
APPLYING DOMAIN AME SYSTEM REAL-TIME

REDUNDANCY TO THE CCSO

PH PHONE DfRECTORY

SYSTEM

By

JAM M. JONES

Bachelor of Science

Florida International University

Miami, Florida

1976

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1999

APPLYrNG DOMAIN NAME SYSTEM REAL-TfME

REDUNDANCY TO THE CCSO

PH PHONE DIRECTORY

SYSTEM

Thesis Approved:

Thesis Adviser

II

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to my thesi advi or, Dr. Jacques

LaFrance for his tolerance, patience, motivation, guidance, and advice. My appreciation

also goes to my other committee advisors, Dr. Nutter and Dr. Peng, for their as istance.

Included in my thanks for their assistance in various forms are Ann Blakely,

Charles Brooks, Sharon Comer Reed Davis, Rick Kruse, Patti Kutzler or Whitaker

(whichever she prefers), Rohin Leech, Sandra Magee, Dr. Carolyn Quintero, Laura

Daniel and Dana Saliba.

Of course, my family has been helpful in many ways and needs to be mentioned

by individual name to be immortalized. Thanks for their constant prodding and

encouragement to Nancy Pruett and Corky Searls, Barbara Jones, my kids: Ginger and

Rhett, and my parents: Retired Professor Dr. James M. Jones, r., and the lat heila B.

Jones.

111

TABLE OF CONTENTS

General Purpose... 1
Overal I Goals , 2

If. BACKGROUND AND HISTORy 4

PH Description 4
General Description 4
Internal! Technical 4
Features ,.. 5

E-mail Forwarding Feature 5
Validation Feature , 7
User Maintenance Feature 8

PH History , , , 9
Domain Name System Description 10

General Description 10
Internal! Technical, J 1
Additional Features 12

Mail Exchange Feature 13
Fault-tolerant Function , 13

DNS History , 14
DNS and PH Comparison 14

PH and DNS like vs. unlike features 14
Like Features 15
Unlike Features ' 15

Client/Server Model , 17
Database structure.. 18
Other characteristics 19

Ill. RELIABILITY MECHANISMS 21

Background , 2 I
Traditional "Fault-Tolerance", i.e. Backup Copies , 2\
Contemporary Fault-Tolerant Strategies , 24

Redundancy Level for Fault-Tolerance, Data and Function 25
Duplicated data bases 25

Raid arrays , , 26
Multi-node arrays 29

Timing and repetition , 31
DNS Fault-Tolerant Features , ,.' 34

Authoritative and Primary!Secondary Facilities 34
Zone Transfer 36

Time-To-Live and Timing Issues 38

IV

Other Distributed Database Features 40
Caching Servers 40
DNS Hierarchy Methods 41

IV. PROJECT 43

General Plan 43
Methods Used 43

Zone Transfer and TTL 43
Data Modification 45

Serial Number System 47
Enhancements 48

General Enhancements 48
Specific Enhancements 51

Environment 57
Test System 57

V. NET RESULT, CONCLUSION, AND PRACTICAL APPLICATIONS 59

Use of Fault-Tolerance Strategies 60
DNS as Model 60
PH Benefit 61

BIBLIOGRAPHy 64

APPENDIX - A COLLECnON OF VARIOUS RELEVANT PORTIONS OF CODE
CHANGES _._ 74

v

LIST OF TABLES

DNS and PH Like vs. Unlike Features 15

VI

LIST OF FIGURES

PH Forwarding Diagram 7

Race Problem _ 32

Deadlock lllustration 33

DNS Hierarchy 42

Pseudo code for developing the zone transfer for the Primary Server 54

Pseudo code for developing the zone transfer for the Secondary server 55

VII

l. PURPOSE AND MOnyATION

General Purpose

The "PH" in "PH system" stands for PHone book and was initially de igned as a

relatively simple database system to maintain mostly information that one would find in a

phone book. The "CCSO" in the title of the system refers to the "Computer and

Communications Service Office", an organizational group at the University of Illinois,

Urbana-Champaign that provided the public domain version of the software. The

"Domain Name System (DNS)" refers to a specific convention, set of standards, technical

requirements, and methods that describes identifying independent computing machines in

a network. A "Domain Name" refers to a means of identifying a single member of the

DNS network.

Since the inception of the PH system, among a number of functions, it has been

given the capacity to forward E-mail. Electronic mail or" mail" refers to the electronic

sending and receiving of messages to individuals in a computer network similar to the

manner in which postal mail systems work. As a popular system for generic E-mail

forwarding and other functions, the PH system lacks system reliability mechanisms. PH

system failure can cause delays in E-mail delivery, and, in certain cases, "bounced" or

lost E-mail. A typical PH system mail forwarding mechanism is set up in an Internet or

Intranet type network that contains multiple machines. This multi-machine network

structure provides an opportunity for multiple PH forwarding mechanisms without the

need for any additional equipment. Thus the task of providing mechanisms to produce a

higher reliability via multiple servers on existing machines seems a logical direction.

Reliability seems to be an interest for alllnternet applications since often now

organizations are placing a "front door" for customer usage and ervice via the Internet.

Problems with access to the organization using Internet mechanisms can be at least

embarrassing and at worst devastating to the activity of the organization. Commercial

businesses that depend largely or wholly on Internet access can be eliminated quickly if

they loose credibility or access to clients by having an unreliable or unproductive "front

door" on the Internet.

The Domain Name System (ONS) with fault-tolerant features has been

successfully in use on the Internet for approximately IS years. This system has been

amazingly reliable considering the structure and growth of the Internet. The PH system

has been implemented for more than 5 years, but with only recent interest in the need for

redundancy. The only efforts found so far regarding PH redundancy involve some recent

work on downloading alternate PH servers on an overnight basis at University of Illinois,

Urbana. This overnight-copying redundancy does not provide the level of dynamics

found in the ONS.

As the Internet grows, it is likely that the dependency on E-mail will grow with it.

As E-mail dependency grows, there is a need for more reliable-mail delivery

mechanisms. This project may be considered a contribution to the Internet comm unity to

provide some additional rehability to the community served.

Overall Goals

The following are the overall goals of this project and paper:

2

• Show how simple, yet elegant, reliability mechanisms can be developed

with less difficulty than may have been previously con idered.

• Produce a fault-tolerant enhancement to the PH system.

• Make the product enhancements available to the Internet community.

3

II. BACKGROUND AND HISTORY

PH Description

General Description

The CCSO Nameserver Directory System (known generally as the PH system or

the PH Nameserver system) is a client/server database that provides information

primarily on individuals. InitiaHy, the PH system was used to store and retrieve personal

infonnation such as name, address, phone number, and E-mail address. Asis common

with many database applications, other features were added, making the package more

attractive for widespread use. In addition to these other features, additional types of

infonnation such as special interest groups, administrative departments, telephone area

codes, local weather, restaurants, and other information can be entered, maintained, and

easily retrieved.

Internal! Technical

The server software, know as the QI server (Query Interpreter), is written mostly

in "c' for the Unix environment in general. The server software is coded so that it can

be compiled and run on almost all Unix environments. Chent software, known as PH

(short for PHone directory) has been developed for most common computer systems.

Since the source is readily available via the Internet, producing a client package is

relatively simple, provided that the supporting systems are available. Supporting systems

include mainly software supporting network connections using the "Transmission

Control Protocol! Internet Protocol" (TCP/lP) network architecture to the QI server. The

TCP/IP protocol is a well-documented and popular network architecture used throughout

4

the Internet and on other private networks. The product is efficient, yet simply engineered

to provide a limited set of functions.

Features

The PH Nameserver software system provides several additional popular features

beyond those of a common "phone book" or "white pages". These additional user

oriented features that have popularized the package include:

• Automatic E-mail forwarding service

• Dial-In user validation

• User maintainable information

E-mail Forwarding Feature

The E-mail forwarding feature seems to be the most popular feature in use at the

University of Tulsa. The E-mail forwarding feature provides users with a "generic" E

mail address at a site. The PH system is then tied to the central E-mail processing system

to forward each user's E-mail to the specific machine where the user maintains an

account. What appears to be a rather cumbersome and complex technical process

provides a service whereby a user may present a fairly simple E-mail address in

correspondence, business cards, and the like. The simple address can be provided

without concern about physical machines changing names or becoming obsolete so that

the user's account might be moved. Should users need or want to move their accounts

with PH forwarding in place, they can change the forwarding E-mail address on the PH

database. Without the PH system, the user would normally have to notify all others that

5

send E-mail to the user of a new address should the user change accounts to another

machine.

The format of the address that the user would supply to the "public" typi.cally

appears "user@domain" where "user" is what is tenned the PH "alias", and "domain" is

the Fully Qualified Domain Name (FQDN) of the domain that the user will receive

mail. The "FQDN" is an absolute fonn of referencing a Domain Name that prevents

local interpretation of portions of the name and thus eliminates ambi.guity. The "email"

field (normally used for forwarding E-mail) is set to the user's mail account on a

particular machine. The format of the forwarding address would be

"user@machine.domain" where "user" would be the user's mail account and would not

necessarily have to match the "user" in "user@domain". "Machine" would be a

specifically named computer in "domain". "Domain" would be the domain name where

the user's E-mail account would reside, and, as in "user", would not necessarily have to

match the "domain" in "user@domain". For example, the generic address

"jonesjm@utulsa.edu" would be routed to the PH system~ the PH system would find the

address "jonesjrn@centum.utulsa.edu" in the email field of the record with "alias"

"jonesjrn", the E-mail would then be automatically forwarded to the forwarding address.

6

Jonesjm ,utul a.edu
D Mail

.. change record
I--

e

Route to PH fOlWarding mechanism

Jonesim~utulsa. edu "phquery" process
~..

translation
>---

Send to fOlWarding address host

Jonesim~centum. utulsa.edu Deliver to account--.. on ho t "centum"

PH Forwarding Diagram

Validation Feature

The dial-in user validation feature can be directly used by networking equipment

such as dial-in modems. Cisco Systems has equipment that can take advantage of this

feature of the PH system. Cisco provided the TACACS (Terminal Access Controller

Access System) software package to the public domain to make this feature easily usable

with certain networking Cisco equipment and a PH server.

The University of Tulsa uses this feature to validate users who dial-in to TU's

modem pools of 16 14.4 KB and 1628.8 KB modems to access the TU network and the

subsequent TU Internet gateway if desired. The user provides their PH "alias" as a

7

usemarne then provides a password associated with the user (that can also be maintain d

by the user) to authenticate against the PH database prior to being pennitted acces to the

TV network. The PH "alias" is set up on the TV PH database to be a field that functions

as a unique key to the records in the database.

User Maintenance Feature

The user maintenance feature of the PH system is probably used least, but may be

one of the primary reasons that the whole PH system is so popular. The PH system

provides the mechanism for "self-service". In this age of burgeoning bureaucracy and

overwhelming administrative red tape, placing a little bit of self-reliance in the hand of

users would appear to be a trend. The overwhelming popularity of the Internet seems to

speak for this trend. There were a number of "on-line" services before the Internet, but

due to their proprietary nature, they couldn't come close to the enormous growth of the

Internet with its "open" architecture. Even though the Internet has been archaic to a great

extent and initially "unfriendly", it held the promise of the self-service era. This era

would provide users with features to manage and take control over their own information

and methods.

The mechanics of the user maintenance feature of the PH system are similar to

most other systems that require user validation. Typically, read access to most types of

information is available to anyone, though there are certain configurable restrictions.

Modification of infonnation is generally provided only to the user associated with the

information via a "login" sequence. The common "username" and "password"

requirements are solicited for the login sequence. The same mechanism used to

8

authenticate users for using dial-in facilities (described above) is used here to "login' . For

example, again, the TV PH 'alias" field is entered as the "username". Once logged-in, a

number of data fields may be altered, such as changing an E-mail forwarding address.

This E-mail forwarding management by the user is one of the primary combined features

that makes the PH package attractive. Users can identify which account and computer

they want their E-mail sent to when directed to the "generic" PH address.

Other features of logging-in to PH enable the display of more "personal"

information that might not be permitted with the generic querying of the PH database.

Such personal information might be a Social Security number.

PH History

Records indicate that the PH system was mitial developed in 1989 by Steve

Domer at University of Illinois, Urbana-Champaign (UIUC)l. Domer modified and

overhauled software developed at CSNET for the same purpose. Paul Pomes took over

software maintenance of PH in 1992 when Steve left UlUC. Through the efforts ofa

number of individuals, the PH system has been ported to most UNIX platforms, such as

Ultrix, NeXT, Convex, Dynix, AlX, Sun, and HP.

Tim Lawless at the University of Southern Mississippi (USM) got a modified

version of PH running on a Linux environment in 1996. As part of this project to

enhance PH, [was able to get a Linux version operational with a minimum of changes to

the original software. The changes that I made should not produce problems in other

platforms, and, in fact, should reduce or eliminate certain problems with the

configuration and running of the software on non-Linux platforms. I have posted the

9

configuration file used. with comments on other changes. to the PH listserv to make the

Linux version available to others in the Internet community.

Many others have been involved in the implementation of the software on other

platforms and have also been gracious enough to enhance and debug the software and

supply their work to the Internet community. Though many were involved. Alan

Crosswell ofColumbia University made one notable effort in 1993. Alan did a number of

updates on the utilities that are used to build the PH database. Most changes were to

speed up the processing of the generation of the database files. His efforts changed

processing times from around 10 hours to about 15 minutes.

A software registration service with UIUC reveals that the PH software is being

used at no less than 329 sites around the world at last count? The registration service is

only for those servers accessible through the Internet. Since the registration service is

voluntary, and some sites may not desire promoting the use oftheir server since some

consider the information to be reasonably personal. it is quite likely that a number of

other sites are using the software on the Internet without registration and private and

corporate networks connected via firewall or not connected to the Internet are running

PH.

Domain Name System Description

General Description

The Domain Name System (ONS) primarily consists of what might be described

as a loosely coupled cooperative hierarchical networked database system that enables

I Domer
2 Kubaitis-l

10

translation primarily between names and numbers that identify network ho t . The

"names" typically consist of alphabetic strings that provide easy descriptions for human

reference. The numbers, often called "[P addresses" are currently in the form. of

"nnn.nnn.nnn.nnn" where onn is a number in the range of 0 to 255. Network devices use

these [p numbers to direct packetized information to and from specific areas and

computing equipment on the network

Internal! Technical

The Domain Names, often called "[P names" (for "Internet Protocol names") or

"Internet names", are arranged so that the portion of the name that designates the top of

the hierarchy is to the right and each successive lower logical hierarchy branch name is to

the left with "." (dot or period) as a separator. A "Fully Qualified Name" is the "node" or

individual equipment name on the left with all the hierarchy names, from lowest to

highest, to the right, separated by a dot and ending on the right with a dot. The rightmost

dot itself designates what is termed the root of the hierarchy. A "domain" or "domain

name" is normally a higher level grouping where the maintenance of designating IP

numbers (with range restrictions) and node names is provided to an administrative entity.

lP numbers are organized in a hierarchy where the highest point in the hierarchy

is to the left. Portions of the IP numbers can designate what is termed a "sub-net". Sub

nets are some portions of the numbers from the left, but not enough "binary digits" to

designate the final computer device, but enough designation to determine what logical

continuous segment of network that a machine or other sub-net is located on. A segment

of a network is a logical grouping of machines and/or other sub-nets.

J I

An example of such a name might be "acs.okstate.edu.". Though the exact

particulars cannot be determined exactly without knowing the details of the hierarchy, the

"a" probably means an individual machine on a "sub-net" of "cs" in the "domain"

"okstate.edu.'~. Note the dot at the far right designating the root. The root is a "domain"

in itself. The "edu." portion in the current scheme on the Internet is also defined as a

domain. The logic in detennining how the FQDN is evaluated is defined in the DN

database, and, though well defined, can be non-triviaL In the example, there is no reason

that "cs.okstate.edu." cannot be defined as a "domain" also. At the time of this writing,

the FQDN "a.cs.okstate.edu." represented:

• "a.cs" a machine

• The "cs" portion, though not officially designated a "sub-net" consistently

represented machines on one "sub-net", in this case, the sub-net:

139.78. 113.? or rather 139.78.113.0 since a zero ('"0") in an fP number

has special meaning.

• The domain "okstate.edu."

• The domai n "edu."

• The domain "."

• The single IF number for the machine "a.cs.okstate.edu" is

"139.78.113.1"

• The machine "a.cs.okstate.edu." serves as a "mail exchange" server for a

list of other IP names.

Additional Features

12

The DNS provides for more services than an IP name toIP number translation. A

less dramatic, but none-the-Iess u eful function of the DNS i translating the rp number

to an fP name. In addition, one of the more useful functions of the DN is the

designation of a "mail exchange" server.

Mail Exchange Feature

A mail exchange record associates what would appear to be an IP name to a

machine that mayor may not match that name, but may direct E-mail designated to one

rp name to be routed to a different IP name. This mail exchange feature provides a

mechanism for routing E-mail to alternate E-mail servers. Though not designed into the

DNS for the needs of the PH system specifically, the "alternate E-mail server" function

of the DNS is a key mechanism in the additional functionality provided by the PH

system.

Fault-tolerant Function

The DNS has several key design considerations for various reasons. Our focus

will be on the fault-tolerant features provided by the design of redundant servers.

Of all the contemporary systems that are relatively close in comparative

functionality to the PH system, the DNS appears the closest. Certain DNS techniques

appeared to be the most likely candidates for emulation by the PH system. The

mechanisms applied to PH through this project are contained as key design features of the

DNS, namely fault-tolerance via system redundancy. Previously lacking in the PH

13

-

system, a fully functional [onn of the fault-tolerant design has been implemented. Detail

of the fault-tolerance are illustrated in chapter Ill, Reliability Mechanism .

