
VISUALIZATION AND ANIMATION OF

SORTING ALGORITHMS

By

HAN SU

Bachelor of Science

Chinese People's University

Beijing, China

1986

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment

of the requirements of
the Degree of

MASTER OF SCIENCE
December 1999

VISUALIZATION AND ANIMATION OF

SORTING ALGORITHMS

Thesis approved:

V Thesis Adviser

fl. :r~~~~~__

J~

ii

PREFACE

Sorting is one of the most important and challenging topics in the study of data

structures and algorithm analysis. The time complexity of most sorting algorithms is in

the range between 0(n2
) and O(n log n). Commonly used sorting strategies include: 1)

sorting by exchanging adjacent elements, 2) sorting by using a binary tree structure, and

3) sorting by using a divide and conquer strategy. The typical examples of above sorting

strategies are insertion sort, heapsort, and quicksort, respectively. The speed of a sorting

process is heavily depended on the algorithm employed.

For educational purposes, it is important for students to understand the underlying step

by step processes of sorting algorithms. Visualization and animation of sorting algorithms

may provide a useful aid to achieve this goal. The advantage of visualization is that it

provides a direct sensation of a complicated abstract concept.

This study visualized and animated the processes of insertion sort, two variants of

heapsort, and quicksort, by displaying every single comparison, movement and exchange

of each algorithm in detail. The study also executed and animated the fOUT algorithms in

the same time at the same screen for a same set of data to provide a real time comparison

of different sorting algorithms. Finally, the study also compared and analyzed the

perfonnances of different algorithms for large data sets, based on the running time

calculated from the counts of comparisons, swaps and moves that each algorithm took.

III

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to Dr. Jacques E. LaFrance, Chairman of my

advisory committee, for his guidance, assistance, and patience throughout my study at

Oklahoma State University. I would also like to thank my committee members, Dr. John

Chandler and Dr. Mansur H. Samadzadeh, for their helpful contributions and advice.

A deep-felt thanks goes to my late father, Peizhi, for his love, and to my mother,

JiaYuan, and sister, Li, for their unending encouragement and emotional support

throughout the years.

Finally, to my husband, Sean Zhang, I wish to express my deepest appreciation for his

love, extra patience, and understanding. Completion of this thesis would not have been

possible without his unfailing and indispensable support.

iv

CHAPTER

TABLE OF CONTENTS

page

I. INTRODUCTION 1

II. RELEVANT LITERATURE 6

2.1 Sorting 6
2.2 Visualization 6

m. IMPLENIENTATION 8

3.1 Heapsort Animation 8
3.2 Animation of Four Algorithms Together. 10

IV. TESTING AND DEMONSTRATION 14

4.1 Heapsort Animation 14
4.2 Animation of Four Algorithms Together 16

V. EFFICIENCY ANALYSIS 18

VI. CONCLUSION AND FUTHRE WORK 20

REFERENCES 42

APPENDIX: SOURCE CODE 45

1. Heapsort Animation 45
2. Animation of Four Algorithms Together 59

v

Table

liST OF TABLES

page

1. Summary and statistics of ten executions of four algorithms concurrently 19

vi

Figure

LIST OF FIGURES

page

1. The interfaces for heapsort and for fout algorithms combine 13
2. The interfaces for heapsort with empty display field 21
3. Random data generation process of heapsort 22
4. After random data generation ofheapsort 23
5. Build-heap process of heapsort 24
6. Comparison oftwo nodes in heapsort 25
7. After build-heap process of heapsort. 26
8. Delete-max process ofheapsort 27
9. Rebulid heap after delete-max of heapsort 28
10. Completion of delete-max process of heapsort 29
11. Fast delete-max process of heapsort 30
12. Rebuild heap after fast delete-max of heapsort . 31
13. Completion of fast delete-max process of heapsort 32
14. Before execution of four algorithms together 33
15. Execution of four algorithms together 34
16. Execution of quicksort completed 35
17. Execution of fast heapsort completed . 36
18. Execution of heapsort completed . 37
19. Execution of insertion sort completed 38
20. Execution of four algorithms forlarge N 39
21. After the execution for large N'. 40
22. Execution of individual algorithm instead of four together 41

vii

CHAPTER I

INTRODUCTION

Sorting is one of the most important and challenging topics in the study of data

structures and algorithm analysis, not only because sorting is important in practice, but

also it provides a very challenging topic for theoretical studies in computer science

[Gonner and Baeza-Yates 1991]. As a result, "sorting has received more attention in the

computer science literature than any algorithmic task" [Moret and Shapiro 91]. There

exist various sorting algorithms, including insertion sort [Knuth 98], shellsort [Shell 59],

mergesort [Knuth 81], heapsort [Floyd 64], [Williams 64], [Huang and Langston 88],

quicksort [Hoare 62] and a number of other sorting algorithms [Ford and Johnson 59],

[Batcher 68], [Weiss 93]. Each algorithm has its own advantages and disadvantages

depending on simplicity, time complexity, and its applications. Some algorithms are

simple but inefficient. Some algorithms are fast but complicated. Some algorithms have

a good average execution time but do not exclude a bad worst case time. Some

complicated algorithms perfonn well for large data sets but are inefficient for small data

sets due to higher overhead.

According to algorithm analysis, the time complexity of most sorting algorithms is in

the range between 0(n2
) and O(n log n). Slower sorting algorithms like insertion sort

have an average time complexity of 0(n2
). Faster sorting algorithms like heapsort have

an average running time of O(n log n). The fastest known sorting algorithm in general

practice, in the average case, is quicksort. The average time compl xity of quic ort is

also O(n log n) but it is faster than heapsort in practice [Weiss 93]. Insrtion sort

heapsort, and quicksort employ three typical sorting strategies. They are: 1) sorting by

exchanging adjacent elements, 2) sorting by using a binary tree structure. and 3) , orting

by using a divide and conquer strategy.

It should be mentioned that some special sorting algorithms, such as radix sort bucket

sort and counting sort, have time complexity of O(n). But these algorithms usually can

only apply to data with small integers or to values in a narrow range, and they usually

require extra memory spaces. They are not feasible for sorting arrays of arbitrary integers

in general practices. These special sorting algorithms are not included in this study.

Any algorithm that sorts by exchanging adjacent elements requires 0(n2
) time on

average [Weiss 96]. Insertion sort employs a strategy that involves mostly exchanging

adjacent elements. Insertion sort is one of the simplest sorting algorithms. Insertion sort

is convenient for small data sets but inefficient for large data sets because it is too slow.

The algorithm of heapsort is more complicated than insertion sort. but it has a better

time complexity which is O(n log n) for both worst case and average case. Heapsort

takes two steps: the build-heap process which takes O(n) time and the delete-min process

which takes O(n log n) time. Therefore, the whole process takes O(n) + O(n log n) =O(n

log n) time. Number of variants of heapsort have been developed to improve heapsort

performances [Carlsson 87], [McDiarmid and Reed 89], [Xunrang and Yuzhang 90J.

[Wegener 93]. One way to improve heapsort is to reduce the number of comparisons and

swaps in the delete-max phase of heapsort. Floyd proposed a fast heapsort [Floyd 64J.

Instead of putting the last leave at the root and sift it down during the delete-max phase,

which takes two comparisons and one swap if needed Floyd's fast heap ort starts at th

empty root node and promotes the larger child aU the way down. This tak s only one

comparison and at most one move at each level. After this is finished the last leaf is

inserted into the hole and sifted it up, if its key is larger than that of its par nt. Because

the key of a leaf is usually small and half of elements in a beap are located in leaf level it

is unlikely that the leaf moves up more than one level, and usually it does not move up at

all. This algorithm can be further improved if we sift up the hole before inserting the last

leaf. This avoids swaps during the sift up process [Knuth 98].

Quicksort employs the divide and conquer strategy. As its name implies, quicksort is

one of the quickest sorting algorithms, which takes only O(n log n) average-case time.

Although the worst-case time of quicksort is still possible to be 0(n2
) , by carefully

choosing the pivot, such as using a median-of-three pivoting strategy, the chance of the

worst case occurring is almost negligible.

For educational purposes, it is important for students to understand not only th

running time and strategy employed by each algorithm, but also its underlying step by

step process. Visualization and animation of computing algorithms may provide a useful

aid to achieve this goal [McCormick et a1. 87]. The advantage of visualization is that it

provides a direct sensation of a complicated abstract concept. This is especially

important for computer science education because computer science involves many

abstract concepts which are not directly visible. In most cases, deep imagination is

needed to understand those abstract concepts. The use of dynamic visualization will

make the teaching of abstract concepts more efficient.

3

6

The objectives of this study are 1) to provide a direct and visible approach for

understanding abstract sorting concepts by visualizing and animating various sorting

algorithms, and 2) to compare the performances of different sorting algorithms, in term

of sorting speed. Although a similar study has be n done by Muktavaram [Muktavaram

96], his study is more concentrated on the design of Graphic User lnterface (GUr) and its

underlying functionality to provide a graphical tool for sorting visualization. This study

is more concentrated on the animation and visualization process itself. This study

displays and animates every single comparison, move, and exchange of a given sorting

algorithm in detail. Furthermore, this study can execute and animate several algorithms

at the same time in the same screen using the same set of data. The implementation

imposes a arbitrary amount time to each step to slow down the execution, so that a user

can compare the speed of different algorithms in real time. This study also compares the

performances of various sorting algorithms for relatively large size of data, which will

make the results more likely reflect the real situations in practice. These features are not

in the contents of Muktavaram's study.

Algorithms selected for this study include quicksort, insertion sort, and two variants of

heapsort, because quicksort, heapsort, and insertion sort represent three typical sorting

strategies. Although it is well known that insertion sort is slow and has no practical

merits for problems with sizable data set, one of the purposes of the study is to

demonstrate, by using real examples, that the selection of an algorithm will make a great

difference in practices. This is important for computer science education. Insertion sort

is chosen just for this purpose. Two variants of heapsort are used for this study because

the two variants of heapsort and quicksort are all O(n log n) on the average-case time. It

4

is also important to demonstrate that algorithms with the same time complexity may

perform differently in practice. Thus, this study compares the performances of algorithms

with different time complexities, and also the performances of algorithms with the same

order of time complexity. It is the intention of the author that this study may provide a

useful aid for computer science education.

5

CHAPTER II

RELEVANT LITERATURE

2.1 Sorting

Sorting is one of the oldest problems in computer science and has been the subject of

thousands of publications. Knuth summarized the various sorting algorithms including

insertion sort, and their history [Knuth 81]. Gonnet and Baeza-Yates provided a

summary of some more recent developments, as well as a comprehensive reference for

sorting [Gonnet and Baeza-Yates 91].

Heapsort was invented by Williams [Williams 64], but the linear-time algorithm for

heap construction was developed by Floyd [Floyd 64]. The basic algorithm of quicksort

was first introduced by Hoare [Hoare 62]. Sedgewick made important contributions to

the quicksort algorithm. He did the detailed analysis and empirical studies. Many

important results for quicksort can be found in his Ph.D. dissertation [Sedgewick 77a]

and his three other publications [Sedgewick 77b, 1978a,]978b].

