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1. Introduction

1.1. Overview

Ground source heat pump systems (GSHP) offer a great advantage over

conventional heat pump systems. GSHPs have high efficiency, low maintenance costs

and low overall operating costs. The heat is absorbed and rejected through water, which

is a more desirable heat transfer medium than air as used in conventional systems. The

heat is absorbed from the ground during heating operation and rejected to the ground

during cooling operation. Since the ground is nearly at a constant temperature, the heat is

absorbed and rejected at a more constant temperature than in air source heat pump

systems, which leads to high coefficient of perfonnance (COP) of these systems.

In GSHPs, there are three loops in the system. The first loop is the water/air loop

depending on whether the heated/cooled space requires water or air to heat/cool the

space. The second loop is the refrigerant loop which exchanges heat with both source and

sink loops. The third loop is the ground loop in which water exchanges heat with the

ground and refrigerant. This loop might be dosed loop or open loop depending on the

GSHP system.

For commercial buildings the ground loop typically consists of a series of vertical

heat exchangers, made up of three main components, the high-density polyethylene pipe

(HDPE), material around the pipe called grout and the soil around grout. The pipe, which

has a shape of V-tube, is inserted in a vertical borehole and the borehole is fil1ed with

grout around the pipe. The length of the borehole varies depending on the in-situ test.

Designing of GSHP systems requires accurate estimation of the thennal properties

of the ground. Hence, to accurately estimate the ground thennal properties, a trailer was

designed by Austin (1998, 2000) to experimentally measure power and temperature

response. The power and temperature response can be used to inversely find the ground

thermal conductivity.



Using power measurements, borehole geometry and a guess of ground thermal

properties, a two-dimensional numerical model developed by Yavuzturk et al (1999)

simulates the borehole by finite difference methods and temperatures are computed at the

appropriate location of the borehole. The difference between the experimental and

numerical temperature profiles, at each time step is calculated, squared and added. The

thennal properties of the ground are adjusted such that this sum of the square of the error

(SSQERR) is minimized. An optimization algorithm is required to systematically vary

the properties to reach the minimum of SSQERR. This inverse problem of finding the

parameters using an experimental test and a numerical model is called a parameter

estimation problem. If the parameter estimation is perfonned after all the experimental

data has been collected, it is called off-line parameter estimation.

To minimize SSQERR, severa] optimization methods have been applied so as to

reduce the time taken in estimating the thennal properties of the ground. Since, it takes

about three minutes of computer CPU time on a 233 MHz Pentium II processor to get the

temperature profile at each set of ground thennal properties, it is extremely critical to

reduce the number of times the model computes the temperature profile. Hence, the main

aim of the project is to reduce the number of objective function evaluations (getting the

SSQERR value from the model).

Only two parameters, soil and grout thennal conductivity, are considered for the

parameter estimation results. Additional parameters are probably redundant and add

unwarranted complexity to the problem. For more details on choosing the parameters, see

the thesis by Austin (1998) and research paper Austin et al (2000).

It is also desirable to be able to estimate the ground thermal properties while the

in-situ test is perfonned. This reduces the overhead of taking the experimental data and

performing the off-line estimation of parameters. By performing online parameter

estimation, we can obtain a plot of parameters as test is performed which helps 111

deciding the questions like the length of the test and final parameter values.
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This thesis focuses mainJy on the application of different optimization algorithms

and finding the best algorithm to expedite the process of estimating the ground thennal

properties. Online parameter estimation is also investigated.

1.2. Literature Review

Since the parameters for this problem are non-linearly related to the objective

function and are unbounded, unconstrained non-linear optimization methods are

considered. Optimization methods are divided into two major classes:

• Detenninistic Methods.

• Direct Search Methods.

• lndirect Search (Gradient) Methods.

• Stochastic Methods.

Detenninistic methods find the mInlJTIum by searching the mImmum In a

particular direction with finite number of steps. Stochastic methods use random search to

find the minimum. Hence, the minimum found with stochastic methods is a minimum

only in probabilistic sense. Most of the methods considered in this thesis are detenninistic

methods.

Detenninistic methods are further divided into two classes, direct search methods

and indirect search methods. Direct search methods require only the value of objective

function (SSQERR value) to be calculated at a particular set of parameters. Indirect

search methods use gradient of objective function to minimize.

The optimization methods used in this thesis are as follows:

• Exhaustive Search.

• Neider Mead Simplex Algorithm, NeIder and Mead(1965)

• O'Neill's implementation of NeIder Mead Simplex, R. O'Neill (1971)

• Box's Complex method, M. J. Box (1972)
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• Hooke and Jeeves' method, Hooke and Jeeves ( 1972)

• Powell's method, M. J. D. Powell (1964)

• BFGS method, S. S. Rao (1996)

• Genetic Algorithms, D. E. Goldberg (1989)

• Quadratic fit method.

• O'Neill's implementation of Neider Mead Simplex with exploratory search.

Exhaustive search is just used to see how the optimization domain looks like. This

method of optimization is not feasible since the time taken to estimate the thermal

properties is enormous.

NeIder Mead Simplex and O'Neill's Simplex are methods that use only the

evaluation of objective function value at points that are obtained using reflection,

expansion and contraction of a simplex (a n+1 dimensional figure in n dimensional

space). Box's Complex method is similar to NeIder Mead Simplex except that it uses a

2*n+ 1 dimensional figure called a "Complex". Powell's method is generates conjugate

directions and searches for the minimum along those directions. BFGS method is another

gradient-based method. Genetic algorithms are stochastic method, which use random

number generators to find the minimum in a domain. The Quadratic fit method is based

on line minimization and fitting a quadratic polynomial. Exploratory search is useful in

getting a better starting guess of parameters.

