of chemicals

in a mixture, the better the approximation of additivity of toxicity (McCarty and Mackay

1993). Additivity of chemicals is probably the most common occurrence for effects of

mixtures of chemicals.

A molar concentration of a narcotic mixture in an organism should produce a

biological response similar to that produced by the same molar concentration of a single

narcotic chemical (McCarty et al. 1992). Chemicals with a specific mode of action

possess some narcotic potency, depending on the hydrophobicity of the chemical. When

present at concentrations well below those necessary to cause the specific mode of action,

they will contribute to the total narcotic potency of the mixture (Deneer et al. 1988). One

explanation for additive toxicity among chemicals with dissimilar modes of toxic action

is that when chemicals with specific modes of toxic action are present at levels well

below the LCso for their response (0.3-0.02 of their LCso or critical body residue), they do

not express the toxic action and merely contribute to the narcotic effect of the mixture

(McCarty and Mackay 1993). Understanding how mixtures of chemicals interact is

valuable for remediating contaminated sites to safe levels.

Summary

In summary, ILLs, based on external soil concentrations, do not consider

bioavailability. Using CBRs for toxicological assessment takes bioavailability into

account since the amount of chemical that the organism bioaccumulates is measured and

variability in toxicity data due to modifying factors is reduced. Assessment of the
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toxicity of chemical mixtures may be conducted using ILLs and CBRs set to toxic unit

equivalents, allowing for a detennination of the constituent of the mixture that is

contributing to most ofthe toxicity. The objectives of this thesis are to determine ILL,

tlI2S, and CBRs for a homologous series of chlorophenols and evaluate how each

chlorophenol contributes to mixture toxicity. The null hypotheses being tested are that

CBRs for chlorophenols are constant at the biological endpoint ofmortality and the

effects of mixtures of cWorophenols are additive.

19



CHAPTER TWO

MATERIALS AND METHODS

This study ofthe toxicity and bioavailability of cWorophenols was divided into two

sections. The first part was the exposure of earthworms to chlorophenols piked in

artificial soil and analysis of LCso values from these tests. Secondly, earthworm tissues

were extracted, cWorophenol residues quantified and comparisons of toxicity were made

using both ILLs and CBRs. Tests were conducted with both individual chlorophenols

and chlorophenol mixtures.

Testing protocols were modified from the ASTM (1995) methodology E 1676 - 95,

"Standard Ouide for Conducting a Laboratory Soil Toxicity Test With Lumbricid

Earthworm Eiseniafoetida," designed to assess lethal or sublethal toxic effects on

earthworms in short-term tests (7-28 days). Spiked artificial soil is an accepted exposure

medium (ASTM 1995) and was used in all toxicity tests. The results of the tests were

reported as LCso (median lethal concentration) values from which ILLs were estimated.

Chemicals, Organisms, and Test Medium

Para-chlorophenol (MCP, 99% pure, Fisher Scientific), 2,4,5-trichlorophenol (TCP,

99% pure, Chern Service), and pentachlorophenol (PCP, 99% pure, Chern Service) stock

solutions were prepared by dissolution in reagent grade water (ROW) using volumetric

glassware within 12 hours of spiking the artificial soil. Sodium hydroxide (ACS grade,

Fisher) was added to the TCP and PCP stock solutions to aid dissolution (Fitzgerald et al.

1997). ROW was prepared by passing tap water through two activated carbon filters, two

research-grade, mixed-bed, deionizer cartridges, one HPLC-grade resin cartridge, and
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reverse osmosis treatment. The final step in RGW preparation was to pass the water

through a 0.2 urn filter and a UV sterilization unit to remove bacteria/viru e and to break

down any chemicals that remained in the purified water.

Eiseniafttida were obtained from either Willingham Worm Farm (Butler, GA) or

Granny's Hillside Farms (Gore, OK). Worms from Willingham were cultured at 25°C in

peat moss and fed fermented alfalfa pellets, rolled oats, and shredded newspaper. Eisenia

fetida obtained from Granny's Hillside Farms were cultured in fresh and composted horse

manure at 2S°C. Moisture of culture media was maintained by spraying the surface with

reconstituted water when the media began to look and feel dry (roughly twice a week).

Reconstituted water was prepared from RGW by adding salts [magnesium sulfate,

calcium carbonate, and sodium bicarbonate] to adjust the alkalinity and conductivity.

Artificial soil used in toxicity tests was composed of 69% silica sand (60 mesh),

20% pulverized kaolin clay, 10% finely sieved peat (2-mm sieve), and 1% calcium

carbonate. Artificial soil was prepared in 1O-kg batches with the pH ranging from 5.5 to

7.0. The components of the artificial soil were mixed thoroughly and the moisture

content was determined by difference.

General Toxicity Test Preparation

Test containers used for toxicity testing were 500-ml, wide-mouth glass canning jars.

Canning jar lids punctured twice with an ice pick (2-3 mm holes) were placed on the jars

to allow some exchange of air and to prevent escape of the earthworms during testing.

Stainless steel spatulas and ceramic coated trays, 30 cm x 45 em, were used for sorting

and counting the earthworms. A constant temperature room at 25°C was used for range-
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fmder tests and incubators (Percival Scientific) at 2SoC were used for definitive tests.

Photoperiod in both the exposure room and incubators was 12 L : 12 D, which deviates

slightly from ASTM (1995) which states that continuous lighting is preferred. All tests

except the range-finder assays had at least three replicates.

All glassware and other items were scrubbed to remove soil and residue, soaked in

hot water with Micro® detergent for 15 minutes, and rinsed with tap water (Greene et al.

1989). An acetone rinse and two distilled water rinses were followed by soaking items in

a 10% nitric acid bath for 24 hours. Finally, the items were rinsed with reagent grade

water and allowed to dry.

General Toxicity Test Outline

Aliquots of artificial soil (200 g, dry weight) were weighed into 500-ml canning jars

and spiked with the appropriate amount of chlorophenol stock solution. Distilled water

was then added to bring moisture content to 54% (dry weight) and soils were mixed with

long-handled spoons until they appeared homogeneous. Lids were placed on the jars and

the soils were allowed to equilibrate for 24 hours in the dark before organisms were

added to the test containers. Each range-finder assay was conducted without replication.

For each definitive test, four replicates per concentration were used, three earthworm

exposure replicates and a fourth for monitoring physical/chemical characteristics. The

only exception was the second MCP/TCP/PCP test which had four replicates of

earthworms and no physical/chemical replicate. Subsamples of 40-50 g of soil were

taken from the physical/chemical replicates of the definitive tests at the 24-hour

equilibration time. Eiseniafetida were randomly removed from culture tubs, rinsed,
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blotted dry, and placed in holding containers in groups often. Weights of each group of

ten E. [elida were taken at this time for the second PCP and second MCPfTCPIPCP

mixture assays. One group often E. fetida was placed on the surface of the artificial soil

in each replicate and the lids were fastened in place. Earthwonns were not acclimated to

artificial soil prior to commencing the tests. Observations on mortalities were made in a

geometric time series for the first 16 hours and at 24-hour intervals thereafter (e.g.

1,2,4,8,16,24,48,72...) until mortalities ceased for a period of 48-72 hours at which time

the ILL was assumed to have been reached. At each observation time, each jar was

individually examined by dumping contents onto a porcelain tray and sorting through the

soil with a stainless steel spatula to find the earthwonns. Earthworms were determined to

be dead when no response to gentle mechanical stimulus to the anterior end was

observed. Dead earthwonns were removed from the soil, rinsed with distilled water,

blotted dry, wrapped in hexane-rinsed aluminum foil, and stored at -40°C for body

residue analysis. Test jars were examined in order of increasing concentration to prevent

contamination of controls and lower concentrations with soils of higher chlorophenol

concentrations. Once the ILL had been reached, the test was terminated. Remaining

earthworms from each replicate were removed from the soil, rinsed with distilled water,

blotted dry, and placed in holding containers. At this time, weights of earthwonns in

replicates with no mortalities were taken for the second PCP and second MCP/TCPIPCP

tests. Earthwonns were then wrapped in hexane-rinsed aluminum foil, and stored at

-40°C for body residue analysis. As earthwonns were removed, the soils were placed in

pint or quart Ziploc® bags and stored at -40°C.
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Range-finder Toxicity Tests

The range-finder tests for MCP and TCP were composed of five, nominal

logarithmic concentrations (0.1, 1 10, 100 and 1,000 mglkg) with a negative control.