DNS History

It became apparent in the early 1980s that copying the host tables from ystem to

system and attempting to maintain a central host table file for the Internet would be

unacceptable from an administrative standpoint due to the growth of the Internet. Paul

Mockapetris, a principal engineer on the Internet Engineering Task Force, provided a

schedule in 1983 detailed in "Domain Names - Concepts and Facilities" (RFC 882) to

migrate to a new methodology and design whereby managing of sections of the net,

tenned "domains", could be implemented. The work to refine the scheme continued

through the later 1980's and resulted in the refinement publication "Domain System

Changes and Observations", RFC 973 (1986), and the current set of works "Domain

Names - Concepts and Facilities", RFC 1034 (1987) and "Domain Names

Implementation and Specification", RFC 1035 (1987), are the foundation of the DNS as

it stands today.

DNS and PH Comparison

PH and DNS like vs. unlike features

The following lists are summary infonnation that Illustrates some of the overall

commonalties and differences. Details of the more significant comparisons are discussed

following these lists.

14

-

Like Features

• rclati ely simple databa e

• Internet systems

• use a reserved TCP/JP port number

• reasonably easy to configure and et up

• very flexible in their configuration and characteristics and functions

• multi-tier architecture

• widely used

• seasoned software - many bugs removed

• features added - enhanced - extended

• simply engineered

• well defined functionality

• written primarily in "C"

• modularized

• use Unix "make" function

• similar coding styles

• similar copyright style

Unlike Features

DNS and PH Like vs. Unlike Features

DNS PH

-
The DNS is widely used throughout the The PH system is widely used, but not
Internet. nearly as widely as the DNS.

IS

-

The DNS is a cornerstone foundation The PH system i not a ba ic function
system for the current state of the Internet needed for the operation of the Internet.
as a whole and failure of the DNS in part or
whole would likely cause significant
disruption on the Internet ifnot failure of
the system as a whole due to the extent of
the dependencies.
The DNS database is completely The PH database is completely standalone.
distributed.
The DNS database has a hierarchical There is no equivalent structure in the PH
database structure. database.
The DNS database is fully and dynamicalty The PH system did not have redundancy
redundant. built-in prior to this project; dynamic

redundancy is now a feature.
The DNS is designed for caching. There is no caching mechanism in the PH

system.
A team of software engineers (primarily The PH system appears to have been
Paul Mockapetris) designed the DNS. designed and written by one individual

(Steven Dorner).
Documentation on the DNS is extensive PH documentation is sparse and limited.
and thorough.
The DNS has extensively designed-in A PH database is a completely separate
interactive mechanisms and is distributed entity from all other PH database ; there is
and dynamic. no static or dynamic database interaction.
The DNS has "mail exchange" records that The DNS has no dependencies on the PH
the PH system can and typically does use, system.
particularly the project associated with this
writing. - - ---
The DNS system, though primarily a client The PH system, prior to this project, was a
- server model, can be classified a multi- basic client - server model; redundant
tier system. servers add a 3rd tier.
Specifications for the DNS define records The PH documents define exactly the
but do not define the structure of the internal structure of the database and the
database itself except to say that it is mechanics for database usage.
encouraged that the software be efficient
and designed primarily for speed of look-
ups.
The DNS records have fields typically The PH system uses 3 different field
delimited by spaces. delimiters depending on the relative

location of the data.
DNS has a fairly limited and well-defined The PH system has a dynamic method to
record and field types. define and alter field types and field and

record characteristics.

16

-

Client/Server Model

Both DNS and PH follow the Client/Server Model in general. The 0 S ha

features of a more elaborate structure with, among other components, Primary and

Secondary servers. With the completion of this project, the PH system has a similar

feature of Primary and Secondary servers. With the addition of the Secondary s rver, the

structure of the PH system is more like the DNS.

The DNS Primary and Secondary servers replicate the server function from the

client perspective. The client typically does not need to know which, if any of the servers

specified are in fact the Primary server. The Primary and Secondary servers themselves

are aware of the type of server that they are. The Primary knows about all the associated

Secondaries and each Secondary knows of the Primary in the DNS. This "knowledge" in

the DNS is modeled in the project changes to the PH system.

Upon examining the version of the PH client software that comes with the

distribution, of note is the "enhancement" in the software to reference a "main" and an

"alternate" server, though there is no direct provision for having a Secondary server. Paul

Pomes ofUIUC (at the time I spoke with him) indicated that UIUC copies the data base

on an omine and overnight basis to provide a non-dynamic Secondary server. The omine

copying mechanism is not described or provided for in the release from UIUC, the same

release that contains the PH client that refers to an alternate server. While the offline

copying is certainly functional, it does not provide the level ofrehability that the dynamic

zone transfers provides in the DNS. The "zone" portion of "zone transfer" refers to a

logical collection or grouping of Domain Names. Details of these zone transfers is

discussed elsewhere.

17

-

Among other dependencies, offline copying must rely on a separate s t of

mechanisms that must be operational for the copy and activation to work. The dynamic

copying via the "zone transfer" mechanism modeled after the DNS provides for a less

dependent system by relying on the same mechanism that the servers and clients uses.

Also, the servers communicate directly with each other rather then depending on a

separate offline process to copy the database and make it available.

Database structure

The documents of the DNS specifically define the database record types that are

presented in the Man-Machine Interfaces (MMl). A Man-Machine Interface is the point

of communication between a person and a machine, typically a computer. The internal

fonn ofthe database is intentionally not detailed in the DNS documents. The DNS

documents indicate only that the internal database records need to be quickly retrievable,

thus leaving the software engineer to determine the internal structure that might best fit

the circumstance, given other variables, such as machine architecture and software

language. The PH system on the other hand is very well defined in its internal database

structure. Though defining the internal structures and methods produces a more limited

framework, the internal workings give light to quirks and anomalies of processing where,

as in the DNS, internal workings may vary and thus mask the reasoning for certain

internal system behaviors such as unusual system delays and order of information

returned.

Where the DNS is rigid in its record characteristics and types and dynamic in its

internal structures, the PH system is just the opposite. The PH system though rigid in

18

-

internal data structures, has a configuration file that defines record and field

characteristics, not in structure, but in function. For example, one can customize the PH

system to have organizational department records that are not necessarily associated with

an individual. Where this feature might first appear to be difficuJt to work with from a

"client" environment, as it turns out the generic "client" software, for the most part,

simply reformats the information passed to it from the PH server and displays it to the

user. The specialized clients in the PH environment are well defined and, typically, one

would not want to customize the fi.elds used by these specialized clients. xamples of the

specialized clients are the process that forwards E-mail (phquery) from the generic

address to the specific address and the authentication software that verifies users dialing

in and logging into the PH database. In fact, there are warnings in the PH software and

documentation to discourage modification of these specialized fields.

Other characteristics

Though there is some concern for security and privacy in the DNS data, for the

most part, access to any and all of the data throughout the entire DNS is relatively simple.

The data in the PH system is typically more sensitive. Since the data is of a more personal

nature, some individuals prefer not to make the information known to the outside world

via electronic "publishing" ofa sort. The train of thought is similar to why some people

do not want their phone numbers listed in a phone book, although, in some cases, users

don't mind paper publIshing of the infonnation in PH, but do not want electronic

publishing of the information. The authors of the PH system were very much aware of

the sensitivity of the data in the PH database. There is a configurable parameter in PH

19

that prevents the return of any infonnation should a request be made that would return 25

or more records. There is no equivalent in the DNS. Without going into great detail mce

the DNS is not the topic of this paper~ an understanding of some of the general

characteristics of the data contained in the PH system illustrates how the PH sy tern

works. A current very common problem today on the Internet is one ofjunk -mail,

most commonly referred to as "spam". Due to the usually very low costs of sending E

mail solicitations and mass mailings, and the current state of transition of the Internet

("self' regulation for the most part), "spam" has become widespread and a significant

problem. The "fuel" for "spam" is getting as many E-mail addresses as possible. Thus

any method ofobtaining as many E-mail addresses as possible is very attractive to

"spamers". Programs have been written to "crack" PH servers and obtain as many E

mail addresses as possible.

As can be noted from the above illustration, open access to a PH server or the

possibility of another "back door" to access the PH server database is an important

concern. For this reason, the zone transfer feature added to the PH system has a more

secure method of access than that provided by the DNS, though the mechanics are the

same otherwise.

20

-

lII. RELI ABILITY MECHANISMS

Background

Traditional "Fault-Tolerance", i.e. Backup Copies

Discussion of the traditional "fault-tolerance" techniques will be followed by the

techniques and reasons for the more contemporary approaches for on-line redundant data

bases such as the DNS.

Backed-up data typically is used in what is generally referred to as an "off-line"

state; that is, the data is not readily available for reference. When the original data is

copied to an "off-line" backup, this often implies that the data is copied for backup either

when the original data is placed in a state of unavailability, i.e. the original data is in an

"off-line" or temporarily unusable state. The primary purpose of placing the original data

in an off-hne state helps to ensure that the copied data is a complete "snapshot", i.e. a

completely uncorrupted state. The "off-line" state is attained when all update transactions

are complete and any further updates are somehow prevented. Copying data while

permitting updating the database can be complex, since methods used must take into

account locking mechanisms and update order to preserve database integrity.

One problem in copying data from a database off-line is determining whether the

data base is completely off-line, i.e., all updates have completed and no updates are in

progress. Common mechanisms used to place databases off-line are sensitive enough to

the database structure to know when any given transaction is complete, and place a

moratorium of some sort on any further updates. Simpler techniques for obtaining the off

line state are el iminating access to the database either by "disconnecting" users, generally

21

-

referred to as logging off users, or "disconnecting" the database. "Disconnecting" the

data base may vary by operating system and can include "dismounting" a di k volume

that the data base is contained on or terminating access by terminating the application

program referencing the data base. The methods are many and varied and can include

"gross" techniques. One such gross technique involves shutting down the machine, which

can in itself can cause data base corruption on the original database; then restarting the

machine in a mode that prevents users from obtaining access and then running physical

disk to disk or disk to tape copies.

Commonly obtained with some mechanism for sensing the logical completion of

a transaction, the popularity of the database snapshot copy for a backup is common due to

the simplicity of the copy. The snapshot copy uses certain simple system information

that defines the location and physical scope of the database for the information to be

copied. The simplicity of this technique generally translates to significantly more rapid

copies of the database than those techniques that use internal data base structures. With

the snapshot technique, logic to follow internal data structures need not be followed and

no record of replicating previously copied information need be kept as would be the case

in data bases that provide for multiple pointers referencing identical information.

The other extreme in backups includes "fine" techniques. An example of such a

technique provides for an application to be signaled that the database needs to be backed

up and, in turn, completing updates, notifying the user of"temporary" inaccessibility,

signaling the backup that it is "safe" to do the backup. The final step in such a process

has the backup signaling the application that the application can continue. Another

method even "finer" never indicates to the user that the database is unavailable, but goes

22

-

through the database via the database internal structure and monitors active locking

mechanisms and "journals" change activity. The '1ournal" is a record of all changes

made to the database during the backup process. When the backup process completes,

the process can go back and append changes that were made to the database. The most

sophisticated of these finer processes issue "soft" locks on records, such that should the

application/user request a record with a soft lock, the record is released so that the user

never has any indication that a background process is running. The backup process then

records the fact that the lock has been «taken" and processes the record with journaled

information at a later time when the lock is released. As the backup routines go from

"gross" to "finer", they generally develop a high level of complexity which translates to

more overhead in both processing resources and code development and maintenance.

In any case, the off-hne techniques typically will interrupt normal work activity,

and are less desirable than on-line techniques from a "system usefulness" standpoint.

Often, though, in average conventional production systems, activity during "off" hours

can be used to provide a time frame where little to no required database updates are

needed. Business systems of this type are disabled to the user after normal work hours

for utility processing that includes a data base backup. These "gross" techniques are still

very common. "Fine" techniques have been fairly rare. One of the most well known of

the "fine" techniques, airline reservations systems, have long been a target of complex

algorithms and methodologies to ensure data integrity and high availabihty. These

complex techniques with their elaborate locking methods have had a high overhead with

large numbers of technical programmers and support personnel regularly and carefully

23

-

refming the complex software. With the popularity of the Internet, high a ailable systems

become the target of greater interest.

Contemporary FauIt-Tolerant Strategies

Conventional situations are, at best, unusual on the Internet. The norm on the

Internet seems to be one of continuous availability particularly for the business world.

Thus the methods for backups and other reliability mechanisms must be approached

differently.

Providing Internet access to a database for the global community requires

rethinking of redundancy and backup strategies. Certain types of applications need to use

the "finer" backup methods yet continue to go beyond backup strategies moving on to

fault-tolerance. Fortunately, the data in the DNS and the PH system do not require the

absolute consistency and accuracy of an airline reservation system or a financial system.

Databases, such as the DNS, PH system, and likely others, can be manipulated,

distributed, and proliferated without concern for total and complete database consistency

and integrity as other types of systems.

A classic example of a highly reliable and simply engineered application, and

primary model for this project, is the DNS. The DNS has been in wide use on the

Internet for around 10 years now with little to no significant network wide disruption.

The primary designer and engineer, Paul Mockapetris, considered functionality more

important that data integrity, a fairly revolutionary concept in the Computer Science

world. "Access to information is more critical than instantaneous updates or guarantees of

consistency. If (Mockapetris, RFC 882, 1983) Though this assumption breaks with

24

-

conventional database thought, the assumption is very workable in an environment where

the absolute accuracy of the data is not critical.

This assertion is not meant to imply that data integrity was not important in the

design. The engineers introduced methodologies and mechanisms to encourage data

integrity, but did not guarantee accurate data. By design, the "bad" data does eventually

migrate out of the system.

Redundancy Level for Fault-Tolerance, Data and Function

Duplicated data bases

Fully or partially duplicated database applications have been somewhat limited

and often have been specialized. The two most prominent approaches to maintaining

duplicate data are hierarchical and peer methods. The hierarchical method is organized

such that there is one database that is considered a "master" copy and all other copies arc

generated from the master copy. The master copy provides a logical reference point for

promoting accuracy. If there is a discrepancy between the master copy and duplicates,

the master copy IS presumed more accurate.

A peer method of maintaining duplicate data implies that all copies are

theoretically equally updated and current, though, from a technical standpoint, this is all

but impossible. Typically what occurs with peer systems is that individual updates are

initially associated ("anchored") with one of the servers/databases and updates are

performed from the point of anchoring to the other databases with signaling and

"checking-off' as the updates are processed throughout the database system. The net

2S

-

effect is the equivalent function of the hierarchical structure, except an database copy

may serve as the master copy for any update.

In either case of hierarchical or peer methods, typically extensive ignahng,

locking, and often transaction joumaling mechanisms must be in put in place to ensure

system reliability. These mechanisms can create significant overhead and thus have an

impact on performance.

Other more complex methods provide for three or more copies of the data to exist.

When discrepancies are discovered, the mechanism might determine via probabihties that

the best chance for accurate data is based on the "majority", i.e. whichever copy exist

identically in more that 50% of the locations is determined to be most correct and

accepted as so. A system using more than three copies might maintain an odd nwnber of

copies to ensure that a "majority" could exist. These types of duplication are not nearly

as common as the "master and one or more duplicates" method, primarily since the logic

is fairly complex, therefore contributing again to high overhead and resulting reduced

perfonnance.

Fortunately, with the pecialized database of the PH system and the ONS, a much

simpler database update mechanism can be used.

Raid arrays

One highly successful alternative to the "non-master" duplication method is

Redundant Array of Inexpensive Disks (RA ID) systems. Of the 7 RA10 contigurations, 2

have proven to be practical in providing useful redundant data. RAID 1, often know as

"shadowing" or "mirroring", duplicates physical data on 2 or more physical disks.

26

-

Duplication of the data using RAID 1 can cause some performance problems due to the

slowing in the writing mechanism using 2 or more disks. Performance of the read

mechanism is generally increased, though, due to intelligence on the di k controller to

read the most quickly accessible data.

Though performance is not a main topic here, from a practical standpoint,

performance needs to be considered. While moderate performance degradation may be

generated, if the degradation is kept in the moderate range, the overall benefit of the

methodology may be of such value as to accept the degradation characteristic. Using

RAID 1, with most common databases, the performance benefit gained through read

activity far outweighs the moderate performance degradation for write activity.

Some databases that do not fare well are those with a large proportion of write to

read activity where overall 1/0 activity is also high. Though these types ofdatabases are

becoming more and more common, they are still in the minority. A high write activity

database often requires certain special treatment and structure due to performance needs.

An example of such a database might be an application that collects a number of requests

from a number of users, then redistributes these requests on to other organizations with a

different sorting arrangement. While this might sound like an application that could be

insignificant, consider a company that provides rapid driving record information to

trucking and insurance companies, automated medical claims processing systems, or

stock market companies that combine or group stock trades. All applications would

require the rapid influx of large amounts of data followed by the rapid resorting and

redistribution of the data in a timely manner. RAID 1 does not perform welJ in this

enVironment.