2.2 Visualization

The study of visualization as an aid for computer science education started in the

1960s. In the early days, visualizations were mostly done in the form of video tapes and

films. Those visualization are static and lack the user-machine interaction. Users could

not actively participate in the simulation process during running time. Examples of early

6

static visualizations include the works of Knowlton [Knowlton 66] and Baecher [Baech r

81]. Interactive visualization started to emerge in the mid-1970s, follow d by the

introduction of multimedia animation software and tools in the 1980s [Bentley and Brian

87], [Brown 88], [London and Duisberg 85] [Myers 83]. Entering 19908, computer

visualization and animation have become one of the most rapidly growing fields in

computer science [Blattner and Dannenberg 92] [Jones 96], [Vikas 96]. With the

introduction of Microsoft Visual Basic and Sun Microsystem's Java, computer

visualization becomes practical and manageable. Besides Visual Basic and Java which

are programming languages with visualization features, some software such as

Macromedia Director [Macromedia 96] are also developed specifically for multimedia

purposes. Those development tools made advanced computer visualization and

multimedia applications possible. Nowadays, computer visualization and multimedia

animation is widely used in many areas in business, science, military, and education.

7

CHAPTER ill

IMPLEMENTATION

The animation IS implemented usmg Java programming language. Java is a

multipurpose programming language. Like other powerful programming language such

as C and C++, Java can implement very complicated system programs and advanced data

structures. Java can also implement window programs, create GUI (Graphic User

Interface) and computer animation. More important, because the machine independent

feature of Java language~ programs implemented by Java can be executed by internet web

browser, and are easy to be accessed remotely, regardless the underlying platform.

This study includes two animation projects. The one that animates heapsort, and the

one that executes four algorithms concurrently, and compares the performances of th

four different algorithms.

3.1 HeapSort Animation

This implementation is designed primarily for animation purpose. Because heapsort

implementation employs binary tree structure, animation of heapsort is more complicated

than those of other algorithms, and requires more display space. The heapsort interface

(Figure 1, top) consists of three panels, the control panel (bottom) that holds buttons, the

output panel (top) that display the counts of comparison, swap, and move (move one node

only, different from swap which exchanges two nodes), and the center display field where

8

the actual animation takes place. This same interface handles both variants of h p ort,

which are the same in build-heap process but different in the delet -max pro S8. The

regular delete-max process put the last leaf at the root and sift it down. Each sift-down

will take two comparisons and one swap if needed. The fast delete-max proces does not

put the last leaf at root after delete root. Instead, it promotes the larger child, all the way

down. After this process is done, then sift up the hole if the key of the last leaf is larger

than the key of the parent node of the hole. The last leaf will not be put at the hole until

the fmal position is located. This takes only one comparison and at most one move at

each level, and no swaps are involved.

Before the animation starts, the display field is empty. Upon pressing the Random

Data button, a set of randomly generated data will be displayed on the screen, as an array

and also as a binary tree. The random data will be inserted into the tree in the order that

they are generated. The binary tree created by this way will be a complete tree - each

parent node will have two children except probably the last subtree. The heap ort

interface in Figure 1 has 22 randomly generated data. Theoretically, the program can

handle any number of data, but the screen in this implementation can only display 31

nodes at maximum. The default size is 15 nodes.

After a set of random data has been generated, pressing the Build-Heap button will

start the build-heap process. When the build-heap process is done, the execution ceases

and waits for further user instruction. Thus, users can take time to examine the heap built

by a given set of data. Then a user can press Delete-Max button to start the regular

delete-max process, or press the Fast Del-max button to invoke the fast delete-max

process. For the regular delete-max process, once the root is deleted, it swaps

9

immediately with the last leaf. But for the fast delete-max proce a temporary nod is

required to store the deleted root before it is placed in the last 1 at: The temporary nod LS

also displayed on the screen outside the heap. A user can also run the whol heap ort

process, including data-generation, build-heap, and delete-max operations, by pre sing

Run-All button. The default delete-max process invoked by this way is the regular

delete-max process which is simpler than the fast delete-max method.

The animation displays each movement of the sorting process. When two nodes are in

comparison, they are highlighted by a different color. If a swap takes place, one can s

how two nodes move towards to opposite directions to replace each other. Once a max

key is deleted, the color of that node changes so it can be distinguished to other nodes.

Because a sorting process is mainly data comparisons, swaps, and moves, the counts of

comparisons, swaps, and moves will be updated for each corresponding step.

Although heapsort takes the structure of binary tree, it is actually an array. It just takes

the abstract concept of binary tree for implementation. This is one reason that

visualization and animation may help understanding abstract concepts ofdata structures.

3.2 Animation of four algoritluns together

This program can execute all four algorithms concurrently. The bottom graph in

Figure I is the interface of the animation process. Currently, each algorithm has an

identical set of random data. Animation of the four algorithms will take place in the same

time on the same screen. By this way, users can directly observe the performances of

different algorithms, because several sorting algorithms may start in the same time but

fInish in different time. The interface for this animation consists five panels, the overall

10

control panel which contains the Run-AU and Reset buttons and th text field for ntering

data set size, the quicksort panel, the insertion panel, the heap ort panel and fast h apsort

panel. The panel for each sorting algorithm in turn consists of two panels, the control

panel for this particular sorting algorithm, which holds Start button lab Is and text fields

for printing the counts of comparisons, swaps and moves (for fast heapsort only), and the

display panel that displays the data array and sorting animation of this algorithm.

When the program is first loaded, it displays 20 data by default. This number can be

changed by entering the number of data in the text field named Size, and then pressing

Reset button. If the size entered is smaller than or equal to 25 (the maximum number of

data that can be animated), a new set of random data will be displayed on the screen. If

the size is larger than 25, a warning message "Size> 25, run with no animation?" will be

displayed, indicating that the program can still be executed, but with no animation. The

counts of comparisons, swaps and moves will still be updated during the execution.

Thus, the program can be used to test the perfonnances of algorithms on large set of data.

By pressing the Run-All button, the sorting animation starts for all four algorithms.

During the execution, comparison of two nodes will cause the two nodes change color.

Once swap takes place, the two nodes being swapped will change to a new color and

move towards to opposite directions to replace each other. For fast heapsort, instead of

swap, each move involves only one node which moves to a blank hole during its delete

max process. This node is also highlighted when it moves. Again, the counts of

comparisons, swaps and moves will be continuously updated, respectively, for each

algorithm during the execution. Because this animation will actually demonstrate the

speed of different algorithms in real time fashion, a certain amount of time is assigned to

11

the swap, move and comparison processes. One unit of tim is assign d to each

comparison and each move and three units of time are assigned to each swap becau a

comparison or a move (reassign a data) takes only one step but a swap tak: s three tep.

An unit of time is an arbitrary amount of time. By imposing a given amoun of tim to

each step of a process to slow down the execution, users can actually s e which orting

algorithm finishes first, and which one finishes last. This will give a direct sensation,

instead ofa abstract concept, of the efficiency of different sorting algorithms.

Each sorting algorithm can also be executed separately by pressing the Start button of

the algorithm selected. In this case, only the algorithm selected win be executed, and the

other three algorithms will remain stationary. We can also run two or three algorithms at

a time, or run all four algorithms at a random fashion by randomly pressing the Start

buttons of the four algorithms. The execution can be stopped any time by pressing the

Reset button, which win generate a new set of random data, and display them on the

screen.

12

Figure 1. The interfaces for heapsort (top) and for four algorithms combine (bottom).

13

CHAPTER IV

TESTING AND DEMONSTRATION

4.1 Heapsort Animation

Figures 2-13 illustrate the animation of the two variants of heapsort. Before the

execution starts, the display panel is empty (Figure 2). Upon pressing the Random-Data

button, a set of randomly generated data are put in a data array and displayed on the

screen, one by one, to fonn a binary tree (Figures 3-4). In this example the randomly

generated data is as follow:

3,4, 7, 12,6, 13,8,2,5, 11,9, 14, 1, 10, 15

By pressing the Build-Heap button, the build-heap process starts. Figure 5 shows the

swap of key 7 and key 15. Key 7 is moving down and key 15 is moving up. Figure 6

shows the comparison of key 13 and key 1, as indicated by a darker color. This build

heap operation continues until the heap is built. Figure 7 shows the result of build-heap

operation. The heap has the max-key located in the root, and the key of each parent node

is larger than those of its children. The build-heap operation in this example takes 22

comparisons and 10 swaps. The data in the array after build-heap operation is as follow:

15, 12, 14,5, 11, 13, 10,2,4,6,9,3, 1, 7, 8

When build-heap is done, the execution is suspended. By pressing Del-Max button,

the execution resumes and the regular delete-max process starts. Once a node is deleted, it

is put in the last cell of the heap and its color changes so it can be distinguished from

14

other nodes which are still in the heap. The color change appears in both th heap and th

data array below the heap (Figure 8). Note that in Figure 8, key 15, 14 and 13 have

already been deleted as indicated by a darker color, and key 12 is been d J ting. As the

root of the heap, key 12 is moving towards to the last cell of the heap. In the meantime,

the last node with key 3 is moving towards the root. Even though the deleted keys are

showing still in the heap, they are not part of the heap structure. They just occupy the

space left by each last leaf which moved up to replace the deleted root. Once a max-key is

deleted, heap structure is destroyed and it is rebuild by pre-located down approach.

Figure 9 shows the rebuild process after key 12 is deleted. Key 3 is locating down and

swapping with keyll. Key3 will continue to sift down until its appropriate location is

found. The delete-max operation will repeat and repeat again until all data are sorted

(Figure 10). Note that all nodes in Figure 10 have changed to a darker color, indicating

that the delete-max process is over. The whole heapsort process takes 73 comparisons and

49 swaps. Among them, 51 comparisons and 39 swaps took place in the delete-max

operation. Although the counts of comparisons and swaps vary from one data set to

another data set, it is obvious that delete-max takes more time than build-heap proces , as

expected by algorithm analysis (O(n) for build-heap and O(n log n) for delete-max).

Figures 11-13 illustrate the fast delete-max process. Because fast heapsort and regular

heapsort are the same in the build-heap phase, there is no need to repeat the build-heap

process again. After the heap is build (Figure 7), pressing the Fast Del-max button

invoked the fast delete-max process (Figure 11). The root (key 15) is deleted and put in a

temporary node outside the heap (the node is in the middle of the screen with a different

color). The larger child of the root, key 14, is moving toward the root. Then key 13 will

15

be promoted, followed by promoting key 3. No swaps are involv d in this pIOC SS - only

one node moved each time. The count of move is updated for each move. Figure 12

shows that after the deletion of key 6 and the sift down process the correct location for

the last leaf is found, and it (key 1) is currently moving toward the hole (from location to

location 5). The deleted root (key 6) then will be put at the hole left by key 1. After the

fast delete-max process is done (Figure 13), one can notice that fast heapsort process took

fewer comparisons and swaps than regular heapsort did for the same set of data. Most

node movements involved only one node, as indicated by the count of moves. The

number of comparisons, swaps and moves for the fast heapsort is 60, 10 and 69,

respectively.

4.2 Animation of four algorithms together

Figures 14-19 demonstrate the sorting processes of all four algorithms together. All

four algorithms have the same set of randomly generated data (Figure 14). Upon pressing

Run-All button, sorting starts for all four algorithms simultaneously. As figure 15 shows,

quicksort just finished swap key 13 and 14 while insertion sort is swapping key 20 and 4,

heapsort is swapping key 1 and 13, and fast heapsort is comparing key 15 and 3. Note

that the color for the comparing nodes is darker than the color for the swapping nodes.

