
DDAS: DESIGN AND IMPLEMENTATION OF

A KERNEL APPLICATION FOR ADAYI'IVE

DISTRIBUTED COMPUTATION

By

KWAN-SUNG KIM

Bachelor of Engineering

Kyunghee University

Seoul, Korea

1991

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1999

•

"

Ok/a" mil ...,&UI:

DDAS: DESIGN AND IMPLEMENTATION OF

A KERNEL APPLICATION FOR ADAPTIVE

DISTRIBUTED COMPUTATION

.1

Thesis Approved:

De n of the Graduate College

ii

'atf

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my thesis advisor, Dr. K. M.

George for his inspiration, guidance, friendship and patience. I would also like to

express my respectful thanks to Dr. John P. Chandler and Dr. H. K. Dai for serving on

my graduate committee and for providing valuable suggestions and ideas.

I sincerely thank my family and friends with all my heart.

iii

Chapter

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

n. lITERATURE REVIEW 4

2.1. Distributed Computation System : 4

2.2. Distributed Computation Tools 7
2.2.1. RPC 7
2.2.2. DCE 9
2.2.3. COREA 10
2.2.4. Java RMI 12

2.3. Distributed Computation Applications 14
2.3.1. Client-Server Model 15
2.3.2. Mobile Agents 17

m. DDAS SYSTEM 22

3.1 The DDAS System Configuration 22
3.2 The Basic Operations of the DDAS System 24

IV. IMPLEMENTATION OF THE DDAS SYSTEM 27

4.1. Implementation of DDAS and Manager.. 27
4.2. Construction of a Dynamic Network 31
4.3. Inter-DDAS Communication 33
4.4. Node Disconnection and Clean up 34

V. EXECUTION OF DISTRIBUTED COMPUTATION JOBS 35

VI. TEST AND DISCUSSION 39

6.1. Test Environment 39
6.2. Example 40
6.3. Discussion 46

iv

vn.CONCLUSIONS AND FUTURE WORK .49

7.1. Conclusions 49
7.2. Future Work 49

REFERENCES 51

APPENDIX

APPENDIX A. ABBREVIATIONS AND ACRONYMS 55

APPENDIX B. PARTIAL DDAS SYSTEM SOURCE CODE 58

v

Table

LIST OF TABLES

Page

1. Communication components and method of communication 23

2. Responsibilities of each communication component 23

3. System characteristics 39

4. Input command set of the DDAS system 41

5. Files after eonstruction of the dynamic network .42

6. Files after finishing data transfer to the next nodes .43

7. Files after execution of an application program 45

8. Comparisons of DDAS to related systems .47

9. Problems of client-server and mobile agents and solution in DDAS system .48

vi

LIST OF FIGURES

~~ h~

1. LAN and WAN connections 5

2. TCPfIP Layer and OS1 model Layer.. 6

3. Remote procedure call between client and server 8

4. OSF DCE architecture 10

5. One of OMG CORBA reference models 12

6. Java RMI Layers 13

7. Client-server model 16

8. Operations of general mobile agents system 18

9. Basic configuration of the DDAS system 24

10. Basic operations of the DDAS system 25

11. Functions of the DDAS methods 28

12. Functions of the DDAS classes 29

13. Methods of the Manager class 30

14. Flow for construction of a dynamic network 32

15. Computation steps of an application program 36

16. A sample diagram and pseudo-codes for a distributed job 37

17. Flow chart for the distributed quick sort application using the DDAS system 42

vii

18. Status of network and distributed computation 44

19. Processes of returning and merging data .45

viii

I. INTRODUCTION

Distributed systems and distributed computing have been very popular tenus for

the last two decades in computer science. A distributed system is a collection of

independent computers interconnected by a communication network, and its applications

are called distributed computing as opposed to centralized or single-process computing.

The major goal of distributed computing is to reduce the processing time of tasks by

distributing job execution throughout the system to multiple processors [31].

There are many advantages of distributed computing over centralized computing.

Distributed computation provides a less expensive method of executing computation

intensive tasks previously run on supercomputers [44]. Distributed computation also

yields higher performance. Through high-speed network interconnection and dividing

computation, the processing speed is higher for large problems than using a single

processor. Moreover, it allows sharing of expensive resources such as data files, color

printers and specialized hardware devices. A user can run programs on many different

machines and he/she can share varied peripherals that are parts of other computers.

With these many advantages, distributed computing applications have been

developed over the years. RPC (Remote Procedure CaJl) [24], DCE (Distributed

Computing Environment) [28], CORBA (Common Object Request Broker Adapter) [18]

and Java RMI (Remote Method Calls) [29] provide models for transferring structured

data through networks as programming tools [18]. Based on these tools, Client-Server

model [7] and Mobile Agents [6, 23] have been applied to the distributed computing

applications [34].

Unfortunately, there exist security problems in highly efficient distributed

computation. Distributed computing applications face two-fold security problems.

Transmitting data, receiving results and accessing other computers' resources are

accomplished by open communication ports on computer devices. Therefore, distributed

programming tools provide their own security functions and distributed computing

applications have to deal with security environments of a computer system [25].

Furthennore, the systems need to be concerned with their own security and integrity.

In this research, we propose DDAS (Dynamic Distributed Agents Server) system

that includes the advantages of distributed computing and supports secure and reliable

communication between nodes. The proposed system is designed to support adaptive

run-time distributed computation processing. The DDAS system implements TCPIIP

(Transmission Control ProtocollIntemet Protocol) [19] network protocol for low level

network connection. Java object-oriented programming language [22] i u ed in the

construction of the higher level network system and message passing because it provides

various communication methods and object message passing methods [12, 26, 27].

DDAS system can be used to build a virtual network. A virtual network system is

comprised of several domains. The virtual network system is a dynamic network since

new domains may be added or removed. In order to address the two-fold security

problem, user accounts must be authorized on all domains.

The DDAS itself is a distributed system. Any node in the system may add

another node. It also has the capability to distribute processes, create processes, run

processes, kill processes and delete processes.

2

The remainder of this thesis is organized as foUows:

• Chapter 2: Describes the basic environment of the distributed computation system and

provides an overview of distributed computation tools and applications.

• Chapter 3: Discusses thesis objectives and describes the basic configuration and

operations of proposed system, DDAS: Dynamic Distributed Agents Server.

• Chapter 4: Discusses the implementation specific design of the DDAS system

architecture.

• Chapter 5: Describes the execution of distributed computation jobs using DDAS

system.

• Chapter 6: Discusses the test evaluation of DDAS system with a distributed

application program

• Chapter 7: Presents a summary of the thesis and presents future work.

• Appendix A: Describes abbreviations and acronyms of the thesis.

• Appendix B: Includes parts of DDAS system source code.

3

ll. LITERATURE REVIEW

In this chapter, we will describe the basic environment of the distributed

computation system and provide an overview of some distributed computation tools and

applications.

2.1. Distributed Computation System

Distributed computation is executed in a collection of interconnected processors

that are connected by communication networks. LAN (Local Area Network) emerged in

the early 1970's as a high-speed network for combining main frames, mini computers,

desktop workstations and peripherals within a special area [32]. LANs are convenient

for installation and management, and are very reliable [35]. LANs connected to other

LANs have been developed to fonn WAN (Wide Area Network) [4]. Figure 1 shows the

network connection of LAN and WAN. Furthennore, all different types of networks are

connected into the Internet. The Internet is developed based on the TCP/IP protocol suite

[8].

In 1983, the DOD (Department Of Defense) adopted the TCPIIP protocol suite as

a standard. Since then the TCPIIP protocol has expanded very fast. The DOD's

ARPANET (Advanced Research Projects Agency NETwork), the world's first packet

switching network, is the genesis of the Internet [43].

4

LAN

IW~k IStatim

...................'..•......

Figure 1. LAN and WAN connections.

The TCPIIP protocols were designed to be independent of host hardware or

operating system. In communication between different networks, the OSI (Open

Systems Interconnection) model was developed by ISO (International Organization for

Standardization) as another standard data communication model. Even though the OSI

model is used by very few organizations for network communication, it provides stable

hardware independent design. Therefore, both of them, TCPIIP protocol and the OSI

model, are used in distributed network.

Figure 2 shows the TCPIIP layers and OSI model layers. TCPIIP protocol and

OSI model consist of several layers and each layer has the following behavior: The

physical layer is an interface between the other layers and the hardware devices. In this

layer, the transmitted data are represented as bits signal. The Data Link layer provides

5

reliable data transfer across the network from LANs to WANs. In Data Link ayer, the

transmitted data are represented by frame formats that include physical address. The

Network layer is the same as the IP layer in TCP/IP protocol. This layer perlorms

network layer functions and routes data from source to destination. The Transport layer

is same as the TCP or the UDP (User Datagram Protocol) in TCPIIP protocol [19]. This

layer provides reliable data connection services to applications. The transferred data are

enclosed by header and trailer for ensuring communication delivery. The Session layer is

the interlace between the users and network. It manages two processes to establish and

to control. The Presentation layer determines data syntax. It provides the interface

between the application and the required service. The application layer provides required

software applications such as file transfer, terminal access, electronic mail, news and so

on [43].

Applications

TCP UDP

I,....,··'
IP .,

~

Data LinkI-~

I,·
Physical

"'

<fCPIIP Layer>

Applications

Presentation

Session &1.-
1:.:- Transport

,

Network
.o.;c

1-" Data Link

Physical
..

I ...~. '"

<OSI model Layer>

Figure 2. TCPIIP Layer and OSI model Layer (adopted from [19]).

6

Since TCPIIP protocol and OSI model are the basic protocols in a distributed

network environment {40], the TCPIIP protocol and the OSI model are appli d to many

computing tools and applications in distributed computation systems.

2.2. Distributed Computation Tools

RPC and DCE were developed as low-level data communication APIs

(Application Programming Interfaces) and protocols. APIs play an important role in

message passing during distributed computing. The message passing API provides a

common interface that allows users to send messages and files from within their

applications without having to exit the application. One of the problems is to select from

the variety of messaging APls that are supported by the different network components

from different manufacturers. Therefore, many tools, such as RPC, DCE, CORBA and

Java RMI, have been developed to provide a hardware free environment.

RPC and DCE are used as the basis of client-server or mobile agents models in

many applications. CORBA and Java RMI serve as object-based distributed

computation tools for distributed computing applications [18]. These tools are described

in the sections that follow.

