
EW TYPE OF PSEUDORA DOM

UMBER GENERATOR

By

Qi Jiang

Bachelor of Science
Fudan University
Shanghai, China

1996

Master of Science
Oklahoma tate University

Stillwater, Oklahoma
1999

Submitted to the Faculty of the
Graduate Coil ege of the

Oklahoma State University
in partial fulftllment of

the requirements of
the Degree of

MASTER OF SC1ENCE
December, 1999

NEW TYPES OF PSEUDORANDOM

NUMBER GENERATORS

Thesis Approved:

Dean of the Graduate College

II

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my thesis advisor, Dr. J. P. Chandler for

his guidance, encouragement and inspiration. I also appreciate my other committee

members Dr. B. E. Mayfield and Dr. H. K. Dai, whose encouragement and assi tance

were invaluable. I would like to thank the Department of Computer Science for

providing me with this learning opportunity.

I would like to give my special appreciation to my parents and my brother, who

always support me in any circumstance. Had been without you, I cannot finish this

tenuous task by myself.

iii

Oklahoma State University Library

TABLE OF CONTENT

CHAPTER PAGE

I. IN"TRODUCTION I

II. LITERATURE REVIEW 6

OVERVIEW OF PSEUDORANDOM NUMBER GENERATORS 6

STATISTICAL AND EMPIRICAL TESTS 7

PSEUDORANDOM NUMBER GENERATORS 1S

THE STANDARD FOR A GOOD PRNG 19

STREAM CIPHERS AND PRNGs 21

DNA AND PSEUDORANDOM NUMBER GENERATORS 2S

III. PROGRAM LISTING 27

MSHUFFLE AND MrMPED 27

DSHUF3 31

DNA AND DNAIMP 37

DSHUF2 39

IV. RESULTS 41

Ru S TEST , 41

PERMUTATION TEST 42

BIRTHDAY SPACI G TEST 43

IV

MONKEY TEST 43

N-BLOCK TEST 53

Twa-DIMENSIONAL RANDOM WALK TEST 53

V. DISCUSSION 55

IMPLEMENTATION DETAILS 55

1ESTS AND RESULTS 57

CaMPARISON AMONG DlFFERENT GENERATORS 58

VI. SUMr\.1ARY AND FUTURE WORK 62

BffiLIOGRAPHY 64

v

LIST OF TABLES

Table Page

I. Results of the runs test. " 42

II. Results of the pennutation test. '" , .43

III. Results of the birthday spacing test .43

IV. Results of the bit stream test. 45

V. Result of the OPSO test. .46

VI. Result of OQSO test. , _ 48

VII. Result of DNA te l. 49

VIII. Result of counting 1's in a stream te t. 51

IX. Result of counting 1's in specific byte test.. 52

X. Result of the n-block test. 53

XI. Result of the two-dimensional random walk test 54

XII. Time consumed by generating 10 million bytes 59

VI

CHAPTER ONE

Introduction

When making a difficult decision or just trying to win the state lottery, lots of people

sometimes get their lucky numbers by flipping a coin, by drawing a card from the deck,

or simply from fortune cookies. Those are some realistic examples of using random

numbers. Scientifically, random numbers are widely used in cryptography, stochastic

simulation, and many other fields. Random numbers are also a vital utility for today's

recreational entertainment business. As an important part of computational science,

random numbers are used to test the effectiveness of computer algorithms. Random

numbers are also used in the operation of randomized algorithms.

Usage of random numbers can be traced to before the birth of modem electronic

computers. In ancient times, the best source of a random number was by rolling dice, or

by drawing balls out of a "well-stirred urn", as is done today in the lottery [1]. In 1927, a

table of over 40,000 random digits was published by L. H. C. Tippett. Upon the heated

discussion stirred by the publication of this random digit table, M. G. Kendall and B.

Babington-Smith introduced the first random number generation machine in 1939 [2,3].

This machine was capable of generating 100,000 random digits using several rotating

discs. Other machines capable of generating random numbers were introduced later

through the 19508. Among those machines, the Ferranti Mark I first contained a

hardware random number generator. Another famous machine called ERNIE has been

used for many years picking the winning number in the British Premium Saving Bonds

lottery [4]. ERNIE contains a number of random digit generators, which relied for their

randomness on electronic noise in neon tubes. It was able to generate more than 108

random numbers and the distribution of those numbers has been proven to be dose to

perfect randomness.

In the 1990s, the once nearly extinct random digits table has made strong a comeback

supported by new technologies. The biggest problem for random digit tables was the size

limitation of the table. To supply a useful number of random numbers for meaningful

simulations on printed media is next to impossible. With the maturation of CD-ROM

technology, George Marsaglia helped the rebirth of a random digit table, which occupied

the whole capacity of a single CD-ROM --- 650 megabytes [7]. This table was generated

by a noise-diode circuit.

After the invention of electronic computers, the awesome computational power of

computers led people to search for effective algorithms to produce random numbers using

computers. Since then, many algorithms have been introduced by different

mathematicians. The first such algorithm, which was suggested by John von Neumann,

was later called the "middle-square" method [1]. The most popular algorithm nowadays

2

is the linear congruentia} method [1]. This method can be generalized to the quadratic

congruential method [1]. Other methods are also available. The inver ive congruential

method [14], the lagged Fibonacci method [1], and combination of two or more

pseudorandom number generators [1] are examples of the variety of available random

number generators.

All of the software solutions listed above use a deterministic algorithm to generate the

next number depending on one or more numbers existing earlier in the eries, and thu

are not truly random. The word "pseudorandom" is used to describe those generated

sequences. Because of the deterministic nature of the algorithms used to generate

pseudorandom numbers, the pseudorandom sequence will show some internal

correlation. Those internal correlations mayor may not show their effect on a particular

application depending on the application itself. It is not possible to find a perfect

algorithm whose sequence fits the need for all the applications. Rather, it is very

important to analyze a pseudorandom number generator before applying its sequ nce to

one specific application in order to avoid the misuse of this sequence. Using a equence

whose internal correlation showed up in an application can yield very misleading results.

To use a software pseudorandom number generator correctly and effectively, it is

important to know the advantages and disadvantages of the different methods available.

It is also important to know the theoretical and empirical support for various

pseudorandom number generators. Finally, it is important to know how to test a

pseudorandom sequence and the resources available for testing such a sequence.

-

Cryptography is a very important field for both security and privacy [20]. The idea of

cryptography has existed for hundreds or even thousands of years, but only during the

last 20 years has public research on cryptography exploded [20]. Random numbers have

been used widely in encoding and decoding messages. Real random number are used

mostly in one-time pads, which provide a truly unbreakable encryption [20]. However, to

use real random numbers, both the encoder and the decoder must have acce s to the same

random sequence. This reason made the usage of real random numbers rare, although

they are used for extremely important diplomatic messages. Pseudorandom numbers, on

the other hand, can be generated by a certain algorithm and are easy to reproduce.

However, some certain patterns and structures exist in pseudorandom sequence which

could also help the attacker to decrypt the cipher-text. Thus, the choice of pseudorandom

number generator becomes very important for encryption usage.

As we know, there is no unbreakable encryption algorithm other than one-time pads,

especially when a brute-force attack is employed. The problem relies on how many

resources would be involved in an attack. If the resources required for an attack

outweigh the value of the message, then the encryption algorithm is probably safe to use.

Resources involved .in an attack depend on the data complexity, the proce sing

complexity and the storage requirement of the attack. In a good encryption algorithm,

those three factors should be maximized and be made practically impossible for an

attacker. It is always assumed that the attacker knows the encryption system being used;

only the "key" used to encrypt a given message is unknown [20].

-

In this paper, a new pseudorandom number generator using a modified shuffling

method is proposed. The modification made to the shuffling method is to improve the

unpredictability of this new pseudorandom number generator.

5

-

CHAPTER TWO

Literature Review

Overview of PseudoRandom Number Generators

Software pseudorandom number generators (PRNOs) use deterministic algorithms to

generate pseudorandom sequences. One might ask what is the real meaning for the word

"random" here. Tn fact, the random sequence we are talking about is "a sequence of

independent random numbers with a specified distribution" [1]. Every number in the

sequence is taken by chance, has no relationship with other numbers, and has a specified

probability to appear anywhere in the sequence. In a uniform distribution over a finite

range, each possible number has equal probability to appear on any position of the

sequence. Other distributions of random equences are usually transformed from a

uniform distribution sequence by applying certain restrictions.

A sequence generated by software PR Os is called a pseudorandom sequence. The

term itself clearly states that such a sequence is not truly random, rather, it just appears to

6

-

be random. There is a theoretical definition of randomness in statistics [1]. It is probably

enough to say here that a pseudorandom number sequence is random enough if this

sequence is able to pass a number of statistical tests.

Statistical and empirical tests

The "chi-square" test (X 2 test) [1] is a well known statistical test and serves as a

foundation of lots of other tests. The basic idea hehind the X2 test is that the actual

distribution should not be far away from the expected distribution. For example, in a

uniform random distribution of 10,000 numbers in the range of 1 to 1,000 inclusive, it is

easy to know that each number is expected to appear 10 time. The number of 10 is

obtained by multiply the probability of one specific number appeared in one po ition,

denoted by p, by the total number, denoted by n. Here, pis 1/ 1,000, and n is 10,000. The

actual times a certain number occurred in the sequence, denoted by Y, should not be too

far away from the expected number, np. Although for a single number, there is a

possibility that the deviation is significant, the summary of the square deviations

L (Y - npr should be small for a good distribution. Since the deviation could be either

positive or negative, the simple summary will offset a positive deviation with a negative

one. The square summary is thus a better description than the simple summary. If the

7

-

distribution is not uniform, in order to eliminate the weight factor, we should divide each

term in the summary by np.

In general, suppose that the observation could fall into k categories and we take n

independent observations, we can obtain

where Psis the probability that each observation falls into category s.

The calculated V value can be compared to a X2 distribution table and the probability

of yielding a particular sequence could be obtained. If the probability is smaller than 1%

or larger than 99%, the sequence deviates too much or is too close to ideal distribution,

which means the sequence itself is not random. On the other hand, if the percentage is

between 10% to 90%, we are able to say that the sequence passes the X2 test.

Remarkably, the table entry has nothing to do with n, the total number of items in the
\

sequence. The only attribute that affects the table entry is the number of degrees of

freedom, which is equal to the number of categories minus one.

Suppose we have a sequence of numbers that has blocks of non-random sequences.

Since those blocks might only count as small portions of the whole sequence, the entire

sequence could still be able to pass the X2 test. In order to keep those bad sequences

from passing the X2 test, a series of tests with different values of n should be performed.