Also, there is a hole for the data array of the fast heapsort, indicating it is in the fast

delete-max process. The counts of comparisons, swaps and moves are updated for each

step accordingly. When the execution of quicksort finished (Figure 16), fast heapsort,

heapsort and insertion sort are still in progress. Figure 16 shows that insertion sort is

currently swapping two nodes (the tow nodes are crossing each other), heapsort is in

16

comparison, and fast heapsort is moving a node to the hole left by its parent. Fast

heapsort fInished the second (Figure 17), followed by heapsort (Figure 18) , and insertion

sort fInished the last (Figure 19).

The maximum number of data that the screen can display is 25 in this implementation.

Figure 20 and 21 show that when the data size is larger than 25, the program will execute

without animation. It only updates the counts of comparison, swap and move during the

execution. In this example, the data size is 100.

Figure 22 demonstrates that the program can also execute individual algorithm

separately, even through it is designed to execute all four algorithms concurrently. In this

graph, quicksort is the only sorting process that is in execution. Insertion sort, heapsort

and fast heapsort remain stationary. Currently, quicksort is swapping key 16 and 5, and

there is no action is going on for other sorting algorithms.

17

CHAPTER V

EFFICIENCY ANALYSIS

Since the efficiency of a sorting algorithm depends on how fast when it applies to

large data sets, the implementation is also tested for data size of 100, 1000 and 10000 to

determine the relationship between data size and algorithm ,efficiency. Table 1 is the

summary and statistics of 10 executions for each data size. The virtual time is calculated

as (number of swap * 3 + number of comparison + number of move), because each swap

takes 3 steps and each comparison and each move takes only 1 step. Comparisons in

algorithm efficiency among different algorithms are made on the base of virtual time.

Table 1 shows that insertion sort has much more comparisons and swaps than other

algorithms at each size level, so is its virtual time, and the differences incr as

significantly as data size increases. The virtual time that insertion ort takes at each ize

level is in the order of 0(n2
), as expected by algorithm analysis. For size=lOO, quicksort

takes 12% of the time that insertion sort takes. For size=l00, quicksort takes only 2% of

the time that insertion sort takes. When the size reaches 10000, the percentage decreases

to 0.3%. Similar results are also obtained between fast heapsort and insertion sort, and

between heapsort and insertion sort. The results indicate that the selection of an

algorithm could make a significant difference in practice. Obviously, insertion sort can

not be used as a practical algorithm for large data.

18

The differences in running time between heapsort and quicksort are rather con tant

regardless data size. For the three levels of data size, the time that quicksort take is

about 74% - 80% of the time that fast heapsort takes, and about 39%-45% of the time that

regular heapsort takes. This result is expected because heapsort and quicksort are both

O(n log n) on the average. The difference between heapsort and quicksort should only be

a constant.

Fast heapsort takes fewer comparisons and swaps than regular heapsort at each size

level, but fast heapsort takes a sizable one-node moves. After converting these counts

into virtual time,. fast heapsort takes about 60%, 53%, and 50% of the time that heapsort

takes for data size of 100, 1000, and 10000, respectively. Thus, fast heapsort is about

twice as fast as regular heapsort. Theoretically, the differences in time complexity among

quicksort, fast heapsort, and heapsort are not significant since they differ only by a small

constant ratio.

Table 1. Summary and statistics of ten executions of the four algorithms together. The
data size is 100, 1000, and 10000, respectively. Virtual time = number of swaps lie 3 +
number of comparisons + number of moves. Ratios on virtual ti me between two
algorithms are also calculated to determine algorithm efficiency.

Average of 10 trials Ratio of each method to:
Size Algorithm Comparison Swap Move Virtual Time FastHeap Heap Insert.

100 Quicksort 692 180 1232 .74 .45 .12
Fast Heapsort 715 69 739 1661 .60 .16
Heapsort 1027 578 2761 .27
Insertion Sort 2591 2492 10067

1000 Quicksort 10096 2594 17878 .76 .41 .02
Fast Heapsort 10543 762 10676 23505 .53 .02
Heapsort 16856 9088 44120 .04
Insertion Sort 249011 248012 993047

10000 Quicksort 139157 33436 239465 .80 .39 .003
Fast Heapsort 139126 7652 140224 302301 .50 .003
Heapsort 235467 124399 608664 .007
Insertion Sort 21477094 23586595 92236879

19

CHAPTER VI

CONCLUSION AND FUTURE WORK

Sorting is one of the most important and challenging topics in the study of data

structures and algorithm analysis. For educational purposes, it is important for students

to understand the underlying step by step processes of sorting algorithms.. This study

visualized and animated the processes of insertion sort, two variants of heapsort, and

quicksort., by displaying every single comparison, movement and exchange of each

algorithm.

The study also executed and animated the four algorithms in the same time at the same

screen for a same set of data to provide a real time comparison of different sorting

algorithms. Because a certain amount of time is as igned to each step of an algorithm to

slow down its execution, th,e animation can demonstrate the differences in sorting speed

among different sorting algorithms, even for small data ets.

This study also compared and analyzed the performances of different algorithms for

large data sets,. based on the counts of comparisons, swaps and moves that each algorithm

took. Running time calculated from the test results for each algorithm is very close to its

theoretical value.

Future study should add the features that can: 1) suspend the execution of the

animation process whenever a user requests, and 2) rollback the animation process for

one or more steps so that users can trace the previous steps of an executing process.

20

t-J

Figure 2. Heapsort interface. The display area is empty until Run All or Random Data button is pressed.

tv
tv

Figure 3. Once Random Data button is pressed, random data are displayed, one by one, on the screen.

N
w

Figure 4. After all 15 random data are generated. the execution of the program is suspended.

tV
~

Figure 5. Build-heap process starts once Build Heap button is pressed. Currently, the process is swapping
key 7 and 15. The numbers of comparisons and swaps are updated accordingly.

IV
VI

Figure 6. Key 13 and key I are currently in oompariso~ as indicated by a darker color.

IV
0\

Figure 7. The heap built by build-heap process which made 10 swaps and 22 comparisons. The execution is
suspended once the heap is built.

N
-.J

Figure 8. The regular delete-max process invoked by pressing Delete Max. button. Currently, key 12 (root) is
swapping with key 3 (last leaf). Note that key 15, 14, and 13 have already been deleted, as indicated by a
darker color.

('oJ
00

Figure 9. The rebuild-heap process after key 12 is deleted. Currently, key 3 is swapping with key 11.

N
~

FigW'e 10. Heapsort completed. 1bis heapsort process made 49 swaps and 73 comparisons

w
o

Figure 11. The fast delete~max process which does not put last leaf at root. Instead, it sifts larger child up. In
this example, after key 15 is deleted, it is put at a temporary node outside the heap, and key 14 is promoted to
root.

I".>

Figure 12. Fast delete·max process continues. After the correct location is found, last leaf (key 1) is moving
to the location (the hole below key 3). The deleted key (key 6) will then move to the hole left by the last leaf
(the hole below key 4).

w
N

Figure 13. Fast delete-max process complet~ and all data are sorted. The fast delete-max made 69 moves.
The whole heapsort process also made 10 swaps and 60 comparisons.

w
w

Figure. 14. The interface for the program that eKecutes quicksort, heapsort, fast heapsort, and insertion sort
concurrently. The data for each algorithm are identical.

w
.j:>.

Figure 15. Upon pressing Run All button, the executions of all four algorithms start in the same time.
Currently, quicksort just finished a swap, insertion sort and heapsort are swapping two nodes, and fast heapsort
is comparing two nodes.

-

......
VI

Figure 16. Quicksort completed while other three algorithm are still in progress. Note that insertion sort is
swapping two nodes (the two nodes are crossing each other), and fast heapsort has only one node in move.

1

w

'"

Figure 17. Fast heapsort completed and heapsort and insertion sort are still in progress.

\.oJ
-.J

Figure 18. Heapsort completed. Currently only insertion sort is still in progress.

w
00

Figure 19. Insertion sort completed, and the data for all four algorithms are sorted.

Vol
~

Figure 20. If data size is larger than the default size 25 (currently 100), the program can still be executed. but
animation can not be shown..

.....
o

Figure 21. The results ofexecuting 100 data. The counts of comparisons, swaps and moves were updated
during execution, but no animation was shown.

~

Figure 22. This graph demonstrates that this program can execute individual algorithm separately, by pressing
the Start button of each algorithm. Currently, quicksort is the only algorithm in execution.

. ..

REFERENCES

[Baecher 81] R.. M. Baecher, Sorting Out Sorting, 16mm colour sound film. 25 minut
Computer Science Department, University of Toronto, Toronto. ON Canada,
1981.

[Batcher 68] K. E. Batcher, "Sorting Networks and Their Applications." Proceedings of
AFIPS SJCC, AFIPS Press, Vol. 32, No.2, pp. 307-314, Montvale, N. J., 1968.

[Bentley and Kernighan 87] J. L. Bentley and B. W. Kernighan , "A System for
Algorithm Animation: Tutorial and User Manual", Computer Science
Technical Report, No. 132, AT&T Bell Laboratories, Murray Hill, NJ, 1987.

[Blattner and Dannenberg 92] M. M. Blattner and R. B. Dannenberg, Multimedia
Interface Design, ACM Press, New York, NY, 1992.

[Brown 88] M. H. Brown, Algorithm Animation, The MIT Press, Cambridge, MA, 1988.

[Carlsson 87] S. Carlsson, "A variant of HEAP SORT with almost optimal number of
comparisons", Inform. Process. Lett. Vol. 24, pp. 247-250, 1987.

[Floyd 64] R. W. Floyd, "Algorithm 245: Treesort 3", Communications ofthe ACM, Vol.
7, No.12, p. 701, 1964.

[Ford and Jolmson 59] L. R. Ford and S. M. Johnson, "A Tournament Problem",
American Mathematics Monthly Vol. 66, No.6, pp. 387-389, 1959.

[Gonner and Baeza-Yates 91] G. H. Gonner and R. Baeza-Yates, Handbook of
Algorithms and Data Structures, second edition, Addison-Wesley, Reading, MA,
1991.

[Hoare 62] C. A. R. Hoare, "Quicksort", Computer Journal, Vol. 5, No.1, pp. 10-15,
1962.

[Huang and Langston 88] B. Huang and M. Langston, "Practical In-place Merging",
CommunicationsoftheACM, Vol. 31, No.3, pp. 348-352,1988.

[Jones 96] C. V. Jones, Visualization and Optimization, Kluwer Academic Publishers,
Norwell, MA, 1996.

[Knowlton 66] K. C. Knowlton, "L6: Bell Telephone Laboratories Low-Level Linked

42

Ii

'.

Language, Two Black and White Sound Films" Bell Tel phone Laboratories
Murray Hill, NJ, 1966.

[Knuth 98] D. E. Knuth, The Art of Computer Programming. Volume 3: Sorting and
Searching, Second edition, Addison-Wesley, Reading MA 1981.

[London and Duisberg 85] R. L. London and R. A. Duisberg, "Animating Programs
Using Smalltalk", IEEE Computer, Vol. 18, No.2, pp.61-71 1985.

[Macromedia 96] Macromedia Inc., Macromedia Director Lingo Dictionary, Version 5,
1996.

[MeConnick et al. 87] B. H. McConnidk, T. A. DeFanti, and M. D. Brown,
"Visualization in Scientific Computing", Computer Graphics, Vol. 21, No.6, pp.
1-14, 1987.