The TCP test had an additional carrier control with sodium hydroxide. A PCP range

tinder test was not conducted because LCso values from the literature were available

(Fitzgerald et al. 1997, 1996). There was no replication of concentrations as these tests

were only range-finders for the later definitive tests.

Definitive Toxicity Tests

Four single chemical tests were conducted, one each for MCP and TCP and two for

PCP. The definitive tests for MCP and TCP were designed to bracket the LCsos

determined by the range-finder tests. Nominal concentrations of 100, 150,220, 320,460,

680, and 1000 mg/kg MCP were used with a control. TCP tests comprised nominal

concentrations of 10, 16,25,40,63, and 100 and two controls, a negative control and a

carrier control with sodium hydroxide. The first PCP test nominal concentrations were

10,16,25,40,63, and 100 with negative and sodium hydroxide controls and the econd

PCP test nominal concentrations were 10, 18,32,56, and 100 with a sodium hydroxide

control. The negative water control was omitted. Three mixture tests were conducted

using the chlorophenol series. Two tests were conducted using the three chlorophenol

components, MCP, TCP, and PCP. A third test included only TCP and PCP. Nominal

concentrations for all mixture tests were 0.25, 0.5, 1, 2, and 4 toxic units with a sodium

hydroxide control. Toxic units were based on LCso values at tennination ofthe
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individual chemical toxicity tests as ILLs were assumed to have been obtained. The LCso

values for MCP and TCP approximate the ILL whereas the LCso value for P P is 2.28

times than the ILL for PCP.

Tissue Extraction and Sample Concentration

The procedure for extracting the TCP and PCP from earthworm tissue was modified

from Belfroid et al. (1993) which specified as-hour soxhlet extraction with hexane for

removal of chlorobenzenes from E. fetida tissue samples. To increase the number of

samples extracted at a time, the earthworms for this project were extracted in hexane

(9S% n-hexane, organic residue analysis grade, IT. Baker) by a hot solvent extraction

method using 100-ml digestion tubes placed in a 6SoC water bath. Earthworms were

removed from the freezer and weighed to five decimal places on a Mettler H20T

analytical balance. Worms were homogenized using a hexane-rinsed mortar and pestle

with I to 2g of Na2S04 (ACS grade, 10-60 mesh, Fisher). Homogenate was then placed

into the 100-ml digestion tube. Hexane used to rinse the mortar and pestle was added to

the digestion tube bringing the total volume of hexane to 20-2S ml. The tissue samples

were extracted for five hours in a 6SoC water bath using the digestion tube with a small

funnel on top to prevent solvent evaporation.

Contents of the digestion tube were cooled to room temperature and filtered through

Whatrnan GFIB 2S-mm filters (1 urn pore size) in a I5-ml microanalysis filter holder

apparatus. The digestion tube and filter assembly were rinsed twice with hexane to

remove any residual chlorophenol. Filtrate was collected in a 2Sx ISO-mm test tube

placed inside a SOO-mt Erlenmeyer vacuum flask. The test tube was removed from the
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flask to concentrate the sample. Samples were placed in the 65°C water bath and N2

(high purity, Sooner Airgas) was bubbled through the filtrate via pasteur pipettes to

concentrate them to approximately 0.25 rn!. Samples were transferred to 8-rnrn GC vials

along with two hexane rinses of the test tube used to concentrate the samples. The vial

was then capped and stored at 4°C for cleanup and lipid analysis.

Sample Cleanup

Cleanup of earthworm extracts was accomplished using a method modified from

Mundy and Machin (1981) for PCP cleanup after extraction from animal tissues. Waters

Sep Pac Vac cartridges containjng florisil (3 cc ISOO mg, Phase Separations) were used

in the cleanup of the samples containing TCP and PCP. Methanol (gas chromatography

and residue analysis grade, EM Science), chloroform (residue analysis grade, Fisher), and

ethyl ether (anhydrous, reagent grade, Fisher) were used in the preparation of the

cartridges. The cartridges were prepared by washing with 10 rnl methanol/chloroform

(1:9 v/v), 10 ml chloroform, 10 ml of ethyl ether, and 10 ml of hexane. Following

preparation of cartridges, one half of the concentrated extract was measured and removed

from the GC vial using an SGE® 1.0 ml syringe. Volume was recorded for calculation of

CBRs. The cartridge was eluted twice with 2 ml hexane, twice with 2 ml ethyl ether, and

twice with 2 ml methanol/chloroform (1 :9 v/v) using 10-ml serological pipettes. The

methanol/ chloroform fraction containing the chlorophenols was placed in a graduated

test tube containing 2-3 ml of 2,2,4-trimethylpentane (gas chromatography and residue

analysis grade, EM Science). The test tube was placed in a heating block at 6SoC with N2

bubbled through the sample. The sample was concentrated to less than O.S ml, 2 more ml
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of 2,2,4-trimethylpentane was added to the tube, and the sample was again concentrated

to less than 0.5 mt. The volume was increased to 1.0 ml with 2,2,4-trim thyIpentane after

the test tube had cooled and the sample was transferred to a GC vial for analysis.

Due to incompatibility of MCP with this extraction and cleanup procedure, MCP re idue

data are lacking from this thesis.

Spike Recoveries

Spike recoveries using six earthworms were conducted to determine percent

recoveries ofTCP and PCP, respectively. Earthworms were divided in half, with one

half used for control and the other half as the spiked sample. The six halves for recovery

analysis were spiked with 10 ug TCP and treated as the other earthworm samples from

extraction through analysis. Percent recoveries were 54.7% (SE = 1.92). The six halves

for PCP recovery analysis were spiked with 1.30 ug of PCP and treated as the other

earthworm samples from extraction through analysis. Percent recoveries were 49.2% (SE

= 4.76).

Gas Chromatography

A Tracor model 560 gas chromatograph with electron capture detector (ECD) and a

megabore DB-5 MS fused-silica capillary column (J&W Scientific) were used in the

analysis. Helium (high purity grade, Sooner Airgas) (flow rate = 10 ml min'l) was the

carrier gas with argon/methane (high purity grade, 5% methane, Sooner Airgas) (flow

rate 20 ml min-I) as the makeup gas resulting in a combined flow through the detector of

30 ml min-' , Two temperature programs were used, 130°C (4 minute hold) with

50°C/min ramp to a final temperature of 250°C (3 minute hold) was used to analyze some
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residues from the first PCP test and 17SoC (I minute hold) with 50°C ramp to a final

temperature of 250°C (2 minute hold) was used for the remaining PCP residues, TCP

residues, and the TCPIPCP residues.