We should also do several duplicates of tests with the same value of n.

8

-

2. The Kolmogorov-Smimov test

The Kolmogorov-Smimov test (KS test) [1] is used when the observations distributed

over the range could be infinitely many values. The X2 test requires the observation

values fall into a finite number of categories or "bins".

Suppose we have a random number X; the probability that X is smaller than x can be

defined as the distribution function F(x). If we have a sequence of numbers of length n,

the observation value Xl, X2, ... , Xn can be fonned into the empirical distribution function

Fn(x), where

FJx) = number _of _ X ~ x.
n

The difference between F(x) and F,,(x) is the basis of the KS test. A good sequence of

random number will have a F,,(x) that approximates F(x), while a bad sequence could

have significant deviations.

We calculate K/~ and K; for the sequence by applying the following equation:

K,7 =.j;; max (FJx) - F(x)):
-oo<.x<+oo

As in the t2 test, we then look up in a percentage table to determine jf the value of K:

and K,~ are reasonable.

9

-

The problem of the choice of value of n also exists here. On one hand, we need n to

be large enough to determine the true distribution of the sequence; on the other hand, a

large n tends to average out locally nonrandom distributions. A good compromise is to

choose a moderate n, while calculating a large number of K: over different parts of the

sequence. This compromise will tend to detect both locally and globally nonrandom

distributions [1].

3. The spectral test

The spectral test [1] is a very important test for any congruential pseudorandom

number generator (see pg. 14) in the sense that all good generators have passed this test,

while all bad generators have failed.

Suppose we have a sequence Xl. X2 . .. ". X" of period m; the spectral test will test the

distribution of all m points

in t-dimensional space. Here, s(x) stands for the successor of x.

We name the maximum distance between two numbers X. Similarly, the max.Imum

distarce between points {(%z' sC%)} could be named as X2 in a 2-dimensional test.

10

-

In general, 1/ is the maximum distance between the hyperplanes covering all points7v,

{l (~ Irt!(~J}x sx s x . . .
~l' m ,.. " m 10 t-dlmensiOns.

Suppose we have a truly random sequence between 0 and l. If we round or truncate

the numbers to a finite accuracy and put this sequence into a one-dimensional spectral

test, the distribution will be regular. A pseudorandom sequence with a period of m will

also display regularity in the test. The difference between a pseudorandom sequence and

a truly random sequence is that the accuracy of the truly random sequence will remain the

same in all dimensions, while that of the pseudorandom sequence will decrease as I

increases. For most applications, it is enough to test a sequence for 2 ~ t ~ 6, and

~9{
Vi ~ 2 I appears to be adequate for passing the spectral test [I].

4. Other empirical tests

There are a number of other empirical tests available to test randomness of a

sequence.

The frequency test (equidistribution test) [1] applies either the KS test or "l test to

the sequence. Since the uniform distribution is necessary for pseudorandom number

sequences, this test is always needed,
~

II

-

The serial test [1] inspects the distribution of pairs of successive numbers. To

perfonn this test, we first divide the range into d groups. We then throw pairs of

successive numbers into cf categories and perfonn a X2 test on those cf categories.

The poker test [I] considers groups of five successive numbers. We set up 5

categories from the card games called poker: all different, one pair, two pairs or three of a

kind, full house or four of a kind, and five of a kind. Then we classify different groups

into different categories and perform a X2 test on them.

The permutation test [11 divides the pseudorandom sequence into n groups. Each

group has t elements. The categories in this test will be all the possible combination of t

elements. We then use a X2 test to detennine the randomness of the sequence.

In the runs test [I}, we examine the monotone parts of the input sequence. There are

at least two ways to make the test. The simpler one needs to throwaway the number

immediately after a run and a X2 test is engaged thereafter.

The collision test [1) is designed for the situation in which the numbers of categories

far outweigh the numbers of observations. This test counts the number of collisions that

happened in all categories. To pass this test., the number of collisions should be neither

too large nor too small.
~

12

-

The birthday spacing test [1] is important because the lagged Fibonacci generator

constantly fail it although they behave well on other tests [5]. It choose m birthdays in a

"year" of n days and lists the spacing between the birthdays. The spacings hould be

asymptotically Poisson distributed.

The monkey tests were introduced by George Marsaglia [6,7]. We suppose that the

PRNG is a monkey sitting in front of a typewriter and pressing the keys randomly. We

then count in successive n strokes how many words of length d were missing. Monkey

tests include OPSO (overlapping-pairs-sparse-occupancy), OQSO (overlapping­

quadruples-sparse-occupancy), DNA test, and count the 1's test. Those test use

overlapping d-tuples as the word, and thus are not subject to the X2 test. Some feedback

shift register generators failed these tests miserably [6].

Of all the tests above, the runs test, the collision lest and th monkey tests may be the

most valuable ones. This is because they are either very strong or specially designed to

detect deficiencies hard to detect otherwise.

There is also a new set of tests developed by Vattulainen around 1995 [8,9]. Those

tests are specially designed for testing random numbers for stochastic simulation

purposes. The cluster test and the autocorrelation test are based on the known properties

of the two-dimensional Ising model. The random walk test and the n-block test are based

on ra dam walks on lattices. The first two tests are designed to test the randomness at

the bit level. The ith bit of every successive number was extracted and put into a two-

13

-

climensional square lattice. By counting I as "up" and 0 as "down" as in the Ising model,

the result of a random sequence can be compared to the expected values. More, we can

use the expected distribution instead of the expected average value to achieve a more

meaningful result. The random walk test divides a two-dimensional lattice into four

squares and puts the finish point of a walk of a random number sequence of arbitrary

length into the four categories. A X2 test of three degrees of freedom is performed

thereafter. The n-block test is essentially a random walk test on a one-dimensional

lattice.

14

-

Pseudorandom number generators

1. Linear congruential generators

Linear congruential generators are probably the most widely used PRNGs today.

They were first introduced by D. H. Lehmer in 1949 [10]. The sequence can be obtained

usmg

X"+\ = (aX I! +b)modm, fl~O.

Here, m is the modulus, which should be greater than 0; a is the multiplier, which should

between 1 and m; b is the increment, which should be between 0 and m; and Xo is the

starting value, which should also be between °and m-l. We denote this PRNG as LCG

(m, a, b, Xo). The oIiginally proposed sequence [10] was

XI! = X o x23" mod(108 + 1).

Lehmer also proposed to use for m the Mersenne Plime, ill_I, in a binary machine [10].

There is a whole family of LCGs being used. To name a few, there are the ANSJ-C

system generator LCG(231 , 11035 15245, 12345, 12345), the SlMSCRIPT generator

LCG(231 -1, 630360016, 0), and Maple's LCG(l012_ 11 , 427419669081, 0,1) [11].

The behavior of a LCG depends on the choice of its parameters. The modulus m

should be large enough to allow a Llseful period, because at most m values can be
\

generated before the sequence repeats itself. It is common to choose m as the word size

of the computer. This, however, will lead to an unfortunate result: the lower digits of X"

j)

-

will be much less random than the higher digits. To avoid this situation, m should be the

word size plus 1 or the word size minus 1. Better, the m should be the largest prime

number less than the word size [1].

The choice of multiplier a affects the period of the sequence. If the modulus m is the

product of distinct primes, the only choice for a to achieve a period of m is 1, which i

undesirable. However, when m is divisible by a high power of some prime, the period of

m-1 could be achieved when a is chosen as follows [1]:

a) The increment c is relatively prime to modulus m;

b) let b =a -1; then b must be a multiple of p, for each prime p dividing m;

c) b is a multiple of 4, if m is a multiple of 4.

Despite the fact that LCGs are widely used, they suffer from the fact that all of them

form a lattice structure in a spectral test of d-dimensions [11]. In some extreme cases, all

points of 3-tuples in a 3-dimensional test can be included on merely 15 parallel planes

[12] .

A number of PRNGs have been developed by combining two or more LCGs in

various ways. However, some combination generators have been proved to inherit the

lattice structure [13]. Those combination generators should also be tested for lattice

structure before application.

"
2. Lagged Fi bonacci generators

16

We can denote the lagged Fibonacci generator [1] in a general form as F(r,s,m,·),

where the Xn can be obtained by

X n =(xn-r • X n-s)modm,

and rand S are called the lags. The symhol "." represents a binary operation. It can be

either plus, minus, multiply, or bitwise exclusive OR (XOR). Lagged Fibonacci

generators were first introduced in order to extend the period of a linear congruential

method and have been used successfully in a lot of situations. Lagged Fibonacci

generators are also faster than LCGs if the binary operation is plus or minus. In the

1990s, people discovered that lagged Fibonacci generators consistently fail the birthday

spacing test unless r is more than 500 [5].

3. Inversive congruential generators

Inversive congruential generators (lCGs) [14] can be described in the following form:

X"+l =aX" + c(mod p).

The modulus p is usually a prime. Let XII = X:' if X n :;t: 0, X II =0 if X" =O. In other

words, X" equals the number X,;-2 modulo p [14]. One significant aspect of ICGs is

that they .lack the lattice structure of d-tuples of consecutive random numbers. This is

very different from the LCGs [12,14]. This made ICGs very useful in simulations to

verify the result yielded by LCGs. However, the ICGs are usually slower than LCGs

because of the inversion operation involved.

17

4. Shuffling method

The effort to use shuffling methods combining two different RNGs to provide a better

random sequence is quite common nowadays. The introduction of a second RNG can

sometimes show significant improvement over the original sequence.

In a shuffling method [16,17], we use the second generator to choose a random order

for the numbers produced by the first generator. Generally, we first generate a vector of

pseudorandom number of given size using the first generator. We then use the second

generator to choose a number from the vector randomly. After the number been

extracted, we fill the same slot with the next number in the sequence generated by the

first RNG [151.

The idea of a shuffling method was first introduced by George Marsaglia [16,17].

The original shuffling method proposed was

U k +1 =(i 7 +3)XU k mod2 35
,

Vk+J = ((27 + l)XVk + l)mod2 35
.

The sequence of Uk was used as the first sequence, while V~ is u ed as the second

sequence. A vector of length 128 was used. The index of the vector was obtained from

the Vk by using its first 7 bits. The pseudorandom numbers generated by this shuffling

method were put through a series of tests, including the equidistribution test, the spectral

test at dimensions 2 and 3, and the maximum and minimum of n. [n contrast to LeGs,

the shuffling random number generator passed all the tests [15]. Of course, the

18

involvement of two pseudorandom number generators instead of one made the

computational time twice as long.