[McDiarmid and Reed 89] C. J. H. McDiarmid and B. A. Reed, "Building heaps fast",
Journal ofAlgorithms, Vol. 10, pp. 352-365, 1989.

[Moret and Shapiro 91] B. M. E. Moret and H. D. Shapiro, Algorithms from P to NP,
Volume 1: Design & Efficiency, Benjamin-Cummings, Redwood City, CA, 1991.

[Muktavaram 96] Vikas Muktavaram, Visualization of Sorting Algorithms, Master of
Science Thesis, Computer Science Department, Oklahoma State University,
Stillwater, Oklahoma, 1996

[Myers 83] B. A. Myers, "INCENSE: A System for Displaying Data Structure ".
Computer Graphics, Vol. 17, No.3, pp. 115-125, 1983.

[Sedgewick 77a] R. Sedgewick, "Quicksort with Equal Keys", SlAM Journal on
Computing, Vol. 6, No.2, pp. 240-267,1977.

[Sedgewick 77b] R. Sedgewick, "The Analysis of Quicksort Programs", Acta
Informatica, Vol. 7, No.4, pp. 327-355, 1977.

[Sedgewick 78a] R. Sedgewick, "Implementing Quicksort Programs", Communications
ofthe ACM, Vol. 21, No. 10, pp. 847-857, 1978.

[Sedgewick 78b] R. Sedgewick, Quicksort, Garland Publishing, New York, NY.
(Originally presented as the author's Ph.D. Dissertation, Stanford University),
1978.

[Shell 59] D. L. Shell, "A High-Speed Sorting Procedure", Communications ofthe ACM,
Vol. 2, No.7, pp. 30-32, 1959.

43

[Wegener 93] I. Wegener, "BOITOM-UP-HEAPSORT a new variant of HEAPSORT
beating, on an average, QUICKSORT (if n is not very small)' Theoretical
Computer Science, VoL 118, pp. 81-98, 1993.

[Weiss 93] M. A. Weiss, Data Structures and Algorithm Analysis in C, Benjamin
Cummings, Redwood City, CA, 1993.

[Weiss 96] M. A. Weiss, Algorithms, Data Structures and Problem Solving with C++,
Reading, MA, 1996.

[Williams 64] 1. W. J. Williams, "Algorithm 232: Heapsort", Communications of the
ACM, VoL 7, No.6, pp. 347-348, 1964.

[Xunrang and Yuzhang 90] G. Xunrang and Z. Yuzhang, "A New HEAPSORT
Algorithm and the Analysis of Its Complexity", Computer Journal, VoL 33, pp.
281-282, 1990.

44

F

APPENDIX: SOURCE CODE

1. HeapSort Animation

1*** *****************
Program
Author

Data
Programming Language

HeapSort
Jian Su
December 1999
Java

Ilindicate this node is deleted
Ilindicate this node is in comparison

There are two classes in this program-the Node class and the HeapSort
class. The Node class which consist of x and y coordinates of the node
and a key. The HeapSort handles the sorting and animation process.
HeapSort class inherits methods from Applet which is a Java build-in
class. It also uses the ActionListener interface which handles button
events, and Runnable interface which makes multi-thread possible.
Because Runnable is an abstract data type, its Run() function must be
implemented or overridden.

Java build-in functions used in this program:
init() -- The first function executed when the program is loaded into
browser. It executes only once.
start() -- Execution following init().
rune) -- Executes when a thread starts. Invoked by start() of a
threader.
paint() -- Paint screen. It is normally called by update()
update() -- Update screen. It is invoked by repaint().
repaint() It invokes update() .
stop() -- It is invoked when the program exits the browser.

All other functions are user defined.
**/

import java.awt.*i
import java.util.*;
import java.applet.Appleti
import java.awt.event.*i

11** *****************
II Node class: a node contains, a key (data), its x and y coordinates
II on the screen, and del-max and comparison flags.
11** *****************
class Node

float x;
float Yi
int keYi
boolean DelMaxi
boolean comp;

11** *****************
II HeapSort class: This is the main class - execution starts from here
II after it is loaded into browser by html program.
11** *****************
public class HeapSort extends Applet implements ActionListener,
Runnable{

int nMax = 15;
int nodeSize = 25i
int pause = 100i
int step = 20;

45

F

Node nodes[] = new Node [nMax+1] ;
Node nodesBak [] = new Node [nMax+ 1] ;
Thread runner;
Image offscreen;
Graphics offgraphics;
float apart, depth;
float x, y;
int xMax, yMax;
int Array[] = new int[nMax+l];
Color backColor new Color(O, 140, 140) i
Color nodeColor = new Color(255, 255, 0);
Color lineColor = new Color(255, 255, 255);
Color keyColor = new Color(O, 0, 0);
Color delMaxColor = new Color(O, 255, 255);
Color compColor = new Color(O, 255, 0);
int numSwap, numCompare, nurnMove;
boolean build_heap, del_max, fastDelMax;

//backup nodes

//new screen
Ilgraph for paint

/Imax coordinates

//background color

Iidel-max node color
//comparing node color
Ilcounts
I/flags

Ilcreate buttons, labels and text areas
Button dataButton = new Button{"Random Data");
Button buildButton = new Button("Build Heap");
Button delMaxButton = new Button("Delete Max");
Button delMaxButtonl = new Button("Fast Del-max");
Button runButton = new Button("Run All");

Label swapLabel = new Label ("Swap" , Label.RIGHT);
Label compareLabel = new Label ("Comparison", Label.RIGHT);
Label moveLabel = new Label ("Move" , Label.RIGHT);
TextField swapResult = new TextField(3) ;
TextField compareResult = new TextField(3) ;
TextField moveResult = new TextField(3) i

11** **************
II init(): This function executes only once when program starts.
11** **************
public void init() (

II set the base screen layout
setLayout(new BorderLayout());

Iiset action listener for each button
dataButton. addActionListener (this) ;
runButton.addActionListener(this);
buildButton.addActionListener(this) ;
delMaxButton.addActionListener(this) ;
delMaxButton1.addActionListener(this);

I/set enable and disable for each button
dataButton.setEnabled(true)i
runButton.setEnabled(true) ;
buildButton.setEnabled(false);
delMaxButton.setEnabled(false)i
delMaxButton1.setEnabled(false) ;

Ilcreate and arrange operation panel which contains buttons
Panel operatePanel = new Panel();
operatePanel.setLayout(new FlowLayout());
operatePanel.setBackground(backColor) ;
operatePanel.add(runButton) ;
operatePanel.add(dataButton);
operatePanel.add(buildButton) i

operatePanel.add(delMaxButton) ;

46

operatePanel.add(delMaxButtonl);

Ilcreate and arrange output panel which displays counts
Panel outputPanel := new Panel();
outputPanel.setLayout(new FlowLayout());
outputPanel.setBackground(backColor) ;
outputPanel.add(swapLabel) ;
outputPanel.add(swapResult) ;
outputPanel.add(compareLabel) ;
outputPanel.add(compareResult) ;
outputPanel.add(moveLabel);
outputPanel.add(moveResult);

Ilarrange operation and output panels in the base screen
add("South", operatePanel);
add("North", outputPanel);

Iiset background color for the base screen
setBackground(backColor) ;

Ilinit variables
numSwap := 0;
numCompare := 0;
numMove := 0;
build_heap := true;
del_max := true;
fastDelMax := true;

//**

II start(): Do nothing here since everything is activated by
II actionPerformed() in this program.
11** **************
public void start(){
}

11** **************
II actionPerformed(): This function handles button pressing which
II activates a particular process.
11** **************
public synchronized void actionPerformed(ActionEvent e) {

Ilget button object - the button which is pressed
Object source := e.getSource();

Ilrun generate-data, build-heap and del-max all three processes
if(source :=:= runButton) {

Iidisable all buttons except stopButton
dataButton.setEnabled(false) ;
runButton.setEnabled(false) ;
buildButton.setEnabled(false) ;
deIMaxButton.setEnabled(false) ;
deIMaxButtonl.setEnabled(false) ;

Ilmake sure build-heap
build_heap := true;
del_max := true;
fastDelMax := false;

and del-max functions are enabled

Iidefault operation
Iinon-default operation

Ilcreate and run a new thread
if(runner !:= null) (

runner = null;

47

}

if(runner == null) {
runner = new Thread(this) ;
runner.start() ;

}

Ilgenerate and display data
if(source == dataButton){

lienable build-heap button because it is next step
dataButton.setEnabled(false) ;
runButton.setEnabled(false) ;
deIMaxButton.setEnabled(false) ;
delMaxButtonl.setEnabled(false) ;
buildButton.setEnabled(true) ;

Iisuspend other processes for now
build_heap = false;
del_max = false;
fastDelMax = false;

Ilcreate and run a thread
if(runner != null) {

runner = null;
}

if(runner == null) {
runner = new Thread (this) ;
runner.start() ;

}

Ilrun build-heap after data is generated
if(source == buildButton}{

lienable del-max button because it is next step
deIMaxButton.setEnabled(true) ;
deIMaxButtonl.setEnabled(true) ;
buildButton.setEnabled(false) ;

lienable build-heap process
build_heap = true;

Iinotify wait() that the button is pressed and wait is over
notify(} ;

}

Ilrun del-max after build-heap
if«source == delMaxButton} I I (source -- deIMaxButtonl» {

deIMaxButton.setEnabled(false);
deIMaxButtonl.setEnabled(false);
if(source == delMaxButton) Ilif regular del-max operation

fastDelMax false;
else Ilif fast del-max operation

fastDelMax = true;

lienable del-max function and notify waiting is over
del-J[lax = true;
notify () ;

}

11********··********************************·******·** **************

48

II stop(): Build-in function: invoked when exits browser.
11** **************
public void stop(){

Ilkill the thread
if(runner != null) {

runner = null;

11** ***************
II reset(): This function is called by runt) to reset buttons and
II flags after execution is done.
11** ***************
public void reset() {

runButton.setEnabled(true) ;
dataButton.setEnabled(true) ;
buildButton.setEnabled(false) ;
deIMaxButton.setEnabled(false) ;
deIMaxButton1.setEnabled(false) ;
build_heap = true;
del-J[\ax = true;
fastDelMax = true;

11** ***************
II cleanScreen{): This function is called by rune) to clean screen
II when restart a new animation.
11** ***************
public void cleanScreen() {

int i;

numSwap = 0;
numCompare =0;
numMove = 0;

swapResult.setText(Integer.toString(numSwap» ;
compareResult.setText(Integer.toString(numCompare»;
moveResult.setText(Integer.toString(numMove) ;

for(i=O; i<=nMax; i++) {
nodes [i) = null;
nodesBak[i] null;
Array[i] = 0;

}

repaint() ;
try{

Thread.sleep(lOOO) ;
} catch (InterruptedException e) {}

Ilit invokes update()

Iisleep 1000 millisecond
Ilcatch up exceptions if any

Iidistance between nodes
Iidepth of a node
Ilget max x coordinate
Ilget max y coordinate
Ilx of 1st node
Ily of 1st node

//***
II setup(): Because init() can be used only once, use this function
II to reset everything whenever we rerun the animation.
11** ***************
public void setup() {

apart = (float)300;
depth = 1;
xMax = getSize() .width;
yMax = getSize() .height;
x (float) xMax/2;
y = (float)50;

49

Ilcreate random data
createRandomData() ;