Concentrations of TCP and PCP in purified samples were estimated by external

calibration using peak area with calibration curves using Maxima® Chromatography

Software (version 3.30, Dynamic Solutions Inc. 1990) or Peaknet® Chromatography

Software (version 4.20, Dioniex 1995). Outputs of residue data were in pg/ul, from

which body residues were calculated.

pg/ul * 1000 = pg/ml = pg in half of worm extract
pg in halfof worm extract / 0.5 = pg in worm
pg in worm / worm weight (g) = pg/g worm
pg/g worm /1000000 = ug/g worm
ug/g worm / MW (g/mole) = mmol/kg worm
mmol/kg worm / % recovery = corrected body residue

For example, the output for sample X is 2000 pg PCP/ul (MW=266.35 g mole-I)

2000pg - PCP x 1000ui -T 0.5 = 4000000pg - PCP -T 0.250g = l6000000pg - PCP
ul ml worm g

l6000000pg - PCP -T 10000000pg -T 266.35g - PCP -T 0.453 = 0.133mmol- PCP

g ug mole kg

Data Analysis

LCsos were calculated for each time interval where> 50% mortality was observed by

trimmed Spearman-Karber analysis (Hamilton et al. 1977). Toxicity curves were

ohtained by plotting inverse LCso (mmol kg-I) against time (hours). From the toxicity

curves, the ILLs and tll2S were calculated using nonlinear regression (SYSTAT® version

5.0, Systat Inc. 1990). Statistical comparisons were made of CBRs using SAS® (version
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6.12, SAS Institute Inc. 1989-1996). Controls were not included in the statistical

analyses because this was a non-zero analysis. Variances were homogeneous for the TCP

and PCP tests and analyzed by ANOVA using SAS. Variances were heterogeneous for

the rcp fraction, PCP fraction and combined rcp/Pcp residues for the rcP/pcp

mixture assay as determined by SAS. A mixed model for data with unequal variances

(SAS) was used to determine differences in CBRs for the rcP/pcp mixture. A posteriori

comparisons of the mean CBRs for rcp and PCP for single chemical toxicity tests and

for the rcP/pcp mixture were made using SAS least square means.
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CHAPTER THREE

RESULTS

Incipient Lethal Levels and Toxicity Half-Lives

ILLs for the individual chlorophenol toxicity tests decreased as the degree of

chlorination, molecular weight, and hydrophobicity increased and vapor pressure

decreased (Table 3). All toxicity curves showed a good fit to the data as exhibited by r2

values of 0.993 and above. Mean ILLs for MCP, TCP, PCP #1, and PCP #2 were 1.28,

0.326,0.050, and 0.047 mmol kg-I, respectively. The mean tl/2S for MCP, TCP, PCP #1,

and PCP #2 were 39, 51,608, and 411 hours, respectively, indicating slower kinetics of

uptake with increased hydrophobicity, and decreased vapor pressure.

Table 3. ILLs and tl12S of the individual chemical toxicity tests and mixture toxicity tests
with correlation coefficient for curve fit.

Figure Test ILL (mmol kg-lor TU) tl/2 (hours) r2

1
2
3
4
5
6
7

MCP
TCP

PCP #1
PCP #2

MCP/TCPIPCP #1
MCP/TCP/PCP #2

TCP/PCP

1.28
0.326
0.050
0.047
1.32
0.96
0.59

39
51

609
417
22
52
166

0.998
0.999
0.998
0.993
1.000
0.999
0.999

Similar trends were observed from the mixture toxicity tests (Table 3). The

MCP/TCP/PCP #1, MCP/TCP/PCP #2 and TCP/PCP tests had mean ILLs of 1.32, 0.96,

and 0.59 TUs, respectively, and mean tll2S of22, 52, and 166 hours, respectively. The

chemical mixtures with MCP had lower tll2S relative to the TCP/PCP mixture and

approximately the same as for the MCP and TCP tests. The tl/2 ofthe rcP/pcp mixture

was intermediate to tll2S of individual TCP and PCP tests.
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All toxicity data except for PCP exhibited well-defined toxicity curves (Fig. 4-10). The

PCP curves (Fig. 6-7) do not reach their asymptotic value during the toxicity test due to

the slow kinetics of PCP as indicated by the large tlI2S.
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Fig. 4. Toxicity curve for E. fetida exposed to MCP in artificial soil. Different symbols
at each time point represent replicates and the curve is fitted to the points by nonlinear
regression (t = 0.998).
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regression (r = 0.998).
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at each time point represent replicates and the curve is fitted to the points by nonlinear
regression (r = 0.993).
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points by nonlinear regression (r1 = 0.999).
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Critical Body Residues

TCP and PCP body residues in control earthworms in all experiments were below

detection limits (Tables 4-7). The body residues of the TCP-exposed earthworms

increased with exposure concentration (Table 4, Fig. 11). Average Tep concentrations

ranged from 0.0057 romol kg-I in earthworms exposed to 0.051 romol kg-I to 0.439 romo]

kg-I in worms exposed to 0.506 romol kg-I. Earthworms exposed to concentrations above

the ILL of 0.326 romol kg-I exhibited significantly higher body residues than earthworms

at or below the ILL. The eBR at mortality ofTCP was estimated to be 0.347 mmol kg-I

from residues of 2 dead earthworms exposed at 0.319 romo] kg-] and 6 dead earthworms

exposed at 0.506 mmo] kg-I. BAFs for TCP in earthworms were calculated at 0.403 for

all measured body residues in the TCP test.
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The body residues of the PCP exposed earthworms also increased with exposure

concentration (Tables 5 and 6, Fig. 12) but the range of concentrations was narrower.

Average PCP concentrations in worms ranged from 0.042 romol kg' l at th xposure

concentration of 0.038 nunol kg'l to 0.083 and 0.093 mmol kg'l at the exposure

concentrations of 0.375 mmol kg'l in PCP #1 and PCP #2, respectively. CBRs were

calculated to be 0.073 mmol kg') from an average residue of all dead earthworms. BAFs

for PCP were calculated to be 0.550 for all body residues determined in the PCP tests.

Body residues of both TCP and PCP in the TCP/PCP mixture test were higher for

earthworms present in concentrations resulting in mortality (0.5, 1, 2, and 4 TV) (Table 7

and Fig. 13). The TCP fraction residues in earthworms exposed to 0.5 1.0,2.0, and 4.0

TV were not significantly different from each other, but were significantly higher than

earthworms exposed to 0.25 TV. The PCP fraction residues in earthworms exposed to

0.5, 1.0,2.0, and 4.0 TU were significantly higher than 0.25 TU exposed earthworms.

The combined TCP and PCP residues for 0.5, 1.0,2.0, and 4.0 TU exposed worms were

also significantly higher than 0.25 TU exposed earthworms.

Table 4. Body residues in earthworms exposed to TCP in artificial soil. Means with
common superscripts are not significantly different (P > 0.05, differences of least squares
means); nd - not detected

,I

)

Exposure
concentration
(mmol kg· l

)

Control
0.051
0.081
0.127
0.203
0.309
0.506

TCP residue
In worm

(mmol kg'l)

nd
O.006A

O.OlOA

O.083 AB

0.064AB

0.132B

0.439c

3S

SE

0.0010
0.0010
0.0346
0.048]
0.0233
0.0558

n

10
6
9
7
9
]5
6



Table 5. Body residues in earthworms exposed to PCP in artificial soil during the first
PCP toxicity test. Means with common superscripts are not significantly different (P >
0.05, differences of least squares means); od - not detected

Exposure
Concentration
(mmol kg-I)

PCP residue
10 worm

(mmol kg-I)

SE n

0.060 0.077*
0.094 0.022A 0.0 II
0.150 0.046AC 0.012
0.237 0.103 B 0.034
0.375 0.083 BC O.OOR

* 0.060 mmol kg-] residues are not significantly different due to 0=1

1
2
5
3
3

Table 6. Body residues in earthworms exposed to PCP in artificial soil during the second
PCP toxicity test. Means with common superscripts are not signiticantly different (P >
0.05, differences of least squares means); nd - not detected

t

.'
J

Exposure
Concentration
(mmol kg-I)