5. Add-with-carry and Subtract-with-borrow generators

Add-with-carry (AWC) and Subtract-with-borrow (SWB) generators were proposed

by Marsaglia and Zaman 118]. The AWC generators can be described as below:

Xi = (x i -
S
+ x i _ r + c j)modb ;

where b, r, s are positive integers, b is called the base, and r> s are called the lags. The

carry c, is calculated from the indicator function /, whose value is 1 if its argument is

true, and a otherwise. SWB generators have similar formulas. These types of generators

are extremely fast, since no multiplication is involved. These generators also have very

long periods. These generators have been proved equi valent 10 LCGs with very large

modulus and inherit the lattice structure in high dimensions [19]. These types or

generators are currently used by G. Marsaglia since they are fast and have very long

periods. (Marsaglia is perhaps the leading authority on PRNGs.)

The standard for a good PRNG

It is very difficult to tell what a good pseudorandom number generator should be. In

fact, for different applications, the standard is different. For stochastic simulation, a good

19

pseudorandom generator must have a long period, a uniform distribution, and the internal

correlation of the RNG should not disturb the simulation. Thus, before any usage of a

PRNG for simulation, the PRNG should be thoroughly tested. Better, a ta k-specific test

should be developed for each simulation to make sure that the internal correlation

between pseudorandom sequences would not affect the result. For cryptography, the

unpredictability of a random sequence is also very important [20). The cracking of an

encryption method based on a PRNG is essentially to predict the next number from a

short section of the same sequence. Other attributes a good pseudorandom number

generator should have include the efficiency of the algorithm, the portability and the

homogeneity of the pseudorandom numbers, which means that every bit in a

pseudorandom number should have the same randomness.

20

Stream Ciphers and PRNGs

Pseudorandom numbers can be used in cryptography in conjunction with stream

ciphers [20]. A symmetric encryption algorithm uses the same key in both encryption

and decryption. A stream cipher is a kind of symmetric encryption algorithm that usually

works on one byte each time. A block cipher is a symmetric algorithm that works on a

block of infonnation at one time.

In a very simple way, we can encrypt a message using a key and the exclusive OR

(XOR) operation. Suppose we have a key of "icecream" and the plain text is

"FOOTBALL", the result of the XOR operation is "I,*70$-!" in a UNIX system. This

may seem good enough for ordinary encryption. In fact, this kind of encryption is

nothing more than plain text itself in the eyes of a cryptanalyst, if we use the same key

"icecream" repeatedly in the entire message. The idea of a one-time pad is to use

different keys chosen at random for each byte in the message and never use the same

sequence of keys again. This method has been proved unbreakable if the stream is truly

random. One-time keys are in fact used for diplomatic messages of the highest security.

However, a one-time pad method requires a large amount of random keys to be stored

and distributed between the sender and recei ver. The storing and distri bution procedures

are practically difficult to be secure, quick, and convenient at same time. This situation

leads us to a third solution.

21

-

An intermediate method is to use a pseudorandom sequence as the key for encryption.

An encryption depending on a pseudorandom sequence essentially makes an attack on the

encryption method an attack on the pseudorandom generator. If the pseudorandom

sequence displays a certain pattern, like the lattice structure displayed by all LeGs in d­

tuples, it is proved breakable [21].

The most popular form of pseudorandom number generator used in cryptography is

the feedback shift register [20, 30). The hardware implementation of a feedback shift

register is very simple and quick. It consists of only two parts. The first part is a shift

register; the second part is a feedback function. The feedback shift register produces one

bit at a time. After the rightmost bit been taken as the produced bit, the register shifts

right one bit. The leftmost bit is determined by the "feedback function" l(x), x 2 , •..• x,,),

where x j (l ~ i ~ n) denotes the ith bit in the register. If the "feedback function"

!(X1,Xl •... ,X,,) can be expressed as

where each of the constants c; (l ~ i ~ n) is either 0 or I, and where the symbol EEl

denotes addition modulo 2 (I for odd sum and 0 for even sum), the shift register is called

a linear shift feedback register (LSFR) [30]. The Linear feedback shift register ha the

same mathematical formula as lagged Fibonacci generators [20]. The difference is the

modulus m here is 2. To generate a number, the bits are collected into words. Linear shift

register sequences are easily cracked and are therefore never used in cryptography.

Nonlinear feedback shift registers are used instead.

22

J

An additional text compression step is usually performed before encryption, which

greatly increases the complexity of cryptanalysis and reduces the size of the message.

However, there are ways to crack a sequence encrypted by PRNGs. For a sequence

encrypted by a LCG, only the length of the key and the same length of the plain text are

necessary to reconstitute the LCG and its original value, which serves as the key [21].

The key to crack a sequence encrypted by a PRNG is to get a segment of the

pseudorandom number sequence and predict the next number from this segment. Thus,

the unpredictability of a pseudorandom number sequence is more important in cryptology

than other aspects of the sequence, like the uniform distrihution.

There are also reports on cracking the shuffling method sequence [22,23]. The basic

idea of cracking the shuffling method is to separate the effect of the two generators

involved in the algorithm. As we noticed, the sequence generated by the shuffling

method is totally from one of the generators. The other one was only used to change the

order of the number generated by the first generator. This change in order, however, is

bounded to the size of the table used in the shuffling method. This is the basic weakness

of this encryption. To improve the security, a double-encryption method was introduced

[22]. This method uses two numbers from the first generator in shuffling method instead

of one. This method can somewhat improve the time and resources involved in an attack

but is also thought to be breakable. Later we will discuss another method suggested by

Chandler [24], which may be much more difficult to break.

23

)

Stream ciphers have a limitation that the same keyes) (initial eed(s» mu t never be

used to encipher two different messages [20]. If two lengthy mes ages are enciphered

using the same keYes), a simple frequency analysis can recover both of the messages and

the pseudorandom stream, if not the seeds themselves. Block ciphers do not share thi

limitation. For greater security, a message can be compre sed, then added to a

pseudorandom sequence (stream cipher), then enciphered with a block cipher.

24

-

DNA and pseudorandom number generators

DNA (deoxynucleic acid) is the genetic material for all living cells in the world. It is

also one of the genetic materials for viruses. A single stranded DNA chain can be

considered as a linear sequence consisted of only four types of nucleic acid residue,

which can be represented by A, G, C, and T. The double stranded DNA, which is the

actual genetic material for human beings, consists of two strands of DNA winding around

each other, forming a double helix structure. The two strands of DNA are

complementary to each other while going the opposite direction. In the double helix

structure, A is always complemented by T, and G with C. A pair of A-T or C-G residue

is thus called a base pair, since all nucleic acid residues have a basic (alkali) part. The

length of DNA is counted in base pairs. In living cells, DNA is organized into a large

structure called a "chromosome". A single copy of the full DNA sequence is called the

"genome" for that organism. The total length for the human genome is estimated around

4x 109 base pairs. The sequences of the DNAs are transcripted into RNAs, and then

translated into proteins, which performs all kinds of biological activities.

Since the 1970s, sequences of all kinds of different DNA pieces were reported. After

the beginning of the genome project, more and more sequences were reported by

different groups around the world. The current genome projects are focused on human

beings, mice, fruit flies, yeast, bacteria, etc. The sequence of DNA discovered so far

cannot be predicted in any mathematical way. Thus, the sequence of DNA can be

considered as a partially random mixture of the four types of nucleic acid residues.

25

Since DNA sequences are fixed and anybody can retrieve them from the Internet,

DNA themselves cannot be considered as a PRNG. Rather, combining the DNA

sequence and a PRNG would be a better choice. An obvious way to crack the combined

PRNG is to remove the effect of DNA by testing all the DNA sequences. After removing

the DNA effect, one can try to crack the PRNG. The problem with this approach is that

the amount of resources and times needed for a successful attack are increased

dramatically, because the length of DNA sequence and thus the number of possible

combinations is simply huge.

26

CHAPTER THREE

Program Listing

1. Mshuffie and Mimped

The Mshuffle method anu Mimped method were implemented in C language. The

'M' in the method name stands for "masking". In both of the methods, a third generator

was used to mask the result from a shuffling method by a bit-wise XOR operation. The C

language provided a convenient way to do the XOR operation and thus was the choice of

language. The first generator used in both methods is the standard ANSI C generator

[12); the second generator is the SIMSCRIPT generator [12]; and the third generator used

in both methods is the Maple generator [12]. All generators have a period of 231 _2 [12].

The first generator is used to provide the output sequence of the shufflmg method. The

second generator is used as the index generator for the 97-entry table. The sequence

generated by the first generator is stored in the table first. The output of the shuffling

method is selected from the table using the index generated hy the second generator. The

third generator generates a separate sequence. The sequence generated by the third

generators is bitwise XORed with the sequence generated by the shuffling method. This

27

I
1

is the output of Mshuffle method. Thus, all three LCGs are used to generate every

number in the output sequence. The Mimped method then took the middle two bytes of

the number generated by the Mshuffle method as its output. The output value was

between 0 and 65535. To fulfill the requirement of some tests involved, the Mimped

method called the Mshuffle twice and combined the two two-byte numbers into one four-

byte number. Both methods use the double precision arithmetic operation provided by

standard C library. Since all three LCGs used in the Mshuffle and Mimped methods have

the same period (231 _2), it is safe to say that Mshuffle and Mimped methods have periods

at least as long as 231 _2. After generating 231 _2 numbers, those three LCGs will begin to

repeat. However, since the table content probably will not be the same as it was in the

beginning, the generated sequence should be different. Thus, these two generators should

have a period at least as long as 231 _2. The ANSI C generator was initialized to 12345;

the other two generators were initialized to 1.

Mshuffle.h

#include <math.h>

]

'.

1*
*
*

Table is designed to be of length 97. Normally, the
table used in the shuffling method will be of size
near 100 for both convenience and randomness.

*/
#define TABLELENGTH 97
unsigned long table [TABLELENGTH] ;
const double MODNUMBER1 2147483648.0; II 2**31
const double MODNUMBER2 = 2147483647.0; II 2**31-1

Mshuffle.c / Mimped.c

#include "Mshuffle.h"

1* First generator used in the shuffling method. This generator will
generate

* numbers which will be put into the table. This is a linear
congruential

* generator: LeG (2**31, 1103515245, 12345, 12345) ANSI C generator

28

*/
unsigned long randl ()
{

static double seed=l2345;
while ({seed = fmod (1103515245.0*seed+12345.0,MODNUMBERl))<0);
return (unsigned long) seed;

/*

*
*
*
*

Second generator used in the shuffling method. This generator
generates numbers that are used to permutate the sequence of the
table. This is a linear congruential generator: LCG (2**31-1,
630360016,0) SIMSCRIPT generator.
The seed is arbitrary.