Iisetup each node - starts from node
for(int i=l; i<=nMax; i++){

Ilcreate node and allocate memory
Node n new Node();
Node m = new Node();

Iisetup x and y for current node
n.x = Xi

n.y = y;
n.key = Array[i) ;
n.DelMax = false;
n.comp = false;
nodes[i] = n;

Iisetup x and y for backup node
m.x = x;
m.y = y;
nodesBak[i) = m;

Ilpaint the node on screen
repaint()i
try{

Thread.sleep(lOOO) ;
} catch (InterruptedException e) {}

II setup y for next node
if(i==(int)Math.pow(2,depth)-1)) {

depth++;
apart (apart/depth)+20-depth;
y = y + 50;

II setup x coordinate for next node
if((i%2)==1) {

x = nodes [i/2+1) .x - apart;
}

else{
x = nodes[i/2).x + apart;

1 (not node 0)

Ilcurrent node
Ilcorresponding backup node

Ilassign value
Iinot been del-max yet
Iino comparison yet
Ilput it in node array

Iisiow down by sleep a while

Ilincrease depth
Ilchange space between nodes
Ilincrease y for 50 pixels

I I if left node
II(i/2 + l)=parent of node i

Ilif right node

11** ***************
II run(): This is the main function which executes whenever
II thread.start() is called.
11** ***************
public void rune)

int i, ni

n = nMax;

II get current thread
Thread thisThread = Thread.currentThread();

II first, clean the screen
cleanScreen();

II then setup everything
setup ();

50

II If build_heap flag is not set, suspend buildHeap process.
II Build_heap flag is set by pressing buildButton. wait() can be
II waked by notify() which is also invoked by pressing buildButton.
try{

Thread.sleep(lOO);
synchronized (this) (

while(lbuild_heap) {
wait() ;

}
}

}catch(InterruptedException e) {}

Ilexecute buildHeap() buildButton is pressed
buildHeap () ;
repaint() ;

Ilprint the result of build-heap on server side - not on browser
for(i=l; i<=n; i++)

System.out.print(nodes[i] .key+" ");
System.out.println(" (heap): comparision="+numCompare +"

swap= "+numSwap +" move= " +numMove) ;

IISuspend delMax process if del_max flag is not set
try{

Thread. sleep (100) ;
synchronized (this) {

while (!del_max) {
wait() ;

}
}

}catch(InterruptedException e) {}

Ilexecute delMax()
if (! fastDelMax)

delMax (n) ;
else

delMaxFast (n) ;

once delMax button is pressed
Ilif regular del-max

flif fast del-max

Ilprint sorted results on the server side for developer
for(i=l; i<=n; i++)

System.out.print(nodesLi] .key+" ");
if (! fastDelMax)

System.out.println(" (sorted-regu): comparision="+numCompare +"
swap="+numSwap +" move="+numMove);

else
System.out.println(" (sorted-fast): comparision="+numCompare +"

swap="+numSwap+" move="+numMove);

reset () ; Ilreset everything after done

11** ***************
II buildHeap(): This function performs build-heap operation.
11** ***************
public void buildHeap() (

int i, n;
n = nMax;
for(i=n/2; i>O; i--)

perc_down (i, n) ;

51

limark it to change color
Iiswap root and last leaf

//***

II delMax(): This function performs the regular delete-max operations
II which put the last leave at the root after the root is
II deleted, and then sift it down by swapping it with its
II larger child. This method takes two comparisons and one
II swap at each level.
11** ***************
public void delMax(int size) {

int j, n = size;
for(j=l; j<=n; j++) {

if (size>l) {
Iidelete root
nodes[l] .DelMax = true;
swap(l, size);

Ilrebuild heap after deleting root
size--;
perc_down(l, size);

}

nodes[l) . DelMax
repaint();

true; Ilmark last node as deleted
Ilpaint once more

11** ***************
II perc_down(): Utility function - handle perlocate down process.
11** ***************
public void perc_down(int i, int size) (

int child, tmp;
for(; i*2<=size; i=child) {

child = 2*i; Illeft child

if (child<size){
updateComparison(child, child+l);
if (nodes [child) .key<nodes[child+l) .key)

child++; Ilright child

}

updateComparison(i, child);
if(nodes[i) . key < nodes [child) .key) {

swap (i, child);
}

else{
break;

Iiswap parent and child

11********·*******·******·************·**·*******··*** ***************

II swap(): Utility function - exchange two nodes.
11** ***************
public void swap(int i, int j) (

Node tmpNode = new Node();

II animate the move of two nodes in opposite directions
MoveNode(i, j);

II then swap the two nodes in the array
tmpNode = nodes[j);
nodes[j] = nodes[i);

52

nodes[i] = tmpNode;

Ilupdate swap counts and print out result
nurnSwap++;
swapResult.setText(Integer.toString(nurnSwap))i

11** ***************
II delMaxFast(): Delete-max operation, using Floyd algorithm. This
II fast del-max operation starts at the empty root and
II promotes the larger child, all the way down. This
II takes only one comparison and one move at each level.
II After the sift-down process, then sift up the hole
II before inserting the last leaf, if last leaf has
II larger value than the parent of the hole. This will
II avoid swaps during sift up process.
11** ***************
public void delMaxFast(int size) {

int last, parent, maxKey, child;
parent = Ii
child = 2;

Ilist node is not part of the heap. Use it to hold deleted root
Node firstNode = new Node();
firstNode.x = nodes[l] .x;
firstNode.y = 175;
firstNode.DelMax = true;
firstNode.comp = false;
firstNode.key = -1;
nodes [0] = firstNode;

while(size>l) {
if(size!=2) (

nodes [1] . DelMax true;
oneWayMove(l, 0); Iidelete max

Iisift-down the hole, starting from root
for(parent=l; parent*2<size; parent=child) {

child = 2*parent;

if (child<size) {
updateComparison(child, child+l);
if (nodes [childl .key<nodes[child+1] . key)

child++;
}
oneWayMove(child, parent);

last = size--;

Iisift up larger child

Ilreduce heap size by one

Iisift-up the last hole
for (parent=child/2; parent>l; parent=child/2) {

if«child==last/2) I I (parent==last/2) I I (child==last»)
break;

updateComparison(last, parent);
if{nodes[last] . key > nodes [parent] .key) {

oneWayMove(parent, child)i Iisift down parent
child = parent;

}

else

53

Ilfound correct hole

Iidelete root
Ilmove child up
Ilput deleted root to nodes[2]

break;
}

IISpecial case for size=2. This could be outside while()loop.
if(size==1){

updateComparison(l, 2);
iflnodes[l] .key > nodes[2) .key) {

Iiswap node[1] and nodes [2) using one-way move
nodes [1] .DelMax = true;
oneWayMove(l, 0);
oneWayMove(2, 1);
oneWayMove(O, 2);

}
else{

if(last != child)
oneWayMovellast, child);

oneWayMove(O, last);
}
repaint() ;

Ilfill the hole with last leaf
Ilput deleted key to last node

}

nodes [1] .DelMax =
nodes [2] . DelMax
repaint() ;

true;
true;

Ilchange color of last 2 nodes

11** ***************
II onWayMove(): Move one node-differ from swap which moves two nodes
11** ***************
public void oneWayMove(int from, int to) {

Node tmpNode = new Nodel);

MoveNode(from, to);

II swap x, y coordinates
tmpNode = nodes[to];
nodes(to] = nodes [from] ;
nodes [from) = tmpNode;
numMove++; Ilupdate and display counts
moveResult.setText(Integer.toString(numMove» ;

11** ***************
II updateComparison(): Visualize comparison nodes and update
II comparison counts.
11** ***************
public void updateComparison(int i, int j) {

nodes[i] .comp = nodes[j) .comp = true;
repaint() ;
try{

Thread. sleep (pause*step/3) ; Iitakes only 1/3 of swap time
} catch (InterruptedException elf}

nodes[i] .comp = nodes[j) .comp = false;
nurnCompare++;
compareResult.setText(Integer.toString(numCompare);

}

54

11** ***************
II update(): This function is invoked by reparint() to update the
II screen. This function uses double-buffer technical which
II creates an image as a new screen (offscreen) and a graph
II (offgraphics) in the new screen. Then paint nodes in the
II graph, and draw the new screen above old screen. Thus,we
II do not have to erase the old paint during each update.
11** ***************
public synchronized void update(Graphics g){

Dimension d = getSize();

Ilcreate an image as a new screen
offscreen = createlmage(d.width, d.height);

Ilcreate a graph in the new screen
offgraphics = offscreen.getGraphics();

Ilpaint the graph
paintNode(offgraphics) ;
paintLine(offgraphics) ;
paintData(offgraphics) ;

Iidraw the new screen above old screen
g.drawlmage(offscreen, 0, 0, null);

11*******···**·**·****··******·*********************** ***************
II paintNode(): Paint nodes and their keys of the heap.
//***.***************
public void paintNode(Graphics screen) (

int xsize = 5, Ysize = 18; Illocation of a key inside node
super.paint(screen) ;

for(int i=O; i<=nMax; i++) {
if ((nodes [i] ! =null) && (nodes [i) . key! =-1)) (

II paint node
screen.setColor(nodeColor) ;
if(nodes[i] .DelMax)

screen.setColor(delMaxColor);
if(nodes[i] . camp)

screen.setColor(compColor) ;
screen.fillOval((int)nodes[i] .x,

nodeSize) ;

Iiset node color
Iiset color for deleted node

Iiset color for comparison node

(int)nodes[i] .y, nodeSize,

II fill the key inside node
if(nodes[i) . key > 9) Iladjust location of the key

Xsize 5;
else

xsize 9;
screen.setColor(keyColor); Iiset key color
screen.drawString(Integer.toString(nodes[i] .key) ,

(int) (nodes[il .x+Xsize), (int) (nodes[il .y+Ysize));

}

11** ***************
II paintLine(): Paint lines that link nodes.
//***

public void paintLine(Graphics screen) {

55

int parent;

for(int i=l; i<=nMax; i++){
if((i!=l)&&(nodesBak[i] !=null» {

parent = i/2;
if(parent < 1)

parent = 1;
screen.setColor(lineColor) ;
screen.drawLine«int) (nodesBak[parent] .x+nodeSize/2l,

(int) (nodesBak[parentl .y+nodeSize+2) ,
(int) (nodesBak[i] .x+nodeSize/2), (int) (nodesBak[i] .y»;

}

11** ***************
IIThis function paint the data array.
1/** ***************
public void paintData(Graphics screen) {

int Xsize, Ysize = 18;
int x, y, width, height;
int space = 3, i;

Iisetup x and y of the first node
width = getSize() .width;
height = getSize() .height;
y height - 100;
x = (width/2)-«nMax*nodeSize)/2)-«space*nMax-1)/2);

super.paint(screen) ;
II paint node
for(i=l; i<=nMax; i++) {

if«(nodes[il l=null)&&(nodes[i] .key!=-l» {
screen.setColor(nodeColor) ;
if(nodes[i] .DeIMax)

screen.setColor(deIMaxColor)j
screen.fiIIRect(x, y, nodeSize, nodeSize);

II fill key inside node
if(nodes[i] . key > 9)

Xsize = 5;
else

Xsize = 9;
screen.setColor(keyColor)j
screen.drawString(Integer.toString(nodes[il . key) ,

x+Xsize, y+Ysize);
}
Iiset x of next node
x+=nodeSize + spacej

}

/1** **************
II MoveNode(): Handles the animation process-determine the movement
II of one or two nodes.
//**

public void MoveNode(int i, int j) {
float slope1=0;
float slope2=0;