1.3. Experimental Apparatus

The experimental apparatus is contained within an enclosed trailer, constructed by

Austin (1998), that contains all the components required to perform the in-situ test. The

main components in the trailer are water heating elements, water supply/purge tank,

pumps, valves, SCR power controller and two 7000 watts power generators. The

instrumentation and data acquisition equipment are flow meter, two thermistor probes,

watt transducer, thermocouple and a data logger. Since this trailer must be capable of

testing even in undeveloped areas, it contains generator and water tank to supply power
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and water. The trailer is divided into subsystems namely water supply, power supply,

water heating, flow sensing/control equipment, pipe insulation, temperature measurement

and data acquisition. Power Supply System, Data Acquisition System and Temperature

measurement are described here. Figure 1-1 shows the schematic diagram of the trailer.

f---------4 Purge Pumps

Heating elements

~

It
~ ~

Circulating Pumps

t

Trailer Wall
I

Water Supply
Tank

Into the borehole Out of the borehole

Figure 1-1. A schematic diagram 0 f trai ler

1.3.1. Power Supply System

Three heater elements are used to heat the circulating water. The heat input can be

varied in the range of 0 kW to 4.5 kW using SCR power controller which can vary the

power between 0 kW to 2 kW with other two heater elements of 1 kW and 1.5 kW on or

off. The total heat input is the energy input from the three heater elements and power

input to the circulating pumps. This energy input is measured with watt transducer.

1.3.2. Data Acquisition System

The output of watt transducer and digital display is measured by a Fluke Hydra

Data Logger. Digital display displays the DC voltage on the scale of 0-10 Volts for each

measurement. Three readings are recorded by the data logger is:
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• Outlet temperature ofwater (leaving the trailer)

• Inlet temperature of water (returning the trailer)

• Flow rate

All of the measurements are in DC Volts. These measurements are converted

from DC volts to the actual units by taking the raw voltage and fitting a linear curve.

Inside and outside temperatures of the trailer are also recorded using thennocouples.

These data are stored in the data logger's memory. If the data logger is connected to a

computer, the data can be loaded on to the computer at any time by scanning the data

logger's memory.

1.3.3. Temperature measurement

The experimental apparatus uses three thennistor probes. Two probes measure the

temperature of water at the inlet ana the outlet of the borehole. Third probe is used to

measure the temperature of the pipe wall.

1.4. The Numerical Model

Yavuzturk et al (1999) developed the numerical model, which simulates the

borehole with the U-tube, grout and soil. A sketch of the numerical domain is shown in

Figure 1-2. The geometry of U-tube has been approximated by a "pie-sector". Only one

half of the numerical domain has been simulated due to symmetry of the domain. The

power is superimposed at each time step and is considered constant during a single time

step. Radial conduction heat transfer equations have been solved over the geometry and

temperatures have been calculated. The initial condition is that the temperature is

constant and equal to far field temperature everywhere. The boundary conditions are far

field temperature at the outer boundary and a constant heat flux at the inner boundary

during a small time step.

Input parameters to the numerical model are borehole geometry (borehole radius,

U-tube length, pipe diameter, distance between the legs of V-tube, thickness of pipe, heat

capacity of pipe, heat capacity of grout and soil, number of hours for which the
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experimental data has been collected, time step, far field temperature). All of thes

parameters are fixed due to the experimental set-up. Other input parameters are initial

guesses of soil and grout conductivity. Experimental temperatures are calculated by

averaging the inlet and the outlet water temperature to the borehole. The subroutine

ConductSing/eSim gives the temperature values for the whole length of the test at a

particular Ksoi1 and Kgrout.

U-Tube

1.5. Objective function

Borehole

Figure] -2. Domain for numerical model

The objective function is the sum of the square of the errors between experimental

temperatures and numerically estimated temperatures, specifically:

N

SSQERR =I (Texperim<mal,n - Tnwnerical.l1 P
n=1

(1-1)

Where, N is the total number of temperature measurements,

Texperimental.n is the experimental temperature at the nth time step,

Tnumerical,n is the average fluid temperature obtained by numerical model at the nth

time step.
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A typical plot of experimentally obtained temperatures and numerically estimated

temperatures is shown in Figure 1-3.

95,--------------------------------,

90
Numerical

/
85

~
OJ
Qle. 80
~
.a
~
~ 75
E
Ql
I-

'"Experimental

70

65

60504030
Time (Hours)

2010

60 -t-----.,---------------,--------,.-------r-------i

o

Figure 1-3. A typical plot of comparison between Experimental and Estimated

temperatures by numerical model

8



2. Optimization Domain

2.1. Exhaustive Search

Exhaustive search has been performed just to view how the objective function

surface looks like. The main aim oftms search is to fmd out whether there are any ripples

and local minima exist in the valley or the valley is smooth with no ups and downs. This

is helpful because the minimum found by different optimization methods will be the

global minimum if the method converges.

To apply exhaustive search to the optimization domain, we divide the domain of

ground thermal properties (namely, Ksoil and Kgrout) into a grid of small step sizes in both

the directions. At each grid node, a value of objective function is calculated from the

SSQERR function. In the current application of this method, we have applied this to our

SiteA1 in-situ test. The domain is divided into 100 X 80 grid in the direction of ~oil and

Kgrout respectively. The range of Ksoil is 1.0 Btu/hr-ft-F to 1.8 BtuIhr-ft-F. The range of

Kgrout is 0.2 BtuJhr-ft-F to 1.0 Btu/hr-ft-F. These ranges are chosen based on some

previous experience about the properties. This leads to 8000 objective function

evaluations, which takes around 20 days to run on a Pentium II 233 MHz computer.