*/
unsigned long rand2 ()
{

static double seed = 33456109 ;
while ((seed = fmod (630360016.0*seed, MODNUMBER2))<0);
return (unsigned long)seed;

/*

*
*
*
*

This generator is used to mask the result of the shuffling method.
The result of the shuffling method will be exclusive ORed with the
result of this generator.
This is also a linear congruential generator: LCG (2**31,65539,0)
Maple's LCG. The seed is arbitrary.

*/
unsigned long rand3 ()
{

static double seed = 7789098.0 ;
while ((seed = fmod (65539.0*seed,MODNUMBER1))<0);
return (unsigned long)seed;

/*
*
*

This function takes two numbers and exclusive ORs hem and re urns
the value. This function is used to mask the pseudorandom number
sequences.

)

*/
unsigned long mask (unsigned long numberl, unsigned long number2)
{

return numberl~number2;

/*

*
This function is used to extract the middle two bytes which will be
the output of the complete pseudorandom number generator.

*/
unsigned int extract (unsigned long original)
{

return (original&OxOOffffOO»>8;

/*
*
*

This function is the shuffling method itself. It uses rand1,
rand2 and the table to get the next number generated by the
shuffling method.

*/
unsigned long shuffling ()
{

unsigned
unsigned
unsigned
unsigned

number1
number2

long number1;
long number2;
long result;
int index;

randle) ;
rand2() ;

29

index = nurnber2 % TABLELENGTH;
result = table[index);
table(index] = numberl;

return result;

1*
*
*

This function is used to initialize the table. It repeatedly calls
randl to fill the table with the pseudorandom sequence. This
function should be called only once.

*1
void init ()
{

register short i;
for (i=O; i<TABLELENGTH; i++)

table(i] = randl();

*1
unsigned int MShuffle()
{

1*
*
*
*
*
*
*
*

*
*
*1

1*
*
*

1*
*
*

This function MyRand is the complete pseudorandom number generator.
The procedure of this generator is as followed:
1. initialize shuffling method;
2. call shuffling() to get the next number in the shuffling

sequence;
3. call rand3() to get the next number in the LeG ();
4. bitwise exclusive OR two pseudorandom numbers to get a temporary

result;
5. extract the middle two bytes from the temporary result such that

the final result is between 0 and 65535, inclusively;
6. goto step 2 to get the next number in the sequence.

This function is being called when the original version of mshuffle
is needed. It will return an unsigned integer value between 0 and
2**32-1. inclusively.

return mask (shuffling(), rand3());

This function is called when the improved version of mshuffle is
needed. It will return an unsigned integer value between 0 and
65535. inclusively.

I

•

*1
unsigned int Mimped ()
{

return extract (mask (shuffling (), rand3 ()) ;

1*
*
*

This function is called when the improved version of mshuffle is
needed. It will return an unsigned integer value between 0 and
2**37.-1. ir:.clusively.

*1
unsigned int Mimped32{)
{

unsigned int temp;
temp = extract (mask (shuffling (). rand3 ()) ;
temp = temp«16; II generate left half
temp += extract (mask (shuf fling (), rand3 ()) ;
1/ generate right half
return temp;

30

--

2. Dshuf3

Dshuf3 was implemented in Fortran 77 by Dr. J. P. Chandler of Oklahoma State

University [24]. This generator uses three simple LCGs and a table. The first LCG

involved is based on the LeG (1048583, 1997,0, 1). The second LCG involved is based

on the LeG (1048589, 1993, 0, 1). The third LCG involved is based on the LCG

(1048601, 1973, 0, 1). The first and second LCGs are involved in a shuffling method.

The third LCG is used to decide the role of the first and the second generators. There are

some modification made to the LCGs used in this method. Ten elements are thrown out

from the first generator. Similarly, six and twelve elements are thrown out from the

second and third generator, respectively. This thrown-out action ensures that the period

for each generator is prime, and therefore relatively prime to the other generators'

periods. The three relatively prime, yet different periods give Dshuf3 a period at least as

long as the product of those three periods. Only after the product of those three periods

of times, could Dshuf3 possibly begin to repeat. However, the table at the cycling point

will almost centainly not be same as the table at the starting point, which means a much

longer period for Dshuf3. This generator must to be initialized before its first usage. The

initialization is to fill a table of 127 clements. All three generators are involved in the

generation of each pseudorandom number, no matter whether 1l is in the initialization step

or in later steps. This generator first calls all three LCGs to get the next numbers in the

LCG's sequences. Then it compares the number generated by the third LCG to an

arbitary cutoff number. If the number generated by the third LCG is greater than the

cutoff value, the number generated by the first LCG serves as the index. The number

31

generated by the second LCG would be inserted to the indexed table entry; the original

number in this table entry would be the next number generated by Dshuf3. If the number

generated by third LCG is smaller than the cutoff value, the second LCG erves as the

index. generator and the first LCG served as the number generator. By witching the role

of the first and second generators using the value of third generator, this generator

provides excellent unpredictability. The output from the current number generating

LCG, which is a double precision number without the decimal part, is u ed as an

intermediate result. Double precision numbers in FORTRAN have a resolution about

r 55
• To achieve an even better resolution, the third LCG is used to provide the

fractional part of the number. This intermediate number is then di vided by the period of

current number generating LCG to yield the final output, a double precision number in

the range of (0,1). To yield an integer number between _231 +1 to 231
, we multiplied the

double precision number by 232 and subtracted 231 _1 from it. An alternative form of this

method generates one pseudorandom byte each time. Thus, to get a 32-bit integer, we

needed to call the generator four times and assemble the four bytes into one number. For

the Dshuf3 method, the first and the third LCG were initialized to I and the second

generator was initialized to 2.

Otpt. c

/* This function provides file output for generators written in
* FORTRAN 77. The FORTRAN7? function should make calls to an
* external C function which is called "otpt" and takes one integer
* argument.
*/

#include <stdio.h>
#include <stdlib.h>

void otpt_ (int * in)
(

static int ff = 1;
static FILE *fp;

32

i: (ff)

II open output file
if (! (fp=fopen ("ofile", "w"))) exit (0);
ff = 0;

}

II use fwrite() to output unformatted binary file.
II this is the requirement for DIEHARD test suite.
fwrite (in,sizeof(int),l,fp);

Dshuf3.f

C
C CHALLENG.CNTL
C
C

PSEUDORANDOM NUMBER GENERATOR
JULY 1999

IMPLICIT REAL*8 (A-H,O-Z)
C

INTEGER JSEED,KUT3,INIT3,N,J
INTEGER JTABLE,JTINDX,JTSIZE,M,KA,KMAX
INTEGER RSLT

C
C
C

C

c

c

*
*

EXTERNAL FUNCTION OTPT WRITTEN IN C HANDLES FILE OUTPUT

EXTERNAL OTPT !$PRAGMA C(OTPT)

DOUBLE PRECISION DENOM
DOUBLE PRECISION DD,DSHUF3

DIMENSION JSEED(3) ,RBYTE(24000)

COMMON ICDSHU31 DENOM(3) ,
JTABLE(127) ,JTINDX(127) ,JTSIZE,M(3) ,KA(3) ,KMAX(3) ,
KMODE,JDIVIS,JRBYTE

C GENERATE 1,240,000 BYTES
C

N=2600000
C
C CUTOFF VALUE
C

KUT3=500000
C
C SET KMODE TO 1 IF PSEUDORANDOM BYTE IS DESIRED
C SET KMODE TO 2 IF DOUBLE PRECISON PSEUDORANDOM NUMBER
C BETWEEN 0 AND 1 IS DESIRED
C

KMODE=2
JDIVIS=67

C
INIT3=1

C
C SET SEEDS HERE
C

JSEED(l) =1
JSEED(2)=1

33

JSEED(3)=1

DO 30 J=l,N
20 DD=DSHUF3 (JSEED,KUT3,INIT3)

RSLT = DD * 4294967296.DO - 2147483648.DO
IF (RSLT.GT.-1.DO .AND. RSLT.LE.O.ODOl GOTO 20
CALL OTPT(RSLT)

C RBYTE(J)=JRBYTE
C

30 CONTINUE
C
C SUM=O.ODO
C DO 100 J=l,N
C SUM=SUM+RBYTE(J)
C 100 CONTINUE
C AVE=SUM/N
C PRINT 110, N, SUM
C 110 FORMAT(/' N =' ,I11,5X, 'SUM =',G15.7)
C

STOP
C
C END CHALLENG (MAIN PROGRAM)
C

END
DOUBLE PRECISION FUNCTION DSHUF3 (JSEED,KUT3,INIT3)

J. P. CHANDLER, COMPUTER SCIENCE DEPARTMENT,
OKLAHOMA STATE UNIVERSITY

PSEUDORANDOM NUMBER GENERATOR
SHUFFLING GENERATOR WITH THE ROLES INTERCHANGING

IMPLICIT REAL*8 (A-H,O-Z)
INTEGER JSEED,KUT3,INIT3
INTEGER JTABLE,JTINDX,JTSIZE,M,KA,KMAX
INTEGER INDX,JFILL,JHOLD,JTYPE,J,JINDX,JRNG,MOD

JULY 1999

=1 ON THE FIRST CALL TO DSHUF3 FOR A GIVEN
PROBLEM, TO FORCE INITIALIZATION.
INIT3 IS RESET TO ZERO BY DSHUF3, AND MUST
NOT BE CHANGED BY THE USER UNTIL THE NEXT
PROBLEM IS TO BE STARTED, AND PERHAPS NOT
EVEN THEN.

ARRAY OF THE CURRENT INTEGER PSEUDORANDOM
DEVIATES, ONE FROM EACH CONGRUENTIAL GENERATOR.
INITIALLY, THE USER MUST SET EACH JSEED(J)
TO AN INTEGER BETWEEN 1 AND 2 A 20, INCLUSIVE.

CUTOFF USED IN DECIDING WHEN TO INTERCHANGE
THE ROLES OF GENERATORS NUMBER ONE AND TWO

KUT3

INIT3

JSEED()

DSHUF3 1.0
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
DOUBLE PRECISION DENOM
DOUBLE PRECISION TEMP

C
DIMENSION JSEED(3)

C

*
*

COMMON ICDSHU31 DENOM(3),
JTABLE(127) ,JTINDX(127) ,JTSIZE,M(3) ,KA(3) ,KMAX(3) ,
KMODE,JDIVIS,JRBYTE

34

C
C

IF(INIT3.EQ.0) GO TO 40

INITIALIZE.
SET THE PARAMETERS FOR THE THREE MULTIPLICATIVE CONGRUENTIAL
GENERATORS.
THE M(J) ARE THE MODULI.
THE KA(J) ARE THE MULTIPLIERS.
THE KMAX(J) ARE LIMITS ON THE SIZES OF THE JSEED(J), TO CAUSE
THE PERIODS OF THE THREE CONGRUENTIAL GENERATORS TO BE PRIME.