II calculate slopes between two points

56

if«i!=j)&&(nodes[i].x != nodes[j] .x){
slopel Slope(nodes[i] .x, nodes[j) .x, nodes [i) .y, nodes[j) .y);
slope2 = Slope(nodes[j] .x, nodes[i] .x, nodes[j] .y, nodes[i) .y);

II determine the increment of each step of a movement
float xlInc (nodes[j) . x-nodes [i) .x)/step;
float x2Inc (nodes[i] .x-nodes[jl .x)/step;
float ylInc (nodes[j] .y-nodes[il .y)/step;
float y2Inc (nodes[i] .y-nodes[j] .y)/step;

for(int n=O; n<step: n++) {
II update x and y
nodes[i] .x= (float) (nodes[il .x+xlInc):
nodes[j] .x= (float) (nodes[j] .x+x2Inc);
if(nodes[i).x != nodes[j] .x) {

nodes[i).y= (float) (nodes[i) .y+slopel*xlInc);
nodes[j).y= (float) (nodes[j] .y+slope2*x2Inc):

}

else{
nodes[i] .y
nodes[j] .y

Iino slope if xl=x2 because slope=(y2-yl)/(x2-xl)
(float) (nodes[i] .y+ylInc):
(float) (nodes[j] .y+y2Inc);

II repaint each move
repaint() ;
try{

Thread. sleep (pause) ;
} catch (InterruptedException elf)

1/***· ***************

II Slope(): Calculate the slope between two nodes.
11*********-** ***************
public float Slope(float xl, float x2, float yl, float y2) (

float slope:
slope = (float) «y2-yl) I (x2-xl»):
return slope:

11** ***************
II createRandomData(): Generate random data using Math.random().
11** ***************
public void createRandornData()
{

int flag, theData, i, j;

i=l:
while (i<=nMax) {

theData=(int) (nMax * Math.random(»)+l;
flag=O;
for(j=l; j<=i; j++) {

if(theData==Array[j){ Ilcheck if the data exists
flag=l ;
break;

}

}
if (flag==Q) (

Array[i++l=theData: Iisave the data if not exists
System.out.print(Array[i-l)+" ");

57

}

System.out.println(" lpresort) ")i

HTML document
//***
II This html program brings above java applet (HeapSort) into browser
//***
<html>
<applet code="HeapSort.class" height=400 width=700>
</applet>
</html>

58

2. Animation of Four Algorithms Together

1*** *****************
Program
Author

Data
Programming Language

SortAll
Jian Su
December 1999
Java

This program is designed to execute quicksort, fast heapsort. heapsort.
and insertion sort concurrently. It can also execute individual
algorithm separately.

The program contains 7 classes:
Node: Contains basic elements of a node
SortAll: Main class of this program - program starts from here
SortAnimation: Handle animation process
SortGeneral: Base class for all sorting algorithms
quickSort: Derived class from SortGeneral to handle quicksort
heapSortFast: Derived class from SortGeneral to handle fast heapsort
heapSort: Derived class from SortGeneral to handle heapsort
insertSort: Derived class from SortGeneral to handle insertion sort
** ****************1

import java.awt.*;
import java.util.*;
import java.applet.Applet;
import java.awt.event.*;

11** *****************
II Node class: a node contains, a key (data), its x and y coordinates
II on the screen, and swap and comparison flags.
11** *****************
class Node {

float x;
float y;
int key;
boolean swap;
boolean comp;

//********************************** •• *********************************
II SortAll class: This is the main program - program starts from here.
II This class set-up interface.
11** *****************
public class SortAll extends Applet implements ActionListener{

int nMax = 20; Iidefault max number of nodes
int upLimit ;:- 25; Ilupper limit of data size for animation
int nodeSize = 20; Iisize of a node
int fieldSize = 5; lithe size of text field
int Array[];

Panel controlPanel;
Panel displayPanel;
Panel qSortPanel;
Panel iSortPanel;
Panel hSortPanel;
Panel hSortPanell;
Panel qSortCtrlPanel;
Panel hSortCtrlPanell;
Panel iSortCtrlPanel;
Panel hSortCtrlPanel;

Iloverall control panel
Iidisplay sorting animation
liquicksort panel
Ilinserton sort panel
Ilheapsort panel
Ilfast heapsort panel
liquicksort control panel
Ilfast heapsort panel
Ilinserton sort control panel
Ilheapsort control panel

59

sortAnimation qSort;
sortAnimation iSort;
sortAnimation hSort;
sortAnimation hSortl;

Button startButton;
Button resetButton;
Button qStartButton;
Button hStartButton;
Button iStartButton;
Button hStartButton1;

Label qLabel;
Label iLabel;
Label hLabel;
Label hLabell;
Label qSwapLabel;
Label iSwapLabel;
Label hSwapLabel;
Label hSwapLabell;
Label qCompLabel;
Label iCompLabel;
Label hCompLabel;
Label hCompLabel1;
Label hMoveLabel1;
Label dataSizeLabel;

TextField qSwapText;
TextField iSwapText;
TextField hSwapText;
TextField hSwapText1;
TextField qCompText;
TextField iCompText;
TextField hCompText;
TextField hCompText1;
TextField hMoveText1;
TextField dataSizeText;

public Color backColor;
public Color nodeColor;
public Color keyColor;
public Color swapColor;

liquicksort class
Ilinserton sort class
Ilheapsort class
Ilfast heapsort class

Iistart all sorting animation
Ilreset and generate data
Iistart quicksort
Iistart quicksort
Iistart inserton sort
Iistart fast heapsort

liquicksort label
Ilinsertion sort label
Ilheapsort label
Ilfast heapsort label
Illabel for swap count of quicksort

Illabel for comparison count of quicksort

I/label for data size

Iishow result of swaps for quicksort

/Ishow result of comparison for quicksort

Ilfor enter data size

Ilbackground color

Iidata color
Ilcolor for swapping nodes

11** ***************
II init(): This function executes only once when program starts.
11** ***************
public void init() (

Array = new int[nMax+1];

Iisetup colors
backColor = new Color(O, 140, 140);
nodeColor = new Color(255, 255, 0);
keyColor = new Color(O, 0, 0);
swapColor = new Color(O, 255, 255);

I/set-up screen layout and color
setLayout(new BorderLayout());
setBackground(backColor) ;

//setup overall control panel

60

controlPanel = new Panel();
startButton = new Button (URun All U) ;
startButton.addActionListener(this) ;
resetButton = new Button("Reset");
resetButton.addActionListener(this);
dataSizeLabel = new Label(USize", Label.RIGHT);
dataSizeText = new TextField(fieldSize) ;

controIPanel.add(dataSizeLabel) ;
controIPanel.add(dataSizeText);
controlPanel.add(startButton) ;
controIPanel.add(resetButton) ;

Ilcreate and setup quicksort panel
qSortPanel = new Panel();
qSortPanel.setLayout(new BorderLayout(»;
qSortPanel.setBackground(backColor) ;
Ilcreate and setup quicksort control panel
qSortCtrlPanel = new Panel();
qLabel = new Label ("Quicksort", Label. RIGHT) ;
qStartButton = new Button(UStart U);
qStartButton.addActionListener(this) ;
qSwapLabel = new Label ("SwapU, Label.RIGHT);
qSwapText = new TextField(fieldSize);
qCompLabel = new Label ("Comparison u

, Label.RIGHT);
qCompText = new TextField(fieldSize) ;
/Iadd buttons and labels to quicksort control panel
qSortCtrIPanel.add(qLabel) ;
qSortCtrIPanel.add(qStartButton) ;
qSortCtrIPanel.add(qSwapLabel)i
qSortCtrlPanel.add(qSwapText) ;
qSortCtrIPanel.add(qCompLabel) ;
qSortCtrIPanel.add(qCompText) ;
Ilcreate quicksort canvas which handles quickSort animation
qSort = new sortAnimation(new quickSort (this));
I/add quicksort control panel and canvas to quicksort panel
qSortPanel.add("South", qSortCtrIPanel);
qSortPanel.add("Center", qSort);

I/create and setup heapsort panel
hSortPanel = new Panel();
hSortPanel.setLayout(new BorderLayout();
hSortPanel.setBackground(backColor) ;
hSortCtrlPanel = new Panel();
hLabel = new Label ("Heapsort", Label.RIGHT);
hStartButton = new Button("Start U);
hStartButton.addActionListener(this) ;
hSwapLabel = new Label ("Swap", Label. RIGHT) ;
hSwapText = new TextField(fieldSize);
hCompLabel = new Label("Comparsion", Label.RIGHT);
hCompText = new TextField(fieldSize);
hSortCtrIPanel.add(hLabel) ;
hSortCtrlPanel.add(hStartButton) ;
hSortCtrlPanel.add(hSwapLabel) ;
hSortCtrlPanel.add(hSwapText) ;
hSortCtrlPanel.add(hCompLabel);
hSortCtrlPanel.add(hCompText);
hSort = new sortAnimation(new heapSort(this»;
hSortPanel. add (" South", hSortCtrlPanel);
hSortPanel.add("Center U, hSort);

61

//create and setup fast heapsort panel
hSortPanell = new Panel();
hSortPanell.setLayout(new BorderLayout(»);
hSortPanell.setBackground(backColor);
hSortCtrlPanell = new Panel();
hLabell = new Label("Fast Heapsort". Label.RIGHT);
hStartButtonl = new Button("Start");
hStartButtonl.addActionListener(this) ;
hSwapLabell = new Label ("Swap" , Label.RIGHT);
hSwapTextl = new TextField(fieldSize);
hCornpLabell = new Label("Cornparsion", Label.RIGHT);
hCornpTextl = new TextField(fieldSize);
hMoveLabell = new Label ("Move", Label. RIGHT) ;
hMoveTextl = new TextField(fieldSize);
hSortCtrlPanell. add (hLabell) ;
hSortCtrlPanell.add(hStartButtonl) ;
hSortCtrIPanell.add(hSwapLabell);
hSortCtrIPanell.add(hSwapTextl);
hSortCtrIPanell.add(hCornpLabell);
hSortCtrlPanell.add(hCornpTextl);
hSortCtrlPanell.add(hMoveLabell) ;
hSortCtrlPanell.add(hMoveTextl);
hSortl = new sortAnirnation(new heapSortl(this));
hSortPanell.add("South", hSortCtrlPanell);
hSortPanell.add("Center", hSortl);

//create and setup insertion sort panel
iSortPanel = new Panel();
iSortPanel.setLayout(new BorderLayout(»);
iSortPanel.setBackground(backColor) ;
iSortCtrlPanel = new Panel();
iLabel = new Label ("Insertion sort", Label.RIGHT);
iStartButton = new Button("Start");
iStartButton.addActionListener(this) ;
iSwapLabel = new Label ("Swap", Label. RIGHT) ;
iSwapText = new TextField(fieldSize) ;
iCornpLabel = new Label ("Cornparsion" , Label. RIGHT) ;
iCornpText = new TextField(fieldSize) ;
iSortCtrIPanel.add(iLabel) ;
iSortCtrIPanel.add(iStartButton) ;
iSortCtrlPanel.add(iSwapLabel) ;
iSortCtrlPanel.add(iSwapText) ;
iSortCtrlPanel.add(iCornpLabel) ;
iSortCtrIPanel.add(iCornpText) ;
iSort = new sortAnirnation(new insertSort(this));
iSortPanel.add("South", iSortCtrlPanel);
iSortPanel.add("Center", iSort);