2.2.1. RPC

RPC (Remote Procedure Call) was developed by Sun Microsystems in the mid

1980s. An implementation of RPC was developed in the University of California at

Berkeley. Later, the Sun Microsystems implemented the standard RPC in 1988 [42].

7

RPC is a special type of IPC (Inter-Process Communication) that is provided for

concurrent processes or threads to communicate with each other. RPC tool of Sun

Microsystems was developed for operating on the Unix system and this tool is designed

so that the network programmers can use any language for developing their application

programs [42]. Nowadays the RPC is a widely used method for developing client-server

applications.

As an extension of the procedure call that executes applications on different hosts,

RPC is composed of synchronous requests and responses. An RPC begins with a request

to a remote host and completes after receiving the results from the remote procedure.

Figure 3 illustrates the remote calling RPC process.

Client Server

..:::: Progtlam.

/
Receive -,- Call RPC (Data)

I Send (Data) :
v Program ~:-....

(Procedure) -
Receive

~

~
- iSend (Result)(Result) r--

Figure 3. Remote procedure call between client and server (adopted from [24]).

If a running program in the client side wants to call remote process in the server

side, the sender in the client transfers data to the server. The receiver in the server

accepts data and executes a server program. The result of execution transfers to the

8

receiver of the client side through the server side's sender. Wh.en thi return value i

transferred to the program of the cbent, its task is done.

Since RPCs are the major communication tools of most client-server models,

most middle-ware such as DCE (Distributed Computing Environment), message queuing

and network SQL (Structured Query Language) are built on RPCs.

2.2.2. DeE

The aSF (Open Software Foundation) which was founded in 1988 [47] describes

DCE (Distributed Computing Environment). It is called middle-ware [5] or enabling

technology. With members consisting of system vendors, software vendors, end-users,

government agencies, research centers and university communities, the aSF evaluates

distributed software technologies.

As a middle-ware, a layer of software that resides between an application and the

network, it provides a common interface for describing and representing data types in a

machine independent environment. The key technologies are Remote Procedure Call

Service, Directory Service, Security Service, DCE threads, Distributed Time Service and

Distributed File Service [38].

Figure 4 describes the DCE architecture. The figure shows the functions of each

element of a configuration. RPC distributes application execution. Distributed

Directory Service provides a single naming model throughout the distributed

environment. DCE threads control the flow of information within applications.

Distributed time service synchronizes all clocks on a network. Distributed File System

gi ves users access to remote files, regardless of their geographical location. And

Security Service provides a secure means of communication that ensur s both data

integrity and privacy by preventing unauthorized access to the distributed environment.

AppUcations

DCE middle-ware

Figure 4. OSF DCE architecture (adopted from [38]).

Since DCE provides tools and services to the application developer through

communicable RPC, it has been standardized for developing client-server applications in

distributed computation environment.

2.2.3. CORDA

CORBA (Common Object Request Broker Adapter) is another middle-ware

platform in distributed computing environment. As a middle-ware, it is different from

DeE in that COREA uses an object-oriented distributed model whereas DCE utilizes a

procedure-oriented distributed model [1].

IO

CORBA was developed in 1991 by the members of the OMO (Object

Management Group) and their corporate members and sponsors as a distributed object

standard. CORBA expands the benefits of reusability and modularity across a

distributed computing system [37].

CORBA proposal is based on the concept of object interface that is described in

IDL (Interface Definition Language). The IDL provides a platfonn independent method

to define what kinds of operations an object is capable of performing. IDL has been

mapped to various languages, such as C, C++, Ada, and Java. The attributes and

operations of object interfaces are specified by the syntax of CORBA IDL when it is

compiled by an IDL compiler. This CORBA IDL syntax is used for specifying the

attributes and operations of object interfaces.

CORBA framework for distributing objects consists of an ORB (Object Request

Broker), methods for specifY,ing the interfaces and a binary protocol for communication

between ORBs called lIOP (Internet Inter-ORB Protocol).

Figure 5 describes an OMG reference model that is a technical reference model.

The ORB plays an important role in CORBA for distributing objects. It provides clients

and servers of distributed objects the ability to send and receive requests to each other. It

also provides naming service, which lets clients lookup object by name and security

service and makes possible secure inter-object communication. All objects communicate

to ORB through interfaces. CORBA "services objects" use fundamental interfaces.

CORBA "facilities objects" reuse and extend CORBA "services interfaces". CORBA

"domains objects" reuse and extend CORBA services and CORBA "facilities interfaces".

11

"Application objects" reuse all of standard categories and may add custom extensions

[37].

CORBA has one problem in its execution environment. CORBA is installed on

the hosts for executing. When software needs updating, the user client software does not

replace new functions and new interfaces, which generate complicated problems in multi-

user distributed applications. But this problem has been solved with the evolution of

WWW (World Wide Web) technology [16].

Application CORBA Domain
Object and Object and

I~ Interfaces Interfaces
"....

+ +
CORBA Object Request Broker V

(IIOP Protocol)

CORBA Service
Object and
Interfaces '-

CORBA Facility
Object and
Interfaces

! '

Figure 5. One of OMG CORBA reference models (adopted from [37]). (I) /, I I, , II I'

r,o,

2.2.4. Java RMI

Java RMI (Remote Method Invocation) has been a part of core Java API since

JDK (Java Development Kit) version 1.1. Similar to CORBA's IIOP, RMI has object

communication tools to allow access to remote objects and includes data serialization,

12

remote class loading and socket manipulation [3]. As shown in Figure 6, Java RMI

consists of several layers and exists between applications and JVM (Java Virtual

Machine) [48].

Client
I· 1

Server I Application

~ ~
Skeleton

Remote Reference Layer RMISystem

Transport

~ ~
Classloader, Security Manager,

JVM
.\);'Jl

Garbage Collection
~:

Figure 6. Java RMI Layers (adopted from [29]).

The application layer exists on the top of the RMI System and the layers of RMI

system consist of three parts: Client side stubs and server side skeletons, remote reference

layer, and transport layer. The stub/skeleton layer is the interlace between the

application and RMI system. A stub is the client side proxy for remote object and a

skeleton is the server side entity for remote object. The remote reference layer is

responsible for low-level transport interlace, which is independent of the stubs and

13

skeletons. The transport layer is responsible for connection setup and management, and

keeping and dispatching remote objects [29].

Java RMI makes it possible to invoke a method from one JVM to another JVM

[36] and it is a distributed technology that extends the pure Java object model to the

network. RMI allows moving behavior between clients and servers. Its ability to move

intelligent behavior in distributed computation applications is distinguished from

traditional RPC tools in that RMI serves as object-based distributed tools [29]. With

Java RMI, programmers create distributed computing applications in which methods of

remote Java objects can be invoked from other JVMs. Java RMI supports both client

server and mobile agents model in distributed computing applications.

But Java RMI has the same problem as CORBA executing distributed

computation procedures in client-server model. If a server part objects are upgraded to

new components and a client part objects does not use new functions and interface ,

serious communication problems may be generated in multi-user distributed computation

applications [3]. This problem has been solved with introducing mobile agents paradigm.

2.3. Distributed Computation Applications

Since distributed computing tools provide more reliable and faster distributed

computation environment to the distributed computation applications such as Client

Server model and Mobile Agents, distributed computation applications have been

developed rapidly over the years.

A distributed computing application, existing on top of several communication

layers, consists of several elements. It includes communication layers. The low-level

l4

communication layers provide connection to other computers for transmitting and

receiving data packets and the high-level communication layers provide communication

protocols. A distributed computing application makes use of processes, threads, objects
I,

and agents. The processes, created by a programming language, are the programs \

compiled into an executable form and running in the computer system. Some operating

systems provide multiple threads that run independently from each other and they do

multiple jobs concurrently. The objects that are groups of related data can be accessed

by other threads in a running process. A significant functional element of a distributed

application is called an agent. The agent is a recent approach in distributed computation,

and it executes distributed jobs throughout the multiple processors [18].

Security problem has been a major issue in distributed computation and many

distributed applications have tried to implement the solutions with algorithms and

architectures. The security problems of distributed system are described in distributed

applications that follow.

2.3.1. Client-Server Model

Client-server distributed computation model has been very popular and its

technologies have been expanded rapidly in heterogeneous communication system (24].

There are many forms of client-server models because of the various

environments of server and client. All Internet services are provided by server and

accessed by a client. A server is a program running on a computer that delivers a specific

service and a client is a program that communicates with the server and requests specific

services. Generally in the client-server model, the server is passive and waiting for client

15

requests. As seen in Figure 7, the client part requests to the server part and receives the

answer from the server. And the server part receives the request from the client and

responds to the client [39].

The client-server technology provides several benefits such as lower cost, higher

productivity, longer system life cycle and better software reusability. It also can make it

easier for users to access infonnation, to use and to develop applications, and to manage a

distributed computing system. Since the client-server model can be constructed in a

hardware independent environment, it is easier to build a client-server model with a

software mechanism.

Client

..>

Request
works

Network

Server

Waiting
requests

Response

Resources

Figure 7. Client-server model (adopted from [7]).

On the other hand, one of the problems of the client-server model is that the same

communication interfaces are required in both sides. When the server side software and

some client side software upgrade their functions and interfaces, and some client side

16

software does not upgrade with new contents, it produces serious communication

problems in multi-user distributed computation applications. Therefore, maintenance of

software versions is very important in client-server model.

2.3.2. Mobile Agents

As a relatively recent approach in distributed computation, mobile agents are able

to travel through a network and provide efficient remote execution in many areas such as

information retrieval, network management, workflow, mobile computing and

telecommunication [46].

Carnarinha-Matos and Vieira indicated two advantages of mobile agents

compared to client-server model in their paper [10]. The first is that -the running program

code and data size is smaller than client-server's. The second is that it provides a

possible method to minimize communication traffic in a distributed computing system.

Figure 8 shows the operation of a general mobile agents system. In this system

configuration, an agent server, exists in each host, receives and sends an agent to the next

node of a network. When receiving and transmitting an agent, the agent server uses a

monitor that is operating for indicating the status of network flow. The agent moves

from host to host carrying its internal state and works its tasks in each host and then

returns to its home host when its job is done.

There are several advantages using mobile agents in distributed computing

system. Mobile agent architecture is scalable and reliable because there are no central

components. The resources and services can be changed dynamically by an agent that

has the ability for achieving the goal autonomously. During its migration, a mobile agent

17

travels using short network paths, and mobile agents can coexist with client-server model

applications. While the agents act on a remote site, the system executes other task [13].