27

-

RAtD 5 provides the means for the other common and practical data redundancy

capability. RAID 5 asserts that for the one or more disk volumes used for applications,

there exists a disk volume that contains a specialized type of redundancy information

based on the applications data. In other words, should anyone of the disk vo.lumes fail,

the remaining volumes can be used to provide the original data through one of two

methods. Should one of the application volumes fail, the redundancy volume can be used

to regenerate the data on the failed volume by "reversing" the algorithm used to create

the redundancy data. If the redundancy volume fails, the application data is not directly

affected; the controller need only stop generating the redundancy information. There is a

trade-off in RAID 5 between that of RAID 1 in that while RAID 5 requires more logic,

translating to overhead, due to the calculation of redundancy volume, RAID 1 requires

more physical disk volumes for application data that must be contained on more than one

physical disk. RAID I requires each application volume be "shadowed" whereas RAID 5

only requires 1 redundancy volume for the entire set of application disk volumes. The

net result makes no difference in redundancy, but in performance. RAID 1 normally

performs better than RAID 5, but costs more since more hardware is required.

Most contemporary RAID systems use hardware or firmware level mechanisms to

provide functionality. This method has been shown to provide less overhead and makes

implementing a RAID system significantly simpler. Typically no other software changes

need be made. The fact that this method has been easy to implement has been a boon to

RAID system providers due to a natural progression of data base systems. The

progression begins with the creation and use of a database by a user or user group, the

growth of the database, followed by the dependency on the database and the realization

28

--

of the dependency. The hardware or firmware locabzation of RAID systems pennit

fairly large and/or heavily used databases to be retrofitted with RAID ystems. The

segregation of the RAID systems from the application and sy tern software in

conjunction with hardware and firmware implementations has provided engineers with a

situation that can produce exceptionally reliable systems. The RAID implementation,

being at a hardware level, might have the feature ofan isolated or partially isolated power

source such that duplicated updates can be assured. The isolated power source and other

engineering methods including redundant logic can provide a situation that eliminates a

most significant problem of timing updates and single update failure. Since the problem

can be eliminated from a practical standpoint at the hardware level, the system and

application will be provided with a high degree of reliability.

Multi-node arrays

There are numerous variations on the multi-node array topic. The 2 more popular

methods are the multi-node I same database and multi-node I duplicate database

configuration. The "same database" configuration typically requires some basic

hardware component and operating system modifications or layered enhancements for a

locking mechanism. The "duplicate database" configuration is an emerging technology

of which the DNS is such an application. The '"duplicate database" mechanism requires

no special hardware components, making these systems more cost-effective in terms of

hardware components.

Initially, the need for the "same database" type of configuration was partially

driven by the sheer volume of data and the needs for equivalent bandwidth to be able to

29

-

service requests of the data coupled with the relative high cost of the storage media and

high bandwidth equipment. Though quite popular, the nature of the Internet is pre sing

the data out in a distributed fashion such that nodes do not necessarily contain the large

volumes of data nor the needs for the high bandwidth, but now the network bandwidth

itself has become the Iimiting factor.

The primary software mechanism built into the «same database' configuration is a

locking facility that must span nodes. Digital Equipment Corporation (DEC) successfully

designed and built such a mechanism that is a part of their VMS operating system.

DEC's terminology for their mechanism is «clustering", referring to a grouping of several

nodes into one logical entity. The locking mechanism DEC uses incorporates a duplicate

database of locks on at least 2 of the nodes in the cluster, so that if one node fails, there is

still a complete lock database on another node. The duplicate lock database is reliable,

but it consumes significant node communication bandwidth and CPU resources with

most application database processing since common application database processing

creates and releases locks information at a high volume as a normal result of record

proceSSIng.

"Dupl icate database" methods are put to use by the DNS and this PH project.

The duplication is relatively reliable due to the lack of a high volume of changes and the

lack of need ofrehance by the system on the data always being totally accurate. The

inaccuracies and incompleteness of the data is acceptable for the manner in which the

data IS used. Should other systems require more accuracy or absolute accuracy then these

techniques cannot be applied directly, though some variation of the duplication might be

30

-

produced to provide an acceptable mechanism. FortunateI ,the nature of the PH data i

such that the PH fault-tolerant functions can be modeled after the DN .

Timing and repetition

Timing and repetition playa critical role in all database schemes. There are man

mechanisms that deal with timing and repetition. Here we review se ral of th

mechanisms and the more common problems. We will not go into great detail, becaus ,

as it turns out, a rather simple mechanism is used due to the nature of the databas .

The two most common problems with timing and repetition are the "race" and the

"deadlock" problem. For our purpose here, we will include in the race problem the

failed system that does not complete or start a requested update.

3\

Extemallnfluence E

Memory

File Record in
State: SJ

Record in
State: S2A

Record in
tate: S2B

Memory

External Influence Ell

Process B

Time

Race Problem

The race problem is illustrated by the figure captioned '"Race Problem". The

problem occurs when a record is retrieved by 2 or more processes in the same state, SI,

are changed to 2 or more separate states, S2a and S2h, by these processes where each

change is different and is based on SI and some external influence, Eu and Eh, but are

recorded without knowledge or influence of each process on the other. Given the actions

of recording the changes cannot occur simultaneously, one of the effects of the change

32

will be lost with serial recording of the 2 transactions; the transaction recorded first 2f,

will be discarded as a net effect. S2f is recorded, but the subsequent re,cording of the other

or next record modification, S2n, causes the evidence of S2f to be lost (unless there i

some sort ofjournaling or other mechanism not described here) due to the recording of

Request R)

R) A

Request R2

Grant R}

Locking Mechanism

R] A R) A A

B B B

Request R2 Request R1

Process B

Time

Deadlock Illustration

A deadlock situation occurs (see "Deadlock Illustration") when 2 or more

requests are made for resources in such a manner that the requests can never be fulfilled.

33

-

The classic example follows: Requester A requests and obtains resource R I . Requ ster B

requests and obtains resource R2. Requester A then requests resource R and requester B

requests R I . Both requesters need to obtain the second resource, but are unwilling or

unable to release the first resource they have obtained. The resuJts are that the two

requesters cannot proceed. This deadlock situation is well documented and discussed in

many publications. Again, this is not covered in detail since a simple mechanism that is

based on certain characteristics of the data is used. The point here is to emphasize that

these problems can be and indeed are complex in nature. These points are only touched

on to illustrate the number of complex problems solved by avoidance, or perhaps a better

tenn is side-stepping.

DNS Fault-Tolerant Features

Authoritative and Primary/Secondary Facilities

The most common and known methods of maintaining duplicat databases

generally fall into the category of either hierarchical or peer based structure. These two

structures imply how and when the data on the corresponding server can be considered

reliable. The hierarchical structure implies that the apex of the hierarchy is always

considered to contain the reliable data and all other levels may have some doubt about

their level of data reliability. Inconsistencies between a lower level and the top level

database are resolved by assuming that the top level contains the correct data.

The peer structure typically does not associate level with authority, but uses other

methods to resolve database di fferences. The most common methods to resolve

di fferences use algorithms that imply integrity of one or more of the peer data over

another. Typical algorithms are quorum based or change based. Quorum based

34

algorithms normally require a majority of servers to agree on a data value ifthere is an

inconsistency found. Change based algorithms nonnally assume that the first change

made to data on a server is the most correct and propagates to other server with often

complex locking and timing mechanisms to prevent race and deadlock problems. Most

of the peer methods can be thought of in hierarchical tenns since there has to be some

determination of which server(s) have the most reliable data. Thus the Peer methods are

often the same as hierarchical methods, but applied to each element of data instead of the

servers themselves.

The Primary/Secondary method of the DNS falls into the hierarchical method of

database duplication rather than the peer method. Though the hierarchical method is

often considered less elegant than the peer method, it is often easier to implement and

maintain since it is simpler model. Since all updates originate from the primary via zone

transfer, there is no need for a locking mechanism. Thus locking determinations such as

field vs. record locks need not be considered as well as "race" and "deadlock" issu s.

Primary/Secondary servers have a drawback in that should the Primary server fail

for any reason such as equipment failure, database corruption, application or operating

system failure, the determination of reliable data on Secondary servers may be a problem.

The method that practically eliminates the problem of the Primary server failure is a high

enough "Time-To-Live" (TTL) value coupled with reasonably reliable recovery

procedures. TTL is a parameter used in the DNS to designate how long a retriever of

information may consider the information reasonably reliable. TTL is discussed in detail

elsewhere.

3S

The recovery procedures would normally include daily backups and the ability to

use altemative hardware or a responsive hardware maintenance contract. The idea here i

to have a TTL value in the range of days and the recovery of the Primary server to occur

within less than a day. This enables the Secondary servers to carry the load whi Ie the

Primary server is being fixed. The mechanism of the zone transfer provides for

tlexibihty, even if the Primary is inoperative for a somewhat extended period of time.

The system can be set up so that a zone database on a Secondary may be kept for a period

of time and considered a reliable database, even though a zone transfer cannot be

perfonned from the Primary for an extended period. With equipment and software

becoming more and more reliable, the dependence on a Primary server that may not be

available for extended periods of time (days) is a less significant risk factor in providing

overall system reliability.

Primary and Secondary servers are both considered "authoritative", meaning the

database maintained on the Secondary servers typically have a high degree of rehability.

The "authoritative" distinction, by definition, indicates a "local", typically complete,

database for the zone. 1 Non-authoritative servers are more commonly dependent on

cached and remote infonnation.

In the DNS, the two primary mechanisms of data base redundancy are the Time

To-Live (TTL) fi.eld and the Zone Transfer function. Secondary servers are loaded via the

Zone Transfer function.

Zone Transfer

I Elz - 2

36

-

"Zone Transfer" is the mechanism used to copy a section or complete database

from a Primary server to a Secondary server. A Primary Server contains all the

information for a zone and/or domain plus a list of Secondary servers by IP number. A

Secondary server is provided the name of the Primary Server(s) that the Secondary is to

get a database transfer from. For the Secondary server to obtain the information that it

must provide to client requests, the Secondary requests a zone transfer from a Primary

when the Secondary initially starts up, then the Secondary will request an additional zone

transfer each TTL interval (discussed below). When the database is transferred, the

Primary includes the TTL information in the transfer of the zone information. Providing

the TTL information enables the Primary indirectly to manage when the Secondary

requests a zone transfer, though the transfer request originates from the Secondary. All

requested records are copied from the Primary to a Secondary via the same means that

the inquiry mechanism uses. The only differences between a zone transfer and an inquiry

in the DNS are the protocol used and certain performance considerations.

The protocol used for an inquiry is the UDP protocol, characterized by less

overhead. Zone transfers use a TCP protocol, characterized by reliability. The UDP

protocol has less overhead due to the lack of verification mechani ms, thus the lowered

reliability as compared with TCP. The verification mechanisms in TCP and intentionally

lacking in UDP define that the sender must get an acknowledgement that the receiver has

obtained data exactly as sent. Though this may initially seem backwards that inquiry

activity uses UDP and Zone transfer requires TCP, some understanding of the how

clients, Primary and Secondary servers work together will clarify the protocol issue.

37

-

Client software is typically set up with the assumption that ifthere was no

response to a certain DNS server within a certain time period (usually seconds), there ar

one or more alternative DNS servers that can be queried. Rather than depending on

reliable infonnation from a single source via TCP, since multiple sources are known and

each is generally as reliable as the other, the client can move on to an alternate server

using UDP once again, generally resulting in better overall response time than TCP to a

single server. The Zone transfer, on the other hand, requires rellable information to be

assured so that the chent inquiry assumption about reliable alternatives can be made. The

Zone transfer also requires an extended period of time, relatively high volume of

information, and lower priority / less intrusion. These requirements make UDP

unworkable from the Zone transfer function.

The simple DNS query can typically be accommodated in a single packet, where

a Zone transfer nonnal1y requires a large number of packets. Simply because there is

more data for a Zone, the transfer will take longer. Transmission error rates increa e in

proportion to the volume of data as well as the amount oftime it takes to make the

transfer. Exacerbating the problem are the criteria implied by RFC 1034 [Mockapetri -4]

that inquiries made upon a DNS server must not be made less respon ive by Zone

transfers in progress. Thus should a server find itsel f frequently queried, the server may

find that Zone transfer activity might have to suffer intennittent delays to maintain

responsiveness for queries, thus subjecting the transfer to additional transmission

problems.

Time-To-Live and Timing Issues

38

-

Though the TTL field is also used in caching data on caching servers, this project

focuses on the TTL field only as it is associated with complete sets of redundant data on

Secondary servers. Record layouts for ONS provide for a TTL field due to the ON

caching mechanisms; the TTL fiel.d of interest for zone transfers is associated with the

authority information. The TTL field of the authority record is applied in practice to all

of the records in the associated zone, though each record has the ability to have a separate

TTL field.

The primary mechanism of the "Time-to-Iive" (TTL) field and function provides

for the weeding out ofoutdated data. When zones are transferred, the TTL field indicate

to the receiver that the data can only be referred to for a limited time. For performance

considerations, the TTL field can be, and often is, several days. Thus the receiver is

instructed to "use" the data for only a limited time, then request a new set of data, a new

zone transfer. Some of the data might change during the TTL interval from the Primary

server; thus the data on the receiver is updated when a new zone transfer occurs.

Instead of ensuring identical data in Secondary databases, the TIL field provides

a functional opposite: a length of time that data (assuming eventual outdated data) can be

permitted to remain on the Secondary system. This approach to duplication ofdata

would appear to be rather unique. Most database algorithms and systems are concerned

with keeping and maintaining data in a reliable and "good" data state; the approach with

the DNS is nearly to assume that the data will be bad (at least eventually) and thus

discard it. Applying this method or assumption to financial or inventory data would

almost certainly be disastrous. This assumption can work where data is not absol utely

39

-

required to be accurate for a system to function and yet the system reporting some data,

not necessarily accurate data, is needed to produce a responsive system.

Other Distributed Database Features

Other noteworthy features of the DNS distributed database are briefly described

here though only the basic Primary / Secondary server facility is implemented in the PH

project since only this feature applies to the primary fault-tolerant capability of DNS.

Caching Servers

The caching mechanism mentioned briefly in earlier discussions provides for

more than performance benefits. The same TTL mechanism applies to caching data. If

Primary andlor Secondary servers fail, there may be some caching information in a

caching server for some period of time that provides limited use of the DNS. The

function is slightly different on a caching server than a Secondary server.

A caching server has a primary purpose of providing better performance on the

DNS. Performance is obtained by being a medium for the DNS mechanism and, in the

process, "holding" information with the hope that the information will be requested soon

again. The caching function works well with the nature of the DNS data involved.

Despite the continual change in the structure of the Internet, from the general user's

perspective the nature of the bulk of the DNS data is mostly static. Thus propagating

static data to caching servers is acceptable for the boost in performance that can be

obtained by using the caching servers. The caching server mechamsm in fact provides a

40

-

significant boost to the perfonnance ofthe ONS by reducing the necessity ofr questing

infonnation out on the Internet by 80% and more.

ONS Hierarchy Methods

The following notations are used in the explanation of hierarchy methods:

Os - the current domain level in the hierarchy - the "subject" level.

0s+1 - the next level up from the subject level

Os-l- the next level down from the subject level.

Ds+- one or more levels up from the subject level

Os- - one or more levels down from the subject level

The mechanics ofthe ONS hierarchy are centered on the ONS servers. While the

structure is useful from an administrative standpoint due to the distributed hierarchy, the

structure itself is not inherently fault-tolerant. Since the stTucture is not inh rently fault

tolerant, mechanisms have been built in to provide for fault-tolerance. The requirement

of a Primary and at least one Secondary name server by the registerlng agent (Ds) gives

the higher level domain(Os+l) the ability to provide fault tolerant features to requests

made of domains that are for subordinate domains (Os and any peer of Os). The

encouragement of multiple "glue" pointer records placed in the subject ONS servers (Os)

to higher level domains (Os+) provides the inverse redundancy features. "Glue" pointer

records are "non-authoritative" references to additional ONS name servers (at Os+) that

are up one or more levels in the ONS hierarchy. These pointer records (at Os) are "noo

authoritative" because they are not "controlled" or "managed" in the subject domain (Ds).

41

-

Even though the 'glue" pointer records are "non-authoritative", the frequency of change

of Primary and Secondary name servers (in Ds+) is less frequent as the hierarch is

traversed toward the apex. in other words, the glue records (in Os pointing to 0 9+) are

generally as reliable as the addresses of the Primary and Secondary ONS name servers of

the containing domain (Os) since these server addresses are typically registered with the

organization (09+ 1) that has the ONS servers that the pointer "glue" records are

referencing (contained in Os referencing Ds+1).

DNS Hierarchy

42

-

IV. PROJECT

General Plan

The following steps were planned to evaluate applying DNS fault tolerance via a

redundant server to the PH system.

• Complete an evaluation of current systems, software, engineering, and methods

that rrllght best be applied to the PH system with primary emphasis on the DNS.

• Apply system enhancements to the PH system that provide for similar or same

redundancy features as in the DNS.

• fmplement the new features at the University of Tulsa.

The project was to be considered complete either I) when the redundancy features

are successfully applied to a production PH system, or 2) when it is determined that the

features are not useable or otherwise viable.

Methods Used

Zone Transfer and TTL

The most prominent redundant feature of the DNS is Primary and Secondary

servers. Specifically, the main redundancy facility of DNS is provided by one or more

Secondary servers operating on physically separate machines from the Primary server.

The Secondary server periodically downloads the entire database from the Primary

server. This provides the "client" system with the capability of having more than one

server to query. Thus ifone server machine, say the Primary machine, is inoperative for

any reason, the client can automatically make requests of the Secondary after a

preconfigured timeout period on the client is reached. The 2 key features ofDNS that

43

-

provide the bulk of the redundancy capabilities are l) zone transfer and 2) the time-to

live data characteristic. These features and other related features have been applied

successfully to the PH system.