M(1)=1048583
KA(1)=1997
KMAX(l)=M(l)-lO

M(2)=1048589
KA(2)=1993
KMAX(2)=M(2)-6

M(3)=1048601
KA(3)=1973
KMAX(3)=M(3)-12

DENOM(l)=KMA.X(l)
DENOM(2)=KMA.X(2)
DENOM(3)=KMAX(3) +1

C
C * *
C
C
C
C
C
C
C
C
C

c

c

C

* *

c
C FILL JTABLE() INITIALLY.
c

JTSIZE=127
DO 30 J=l,JTSIZE

C
C CYCLE ALL THREE CONGRUENTIAL GENERATORS.
C

DO 20 JRNG=1,3
10 JSEED(JRNG)=MOD(KA(JRNG)*JSEED(JRNG) ,M(JRNG))

IF(JSEED(JRNG) .GT.KMAX(JRNG») GO TO 10
20 CONTINUE

C
C USE THE VALUE OF JSEED(3) TO SELECT WHICH GENERATOR OF
C THE FIRST TWO TO USE TO FILL THE NEXT SLOT IN THE TABLE.
C

JFILL=l
IF(JSEED(3) .GT.KUT3) JFILL=2

C
JTABLE(J)=JSEED(JFILL)

C
C STORE IN JTINDX(J) THE NUMBER OF THE GENERATOR THAT WAS USED
C TO FILL THE SLOT JTABLE(J) .
C

JTINDX(J)=JFILL
30 CONTINUE

C
INIT3=0

GENERATE AND RETURN THE NEXT PSEUDORANDOM NUMBER.
FIRST, CYCLE ALL THREE CONGRUENTIAL GENERATORS.

C
C * *
C
C
C
C

* ******

40 DO 60 J=1,3

35

50 JSEED(J)=MOD(KA(J)*JSEED(J) ,M(J»
IF(JSEED(J) .GT.KMAX(J) GO TO 50

60 CONTINUE
C
C CHOOSE THE ROLES OF GENERATORS NUMBER ONE AND TWO,
C DEPENDING ON THE VALUE FROM GENERATOR NUMBER THREE.
C

JFILL=l
IF(JSEED(3) .GT.KUT3) JFILL=2
JINDX=3-JFILL

C
C SELECT AN ELEMENT FROM THE ARRAY, AND REFILL THAT SLOT.
C

INDX=l+JSEED(JINDX)*JTSIZE/KMAX(JINDX)
C

C

C

70

IF(INDX.GT.JTSIZE) THEN
PRINT 70,JINDX,JSEED(JINDX) ,JTSIZE,KMAX(JINDX),INDX
FORMAT(/' JINDX =' ,I2,5X, 'JSEED(JINDX) =' ,Ill,

5X, 'JTSIZE =' ,14/
5X, 'KMAX(JINDX) =' ,I8,5X, 'INDX =' ,14)

GO TO 40
ENDIF

JHOLD=JTABLE(INDX)
JTABLE(INDX) =JSEED (JFILL)
JTYPE=JTINDX(INDX)
JTINDX(INDX)=JFILL

IF(KMODE.EQ.l) THEN
DSHUF3=-999.0DO

C
C GENERATE A PSEUDORANDOM BYTE.
C

JRBYTE=MOD((JHOLD+JSEED(3))/JDIVIS,256)
ELSE

C
C GENERATE THE DOUBLE PRECISION DEVIATE, USING GENERATORS
C NUMBER JINDX AND NUMBER THREE TO FILL IN THE GAPS
C AND GIVE HIGH RESOLUTION.
C

TEMP=(JSEED(JINDX)-1)+JSEED(3)/DENOM(3)
DSHUF3=((JHOLD-l)+TEMP/DENOM(JINDX))/DENOM(JTYPE)
IF(DSHUF3.LE.O.ODO .OR. DSHUF3.GE.l.ODO) GO TO 40

C
JRBYTE=-999

ENDIF
C

RETURN
C
C END DSHUF3
C

END

36

-

3. DNA and D Aimp

We use DNA to denote the number sequence translated from actual human genes

[26]. The translation was described below. Nucleic acid residue A was translated into 0,

G was translated into 1, C into 2, and T into 3. Each residue was considered as a two-bit

number. Four residues were thus translated into one byte. Four byte (16 re idues) wer

then organized into a thirty-twa-bit number. For any test required an range of [0, l), the

numbers were divided by 232
. DNAimp was used to denote the method in which a

random number obtained from DNA was bitwise XORed with a pseudorandom number

generated by Mimped. DNAimp was implemented in C.

DNA.c

#include <stdio.h>

1* * This function takes an EMBL format DNA sequence file and transforms
* the DNA sequence into numbers. The EMBL format DNA sequence is a
* sequence without linebreaks preceeded by an online description. In
* the description is the number of the sequence in EMBL.
*1

int main () {
FILE *fp, *fp/.;
char inchar;
int inflag;
int count;
unsigned long output;
unsigned long temp;
count = 1;
inflag = 0;
output = temp = 0;
fp = fopen ("hurn.dat","r"); II open input file
fp2 = fopen ("hurnout","w"); II open output file
while ((inchar = fgetc(fp») !=EOFj
{

1* The only linebreak is at the end of a sequence or at the end
* of a description. Since a sequence is always preceeded by a
* description. the linebreak can serve as a switching sign.
*1

if (inchar == '\n') inflag = !inflag;

37

-

if (inflag)
{

switch (inchar)
{

0; break;
= 1; break;

2; break;
3; break;
4; break;

temp
temp
temp
temp
temp

case 'a':
case 'g':
case 'c':
case 't':
default:
}
if (temp>=4) continue; II ignore all other residues
output I=temp;
output = output«2; II constuct number
if (! (count%=16») II every 16 base pairs consist one number
{

fwrite (&output, sizeof(unsigned long) ,1,fp2);
}
count ++;

}
fclose (fp);
fclose (fp2);
return 1;

DNAirnp.c

#include "Mimped.c"
int main ()
{

unsigned short ran, hurn;
unsigned long i;
FILE *fp2;
FILE * fp;

if (!(fp=fopen("myresult","w"») exit (0); /I open output file
if (l(fp2=fopen("humout","r"») exit (1); /I open input file
1* Input file should be the output file of dna.c *1
init () ;
II generate 10 million of random bytes
for (i =0; i<5000000; i++)
{

ran = Mimped();
fread (&hurn, sizeof (unsigned short), 1, fp2);
ran = ran '" hum;
fwrite (&ran,sizeof(unsigned short) ,1,fp); II write unformatted

bytes
}

38

-

4. Oshuf2

A simple shuffling method Dshuf2 was implemented in C in order to compare with

Dshuf3. Dshuf2 used the first and second LCG in Dshuf3 without the thrown-out action

to implement a typical shuffling method. All of the number generated by Dshuf2 are

from the first LCG. The second LeG is used to generate the index into the 127-entry

table. Both the first and second LCG are initialized to 1.

Dshuf2.c

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define TABLESIZE 127

unsigned long table [TABLESIZE] ={O);

unsigned long LCG1 ()
{

/* LCG1 = LCG (1048583,1997,0,1) */
static unsigned long seed = 1;
unsigned long range = 1048573; // a prime
do {

seed = (unsigned long) fmod (1997.0*seed, 1048583.0);
} while (seed >= range);
return seed;

unsigned long LCG2 ()
{

/* LCG2 = LCG (1048589,1993,0.1) */
static unsigned long seed = 1;
unsigned long range = 1048583; // a prime
do {

seed = (unsigned long) fmod (1993.0*seed, 1048589.0);
) while (seed >= range);
return seed;

void init ()
{

int i;
for (i=O; i<TABLESIZE; i++)

table[i] = LCG1();

39

-

unsigned long RANDO()
{

unsigned long index;
unsigned long number;
unsigned long outnumber;

index = LCG2()%TABLESIZE;
number = LCG1();

outnumber = table [index] ;
table[indexl=number;

return outnumber;

.int main ()

FILE *fp;
int i;
long ran;
char temp;

if (! (fp=fopen("dshuf2result", "w"))) exit(O);
init () ;

for (i=0;i<12000000;i++)
{

ran = RANDO () ;
temp = ran%256;
fwrite(&temp, sizeof(char) , 1, fp);

}
fclose (fp) ;
return 1;

40

-

CHAPTER FOUR

Results

1. Runs test

In the runs test, we counted the runs up and runs down. For a sequence of number XI,

X2, ... , Xn in the range [0,1), if X]<X2<...<Xm, and Xm+]>Xm, we counted it as one runs up.

We then discarded Xm and continued the counting from X",+2. After testing a sequence of

length of 10,000, we got the number of all runs up in the sequence. This number was

then compared to the expected distribution, and a probability value was obtained. The

test was repeated 10 times, and the ten obtained probability values were subjected to a y!

test. Tests on runs down were perfonned similarly. Two sets of four tests total were

perfonned for each generator. The result listed in the table below is the probability value

of the runs test. Values in boldface meant that this value is out of the 5% limitation,

which is greater than 0.95 or smaller than 0.05. Too many boldface values suggest a

failure in the particular test. Note that boldface values do happen sometimes. A 10%

boldface value to all values ratio is acceptable. The results suggested that all generators

passed the runs test.

41

Generator MShuffle Mjmped DShufY4 SmithL:l Dshuf2 DNAimp

Set! Runs up 0.160863 0.703222 0.083466 0.015760 0.185621 0.540155

Runs down 0.913231 0.724113 0.300338 0.401432 0.412830 0.275385

Set2 Runs up 0.792193 0.816320 0.854419 0.106908 0.415503 0.859278

Runs down 0.259628 0.065763 0.248263 0.552016 0.346444 0.676084

Table 1. Results of the runs test. The values listed in the table are the
possibility value. A possibility value between 0.5 (5% limit) and 0.95
(95% limit) can be considered as passed the particular test. All the
following tables will follow this convention unless specifically
denoted.

2. Permutation test

The permutation test takes n consecuti ve numbers. This number sequence has n!

possible combinations. We characterize each one of those combinations a a state. After

111 overlapping sequences of length n have been processed, cumulative counts were made

of the number of occurrences of each state. The X2 value was then calculated on the set

of cumulative counts. In this particular experiment, n equals 5 and m equals 1,000,000.