HosCM

Host->f : Main Host
HoseX : Remote Hos X
HoseY: Remote Host Y HosCY

Figure 8. Operations of general mobile agents system.

These advantages have been found in several application systems. In the

beginning, these systems have emerged as an adaptive execution of parallel computations

such as Condor [17] and Piranha [11]. These systems are running in LAN environment

that is comprised of standard UNIX workstations. For adaptive parallelism, executing

over a set of dynarrtically changing processors, these systems utilize idle-state

workstations. Condor is a software package developed at the University of Wisconsin -

Madison. It is a distributed batch system for automatic location and allocation of idle

18

machines. Condor has several functions such as automatic location of idle machine and

migration of processes. These processes are executed without any modifications to the

UNIX kernel programs. Condor is responsible for locating therequir; d r sources,

making the job to use resources, monitoring its execution and notifying the user on its

progress by a batch job. This batch processing does not disturb the running environment

of programs provided by workstations. Condor does not require any special

programming and preserves the operating system of the network computers on which jobs

were submitted [15]. Piranha, developed at Yale University, gathers and uses idle

network nodes for executing parallel computations. Piranha provides a mechanism for

solving large problems through parallel programs on idle workstations. In using Piranha,

programmers do not create processes and their applications do not count on any active

processes for parallel computations. Piranha has a task descriptor that is movable and

remappable computation unit as one of advantages. The task descriptor is different from

processes and supports heterogeneity. A process cannot be moved to other computer

systems of different types, but the task descriptor provides an access function in all

different types of machines. It is possible using tuplespace. Tuplespce is virtual shared,

associative and object memory, accessible to all nodes in all workstations on a LAN.

These task descriptors are stored in tuplespace in Piranha, and different nodes can access

tuplespace for using a task descriptor [21].

As mobile agents appear in distributed computation, several systems have

implemented those for adaptive distributed computing such as Telescript [45], Tacoma

[30], Agent Tcl [23] and JVMS [9]. Telescript is an object-oriented programming

language for utilizing mobile agents in network environments.

19

Telescript enables

processes to migrate in different computers and Telescript's process model is autonomous

process migration. Telescript agents are currently used for network management, active e

mail, electronic commerce and business process management [14]. Tacoma is an

operating system support for mobile agents that migrate through a network. As a project,

Tacoma dictates how mobile agents can be used to solve problems that have been

generally handled by operating system [30]. Agent Tel is a server that executes on each

computer system. Agent Tel has migration and communication services, security

mechanisms and tracking tools such as docking systems that allow an agent to migrate on

connected machines and return later. Agent Tel has been used primarily in information

retrieval applications [33]. JVMS, a Java-Based Mobile actor System, was proposed by

Legand Burge in his thesis [9]. JMAS allows a programmer to create mobile actors,

initialize their behaviors, and send them messages using constructs provided by the

JMAS Mobile Actor API (Application Programming Interface). Since JVMS make

locations of mobile actor visible to programmers, it ensures their explicit control over

actor placement.

Mobile agents can be utilized in network management with their various

advantages. First, using mobile agents can reduce the network bottleneck through

distributing simplified codes instead of transferring large amounts of data. Second,

mobile agents can be used to decentralize network management. Even though the main

domain's configuration is changed, it does not need to pay attention to the other activities.

In the same manner, mobile agents are used in dynamic changing of network management

policies. Third, mobile agents are suitable for monitoring large numbers of protocol

variables. They are also suitable for memorizing the behavior of network components

20

for a long time. Mobile agents are used for searching, filtering and collecting data. In

addition, mobile agents are suitable for high-speed network management because it does

not need to bring all data to the manager. Various usage of mobile agents in network

management is well indicated in Sahai and Morin's paper that suggests a distributed and

dynamic architecture for network management [41].

In spite of these advantages, mobile agents have serious security problems

because mobile processing is generated in open network system. It is difficult to

distinguish hostile agents from authorized agents. Many security problems in mobile

agents have been disclosed and the methods of conquest of security problems have been

suggested by many authors over the years [20,46].

21

III. DDAS SYSTEM

To achieve better security in distributed computing and more efficient

management of a distributed computation system, DDAS (Dynamic Distributed Agents

Server) system is proposed in this thesis. The DDAS system is one of the distributed

computation applications based on TCPIIP network environment. It provides the user

with the capability to use a dynamic network. The dynamic network is adaptive in the

sense that nodes can be added or dropped as needed for a distributed computation in the

DDAS system. The dynamic network systems consist of domains that can be accessed

by a user with read-write-execute privileges. This is true if a user has an account in a

computer. This provides better security because only an authorized user can use a

dynamic network for distributed computation. It also supports adaptive network because

nodes can be added or removed as necessary.

3.1. The DDAS System Configuration

The DDAS system consists of a DDAS and its manager. Table 1 describes the

communication components and the method of communication and Table 2 indicates the

responsibilities of each communication component. Figure 9 shows the basic

configuration of the DDAS system. The DDAS exists as a program in UNIX system. It

utilizes a specified communication port for construction of a dynamic network. After

establishing a dynamic network system with dynamic distributed agents server, the

manager in the user host executes to distribute processes, create processes, run processes,

kill processes, and delete processes through DDAS for increasing the performance of

distributed computing system. The manager is executed as an interface between DDAS

22

and a distributed job application program that has computation jobs. The application

program communicates with the manager through a message-passing function in that the

DDAS system and an application program are operated independently. After

construction of a dynamic network, computing jobs are distributed to the nodes of the

network adaptively. When the nodes complete computation, results are returned to the

application program, and nodes are removed adaptively.

rl 72}. DDAS . :~ Manager ':, Application (Job).. ;; R . iJ

DDAS
.~ ·i~ message-passing method call N/A

Manager method call N/A method call
I
!

Application (Job) N/A method call N/A

Table 1. Communication components and method of communication.

1-·- -- - . --.:. Responsibilities

DDAS 1 1. Construct a dynamic network,

2. Message-passing between nodes

3. Communicate with the Manager

Manager
f? ."}, 1. Initialize the DDAS system

2. Manage DDAS while it is active
_ "p,ot'" i ~ r

3. Communicate with the application programs

Al'plieatidn . 1. Invoke the Manager of the DDAS system

it i ~ f ;- 2. Notify computing algorithm and data to the Manager
'"

..
3. Communicate with the DDAS system

·.i, " •11.<:. .,

Table 2. Responsibilities of each communication component.

23

HosCY

+·······1
HosCX E'

,,'
"...•...

",

Dynamic Netw-o;k
""

HoseU : User Host
HoseX : Remote Host X
HoseY: Remote Host Y

",.•......
",

""....
"",

",...•...
",,'

Distributed Job
.................- ~

HosCU

• " j " • '1
. ~ .

~.._s.~..i.LL...~~

Telnet

Figure 9, Basic configuration of the DDAS system.

3.2. The Basic Operations of the DDAS System

The basic operations of the DDAS system are described in Figure 10, If there are

some jobs in a certain host, first of all, the proposed system constructs a dynamic network

through the DDAS components, The manager checks the availability of other nodes,

distributes DDAS components to those nodes, and initiates their execution,

24

i

Ai
i 10

I I: :

i i
I I
~ ~
! I
!,,' !

E
I io i !

i,. l
: ...

•....•...........•,
: DDA :
,········1·········
•....••.1••..•..•

I •

: Manager :
• I........ ~.

...r...
{ Sub \
- k I-••tas ••'•••••

..................,
: DDAS :
,········1········:
••••••••J•••••••••

I •

: Manager :
• ••..•....•~ .

...r .
... Sub '••
I •

"-. task l... ..-

0'"

...

Disconnect Network'''~
and Delete Nodes

HosCU

Construct a Dynamic

1. Construct a Dynamic Network: oe.
2. Message Passing:. 0008
3. Disconnect Network and Delete Nodes: 00

HoseY

Figure 10. Basic operations of the DDAS system.

As a result of these processes, each DDAS, as a kernel program of a network, can

communicate with each other. When the dynamic network construction is completed,

message-passing is followed. Through communication with application programs, the

manager distributes computing jobs and transfers the results to the application programs.

After completion of computing jobs, the DDAS system in the user host disconnects the

dynamic network and deletes all of remote nodes for releasing occupied components of

2S

the DDAS systems in the remote hosts. It kills the running processes of the DDAS

system in the remote hosts and deletes the DDAS systems and all related jobs in the

remote machines. Since the dynamic network is constructed with very reliable remote

hosts that consist of only authorized user accessible machines, the security problem, one

of the major problems in open network system, can be reduced. Moreover, if there are

no distributed computing jobs in a user host, the DDAS system does not affect efficiency

of remote hosts as a result of killing processes and deleting occupied DDAS system

components.

26

IV. IMPLEMENTATION OF THE DDAS SYSTEM

For executing distributed computation, the DDAS system uses its own dynamic

network. A dynamic network is built on TCPIIP network environment. The DDAS

system consists of two major parts, DDAS and manager. These components are

implemented by Java object-oriented programming language since it provides various

communication methods and object message-passing methods. Moreover, it provides a

data encapsulation function for better security. It also provides a open environment for

component-based network computing with its platform independent bytecode standard.

In this section, we describe the implementation of the DDAS system and how it can be

used to build dynamic network.

4.1. Implementation of DDAS and Manager

The DDAS and the manager are two software components composing the system.

The DDAS is responsible for construction of dynamic network, message passing between

each DDAS, and communication with the manager. All of these functions are provided

by the ddas class. The ddas class (ddas.java) consists of two major methods that are

openSocketO and connectSocketO, and two classes, SenderO and ReceiverO. Figure 11

and Figure 12 show these methods and classes. The openSocketO method executes a

server function that waits for connecting other hosts on the specified port. The specified

communication port is one of the available TCPIIP connection ports. The

connectSocketO method tries to connect to the scheduled host. The scheduled host is

similar to the server in the client-server model paradigm. The host is decided when the

27

DDAS system is invoked from an application program which has computation jobs.

These two methods provide the basic functions for the construction of dynamic network.

There are two kinds of SenderO and ReceiverO classes. One pair of them is for message-

passing between each DDAS and the other is for communication with the manager.