The method of implementation requires the PH system to change from a 2 tier

"client-server" system to a 3 tier system with at least one Primary and one Secondary.

For the purposes of this project, only one Secondary is provided for and implemented,

though it would be a relatively simple matter to enhance the software for multiple

secondaries. In addition, the DNS provides for a "time-to-live" capability for each record

and/or each zone. Since the TIL feature appears to be more for caching servers rather

than zone servers, I have chosen to provide TTL for zone data only at this point. Again,

it would appear that with relatively minor software engineering, TTL for each record

could also be provided.

The "siteinfo" command of the QL server provides some general information

about the characteristics of the PH server. This command was enhanced by thi project to

provide TTL, retry intervals, and the serial revision numbering method as is used by the

DNS model. This same information is transferred by the PH zone transfer at the

beginning and end of the zone transfer for the same purposes as the DNS system

provides. The equivalent information in the DNS system is termed the "start-of

authority" or SOA record. The purpose of transmitting the SOA information at the

beginning and end of a zone transfer in the DNS is to provide a reference point to identify

the beginning and ending of the transfer, to provide certain general information about the

zone, and to provide to the Secondary a method to check whether the zone information

changed during the transmission. Changed information is signaled by the change of the

44

-

serial number in the DNS. The PH enhancements model this behavior by providing the

equivalent SOA infonnation via the "siteinfo" command and at the beginning and end of

the PH zone transfer.

Data Modification

The nature of the PH data, and one of the most popuLar characteristics of the PH

system, provides for a user to change much or all ofthe data that refers to that individual

user. This characteristic is very much different than the DNS where typically a single or

a few administrators manage the changes of all of the information on a set of DNS

servers. Users do not generally assign themselves LP names and numbers, whereas in the

PH system they themselves can change information relating to themselves since most of

the infonnation falls in the "personaL" realm, i.e. address, phone number, etc. The

popularity of this dynamic characteristic provides the advantage to the user to have

complete control over their own information without interference from another

administrator often requiring fonns and signatures to change information plus the

exposure of the change to other individuals. Placing the change dynamics in the hands oj"

the user without interference or approval from another party provides the user with

control over accuracy and responsibility of the data and eliminates the administrative

overhead of maintaining the data.

This ahility for users to change their own data imposes some additional dynamics

that are not characteristic of the DNS. Even though the dynamics are different, the same

mechanisms of the DNS were modeled. A description of the 2 situations where an

impact of these characteristics might come to bear follows.

45

-

In the DNS, data changes can be grouped and changed at one time on the Primary

server by using a serial number incrementing procedure, incrementing the serial number

for all changes in a group, then loading the new database. This administrative

convenience can not be provided for in the PH system since the data can be changed by

the user and the user would not normaHy be concerned with administrative efficiencies of

grouping applied changes. The net result is that for each PH data change by the user,

there must be some mechanism provided that can identify to Secondary servers that the

data has changed. Since there are significant dynamics of the DNS serial number, thi

serial number mechanism was modeled with only one change, the serial number changes

with each and every change to the Primary database.

The only other characteristic of the DNS model that produces a potential of

weakness in the PH system is centered around the same dynamic data change permitted

by the users. (f the user changes data, is this change made directly to the Primary server

or to all servers? For simplicity of this project and due to more recent dynamic

developments to the DNS, I have restricted changes to be made only to the Primary

server. The DNS provides for the update mechanism to Secondary servers, and even

though changes to PH data can be more frequent, the PH data is still mostly static, i.e.

people don't change their "personal" information very often. Recent developments in the

DNS [Vixie-2~ Vixie-l, Ohta-l] provide for "incremental" zone transfers and signaling to

Secondary servers to notify them that they need to check for a wne transfer rather than

waiting for a TTL timeout. These methods provide quicker, more efficient, and more

dynamic updates to Secondary servers while still in the original DNS framework. These

update mechanisms, while useful and helpful from an efficiency perspective are not

46

-

needed to produce basic fault-tolerance via redundancy. The focus on this project was on

the modehng of the fault-tolerance features via server redundancy rather than the efficient

update and proliferation of updated data. Provided that there is some mechanism to deal

with managing the update of data, there is no pressing need to enhance the mechanism

that updates the data. Modeling the DNS provides a minimal update mechanism.

Serial Number System

The DNS serial number system provides a single point of control and

management for database updates. Though a high update volume system would likely not

use a single point update mechanism due to perfonnance considerations, the single point

update mechanism is adequate for those databases that inherently have low update

volume such as the DNS and PH systems.

Specifically the serial number mechanism in the DNS estabhshes a data element

for the database, the serial number, which is manually incremented when an administrator

makes changes to the DNS database on the Primary server. When a Secondary DNS

server prepares to request a zone transfer from the Primary server, the Secondary checks

the serial number and, should the serial number from the Primary contain a "lesser" or

equal number than the last serial number that the Secondary had from a previous zone

transfer, the Secondary assumes that there have been no changes on the Primary and does

not request a zone transter. ffthe serial number from the Primary is "greater" than the

serial number from the previous zone transfer, the Secondary assumes that the database

has changed and requests a zone transfer. There are other details of the serial number

including determining "lesser" and "greater" relative serial numbers due to "wrap

47

-

around" (since machines are finite) as well as considerations for resetting the serial

number when needed, but this material is not directly relevant to the fault-tolerance

redundancy mechanism. The additional descriptions are provided in RFCs 1982 [Elz-l],

1034 [Mockapetris-4], and 1035 [Mockapetris-5].

Enhancements

General Enhancements

Prior to this project, primary and alternate servers had already been provided for

in the client configuration, though not provided for in an "on-line" fonn on the server

side. As an aside, based on the Primary/Alternate server characteristic of the client

software, it would appear that at some time some thought was given to the PH system to

enhance it along similar or the same Lines as this project has done.

Project enhancements providing Primary/Secondary information via "siteinfo"

provides the server with the ability to sense in what tier it should function while retaining

the configuration and flexibility of the original code.

Scripts and separate utilities provided with the original distribution to build the

database were incorporated into the Secondary server to rebuild downloaded data bases

automatically_ Early on in the project, a complication appeared to develop in this area

involving the final "switching" between the old and new database once the zone transfer

was complete and the new database was built. This was handled by maintaining two sets

of directory structures and file sets for the database such that database "buil.ds" would

work with the cunently unused structure and files. Once the new database was

completely built, a link used tojoin the top level of the structure would be switched to

point from the "old" database to the "new" database. This one step switch eliminates

48

-

most uncertainty with the integrity of the database by the simple fact that only one step is

involved. Any steps up to the "switch" would not render the current database unusable,

thus the server can continue serving.

The "zone transfer" feature was a relatively simple enhancement to QI ince all

the server commands have been implemented via a parsing function written in Lex. This

command enhancement simplicity was fortunate since the debugging and engineering

tools for software written in Lex appear non-existent.

Another distinction between the DNS and the PH system requires the PH system

to ensure a higher level of security for the database. The DNS for the most part does not

contain private infonnation. If anything, accesses to the DNS distributed databases and

their data in its entirety are encouraged in the design and use of the DNS. While access

to individual records is encouraged in the PH system, access to the bulk of the PH

database en masse is not normally encouraged for several reasons. In fact, the PH system

has several safeguards built in to prevent copying the database in total. Thus while a

zone transfer request from an "abnormal" or "unrecognized" agent in the DNS is not

common, it is none-the-Iess accepted and can prove to be a handy tool for, among other

purposes, identifYing and correcting DNS database problems. On the other hand, the PH

system, due to the sensitive nature of the reasonably personal information contained in

the database, must have tighter controls and must rely on some form of authentication

mechanism to prevent the copying of the database en masse. '1'0 prevent unauthorized

copying, a validation process was added to the PH Primary server that verifies that zone

transfer requests originate from the recognized Secondary server.

49

-

The method chosen to reduce the risk of unauthorized copying of the database

was to validate the requesting IP name/number on the Primary server against the

configuration parameters specified when the Primary server was generated. Though this

method is not foolproof, it significantly reduces the possibility of unauthorized copying

by ensuring that the Secondary server is identified. Attempts to issue either a false name

or IP number to the Primary are detected by the Primary. Even if the IP name and

number are falsified, responses will be only sent to a valid Secondary. Thus, in a non

trivial network, which is most likely subjected to unauthorized attempts, routers will not

return infonnation requested to the "spoofing" requester, and the real Secondary server

will ignore unsolicited responses from the Primary. For this process to work well, one

must be reasonably confident that the Primary and Secondary servers are securely

accessible, i.e. no unauthorized individuals (or programs) can access the servers with a

privileged account.

All the fundamental data communications capability was fully featured and in no

need of any change. The PH system was entirely written using TCP without any features

using UDP so there was no need to make any changes in this area. The DNS client

queries were specified to use UDP, and the zone transfers: TCP. The client software for

DNS had the luxury from the beginning to use UDP since alternate servers were designed

in from the beginning, thus a client could query a secondary when an initial UDP query

failed, and the client engineers were encouraged in this direction by specification. For

efficiency, the PH system might be further enhanced to use UDP for queries now that the

PH system has a multiple server structure.

50

-

Specific Enhancements

The following was used as an outline for the steps In the project:

• Update Linux PH install configuration file

• Data base of recognized zones - siteinfo - include data timeout and retry interval

• Add zone transfer command with age of data timeout and runtime range

• Incorporate "dump" to capture and rebuild the database on the Secondary

• Add zone request based on age of last zone

• "On-line" copy to temp file for build

• Use scripts to build new datahase in alternate database area

• Change "link" pointer reference to new database

The "siteinfo" command of the QI server was modified to include the server IP

names and numbers, the TTL infonnafon, and the database revision serial #.

The database field modification code was changed to update the revision erial #

on the Primary server so that zone updates can be properly signaled. The Secondary

server was modified to operate the database in a read-only mode to prevent inadvertent

updates to the Secondary database that would be lost with a zone transfer. Ensuring

updates are perfonned on the Primary server is a necessity and a difference of the DNS

system. In the DNS system, typically only one administrator or administrative hTfOUP is

responsible for maintaining the IP names, numbers and other data contained in a

particular domain, but in the PH system the data is typically maintainable by the user. In

the DNS (hopefully) knowledgeable administrators maintain the system, where, in the PH

system, an end-user that is often less knowledgeable of the inner workings of the system

51

-

is typically maintaining their own data. Making the Secondary server read-only ensure

that updates provided by the user go through the Primary server.

• update Linux PH install configuration file

At the time ofthis project, there was evidence that a configuration for Linux

existed, but, upon examination of the configuration, there were many source changes that

might prevent the Linux PH version from being used on other systems. Thus the task of

providing a more flexible configuration file was completed with only several bug fixe to

the original PH source.

• data base of recognized zones - siteinfo - include data timeout and retry interval

Prior to the zone transfer, a "siteinfo" command is sent to the Primary server to

detennine if the serial number is different. If the serial number has not changed from the

last zone transfer request, no zone transfer is necessary. This step is performed to prevent

a "blind" zone transfer from unnecessarily taking up network bandwidth.

• add zone transfer command with age of data timeout and runtime range

The zone transfer command was set up to take the data received from the tran fer

port and place the data in a "flat" file in "dump" format to be processed in the next step

of creating and loading a database.

Another feature ofthe DNS that was incorporated into the PH zone transfer was

the secondary check on serial number changes immediately after a zone transfer has

completed. This second check for serial number changes is intended to detect possible

changes in the Primary database that occurred while the zone transfer was going on.

Should the serial number change be detected during the zone transfer, the zone

infonnation is effectively discarded and another request for a zone transfer is initiated by

52

-

the Secondary server. There was no consideration as part of this project to put a

limitation on this "changed serial" loop. As is the case with the DNS, the PH databa e is

unlikely to change with sufficient frequency to warrant concern for the additional code

needed to detect, prevent, and/or give notice of this type of potential looping problem.

The PH database has a higher probability of frequency of change, but the frequency of

change remains insignificant to create a looping problem with the zone transfer

mechanism.

• incorporate "dump' to capture and rebuild the database on the Secondary

Portions of several scripts provided with the PH distribution were incorporated

into the Secondary server code. Some of the scripts used contained the utilities for

creating and loading the database from the temporary "dump" format flat file.

• add zone request based on age of last zone

Timing information provided by the siteinfo command determines the next zone transfer

attempt that the Secondary server makes. The Secondary adds the delta time obtained by

siteinfo to the current local time clock checked when the completion ofthe last successful

zone transfer occurs and registers a time initiated process for the next zone transfer ba ed

on this computed absolute time.

• Copy to temp file for build

To attempt to reduce wait time for the zone transfer mechanism, the Secondary places the

zone information in a flat file in a temporary area for processing once the zone transfer is

successfully complete.

• Build new database in alternate area

53

-

Use the PH utilities to gen~rate a new database from the flat file of the zone

transfer, placing the new database, during the build, in an alternate area, 0 as not to

interfere with production database activity on the server.

• Change 4<link" pointer reference to new database

The mechanism used is that known in the Unix world of a 4<soft link" as a

directory. Once a valid new database is created, the "soft link" pointing to the previous

database files is redirected to the new database files. Using this method also eliminates

the need for any further coding changes, thus keeping the PH system as simple as

possible.

With a zone transfer request, the Primary server functions nearly identically to

that of the DNS from a procedural standpoint. The only significant exception to the

procedure is due to the more sensitive nature of the PH information. The Secondary

server is validated against identifying information generated when the Secondary server

system was created (non-dynamic absolute information). While the DNS will proces a

zone transfer from any requester, designated Secondary server or otherwise, the PH will

not process a zone transfer from any location other than the Secondary, as this defeats the

purpose of the PH mechanisms to limit the volume of information provided.

Zone transfer request?
Valid alternate?

Send all info

Pseudo code for developing the zone transfer for the Primary Server

54

-

Start
Zone processing

Zone transfer timeout interval met
Zone processing

Zone processing
Get info on vahd data timeout and retry zone request interval - siteinfo
Send zone request

Server down or not responding or ?
Resend zone request each "retry" minutes

Write data to work area
Spawn rebuild
Redirect link to put production database in place
Set up zone processing on timeout

Pseudo code for developing the zone transfer for the Secondary server

Evaluation

While the project could not be implemented at TU due to circumstances beyond

my control, a series of controlled tests were performed to emulate conditions and

situations that would occur in practice. All code enhancements were verified to work

using debugging tools provided in Linux. At least one case was tested for each additional

logic branch added. While all existing features could not be tested in the test

environment obtained, all new modules and features were tested thoroughly. To emulate

rapid multiple updates on the primary server and thus to ensure that critical sections of

the serial number update were being properly maintained, code was placed in the locking

mechanism temporarily to cause the program to wait at key points.

55

-

While it is unlikely that all errors have been eliminated, using controlled and

modular tests, most of the errors introduced by the new coding have been eliminated.

ill addition to testing each new logic path, the following controlled tests were

performed with both servers operating:

• Turned otT primary server - client switched to secondary

• Turned otT secondary server - no impact on client

• Disabled communications to primary server - client switched to secondary

• Enabled communications to primary server - client switched back to

primary at next request

• Disabled communications to secondary server - no impact on client

• Attempted an update on secondary server - client prevented

• Disabled communications to primary server

• Disabled primary server - secondary server requested and retried zone transfers at

correct intervals

• Enabled primary server - secondary server requested zone transfer

• Requested zone transfer from an unrecognized secondary server - obtained error

message

• Made 2 updates to the primary server database (wait code placed in lock module

to test critical section) - serial number incremented twice

• Made a change during a zone transfer (with lock code delay) - change accepted

and zone transfer properly disposed by secondary server, secondary server

requested another zone transfer

56

-

• Disabled communications during a zone transfer - secondary server properl

timed out and requested another zone transfer

• Test coded errors in several places of zone transfer processing on secondary

server to ensure that current secondary database did not get inadvertently

corrupted, or replaced

Environment

As a spin-off benefit, since the project budget was rather low, Linux was chosen

for the operating system. Linux is a public-domain Unix as that can run on PC

compatible machines of the 386 and up variety. Though there was some previous work

by several individuals to produce a PH server on a Linux system, no known previous

attempts made the effort to maintain the software such that it could be still used in other

Unix as flavors. The custom configuration file containing detailed instructions for

Linux while maintaining the flexibility of the original code was posted with to the PH

users listserv and placed in the public domain. I have since gotten positive feedback on

this posting.

Test System

TU graciously loaned me a 486/33 PC for the project. 1spent about I month

configuring the system with SlackWare Linux and the original QI version 3.1 B7

Though there was evidence of another individual, Tim Lawless, implementing QI on

Linux, it appeared that he greatly modified his distribution that he downloaded from

UIUC. The extent of his modi fications may prevent his version from working on other

platfonns. I was careful in my configuration to only make changes to specialty

configuration files unless absolutely necessary. I have completely documented the

57

-

changes and submitted them to the PH hstserv ince others were inquiring about the same

capability.

After attempting to configure other borrowed 386 and 486 machines with no

success, I purchased a second older Pentium machine, network cards and a smaU

lOBaseT hub and configured a 2-machine network, with both running the SlackWare

Linux. The 486 is functioning as the Primary server and the Pentium functions as both

the Secondary server and the client for testing the effectiveness of the redundancy. The

Primary server can be literally turned off to emulate a failure. Using such a test

environment eliminates "side effect" problems with the Primary server since the

production PH Primary server performs other production functions as well.

Production System

I had intended on implementing the production system at my employer, the

University of Tulsa, but having left their employ, and their high workload for

implementing summer computer projects, they have, as yet, been unable to accommodate

the new package. I hope to at least be able to place the tared production cod on an ftp

server that is publicly accessible.