After computing all the objective function values, we find the minimum of all the

values, which is the true global minimum. This minimum is not quite accurate because of

the finite size of the grid. This method has a drawback that it requires a lot of objective

function evaluations and uses an enormous amount of computer time. Hence, other

optimization methods have been sought to expedite the process of estimating the ground

thermal properties.

Figure 2-1 shows that the objective function surface is a deep turning valley.

From the figure it can be observed that there are no local minimum in the valley and the

floor of the valley is quite flat near the minimum. It is not possible to see the absolute

minimum point with naked eyes.
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Figure 2-1. Domain of objective function
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3. Optimization Methods

3.1. Neider Mead Simplex

This algorithm, first proposed by Spendley et all (1962) and later developed by

NeIder and Mead (1965), is a multidimensional minimization method, that is, finds the

minimum of a function ofmore than one independent variable. This method requires only

objective function evaluations, not derivatives. This is useful since it is quite costly to

calculate derivatives for our problem. By costly, we mean that each objective function

evaluation takes a lot of time, approximately three minutes on a Pentium II 233 MHz

computer.

This algorithm requires a geometric figure of n+1 vertices in n dimensional space,

called a "Simplex". In two dimensions, this figure becomes a triangle. The process of

minimization requires different steps called "reflection", "expansion" and "contraction".

For our case of two-dimensional minimization (Ksoil and KgrOUl), the code starts with a

starting simplex and objective function values at each vertex of the simplex. The simplex

has to be formed in such a way as to ensure that all the three points are not collinear

(actually a right angle triangle is constructed). Then the actual process of moving the

simplex towards the minimum starts. This process uses reflection, expansion and

contraction of the simplex. The amoeba code, implemented for this method, is available

in Numerical Recipes (Press et. ai, 1986).

3.1.1. Reflection

If Yh is the vertex at which the objective function value is largest, then a point Yr

is obtained by reflecting this vertex across the centroid of the remaining vertices (Yo) and

a lesser function value is expected at this vertex. Mathematically the reflection process is

given by:

(3-1)
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Where a is the reflection coefficient and Yh is the vertex corresponding to the maximum

obj ective function value:

(3-2)
j=l,n+l

and Yo is the centroid of all vertices except j = h:

1 n+1

Yo =- 'LYj
n j=1

j .. h

and a is defined as

(3-3)

(3-4)
Distance between Yr and Yo

a =-----------'-----'-
Distance between Yh and Yo

It is not entirely possible to reach a minimum by only reflection process due to

certain difficulties. If the objective function value at reflected vertex turns out to be

greater than or equal to the value at reflecting vertex, then we have to stop since this does

not lead to a new simplex or we will have to reflect the second worst vertex. Using this,

further improvements towards the minimum are made. To absolutely find the minimum

we have to consider other operations like expansion and contraction.

Kgrout

Yro..'
.....

Ksoil

Figure 3-1. Reflection Process
3.1.2 Expansion

If the objective function value at the reflected vertex is minimum of all the

vertices in the simplex, it is expected that a further improvement is possible in the same

direction. Hence, expansion process is introduced. The expansion can be shown as:

12



Ye= Yo +y (Yr - yo)

Where y is the expansion coefficient defined as:

Distance between Ye and Yo
y=

Distance between Yr and Yo

(3-5)

(3-6)

The value of this coefficient is greater than 1. If f(Ye) < f(Y r), then Yr is replaced

by Ye and the reflection process is restarted. If f(Ye) > f(Yr) , which means expansion

process is not successful, Ye is rejected and Yh is replaced by Yr and reflection process is

started again.

....
.....

Kgrout

Ksoil

Figure 3-2. Expansion Process

3.1.3 Contraction

If the reflection produces a vertex with the highest objective function value, a

contraction is tried. First Yh is made equal to Yh or Yr (the reflected point) depending

upon the lower objective function value at Yh and Yr, or Yh = min (Yh, Yr). Now, a

process of contraction is tried using Yhand Yo (the centroid) according to:

(3-7)

13



(3-8)

Where Pis contraction ratio defined as

Distance between Y and YO
~= c

Distance between Yh and YO

This contraction ratio is always less than 1. If the objective function value at Yc is

!:,rreater than the value at Yh then a point with lower objective function value could not be

produced using reflection and contraction. Hence, a contraction about the vertex of

minimum objective function value is perfonned as:

Yi = (Vi + Y1ow)/2 for i = 1...ndim+1 (3-9)

KgrOUI

Yro........
.....

Kgrout

K soil

Figure 3-3. Contraction Process

Figure 3-4. Contraction towards minimum

The reflection process is started again using this new simplex.

The convergence criteria to stop is:

14



2·(f(Yh ) -f(Y)ow»

(f(Y,,) + f(YloW»
< £ (3-10)

Where, f is the function value at the co.rresponding point, € is the specified tolerance and

f(Y1ow)is defined as:

(3-11)

3.2. O'Neill's implementation of Neider Mead Simplex

R. O'Neill (1971) modified NeIder Mead Simplex algorithm and presented it in a

different form. The advanced features of this algorithm are:

• Instead of passing an already constructed simplex to the optimization subroutine, this

implementation requires that a starting vertex and step size in all the coordinate

directions be provided. Then, the subroutine itself constructs a feasible simplex in

such a manner that all the vertices of the simplex are not collinear. It computes the

objective function values also at the vertices of the simplex.