With these message-passing functions in inter-DDAS, the DDAS system can distribute

computation jobs, check the current status of the remote hosts, and kill the running

DDAS processes of the remote hosts. Another communication function, between the

DDAS and the manager, is accomplished by method call. The DDAS and the manager

exist at the same location and the manager controls the DDAS component using method

call.

public class DDAS extends Concurrent (
protected static void openSocket() (
- EstablishRendezvous er = null;

er = new EstablishRendezvous(PORT); II open server socket
Rendezvous r = null;

r = er.serverToClient();
r.serverGetRequest(); II read the data from Client

II Running Server
new Receiver("Manager". r);
r.serverMakeReply("connected"); II send reply to Client
er.close() ;

II connect to the Server socket
protected static void connectSocket()

Rendezvous r = null;

II create a rendezvous to the Server object
EstablishRendezvous er = null;
er = new EstablishRendezvous(Server, PORT);
r = er.clientToServer();
II Send setup signal to SerJer and wait for reply
r,clientMakeRequestAwaitReply("setup");
II runnig Client
new Sender("ManagerSender", r, er);

Figure 11. Functions of the DDAS methods.

28

II Server side thread
class Receiver extends DDAS implements Runnable

private Rendezvous r = null;
II construct
public Receiver(String name, Rendezvous r) (

this.r = r;
new Thread(this) .start();

}
II running a thread for receiving integer data
public void runt) {

EstablishRendezvous er = null; /
r. serverMakeReply ("received") ; <_0'

r.close() ;

II Client side thread
class Sender extends DDAS implements Runnable

private Rendezvous r = null;
~rivate EstablishRendezvous er = null;

II construct
public Sender(String name, Rendezvous r, EstablishRendezvous er)
(

this.er = er;
this.r = r;
new Thread(this) .start();

}
II running a thread for transferring data
public void runt) (

r.clientMakeRequestAwaitReply (msgSend);
r.close() ;
er.close() ;

Figure 12. Functions of the DDAS classes.

The manager is responsible for initialization of the DDAS system, managing

DDAS during computing works, and communication with the application programs that

have computation jobs. The manager class (Manager.java) includes those functions.

Figure 13 shows the methods of the manager class for managing the DDAS system. It

also consists of several major methods that are inputCheckO, messageCommunicationO.

sendFilesO and executeFi lesO. The inputCheckO method provides the user interface

29

functions in the DDAS system. Through this method and input commands, the DDAS

system can be initialized for data communication and the user can check the DDAS

system environment. The IP address of accessible remote hosts and running status of the

remote DDAS systems are notified to the user using this method. The

messageCommunicationO method is for the inter-networking in the DDAS system and it

invokes SenderO and ReceiverO when there are some messages to transfer. The

class Manager extends DDAS (
public static void main (String[) strg) throws Exception (

initialSystem() ;
while(true) (

inputCheck() ;

}

II read system configuration file and set-up the system
static void initialSystem() (

machineNumber = readSetupFile();
}

static void inputCheck() throws Exception {
commandService(commandNumber, arguments, saveBufCnt);

}

public static void commandService(int exeNo, String[) argsOther,
int argNo) (

commandService(exeNo) ;
}
private static int checkReceivedData()

checkAndMakeData(opcodeNumber,receivedData, saveBufCnt);
}

II message passing method
static void messageCommunication()

connectSocket() ;
openSocket() ;

}

private static void sendFiles() (
Process pc ~ Runtime.getRuntime() . exec (commands) ;

}

private static void executeFiles () (
ExecuteFile efl =
new ExecuteFile(host, msg, command, msgMore, runMsg);

Figure 13. Methods of the Manager class.

30

manager class provides two functions for accessing the messageCommunicationO

method. The inputCheckO method calls the messageCommunicationO method with

standard input, a console input operated by a user. An application can invoke this

method with proper arguments, also. It makes possible for an application program to

invoke a method-call function in the DDAS system. More details about these methods

can be found in the following sections. The sendFilesO invokes the FIP (File Transfer

Protocol) [40] function. The executeFilesO invokes the Telnet [40] function. These two

methods play an important role in constructing a dynamic network of the DDAS system.

The first method sends DDAS components, DDAS and manager to the remote machines

and the other methods execute the DDAS system in the remote hosts.

4.2. Construction of a Dynamic Network

Since the DDAS system uses its own network for the inter-networking, when any

application program invokes the DDAS system, the DDAS system constructs a dynamic

network. The dynamic network only consists of the authorized remote hosts. Thi

restriction on the construction of a dynamic network is for high security. Figure 14

describes the task flow for construction of a dynamic network.

Initially, an application program in a user host invokes the DDAS system for

distributing computation. The manager of the DDAS system communicates with the

application program using messageCommunicationO method. The manager checks the

accessible remote machines by reading a system configuration file.

31

Detennine possible remote machines

Send DDAS components to the remote hosts

Start DDAS system in remote hosts

IStart data communication I
Figure 14. Flow for construction of a dynamic network.

Provided as one of the configuration setup of the DDAS system, the configuration file

named vns.data has the IP addresses of the remote machines, the user IDs and the user

passwords for accessing the remote hosts. After checking the accessible remote hosts,

the manager sends DDAS components to the identified remote hosts. It is accomplished

by FIP. After copying the DDAS system executable to the remote machines, the

manager starts each DDAS system in remote hosts. This job is executed using Telnet

that is another kernel application based on the TCPIIP. The DDAS system implements

the Telnet function in the client side. Using Telnet function, the DDAS system can

execute the remote DDAS systems in the remote hosts. Through all of these steps, the

DDAS system now has its own network for distributing computation jobs.

32

4.3. Inter-DDAS Communication

After establishing a dynamic network, the network nodes can communicate with

each other through DDAS. All of these data communications are executed by SenderO

and ReceiverO classes in the ddas class. The SenderO and ReceiverO are message

passing classes for inter-node communication. The specification of commands

implemented in DDAS system is given below in BNF (Backus-Naur Form). The start

symbol of the BNF definition of DDAS system is the variable <command>. Message

passing scheme is used for sending commands from one machine to another.

<command> ::= <op-code> <blank> <machine-name>

<op-code> ::= <letter> Irunning? Istatus Iexecute Ibusy? Ikill Idelete Ireturn

<machine-name> ::= <empty> I<letter> I<host-name>

<host-name> <letter> eslabsvr.wslab.okstate.edu z.cs.okstate.edu

chester.cs.okstate.edu

<letter> ::= <letter> I. I? 1- Ia Ihi····· Iy Iz

<empty> ::=

<blank> ::= any sequence of one or more blanks

A predefined port (port No. 7777) is used for communication between nodes in the

network. The method of communication is similar to client-server model. One node

makes a request for connection and the other one responds. The network has a hierarchy

that is decided when the DDAS system is invoked by an application program. The

highest level is the DDAS system of the user host. This is the node in which the

33

application starts. With inter-DDAS communication, a user can setup the network

environment and can check current status of the dynamic network. The

setEnvironmentO command administrates the network environment that includes the IP

addresses of accessible remote hosts and the user IDs and passwords. It also displays the

current setup status by the user's input commands and the user can check the running

status of the remote machines.

4.4. Node Disconnection and Clean up

When the application in the user host completes and/or the node is not perfonning

any task related to the application, the DDAS system has the ability to disconnect and to

remove the node from the dynamic network. This feature of DDAS supports efficient

management of the dynamic network of DDAS system. The DDAS system does not

affect the efficiency of the remote hosts because of the disconnection and the deletion of

useless remote processes. The process of disconnection and deletion consists of several

steps. First, the DDAS system deletes all the files created by the task except the DDAS

components with the "delete" command issued from the user host. Next, for

disconnecting the network, the "kitll" command is dispatched to the remote hosts. With

the "kilJ" command, DDAS terminates the running DDAS program in the remote host.

At that time, the implemented telnet function is applied again for deleting the remote

DDAS components. As a result of these jobs, there are no DDAS components or

computation results in the remote machine.

34

V. EXECUTION OF DISTRIBUTED COMPUTATION JOBS

Unlike other distributed computation applications where servers are pre-installed,

the DDAS system starts the distributed jobs from the construction of its own network.

The DDAS system establishes its own network, computes distributed jobs, and nulli fies

the established network when invoked by application programs. This feature ensures

network security and efficient management of the system. In this section, we illustrate

the computation processes of an application program.

Since the DDAS system can distribute the application's computing algorithm,

several computation algorithms could take advantage of the DDAS system. Consider a

large enough sorting job as an application program in the user host. The application

program has its own sorting algorithm such as quick sort, merge sort, or shell sort [2]. In

this example, let us assume that the algorithm is quick sort. The objective of this

example is to illustrate the process. Speed-up of computation is ignored. When the

DDAS system is invoked from a computation application with quick sort algorithm, the

system constructs a dynamic network through DDASs. Figure 15 describes the

computation steps for a sorting job. An application program invokes the DDAS system

in the main host, Host_No. The DDAS system of the HosCNo checks and calculates the

required nodes from the lookup table and an applied algorithm. The lookup table is

constructed from reading the environment file and the applied algorithm is the computing

algorithm of the application program. Let n be the total. number of nodes available for

computation. DDAS system running in HosCNo sends its components to the other

nodes. After that, the DDAS system running in HosCNo makes the DDAS systems

35

Figure 15. Computation steps of an application program.

ex.ecutable for nodes HaseN, to HoseNn. As a result of these, all DDASs can

communicate with each other. Figure 15 shows the constructed network of the DDAS

system. After the construction of a dynamic network, computation jobs follow. Figure

16 describes the sample code for a distributed job. The quick sort divides the data based

on a pivot element. Now, the half of data, smaller than the pivot and the other part,

bigger than the pivot are separated into data files in Hose No. One data file is kept in the

main machine and the other file is transferred to the HaseNJ. Now Hose No and

HaseN 1 repeat the same computation with the respecti ve data files.

36

User
Host

Remote
Host

Application_Pro~Quicksort() {
invoke_Manager;
notify30mputin~algorithm;
notify_data;
receive_results;

}
Manager() {

while (true) {
waite);
receive_invoke_command;
invoke_ddas;
send_computin~algorithm;

receive_results;
Run_sort_algorithm();
receive_file;
combine_file;
return result;

}
DDAS() {

while (true) {
waite);
receive_invoke_message;
construct_dynamic_network;
process_message_passing;

}
Run_sort_algorithm() {

if (node != lascnode) (
split_data;
send_splited_data;
}
execute_quicksort();
return results;

/1 sample application program
/1 invoke the Manager for computing
/1 notify the quicksort algorithm to the DDAS
/1 notify the data to the DDAS
1/ receive the results from the DDAS system
1/ end of program

/1 wait for service request
1/ receive the request from application program
1/ invoke the DDAS for dynamic network
1/ send the computing algorithm to the next node
1/ receive the results from the DDAS
1/ run the computing algorithm for half of data
1/ receive the result from sub-node
1/ combine the results
1/ return the computed result
1/ end of while loop
1/ end of method

II waiting invoking
1/ receive the message from the Manager
1/ construct the dynamic network
1/ return the complete message
1/ end of while
1/ end of method

1/ check the status of the current node
/1 split the data
II send the divided data to the next node
II end of if
II execute quicksort algorithm
1/ return the executed results of sorting
1/ end of program

Figure 16. A sample diagram and pseudo-codes for a distributed job.