//create display panel which holds four algorithm panels together
displayPanel = new Panel();
displayPanel.setLayout(new GridLayout(4, 0));
displayPanel.add(qSortPanel) ;
displayPanel.add(iSortPanel) ;
displayPanel.add(hSortPanel);
displayPanel.add(hSortPanell);

//setup screen - arrange overall control panel and display panel
add ("Center", displayPanel);
add ("South", controlPanel);

62

11** ***************
II start(): Do nothing here since everything is activated by
II actionPerformed() in this program.
11** ***************
public void start(){

reset() ;

11** ***************
II reset(): Clears the screen and reset everything.
11** ***************
public void reset() (

lienable buttons
startButton.setEnabled(true);
qStartButton.setEnabled(true) ;
hStartButton.setEnabled(true);
hStartButton1.setEnabled(true) ;
iStartButton.setEnabled(true) ;

Ilfunction call to reset all counts to 0
qSwapCount(O};
qCompCount(O)i
hSwapCount(O) ;
hCompCount(O) ;
hSwapCountl(O} ;
hCompCountl(O) ;
hMoveCountl(O) ;
iSwapCount(O) ;
iCompCount{O) ;

Ilclean data array
for(int i=O; i<=nMax; i++)

Array[il = 0;

Ilgenerate random data
createRandomData() ;

Ilreset individual algorithm by calling its own reset() function
qSort.reset(Array) i

hSort.reset(Array) i

hSortl.reset(Array) i

iSort.reset(Array) ;

11** ***************
II actionPerformed(): This function handles button pressing which
II activates a particular process.
//***
public void actionPerformed(ActionEvent e) {

Object source = e.getSource(};
Ilif Run All button is pressing
if(source == startButton) {

Iidisable all start-buttons while execution is in progress
startButton. setEnabled (false) ;
qStartButton.setEnabled{false);
hStartButton.setEnabled(false) ;
hStartButtonl.setEnabled(false) ;
iStartButton.setEnabled(false} ;

Iistart all sorting processes

63

qSort.start() ;
hSort.start() ;
hSortl.start() ;
iSort.start();

}

Ilif Start button of quicksort is pressing
if(source == qStartButton) {

startButton.setEnabled(false) ;
qStartButton.setEnabled(false) ;
Iistart quicksort process
qSort.start() ;

Ilif Start button of heapsort is pressing
if(source == hStartButton) {

startButton.setEnabled(false) ;
hStartButton.setEnabled(false) ;
hSort.start() ;

Ilif Start button of fast heapsort is pressing
if(source == hStartButtonl) {

startButton.setEnabled(false);
hStartButtonl.setEnabled(false) ;
hSortl.start() ;

Ilif Start button of insertion sort is pressing
if(source == iStartButton) {

startButton.setEnabled(false);
iStartButton.setEnabled{false) ;
iSort.start() ;

Ilif reset button is pressing, reset everything
if(source == resetButton){

Ilget data size
nMax = Integer.parseInt(dataSizeText.getText(J);
Array = new int(nMax+l];
reset () ;

//***

II stop(): Build-in function: invoked when exits browser.
11** ***************
public void stop(){

qSort.stop() ;
hSort. stop () ;
hSortl.stop() ;
iSort.stop() ;

j/** *************.*
II createRandomDate(): Generate random data and put them in array
11** ***************
public void createRandomData(){

int flag, theData, i, j;

i=l;

64

while(i<=nMax) (
theData=(int) (nMax * Math.random(»)+l:
flag=O;
for(j=l: j<=i: j++){

if(theData==Array[j]){
flag=l:

break;
}

}
if (flag==O) {

Array[i++]=theData;
if(nMax <= upLimit}

System.out.print(Array[i-ll+" "}:

}

System.out.println(" (presort: size="+nMax+"}"):

11****************************··**······***··*·******* ***.**********.
IIFollowing functions print out the counts of swaps and comparisons.
11·**·*****··*** ***************
public void qSwapCount(int count} {

qSwapText.setText(Integer.toStringlcount}} ;
}

public void qCompCount(int count) {
qCompText.setText(Integer.toString(count}} :

}

public void hSwapCount(int count} {
hSwapText.setText(Integer.toString(count}) :

}

public void hCompCount(int count} {
hCompText.setText(Integer.toString(count}} ;

}

public void hSwapCountl(int count} {
hSwapTextl.setText(Integer.toString(count}} :

}

public void hCompCountl(int count) {
hCompTextl.setText(Integer.toString(count») :

}
public void hMoveCountl(int count} {

hMoveTextl.setText(Integer.toString(count}} :
}

public void iSwapCount(int count} {
iSwapText.setText(Integer.toString(count}};

}

public void iCompCount(int count) {
iCompText.setText(Integer.toString(count)} :

//***

II sortAnimation class: Handles the animation process.
11***************·********···**********·*********·**** *******.*********
class sortAnimation extends Applet implements Runnable{

int nMax = 20;
int upLimit = 25:
int nodeSize = 20;
private Thread runner:
private sortGeneral algorithm:
private Image offscreen;
private Graphics offgraphics:

65

Illower bound
Ilupper bound
Ilhalf cycle of sine

private int pause = 60;
private int step = 20;
private int xMax, yMax, x, space=3;
private Node nodes[];
Color ba.ckColor = new Color (0, 140, 140);
Color nodeColor = new Color(255, 255, 0);
Color keyColor = new Color(O, 0, 0);
Color swapColor new Color(O, 255, 255);
Color compColor = new Color(O, 255, 0);

11** ***************
Ilconstructor - bring in a sorting algorithm as parameter
11** ***************
public sortAnimation(sortGeneral sortAlgorithm) (

algorithm = sortAlgorithm;
Ilput this animation program above the sorting algorithm
algorithm.setParent(this) ;

Ilif no thread is running, create a thread
public void start() (

if(runner == null) {
runner = new Thread(this) ;
runner.start{) ;

11** ***************
II run(): Invoked by start() to execute sorting and animation.
11** ***************
public void run() {

algorithm. sort (nodes) ;
}

11** ***************
II moveNode(): Handle the animation of swapping nodes. The move path
II of each node is determined by math.Bin() function.
11** ***************
public void moveNode(int front, int back) {

if(nodes.length -1> upLimit) Ilif size>upLimit, no animation
return;

int height, base;
float xMove, yMove;
double radians = (float)O, radianslnc;

xMove = (nodes [back] .x - nodes [front] .x)/step;
height = getSize() .height;
base = height - height/3;
height = height/3;
radiansInc = 3.14156/step;

for(int n=O; n<step; n++) {
II update x and y axes
radians += radiansInc;
yMove = base - (float)Math.sin(radians) * height-lO;
if(n == (step -1»

yMove = base;
nodes [front] .x= (float) (nodes [front] .x+xMove);
nodes [back] .x= (float) (nodes [backJ .x-xMove);
nodes [back] .y= (float) (yMove);
nodes [front] .y= (float) (yMove);

66

Ilpaint each move
Thread thisThread = Thread.currentThread();
if(thisThread == runner) {

repaint();
}

try{
if«nodes[frontl . key == -1) I I (nodes [backJ . key

Thread.currentThread() .sleep(pause/3);
else

Thread.currentThread() .sleep(pause);
catch (InterruptedException elf)

Ilpaint the comparison nodes with new color
public void markCompNodes() {

if(nodes.length > upLimit)
return;

Thread thisThread = Thread.currentThread();
if(thisThread == runner) (

repaint() ;
}
try{

Thread.currentThread() .sleep(pause*step/3);
} catch (InterruptedException e) {}

-1))

11** ***************
II update(): This function is invoked by reparint() to update the
II screen. This function uses double-buffer technical which
II creates an image as a new screen (offscreen) and a graph
II (offgraphics) in the new screen. Then paint nodes in the
II graph, and draw the new screen above old screen. Thus,we
II do not have to erase the old paint during each update.
11***k****** ***************
public void update(Graphics screen) (

int Xsize. Ysize = 15;

Dimension d = get.size();

Ilcreate an image as a new screen
offscreen = createlmage(d.width, d.height);

Ilcreate a graph in the new screen
offgraphics = offscreen.getGraphics();
offgraphics.setColor(this.getBackground(» ;
offgraphics.fillRect(O. 0, d.width, d.height);

Ilif size> 25, paint warning message
if(nodes.length-1 > upLimit){

Font newFont = new Font("TimesRoman". Font.BOLD. 17);
offgraphics.setFont(newFont) ;
offgraphics. setColor (Color.white) ;
offgraphics.drawString(IOSize> 25. Run with no animation?". 230,

(int)nodes[lJ .y);
screen.drawlmage(offscreen, O. O. null);
return;

}

Ilpaint nodes in offgraphics

67

for(int i=l; i<=nMax; i++){
if(nodes[i] !=null) {

Ilpaint node
offgraphics.setColor(nodeColor) ;
if(nodes[i) . swap}

offgraphics.setColor(swapColor);
if{nodes[i] .comp)

offgraphics. setColor (compColor) ;
if(nodes[i] .key == -l} 11-1 indicates no key

offgraphics.setColor(backColor);
offgraphics. fillRect ((int) nodes [i] . x, (int) nodes [i] . y,

nodeSize, nodeSize};

II fill key inside node
if(nodes[i] .key!=-l) {

if(nodes[i] .key > 9)
Xsize 3;

else
Xsize 7;

offgraphics.setColor(keyColor) ;
offgraphics.drawString(Integer.toString(nodes[i] . key) ,

(int) (nodes [i) .x+Xsize), (int) (nodes[i).y+Ysize»;

}

Iidraw the new screen on old screen
screen.drawlrnage(offscreen, 0, 0, null);

}

11** ***************
Iistop(}: Invoked when exit browser
11** ***************
public void stop() {

if(runner != null} {
runner = null;

11** ***************
Ilreset(): Resets nodes and screen.
11** ***************
public void reset(int array[]) {

Ilmake sure that no process is still running
stop() ;
nMax = array.length-1;

Ilcreate a new set of nodes
nodes = new Node[array.length];
xMax = getSize() .width;
yMax = getSize{) .height;
x = (xMax/2)-«nMax*nodeSize}/2)-((space*nMax-l) 12) ;

for(int i=O; i<=nMax; i++){
Node tmpNode = new Node();
tmpNode.key = array[i];
tmpNode.y = yMax - yMax/3;
trnpNode.x = x;
tmpNode.swap = false;
tmpNode.comp = false;
nodes[i] = tmpNode;
x += nodeSize + space;

68

Ilreset variables of individual algorithm
algorithm.reset() ;

Ilpaint the new nodes
repaint() ;

//******************************,***************************************
II sortGeneral: Base class for sorting algorithms. It contains the
II common methods and variables shared by all algorithms
11** *****************
class sortGeneral{

int upLimit = 25;
protected sortAnimation parent;
protected SortAll ctrlPanel;
int swapCount, compCount, moveCount;

I/bring in sortAnimation program to handle animation process
public void set Parent (sortAnimation p) (

parent = p;

/I**********************~**

II reset(): Clear counts.
;/***
public void

swapCount
compCount
moveCount

reset(){
= 0;

0;
0;