58

"

-

V. NET RESULT, CONCLUSION, AND PRACTICAL APPLICATIONS

Though the details and complexities of the PH system and the DNS have been

discussed in detail here, the ability to add system redundancies with minimal efforts has

been shown to be attainable. While one generally must have a fairly thorough

understanding of a computer application to modify the application for real-time

redundancy, the actual efforts of putting in the redundancy for most modem (i.e.

structured I modular I object-oriented) software can be a relatively simple task,

particularly when pursuing the more simple and elegant methods like those used in the

DNS. The demand for this type of redundancy may grow as more businesses are opening

up doors on the Internet.

With the rapid pace of change of computers, networks, the Internet and

technology in general today, redundancy methods may become standard with little

fanfare as we become more and more dependent on applications based on the Internet.

Redundancy methods are not as glamorous as some form of graphic dynamic web page,

but for a business that places 80% or more of the activity of that business on the Internet,

a broken or inaccessible (i.e. a portion of the network is inoperative) Internet server with

no alternative will demand the less-flashy redundancy features be put into place. Have

you ever cornered in a car with bad shocks on a rough and wet road? Car shocks are a

safety device to help keep tires in continuous contact with the ground. If the tire is

permitted to bounce, no lateral force can be applied while the tire is off the ground. The

net effect can be loss of control or worse. The redundancy that is encouraged here is

analogous to the car shock. Redundant features add a safety factor to applications being

visited on the Internet. In fact one of the reasons that the Internet works as well as it

59

-

does currently is due to the DNS with these features designed and built in. Applying

these redundancy methodologies to other applications on the Internet is a natural

progresSlOn.

Use of Fault-Tolerance Strategies

Fault-tolerant strategies continue to gain in acceptance as computer and

communication equipment evolves to cost less and become more powerful both in CPU

speed and software features. The success of RAID systems is a classic example of the

redundancy trend. As the Internet grows and develops, the dependency on single node

failure will also need to evolve. Though RAID configurations are effective, RAID does

not provide for node or central CPU failure. Newer software and hardware techniques

are likely to evolve to provide fault-tolerance with the multi-node characteristics of the

Internet. Though it's hard to say in what direction the evolution will take since the

computer and communications business is in such a fluctuating state, the DNS and now

the PH system redundancy modifications may be considered a step in Internet hlUlt

tolerance evolution.

DNS as Model

The DNS has evolved since its inception. Each evolutionary step has provided

more features and robustness. The modular architecture of the system has provided a

foundation for the system to evolve gracefully. Considering the rapid development of the

Internet with an amazing growth curve, the DNS represents a monument to system

engineering as a significant part of the foundation of the Internet. With the most wide

60

-

spread node-level fault-tolerant features ofany system in the world, the DNS gives us a

successful model from which to develop further fault-tolerant applications.

PH Benefit

The PH fault-tolerant features that have been added as a result of this project are

anticipated to provide more reliability to the PH systems worldwide. Due to the nature of

freeware and the Internet, quantifying the number of users and thereby the direct effect of

this benefit is difficult if not impossible. Having some feedback from putting the Linux

PH configuration file on the Internet is encouraging in the sense that the PH ba e is still

expanding, though there has been some interest in the specifications of Lightweight

Directory Access Protocol (LDAP) which is a standard that, theoretically, is to take the

place of the PH system. Because the PH system is so widely used and accepted due to

the generic C code that adapts to many platforms, the newer LDAP standard has been

slow to be accepted.

PH users can now shut down the Primary PH erver with little or no direct elTect

on the user ba e. E-mail can be forwarded by the Secondary PH server with no

interruption. Both "batch" and online updates of the PH database are prevented whilc the

Primary PH server is down, but "batch" updates are done late at night and can be re-run.

Online updates are relatively infrequent; thus they have little to no direct impact on the

user base. The flexibility to bring down individual servers for software updates,

hardware and tirmware updates, while online systems are still available for the most part,

is an invaluable advantage since it is becoming harder to schedule downtime on the

Internet.

6\

...

Recall the phrase ''the Sun never sets on the British Empire". This expression is

true of the Internet for the same reason. While it may be the middle of the night for local

users, there are users and potential users on the other side of the globe that are in the

middle oftheir workday. Being able to shut down part of a system for maintenance while

keeping the system running becomes a valuable feature indeed. Usable redundant

systems have thus been found to be helpful for reasons other than just disaster prevention,

but for maintenance issues as well.

Finally, though it was found that a thorough knowledge of the application must be

obtained to produce an effective redundant server capability, the modifications were

nevertheless rather simple and more a matter of restructuring existing code rather than

providing a significant re-write. Generally, very httle additional programming was

added, but sections of code were regrouped and recollected to provide the functionality

desired. Thus the expectation is such that in a modular, structured, and/or object-oriented

environment, little actual changes in the form of additional programming code would

need to be performed to obtain a redundant server benefit. The expectation of fairly

simple changes on other similar projects needs to be tempered, though, with the

equivalent evaluation criteria: the changes here were relatively simple due to a relatively

static database and the equivalent notion in the DNS of "obtaining the data is more

important than the accuracy of the data". More dynamic databases might have similar

features incorporated, though dealing with the locking mechanism and maintammg

updates would probably need to be refined somewhat.

In conclusion, the DNS methods of redundant servers have heen found to be

applicable to the PH system and it would appear to apply to any similar database

62

-

application. These redundant servers would appear to be attractive to Internet database

applications in particular due to the nature of business on the Internet needing to keep

automation doors open 7 days per week and 24 hours per day.

63

po

BrBLIOGRAPHY

Abrams, Marshall (1980), Role Mailboxes, Network Working Group, Request for
Comments: 763, Internet uri: http://www.cis.ohio-state.edu/htbin/rfc/rfc763.html

Andleigh, Prabhat K. ~ Gretzinger, Michael R. (1992), Distributed Object-Oriented Data
Systems Design, Prabhat K. Andleigh, Michael R. Gretzinger, Englewood Cliffs,
N.J., PTR Prentice Hall.

Anklesaria, F.; McCahill, M.; Lindner, P.; Johnson, D.; Torrey, D.~ Alberti, B. (1993),
The Internet Gopher Protocol (a distributed document search and retrieval
protocol), University of Minnesota, Network Working Group, Request for
Comments: 1436, Internet uri: http://www.cis.ohio-
state.edulhtbin/rfc/rfc 1436. htm]

Atre, Shaku, (1992), Distributed databases, cooperative processing, and networking, 1st
ed. New York, McGraw-Hill.

Baum, Richard L; Cumbow, Robert C, First Use: Key Test in Internet Domain Disputes,
ProQuest Periodical Abstracts, Journal: National Law Journal [JNLJ] ISSN:
0162-7325 Jml Group: Business Vol: 181ss: 24 Date: Feb 12,1996 p: C17-C18

Bell, David A.; Grimson, Jane (1992), Distributed database systems, Wokingham, Eng.;
Reading, Mass., Addison-Wesley Pub. Co.

Braden, R. - Editor (1989), Requirements for Internet Hosts -- Application and Support,
Internet Engineering Task Force, Request for Comments: 1123, Internet uri:
http://www.cis.ohio-state.edu/htbin/rfc/rfcI123.html

Braden, R. - Editor (1989), Requirements for Internet Hosts -- Communication Layers,
Network Working Group, Internet Engineering Task Force, Request for
Comments: 1] 22, Internet urI: http://www.cis.ohio-
state.edu/htbin/rfc/rfc1122.html

Cerf, V. (ARPA) and Postel, 1. (lSI) (1980), Mail Transition Plan, Network Working
Group, Request for Comments: 771, Internet urI: hrtp://www.cis.ohio-
state. edu/htbinlrfc/rfc771.htm1

Clark, David D. (1982), MIT Laboratory for Computer Science, Computer Systems and
Communications Group, IP Datagram Reassembly Algorithms, Request for
Comments: 815, Internet uri: http://www.cis.ohio-state.edulhtbinlrfc/rfc815.html

Crispin, Mark (1979), A Universal Host Table, Request for Comments: 752, Internet uri:
http://www.cis.ohio-state.edu/htbinlrfc/rfc752.htm1

64

po

Crocker, David H., The Rand Corporation, Vittal, John J., Bolt Beranek and Newman
Inc., Pogran, Kenneth T., Massachusets Institute of Technology, Henderson, D.
Austin Jr., Bolt Beranek and Newman Inc. (1977), Standard for the Fonnat of
ARPA Network Text Messages, Request for Comments: 751, Internet urI:
http://www.cis.ohio-state.edu/htbinlrfc/rfc751.html

Crocker, David H. (1982), Dept. of Electrical Engineering, University of Delaware,
Newark, DE 1971 I, Standard for the Format of ARPA Internet Text Messages,
Request for Comments: 822, Internet urI: http://www.cis.ohio-
state. edu/htbinlrfc/rfc822. htm I

Davis, C. - Kapor Enterprises; Vixie P. - Vixie Enterprises; Goodwin, T. - FORE
Systems, Dickinson,!. - University of Warwick (1996), A Means for Expressing
Location Information in the Domain Name System, Network Working Group,
Request for Comments: 1876, Internet uri: http://www.cis.ohio
state.edu/htbinlrfc/rfc1876.html

Deutsch, Debra P. (1979), Bolt Beranek and Newman, 50 Moulton Street, Cambridge,
Massachusetts 02138, A Suggested Solution to the Naming, Addressing, and
Delivery Problem for ARPANET Message Systems, Request for Comments: 757,
Internet urI: http://www.cis.ohio-state.edu/htbinlrfc/rfc757.html

Domer, Steve (1989), Computer and Communications Services Office, University of
Illinois at Urbana, Why?, Original distribution ofQI version: qi-3.1 B7
documentation, Internet urI: ftp:l/uiarchive.cso.uiuc.edullocal/packages/ph/qi
3.1 b7. tar.qz

Elvy, Marc A. - Harvard University, Nedved, Rudy - Carnegie-Mellon University (1984),
Network Mail Path Service, Network Working Group, Request for Comments:
915, Internet uri: http://www.cis.ohio-state.edu/htbin/rfc/rfc915.htrnl

[Elz-l] Elz, R; Bush, R (1996), Serial Number Arithmetic, Network Working Group,
Request for Comments: 1982, Internet urI: ftp://ftp.is.co.za/rfc/rfcI982.txt

[Elz-2] Elz, R.; Bush, R; Bradner, S.; Patton, M. (1997), Selection and Operation of
Secondary DNS Servers, Request for Comments: 2182, Internet urI:
http://www.es.netlpub/rfcs/rfc2181. txt

Elz, R.; Bush, R. (1997), Clarifications to the DNS SpecificatIon, Network Working
Group, Request for Comments: 2181, Internet uri:
http://www.es.netJpub/rfcs/rfc2181~ .txt

Efral, Lior; Berkovich, Gai; Huttner, Hadas (1996), TCP/IP Overview, Technion Israel
Institute of TechnoJogy, Internet uri: http://techst02.technion.ac.il/-s2382639/

65

-

Gilbert, H. (1995), Introduction to TCP/IP, PC Lube and Tune, Internet urI:
http://pclt.cis.yale.edu/pclt/commJtcpip.htm

Gressley, Christine, Research Programmer, Computing and Communications Service,
University of Illinois at Urbana-Champaign, Kline, Charley, Senjor Research
Programmer, Computing and Communications Services, University of flIinois at
Urbana-Champaign (1993), University Dormitory Ethemets: Network Security
and Management in a Fundamentally Hostile Environment, Internet urI:
http://tarnpico.cso.uiuc. edu/-gressley/projects/urhnet/ univ-dorm-
ethers/paper. html

Hage, Carl (1995), Re: Re[2]: E-Mail: .. WhitePages··Directories.carl@chage.com.
Internet uri: http://nic.nca.or.kr/gov-net/0074.html

Hardy, Henry Edward (1993), The history ofthe net -- Thesis, Master's Thesis, School of
Communications, Grand Valley State University, Allendale, MI 49401, Internet
uri: ftp://umcc.urnich.edu/pub/users/seraphimJdoc/nethist8.txt

Harrenstein, K. (SRI), Stahl, M., Feinler, E. (1985), Hostname Protocol, Network
Working Group, Request for Comments: 953, Obsoletes: RFC 81], Intem~t urI:
http://www.cis.ohio-state.edu/htbinJrfc/rfc953.htm I

Hedrick, Charles L. (1987), Introduction to the Jntemet Protocols, RUTGERS, The State
University of New Jersey, Internet urI:
http://www.engr.usask.caJ-kia127/misc/tcp-ip-intro.htmI

Hedrick, Charles L. (1988), Introduction to Administration of an Internet-based Local
Network, Rutgers University, The State University of New Jersey, Center for
Computers and Information Services, Laboratory for Computer Science Research,
Internet urI: http://www.engr.usask.caJ-kia127/misc/tcp-ip-admin.html

Hoffman, Paul E. (1997), Perl 5 for Dummies, JOG Books Worldwide, Inc., Foster City,
CA.

Horton, Mark S. (1983), Standard for Interchange of USENET Messages, Request for
Comments: 850, Internet uri: http://wwwcis.ohio-state.edulhtbin/rfc/rfc850.html

Horton, Mark - Bell Labratories (1986), UUCP Mail Interchange Format Standard,
Network Working Group, Request for Comments: 976, Internet urI:
http://www.cis.ohio-state.edulhtbin/rfc/rfc976.html

Huizer, E. (1995), Multimedia E-mail (MIME) User Agent checklist, SURFnet bv,
Network Working Group, Request for Comments: 1R44, Internet urI:
http://www. cis.ohio-state. edulhtbin/rfc/rfc] 844.htm J

66

-

Hunter, Noel (1996), University of Pretoria FAQ PH CSO, Subject: PH (cso nameserver)
Frequently Asked Questions (FAQ), Internet uri:
http://www.up.ac.zaJahout/faq/faqph/phfaq.htmI

Hurson, A.R.; Bright, M.W.; Pakzad, S. (1994), Multidatabase systems, an advanced
solution for global information sharing, Los Alamitos, CA, IEEE, Computer
Society Press.

Infonnation Sciences Institute, University of Southern California, 4676 Admiralty Way,
Marina del Rey, California 90291 (1981), Internet Protocol (lP), Editor: Postel,
Jon, Request for Comments: 791, Internet urI: http://www.cis.ohio
state.edu/htbin/rfc/rfc791. html

International Organization For Standardization, ISOrrC 97/SC 6, final Text of DIS
8473, Protocol for Providing the Connectionless-mode Network Service, Network
Working Group, Request for Comments: 994, Internet urI: http://www.cis.ohio
state.edulhtbinJrfc/rfc994. htm I

Kantor, Brian (U.c. San Diego), Lapsley, Phil (U.c. Berkley) (1986), Network News
Transfer Protocol, A Proposed Standard for the Stream-Based Transmission of
News, Network Working Group, Request for Comments: 977, Internet urI:
http://www.cis.ohio-state.edu/htbin/rfc/rfc977.htmI

Kelly, AI; PoW, lra (I 995), A Book on C, The Benjamin Cummings Publishing
Company, Inc., Redwood City, CA.

Killen, Michael (1992), SAA, managing distributed data, New York, McGraw-HilI.

Kolstad, Rob (1995), Connecting Corporations to the Internet, Berkeley Software Design,
[nc., Internet urI: http://www.bsdi.comlwhite-papers/connecting-corporations
kolstad. html

Krol, E. (1989), The Hitchhikers Guide to the Internet, University of Illinois Urbana,
Network Working Group, Request for Comments: 1118, Internet url:
http://www.cis.ohio-state.edulhtbin/rfc/rfc I I 18.html

[Kubaitis-l] Kubaitis, Ed (1998), Phonebook - Server Lookup, Internet urI:
http://www.uiuc.edu/cgi-bin/ph/lookup

LaQuey, Tracy L.; Ryder, Jeanne C. (1993), The Internet companion, a begInner's guide
to global networking, Addison-Wesley.

Lebhng, P David (1978), Survey ofFTP Mail and MLFL, Network Working Group,
Request for Comments: 751, Internet ud: http://www.cis.ohio
state.edulhtbin/rfc/rfc751.html

67

).