37

This process is repeated by Hose No and HoseN I. Now two more nodes are included in

the computation. The processes of clivision and inclusion of nodes continue until either

no more nodes are required or no node is available. The last node, say HosCNn•

computes the sorting job and returns the result to the previous one, say HoseNn_l .

HosCNn_] combines its computed data and received data from HoseNn• These

combined data are already sorted and send to the previous node and so on. Eventually all

data reach Hose No as a sort file. The DDAS system of the HoseNo combines the

returned data and tenninates the computing processes. If there are no computation jobs

in the HoseNo• the DDAS system send the "delete" command to the remote hosts.

When the "delete" command is received, the remote hosts, from HoseN l to Host_Nm,

delete all of the computation results. After that, the DDAS system sends "kill" command

to the remote hosts. With this command, the remote hosts tenninate their processes.

After processing those commands. the DDAS system of the HoseNo invokes the telnet

function and deletes all of the DDAS components in the remote machines. As a result of

executing these processes, the app~ication program of the HoseNo gets its final results

and there are no DDAS-related jobs in the remote hosts. It provides better management

of the network in the DDAS system.

38

VI. TEST AND DISCUSSION

6.1. Test Environment

We validated the DDAS system using four machines, namely "esa"

(a.cs.okstate.edu), "csz" (z.es.okstate.edu), "chester" (chester.cs.okstate.edu) and

"eslabsvr" (eslabsvr.wslab.okstate.edu). The "csa", "csz" and "chester" are the host

computer systems of the Computer Science Department and the "eslabsvr" is the host

computer system of the Electrical Engineering Department. Table 3 describes the

operating systems and JVM versions used for the test. As a main host, "csa" was used.

In this system environment, a quick sort algorithm was executed as an application

program. The DDAS system resides in an open port in "csa" as a kernel of the

application. When an application program invokes the DDAS system, the DDAS system

sends its components to the remote hosts that are "csz", "chester" and "eslabsvr". After

that, it makes the DDAS systems in the remote hosts executable using the implemented

telnet function. As a result of these, the DDAS system has constructed its own network.

We can check the current status of all remote hosts, send the computation jobs, and

receive the computed results.

Host Name IP Address OS Name NMVersion
,

csa 139.78.113.1 SunOS 5.5.1 1.2

csi 139.78.113.110 Solaris 2.x 1.1.3

chester 139.78.113.102 Solaris 2.x 1.1.3

eslabsvr 139.78.96.1 Solaris 2.x 1.1.1

Table 3. System characteristics.

39

A system user can set-up and check the system when it is running, since the

DDAS provides user control functions such as establishing a network, sending files,

executing programs, deleting files, and so on by standard input commands. Table 4

describes the commands and their descriptions. These commands can be entered from

the Unix shell prompt.

6.2. Example

In the beginning of the execution, a quick sort application and the DDAS system

are in "csa" that we call main host. The DDAS system is started in the main host as a

kernel application. The application that consists of communication part and algorithm

part invokes the manager to facilitate distributed computation. Figure 17 describes the

flow chart for the distributed quick sort application using the DDAS system. After

invoking the manager, execution of application follows. The manager of the DDAS

system reads the system configuration, decides the node hierarchy, and constructs the

dynamic network. When constructing the dynamic network, the quick sort algorithm is

transferred to all the sub nodes. Table 5 shows the files in each machine after construction

of the DDAS system. The main host, "csa", retains an application program (App.class,

Quicksort.class, input.dat) and the DDAS system (DDAS.class, Manager.class,

Sender.class, Receiver.class, TelnetIO.class, vns.data). The App.class is the main class

of the application program, the Quicksort.class is the computation algorithm of quick

sort, and the input.dat is the input date file for sorting. The DDAS.class, Manager.class,

Sender.class, Receiver.class, and TelnetIO.class are the core stubs for controlling and

communicating in DDAS system, and vns.data is the virtual network setup data file.

40

Command Arguments !:'qrt,r..ht-. Description ",. ~.~ . "
.,...

7·

? Display the DDAS commands
t

command Display the DDAS command's manual

busy? Check running processes of all remote machines

machine Check running process of the machine

delete Delete all DDAS files of the remote machines

machine Delete DDAS files of the machine

establish Establish a dynamic network

execute Execute the program

program machine Execute program of the machine

exit Exit the DDAS program

kill Kill the processes of all remote machines

machine Kill the process of the machine

running? Check the running process

machine Check the running process of the machine

send Send the DDAS stubs to all remote machines

program Send the program to all remote machines

program machine Send the program to the machine

set Set environment

changeid Change user I.D.

changepasswd Change user password

addmachine Add the machine for construction of the network

deletemachine Delete the machine from the network

status Check the status of all remote machine

machine Check the status of the machine

Table 4. Input command set of the DDAS system.

41

MACHINE
~ .,

FILES ,F"-ft ,"'- "" -" ,.....s::
po :"-;",~"'<::a-.. PO:""~' ""-c"::,.· ...

a.cs.okstate.edu App.class, DDAS.class, Manager.class,

Quicksort.class, Sender.class, Receiver.class,

TelnetIO.class, vns.data, input.dat

eslabsvr.wslab.okstate.edu DDAS.c1ass, Manager.class, Quicksort.class,

chester.cs.okstate.edu Sender.class, Receiver.class,

z.cs.okstate.edu

Table 5. Files after construction of the dynamic network.

The remote hosts, "wslabsvr", "chester" and "csz", restore stubs of the DDAS system

CDDAS.class, Manager.class, Sender.class, Receiver.class) and the running algorithm for

quick sort (Quicksort.class).

Invoke the Manager I-----;----
!

Method call for execution

!
I Construct dynamic network I

1"' _..l -- _..·..· ··..· ·..· _ _..__ _..· 1

! Split input data and send half data to the lower node

I ! istributed
! Compute the quick sort algorithm in each node uick sorti'-- ---.,,.- --'

; !i1,..------------''-----------.......,
! Return the computation result to the upper node
L _............................ ...__._ .._ _ _ _ .. __._..

Delete all computation results and DDAS stubs

Kill the DDAS processes in the remote hosts

!
End of the application jobs

Figure 17. Flow chart for the distributed quick sort application using the DDAS system.

42

When the construction of dynamic network is completed, the main host splits the

data and sends one half to the next node, "eslabsvr", and performs quick sort algorithm

on the other half. The "eslabsvr" receives the data and repeats the process. It sends the

data to the next node, "chester", which also repeats the process. The final node, "csz",

receives the data and runs quick sort algorithm to sort the data received. Table 6 shows

the files in each machine when running the application. The input data of the main host

is divided into two sets, output1.dat and output2.dat. The output2.dat is transferred to

the next node with the name input.dat and outputl.dat is processed in the main host. The

next node, "eslabsvr", executes same jobs as the previous host. As a result of these jobs,

the files of input.dat, outputl.dat and output2.dat are generated in each host except the

final host, "csz". The final host receives output2.dat as an input data, "input.dat', and

sorts it using the sorting algorithm. Figure 18 describes the status of network and

distributed computation.

MACIllNE FILES .
a.cs.okstate.edu App.class, DDAS.class, Manager.class,

Quicksort.class, Sender.class, Receiver.class,

TelnetlO.class, vns.data, input.dat, outputl.dat,

output2.dat

eslabsvr.wslab.okstate.edu DDAS.class, Manager.class, Quicksort.class,

chester.cs.okstate.edu Sender.class, Receiver.class, input.dat, output i.dat,

output2.dat

z.cs.okstate.edu DDAS.class, Manager.class, Quicksort.class,

Sender.class, Receiver.c1ass, input.dat

Table 6. Files after finishing data transfer to the next nodes.

43

csz

Dvnamic Network

o send "outputl.dat"

chester

eslabsvr

Quicksort~

input, output1,
output2

Quicksort,
input, outputl,
output2

Computing
with
output2

e send "outpull.dat"

App, Quicksort,
input, outputI ,
output2

csa

Quicksort,
input

Computing
with
input

I..!::=======!.J

Figure 18. Status of network and distributed computation.

After completing the job assigned to it, each sub-node sends the result to the

upper-level node. The last node, "csz", returns its computation result to the upper node,

"chester". "chester" recei ves the data from the lower kvel node, "csz", merges its

computation result and received data, and returns the result to the next upper-node,

"eslabsvr". In the same way, "eslabsvr" host sends the computation result to the main

host. After receiving the return file from sub-node and combining computation data with

return data in the main host, the distributed computations end. Table 7 shows the

generated files in each host. The return.dat file is the computation result from the low-

level node and the result.dat file is the combination file that adds computation result in

44

MACHINE FILES
~. ,,~.' ~-

_~:.F: T

a.cs .okstate.edu App.class, DDAS.class, Manager.class,

Quicksort.class, Sender.class, Receiver.class,

TelnetlO.class, vns.data, input.dat, outputl.dat,

Output2.dat, return.dat, result.dat

eslabsvr.wslab.okstate.edu DDAS.class, Manager.class, Quicksort.class,

chester.cs.okstate.edu Sender.class, Receiver.class, input.dat, outputl.dat,

Output2.dat, return.dat, result.dat

z.cs.okstate.edu DDAS.class, manager.class, Quicksort.class,

Sender.class, Receiver.class, input.dat, result.dat

Table 7. Files after execution of an application program.

App, Quicksort, Mergi ng
input, return., result with
result return data

csa

Quicksort,
result

csz

Dvnamic Network

(D send "retum.dat"

o send "retum.dat"

Merging
result with
return data

Quicksort,
input, return,
result

eslabsvr

Quicksort,
input, return,
result

chester

Figure 19. Processes of returning and merging data.

45

the current node and return.dat from sub-node. Therefore, the result.dat of main host is

the final computation result file in computing the quick sort application. Figure 19

describes returning and merging processes.