The result listed in the table below is the probability value of the permutation test.

Values in boldface mean that this value is out of the 5% limitation, which is greater than

0.95 or smaller than 0.05. Too many boldface values suggest a failure in the particular

test.

42

:"...
•

-

Generator MShuffle Mimped Dshuf3 Smith Dshuf2 DNAimp

Setl 0.292171 0.167450 0.914650 0.315338 0.758860 0.830703

Set2 0.532492 0.622684 0.109340 0.054743 0.975648 0.000021

Table 2. Results of permutation test

3. Birthday spacing test

The birthday spacing test supposes we have m birthdays in a "year" of n days. After

throwing m numbers into n categories, we list the spacing between m numbers. Let j be

the times of occurrence of spacing values. The distribution of} should be asymptotically

a Poisson distribution with mean mXn' In this test, mis 210 and 11 is 224
, The} values

are subsequently subjected to a X2 test. The result listed in the table below is the

probability value of the permutation test. Values in boldface meant that this value is out

of the 5% limitation, which is greater than 0.95 or smaller than 0.05. Results suggest that

:III the tests except the Mshuffle method and DNAimp passed this test.

Generator MShuffle Mimped Dshuf3 Smith Dshuf2 DNAimp

0.000000 0.123547 0.328946 0.133603 0.071341 0.999394

Table 3. Results of birthday spacing test

4. Monkey test

43

...
,I

The monkey tests (6) are a set of tests that share the same idea. We first define an

alphabet for the "monkey", then let the monkey type randomly on a typewriter. After a

certain number of words have been typed, we compare the numbers of missing words to

the expected values. In a bit stream test, the alphabet is '0' and '1' and the length of the

words is twenty. The alphabet size of the OPSO test is 210 and the length of the words is

two. The alphabet size of the OQSO test is 25 and the length of the words in four. The

DNA test has an alphabet of C, G, A, and T. Each letter is represented by two bits. The

length of the words in the DNA test is ten. The result listed in the table below is the

probability value of the monkey tests. Values in boldface meant that this value is out of

the 5% limitation, which is greater than 0.95 or smaller than 0.05.

In the bit stream test, the probability value of all 20 bitstreams for Mshuffle are

0.000000, which means these two generators failed on all bitstreams. The Harry Smith

generator also failed this test but at a less severe level. The Mimped method passed this

lest. In the OPSO test, the Harry Smith generator performed badly. The Mimped,

Dshuf2 method and Dshuf3 methods passed this test. The Mshuffle method's results

were mixed. The light half of the number generated by Mshuffle failed this test badly

while the left half geared through. This result suggested that the left half side was more

random than the right half side for the Mshuffle method. In the OQSO test, methods

Mimped, Dshuf2 and Dshuf3 passed without difficulties. The Harry Smith generator

behaved somewhat better than in the OPSO test while still not passing. The Mshuffle

method failed this test, too. The righthand side was again less random than the lefthand

side. The DNA test performed on those four generators gave the similar result. Methods

44

,
' ..
I

Mimped, Dshuf2 and Dshuf3 passed the test again. In contrast to the OPSO and OQSO

tests, the Harry Smith generator passed the DNA test, too. The Mshuffle method failed

again with its left half behaved better than its right half. In these four tests, it was clear

that Dshuf3 and Mimped behaved the best. The lefthand side of the numbers generated

by Mshuffle was significantly better in tests than the righthand side.

Counting the 1's test is also a part of the monkey test with some twists. We count the

!'s in a byte and designate an alphabet of 'A', '8', 'C', 'D', and 'E'. 'A' is associated

with a byte with zero, one, or two 1'so 'B' is three, 'C' is four, 'D' is five, and the rest

are 'E'. The length of the words is five. The first test counting the! 's treated all bytes as

a stream and tests the overall behavior, while the second test uses a specific byte (8 bits).

The results showed that the Mimped method, Dshuf2 method and Dshuf3 method passed

the first test, which is not surprising, considering their better behavior in the other

monkey tests. The Mshuffle method failed both tests. In the second test, it showed the

"left better than right" pattern again.

4.1 Monkey tests on 20-bit words

8it- MShuffle Mimped Dshuf3 Smith Dshuf2 DNAimp
stream

J 0.000000 0.436266 0.741497 0.000036 0.794138 0.570772

'1 0.000000 0.507764 0.907503 0.002966 0.152698 0.015642

3 0.000000 0.199702 0.148330 0.000194 0.291745 0.666649

4 0.000000 0.415202 0.309632 0.000088 0.816642 0.798108

1----.

5 0.000000 0.092752 0.097495 0.000598 0.882981 0.495647

45

...

6 0.000000 0.981776 0.239729 0.000127 0.819726 0.268160

7 0.000000 0.865618 0.208977 0.000333 0.062194 0.765078

8 0.000000 0.816642 0.752880 0.000000 0.767940 0.987118

9 0.000000 0.667498 0.684295 0.000216 0.934791 0.423419

10 0.000000 0.037380 0.374741 0.000004 0.799421 0.431669

11 0.000000 0.696650 0.029418 0.000000 0.083783 0.249267

12 0.000000 0.016201 0.453806 0.000039 0.680129 0.393481

13 0.000000 0.061624 0.143517 0.000106 0.287748 0.212350

14 0.000000 0.870609 0.304707 0.000004 0.112339 0.688437

15 0.000000 0.224753 0.434426 0.000372 0.753439 0.723039

16 0.000000 0.081645 0.114133 0.003393 0.031017 0.327983

17 0.000000 0.217125 0.000401 0.000017 0.032858 0.683464

18 0.000000 0.917170 0.417937 0.000001 0.624071 0.234678

19 0.000000 0.312935 0.717536 0.000429 0.812268 0.380957

20 0.000000 0.277478 0.429833 0.006474 0.870609 0.043034

Table 4. Results of bit stream test

4.2 OPSO test

Bits MShuffle Mimped Dshuf3 Smith Dshuf2 DNAimp
used
23 to 0.000000 0.834860 0.534801 0.000000 0.899189 0.000805

32
22 to 0.000000 0.445597 0.319954 0.000000 0.239098 0.023568

31

46

21 to 0.000000 0.098185 0.402401 0.000000 0.804087 0.326144
30

20 to 0.000000 0.567536 0.829670 0.000000 0.553939 0.414453
29

19 to 0.000000 0.757314 0.709821 0.000000 0.559386 0.949401
28

18 to 0.000000 0.086224 0.121438 0.000000 0.351371 0.252122
27

17 to 0.000000 0.975979 0.033891 0.000000 0.593136 0.125662
26

16 to 0.000000 0.341194 0.171794 0.000000 0.169162 0.076869
25

15 to 0.452419 0.628818 0.867560 0.000000 0.434716 0.634019
24

14 to 0.810692 0.377271 0.678392 0.000000 0.409086 0.751890
23

13 to 0.242319 0.658376 0.558026 0.000000 0.268913 0.834860
22

12 to 0.731837 0.619659 0.732972 0.000000 0.947948 0.739731
21

11 to 0.835715 0.726126 0.826152 0.000000 0.825266 0.025553
20

10 to 0.299288 0.195589 0.814404 0.000000 0.478454 0.863075
19

09 to 0.859260 0.603804 0.985641 0.000000 0.333635 0.437432
18

08 to 0.777330 0.417143 0.154790 0.000000 0.117315 0.514208
17 I

07 to 0.253224 0.098783 0.667192 0.000000 0.170907 0.882454
16

06 to 0.448324 0.115291 0.441512 0.000000 0.736363 0.422534
15

05 to 0.860029 0.449688 0.949401 0.000000 0.999182 0.434716
14

04 to 0.777330 0.883133 0.754067 0.000000 0.193690 0.464733
13

03 to 0.308938 0.863830 0.338667 0.000000 0.833142 0.101203
12

02 to 0.572953 0.527944 0.675917 0.000000 0.715696 0.011775
11

01 to 0.000000 0.812553 0.760538 0.000000 0.965759 0.936405
10 !

Table 5. Results of overlapping pairs sparse occupancy test

47

.....

4.3 OQSO test

Bits MShuffle Mimped Dshuf3 Smith Dshuf2 DNAimp
used
28 to 0.000000 0.230298 0.901933 0.004277 0.313123 0.311923

32
27 to 0.000000 0.025705 0.731735 0.072159 0.340008 0.918903

31
26 to 0.000000 0.127589 0.930893 0.023180 0.924359 0.862725
30

25 to 0.000000 0.909342 0.719305 0.000557 0.693643 0.828150
29

24 to 0.000000 0.864208 0.519371 0.135541 0.604698 0.393554
28

23 to 0.000000 0.794307 0.383162 0.007216 0.488277 0.635660
27

22 to 0.000000 0.599466 0.832435 0.117277 0.658326 0.682854
26

21 to 0.000000 0.936983 0.816688 0.026947 0.501799 0.680435
25

20 to 0.117945 0.203442 0.963076 0.006754 0.189365 0.804760
24

19 to 0.963349 0.223151 0.676792 0.229270 0.241784 0.379286
23

18 to 0.051258 0.936563 0.316735 0.229270 0.598156 0.813976
22

17 to 0.389648 0.353773 0.574389 0.146921 0.848081 0.996309
21

16 to 0.962802 0.294166 0.855913 0.087200 0.199628 0.809402
20

f----.-.-

15 to 0.599466 0.818481 0.577045 0.050548 0.356298 0.398779
19

14 to 0.041417 0.624140 0.094972 0.157289 0.657081 0.562398
18

13 to 0.898968 0.430480 0.066295 0.009523 0.648317 0.426488
17

12 to 0.726119 0.859725 0.532865 0.000110 0.244969 0.170695
16

11 to 0.024125 0.320365 0.591586 0.002967 0.353773 0.007633
15

10 to 0.461289 0.718162 0.251407 0.027158 0.060807 0.088280
14

48

..