NaOH control
0.038
0.068
0.120
0.210
0.375

PCP residue
10 worm

(mmol kg-I)

nd
O.042A

0.046A

0.056AB

o.onBC

0.093c
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SE

0.004
0.008
0.010
0.009
0.015

o

9
9
9
8
9
5
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Fig. 11. Average body residues (± SE) in earthwonns exposed to TCP in artificial soil.
The majority of the earthworms below the ILL were alive and those above the ILL were
dead.
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Fig. 12. Average body residues (± SE) in earthworms exposed to PCP in artificial soil
with the ILL and LCso values at termination of the PCP tests. The majority of the
earthworms below 0.1 mmol kg'] were alive and those above 0.1 mmol kg- l were dead at
the termination of the two PCP toxicity tests.
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Fig. 13. Average body residues (± SE) in earthworms exposed toTCP and PCP in
artificial soil with the calculated ILL. The majority of the earthworms below 0.59 TV
alive and those above 0.59 TU were dead,
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CHAPTER FOUR

DISCUSSION

MCP, TCP, and PCP

Toxicity Curve Analyses

ILLs determined for MCP, TCP, and PCP are similar to values observed in the

literature. The 4-MCP ILL of 1.28 mmol kg'] is similar to the 14-day LCso of 3-MCP

(1.01 mmol kg'l) in artificial soil reported by van Gestel and Ma (1990) assuming no

difference in toxicity between the two monochlorophenols. The ILL of2,4,5-TCP (0.326

mmol kg'l) is similar to the 14-day LCso of2,4,5-TCP in artificial soil (0.319 mmol kg'l)

reported by van Gestel and Ma (1990) and the 14-day LCso for 2,4,6-TCP (0.294 mmol

kg'l) determined by Neuhauser et al. (1985) as there should be little differences in uptake

or mode of action between the two trichlorophenols. PCP ILLs (0.050 and 0.047 mmol

kg'l) were threefold lower than those reported by Fitzgerald et al. (1997) of 0.137 mmo!

kg'l and sixfold lower than the PCP 14-day LCso of 0.311 mmol kg'l (van Oestel and Ma

(1990). These differences in ILLs of PCP are likely due to curve fit of the LCso values.

Fitzgerald et al. (1997) exposed worms to concentrations ranging from 0.038 to 6.75

mmol kg· J
, more than an order of magnitude higher, and obtained a better defined toxicity

curve. Van Oestel and Ma (1990) didn't report exposure concentrations. The differences

in tl/2 for PCP from this thesis (417 and 609 hours) and that reported by Fitzgerald et al.

(1 997) of 94 hours are also explained by a better curve fit due to the wider range of

concentrations.
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The ILLs and tl12S for the individual chlorophenol tests differ due to the chemical

properties and their interaction with the soil and earthworms (Fig. 14, 15). The main

route of uptake for chlorophenols and chlorobenzenes is diffusion from soil pore water

(Belfroid et al. 1994; van Gestel and Ma 1988). Hydrophobicity (e.g., log ~w) is

inversely related to solubility and has the greatest impact on pore water concentrations,

but vapor pressure and pKamay also contribute to the uptake of chlorophenols.

Chlorophenol adsorption is determined by hydrophobicity. Increasing log ~w increases

adsorption, decreases pore water concentrations and uptake kinetics, and increases

potency (Fig. 14). Similar results are also observed for earthworms exposed to a

homologous series of chIorobenzenes with increasing hydrophobicity. Belfroid et al.

(1994) also observed that time to steady state for uptake of chIorobenzenes by

earthworms increased as log Kow increased.

The pKas ofMCP, TCP, and PCP affect whether they are present in the phenolic

(unionized) form or as phenolate ions. At the average artificial soil pH of 6.5, MCP and

TCP are present predominantly in the phenolic fonn while PCP is present as the

phenolate anion. Increased bioavailability of MCP and TCP would result in more rapid

uptake kinetics and toxicity than for PCP. The effect ofpKa on uptake kinetics is

reflected by varying tl/2S, as is solubility and vapor pressure, but effect of pKa on toxicity

may be very low when compared to log Kow and vapor pressure effects.

In summary, uptake occurs predominantly by diffusion from the pore water across the

epithelium and is most affected by the Kow of the chlorophenols. A decrease in uptake

kinetics and an in increase potency are associated with an increase of Kow·
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Fig. 15. Effects of vapor pressure on ILL (e) and tl/2 (.) with linear regression analysis

Critical Body Residue Analyses

CBRs and ILLs also decrease with increasing Kow for TCP and PCP. This correlation

between log Kow and toxicity has been observed for neutral organic chemicals in fresh-

water fish (McCarty and Mackay 1993) and for tetra-, penta-, and hexachlorobenzene in

earthworms (Belfroid et a1. 1994). Literature values ofTCP CBRs could not be found.

CBRs for TCP were 0.347 mrnol TCP kg- l for earthworms exposed to 0.506 and 0.319
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mmol kg-). This CBR may be slightly inflated due to diffusion into earthworms after

mortality has occurred. Fitzgerald et al. (1996) observed a similar trend of high body

residues in earthworms exposed to very high levels of PCP. Due to the small sample size

for dead worms at 0.3 I9 mmol kg,l, CBRs of earthworms exposed to 0.506 mmol kg- l

were included in mean CBR estimates for TCP. CBRs estimated for earthworms exposed

to PCP ranged from 0.011 to 0.161 mrnol kg", more than an order of magnitude lower

than PCP CBRs reponed. by Fitzgerald et al. (1996) which ranged from 0.47-2.18 mmol

kg'l. Differences in CBRs may be explained partially by the amount of moisture present

in the worms. Earthworms in this study were exposed to PCP spiked artificial soil at

35% moisture on a wet weight basis (54% dry weight), whereas earthworms in Fitzgerald

et al. (1996) were exposed to 35% moisture on a dry weight basis. Body mass may

change over the course of a toxicity test as result of loss of water from earthworm tissue

while lipid mass does not change (Belfroid et al. 1994).

Mixture Toxicity Tests

Toxicity Curve Analyses

The three mixture tests exhibit well defined toxicity curves with tl12S similar to MCP

and TCP. This likely is due to the uptake kinetics of the less hydrophobic components of

the mixture. Ninety-five percent confidence intervals (CI) for the ILLs ofthe mixture

tests did not include 1 TU suggesting that none of the combinations of chlorophenols are

strictly additive. However, MCP/TCPIPCP #1 had an ILL of 1.32 TU ± 0.01 (95% CI),

and the second MCP/TCP/PCP mixture toxicity test had an ILL of 0.96 TU ± 0.025 (95%

CI). The fact that the ILL for one test was slightly above 1 TV and one was slightly
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below 1 TU do suggest additivity of toxicity for MCP, TCP, and PCP. These te ts were

conducted using the same molar concentrations of MCP TCP and PCP, although the

batch of artificial soil was different. Slight differences in the makeup of each batch of

artificial soil might account for the slight differences in toxicity for the three-chemical

mixture tests. The TCP/PCP mixture toxicity test ILL was 0.59 TV ± 0.025 (95% CI).

The lower ILL suggests that TCP and PCP act in a synergistic manner when present at

0.5 TU each in a mixture.

Critical Body Residue Analyses

CBRs for TCP and PCP in the TCP/PCP mixture test show differences in uptake

kinetics (Table 7, Fig. 13). TCP residues remain constant and are not significantly

different in the 0.5, 1.0, 2.0, and 4 TU exposures. PCP residues are significantly higher

in 0.5 and 1 TU exposures than in 2 and 4 TU exposures (Table 7, Fig. 13). This is likely

due to the decreased time to mortality with increasing exposure concentration. At 4 TV,

earthworms were sampled (determined to be dead) at 68 hours. The average sampling

time for worms exposed to 2 TV was 82.4 hours (68-92 hours), where the average time to

mortality for worms exposed to 1 TV was 161.3 hours (68-356 hours) for 18 dead worms.