After the completion of the algorithm, the DDAS system returns the remote hosts

to the initial states for efficient management of remote hosts. The DDAS system deletes

all the results data from the distributed computation jobs and kills the running DDAS

processes in the remote hosts. With these features, the DDAS system controls its own

future. Finally, an application program, the DDAS system and the result data are in the

main host and there is nothing in remote machines.

6.3. Discussion

Up to now, the DDAS system was used in computing an application program, a

distributed quick sort algorithm. The DDAS system is similar to Condor and Piranha

system in the basic configuration. Table 8 shows the comparisons of major features of

each system. In addition to the comparisons, Table 9 describes the problems of the

client-server model and mobile agents and indicates the solutions using the DDAS

system.

46

~1f' ~". Condor Piranha DDAS"::- ."J':..~,

Network ,.. .!·s... WAN LAN Internet
•

I~Remote hosts Idle machines Idle machines Authorized machines

I,Methodologies 1. Central Manager Tuplespace DDAS system

of establishing - main machine - each workstation - main machine

the system 2. Condor Pool

- each workstation

1. Run two daemons 1. Support 1. Construct a

,.. - scheduler & starter uncoupled network
.

2. Locating the communication 2. Message-passing. ;
Responsibilities resources 2. Store task for distributed jobs

- 3. Monitoring and descriptor 3. Disconnect the

informing the user network and delete

its progress the nodes

Distributed jobs Batch system Task descriptor DDAS system
i

Advantage Does not require Support Better security and

special programming heterogeneity management

Disadvantage Jobs are run while The programmer Has to gather enough

there are idle must supply a authorized machines

machines in the handler to deal when for increasing the

initial pool a process is forced to computation

vacate a node performance

Table 8. Comparisons of DDAS to related systems.

47

Client-server model .' Mobile agents ,.},,::;

Problem Management problem Security problem

- Upgrade is required at the same - Difficult to distinguish hostile

m cl time agents and authorized agents

Cause Communication fails when server Mobile processing is generated in.

side software or a client side the open network system, any
Ie

software upgraded; Same mobile program can have access

';- communication interfaces are to the hosts.

required in both sides.

Solution in Since remote machine does not To include a node in the network, ,

theDDAS have the DDAS system in initial login privilege is necessary.

system state, the distributed jobs are Since the distributed jobs have

executed in same DDAS system. access to only the nodes of own

network, security problems are

diminished.

Table 9. Problems of client-server and mobile agents and solution in DDAS system.

48

VII. CONCLUSIONS AND FUTURE WORK

7.1. Conclusions

While client-server model and mobile agents can compute distributed jobs in a

connected network only, the DDAS system does not need a connected network. It means

there are no occupied DDAS systems in the remote hosts. This feature ensures higher

security and provides better system management in distributed computation applications.

Throughout running a distributed computing application program, the DDAS system can

be one of available distributed applications. Any computation application program can

invoke the DDAS system for distributed computing. The set of computers running

DDAS fonns a fully connected network. Therefore it supports various mapping

schemes. In the test case outlined earlier, a linear chain, "csa"~ "eslabsvr"~ "chester"

~ "csz", is used. During the running time, the DDAS system can be created,

transferred, executed, killed, and deleted using dynamic network in remote machines. It

supports secure distributed system and efficient management system.

7.2. Future Work

Even though the DDAS system provides better security and management of the

system, it has a limitation. When a distributed computation process is running and a host

of the DDAS system node is too slow or is down, the DDAS system wastes a long time

waiting for the results of computation. To deal with this limitation and to pursue an

adaptive distributed computation, it needs to implement network monitoring functions

which is considered as future work. The monitoring functions can notify the idle

machines to the user when the system is invoked. During the computation jobs, the

49

monitoring functions inform the user of the nodes that completed their work.

Implementation of the monitoring functions can Increase the performance of DDAS

system.

50

REFERENCES

[1] Istabrak Abdul-Fatah and Shikharesh Majumdar, Perfonnance Comparison of
Architectures for Client-Server Interactions in CORBA, Distributed Computing
Systems, May 1998, pp. 2-11, IEEE Computer Society.

[2] Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, 1974

[3] Jonathan Aldrich, James Dooley, Scott Mandelsohn and Adam Rifkin, Providing
Easier Access to Remote Objects in Client-Server Systems, System Sciences, Jan.
1998, Vol. 7, pp. 366-375, IEEE Computer Society.

[4] Douglas T. Anderson, Pat Dawson, Sandra Honomachl and Michael Tribble, The
Network Technical Guide, Micro House International Inc., 1997 oolf..6'i M·7& /'

[5] Miro Benda, Middleware: any client, any server, IEEE Internet Computing, July
Aug. 1997, Vol. 1, Issue 4, pp. 94-96, IEEE Computer Society

[6] Jurgen Berghoff, Oswald Drobnik, Anselm Lingnau and Christian Monch, Agent
based configuration management of distributed applications, Configurable
Distributed Systems, May 1996, pp. 52-59, IEEE Computer Society.

P] A. Berson, Client-server Architecture. 2nd edition, McGraw-Hill, 1996 O<>lJ J,f, '? n'-I ,a,

[8] M. Bertocco, F. Ferraris, C. Offelli and M. Parvis, A Client-Server Architecture for
Distributed Measurement System, Instrumentation and Measurement Technology
Conference, May 1998, Vol. 1, pp. 67-72, IEEE

[9] Legand L. Burge III, JMAS: A Java-Based Mobile Actor System for Heterogeneous
Distributed Parallel Computing, Thesis, Dec. 1998, Oklahoma State University ~~P ,~ 1\ Ii J

[10] L.M. Camarinha-Matos and Walter Vieira, Mobile Agents and Remote Operation,
Intelligent Engineering Systems, Sept. 1997, pp. 463-468, IEEE

[11] Nicholas Carriero, Eric Freeman, David Gelerner and David Kaminsky, Adaptive
Parallelism and Piranha, Computer, Vol. 28, Issue 1, pp. 40-49, IEEE Computer
Society.

[12] Todd Courtois, Java Networking and Communications, Prentice-Hall, Inc., 1997 r" >t. J~/r Ii

[13] Manfred Dalmeijer, Eric Rietjens, Dieter Hammer, Ad Aerts and Michiel Soede, A
Reliable Mobile Agents Architecture, Object-oriented Real-time Distributed
Computing, April 1998, pp. 64-72, IEEE Computer Society.

51

[14] Peter Darnel, Mobile Telescript Agents and the Web, Technologies for the
Infonnation Superhighway, Feb. 1996, pp. 52-57, IEEE Computer Society.

[15] D.H.J. Epema, M. Livny, R. van Dantzig, X. Evers and J. Pruyne, A worldwide
flock of Condor: load sharing among workstation clusters, Report 95-130, The
Faculty of Technical Mathematics and Infonnatics, Delft, The Netherlands.

[16] Eric Evans and Daniel Rogers, Using Java Applets and CORBA for Multi-User
Distributed Applications, IEEE Internet Computing, May-June 1997, Vol. 1, Issue
3, pp. 43-55, IEEE

[17] X. Evers, J.F.C.M. de Jongh, R. Boontje, D.H.J. Epema and R. van Dantzig, Condor
flocking: load sharing between pools of workstations, Report 93-104, The Faculty
of Technical Mathematics and Infonnatics, Delft, The Netherlands.

[18] Jim Farley, Java Distributed Computing, OReilly & Associates, Inc., 1998 O.}".I~J JIr, t

[19] Sidnie Feit, TCP/IP: Architecture, Protocols, and Implementations with IPv6 and IP
Security, 2nd edition, McGraw-Hill, 1996

[20] Stefan Fuenfrocken, Integrating Java-based Mobile Agents into Web Servers under
Security Concerns, System Sciences, Jan. 1998, Vol. 7, pp. 34-43, IEEE Computer
Society.

[21] David Gelemter and David Kaminsky, Supercomputing out of recycled garbage:
preliminary experience with Piranha, Proceedings of the 1992 International
Conference on Supercomputing, pp. 417-427, ACM, Inc.

[22] James Gosling, Bill Joy and Guy Steele, The Java Language Specification,
Addison-Wesley, 1996 "0\ ,,~, j'J1j('J

[23] Robert Gray, David Katz, Saurab Nag, Daniela Rus and George Cybenko, Mobile
Agents: The Next Generation in Distributed Computing, ParaLLel
Algorithms/Architecture Synthesis, March 1997, pp. 8-24, IEEE Computer Society.

[24] David Gunter, Steven Burnett, Gregory L. Field, Lola Gunter, Tom Klejna,
Shankar Lakshman, Alexia Prendergast, Mark C. Reynolds and Marcia E. Rolnald,
Client/Server Programming with RPC and DCE, Que Corporation, 1995

[25] P.W. Halliden, Security for distributed applications, Security and Detection, 1995,
pp. 156-160, lEE

[26] Elhotte Rusty Harold, Java Network Programming, O'Reilly & Associates, Inc.,
1997

[27] Stephen J. Hartley, Concurrent Programming: The Java Programming Language,
Oxford University Press, Inc .. 1998 UC}" 1- H 1 I-'?;; (

52

[28] Julius Hrivnac, DCE Distributed Computing
http://hpI8.fzu.czl-hrivnacIDCFlWhatIsItlindex.htm

Environment,

[29] Java Remote Method Invocation,
http://java.sun.comiproducts/jdk/l.2/docs/guide/rmilspec/rmiTOC.doc.html

[30] Dag Johansen, Robbert van Renesse and Fred B. Schneider, Operating System
Support for Mobile Agents, Hot Topics in Operating Systems. May 1995. pp. 42-45,
IEEE Computer Society.

[31] Thomas K. Keyser and Robert P. Davis, Distributed computing approaches toward
manufacturing scheduling problems, lIE Transactions, Apr. 1998, Vol. 30, Issue 4,
pp. 379-390, Institute of Industrial Engineers

[32] K.M. Khalil, A Dual Network Architecture for High-Performance Distributed
Computing Environments, Local Computer Networks, Sept. 1993, pp. 354-360,
IEEE Computer Society.