09 to 0.246036 0.956642 0.772432 0.005966 0.946810 0.011914
13

08 to 0.852032 0.449195 0.400088 0.030038 0.024905 0.803823
12

07 to 0.069858 0.446514 0.347494 0.139265 0.765207 0.952096
11

06 to 0.043252 0.866413 0.704267 0.032176 0.209243 0.261230
10

05 to 0.247105 0.599466 0.871460 0.008072 0.074996 0.310725
09

04 to 0.986840 0.474768 0.780535 0.737291 0.926744 0.056447
08

03 to 0.100828 0.613807 0.890321 0.068059 0.607306 0.007633
07

02 to 0.504503 0.302395 0.044831 0.002119 0.669454 0.735076
06

01 to 0.000000 0.840795 0.733964 0.332587 0.081946 0.932678
05

Table 6. Results of overlapping quadruples sparse occupancy test

4.4 DNA test

Bits MShuffle Mimped Dshuf3 Smith Dshuf2 DNAimp
used
31 to 0.000000 0.023449 0.649679 0.555518 0.920005 0.003978

32
30 to 0.000000 0.255641 0.860067 0.144351 0.543842 0.868423

31
29 to 0.000000 0.430140 0.137104 0.110068 0.525085 0.198056

30
28 to 0.000000 0.236135 0.915984 0.768079 0.379874 0.39 LL54

29
27 to 0.000000 0.778737 0.391154 0.886940 0.557848 0.939740

28
26 to 0.000000 0.329424 0.936501 0.128866 0.249983 0.352137

27
25 to 0.000000 0.242544 0.934644 0.014777 0.190751 0.663780

26
24 to 0.000000 0.593657 0.870301 0.691286 0.836537 0.536817

25
23 to 0.281903 0.629813 0.426667 0.163944 0.151851 0.676812

24

49

..

22 to 0.166141 0.083861 0.800017 0.434780 0.409390 0.907490
23

21 to 0.365363 0.185185 0.153242 0.832872 0.005655 0.217478
22

20 to 0.213165 0.376510 0.186765 0.268124 0.812172 0.595944
21

19 to 0.343417 0.581024 0.823096 0.018554 0.349949 0.641998
20

18 to 0.447583 0.812966 0.899421 0.220090 0.974108 0.998257
19

17 to 0.936867 0.045582 0.669144 0.824623 0.733487 0.523910
18

16 to 0.329424 0.013917 0.835077 0.905022 0.133258 0.345589
17

15 to 0.294995 0.093817 0.132624 0.909911 0.076401 0.990210
16

14 to 0.835808 0.734455 0.130110 0.156757 0.677655 0.015799
15

13 to 0.208902 0.451085 0.789109 0.867160 0.495681 0.175118
14

12 to 0.455760 0.578717 0.375390 0.253747 0.716760 0.048182
13

11 to 0.326228 0.476865 0.190751 0.798361 0.399105 0.806557
12

10 to 0.872161 0.776981 0.976821 0.071045 0.241623 0.037478
11

09 to 0.583327 0.858750 0.862675 0.697491 0.363147 0.559012
10

08 to 0.780486 0.626466 0.861375 0.431299 0.832872 0.850672
09

07 to 0.503919 0.189150 0.327292 0.470993 0.919565 0.950220
08

06 to 0.369809 0.063742 0.636476 0.357627 0.466301 0.523910
07

05 to 0.593657 0.820016 0.486269 0.858088 0.708719 0.303189
06

04 to 0.756218 0.880595 0.308361 0.303189 0.799190 0.163944
05

03 to 0.812966 0.482741 0.355427 0.795862 0.601646 0.954038
04

02 to 0.109514 0.492151 0.881182 0.031208 0.203854 0.391154
03

01 to 0.000000 0.050592 0.102495 0.499211 0.466301 0.193977
02

50

-

Table 7. Results of ONA test

4.5 Count the 1's in a stream of bytes

Generator MShuffle Mimped Dshuf3 Smith Dshuf2 DNAimp

Setl 0.000000 0.219021 0.116777 0.000000 0.634400 0.220701

Table 8. Results of count the I's in bytes test

51

4.6 Count the 1's in specific bytes

Bits MShuffle Mimped Dshuf3 Smith Dshuf2 DNAimp
used
25 to 0.000000 0.123408 0.973099 0.366552 0.769704 0.888372

32
24 to 0.000000 0.576830 0.611456 0.433805 0.332958 0.818292

31
23 to 0.000000 0.493151 0.720227 0.752541 0.535383 0.043703

30
22 to 0.000000 0.689718 0.485419 0.822143 0.735728 0.493513

29
21 to 0.000000 0.216088 0.489146 0.057368 0.098578 0.031674

28
20 to 0.000000 0.495211 0.520268 0.264894 0.781242 0.555019

27
19 to 0.000000 0.364342 0.123086 0.799487 0.406989 0.179143
26

18 to 0.000000 0.399651 0.425996 0.995670 0.763872 0.481004
25

17 to 0.154335 0.691977 0.811911 0.974886 0.309174 0.168689
24

16 to 0.275023 0.396283 0.026894 0.065395 0.019572 0.512074
23

15 to 0.142204 0.210622 0.564815 0.718395 0.742663 0.666865
22

14 to 0.706495 0.446023 0.259722 0.168268 0.333931 0.855187
21

L3 to 0.500360 0.633576 0.427987 0.126223 0.437817 0.214845
20

12 to 0.403946 0.902999 0.956481 0.096766 0.044850 0.477072
19

11 to 0.925530 0.968591 0.143360 0.961834 0.538469 0.139057
18

10 to 0.042823 0.198665 0.015321 0.558488 0.314934 0.783452
17

09 to 0.544964 0.845644 0.517026 0.918330 0.773595 0.468725
16

08 to 0.689033 0.043349 0.193690 0.222800 0.651871 0.731186
15

07 to 0.585551 0.752019 0.500130 0.241756 0.583573 0.004309
14

06 to 0.534703 0.609942 0.303118 0.995490 0.070391 0.602733
13

52

05 to 0.007059 0.057582 0.738741 0.546244 0.008683 0.459820
12

04 to 0.998394 0.208006 0.276706 0.569758 0.574135 0.210272
11

03 to 0.599927 0.453185 0.376765 0.929855 0.766192 0.829111
10

02 to 0.624419 0.936965 0.092553 0.295041 0.512580 0.653603
09

oI to 0.000000 0.393100 0.591665 0.719330 0.829522 0.753569
08

Table 9. Results of count the 1's in specific byte test

5. N-block test

The N-block test [8,9] was similar to a two-dimensional random walk test (see

below). The difference was that the N-block test is in one dimension. The result listed in

the table below is the probability value of the N-block test. Values in boldface meant that

this value is out of the 5% limitation, which is greater than 0.95 or smaller than 0.05. The

results suggest that all four generators passed both tests.

Generator MShuffle Mimped Dshuf3 Smith

X
2 0.841000 0.112360 0.686440 0.243360

Table 10. Results of n-block test. The value obtained by this lest was a
Xl value with degrees of freedom equal to one (I). The 5% limit In this
test was 0.00393. The 95% Iimlt III this test was 3.841. All four
generators subjected to this test passed.

6. Two-dimensional random walk test

53

).

-

In the two-dimensional random walk test [8,9], we divide the two-dimensional plane

into four equal size blocks, using x-axis and y-axis as the limits of each block. When a

series of floating point numbers between [0,1) are passed through the test, we take a

sequence of length n and define a random walk. The starting point of the walk is the

origin. We also define the value of the number greater than 0.5 as movement along the y-

axis, while any value less than 0.5 is the movement along the x-axis. Further, we define a

value greater than 0.75 as a positive increment along the y-axis while a value between 0.5

and 0.75 is a negative increment along the y-axis. Similarly, the increments along the x-

axis were also defined. We then let the walk begin and record the finish point of the

walk. After a certain number of steps, the count of finishing walks in four different

blocks were subjected to a X2 test with degrees of freedom equal to three. The result

listed in the table below is the probability value of the two-dimensional random walk test.

The results suggest that all four generators passed this test.

Generator MShuffle Mimped Dshun
!

Smith

X
2 l.998900 3.472400 2.287200 2.411400

Table 11. Results of two-dimension random walk test. The value
obtained by this test was a X2 value with degrees of freedom equal to
three (3). The 5% limit in this test was 0.3518. The 95% limit in this
test was 7.~15. All four generators subjected to this test passed.

54

)..

CHAPTER FIVE

Discussion

1. Implementation details

The Harry Smith generator used nine different simple generators. Five of them are

:).

LeGs, the other four arc shift-feedback registers. In order to improve the

unpredictability, this generator cycles through those nine simple generators. Each simple

generator is used as the index generator for the simple generator before it. Thus, each

simple generator is both an index generator and generates numbers for the Harry Smith

generator. This method can be considered as an extremely complicated shuffling method.

This generator was also implemented in C. The output range is -32768 to 32767. For

further information, please check the reference [25]. The Harry Smith generator required

an input key and would utilize this input key to initialize the nine simple generators it

used. The input key was "ajkK15k9kk599A9071136dg[q83f.w43". The corresponding

seeds were -121385432, -2109937680, -1447464168, 184364026, -7426668,

2146034726, 1590708279,-542013146,and-491220481.

-

The Dshuf3 method was the answer to a previous report on cracking the shuffling

method. As mentioned before, the basic idea of cracking a shuffling method is to

separate the functionality of the first generator and the second generator. In a shuffling

method, all of the sequence generated is from the first generator. The second generator

only generated the index into the table. In the Dshuf3 method, however, both the first

and second generators were involved in the number sequence and the index generation,

and thus eliminated the possibility to separate the functionality of these two LCGs. Even

better, the role switching was decided pseudorandomly by a third LCG and a cutoff

value. A different third generator provides a different mixture pattern. Changing the

cutoff value will also change the behavior of this method. In our tests, the cutoff value

was SOO,OOO, roughly equal to half the size of the third generator's period. This meant

that in our tests, the numbers in Dshuf3 output were about equally provided by both first

and second generators. Just by simply increasing or decreasing the cutoff value, we can

easily get an output sequence that has more or fewer numbers from one generator, This

feature provides a lot of flexibility and more unpredictability. Dshuf3 is easily portable

to any computer and any language offering 32-bit integers. It has very high resolution

(- 2 -w), and a very long but unknown period. The period is guaranteed to be greater than

260
• and probably very much greater.

The two-dimensional random walk test and n-block test was implemented in Fortran

77. The source codes were downloaded from the web [27]. Other tests were from the

test package "diehard", which was downloaded from G. Marsaglia's web site [28]. The

"diehard" test package was implemented in C.

56

All interfaces between C programs and Fortran 77 programs were implemented as

below. The C functions were called as subroutines from Fortran 77 programs. The

definition and calling followed the Fortran 77 convention [29]. The value passed from a

Fortran 77 program to a C subroutine and from a C subroutine to a Fortran 77 program

was passed as parameters by reference. The C subroutine had no return value. The

"diehard" test package needed a stream of unformatted binary data of about 10,000,000

bytes to 20,000,000 bytes. This is achieved for a C program by calling the fwriteO

function in the standard library. For generators implemented in Fortran 77, a C

subroutine was called for file 110.