Four live worms were sampled at 404 hours. Only 4 dead earthworms were sampled at

0.5 TU, with an average time to mortality of254 hours (188-356 hours), but 21 live

worms were sampled at 404 hours. There were no differences in residues between live

and dead worms exposed to 0.5 TV. These differences in time to mortality with

corresponding body residues show that the TCP residue fraction has achieved a steady
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state by approximately 68 hours, but PCP residues continue to increase throughout the

17-day toxicity test (Figure 13).

CBRs for TCP and PCP in the TCPIPCP mixture test indicate that TCP and PCP are

acting antagonistically. IfTCP and PCP were acting additively the combined residues

o 1

Exposure Concentration (11))

4 5

Fig. 16. CBR TUs for TCP Ce), PCPC.), and TCP+PCP ( ..... ) illustrated the antagonistic
effect of TCP and PCP.

should fall somewhere in the range of the individual PCP or TCP CBRs, 0.073-0.347

mmol kg-I. Combined rcp + PCP residues ranged from 1.19-3.45 CBR TUs for dead

worms in the mixture test (Fig. 16). TCP and PCP appear to be acting antagonistically in

this experiment.

The TCP fraction is present at 0.37,0.39,0.46,0.45, and 0.04 TU when comparing

CBR-based TU calculations in 4, 2, 1, 0.5, and 0.25 TU exposure concentrations,

respectively, and the PCP fraction is present 0.82, 1.5,2.6,3.0, and 0.51 TU when

comparing CBR-based TU calculations in 4, 2, 1, 0.5, and 0.25 TU exposure

concentrations, respectively. The TU assessment of the TCP fraction residues may be
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slightly underestimated due to calculations with inflated TCP CBR values, since diffusion

after mortality can give an inflated estimate of CBRs (Fitzgerald et al. 1997).

TCP fraction residues were relatively constant at approximately 1 TU in earthworms

that were exposed to concentrations resulting in morality, 0.5, 1,2 and 4 TU, although

PCP fraction residues were higher than 1 TU in earthworms in the 0.5, I, 2, and 4 TU

exposures. TCP is interfering with the mode of action of PCP and the effects of the

mixture are considered antagonistic. One possible explanation for these differences is

that TCP has faster uptake kinetics than PCP and that TCP anesthetizes the earthworms

and slows down their physiological functions before PCP is accumulated to interfere with

oxidative phosphorylation. Metabolic processes could be reduced dramatically due

narcotic effects of TCP. Another explanation may be that TCP interferes with the

toxicity of PCP in some other manner, allowing it to accumulate to levels much higher

than the CBR for PCP.

Summary

The main route of uptake for chlorophenols is diffusion with kinetics being

determined by Kow. ILLs decrease with an increase in Kow of chlorophenols. CBRs were

calculated as the average of body residues of dead worms. The mixtures ofMCP, TCP,

and PCP appear additive based on ILLs, while the TCP/PCP mixture appears to act

synergistically from ILL observations and antagonistically when looking at CBRs and

TUs.

45

...

.o,
j
'\.
J



BIBLIOGRAPHY

Abernethy SG, Mackay D, McCarty LS. 1988. 'Volume fraction' correlation for
narcosis in aquatic organisms: The key role of partitioning. Environ Toxicol Chern
7:469-481.

Abdul Rida AMM, Bouche MB. 1997. Earthworm toxicology: From acute to chronic
tests. Soil Bioi Biochem 29:699-703.

Ahlborg UG, Thunberg TM. 1980. Chlorinated Phenols: Occurrence, Toxicity,
Metabolism and Environmental Impact. In L. Goldberg, ed., Critical Reviews in
Toxicology. CRC, Boca Raton, FL, USA, pp.I-33.

American Society for Testing and Materials. 1995. Standard guide for conduction a
laboratory soil toxicity test with lumbricid earthworm Eisenia foetida. EI676-95. In
Annual Book ofASTMStandards, Vol 11.05. Philadelphia, PA, pp 1055-1068.

Belfroid A, Seinen W, van Gestel K, Hermens 1. 1993. The acute toxicity of
chIorobenzenes for earthworms (Eisenia andrei) in different exposure systems.
Chemosphere 26:2265-2277.

Belfroid AC. 1994. Toxicokinetics of hydrophobic chemicals in earthworms.
Validation ofthe equilibrium partitioning theory. Ph.D. Thesis, University of Utrecht,
The Netherlands.

Belfroid A, Sikkenk M, Seinen W, Van Gestel K, Hermens J. 1994. The toxicokinetic
behavior of chiorobenzenes in earthworm (Eisenia andrei) experiments in soil. Environ
Tox Chem 13:93-99.

Benoit P, Barriuso E, Houot S, Calvet R. 1996. Influence of the nature of soil organic
matter on the sorption-desorption of 4-chlorophenol, 2,4-dichlorophenol and the
herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). European J ofSoil Sci 47:567-578.

Benson WH, Alberts JJ, Allen HE, Hunt CD, Newman MC. 1994. Synopsis of
discussion session on bioavailability on inorganic contaminants. In Hamelink JL,
Landrum PF, Bergman HL, Benson WH, eds, Bioavailability: Physical. chemical, and
biological interactions, Lewis Publishers, Boca Raton, FL, USA, pp 63-71.

Bhandari A, Novak JT, Berry DF. 1996. Binding of 4-monochlorophenol to soil.
Environ Sci Technol 30:2305-2311.

Callahan CA, Russell LK, Peterson SA. 1985. A comparison of three earthworm bioassay
procedures for the assessment of environmental samples containing hazardous wastes.
Bioi Fert Soils I: 195-200.

46

.,
l~

:r.,
:)

J.,



Crosby DG. 1994. Photochemical aspects of bioavailability. In Hamelink JL, Landrum
PF, Bergman HL Benson WH, eds, Bioavailability: Physical, chemicaL, and biological
interactions, Lewis Publishers, Boca Raton, FL, USA, pp 109-118.

De Bruijn J, Yedema E, Seinen W, Hermens J. 1991. Lethal body burdens of four
organophosphorous pesticides in the guppy (Poecilia reticulata). Aquat Toxicol20: 111
122.

Deneer JW, Sinnige TL, Seinen W, Hermens JLM. 1988. The joint acute toxicity to
Daphnia magna of industrial chemicals at low concentrations. Aquat Toxicol12:33-38.

Fitzgerald DO, Warner KA, Lanno RP, Dixon DO. 1996. Assessing the effects of
modifying factors on pentachlorophenol toxicity to eartbwonns: Applications of body
residues. Environ ToxieoL Chern] 5:2299-2304.

Fitzgerald DO, Lanno RP, Klee U, Farwell A, Dixon DO. 1997. Critical body residues
(CBRs): Applications in the assessment of pentachlorophenol toxicity to Eiseniafetida in
artificial soil. Soil Bio!. Biochem. 29:685-688.

Franks NP, Lieb WR. 1982. Molecular mechanisms of general anaesthesia. Nature
300:487-493.

Gibbs MH, Wicker LF, Stewart AJ. 1996. A method for assessing sublethal effects of
contaminants in soils to the earthworm, Eisenia foetida. Environ Toxieol Chern 15 :360
368.

Gobas FAPC, Zhang X. 1994. Interactions of organic chemicals with particulate and
dissolved organic matter in the aquatic environment. In Harnelink JL, Landrum PF,
Bergman HL, Benson WH, eds, Bioavailability: Physical, chemical, and bioLogical
interactions, Lewis Publishers, Boca Raton, FL, USA, pp 83-91.

Greene JC, Bartels CL, Warren-Hicks WJ, Parkhurst BR, Linder GL, Peterson SA, Miller
WE. 1989. Protocols for short term toxicity screening of hazardous waste sites. EPA
600/33-88-029.