11** ***************
II sort{): Virtual function - will be implemented by derived classes.
11** ***************
public void sort(Node nodes[]) {
}

11** **************
II swap(): This common function will be called by derived classes.
11** **************
public void swap(Node nodes[], int front, int back) (

Node tmpNode = new Node();

if((nodes [front] !=null)&& (nodes [back] !=null) (
if(front != back)&&(nodes.length-l)<=upLimit)){

Ilanimate swap process
nodes [front] . swap = nodes [back] . swap true;
parent.moveNode(front, back);
nodes [front] .swap = nodes [back] . swap false;

}
Iiswap data after animation
tmpNode = nodes [front] ;
nodes [front] = nodes[back];
nodes [back] = tmpNode;

69

11** ***************
llmarkNode.s(): Mark and change the color of comparison nodes.
11** ***************
public void markNodes(Node nodes[]. int i, int j){

if«nodes.length-l»upLimit)
return;

nodes[i] .comp = nodes[j] .comp true;
parent.markCompNodes() ;
nodes[i] .comp = nodes[j] .comp false;

}

1/** *****************

II quickSort class: Derived class of sortGeneral to handle quicksort.
//***

class quickSort extends sortGeneral{
Ilconstructor bringa in SortAll that defines text fields for counts
public quickSort(SortAll p} {

ctrlPanel = Pi

//**
II sort(): Implement the virtual function sort(} of base class.
//**

public void sort(Node nodes[]} {
quicksort (nodes, I, nodes. length-I) ;
parent.repaint() ;

Ilprint the results on server side (not the animation screen)
if (nodes. length<=upLimit) {

for(int i=l; i<nodes.lengthi i++) {
System.out.print (nodes [i] .key +" "};

}
)
System.out.println("Sorted(quicksort)

swap="+swapCount) ;
comparison="+compCount +"

11** *************
II quicksort(}: Quicksort main program
11** *************
public void quicksort(Node nodes[], int left, int right) {

int 1 = lefti
int r = right;
int pivot = (1+r)/2;
int mid = nodes [pivot] .key;

dol
while (nodes [1] . key < mid) (

markNodes(nodes, pivot, 1);
ctrlPanel.qCompCount(++compCount);
1++;

}
while(nodes[r] . key > mid) {

markNodes(nodes, pivot, r}
ctrlPanel.qCompCount(++compCount) ;
r--;

}
if (1 <= r){

markNodes(nodes, 1, r);
ctrlPanel.qCompCount(++compCount} ;

70

swap (nodes, 1, r);
ctrlPanel.qSwapCount(++swapCount) ;
1++; r--;

}

}while(l <= r}

if(r> left}{
quicksort (nodes, left, r);

}

if (1 < right) {
quicksort (nodes, 1, right)

11** *****************
II insertSort class: Derived class of sortGeneral to handle insert sort
11**·* *****************
class insertSort extends sortGeneral{

int min = -1000; Ilput min key in front as sentinel

Ilconstructor
public insertSort(SortAll p) {

ctrlPanel = p;

11** ***************
II sort(}: Implement the virtual function sort(} of base class.
11** ***************
public void sort(Node nodes[]){

insertsort(nodes, nodes.length-1}
parent.repaint(} ;
if(nodes.length<=upLimit) {

for(int i=l; i<nodes.length; i++} (
System.out.print(nodes[i) .key +" "I

}
}
System.out.println("Sorted(insertion sort}

+" swap=" +swapCount} ;
cornparison="+compCount

Iisentinel-no element go beyond it
Ilfrorn pass p = 2 through n

11** ***************
II insertsort(}: Insertion sort main program.
11** ***************
public void insertsort(Node nodes[], int n} {

int theKey, p, j;

nodes[O] .key = min;
for (p=2; p<=n; p++){

theKey = nodes[p) .key;
for(j=p; theKey<nodes[j-1) .key; j--) (

markNodes(nodes, j-l, jl;
ctrlPanel.iCompCount(++compCount) ;
swap (nodes, j-l, j};
ctrlPanel.iSwapCount(++swapCount) ;

}
markNodes(nodes, j-l, p};
ctrlPanel.iCornpCount(++compCount};

71

//***

II heapSort class: Derived class of sortGeneral to handles heapsort.
11** *****************
class heapSort extends sortGeneral{

Node nodes[] i

Ilconstructor
public heapSort(SortAII p){

ctrlPanel = Pi

11** ***************
II sort(): Implement the virtual function sort() of base class.
11** ***************
public void sort(Node nodeArr[]){

nodes = nodeArri
buildHeap () i

delMax(nodes.length-l)
parent.repaint();
if (nodes.length<=upLimit) {

for(int i=l; i<nodes.length; i++) {
System.out.print(nodes[il . key +" ")

}

}
System.out.println("Sorted(heapsort)

swap="+swapCount);
comparison="+compCount +"

//**
II buildHeap(): Perform build-heap function of heapsort
/1** **************
public void buildHeap() (

int i. n;
n = nodes.length-l;
for(i=n/2; i>O; i--)

perc_down (i , n) ;

//***
// deIMax(): This function performs the regular delete-max operations
II which put the last leave at the root after the root is
1/ deleted, and then sift it down by swapping it with its
II larger child. This method takes two comparisons and one
1/ swap at each level.
/1** ***************
public void delMax(int size){

int j, n = size;
for(j=l; j<=n; j++) (

if(size>l) {
Iidelete root
swap (nodes, 1, size);
ctrIPanel.hSwapCount(++swapCount) ;

Ilrebuild heap after deleting root
size--;
Ilif last two nodes in order, sorting done
if«size == 2)&&(nodes(l] .key<nodes[2] .key» {

72

}

markNodes{nodes, 1, size);
ctrlPanel.hCompCount(++compCount)i
break;

}

perc_down(l, size);

Ilmark comparison nodes
Ilupdate comparison count

11**********·******·*******************************·** ***************
II perc_down(): Handle perlocate down process of heapsort.
11*********·** ***************
public void perc_down(int i, int size) (

int child, tmp;
for(; i*2<=size; i=child){

child = 2*i i
if (child<size) (

markNodes(nodes, child, child+l);
ctrlPanel.hCompCount(++compCount) ;
if (nodes [child] .key<nodes[child+l] .key)

child++;

markNodes(nodes, i, child) i

ctrlPanel.hCompCount(++compCount) ;
if(nodes[i] . key < nodes [child] .key) (

swap (nodes , i, child);
ctrlPanel.hSwapCount(++swapCount);

}
else{

break;

//***

IlheapSortl class: Derived class of sortGeneral to handle fast heapSort
II This sorting uses Floyd algorithm for delete-max.
11** ******.**********
class heapSortl extends sortGeneral{

Node nodes[];

Ilconstructor
public heapSortl(SortAll p) {

ctrlPanel = p;

11********·*** ***************
II sort{): Implement the virtual function sort() of base class.
11********·**********·****************************·*** ***************
public void sort{Node nodeArr[]) {

nodes = nodeArr;
buildHeapl() ;
delMaxFast (nodes. length-l) ;
parent.repaint() ;
if (nodes. length<=upLimit){

for(int i=l; i<nodes.length; i++) {
System.out.print(nodes[i] . key +" ");

}

73

System.out.println("Sorted(fast heapsort): comparison="+compCount +"
swap="+swapCount +" move="+moveCount);

//***.**
IlbuildHeap1(): Identical to buildHeap function of regular heapsort.
1/** **************
public void buildHeap1() (

int i, n;
n = nodes.length-1;
for(i=n/2; i>O; i--)

perc_down1 (i, n) ;

//**
// perc_down1(}: Identical to perc_down of regular heapsort.
//**
public void perc_down1(int i, int size) (

int child, tmp;
for(; i*2<=size; i=child){

child = 2*i;
if (child<size) (

markNodes(nodes, child, child+1);
ctrlPanel.hCompCount1(++compCount) ;
if (nodes [child] .key<nodes[child+1J . key)

child++;

markNodes(nodes, i, child};
ctrlPanel.hCompCount1(++compCount) ;
if(nodes[iJ . key < nodes [childJ .key) {

swap (nodes, i, child};
ctrlPanel.hSwapCountl(++swapCount} ;

}

else{
break;

//***
II delMaxFast(}: Delete-max operation, using Floyd algorithm. This
II fast del-max operation starts at the empty root and
/1 promotes the larger child, all the way down. This
// takes only one comparison and one move at each level.
1/ After the sift-down process, then sift up the hole
II before inserting the last leaf, if last leaf has
II larger value than the parent of the hole. This will
II avoid swaps during sift up process.
1/** ***************
public void delMaxFast(int size) {

int last, parent, maxKey, child;
parent = 1;
child = 2;

Node firstNode = new Node(};
firstNode.x = nodes(1).x-20;
firstNode.y = nodes [1] .y;
firstNode.swap = true;
firstNode.comp = false;
firstNode.key = -1;

74

nodes[O] = firstNode;

while{size>l){
if{sizel=2) (

oneWayMove{l, 0);

//sift-down the hole, starting from root
for (parent=l; parent*2<size; parent=child){

child = 2*parent;

if (child<size) (
markNodes(nodes, 1, size);
ctrlPanel.hCompCount1{++compCount);
if (nodes [child] .key<nodes[child+1) .key)

child++;
}

oneWayMove{child, parent);

/Ireduce heap size by one
last = size--;

Iisift-up the last hole
for (parent=child/2; parent>l; parent=child/2) (

if((child==last/2) II (parent==last/2) II (child==last»
break;

markNodes(nodes, 1, size);
ctrlPanel.hCompCount1(++compCount) ;
if (nodes [last] . key > nodes [parent] .key) {

oneWayMove(parent, child};
child = parent;

}
else

break;

IISpecial case for size=2
if(size==l){

markNodes(nodes, 1, size);
ctrlPanel.hCompCount1(++compCount) ;
if{nodes[l) . key > nodes[2] .key) (

Iiswap node[l] and nodes[2) using one-way move
oneWayMove(l, 0);
oneWayMove(2, 1);
oneWayMove(O, 2);

}

else{
if(last != child)

oneWayMove(last, child);
oneWayMove(O, last);

}

11** **************
II oneWayMove(): Move one node instead swap two nodes
1/** **************
public void oneWayMove(int from, int toll

Node trnpNode = new Node();

75

nodes [from] . swap = true;
parent.moveNode(frorn, to);
nodes [from] . swap = false;

II need swap x, y coordinates for animation
tmpNode = nodes [to] ;
nodes [to] = nodes[from);
nodes [from] = tmpNode;
ctrlPanel.hMoveCountl(++moveCount};

HTML document
1/** *****************
IIThis html program will bring above java applet (SortAll) into browser
11** *****************
<html>
<applet code="SortAll.class" height=400 width=700>
</applet>
</htrnl>

76

,)

VITA

Jian Su

Candidate for the Degree of

Master of Science

Thesis: VISUALIZATION AND ANIMATION OF SORTING ALGORITHMS

Major Field: Computer Science

Biographical:
Personal Data: Born in Beijing, China, daughter of Jiayuan Sun and Peizhi su,

married to Sean Zhang.

Education: Received Bachelor of Science degree in Industrial Economics from
Chinese People's University, Beijing, China in June 1986. Completed the
Requirements for the Master of Science degree with a major in Computer
Science at Oklahoma State University in December 1999.

Experience: Worked as a Research Engineer for Institute of Techno-Economics,
State Planning Commission, Beij ing, China from 1986 to 1989