• The convergence criterion has been changed. In this implementation, standard

deviation is calculated using the centroid of the simplex. If the standard deviation is

less than € (a user-specified tolerance) then the process is stopped otherwise

continued until the convergence criterion is met.

1/2
n + I [f(Y.) - Centroid]2

Standard deviation ={L J } ~ E

1=I n +1

Where Centroid is calculated as:

1 n+1

Centroid =- L f(Y;)
n+ 1 ;=1

(3-12)

(3-13)

• To ensure that the algorithm did not stop at the local minimum, a small number equal

to 8*step size is added/subtracted to the current minimum in all the coordinate

directions and objective function value is calculated at those vertices. If the objective

15



function values obtained are greater than the current muumum then th global

minimum has presumably been reached. Ifnot, then the algorithm takes tha vertex as

a starting vertex and restarts itself with the step sizes set to original step size tim s a

factor 8 which is decided by the user.

The code for this method is available as Algorithm AS 47 in. Applied Statistics

(1971).

3.3. Box's Complex method

Box's complex method of optimization is a constraint optimization method and

our problem domain is unbounded. B~t, fortunately we can restrict our attention to a

range of h<=Ksoil. Kgrout <=g, where h=O.1 BtuJhr-ft-F and g=2.0 Btulhr-ft-F (from

experience) and eliminate the rest of the problem domain.

This method starts with a geometric figure of 2·n+1 points (or vertices) called

"Complex" rather than the n+1 points in simplex method. A starting vertex is provided

which satisfies the constraints and other vertices (2·0.) are generated randomly using the

random number generators in the range of (0, 1) and the range provided as follows:

Yi = h + r • ( g - h )

Where, r is pseudo-randall} number in the range (0,1),

g is higher limit on the variable,

h is lower limit on the variable.

(3-14)

At each vertex, the value of the objective function is calculated. The vertex

corresponding to the highest objective function value is reflected across the centroid of

the vertices other than the vertex with highest objective function value. The amount of

reflection can be varied using a parameter a, called reflection coefficient. The definition

of reflection coefficient a is given by equation (3-4) in which the number n, is replaced

with 2·n.
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If the reflection process produces a vertex with objective function value lower

than the highest objective function value of the complex, the vertex is accepted and the

reflection process is started again using the vertex having the highest objective function

value in the new complex. Otherwise, the value of reflection coefficient, <x, is r duced by

half and the point is reflected again. This makes the reflected point come closer to the

centroid of the complex. This process is repeated until the value of <X becomes less than a

minimum called <Xlow. If this still does not produce an objective function value less than

the highest, the vertex corresponding to the second highest objective function valu is

reflected. This process is repeated until all the vertices are converged within some user­

specified tolerance. Figure 3-5 shows the complex with 2-n+ I vertices and the point with

highest objective function value is reflected. The algorithm was available from Box M. J.

(1965) and we developed the code for it.

Highest Point

~
Centroid

Reflected Point

/
'''0

Figure 3-5. Complex in 2-D space

3.4. Hooke and Jeeves' method

Hooke and Jeeves (1972) devised a method for staying on the crest of the valley,

while searching for an optimum. This pattern search method is based on the conjecture

that the coordinate directions are worth trying again and again to search for an optimum

along a ridge. This method starts with a small perturbation in each coordinate direction

from the starting point and the step size increases as the success is achieved in the

subsequent direction. A failure in all the directions would mean that the step size should

be decreased.

There are two types of moves that are the main feature of this algorithm:
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• Exploratory moves.

• Pattern moves.

In an Exploratory move, a small step in one coordinate direction is taken from the

base point and a point corresponding to lower value of objective function is considered a

temporary vertex. Then, next exploratory move is taken in the next coordinate direction

(depending on the number of independent parameters) from this temporary vertex. This is

repeated until all the coordinate directions are searched like this. The final point is

designated as second base point.

In Pattern moves, a pattern direction is set with the two base points detennined in

the exploratory move. It is assumed that the same direction will result in a better point

and the step size is doubled. This point is designated the temporary base point. Now,

exploratory moves arc carried out about this point and the point that gives a favorable

objective function value is compared with the second base point. If this point turns out to

be better than the second base point, another pattern direction is obtained by joining

second base point and the current temporary vertex. This is repeated until no further base

points could be obtained and exploratory steps are started again.

Step size is decreased when no further favorable steps can be taken in all the

coordinate directions. This method has the advantage that it takes larger and larger steps

in the favorable direction. The pattern direction turns as the valley turns and stays on the

crest of the valley.

The algorithm was available from Rao S. S. (1996) and we developed the code for

it.

3.4.1. Algorithm

• The algorithm starts with an initial guess XI = (XI, X2, X3 ....Xn)T. This is tenned as

starting base point.
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• A step size Axj is selected by the user in each independent unit coordinate direction Uj

(i=1, 2 .... n), where n is the number of parameters and Uj has ith element as one.

• Evaluate objective function value at the starting point Xk, f (Xk), where k =1.

• Set Yk,O = Xk. Start the Exploratory step.