Hamelink JL. 1977. Current bioconcentration test methods and theory. In Mayer FL,
Hamelink JL, eds, Aquatic Toxicology and Hazard Evaluation, STP 634. American
Society for Testing and Materials, Philadelphia, PA, USA, pp 149-161.

Hamilton MA, Russo RC, Thurson RV. 1977. Trimmed Spearman-Karber Method for
Estimating Median Lethal Concentrations in Toxicity Bioassays. Environ Sci Technol
11:714-719.

Hermens J, Canton H, Janssen P, de Jong R. 1984. Quantitative structure-activity
relationships and toxicity studies of mixtures of chemicals with anaesthetic potency:
Acute lethal and sublethal toxicity to Daphnia magna. Aqua! Toxieol 5: 143-154.

47

.,
,~

...
.,
:r,
.)



Howard PH, ed. 1989. In Handbook ofEnvironmental Fate and Exposure Datafor
Organic Chemicals, Vol I. Lewis Publishers, Chelsea, MI, USA, pp, 175-182.

Howard PH, ed. 1991. In Handbook ofEnvironmental Fate and Expo ure Data for
Organic Chemicals, Volll!. Lewis Publishers, Chelsea, MI, USA, pp 559-569,641-651.

Lanno RP, McCarty LS. 1997. Earthwonn bioassays: Adopting techniques from aquatic
toxicity testing. Soil Bioi Biochem 29:693-697.

Lanno RP, Stephenson OL, Wren CD. 1997. Applications of toxicity curves in assessing
the toxicity of diazinon and pentachlorophenol to Lumbricus terrestris in natural soils.
Soil Bioi Biochem 29:689-692.

Lee RF. 1998. Annelid cytochrome P-450 '. Comp Biochem Phys 121: 173-179.

Mackay D, Puig H, McCarty LS. 1992. An equation describing the time course and
variability in uptake and toxicity of narcotic chemicals to fish. Environ Toxicol Chern
11:941-951.

Mayer FL, Marking LL, Bills TO, Howe OE. 1994. Physicochemical factors affecting
toxicity in freshwater: Hardness, pH, and temperature. In Hamelink JL, Landrum PF,
Bergman HL, Benson WH, eds, Bioavailability: Physical, chemical, and biological
interactions, Lewis Publishers, Boca Raton, FL, USA, pp 5-22.

McCarty LS, Mackay D. 1993. Enhancing ecotoxicological modeling and assessment.
Environ Sci Technoi 27: 1719-1728.

McCarty LS, Ozburn OW, Smith AD, Dixon DO. 1992. Toxicokinetic modeling of
mixtures of organic chemicals. Environ Toxicol Chem 11: 1037-1 047.

Miller KW, Paton WBM, Smith RA, Smith EB. 1983. The pressure reversal of
anesthesia and the critical volume hypothesis. Mol Pharmacol9: 131-143.

Mullins LJ. 1954. Some physical mechanisms in narcosis. Chern Rev 54:289-323.

Mundy DE, Machin AF. 1981. Determination of pentachlorophenol and related
compounds in animal materials by high-perfonnance liquid chromatography and gas
chromatography. J Chromatography 216:229-238.

Neuhauser EF, Durkin PR, Malecki MR, Anatra M. 1986. Comparative toxicity of ten
organic chemicals to four earthworms species. Comp Biochem Physioi 83C: 197-200.

Neuhauser EF, Loehr RC, Malecki MR, Milligan DL, Durkin PRo 1985. The toxicity of
selected organic chemicals to the earthwonn Eiseniajetida. J Environ Quai 14:383-388.

48

..



Paracelsus THE. 1567. In Klaassen CD, ed, Casarett and Doull s Toxicology: The Basic
Science o/Poisons. McGraw-Hill, New York, New York, USA, pp 4-5.

Sprague lB. 1970. Measurement of pollutant toxicity to fish. II. Utilizing and applying
bioassay results. Water Res 4:3-32.

Sprague 18. 1995. Factors that modifY toxicity. In Rand GM, ed, Fundamental of
Aquatic Toxicology, 2nd edition. Taylor and Francis, Philadelphia, PA, USA pp 1012
1051.

van Gestel CAM, van Dis WA. 1988. The influence of soil characteristics on the
toxicity of four chemicals to the earthworm Eiseniafetida andrei (Oligochaeta) BioI
Fertil Soils 6:262-265.

van Gestel CAM, Ma W. 1988. Toxicity and bioaccumulation of chlorophenols in
earthworms, in relation to bioavailability in soil. Ecotox Environ Safety 15:289-297.

van Gestel CAM, Ma W. 1990. An approach to quantitative structure-activity
relationships (QSARs) in earthworm toxicity studies. Chemosphere 21: I023-1033.

You CN, Liu IC. 1996. Desorptive behavior of chlorophenols in contaminated soils.
Wat Sci Tech 33:263-270.

49

.,
..



APPENDIX A - BODY RESIDUE DATA FOR TCP TOXICITY TEST

Analysis conducted using Tracor 560 Gas Chromatograph
10 Test Cone. Jar Length of Live or Body

Exposure Dead Residue
# (mmol kg-1

) (hours) (mmol kg-1
)

226 TCP NaOH B 264 L nd
227 TCP NaOH B 264 L nd
228 TCP NaOH C 264 L nd
229 TCP NaOH C 264 L nd
250 TCP 0 A 264 L nd
251 TCP 0 A 264 L nd
274 TCP 0 B 264 L nd
275 TCP 0 B 264 L nd
276 TCP 0 C 264 L nd
277 TCP a C 264 L nd
252 TCP 0.051 B 264 L 0.008
254 TCP 0.051 B 264 L 0.004
230 TCP 0.051 C 264 L 0.005
231 TCP 0.051 C 264 L 0.007
232 TCP 0.051 C 264 L 0.009
233 TCP 0.081 A 264 L 0.011
234 TCP 0.081 A 264 L 0.014
235 TCP 0.081 A 264 L 0.011
262 TCP 0.081 B 264 L 0.012
263 TCP 0.081 B 264 L 0.007 ..
264 TCP 0.081 B 264 L 0.007

"

r
238 TCP 0.081 C 264 L 0.007

I
l

239 TCP 0.081 C 264 L nd 1,
240 TCP 0.081 C 264 L 0.008
241 TCP 0.127 B 264 L 0.115
242 TCP 0.127 B 264 L 0.158
243 TCP 0.127 B 264 L 0.028
255 TCP 0.127 C 264 L 0.010
256 TCP 0.127 C 264 L 0.014
257 TCP 0.127 C 264 L 0.013
244 TCP 0.203 B 264 L nd
245 TCP 0.203 B 264 L 0.006
246 TCP 0.203 B 264 L 0.010

265 TCP 0.203 C 264 L 0.032
266 TCP 0.203 C 264 L 0,026

267 TCP 0.203 C 264 L 0.400
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10 Test Cone. Jar Length of Live or Body
Exposure Dead Residue

# (mmol kgi-
1

) (hours) (mmol kg-1
)

258 TCP 0.319 A 264 L 0.092
259 TCP 0.319 A 264 L 0.099
260 TCP 0.319 B 264 L 0.155
261 TCP 0.319 B 264 L 0.033
247 TCP 0.319 C 96 0 0.033
248 TCP 0.319 C 120 0 0.113
249 TCP 0.319 C 264 L 0.108
268 TCP 0.319 C 264 L 0.087
269 TCP 0.319 C 264 L 0.080
270 TCP 0.506 A 48 0 0.523
271 TCP 0.506 A 72 0 0.475
236 TCP 0.506 B 48 0 0.283
237 TCP 0.506 B 48 0 0.302
272 TCP 0.506 C 48 0 0.642
273 TCP 0.506 C 72 0 0.408

Analysis conducted using Hewlett Packard Gas Chromatograph
10 Test Cone. Jar Length of Live or Body

Exposure Dead Residue
# (mmol kg'1) (hours) (mmol kg'1)

"
82 TCP 0.051 A 264 L 0.002
79 TCP 0.127 A 264 L 0.243 .