-

Mi lis, D. L. (1981), Internet Name Domains, Network Working Group, Request for
Comments: 799, Internet uri: http://www.cis.ohio-state.edu/htbin/rfc/rfc799.htm1

Mockapetris, P. (1983), Domain Names - Concepts and Facilities, Network Working
Group, Request for Comments: 882, Internet urI: http://www.cis.ohio-
state.edulhtbin/rfc/rfc882.htrnl

Mockapetris P. (1983), Domain Names - Implementation and Specification, Network
Working Group, Request for Comments: 883, Internet uri: http://www.cis.ohio
state. edu/htbinJrfc/rfc883.htmI

Mockapetris, Paul, (1986) Domain System Changes and Observations, Network Working
Group, Request for Comments: 973, Internet urI: http://www.cis.ohio
state.edulhtbin/rfc/rfc973.htrnl

[Mockapetris-4] Mockapetris, Paul, (1987) Domain Names - Concepts and Facilities,
Network Working Group, Request for Comments: 1034, Internet urI:
http://www.cis.ohio-state.edu/htbin/rfc/rfcl034.htmI

[Mockapetris-5] Mockapetris, Paul (1987) Domain Names - Implementation and
Specification, Internet Network Working Group, Request for Comments: 1035,
Internet uri: http://www.cis.ohio-state.edu/htbin/rfc/rfcl035.html

Moore, Keith (1994), white paper on replication/caching/authentication for lAB
workshop, University of Tennessee, Internet urI:
http://www. apocalypse. org/pub/u/romkeyIi i-workshop/white
papers/msgOOO 12. html

National Bureau of Standards (1983), Specification for Message Format for Computer
Based Message Systems, Federal Information Processing Standard (FIP)
Publication 98, Request for Comments: 841, Internet urI: http://www.cis.ohio
state.edu/htbin/rfc/rfc841.htrnl

National Bureau of Standards (1981), Institute for Computer Sciences and Technology,
Proposed Federal Information Processing Standard, Specification for Message
Format for Computer Based Message Systems, Network Working Group, Request
for Comments: 806, Internet urI: http://www.cis.ohio-
state. edu/htbi n/rfc/rfc806. htm I

Noel, Rick (1996), Data Warehouses, A look at where we are going, Renselaer
Polytechnic Institute, Internet urI:
http://www.cs.rpi.edu/-noel/warehouse/warehouse.html

Noel, Rick (1996), Scale Up in Distributed Databases, A Key Design Goal for
Distributed Systems, Renselaer Polytechnic Institute, [ntemet uri:
http://www.cs.rpi.edu/-noel/distr_scaleup/distributed.htrnl

68

[Ohta-l] Ohta, M.(1996), Incremental Zone Transfer in DNS, Internet Network Working
Group, Request for Comments: 1995, Internet uri:
http://www.es.net/pub/rfcs/rfc1995. txt

Ozsu, Tamer M. ~ Valduriez, Patrick (1991), Principles of distributed database systems,
Englewood Cliffs, N.J., Prentice Hall.

Parker, Timothy Ph.D., et al. (1997), Slackware Linux, Third Edition, Sams Publishing,
Indianapolis, IN.

Partridge, Craig - CSNET CIC BBN Laboratories Inc (1986), Mail Routing and the
Domain System, Network Working Group, Request for Comments: 974, Internet
uri: http://www.cis.ohio-state. edu/htbin/rfc/rfc974. html

Perry, Greg (1994), Turbo C++ Programming in 12 Easy Lessons, Sams Publishing,
Indianapolis, Indiana.

Pickens, John R., Feinler, Elizabeth 1., Mathis, James E., The NJC Name Server -- A
Datagram-Based Information Utility, Network Working Group, Request for
Comments: 756, Internet urI: http://www.cis.ohio-state.edu/htbinlrfc/rfc756.html

Postel, Jonathan B. (1979), Information Sciences Institute, University of Southern
California, 4676 Admiralty Way, Marina del Rey, California 90291, Internet
Message Protocol, Request for Comments: 753, Internet uri: http://www.cis.ohio
state.edu/htbin/rfc/rfc753.htmI

Postel,1. (lSI) (1979), Out-of-Net Host Addresses for Mail, Request for Comments: 754,
Internet urI: http://www.cis.ohio-state.edulhtbin/rfc/rfc754.html

Postel, 1. (1980), User Datagram Protoco'l, Request for Comments: 768, Internet uri:
http://www.cis.ohio-state.edulhtbin/rfc/rfc768.html

Postel, Jonathan B. (1982), Information Sciences Institute, University of Southern
Califomia, 4676 Admiralty Way, Marina del Rey, California 90291, Simple Mail
Transfer Protocol, Request for Comments: 821, Internet urI: http://www.cis.ohio
state.edu/htbin/rfc/rfc821.html

Postel, 1. (1983), The Domain Names Plan and Schedule, Network Working Group,
Request for Comments: 881, Internet urI: http://www.cis.ohio
state.edu/htbinlrfc/rfc881.html

Postel, Jon (1984), Domain Name System Implementation Schedule - Revised, Network
Working Group, Request for Comments: 92 1, Updates: RFC 897, 881, Internet
urI: http://www.cis.ohio-state.edu/htbin/rfc/rfc921.html

69

..

-

Postel, J., Reynolds, J (1984), Domain Requirements, Network Working Group, Request
for Comments: 920, Internet urI: http://www.cis.ohio-
state.edu/htbin/rfc/rfc920. html

Postel, J, Reynolds, J (lSI 1985), The File Transfer Protocol, Network Working Group,
Request for Comments: 959, Internet urI: http://www.cis.ohio
state.edu/htbin/rfc/rfc959.html

Reynolds, J; Postel, J. (1987), Official Internet Protocols, Network Working Group,
Request for Comments: 10 11, Internet urI: http://www.cis.ohio
statc.edu/htbin/rfc/rfclOlI.html

Reynolds, 1. and Postel, 1. (1987), The Request For Comments Reference Guide,
Network Working Group, Request for Comments: JOOO, Internet urI:
http://www.cis.ohio-state.edu/htbinJrfc/rfcl OOO.html

Rose, Marshall T. (Delaware) - Einar A Stefferud (NMA) (1985), Proposed Standard for
Message Encapsulation Network Working Group, Request for Comments: 934,
Internet urI: http://www.cis. ohio-state.edu/htbin/rfc/rfc934.html

Rose, Marshall T. - Department of Information and Computer Science, University of
California, Irvine, Irvine, CA 92717 (1983), Proposed Standard for Message
Header Munging, Request for Comments:886, Internet ur1: http://www.cis.ohio
state.edulhtbin/rfc/rfc886.html

Sluizer, Suzanne; Postel, Jonathan B. (1981), Information Sciences Institute, University
of Southern California, 4676 Admiralty Way, Marina del Rey, California 9029 I,
Request for Comments: 780, Mai I Transfer Protocol, Internet urI:
http://www.cis.ohio-state.edulhtbin/rfc/rfc780.html

Su, Zaw-Sing (J 982), A Distributed System for Internet Name Service, Network
Working Group, Request for Comments: 830, Internet urI: http://www.cis.ohio
state.edu/htbi n/rfc/rfc830.htm J

Su, Zaw-Sing; Postel, Jon (1982), The Domain Naming Convention for Internet User
Applications, Network Working Group, Request for Comments: 819, Internet urI:

Su, Zaw-Sing; Postel, Jon (1982), The Domain Naming Convention for Internet User
Applications, Network Working Group, Request for Comments: 8) 9, Internet uri

Vixie, P. (1996), A Mechanism for Prompt Notification of Zone Changes (ONS
NOTIFY), Network Working Group, Request for Comments: J996, Internet uri:
http://www.es.net/pub/rfcs/rfc 1996. txt

70

Vixie, P.; Thomson, S.; Rekhter, Y; Bound, 1. (1997), Dynamic Updates in the Domain
Name System (DNS UPDATE), Network Working Group, Reque t for
Comments: 2136, Internet urI: http://www.es.netJpub/rfcslrfc2136. txt

71

)

Glossary

"C' - A popular 3rd generation programming language that typically requires compiling
to machine code and linking with other routines prior to execution.

CCSO - Computer and Communications Service Office - The group at the University of
lIlinois, Urbana-Champaign that supplies the public domain version of the PH software.

DEC - Digital Equipment Corporation - A large manufacturer of computer systems
primarily of the "mini" computer class.

Domain Name - Normally a reference to a logical grouping onp Names such that some
portion of the right side of the names (to a "dot") are the same. Example:
"centum.utulsa.edu" and "www.utulsa.edu" are members of the same "domain", namely
"utulsa.edu".

DNS - Domain Name System - The distributed data base system whose primary function
is to map IP names to IP numbers.

E-mail- Electroruc mail- An electronic messaging system similar in function to it's
paper counterpart. For the purposes of this writing, only Internet style E-mail. There are
a number of private E-mail packages and services that mayor may not connect to the
Internet or an Internet style network.

FQDN - Fully-Qualified Domain Name - A Domain Name that typically includes a
rightmost dot ".", and does not normally include enough information to specifY a specific
machine (though a FQDN can be a FQN - Fully Qualified Name of a machine)

lP Name - Typically, a name of a computer or automated device on the Internet or
Internet type network usually consisting of alphabetic characters, periods "." (dots),
hyphens, and numbers. Example: "centum.utulsa.edu"

IP Number - A special numeric value assigned to a computer or automated device on the
Internet or Internet type network in the form of "nnn.nnn.nnn.nnn" where each "nnn" is
nonnally in the range of I to 255 (0 has special meaning). The numeric values are
desif,JTled to make routing TCP/IP packets relatively easy for automated data
communications equipment.

MMI - Man-Machine Interface - The point of communication between a person and a
machine, typically a computer.

Nameserver - Usually referring to the PH Nameserver.

Node - Generally, In reference to Internet style terminology, a single machine or device
attached to the network.

72

)

PH Nameserver - Usually referring to the entire PH system, not to be confused with the
Domain Name Server of the Domain Name System.

PH - The CCSO Phone Directory system - Sometimes referring specifically to the PH
client software. The "server" system itself runs software referred to as QI for Query
Interpreter.

QI- Query Interpreter - see PH

RFC - Request For Comments - in general, a document that was published in some
manner over the Internet that encourages and solicits comments of review and critique.

SOA - "Start of Authority" - general information about a server including to what
domain it applies.

TCPIIP - Transmission Control Protocol/Internet Protocol - a data communications
protocol used widely on the Internet.

Time-To-Live - TTL - A field in the DNS system that provides an "expiration time" that
the receiver of the record may assume that the data is reasonably reliable.

TTL - See Time-To-Live

URL - Uniform Resource Locator - a reference point to locate "web" based information

Zone - A range of IF NameslNumbers in a specific bTfouP.

73

Appendix - A Collection of Various Relevant Portions of Code Changes

From commands.c:

1* *1
1* OoZonexfr - do zone transfer - jmj -6/8/98 *1
1* *1

static void
OoZonexfr(arg)

ARG *arg;

1* #define LENGTH 80 *1

)

p ((char *));

Progress = 0;
char *Me; *1 1* the name of this program *1
int Quiet; *1 1* already defined *1 1* qi/qi.c *1

(

int
static
extern

char * tnl

1* static void
1* OoZonexfr(arg}
1* ARG *arg;
1*
1*
1*
1*

{

int Progress = 0;
1* static char *Me; *1
1* extern int Quiet; *1

1* the name of this program *1
1* already defined *1 1* qi/qi.c *1

1* take out main(argc, argv) *1
1* int argc; *1
1* char **argv; *1
I*{ *1

INT32 entry;
QOIR dirp;
int count;
int selected;
extern struct dirhead OirHead;
struct dumptype *dt;

char * olon;
int f;
FOE C *fd;

char **p;

1* when you're strange, no one remembers your name *1
1* Me = *argv; *1

1* validate secondary ~~~~~ *1

1* WhoAreYou() *1 1* jmj - 5/23/99 - lifted from *1
{

struct sockaddr From;

74

xfer") ;

-

int i, FromLen = sizeof (From);
struct passwd *pwd = LL;
char errorstr[MAXSTR];
int 5 = fileno(stdin);
char *hostname NULL;

if (isatty (s)) {
/* we'll just let this happen from the same host */

}

else

#ifndef QI ALT
(void) sprintf(errorstr, "QI_ALT not defined - cannot zone

DoReply(LR_NOALT, errorstr);
IssueMessage(LOG_NOTICE, errorstr};
re urn;

#endif
if (getpeername (5, &From, &FromLen) == O} { /* got name */

struct sockaddr_in *sin = (struct sockaddr in *) (&From);
struct hostent *hp = NULL;
int on = 1;

/* get name of connected client */
hp = gethostbyaddr((char *)&sin->sin_addr, sizeof (sin

>sin addr), AF INET};

if (hp)
/*

* Attempt to verify that we haven't been foole
* someone in a remote net; look up the name an
* that this address corresponds to the name.
*/

int HostNameLen = strlen (hp->h_name};
char remotehost(2 * MAXHOSTNAMELEN + 1];

by
check

hostname = strdup(hp->h_name};
strn py(remotehost, hp->h_name, sizeof(r motehosL) - l};

remotehost[sizeof(remotehost) - 1] =
hp = gethostbyname(remotehost);
if (hp == NULL) (/* didn't get a name */

(void) sprintf(errorstr
, "Couldn't looy. up address for 5", remotehos);
DoReply(LR_NOADDR, errorstr};
IssueMessage(LOG_NOTICE, errorstr);
return;
}

else { /* got a name */
for (; hp->h addr list++) I /+ scan addresses * /

if (hp->h_addr_1ist(O] == ULL) {
(void) spri tf(errorstr,
"Host addr fs not listed for host ~s",

#if defined(sparc) && GNUC == 1
inet ntoa(&sin->sin ad r),

#else
inet ntoa(sin->sin addr),

7S

....J

#endif
hp->h_name);
DoReply(LR_MISMATCH, errorstr);
IssueMessage(LOG OTICE, errorstr);
return;
} /* endif end of list - no address match */

if (!memcmp(hp->h_addr_list[O), (caddr t)&sin->sin addr,
sizeof (sin->sin addr))) {

/* we be jammin ... */
hostname = strdup(hp->h_name);
break;
} /* endif match on address */

} /* for */

/* scan names for QI ALT name -------*/
if (strcmp(QI_ALT, hp->h_name)) { /* name match? (no) */

for (; ; hp->h_aliases++) { /* scan aliases * /
if (hp->h_aliases[Oj == NULL) {
(void) sprintf(errorstr,
"Host name ~s ot authorized, expecting: ~s",

hp->h_name, QI_ALT);
DoReply(LR_MISMATCH, errorstr);
IssueMessage(LOG_NOTI E, errorstr);
return;
} /* endif end of list - no address match */

if (! (strcmp(QI_ALT, hp->h aliases[O)))) (
/* we be jammin ... */
hostname = strdup(hp->h_name);
break;
) /* endif match on address */

I /* for */
} /* official name match */

} /* got a name */
}

else (/* ouldn't get host by address */
#if defined (sparc) && GNUC == 1

hostname strdup((char *) inet ntoa(&sin->sin addr));
lJelse

)

#endif
hostname strdup((char *) inet ntoa(sin->sin addr));

IssueMessage(LOG_NOTICE, "Could 't find hostname for
address ('5)",

hostname) ;
DoReply(LR_NONAME, "No hostname found for IP address");
return;
} /* end if get host by address ,/

I
else (/* getpeername failed */

(void) sprintf(errorstr,
"DoZonexfr: getpeername failed, errno: . s",

strerror(errno)) ;
IssueMessage(LOG_NOTICE, "DoReply: fprintf: 'Is",

strerror(errno)) ;
DoReply(LR_NONAME, "No hostname found from getpeername.");
return;
} /* end if getpeername */
/* !isatty */

76

-

/* validate secondary ----- */

Database
selected

DATABASE;
count = 0;

if (!GonnaZone("zone")) /* lock thing */
return;

/* provide header info here - db modification count */
fprintf(Output, "%d:l:l:%d:2:%d:3:~d:4:%d:5:%d\n",-LR OK

/ DirHead.nents
, DirHead.serial
/ DirHead.refresh
, DirHead.retry
, DirHead.expire };

for (entry = 1; entry < DirHead.nents; entry++)
I

if (Progress && ! (entry 'i; 100))
fprintf(stderr, "%d/%d/%d\r", select d, entry,

DirHead.nents);
if (dnext ent(entry) && !ent dead())
(

(void) getdata(&dirp);

/* here's where we plug in the stuff to send it out the port */
/* jmj 6/25/98 */

fprintflOutput, "%d:2:%d:%s", -LR OK, F UNIVID,
tnl(FINDVALUE(dirp, F_UNIVID)));

for (; *dirp; dirp++)
I

f = a to i (• d i rp) ;
colon = (char *)strchrl*dirp, ':');
if (colon == *dirp)

fpr in t f (5 tder r, "\ '''1,5 \" I acks key ='1, s=\n" ,
FINDVALUE(dirp, F_NAME), colon);

else if (f 1= F UNIVID && colon && colon[l]l
{

if (fd = FindFDI(f))
I

/* putchar (1 \ t') ;
fputs(tnl(*dirp), stdout);

*/

/* use Output instead of stdout */

fputc('\t', Output);
fputsltnll*dirp), Output);

else
fprintf(stderr, "\"'s\" unknown field 'd\n",

FINDVALUE(dirp, F_NAMEl, f);

}

fputc('\n', Output);

/* } */

77

1*
* Free a dir structure (modified for mdump) jmj - stolen from mdump
*1

if (dirp)
{

for (p = dirp; *p; p++)
free (*p) ;

I*free(dirp) ;
dirp = 0;*1

}

#ifdef DEBUG
if (entry { 500 == 0)

fprintf(stderr, II "d/ 9 d\r", entry, DirHead.nents);
#endif

}

1* provide header info here - db modification count *1
fprintf(Output, "'td:l:l:~d:2:;,d:3:~d:4:?d:5:;d\n",LR OK

, DirHead.nents
, DirHead.serial
, DirHead.refresh

DirHead.retry
, DirHead.expire);

1* secondary can verify modification count is the same to make sure *1
1* database did not change during xfr *1

Unlock(" zone "); 1* now we unlock *1

/* exit(O);*1

/* fprintf(Output, IIld:Ok.", LR_OK); */

return;

/*
... replace tabs and newlines wi h escape equivalents
*/
har ...

tnl(s)
char *s;

register char *cp;
static char value[8192];
register char "'vp;

vp = value;
for (cp = s; "'cp; cp++)

if (* cp == ' \ t ')
{

* vp+ + = '\ \ I ;

*vp+ + = 't I ;

else if (*cp == '\n')

78

.....

*vp+ + == '\ \ I ;

*vp++ == I n I ;

else if (*cp == '\\')

*vp++
*vp++

else
*vp++

*vp = '\0';
return (value);

'\\ ';

'\\ ' ;

*cp;

79

......