[33] David Kotz, Robert Gray, Saurab Nog, Daniela Rus. Sumit Chawla and George
Cybenko, Agent Tel: Targeting the Needs of Mobile Computers, IEEE Internet
Computing, Vol. 1, Issue 4, pp .. 58-67, lEEE, hUp://www.cs.daltmouth.edu/-agent

[34] Hosoon Ku, Luderer, Gottfried W.R. and B. Subbiah, An Intelligent Mobile Agent
Framework for Distrinuted Network Management, Global Telecommunications
Conference, Nov. 1997, Vol. 1, pp. 160-164, IEEE

[35] John Lewis and William Loftus, Java Software Solution: Foundations of Program
Design, Addison-Wesl.ey, 1998 ,,'!" I~S Jl.l.t (,

[36] Tim Lindholm and Frank Yellin, The Java Virtual Machine Specification, 1996,
http://java.sun.com/docslbooks/vmspec/html/YMSpecTOC.doc.html

(37] Thomas J. Mowbray and Raphael C. Malveau, CORBA Design Patterns, John
Wiley & Sons, Inc., 1997

[38] Michael T. Peterson, DCE: A Guide to Developing Portable Applications, McGraw
Hill, 1995

[39] Paul E. Renaud, Introduction to Client/Server Systems, John Wiley & Sons, Inc.,
1996

[40] RFCs by the numbers, http://ftp.lu-clausthal.de/pubITEXT/docs/rfc/rfc

S3

[41] Akhil Sahai and Christine Morin, Towards distributed and dynamic network
management, Network Operations and Management Symposium, Feb. 1998, Vol. 2,
pp. 455-464, IEEE

[42] C. Sashidhar and S.M. Shatz, Design and Implementation Issues for Supporting
Callback Procedures in RPC-Based Distributed Software, Computer Software and
Applications Conference, Aug. 1997, pp. 460-466, IEEE Computer Society.

[43] Paul L. Schlieve, Demystifying TCPIIP, 2nd edition, Wordware Publishing, Inc.,
1998

[44] Kam Hong Shum, Adaptive distributed computing through competltlOn,
Configurable Distributed Systems, May 1996, pp. 220-227, IEEE Computer Society.

[45] Joseph Tardo and Luis Valente, Mobile Agent Security and Telescript, Technologies
for the Information Superhighway, Feb. 1996, pp. 58-63, IEEE Computer Society.

[46] Hartmut Vogler, Thomas Kunkelmann and Marie-Louise Moschgath, Distributed
Transaction Processing as a Reliability Concept for Mobile Agents, Distributed
Computing Systems, Oct. 1997, pp. 59-64, IEEE Computer Society.

. [47] EJ. WeB, LANfWAN integration: intemetworking + application interoperrability,
Military Communications Conference, Oct. 1994, Vol. 1, pp. 220 - 226, IEEE

[48] Ann Wollrath, Jim Waldo and Roger Riggs, Java-Centric Distributed Computing,
IEEE Micro, May-June 1997, Vol. 17, Issue 3, pp. 44-53, IEEE

54

APPENDIX A

ABBREVIATIONS AND ACRONYMS

55

API

ALPANET

CORBA

DCE

DDAS

DOD

FrP

IDL

lIOP

IP

ISO

JDK

JVM

LAN

OMG

ORB

OSF

OSI

RMI

RPC

SMPS

SQL

ABBREVIATIONS AND ACRONYMS

Application Programming Interface

Advanced Research Projects Agency NETwork

Common Object Request Broker Adapter

Distributed Computing Environment

Dynamic Distributed Agents Server

Department Of Defense

File Transfer Protocol

Interface Description Language

Internet Inter-ORB Protocol

Internet Protocol

International Organization for Standardization

Java Development Kit

Java Virtual Machine

Local Area Network

Object Management Group

Object Request Broker

Open Software Foundation

Open Systems Interconnection

Remote Method Calls

Remote Procedure Call

Simple Mail Transfer Protocol

Structured Query Language

56

TCP

TFfP

UDP

WAN

WWW

Transmission Control protocol

Trivial File Transfer Protocol

User Datagram Protocol

Wide Area Network

World Wide Web

57

APPENDIXB

PARTIAL DDAS SYSTEM SOURCE CODE

58

/***/

1* DDAS Program
1*
1*
1* Function:
1* 1. Install Server socket on the open port
1* 2. Connect to the Server socket
1* 3. Running Receiving thread
1* 4. Running Sending thread

*1
*1
*1
*1
*1
*1
*1
*1

/***/

import java.net.*;
import java.io.*;
import Synchronization.*;

public class DDAS extends Concurrent (
protected static String Server = null;
protected static String msgReceived = null;
protected static String msgSend = null;
protected static int nextFlag = 0;
protected static int countLoop = 1;

private static final int PORT = 7777;

public static boolean debug = false;

II set-up socket as a server
protected static void openSocket()

nextFlag = 0;
EstablishRendezvous er = null;
try (
er = new EstablishRendezvous(PORT); II open server socket
if (debug)
System. out. println ("Waiting for connection on port " + PORT);
} catch (MessagePassingException e)
System.err.println(e) ;
System.exit(l);
}

II install Server socket
Rendezvous r = null;
try (

r = er.serverToClient();
catch (MessagePassingException e)
System. err .println ("Server: II + e);

II check Client approch
r.serverGetRequest(); II read the data from Client

II Running Server
new Receiver("Calculator", r);
if (debug) System.out.println("Connected with another

Host. "+"\n");

59

II replay to the Client
r.serverMakeReply(tlconnected"); II send reply to Client
er.close() ;

}

II connect to the Server socket
protected static void connectSocket()

nextFlag = 1;
Rendezvous r = null;

II create a rendezvous to the Server object
EstablishRendezvous er = null;
try {

er = new EstablishRendezvous(Server, PORT);
r = er.clientToServer();
if (debug) System.out.println("\nConnected to II + Server

+ " on port " + PORT);
catch (MessagePassingException e)
System.err.println(e) ;
System.exit(1) ;

}

II Send setup signal to Server and wait for reply
r.clientMakeRequestAwaitReply("setup") ;

II runnig Client
new Sender (II ManagerSender" , r, er);

II Server side thread
class Receiver extends DDAS implements Runnable (

private Rendezvous r = null;

II construct
public Receiver(String name, Rendezvous r)

this.r = r;
new Thread(this) .start();

Ii running a thread for receiving integer data
public void run() (

EstablishRendezvous er = null;

msgReceived = (String)r.serverGetRequest();
if (debug) System.out.println(age()+"ms, "+"Received data.");
if (debug) System.out.println("Received data from the Client: ");
if (debug) System.out.println(msgReceived);

r. serverMakeReply ("received") ;
nextFlag = 1;
r.close() ;

60

/1 Client side thread
class Sender extends DDAS implements Runnable

private Rendezvous r = null;
private EstablishRendezvous er = null;

II construct
public Sender(String name, Rendezvous r, EstablishRendezvous er)

this.er = er:
this.r = r;
new Thread(this) .start();

1/ running a thread for transferring data
public void runt) {

pause (breakTime) ;
if (debug)
System.out.println(age()+"ms, sending data to the Client");
try{
r.clientMakeRequestAwaitReply (msgSend);
} catch (MessagePassingException e)
System.err.println(e) ;
r.close() ;
System.exit(l) ;
}

pause (breakTime) ;
r.close() ;
er.close() ;
nextFlag = 0;

/***/

1* Manager Program
1*
1*
/* Function:
1* 1. Communicate with application programs
/* 2. Communicate with the DDAS component
1* 3. Provide user interface functions

*1
*1
*/
*/

*/
*/
*/

/***************************k************************* ****************/

import java.io.*;
import java.util.*;

class Manager extends DDAS {
static final int MAX_MACHINE = 100;
static final int ENROLLED_CMD_NO = 11;
static final int MA2CARGS = 5:
static String[] machineNames = new String [MAX_MACHINE] ;
static String userID = null;
static String passWord = null;

static String inputCommand = null;

static int machineNumber = 0; /1 available machine counts

61

static StringTokenizer st;

static String[] enrolledCommands = {"?".
"establish" .
"kill" .
IIset",

public static boolean debug = true;

static Quicksort q = new Quicksort();

"busy?" .
"execute" ,
" running? " •
"status lI };

"delete" ,
lIexit" ,
II send" .

II static DDAS ddas = new DDAS();
public static void main (String[] strg) throws Exception{

initialSystem() ;
while (true) {

System.out.print("\nDDAS» ");
inputCheck() ;

static void initialSystem() (
machineNumber = readSetupFile();

static void inputCheck() throws Exception{
int commandNumber = 0;
try{

BufferedReader stdin
new BufferedReader(new InputStreamReader(System.in));

inputCommand = stdin.readLine();

st = new StringTokenizer(inputCommand);
String[] arguments = new String [MAX_ARGS] ;
int saveBufCnt = st.countTokens();

for (int i = 0; i < saveBufCnt; i++)
arguments[i] = st.nextToken();

commandNumber = makeComrnandToInt(arguments[O]);

commandService(commandNumber, arguments, saveBufCnt);

catch (IOException e) (
System.err.println{e) ;

/*
* Input command service Method
*1

public static void commandService(int exeNo, String[] argsOther, int
argNo)

throws Exception{
String sendMessage null;
switch (exeNo) {

62

II ? help service
case 0:

if (argNo == 1) {
for (int i = 0; i < ENROLLED_CMD_NO; i++)

System.out.println(enro11edCommands[i]) ;
}

else
helpService(argsOther) ;
break;

II busy? check service
case 1:

sendMessage "busy?" ;
makeSendMessage (sendMessage);

if (argNo == 1)
messageCommunication() ;
else if (argNo == 2)
messageCommunication(argsOther(l]);
else
displayErrorMessage(O) ;
break;

II delete file service
case 2:

I I sendMessage = "delete";
II makeSendMessage (sendMessage);

IlmessageCommunication() ;

deleteAllFiles();

break;

II establish service
case 3:

if (argNo < 2)
sendFiles();
executeFiles() ;
}

else
displayErrorMessage(O) ;

break;

II execute file service
case 4:

q. qsort (l, "input. dat") ;

sendData(rnachineNames(O] , "output2.dat", "input.dat");

sendMessage = "execute";
makeSendMessage (sendMessage);

messageCommunication(machineNames(O]) ;

Ilexecute quicsort ...