• Exploratory step: This step is performed to get a new temporary base point. Evaluate

the objective function value at Yk,i-I+ LlXj· Uj. If this new point is better than Yk.i.1 then,

call Yk,j-\+ Llxj· Uj the temporary base point Yki. IfYk,j_\+ Llxi· Uj is not better than Yk,i-l

then Yk,i-\- Llxi • Uj is tried. If this is better than Yk.i-I then, this is made temporary head

otherwise Yk,i-I itself is made temporary base point. In summary, for minimization,

Yk,i =

Yk.i-l+ Axj· Ui if f(Yk,i-l+ ~Xj· Uj) < f(xl)

Yk,i-l iff(Yk,i_l) < min (f(Yk,i-\+ Axj· Ui), f(Yk,j-l- Axi· Uj» (3-15)

Yk,i-l - LlXi • Ui if f(Yk,i-l- ~Xi • Uj) < f(Yk,i-l)

This process is repeated with respect to the new base point found until all the

coordinate directions are perturbed and final base point is designated as Yk,n. If the new

base point remains same as Xk, then the step sizes Llxj are reduced (by factor of 2) and the

exploratory step is repeated again, otherwise, this new base point is

(3-16)

• With Xk and Xk+l, a pattern direction S is established,

and a new point is found as

Yk+l,O = Xk+1 + AS
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Ais assumed to be one in our optimization algorithm. Alternately, it can be found using

one-dimensional minimization method in the pattern direction S. In that case, A will be

replaced with A·, the optimum step length.

• Increment to the next step and set k = k+1. Get the objective function value at Yk,O,

and repeat the exploratory move about this base point. If at the end of exploratory

move, objective function value at the temporary base point is better than Xk, then this

point is assigned as new base point Xk+1 =Yk,n and new pattern direction is established

again using this new base point and the old base point obtained in previous step. If the

function value at Yk,O is greater than the function value at the old base point, then

reduce the step size .:lXi, set k = k+1 and repeat the Exploratory step about this current

base point.

• The process is assumed to have converged whenever the maximum step length falls

below a user defined tolerance E. Thus, the process is terminated when

Max (~Xi) < E (3-19)

i = l,n

3.5. Powell's method

This method is a well-known pattern search method. In multi-dimensions this

method consists of a sequence of line minimization. The main feature of these types of

algorithms is to compute the next search direction starting with the coordinate directions.

The method could be simpler if we just have to minimize in coordinate directions only.

When the minimization is performed only in coordinate directions, the function does

reach the minimum but it is extremely inefficient in the cases where a long turning valley

exists at an angle to the coordinate directions. This is because the method has to take

small steps in the coordinate directions to reach the minimum. Hence, for a long, narrow

and twisted valley, like in our case, this method is extremely inefficient.
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Hence, an algorithm, which computes a better set of directions, is needed than just

using the coordinate directions. Some of these directions can reach very far in the narrow

valley near the minimum. The concept of "non-interfering" directions (also call d

conjugate directions) helps the method reaching the minimum faster than with just the set

ofcoordinate directions.

Two direction vectors, u and v are said to be conjugate with respect to function f

if they satisfy the following criteria:

(3-20)

Where the components of A matrix are second partial derivative of function f and A is

called Hessian matrix.

(3-21)

For two-dimensional case, the matrix becomes:

(3-22)

p

According to Powell, a quadratic function will converge in one cycle of line

minimization if all the directions are mutually conjugate directions. Hence, Powell's

method tries to generate N (number of dimensions) mutually conjugate directions. Powell

states that for a quadratic function it will take N cycle of minimization to generate N

mutually conjugate directions. Hence, a total of N·(N+ 1) number of line minimization

will take us to the correct minimum. But this is only true when:

• The function is exactly quadratic.

• Each line minimization produces absolute minimum in that direction.

In reality, for any objective function like our problem this may not be true. Hence, it will

take more number of line minimization than N·(N+1).

21



More heuristic schemes were suggested to Powell's basic method of quadratic

convergence. The idea behind the modified Powell's method which is implemented h re

is to take PN - Po (last point after N line minimization - starting point) as the new search

direction for the next cycle of minimization and discard the direction in whi h there was

a maximum decrease in the objective function value. This is because this was the best

direction in the previous cycle of minimization and can playa major role in the new

direction (P - Po). Hence, by discarding this direction, the problem of linear dependence

of directions can be reduced and this helps in generating the conjugate directions that are

"linearly independent".

Both the algorithm and the code are available in Numerical Recipes (Press et. aI,

1986).

3.5.1. Methodology

This method starts with coordinate directions as the starting search directions for

the minimum starting with the first coordinate direction as shown in Figure 3-6. Then, it

generates a pattern direction by taking the direction that is obtained after N univariate

steps from the starting point. A univariate step is one in which the objective function is

minimized along a particular direction. In each direction, the objective function is

minimized using a one dimensional minimization routine. Our implementation of the

method uses Brent's method to minimize in a particular direction. After this cycle of

minimization, the new search direction is accepted or rejected based on the maximum

decrease criterion and one of the old search directions is replaced with this new direction.

Now, we have only N search directions. The new cycle of minimization is started again

with these N search directions. This procedure is repeated until the desired minimum is

reached.

The convergence criteria used is:

2 . (f(X 0) - feX N»
(f(X 0) + f(X »
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Where f(Xo) is the objective function value at the beginning of a cycle of line

minimization and f(XN) is the objective function value at the end of a whole cycle of

minimization consisting of N line minimization. E is the tolerance value chosen by the

user.

Figure 3-6. Steps taken in Powell's method.