2. Tests and results

The Harry Smith generator performed poorly in the monkey tests. One might think

that since this generator is very complicated, it should perfOlm better. The reason that the

Harry Smith generator performed poorly in all monkey tests is that it uses four shift

feedback registers. Shift feedback registers are known to be very poor in monkey tests

[6]. Since in the Harry Smith generator, four out of nine numbers are generated by shift

feedback registers, it inherits the poor performance in monkey tests from those shift

feedback registers.

For the tcst result of DNA (not shown) and DNAimp, we concluded that DNAimp

was able to pass most of the tests while DNA itself was not able to pass most tests,

especially for those tested on a bit level. This result was not a surprise. This is because

57

-

the genes usually consisted of smaller functional groups. Those small functional groups

were not capable of complex biological activity. Rather, it was the combination of the

small functional groups that provided the very complex biological activity needed by

different proteins. Those small functional groups can be considered as the alphabet of the

biological world, while the gene itself resembled the words. Those alphabets were reused

in many different ways and appeared at different positions on different genes. Thus,

DNA has some regularity in it. However, since certain functionality of those sequences

only needs a loose resemblance, the DNA sequences itself still maintain a certain degree

of randomness. The DNAimp generator, on the other hand, incorporated the sequence of

DNA and the sequence of numbers generated by Mimped. We already knew that

Mimped was able to pass all the tests. It was not surprising to see that DNAimp did

much better in all tests than DNA itself.

3. Comparison among different generators

Both the Mshuffle and Mimped methods used the same mechanism to generate

pseudorandom numbers. The difference between these two methods was small. The

Mimped method simply extracted the middle two bytes and merged two generation

results into one. This improvement was made after noticed the pattern existed in

Mshuffle method, that is, the left half consistently performed better than the right half.

This result was directly affected by the fact that both generators involved in number

generation in the Mshuffle method, the ANSI C generator and the Maple generator, used

a modulus equals to 231
, Changing one or both modulus to a different number will

effectively mmHruze the unfortunate patterns. The choice of simple LCGs for the

Mshuffle method is obviously not good. However, the approach used in Mimped was

demonstrated to be effective in limiting this pattern. In all test results for Mimped, we do

not notice any unbalancedness of the randomness between left half and right half. Thus,

the improvement of Mimped over Mshuffle was significant and resulted in a better

generator.

An alternative form of Dshuf3, which took four bytes generated by Dshuf3 and

assembJed those four bytes into one number, was also tested. The detailed results were

not listed above. The alternative form of Dshuf3 performed well in all tests.

We can consider Mshuffle and Mimped as siblings and thus had three generator

types. Those three types of generators had one thing in common. They all combined

some simple generators to overcome certain faults of those simple generator. These

three methods should be slower than simple generators, because it took at least two

generators to yield one number. The times consumed to generate 10 mIllion bytes (2.5

million 32-bit numbers) are listed in table 12.

Generator Dshuf3 Dshuf3 Harry Mshuffle Mimped ANSIC
Alternative Smith

Time used 8.96 31.7 L 1.49 11.89 24.27 0.66
(seconds) i

Table 12. Time consumed by different generators to generate 10 million bytes

59

-

From Table 12, we can see that the Harry Smith generator is the fastest compound

generator. It took about twice as much time as the ANSI C generator, which is a simple

LCG generator. Dshuf3 method alternative fonn took about four times the time of

Dshuf3. This is because the alternat.ive fonn needs to call Dshuf3 four times to get one

32-bit number. The situation is similar in the Mshuffle and Mimped methods. Since

Mimped called Mshuffle twice to get a number, it took about twice as long as the

Mshuffle method. These results were obtained without any type of 110 operation :.lnd

should be considered as pure calculation time.

DNAimp should be a good generator for a stream cipher, not only because it

perfonned well in statistical tests, but it has inherited the unpredictability of DNA as

well. We cannot say how good the unpredictability this generator will have. Actually,

one can never prove unpredictability, only predictability. The unpredictability of

DNAimp should be good in the sense that if we can predict the sequence generated by

DNAimp, then in tum, we should be able to predict the sequence of an actual DNA

sequence, which is a very unlikely situation. Since the sequences of the genes can be to

downloaded from hundreds of web SHes, the availability of a DNA sequence should not

be an obstacle for the application of this generator. Even better, most protein has a

standard numerical name. Since proteins are derived from DNA, most DNA sequences

(genes) can share this numerical name.

Dshuf3 should be a very good generator for any purpose. It not only provided

excellent unpredictability, but it is fast and portable as well. It also has a very long

60

-

period and very fine resolution. Although we cannot provide evidence that Dshuf3 is

unbreakable, it is safe to say that Dshuf3 is extremely difficult to crack.

flj

-

CHAPTER SIX

Summary and Future Work

Pseudorandom number generators are an important topic in computer science. We

have discussed several new types of compound pseudorandom number generators above.

Among those new types of pseudorandom number generators, the Dshuf3 method

perfonned very well in all statistical tests. It is also a very promising pseudorandom

number generator for cryptography usage. The DNAimp and Mimped methods are able

to pass most statistical tests and should be good enough for daily usage. The Harry Smith

generator needs some improvement to yield better results in statistical tests. Further

investigation of the property of these generators should be followed. The effect of using

different LCGs, even different types of pseudorandom number generators (i.e. ICGs,

lagged Fibonacci generators, etc.) in the Dshuf3 method should be investigated. Also,

the effect of changing the cutoff value should be examined. An improved version of

Mshuffle using different starting LCGs should be examined. In this improved version,

the period of the three LCGs involved should be carefully chosen so that they are

relatively prime. For the Harry Smith generator, a newer version using 32-bit arithmetic

62

-

operations and have changed some of its feedback shift registers to other types of PRNGs

should be further ex.amined.

63

BIBLIOGRAPHY

1. D. E. Knuth, The Art of Computer Programming: Seminumerical Algorithms Vol.
2, Second edition (1981) Addison-Wesley, Reading, MA;

2. Randomness and random sampling numbers, M. G. Kendall and B. Babington­
Smith, J. Royal Stat. Soc. A101 (1938) 147-166;

3. Second paper on random sampling numbers, M. G. Kendall and B. Babington­
Smith, 1. Royal Stat. Soc. B6 (1939) 51-61;

4. ERNIE --- a mathematical and statistical analysis, W. E. Thomson, 1. Royal Stat.
Soc. Al22 (1959) 301-333;

5. Toward a universal random number generator, G. Marsaglia, A. Zaman, W.W.
Tsang, Stat. And Prob. Letters 8 (1990), 35-39;

6. Monkey tests for random numher generators, G. Marsaglia, Computers &
Mathematics with Applications 9 (1993) 1-10;

7. G. Marsaglia, web site: stat.fsu.edu/~geo;

8. Physical models as tests of randomness, I. Vattulainen, T. Ala-NissiJa, and K.
Kankaala, Physical Review E 52 (1995) 3205-3214;

9. Physical tests for random numbers in simulations, I. VattuJainen, T. Ala-Nissila,
and K. Kankaala, Physical Review Letters 73 (1994) 2513-2516;

to. Mathematical methods in large-scale computing units, D. H. Lehmer, Proc. 2nd

Symp. On Large-Scale Digital Calculating Machinery, (Cambridge, Mass.:
Havard University Press, 1951) 141-146;

11. Random numbers fall mainly in the planes, G. Marsaglia, Proceedings National
Academy Science 61 (1968) 25-28;

12. Good random number generators are (not so) easy to find, P. Hellekalek, Math.
and Computers in Simulation 46 (998) 485-505;

64

13. Structural properties for two classes of combined random number generators, P.
L'Ecuyer and S. Tezuka, Math. O/Computation 57 (1991) 735-746;

14. Web site: random.mat.sbg.ac.at;

15. A review of pseudorandom number generators, F. James, Computer Phys. Comm.
60 (1990) 329-344;

16. Uniform random number generators, M. D. MacLaren and G. Marsaglia, JACM
12 (1965) 83-89;

17. One-line random number generators and their use in combinations, G. Marsaglia
and T. A. Bray, CACM 11 (1968) 757-759;

18. A new class of random number generators, G. Marsaglia and A. Zaman, Ann.
Appl. Prob. 1 (1991) 462-480;

19. On the lattice structure of the add-with-carry and subtract-with-borrow random
number generators, S. Tezuka, P. L'Ecuyer, and R. Couture, ACM Transactions
on Modeling and Computer Simulation 3 (1993) 315-331;

20. AppLied Cryptography, Second edition, B. Schneier (John Wiley & Sons, 1996);

21. Cracking random number generator, J. A. Reeds, Cryptologia, 1 (1977),20-26;

22. Cryptanalysis of a MacLaren-Marsaglia system, C. T. Retter, Cryptologia,
8 (1984), 97-108;

23. A key-search attack on MacLaren-Marsaglia systems, C. T. Retter, CryptoLogia,
9(1984),114-130;

24. Personal communication, Dr. J. P. Chandler, Department of Computer Science,
Oklahoma State University;

25. The HalTY Smith generator, Website: www.netcom.com/-hjsmith;

26. European Molecular Biology Laboratory, Website: www.embl-heidelberg.de

27. Website: www.netlib.org/random

28. Diehard test package, Website: staLfsu.edu/pub/diehard/diehard.c.tar.gz

29. Fortran 774.0 User's Guide, website: docs.sun.com;

30. Sh~ft Register Sequences, Solomon W. Golomb (Holden-Day, Inc., 1967)

65

Title of Study:

Major Field

Biographical

VITA

Qi Jiang

Candidate for the Degree of

Master of Sci ence

NEW TYPES OF PSEUDORA DOM NUMBER GENERATOR

Computer Science

Personal Data Born in Shanghai, P.R. China, on April 25, 1973, the on
of Dehua Jiang and Yazhen Zhang

Education: Graduated from the 0.2 middle school attached to East China
Normal University, Shanghai, P R. China in July, 1991; Received a
Bachelor of Science degree in Genetics and Genetic Engineering
from Fudan University, Shanghai, P R. China in July, 1996
Completed the requirements for Master of Science degree with a
major in Biochemistry and Molecular Biology at Oklahoma State
University in May, 1999. Completed the requirements for Master
of Science degree with a major in Computer Science at Oklahoma
State University in December 1999.

Experience Employed by Oklahoma State University as a graduate
research assistant~ Oklahoma State University, Department of
Biochemistry and Molecular Biology, August, 1996 to I998~
Employed by Oklahoma State University as part-time technician;
Oklahoma State University. Department of Entomology and Plant
Physiology, August 1998 to pre ent

.)

~