63

q.qsort(2, "outputl.dat");

openSocket() ;
while(nextFlag == 0) pause (PAUSE) ;

IlcheckReceiveoData() ;
if (msgReceived. equals (" return"))
System. out. println (" ENDENDEND ") ;
q.concatFile() ;

break;

II exit service
case 5:

System.out.println("End of program. Byel\n\n");
System.exit(O) ;
break;

II kill process service
case 6:

sendMessage = "kill";
makeSendMessage (sendMessage);

if (argNo == 1)
messageCommunication() ;
else if (argNo == 2)
messageCommunication(argsOther(l)) ;
else
displayErrorMessage(O) ;
break;

II running? service
case 7:

sendMessage = "running?";
makeSendMessage (sendMessage);

if (argNo == 1)
messageCommunication() ;
else if (argNo == 2)
messageCommunication(argsOther(l)) ;
else
displayErrorMessage(O) ;
break;

II send service
case 8:

if (argNo == 1)
sendMessage = n send" ;
makeSendMessage (sendMessage);
messageCommunication() ;
}

else if (argNo == 2) {
sendMessage = "send" + argsOther[l);
makeSendMessage (sendMessage);
messageCommunication() ;

64

}

else
displayErrorMessage(O) ;
break;

II set environment service
case 9:

if (argNo == 1)
displayEnvironment();
else if (argNo == 3)
setEnvironment(argsOther);
else
displayErrorMessage(O) ;

break;

II status service
case 10:

sendMessage = "status";
makeSendMessage (sendMessage);

if (argNo == 1)
messageCommunication() ;
else if (argNo == 2)
messageCommunication(argsOther[l)) ;
else
displayErrorMessage(O);
break;

default.:
System.out.println("Not serviced corrunand. Type ?");
break;

private static int checkReceivedData() (
StringTokenizer checker = new StringTokenizer(msgReceived);
int opcodeNumber = 0;

String[] receivedDat.a = new String[MAX_RECE_DATA];
int saveBufCnt = checker.countTokens();

for (int i = 0; i < saveBufCnt; i++)
receivedData[i] checker.nextToken();

opcodeNumber = makeOpcodeTolnt(receivedData[O));
if(debug) System.out.println("Command No: "+opcodeNurnber);

checkAndMakeData(opcodeNurnber,receivedData, saveBufCnt);
return opcodeNumber;

65

static void messageCommunication() {
for (int i = 0; i < machineNurnber; i++)

II Systern.out.println ("Waiting 0);
Server = rnachineNames[i];
connectSocket() ;
while(nextFlag == 1) pause (PAUSE) ;

openSocket() ;
while(nextFlag == 0) pause (PAUSE) ;
System. out.println(machineNames [i] + "\n"+ msgReceived);
System.out.println() ;

}

1"*
static void rnessageCommunication() {

II for (int i = 0; i < rnachineNurnber; i++)
II System.out.println ("Waiting ");
Server = "a.cs.okstate.edu";
connectSocket() ;
while(nextFlag == 1) pause (PAUSE) ;

openSocket() ;
while(nextFlag == 0) pause (PAUSE) ;
System.out.println(machineNames + "\n"+ msgReceived);
Systern.out.println() ;
II }

* I

static void messageCommunication(String machine)
/l System.out.println ("Waiting ... H);

Server = machine;
connectSocket() ;
while(nextFlag 1) pause (PAUSE) ;

openSocket () ;
while(nextFlag == 0) pause (PAUSE) ;
System.out.println(machine + "\n"+ msgReceived);
System.out.println() ;

static void makeSendMessage(String sendMessage)
msgSend = sendMessage;

Environment (commands and arguments)1* Set
* set
* set
"* set
* set
* set
*1

changeld
changePasswd
addMachine
deleteMachine

userid
password
rnachineNarne
machineName

66

static void setEnvironment(String[] argsOther)
if (argsOther[l] .equals("changeId")) {

userID = argsOther[2];
}

else if (argsOther [1 j . equals ("changePasswd"))
passWord = argsOther[2];

}

else if(argsOther[lj .equals(" a ddMachine")) {
mach ineName s [machineNumber] = argsOther[2];
machineNwnber++;

}

else if (argsOther[l] . equals ("deleteMachine"))
machineNames[machineNwnber) = argsOther[2j;
machineNwnber--;

}

else (
displayErrorMessage(2) ;

1*
* Display Environment
*1

static void displayEnvironment() (
System.out.println("Machines: ");
for (int i=O ; i < machineNumber; i++)

System.out.println(" "+ machineNames[i]);
System.out.println("UserID: " + userID);
System.out.println("Password: " + passWord);

1*
* Help service
* desplay command + argument & how to use
*1

static void helpService(String[] argsOther)
int serNo;
serNo = makeCommandToInt (argsOther[l]);

switch(serNo)
II ?

case 0:
System.out.println(" ?
break;

Commands display service.");

Display all conected machine");
busy? machine name --- Display input

II busy?
case 1:

System.out.println("
machines.") ;

System.out.println() ;
System.out.println(
" busy?
System.out.println("

machine") ;
break;

busy? Check running program in other

67

II delete
case 2:

System.out.println(" delete Delete all files about DDAS.");
System.out.println() ;
System.out.println(
" delete Deleted all connected machine");
System.out.println{" delete machine_name --- Deleted input

machine") ;
break;

II establish
case 3:

System.out.println(" establish
network.") ;

break;

Establish dynamic virtual

II execute
case 4:

System.out.println(" execute Execute program.");
System.out.println();
System.out.println(

" execute program_name --- execute input
program") ;

System.out.println(" execute program_name machine_name");
break;

II exit
case 5:

System.out.println(" exit
break;

Exi t DDAS program.") ;

I I kill
case 6:

System.out.println(" kill Kill the process of other
machines. H) ;

System.out.println() ;
System.out.println(H kill machine_name H);
break;

II running?
case 7:

System.out.println(" running? Check running process");
System.out.println() ;
System.out.println(" running? machine_name H);
break;

II send
case 8:

System.out.println(" send Send file to other machine.");
System.out.println() ;
System. out .println (" send program") ;
System.out.println(" send program machine_name");
break;

II set
case 9:

68

System.out.println(" set Set the configuration of virtual
network. ") ;

System.out.println();
System.out.println(" set changeId userid");
System.out.println(" set changePasswd password");
System.out.println(" set addMachine machine_name");
System.out.println(" set deleteMachine machine_name");
break;

II status
case 10:

System.out.println(" status Check the status of other
machines.") ;

System.out.println() ;
System.out.println(" status machine_name");
break;

default:
break;

static int makeCommandToInt(String inputCommand)
int commandNo 0;

for (commandNo 0; commandNo < ENROLLED_CMD_NO; commandNo++)
if (enrolledCommands[commandNo] .equals(inputCommand»)
return commandNo;

}

return commandNo;

static int readSetupFile()
String readData = null;
String MACHINE "machines:";
String USERID "userid: ";
String PASSWORD "password:";
int .i.ndex = 0;

try {
Ilread from Virtual Network Setup data file
BufferedReader in =
new BufferedReader(new FileReader(new File("vns.data"));

while (readData = in.readLine() != null)
Ilif(debug) System.out.println (readData);
if (readData.equals (PASSWORD))

passWord = in.readLine();
else if(readData.equals(USERID»

userID = in.readLine();
else if(readData.equals(MACHINE)) {

machineNames[index] = in.readLine();
index++;

}

else {
machineNames[index] readData;

69

index++;
}

}

in.close() ;

catch (FileNotFoundException e) {
System. err. println ("·vns. data file does not exist !!!");
catch (IOException e) {
System.err.println(e} ;

}

return index;

private static void sendFiles()
String commands = null;
String fileName[] = new String [rnachineNumber] ;

fileName[O]
fileName[l]
fileName [2]

"default!. dat" ;
"default2.dat";
"default3.dat";

try {

for (int i = 0; i < machineNumber; i++)
commands = "mftp" + " " + machineNames[i) + " " + fileName[i];
Process pc =

Runtime.getRuntime(} .exec(commands};
pC.waitFor() ;
Systern.out.println(

"Sending "+fileName[i]+" & Manager files to
"+rnachineNames[i]} ;
}

catch (IOException e) {
System.err.println(e) ;
catch (InterruptedException e)
System.out.println("") ;

private static void sendData(String machineNames, String fileName,
String desFilename) {

String commands = null;
IIString fileName = "output2.dat";

try {

Ilfor (int i = 0; i < machineNumber; i++)
commands = "ftpdata" + " " + machineNames + " n + fileName

+ " " + desFilename;
Process pc '"

Runtime.getRuntime() . exec (commands) ;
pC.waitFor(J;
System.out.println(

"Sending "+fileName+ " & Manager files to "+
machineNames} ;
II }
catch (IOException e) (
Systern.err.println(e) ;
catch (InterruptedException e)

70

System.out.println("") ;

}

private static void executeFiles()

for (int i = 0; i < machineNumber; i++)
String host = rnachineNames[i];
String msg = "/horne/kkwan»";
String msgMore = "/home/kkwan/java/DDAS»";
String command = "nohup java Manager\r";
String runMsg = "»> Running DDAS System";

System.out.println("Running DDAS Program in "+ host + II ••• ");

ExecuteFile efl =
new ExecuteFile(host, msg, command, msgMore, runMsg);

}

private static void deleteAIIFiles () {
for (int i = 0; i < machineNumber; i++)

String host = machineNames[i];
String msg = II /horne/kkwan»" ;
String msgMore = "/horne/kkwan/java/DDAS»";
String command = "rrn -r *\r";
String runMsg = II »> Running DDAS Sys tern II ;

System.out.println("Delete All DDAS Files in "+ host + II ••• ");

DeleteFile df1 =
new DeleteFile(host, msg, command, rnsgMore);

static void displayErrorMessage (int errNumber) {
switch (errNumber) {
case 0:

System.out.println("Your input arguments are wrong. Try againl");
break;

case 1:
Systern.out.println(" ");
break;

case 2:
System.out.println ("Se t arguments are wrong. Try again");
break;

default:
break;

71

VITA

Kwan-Sung Kim

Candidate for the Degree of

Master of Science

Thesis: DDAS: DESIGN AND IMPLEMENTATION OF A KERNEL APPLICATION
FOR ADAPTIVE DISTRIBUTED COMPUTATION

Major Field: Computer Science

Biographical:

Personal Data: Born in Cheju, Korea, February 15, 1965, the son of Kwang-Il Kim
and Jung-Sim Choi.

Education: Graduated from Ohyun High School, Cheju, Korea in February, 1984;
received Bachelor of Engineering in Electronic Engineering from Kyunghee
University, Seoul, Korea in February, 1991; completed requirements for the
Master of Science in Computer Science at Oklahoma State University in
July, 1999.

Professional Experience: Research Assistant, Department of Computer Science,
Oklahoma State University, November, 1998 to June, 1999; Assistant
Manager, R&D Department, SI Corporation, July, 1995 to January, 1997;
System Developer, R&D Department, SI Corporation, January, 1991 to
June, 1995;