3.6. Broyden-F1etcber-Goldfarb-Sbanno (BFGS) method

3.6.1. Background

This method is one of the indirect search (gradient based) methods. Sometimes it

is also called Quasi-Newton method. Different methods under this category differ only in

their updating of inverse of Hessian matrix. Instead of directly taking the inverse of

Hessian matrix, an iterative updating technique is used. The basic equation describing

Newton's method is:
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(3-24)

Where, the Hessian matrix [J j ] is composed of second partial derivatives of f and Xi is the

vector in previous iteration. In quasi-Newton methods the idea is to approximate the

inverse of Hessian matrix [Jjr l by some other matrix [B i ]. Hence, the approximated

equation becomes:

(3-25)

Where, "A/ is the optimal stcp length in the direction

(3-26)

The matrix [Bj] is approximated as:

(3-27)

Where, Zl and Z2 are two independent n-component vectors and Cl, C2 are constants. n is

the number of dimensions. This is also called a rank 2 update of inverse of H ssian

matrix. Finally, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula is given by

djg[[Bd

d;gj
(3-28)

The algorithm is available from Rao S. S. (1996) and we developed the code for

it.

3.6.2. Algorithm

1. Algorithm starts with an initial guess Xi.
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2. Initialize the inverse of Hessian matrix [Bd with a positive definite symmetric matrix

called identity matrix [1].

3. Calculate the gradient of objective function (Vf) at the point Xi using fOlWard finite

difference fonnula.

(3-29)

4. Compute the direction vector Si = -[Bd Vf (Xi).

5. Minimize the function in the direction Sj and find the optimum length 1./. In our

implementation, minimization is done using Golden Section Search method.

6. Compute the new vector X i+\ = Xi + Aj· Sj.

7. Calculate the gradient ofobjective function (V£+I) at the point X i+1

8. If IIVti + 1115 E, where E is a user defined tolerance, then we assume that the minimum

of the objective function is reached and stop the process. OthelWise we update the

inverse ofHessian matrix.

9. Update of inverse ofHessian is done by

d.d: [ gT[Bj]g J [D. ]g.d:
[B i +1 ] =[B j ] +_L_' 1+ 1 T 1 - I T I I

dTg. d j gj d j gj
l I

Where
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10. After updating the inverse of Hessian, we restart th whole process from st p 2 until

the condition in step 8 is satisfied.

3.7. Genetic Algorithms

Genetic algorithms (GA's) refer to a class of stochastic-based optimization/search

techniques that rely on the theories of natural selection (i.e. "survival of the fittest"). As

such, the purpose of a GA is to optimize a particular problem by simulating or imitating

the evolution of life in the natural world.

According to Goldberg (1989), GA's owe their robustness over other optimization

and search procedures to the following four attributes:

1. GA's work with a binary coding of the parameter set not the parameters

themselves.

2. GA's search from a population of points, not a single point.

3. GA's use objective function information, not derivatives or other auxiliary

knowledge.

4. GA's use probabilistic transition rules, not deterministic rules.

As an example of how GA's work, consider a problem where n parameters are to

be optimized. The user selects a population size of 5, for example, meaning that at each

generation, th.ere are 5 points at which the objective function will be evaluated. At the

start of the problem, all 5 parameter sets are generated randomly within a given range.

For each parameter set, a binary string is formed which is made up of the binary

equivalents of each individual parameter in the set. The result is that 5 binary strings (or

5 "parents") are fanned. Each bit making up the parent is called a "gene". Parents are

then selected for "reproduction" based on their function evaluation or "fitness". Parents

with higher fitness are allowed to reproduce more times than those with a lower fitness.

Reproduction is accomplished in GA's by "crossovers", which refer to a swapping of

binary digits. Crossovers by "genetic mutations" can also be simulated by specifying a
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probability at which a mutation may occur. Crossovers resulting from simulated

biological "niching" can also occur. The results of binary digit swapping are the

"children" which form the next generation of parents.

Computer Algorithm:

Select number of parameters (nparam) to be optimized, the population size to work

with (npopsize), and the number of generations to evaluate (maxgen).

Initialize a random population of individuals at time =0

For i = 1 to nparam

For j =1 to npopsize

Parent (ij) = random(parameter)

Nextj

Next i

Evaluate the objective function for each set of parameters (i.e. determine fitness)

For k = 1 to maxgen

Test for termination criteria (no. of generations, etc.)

Select a sub-population of parents for re-production based on fitness

Code parameters ofP(rowj) into one binary string and store in P'(row), where row is

the selected parameter set

Recombine "genes" of selected parents to form "children"

Perturb the mated population stochastically

Evaluate new fitness

Nextk

End

3.8. Quadratic fit method

This method, developed for this proj ect, is based on some experience from the

exhaustive search method. From the exhaustive search we found that the SSQERR
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surface in the domain of Ksoil and Kgrout is nearly quadratic and th re exists a st p vall y

which is turning. Figure 3-7 shows the turning valley in two-dimensional domain. First

optimization in the Kgrout direction is perfonned using Brent's Quadratic Optimization

method at three guessed Ksoil values. After the three vertices are obtained along the floor

of the valley, a quadratic curve is fit through these three vertices and minimization is

performed along the quadratic by one dimensional line minimization routine called

"Golden Section Search". Brent's method was used in Kgrout direction since this method

is based on fitting a quadratic curve that reduces the number of objective function

evaluations in reaching the floor of the valley. This procedure leads the optimum point

very close to the true global minimum of the valley in some cases. The idea of fitting the

quadratic curve and optimizing along the quadratic comes from the fact that the valley of

SSQERR surface is nearly quadratic and turning. We developed the code for this method.
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Kgrout

Ksoil

Figure 3-7. Quadratic Curve fitting in a valley

3.9. O'Neill's implementation of Neider Mead Simplex with exploratory search

To apply O'Neill's Simplex or any other search method for parameter estimation,

an initial guess of parameters is required to start with. If the initial guess of parameters is
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close to the actual minimum then the search algorithms will find the minimum in less

number of objective function evaluations than the initial guess being far away. Hence, a

method that quickly gives an initial estimate of parameter values close to the minimum is

desired.