-
From dbm.c:

void
set_dir_head(serial, refresh, retry, expire)

int serial, refresh, retry, expire;

DirHead.serial = serial;
DirHead.refresh = refresh;
DirHead.retry = retry;
DirHead.expire = expire;

void
incr_dir head serial() /* to determine if a zone has been modified */

if (DirHead.serial >= INT_MAX)
{

DirHead.serial = INT MIN;
}

else
{

DirHead.serial++;

void
put_dir head ()
(

if (lseek (dir fd, 0, 0) < 0)
(

IssueMessage(LOG_ERR, "put dir_head: lseek('d,OL,O): '5",

dir fd, strerror(errno);
}

if (write(dir fd, &DirHead, sizeof (DirHead) < 0)
(

IssueMessage(LOG_ERR, "put dir_head: wriLe: 'I,s",
strerror(errno));

}

Have head 0;

void
get dir head()
(

if (lseek(dir fd, 0, 0) < 0)
(

IssueMessage(LOG_ERR, "get dir_head: lseek('d,OL,O): "5",

dir fd, strerror(errno));
return;

I
if (read(dir fd, &DirHead, sizeof (DirHead)) < 0)
(

IssueMessage(LOG ERR, "get_dir_head: read: :'s",
strerror(errno)) ;

return;

80

Have head 1;

8\

From configs/defaults:

jmj - 4/6/99 - primary and secondary servers
be sure to set these to your primary and secondary server names
$OiHost "node.domain.xxx"; # primary qi server
$OiAlt ".nodel.domain.xxx"; # secondary qi server

take out the leading dot in your
version to have an active zone
refresh version working

Mail domain for phquery
Field returned by sit info for

Where the database lives, by

Use email field for forwarding
Where 01 should chdir() to at

Where the help lives
non-client-specific help

file printed when no help topic
temporary file template
FODN of primary server for phquery
FODN of backup server for phquery

dura ion of valid database -

"uiuc.edu" ,
"alias",

#
%DefineStrings= (
"DATABASE", "$SrcDir/ .. /db/prod",
default
"MAILDOMAIN" ,
"MAILFIELD",
email
jmj - 8/17/97 - changed to single quote to prevent attempt to
translate
"ADMIN", 'p-pomes@uiuc.edu', # Database administrator
"PASSW", "ccso Resource Center", # Mail here for passwords
(deprecated)
"MAILBOX", "email",
"RUNDIR", "$SrcDir/qi",
run-time
"HELPDIR", "$SrcDir/help",
"NATIVESUBDIR","native",
"NOHELP", "nohelp",
"TEMPFILE", "/tmp/qiXXXXXX",
"01 _HOST" , "$OiHost",
"OI_ALT", "$OiAlt",
"OI_TI EOUT", '22*60*60',
seconds

itself

DaLabase rebuild scripL for

timeout deprecated with secondary
runtime "window"

Where to put secondary rebuild

Secondary resubmits
Default port
Increments as database changes
Check for new zone
Check if network problem

Thow away after ...

"$QiExecDir",
#
#
#
#

"SSrcDir/secondary/rebuild",

#
"01 RUNTIME", '02:00-04:00',
"QI_INPUT", "$SrcDir/ .. /qi.input",
file
"REBUILD" ,
secondary
"OIEXECDIR",
"DEF_PORT", 105,
"SERIAL", 1,
"REFRESH", 3600,
"RETRY", 00,
"EXPIRE", 86400,
) ;

Limits the maximum number of entries of any type that

The keys will be converted to

"void" ,
"LOG LOCALO",

(Like PersonLimit, but for

Syslog facility
signal () return type

These will be used as normal defines.
all upper-case.
#
QueryLimit
can
be returned in a single query.
all ypes, not just type:p*).
"OtherDefines=(

"Log_Qi log" ,
"Sig Type",

82

*malloc() return type
32-bit integer type
limit for CPU time
size of .dir record
size of .dov record
max # chars to index
size of .idx record
size of .iov record
max # of people to return
setuid to this
setgid to this

"Mem_Type", "char",
"lNT32" , "long",
"Cpu_Limi t", "20",
"Drecsize", 400,
"Dovrsize", 400,
"Max_Key_len" , 16,
"NlChars", 32,
"NOChars", 1024,
"PersonLimit", "25",

"Use_Uid", "10",
"Use_Gid", "15",

#
#
) ;

#
jmj - 2/16/99 - secondary parameters
#
$DbaD "$SrcDir/ .. /dba";
$DbbD "$SrcDir/ . . /dbb";
$DbaN "$SrcDir/ .. /dba/prod":
$DblD "$SrcDir I . . Idb" ;
%SecDefines=(

"DbaD", "$DbaD", # Database "A" directory
"DbbD", "$DbbD", # Database "B" directory
"DblD", "$DblD", # Database "link" directory
"DbaN", "$DbaN", # Database "A" name
"DbbN", "$SrcDir I . . Idbb/prod", # Database "B" name
"Qilnput", "$SrcDir/ .. /qi.input", # input file
"Util", "$ rcDir/ . . /bin", # utility commands

) ;

#
flags that are used only in the ph client
#
?'PhFlags= (

"NsService", "csnet-ns", # name of nameserver service (HFC-
1700)

number
above

ip address
ns port
same as

"FallBackAddr","128.174.5.58", # ns host
"FallBackPort", $Define trings {"DEF_PORT"),
"MailDomain", $DefineStrings {"MAlLDOMAIN" f,
"Host", "$QiHost", # default qi host
"Alt", "$QiAlt", # default alternate qi host
.. Email Auth", "1", # U e email authorization

) ;

83

...

From language. I:

%%

{AddValue((char *)yytext,COMMAND); cmd = C ADD; BEGIN

(AddValue((char *}yytext,COMMAND); cmd = C STATUS; BEGJN

{AddValue((char *}yytext,COMMAND); cmd = C DELETE; BEGIN

C SET; BEGIN

C QUIT;

C QUIT i

md = C HELP;

C 10; BEGIN C; f
C INFO; BEGIN C; I

{AddValue((char *}yytext,COMMAND); cmd

{AddValue((char *}yytext,COMMAND); cmd

jAddValue((char *)yytext,COMMAND); cmd

(AddValue((char *)yytext,COMMAND); cmd

{AddValue((char *)yytext,COMMAND};

I; /* start state */
{AddValue ((char *)yytext,COMMAND)i cmd C QUERYi BEGIN C; I
{AddValue ((char *)yytext,COMMAND)i cmd C_QUERYi BEGIN Ci I
{AddValue ((char *)yytext,COMMAND} ; cmd C_CHANGE; BEGIN

{AddValue ((char *}yytext,COMMANDl; cmd C LOGIN; BEGIN C; }
{AddValue ((char *}yytext,COMMANDl; cmd C XLOGIN; BEGI

{AddValue ((char *lyytext,COMMAND) ; cmd C XLOGI ; BEGIN

{AddValue ((char *)yytext,COMMAND) ; cmd C ANSWER; BEGIN

{AddValue ((char *)yytext,COMMAND) ; cmd C EMAIL; BEGI Ci I-
{AddValue ((char *)yytext,COMMAND) ; cmd C CLEAR; BEGI C; I
{AddValue ((char *)yytext,COMMAND) ; cmd C LOGOUT; BEGIN

{AddValue ((char *)yytext,COMMAND} ; cmd C FIELDS; BEGIN

(AddValue((char *)yytext,COMMAND); cmd
{AddValue((char *}yytext,COMMAND}; cmd

BEGIN
<I>query
<I>ph
<I>change
C; }
<I>login
<I>xlogin
A; }
<I>klogin
A; }
<I>answer
A; }
<I>email
<I>clear
<I>logout
C; }

<I>fields
Ci}

<I>add
Ci}

<I>delete
C i }

<I>set
C; }

<I>quit
BEGIN C;}
<I>stop
BEGIN Ci }

<I>exit
BEGIN Ci}

<I>status
C; }
<I>help
BEGIN C;}
<I>id
<I>siteinfo

<I>axfr
BEGI C;}

/* zone tranfer */
{AddValue((char *}yytext,COMMAND); cmd C ZTRANSFER;

84

configsl1inux:

#
eonfigs/linux
#
linux configuration file
#
perl parameter file
"extension" to perl configure of QI/PH system
#
jonesjm - 8/16/97 - initial coding • (jonesjm@utulsa.edu) ,
#
$CC = "gee"; # use gnu c (although ec seems to point to gee)
$Lex = "flex"; # use "fast lex"
$MoreLib = "-lfl"; # flex library
SCflags .= " -I1usr/include/bsd"; # get sgtty.h
$DbmLib = "-lgdbm" # to get "dbm" library
#
Note: The original distribution of qi-3.1B7 has an
include/sys/cdefs.h
that wreaks havoc on the latest gee - either move or remove the
cdefs.h
to compile ok. I'm not sure why this file is even in the include nor
why the sys subdirectory exists.
#
Note: Tim Lawless found a confli t with the variable name "dirfd" in
dbd.e and dbm.c and certain routines in libc. If you change the
variable
name to dir fd (as I did), I think you will be ok.
#
Note: The configs/default contains a line that has a literal in
double
1+ quotes: "p-pomes@uiuc.edu". You will want to change this to single
quotes
for Perl to not attempt to incorrectly translate the "@ ... ". If you
use
the examples I have given below for the Configure command you will
have
some type of corresponding statement in your own Configure Perl
script that
you will want to use single quotes with also.
#
I used the Slackware Linux distribution. I see no reason for any
other
Linux to not work, but I will express the standard disclaimer as
usual. This software has no warranty of any kind, but can be
distributed
freely. Although I do not require my name to be used, nor claim any
copyright, it would be nice for you to acknowledge my efforts, i.e. a
"Thank you" once in a while is nice to get. : -)
#
The only errors I got from make after using this file with Configure
were
warnings for incompatible pointer types in argument lists. T'll
leave that
problem, if there really is one, to the next person.

85

..J

#
TO use this file, do not alter the configs/defaults, but create your
own
perl parameter file overriding the values in eonfigs/defaults then
enter
the following (as an example) using -mysystemconfig as your own Perl
parameter file that you would use for your site.
#
$ Configure configs/linux -mysystemconfig
#
Then do make:
#
$ make install
#
to generate the code.
#
The rest of the setup is covered quite well in the docs and the faq.
#
Here is also a list of dependencies (as best as I remember them) tha
may
help if you have a rather small disk (as I do) and need to install
with the
minimum amount of supporting software to get the stuff running.
#
Perl
Gnu C
Bc
res
In
Flex
make
#

86

....I

From lock.c:

/*
* Set a zone "10 k" - no lock needed - destination checks seq #
*/

int
GonnaZone(sg}
char * sg;
(

bintree init(Database); /* initialize the bintree code */
read_index(Database};
if (!dbi init (Database} II !dbd init (Database})
{

fprintf(Output, "'l;d:Couldn't open database.", LR INTERNAL);
exit(l};

I
get dir_head(};
return (I};

/*
* elease a lock
*/

void
Unlock(sg}
char *rnsg;
{

#ifdef FCNTL OCK
struct flo k arg;

rnernset(&arg, (char)O, sizeof (arg));
arg.l_type = F_UNLCK;

#endif /* FC TL LOCK */

if (!strcrnp(rnsg, "zone"})
{

put_dir_hea ();
put_tree_he d(};
return;

LockInit(};
if (Type == WRITE)
{

/* zone lock? */

incr dir head serial(}; /* for zone xfr */
put_dir_head() ;
p t tree head();

else
close tree();

#ifdef NO READ LOCK- -
if (Type == READ)

return;
#endif

IssueMessage(LOG DEBUG, "~s 'fsunlock", msg, (Type

87

READ) ? fir"

....I

#ifdef FCNTL LOCK
if (fentl (Lock, F SETLKW, &arg) -1)

#else /* !FCNTL LOCK */
if (flock(Lock, LOCK UN) < 0)

#endif /* FCNTL LOCK */ -
IssueMessage(LOG_ERR, "Unlock: flock: %s",

strerror(errno));
}

88

J

secondaryImakefiIe.tempi:

OT LIMITED TO, PROCUREMENT OF SUBSTITUTE

this software without specific prior written permission,

retain the above copyright
the following disclaimer.
reproduce the above copyright
the following disclaimer in

developed by

products derived

following acknowl dgement:
this product includes software
and other contributors.
Jones nor the names of other
be used to endorse or promote

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must

notice, this list of conditions and
Redistributions in binary form must
notice, this list of conditions and

Copyright (c) 1998 James M. Jones
All rights reserved.
#
#
#
#
It
It
2.
#
the
documentation and/or other materials provided with the
distribution.
3. All advertising materials mentioning features or use of this
software
It must display the
This portion of
James M. Jones,
4. Neither James M.
contributors may
from
#
#
THIS SOFTWARE IS PROVIDED BY THE CONTRIBUTORS' 'A IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL
It DAMAGES (INCLUDING, BUT
GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAU ED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF
SUCH DAMAGE.
#

SHELL = /bin/sh

##########################It###############################It###########
#
It###
CC CC
CFLAGS Cflags
LFLAGS _Lflags_
##
other variables
##
FLGS

89

..J

SRCS secondary.c .. /qi/conf.c
OBJS secondary.o .. /qi/conf.o
BINS secondary
all:$/BINS)
##
specific targets
##
secondary: $/OBJS)

$(CC) $ (CFLAG) -0 secondary $(OBJ) \
Lflags__ApiLib NsLib MoreLib

##
standard targets
##
install: $(BINS)

-mkdir _QiExecDir_
for b in $? ; do \

SrcDir/bin/install.sh -m Mode -0 Owner -g Group $$b
QiExecDir; done
#
jmj - 3/27/99 - for database rebuild

-mkdir DbaD
-mkdir DbbD- -
-In -snf DbaD DblD

#
@echo ""
@echo "To run the secondary server zone refresh from this

machine,"
@echo "Manually place a copy of the ?cnf file from th primary"
@echo "server in both database locations (the secondary cannot"
@echo " ebuild without it), and"
@ec 0 "place the following line in your /etc/rc.d/rc. local"
@echo "(or equivalent) file to get the server sL rled al boot

time:"
@echo "_QiExecDir_/secondary"
@echo ""
@touch install

res: $(SRC)
Ci $?

touch rcs

clean:
rm -f $(BINS) $ (OBJS) tags install

depend:
perl -i -e 'while «» (print; if (/"# DO OT DELETE/) {last;} I'

Makefile
$(CC) De end $ (CFLAGS) $(SRCS) » Makefile

90

..

grep "$ObbD" > Idev/nulll

grep "$DbaO" > /dev/null)

serial: -SERIAL=n
refresh -REFRESH=n
retry -RETRY=n
expire -EXPIRE=n

secondary/rebui ld. tempI:

#!/bin/sh
rebuild. templ
II
rebuild the qi database
#
II jmj - 1/19/99 - initial coding
II see Configure for translation
II
parameters:
1
2
II 3
II 4
#
II databases
DbaD
DbbD
DblD
DbaN
DbbN
input file
Qilnput
II utility commands
Util
II
if (! (file $DblD I grep "symbolic link" > /dev/null))
then

echo "$DblD is not a symbolic link"
exit

fi
II
II figure which database is currently being used
II
if (file $DblD
then

currdbd=$ObaO
currdb=$DbaN
otherdbd=$DbbO
otherdb=$DbbN

else
if (file $DblD
then

currdbd=$DbbD
currdb=$DbbN
otherdbd=$DbaD
otherdb=$ObaN

else
echo "$DblO != $DbaD or $ObbD"
exit

fi
fi
II
II get rid of old stuff
rm $otherdb.* 2> /dev/null

91

..

put back configuration file
cp $currdb.cnf $otherdbd
#
put together new db
#
if ($Util!credb '$Util!sizedb $currdb. nf $Qilnput' $otherdb)
then

if ($Util!maked $1 $2 $3 $4 $otherdb < $Qilnput)
then

if ($Util!makei $otherdb)
then

if ($Util!build -s $otherdb)
then

#
switch links
#

In -snf $otherdbd $DblD
#

fi
fi

fi
fi
#

92

..

T
secondary.c:

1* *1
1* secondary.c - set up a secondary data base for a ph server *1
1* *1
1* jmj - 9/1/98 - initial coding *1
1* *1
1* to do this, I basically scarfed up sections of PH and some QI.

The QI code has been modified to respond to a zone transfer command
"axfr" from the IP of what it thinks is the secondary server.

There are 2 pieces to the secondary server: 1) a duplicate primary
server to honor normal PH clients, and 2) a "secon ary" (this code)
which is really functioning as a "client" to the primary server.
The secondary periodically checks, via siteinfo, for a difference
in "serial" nwnbers between the secondary database and the
primary database. When a difference is found, the "secondary"
request a zone transfer, rebuilds the database and fiddles with
links to get the "server" portion of the secondary to look at
the latest database.

Notes:

I took out all the VMS stuff since QI was never set up to run
in a VMS environment.