264 L 0.023
:-

58 TCP 0.203 A l

264 L 0.013
~

59 TCP 0.203 A ~

264 L 0.004
,

60 TCP 0.203 A
7 TCP 0.319 A 144 0 0.230

8 TCP 0.319 A 144 0 0.105

9 TCP 0.319 A 168 0 0.338

10 TCP 0.319 B 144 0 0.145

11 TCP 0.319 B 168 0 0.061

12 TCP 0.319 B 168 0 0.297
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APPENDIX B - BODY RESIDUE DATA FOR PCP TOXICITY TESTS

Analysis conducted using Tracor 560 Gas Chromatograph
ID Test Cone. Jar Length of Live or Body

Exposure Dead Residue
# (mmol kg-1

) (hours) (mmol kg-1
)

310 PCP2 NaOH A 408 L nd
311 PCP2 NaOH A 408 L nd
312 PCP2 NaOH A 408 L nd
313 PCP2 NaOH B 408 L nd
314 PCP2 NaOH B 408 L nd
315 PCP2 NaOH B 408 L nd
322 PCP2 NaOH C 408 L nd
323 PCP2 NaOH C 408 L nd
324 PCP2 NaOH C 408 L nd
364 PCP2 0.038 A 408 L 0.042
365 PCP2 0.038 A 408 L 0.017
366 PCP2 0.038 A 408 L 0.048
316 PCP2 0.038 B 408 L 0.042
317 PCP2 0.038 B 408 L 0.040
318 PCP2 0.038 B 408 L 0.034
325 PCP2 0.038 C 408 L 0.044
326 PCP2 0.038 C 408 L 0.067
327 PCP2 0.038 C 408 L 0.044
328 PCP2 0.068 A 408 L 0.017
329 PCP2 0.068 A 408 L 0.049
330 PCP2 0.068 A 408 L 0.083
367 PCP2 0.068 B 408 L 0.077
368 PCP 2 0.068 B 408 L 0.054
369 PCP 2 0.068 B 408 L 0.028
319 PCP2 0.068 C 408 L 0.053
320 PCP2 0.068 C 408 L 0.033
321 PCP2 0.068 C 408 L 0.025
286 PCP2 0.120 A 144 D 0.043

287 PCP2 0.120 A 192 D 0.093

288 PCP2 0.120 A 192 D 0.094

289 PCP2 0.120 B 192 D 0.015

290 PCP2 0.120 B 192 D 0.055

291 PCP2 0.120 B 192 D 0.060

284 PCP 2 0.120 C 168 0 0.056

285 PCP2 0.120 C 216 0 0.029

298 PCP2 0.210 A 120 0 0.084
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10 Test Cone. Jar Length of Live or Body
Exposure Oead Residue

# (mmol kg'1) (hours) (mmol kg-1)

299 PCP2 0.210 A 168 0 0.077
300 PCP2 0.210 A 168 0 0.062
281 PCP2 0.210 B 168 D 0.129
282 PCP2 0.210 B 168 D 0.075
283 PCP2 0.210 B 168 0 0.027
292 PCP2 0.210 C 144 D 0.091
293 PCP2 0.210 C 144 D 0.076
294 PCP2 0.210 C 168 D 0.077
280 PCP2 0.375 A 48 D 0.050
295 PCP2 0.375 A 96 D 0.120
296 PCP2 0.375 B 120 0 0.084
297 PCP2 0.375 B 120 D 0.131
303 PCP2 0.375 C 144 D 0.080

Analysis conducted using Hewlett Packard Gas Chromatograph
10 Test Cone. Jar Length of Live or Body

Exposure Oead Residue
# (mmol kg'1) (hours) (mmol kg'1)

18 PCP 1 0.060 A 336 D 0.077
42 PCP 1 0.094 C 360 L 0.033
13 PCP 1 0.094 C 336 0 0.011
15 PCP 1 0.150 A 336 D 0.011 .

"
16 PCP 1 0.150 C 360 0 0.048
17 PCP 1 0.150 C 360 0 0.083
40 PCP 1 0.150 A 360 L 0.027
41 PCP 1 0.150 B 360 L 0.059

37 PCP 1 0.237 A 240 D 0.161

38 PCP 1 0.237 A 240 0 0.104

39 PCP 1 0.237 A 240 0 0.043

93 PCP 1 0.375 A 72 0 0.095

94 PCP 1 0.375 B 72 0 0.067

96 PCP 1 0.375 B 96 0 0.086

53



APPENDIX C - BODY RESIDUE DATA FOR TCPIPCP MIXTURE TOXICITY
TESTS

Analysis conducted using Tracor 560 Gas Chromatograph
10 Test Cone. Jar Length of Live or TCP Residue PCP Residue

Exposure Dead
# (TU) (hours) (mmol kg-1

) (mmol kg-1
)

142 TCP/PCP NaOH A 404 L nd nd
143 TCP/PCP NaOH A 404 L nd nd
144 TCP/PCP NaOH B 404 L nd nd
145 TCP/PCP NaOH B 404 L nd nd
202 TCP/PCP NaOH B 404 L nd nd
203 TCP/PCP NaOH B 404 L nd nd
204 TCP/PCP NaOH B 404 L nd nd
178 TCP/PCP NaOH C 404 L nd nd
179 TCP/PCP NaOH C 404 L nd nd
180 TCP/PCP NaOH C 404 L nd nd
214 TCP/PCP NaOH A 404 L nd nd
215 TCP/PCP NaOH A 404 L nd nd
216 TCP/PCP NaOH A 404 L nd nd
217 TCP/PCP NaOH C 404 L nd nd
218 TCP/PCP NaOH C 404 L nd nd
140 TCP/PCP 0.25 A 404 L 0.004 0.019
141 TCP/PCP 0.25 A 404 L 0.002 0.014
146 TCP/PCP 0.25 A 404 L 0.003 0.034
148 TCP/PCP 0.25 A 404 L 0.002 0.026
149 TCP/PCP 0.25 A 404 L 0.004 0.025
150 TCP/PCP 0.25 B 404 L 0.003 0.022
151 TCP/PCP 0.25 B 404 L 0.004 0.022
152 TCP/PCP 0.25 B 404 L 0.004 0.018
153 TCP/PCP 0.25 B 404 L 0.007 0.037
181 TCP/PCP 0.25 C 404 L 0.021 0.058
182 TCP/PCP 0.25 C 404 L 0.006 0.030
183 TCP/PCP 0.25 C 404 L 0.131 0.110
205 TCP/PCP 0.25 B 404 L 0.005 0.044
206 TCP/PCP 0.25 C 404 L 0.006 0.044

207 TCP/PCP 0.25 C 404 L 0.004 0.043
219 TCP/PCP 0.5 A 404 L 0.184 0.208
220 TCP/PCP 0.5 A 404 L 0.219 0.291
221 TCP/PCP 0.5 B 404 L 0.109 0.180

222 TCP/PCP 0.5 B 404 L 0.267 0.290

208 TCP/PCP 0.5 C 404 L 0.019 0.100
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ID rest Cone. Jar Length of Live or rcp Residue PCP Residue
Exposure Dead

# (rU) (hours) (mmol kg-1
) (mmol kg-1

)