Kelvin's line source theory and the cylinder source method presented by Ingersoll

(1948, 1954) are the two well-known analytical methods to solve radial earth-coupled

heat transfer problems using a series solution. Figure 3-8 shows the line source model.

According to Hart and Couvillion (1986), line source theory is applicable for pipes also

with modified interpr~tation of terms in equations (3-34) and (3-35). The line source

method is modified to include a film of constant thickness around the equivalent diameter

of the pipe and the resistance of this film is made equal to the grout resistance. The ratio

of equivalent diameter to one pipe diameter, which is based on empirical results, can be

changed based on our own experience. Our implementation uses the value of ratio to be

1.1 as opposed to J2 because the estimates of grout conductivity are better with this

ratio.

Line source Film Thickness

Figure 3-8. Line source model

Line source model is applicable for both constant heat flux per unit length of the

source and constant temperature of the pipe. Since the power input varies with time

during the experiment, the time-varying heat flux is decomposed into a series of constant

heat flux during a time step and superposition principle is applied to get the temperature
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response at any time. The expression for transient temperature distribution around the

heat source/sink may be written as follows for our implementation:

(3-33)

Where Teo is the far-field temperature. 6Tsoil is the temperature difference due to

soil and 6 Tgrout is the temperature difference due to grout. Temperature difference due to

soil is given by:

[ ( IN]q r", 4r 2 (_I)N+1 4r 2

6Tsoil = Tsoil - T", =. In- - 0.9837 +-2 • , -2 (3-34)
2 1t k soil r 2r", 2N N. r",

Where.

r",=4~ (3-35)

Where a is thermal diffusivity of ground. ksoil is thermal conductivity of soil. roX> is

the radius in which the rejected heat is completely absorbed in the ground. t is the time. N

is the number of tenns chosen by the user.

For equations (3-34) and (3-35) to be applicable for pipes. r", ~ 15 has to be
ro

satisfied and the line source heat flux q has to be same as the heat flux at the inner radius

of the pipe. This condition is achieved approximately after 45 minutes of experimental

data for our test cases. Generally. two or three terms are sufficient in the equation (3-34).

We have taken six terms in our implementation.

To estimate the temperature difference due to grout, the resistance of the film

thickness around the equivalent diameter ofthe pipe is calculated as:

1 ( RAD BH )
og~

R grout =-----""=-­
2 ·n . kgrout

30

(3-36)



Where RAD_BH is the radius of the borehole, DIS is the thickness of the grout

around the pipe and kgrout is the thermal conductivity of the grout material. Temperature

difference due to grout is then calculated as:

q
~Tgrout = Tgrout - Too =--. RgroUI

L 100p

Where L\oop is the length of the borehole and q is the power imposed.

(3-37)

O'Neill's Simplex algorithm is applied after the starting guess is obtained by this

method which we hope is closer to the actual minimum. Step sizes of 0.2, smaller than

the O'Neill step sizes of 0.5, are chosen in both the directions. The vertex obtained from

exploratory search and the step sizes in both the directions are passed to the O'Neill

Simplex method and optimum parameter values are obtained. We developed the code for

exploratory search method.

3.10. Summary of all the methods

A summary of all the methods and their characteristics is shown in Table 3-1.

Most of the methods are deterministic and non-gradient based.
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Table 3-1. A summary ofcharacteristics of all the methods

Method
Deterministicl Gradient/Non-

Pattern Search
Stochastic Gradient

Neider Mead Simplex Deterministic Non-Gradient No

O'Neill Simplex Deterministic Non-Gradient No

Box Complex Deterministic Non-Gradient No

Powell Deterministic Non-Gradient Yes

Hooke and Jeeves' Deterministic Non-Gradient Yes

BFGS Deterministic Gradient No

Genetic A1Qorithm Stochastic Non-Gradient No

Quadratic fit Deterministic Non-Gradient No

O'Neill's implementation with
Deterministic Non-Gradient No

exploratory search
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4. Off-line Estimation Results and Discussion

The results presented here are for 7 test sites. Table 4-1 shows the summary of

experimental tests used for parameter estimation results. In-situ experiments were

conducted using the trailer designed by Austin (1998) and temperature and power

consumption data were collected. The two-dimensional numerical model that simulates

the borehole with U-tube and grout uses this power data and the borehole parameters

including the radius of the borehole, pipe conductivity, soil volumetric specific heat,

grout volumetric specific heat, fluid viscosity, fluid density and fluid conductivity. This

model generates the finite difference grid around the borehole and calculates the average

fluid temperature, which is then compared with experimental data and sum of the square

of the difference is calculated. This difference is minimized using the search methods.

It has already been established that 50 hours of experimental data are required to

correctly estimate the soil and grout thermal conductivity with two-parameter estimation

procedure. Hence, most of the parameter estimation results here are presented for 50

hours of data unless otherwise specified. For more details on the duration of experimental

test, see Austin (1998).

Results obtained from Nelder Mead Simplex/O'Neill Simplex algorithms are

considered to be "true minimum" because they provide the lowest objective function

value (i.e. sum of the square of the error value) when compared to the other methods.