I am not overly proud of the code, but it does work.
*1

Hinclude "protos.h"

Hifdef OSFl
H define INT32 int
HeIse 1* !OSFl *1
H define INT32 long
#endif 1* OSF1 *1

Hinclude <stdio.h>
Hinclude <signa1.h>
Hinclude <sys/types.h>
#include <sys/wait.h>
Hinclude <sys/socket.h>
Hinclude <sys/file.h>
#include <sys/stat.h>
#include <netinet/in.h>
Hinclude <netdb.h>
Hinclude <ctype.h>
Hinclude <fcntl.h>
Hinclude <arpa/inet.h>
Hinclude <sys/param.h>
Hinclu e <errno.h>

Hifdef OS2
#include <process.h>
#endif 1* 0 2 *1

93

•

#include <qiapi.h>

/*
* declarations for the functions in this file
*/

int Contact I();

int GetGood P((char *, int, FILE *»);

void ComplainAboutHost P ((char *);

#ifdef STDC
include <unistd.h>
include <stdlib.h>
include <string.h>
#else /* ! STDC */
include <strings.h>
#endif /* STDC */

/* for zone record type */
#define Other Rec 0
#define Header Rec 1
#define Zone Rec 2

FILE *ToQI;
*1
FILE *FrornQI;
#define qprintf fprintf
#define qflush fflush

1* write to this to tell the nameserver stuff

/* read nameserver responses from here */

int LocalPort 0;
int D bug = 0;
int Dont rerun 0;

1* local port in use *1
/* print debug info if set *1
1* don't resubmit via "at" *1

/*
* switches
*1

char *UseHost = 0;
int UsePort = 0;

I*-s use server on what machine */
/*-p use port # */

char *Me; 1* the name of this program *1
int retry_interval = 0; 1* so trylater can get to it *1
void trylater(void}; 1* resubmit routine *1

may affecl

1* I don't remember *1
1* do not change fields that contain

OptionList[] =

/* only the nolog option is used */
"echo", 0, 1* echo commands before execution * 1
"limit", 0, 1* limit the number of entries a command

OPTION
{

"verbose", 0,
"addonly", 0,

information */
"nolog", 0, 1* do not issue syslog information *1
0, 0

*1

} ;

94

•

/*
* and the fun begins ...
*/

int
main(argc, argv}

int argc;
char **argv;

char scratch[MAXSTR];
int Zone_Type(char *};
int Serial_Part(char *);
void All_Parts (char *, int *, int * int *, int *);
int local serial = 0;
int remote serial = 0;
int refresh interval = 0;
int retry_interval = 0;
int expire interval = 0;
char * Zone Data(char *);
int qi_input_open = 0;
FILE *qi_input;
int last rec;
int not this time;

- -
int count = 0; /* for command line option processing */
int new_qi; /* switch for got database at least once */
int got_first serial; /* switch */
short code;
char rebuild_line[255];

Me = *argv;

/*
* process a set of options
*/

/* options processing */
for (count = 0, argv++, argc--; argc && **argv ~=

argv++, count++) {
for ((*argv}++; **argv; (*argv}++)

switch (**argv) {
case •0' :
case '0':
Oont rerun 1;
break;
case '0':
case 'd':
Debug = 1;
break;
case 'p':
if (isdigit (argv[O] [1]))

UsePort = atoi(*argv + 1);
goto whilebottom;

}

else if (argc > 1 && isdigit(*argv[l]))
UsePort = atoi(argv[l]};
argc--, argv++, count++;
goto whilebottom;

}

else

95

r _t •
I argc--,

•

fprintf(stderr, "-%c option given without port
number.\n", **argv);

break;
case 'H':
case 'h':
default:
fprintf(stderr, "%s help:\n", Me);
fprintf(stderr, "%s [-Old] [-p port] [-Hlh] [-Olo]\n", Me);
fprintf(stderr, " where:\n");

fprintf(stderr, "Dld - debug\n");
fprintf(stderr, lip - port number to use\n");
fprintf(stderr, "Hlh - help\n");
fprintf(stderr, "010 - run one time (don't

resubmit)\n") ;
exi t (0) ;

}

whilebottom: ;
}

if (Debug) (
printf("Debug on \n");
printf("Dont rerun = %d\n", Dont_rerun);
DoSysLog(O); /* put messages to stderr */
printf("(printf)If DoSysLog worked, you should see 2 of these

messages.\n");
IssueMessage(LOG_ERR, " (logmsg) If DoSysLog worked, you should see

2 of these messages.");
}

not this time = 0; /* optimism * /
if (! ContactQI ()) (

IssueMessage(LOG ERR, "l's remote databas un vailable.", Me);
not this time = 1;

}

else if ((code = GetQISRRE(&remote seri 1
, &refresh_interval
, &retry_interval
, &expire_interval)) > 200) I

IssueMessage(LOG ERR, "'5 remote information unavajlabLe.",
Me) ;

not this time = 1;- -
if ((code = Get2ndSRRE(&10 al serial

, &refresh interval
, &retry_interval

&expire_interval)) 1= 200) (
IssueMessage(LOG ERR, "*s local information unavailable. ",

Me) ;
/~ can't get interval from anyone */

retry interval = atoi{RETRY);
}

/* endif got retry from remote */

if (!Dont_rerun) (
atexit(trylater); /* set up resubmit ~/

}

if (Debug) printf("got past atexit. .. \n");
if (Debug) pri tf (" ot this time: I*dl\n", not this time);

96

•

if (not this time) exit(O);

/* get serial #s */

/* can't get to something - quit */

if ((code = GetQISRRE(&remote serial
, &refresh interval
, &retry_interval
, &expire_interval)) > 200) {
IssueMessage (LOG_ERR, "'~s unable to get remote serial #", Me);
exit (0);
~

if (Debug) printf("remote serial: I~,dl\n", remote serial);
if ((code = Get2ndSRRE(&local serial

, &refresh interval
I &retry_interval
I &expire interval)) ,= 200) (

IssueMessage(LOG ERR, "~s unable to get local serial #", Me);
exit (0);
}

if (Debug) printf("local serial: I%dl\n", local serial);

/* loopl - zone transfer data if serial #s are different */

new_qi = 0;
while (local serial

/* send axfr */

/* switch for new database gotten */
!= remote serial) { /* change in serial #? */

qprintf (ToQI, "axfr\n");
qflush (ToQI) ;
if (Debug) {
printf("sent=axfr n");
fprintf(stderr, "sent=axfr\n");
f

/* get records */

got first_serial
last rec = 0;

0; /* don't have first serial yet "/

while (GetGood (scratch, MAXSTR, FromQI)) { / ~ read i t ~ /
if (Debug) printf ("secondary scratch: I:'<s I\n", scratch);

code = atoi (scratch) ;
if (Debug) printf ("secondary code: I 'i,d I \n", code);

if (abs (code) == LR OK) {

if (Debug) printf ("Zone Type (scratch): Id\n",
Zone Type (scratch));

switch (Zone Type (scratch))

/* get serial records ~~--*/

case Header Rec:
if (!got_first_serial) {

local serial = Serial Part(scratch};- -
got first_serial ~ 1; /* got it now */

97

}

else (/* got_first_serial - this must be last serial */
AI1_Parts(scratch /* this must be latest info */

, &remote serial
, &refresh interval

, &retry_interval
, &expire interval);

last rec = 1;
new qi 1: /* also got at least 1 new database now */
}

break;

/* get zone data */
ase Zone Rec:

/* write record to scratch area */
if (!qi_input_open) {

if (! (qi_input = fopen (QI_INPUT, "w"))) {
IssueMessage(LOG_ERR, "<;s could not open QI INPUT for

write: ~d", Me, qi_input};
exit (0):
}

qi_input open = 1;
}

fprintf(qi input, Zone Data(scratch)); /* write the zone
data */

break;

default:
IssueMessage(LOG ERR, IllS undefined record type for

record:%s", Me, scratch);
exit (0);

} /* end switch zone record type */
/* end if response "normal" */

else { /* not a "normal" kind of record for axfr */
IssueMessage(LOG_ERR, o~s unexpected record Lype: 'dO, Me.

code) ;
IssueMessage(LOG ERR, scratch);
exit(O);
)

if (last rec) break; /* if last good serial - done */

/* end while got good record */
/* end while serials different (serials match) */

qprintf(ToQI, "quit\n"); /* let server know you are
done */

qflush (ToQI) ;
if (Debug) fprintf(stderr, "sent=quit\n");

if (Debug) fprintf(stderr, "new_qi:l-dl\n", new qi);
if (new_qi) { /* new qi database? */

sprintf(rebuild_line
"ts -SERIAL=~d -REFRESH= d -RETRY='d -EXPIRE= dO

, REBUILD
remote serial? remote serial : (local serial?

local serial

98

atoi (SERIAL))
, refresh_interval? refresh_interval: atoi(REFRESH)
, retry_interval? retry_interval: atoi(RETRY)
, expire_interval? expire_interval: atoi(EXPIRE)
) ;

system(rebuild_line); /* run rebuild script */

exit(O); /* done (go again later - see "trylater") */
/* end of main routine */

/*
* get the local info

*/
int Get2ndSRRE(int *serial

, int *refresh
, int *retry

int *expire)
char temp_name[lOO];
int temp_fd;
struct dirhead DirHead;

(void) strcpy(temp_name, DATABASE);
(void) strcat(temp_name, ".dir");
if ((temp_fd = open{temp name, 0)) < 0) (/* only need to read */

IssueMessage(LOG ERR, "%s unable to open local database ~s", Me,
temp_name);

return 0;
)

if (lseek (temp fd, 0, 0) < 0) (
IssueMessage (LOG_ERR, ", s lseek ('d, 0, O): s", Me,

temp fd, strerror(errno));

close: 'I,s", Me, strerror (errno)) ;

return 0;
}

if (read(temp fd, &DirHead,
IssueMessage(LOG_ERR, "%E
return 0;
)

if (close(temp fd) < 0)
IssueMessage (LOG_ERR, "'is
return 0;
I

*serial DirHead.serial;
*refresh DirHead.refresh;
*retry DirHead.retry;
*expire DirHead.expirei
return 200;

sizeof (DirHead)) < 0)
read DirHead: '/;s", Me,

(

strerror(errno}) ;

void trylater(void)
/*

* routine to resubmit zone transfer
*/

99

char resubmit[MAXSTRj;
char secondary_executable[MAXSTRj;

(void) strcpy(secondary_executable, QIEXECDIR);
(void) strcat(secondary_executable, Me);
printf("echo %s I at now + %d minutes"

, secondary_executable, retry_interval/60);
sprintf(resubmit, "echo %5 I at now + %d minutes"

, secondary_executable, retry_interval/60);
system(resubmit) ;
f

/*
* figure out which type of zone record this is

*/
int Zone_Type(char *rec)

char *ref;

ref = strchr (rec, ':');
if (strstr(ref,":1:")) return Header Rec;
else if (strstr(ref,":2:"1 I return Zone Rec;
else return Other Rec;

/*
* ju t get zone data - strip return code and record type

*/
char * Zone Data(char *in)

char *temp;
temp = (char * I strchr (in, ':'); /* get rid of return code * /
*temp++;
temp = (char *1 strchr(temp, ':'); /* get rid of record type */
*temp++;
return temp;

/*
* pull serial number out of header rec on zone transfer

*/
int Serial Part(char *recl

char *ref;

ref = strstr(rec, ":1:1:") + 5;
ref = strstr(ref, ":2:"} + 3;
return atoi(ref};

/*
* pull all numbers out of header rec on zone transfer

*/

void All Parts(char *rec
int * serial
int .. refresh
int .. retry
int .. expire)

char *ref;

100

ref = strstr(rec, ":1:1:") + 5;
ref = strstr(ref, ":2:") + 3;
*serial = atoi(ref);
ref = strstr(ref, ":3:") + 3;
*refresh = atoi(ref);
ref = strstr(ref, ":4:") + 3;
*retry = atoi(ref);
ref = strstr(ref, ":5:") + 3;
*expire = atoi(ref);

1* send siteinfo and get current information */

int GetQlSRRE(int .. serial, int * refresh, int * retry, int .. expire)

char scratch [MAXSTR1;
char *lastc, *s2lastc;
short code = 0;

if (Debug) printf ("GetQlSRRE start\n");

qprintf(ToQl, "siteinfo\n");
qflush (ToQl) ;
if (Debug) printf("GetQIRetry after print of siteinfo\n");

while (GetGood(scratch, MAXSTR, FromQl)) 1* read it *1
code = atoi(scratch);
if (code == -200) {

if ((lastc (char *) strrchr(scratch, ':')) && lastc >
scratch) {

*lastc++ 0;
if (s2lastc = (char *) strrchr(scratch, ':')}

s2lastc++;
if (!strcmp("retry", s2lastc))

*retry = atoi(lastc);
) /* endif retry *1
i f (! s t r cmp (" s e ria1 ", s 2 1 a s t c) }

*seria1 = atoi(lastc};
) /* endif *1
if (!strcmp("refresh", s2lastc))

*refresh = atoi(lastc};
} 1* endif *1
if (!strcmp("expire", s2lastc))

*expire = atoi(lastc);
} /* endif *1

) 1* endif 2nd 1 : *1
11* endif 1st 1: "I

) 1* endif -200 *1
else if (code >= LR OK} break;
} 1* end while *1
return (code? 200 : 500); /* only fail if the connection broke

*1
I

I"
.. contact the central nameserver

101

*/
int
Contact I ()
(

/* our socket */
QI; /* the address of the nameserver */
/* nameserver service entry */

hp; / host entry for nameserver */

int sock;
static struct sockaddr in
struct servent *sp;
static struct hostent
char host[80];
char *baseHost;
int backupNum = 0;
int mightBackup;
int result = 0;
int err;

QI.sin family = AF INET;

if (Debug) printf("in ContactQI start\n");
/* give up privs if using anything other than default port and host

*/
if (UsePort I I (UseHost && *UseHost))

if (Debug)
fprintf(stderr, "giving up privs (UsePort I I UseHost)\n");

(void) setgid(getgid());
(void) setuid(getuid());

}

if (Debug) printf("in ContactQI after userport check\n");

/* find the proper port */
if (UsePort)

QI.sin port htons(UsePort);
else (

QI.sin port htons(atoi(DEF PORT));

if (Debug) printf("in ContactQI after userport check 2\n");

/* find the proper host */
baseHost = UseHost ? UseHost
strcpy(ost, baseHost);

QI HOST;

if (Debug) printf("in ContactQI, host: I~sl, baseHost: l'sl\n", host,
baseHost) ;

if (!geteuid())
LocalPort = (IPPORT RESERVED - 1);

if (Debug) printf("in ContactQI, LocalPort: I·.dl\n", LocalPort);
for (;;) (

/* create the socket */
#ifdef OS2

sock socket(PF I ET, SOCK_STREAM, 0);
#else

sock La alPort ? rresvport(&LocalPorl) socket(PF INET,
SOCK STREAM, 0);
#endif /* OS2 */

if (Debug) printf("in ContactQI, sock:I:',dl\n", sod:);
if (sock < 0)

102

perror (" socket ") ;
goto done;

}

QI.sin_family = AF_INET;
if (hp = gethostbyname(host))

#ifdef CRAY
memmove((char *) &QI.sin_addr, hp -> h_addr, 4);

#else
memmove((char *) &QI.sin addr.s addr, hp -> h_addr, 4);

#endif
}

else {
ComplainAboutHost(host) ;
goto done;

if (Debug) printf("in ContactQI, hp:llf,dl\n", hpj;

1* connect to the nameserver */
if (connect (sock, (struct sockaddr *) & QI, sizeof(QI)) < 0)

if (errno == EADDRINUSE) {
if (LocalPort)

LocalPort = LocalPort - 1;
continue;

I
perror(host) ;

if (Debug) printf ("in ContactQI, connect worked. \n");
goto done;

}

else
break;

)

if (Debug) printf("in ContactQI, after for loop.\n");

if (backupNum)
fprintf (stderr, "WARNING--backup host '} s; information may be out

of date.\n", host);
/* open path to nameserver */
if ((ToQI = fdopen (sock, "W")) NULL)

perror("to qi");
goto done;

I
if (Debug) printf("in ContactQI, after to open.\n");
1* open path from nameserver */
if ((FromQI = fdopen(sock, " r ")) == NULL)

perror("from qi");
goto done;

}

if (Debug) printfl"in ContactQI, after from open.\n");
if (UseHost)

free(UseHost) ;
UseHost = strdup(hp ? hp -> h name inet ntoalQI.sin addr));
UsePort = ntohs(QI.sin_port);
result = 1;

done:
if (Debug) printf("in ContactQI, after done.\n");
setgid(getgidl));

103

setuid(getuid()) ;
if (Debug) printf(Hin ContactQI, before return, result: I~dl. \n",

result);
return (result);

/*

* omplain that there isn't an entry for Q1 HOST in /etc/hosts
*/

void
ComplainAboutHost(name)

char *name;

fprintf(stderr, "Warning--unable to find address for' "IS" .\n",
name) ;

/*
* Dot2Addr - turn a dotted decimal address into an inet address
* ---Assumes 4 octets---
*/
nsigned INT32

Dot2Addr(dot)
char *dot;

unsigned INT32 addr 0;

do {
addr «= 8;
addr 1= atoi(dot);
while (isdigit(*dot))

dot++;
if (*dot)

dot++;
}

while (*dot);
return ((unsigned 1NT32) htonl(addr));

104

VITA

James M. Jones

Candidate for the Degree of

Master of Science

Thesis: APPLYING DOMAIN NAME SYSTEM REAL-TfME REDUNDANCY
TO THE CCSO PH PHONE DIRECTORY SYSTEM

Major Field Computer Science

Biographical:

Education: Graduated for Thomas Jefferson High School, Dallas, Texas in May
1971; received Bachelor of Science degree in Computer Science from Florida
International University, Miami, Florida in December 1976. Completed the
requirements for the Master of Science degree with a major in Computer Science
at Oklahoma State University in December 1999.

Experience: Seasoned computer professional with over 20 years experience in system
engineering, system management, system analysis, programming, training, system
development, and project management in scientific and business computing with
inter-personal abilities and proven problem solving skills. Provide creative,
elegant, yet simple, modular, thorough and low maintenance olutlOns.