209 rcP/pcp 0.5 c 404 L 0.020 0.251
210 rcP/pcp 0.5 c 404 L 0.008 0.165
134 rcP/pcp 0.5 A 404 L 0.008 0.053
135 rcP/pcp 0.5 A 404 L 0.007 0.041
136 rcP/pcp 0.5 B 404 L 0.008 0.004
137 rcP/pcp 0.5 B 404 L 0.023 0.081
138 rcP/pcp 0.5 c 404 L 0.007 0.017
139 rcP/pcp 0.5 c 404 L 0.135 0.169
398 rcP/pcp 0.5 A 404 L 0.048 0.205
399 rcP/pcp 0.5 A 404 L 0.261 0.386
400 rcP/pcp 0.5 A 404 L 0.. 086 0.306
401 rcP/pcp 0.5 B 404 L 0.132 0.211
402 rcP/pcp 0.5 B 404 L 0.725 0.712
403 rcP/pcp 0.5 B 404 L 0.230 0.330
404 rcP/pcp 0.5 c 404 L 0.447 0.626
405 rcP/pcp 0.5 c 404 L 0.137 0.272
1: 18 rcP/pcp 0.5 A 212 D 0.227 0.020
119 rcP/pcp 0.5 B 260 D 0.025 0.008
394 rcP/pcp 0.5 B 356 0 0.295 0.295
395 rcP/pcp 0.5 c 188 0 0.248 0.209
130 rcP/pcp 1 A 404 L 0.016 0.126
131 rcP/pcp 1 B 404 L 0.018 0.038
132 rcP/pcp 1 B 404 L 0.041 0.064
133 rcP/pcp 1 c 404 L 0.027 0.020
211 rcP/pcp 1 A 140 0 0.029 0.180
212 rcP/pcp 1 A 140 D 0.375 0.282
213 rcP/pcp 1 B 116 D 0.228 0.197
223 rcP/pcp 1 C 356 D 0.152 0.159
224 rcP/pcp 1 B 116 D 0.367 0.225
225 rcP/pcp 1 B 116 D 0.210 0.315
112 rcP/pcp 1 A 140 D 0.061 0.034
113 rcP/pcp 1 c 188 D 0.013 0.017
114 rcP/pcp 1 B 188 D 0.025 0.015
115 TCP/PCP 1 C 116 D 0.036 0.010
116 rcP/pcp 1 c 116 D 0.021 0.022
117 TCP/PCP 1 B 212 D 0.197 0.114
120 TCP/PCP 1 A 92 D 0.256 0.024
121 TCP/PCP 1 A 116 D 0.397 0.071
122 rcP/pcp 1 A 212 D 0.057 0.165
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ID Test Cone. Jar Length of Live or TCP Residue PCP Residue
Exposure Dead

# (TU) (hours) (mmol kg-1
) (mmol kg·1

)

123 TCP/PCP 1 B 260 D 0.280 0.026
396 TCP/PCP 1 B 212 D 0.455 0.903
397 TCP/PCP 1 A 68 D 0.266 0.239
124 TCP/PCP 2 C 92 D 0.163 0.142
125 TCP/PCP 2 C 92 D 0.416 0.064
126 TCP/PCP 2 C 92 D 0.000 0.018
109 TCP/PCP 2 A 92 D 0.044 0.015
110 TCP/PCP 2 A 92 0 0.010 0.004
111 TCP/PCP 2 A 92 D 0.012 0.003
184 TCP/PCP 2 B 92 D 0.144 0.258
185 TCP/PCP 2 B 68 0 0.001 0.163
186 TCP/PCP 2 B 68 0 0.039 0.126
190 TCP/PCP 2 A 92 D 0.423 0.101
191 TCP/PCP 2 A 92 D 0.079 0.286
192 TCP/PCP 2 B 68 0 0.058 0.170
193 TCP/PCP 2 B 68 0 0.033 0.164
194 TCP/PCP 2 C 68 0 0.384 0.059
195 TCP/PCP 2 C 68 0 0.116 0.028
106 TCP/PCP 4 C 68 0 0.074 0.018
107 TCP/PCP 4 C 68 0 0.025 0.004
108 TCP/PCP 4 C 68 0 0.061 0.014
127 TCP/PCP 4 B 68 0 0.060 0.036
128 TCP/PCP 4 B 68 D 0.002 0.008
129 TCP/PCP 4 B 68 D 0.059 0.051
187 TCP/PCP 4 A 68 D 0.047 0.069
188 TCP/PCP 4 A 68 0 0.205 0.084
189 TCP/PCP 4 A 68 0 0.164 0.200
196 TCP/PCP 4 A 68 0 0.018 0.074
197 TCP/PCP 4 A 68 0 0.318 0.067
198 TCP/PCP 4 B 68 D 0.308 0.059
199 TCP/PCP 4 B 68 0 0.343 0.058
200 TCP/PCP 4 C 68 0 0.279 0.092
201 TCP/PCP 4 C 68 0 0.043 0.067
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APPENDIX D - SAS CODE FOR ANALYZING BODY RESIDUES FOR THE TCP
TEST

dm 'log; clear; output; clear; ';
options Is=72 ps=54 pageno=1;

***filenarne: a:\tep p.sas***;

title;
filename one 'a:\tep.txt';

data a;
infile one missover firstobs=5 dsd dlm='09'x ;
input ID Test $ Cone Jar $ Time LorD $ Wwt injvol tep ;

*proc print data=a;

proe sort data=a; by cone;
proe mixed data=a eovtest; where cone ne 0;
classes eone~

model tep = cone / ddfm=satterth ;
lsmeans cone / pdiff;
run;
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APPENDIX E - SAS CODE FOR ANALYZING BODY RESIDUES FOR THE PCP #1
TEST

dm 'log; clear; output; clear' ';
options ls=72 ps=54 pageno=1;

***filename: a:\pepl p.sas***;

title;
filename one 'a:\pepl.txt';

data a;
infile one missover firstobs=5 dsd dlm='09'x '
input ID Test $ Cone Jar $ Time LorD $ Wwt injvol pcp;

*proe print data=a;

proe sort data=a; by cone;

proc mixed data=a eovtest; where cone ne 0;
classes cone;
model pep = cone / ddfm=satterth ;
repeated / group=eone;
lsmeans cone / pdiff;
run;
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APPENDIX F - SAS CODE FOR ANALYZING BODY RESIDUES FOR THE PCP #2
TEST

dm 'Jog' clear output" clear I., , , , ,
options Is=72 ps=54 pageno=l;

***fiLename: a:\pep2 p.sas***;

title;
filename one 'a:\pep2.txt';

data a;
infiJe one missover firstobs=5 dsd dlm='09'x :
input ID Test $ Cone Jar $ Time LorD $ Wwt injvol pcp;

*proc print data=a:

proe sort data=a: by cone;

proe mixed data=a covtest; where cone ne 0;
classes cone;
model pcp = cone / ddfm=satterth ;
repeated / group=conc;
lsmeans cone / pdiff;
run;
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APPENDIX G - SAS CODE FOR ANALYZING TCP AND PCP BODY RESIDUES
FOR THE TCP/PCP TEST

dm 'log; clear; output; clear; ';
options Is=72 ps=54 pageno=1;

***fiJename: a:\tcppcp p.sas ***;

title;
filename one 'a:\tcppcp.txt';

data a;
infi.le one missover firstobs=5 dsd dlm='09'x ;
input ID Test $ Conc Jar $ Time LorD $ Wwt injvol tcp pcp tcppcp;

*proc print data=a;

proe sort data=a; by conc;
proc mixed data=a covtest; where conc ne 0;
classes conc;
model tep = conc / ddfm=satterth ;
repeated / group=cone;
lsmeans conc / pdiff;

proe mixed data=a covtest; where cone ne 0;
classes cone;
model pcp = cone / ddfm=satterth ;
repeated / group=eone:
lsmeans cone / pdiff;

proc mixed data=a eovtest; where cone ne 0;
classes cone;
model tcppep = cone / ddfm=satterth ;
repeated / group=eone;
lsmeans cone / pdiff;

run;
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