Other method results are considered converged to true minimum if the percentage

difference in Ksoil is within ± 2.5%.

Results from all the methods are characterized for goodness of fit by the

Estimated Standard Deviation (Scheaffer et aI.1995). The Estimated Standard Deviation

value is calculated as:

Estimated Standard Deviation =
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N

L(Error)~
i=1

N-2
(4-1)



This provides a unifonn comparison, regardless of the 1 ngth of the xperim ntal

test.

Table 4-1. Summary ofExperimental tests used for parameter estimation

~ Location Description CodeNll:re 1batia(1Ts)

fi2J97 StiIMEtEJ', 0< SiteA
#1 - 3 1/Z' Bcrehde, 244' deep, gwta::l wlh 3)%

SlteA.1JIB ~
sdids 8ertaite. FUteed~elEdric lire.

f:l2Pjg7 StiIMEter,O<SiteA
#2 -3 112" Ixrehde, 2SZ deep, gwta::l wlh~

SiteA2_114 114
QwI: 85. PoMre:l~elEdric line. ,

1f:i97 StiIMEter,O<SiteA
#2 -3 1/Z' bcretde, 2SZ deep, gwta::l wlh lherrra

SlteA2_170 170
QaJ 85. PoMre:l~elaDic line.

4/21/97 StiIMEter. 0<SiteA
#5 -3 1/Z' bcretde, 2SZ deep, gwta::l wlh

SlteA5_93 93
8erlsea. Po.\erej ~elEdricline.

11/19'00 StiIMEter, 0<SiteA
#6 -4.88"1xretde, 2fJ8 deep,~1.

~_240 240
FbMred '"elEdric lire.

9/2£/97 Qli~
3 1/Z' bcretde, 2ffJ 00ep, gaia::l wlh :u'/o sdkS

O1ickasha 99
Bentmite. FtMe'OO uy~ It:! calYS.

317/97 'MlEit-efud
4 ~4" tx:retde, 248 deep, gaia::l wlh 8a'lsE9 EZ

V61IheIfad f()
MD. FbMred uy~ ICl C1UI;:'.

4.1. Results from NeIder Mead Simplex

The initial guess for the parameters (Ksoi \' Kgrout) is taken to be (1.5 BtuJhr-ft-F,

0.575 Btu/hr-ft-F) which is assumed to be close to minimum. A simplex, which is a right

angle triangle in this case, is constructed using 0.5 Btu/hr-ft-F as the step size. The

triangle is shown in Figure 4-1.

(2.0,1.075)

KgrOUI

(0.0,0.0)

(1.5,0.575)

K..oil

(2.0,0.575)

Figure 4-1. Simplex in 2-D domain
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The value of the objective function is calculat d at th s thr v rtices and this

infonnation is passed to the subroutine "amoeba" since the subroutine requires an already

constructed simplex. This algorithm then does all the processes of reflection, expansion

and contraction of the simplex to give the optimum values of th two parameters, for

which estimated temperature profile fits the best to the experimental temperature profile.

The algorithm gives back the simplex whose first vertex contains the pararnet rs

corresponding to the minimum objective function value.

We do not have a local minimum in the valley as established by the exhaustive

search. The nature of NeIder Mead Simplex search algorithm is such that it searches the

objective function only at discrete points or computes the objective function value at

certain points. When the three vertices of the simplex have their objective function values

within the specified tolerance, 1-% in our case, the algorithm stops. If the algorithm is

started with a different starting guess, it is likely that the simplex will roll down the

valley taking a different path. The chances are high that another simplex might satisfy the

same tolerance criteria and the minimum vertex, thus found, has a lower objective

function value than the previous one. Making tolerance smaller than 1%, which is used

currently, will also not cure the problem because we can still find a vertex, which will

have slightly lesser objective function value and will lie within the flnal small simplex.

This will increase the number of objective function evaluations only.

Hence, it is expected that a restart of the method sometimes give a lower objective

function value than that obtained from the first run but certainly not worse than the

previous one. Because the method is restarted with one vertex to be the same as the

minimum found and the rest are constructed again with lesser step sizes since we are

close to the minimum now. This gives us more confidence in the optimum parameter

values. Sometimes a change of 1-1.5% in the value of soil conductivity is obtained. Table

4-2 gives the values of estimated Ksoil , Kgrout, Estimated Standard Deviation in the

temperature and the number of objective function evaluations.
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Table 4-2. A summary of results from NeIder Mead Simplex algorithm for 50 hours of
data

Estimated
Function

Site Ksoil Kgrout Standard
Evaluations

Deviation

SiteA1 98 1.367 0.560 0.25762 73

SiteA2 114 1.460 0.858 0.22395 64

SiteA2 170 1.427 11.157 0.17603 72

SiteA5 93 1.435 0.581 0.15723 72

SiteA6 240 1.319 0.783 0.09842 83

Chickasha 1.490 0.758 0.15566 76

Weatherford 1.638 1.187 0.12046 109

Figure 4-2 shows the movement of simplex towards the minimum in NeIder Mead

Simplex algorithm for SiteA5_93. The initial simplex is constructed with three

(1.5,0.575), (2.0,0.575) and (1.5,.1.075) non-collinear vertices forming a right angle

triangle. The highest objective function value is at (1.5,0.575), not apparent from the

fi.gure. This vertex is reflected and then contracted to find a favorable vertex (1.625,

0.825) in terms of objective function value. The new simplex now has vertices (1.625,

0.825), (2.0,0.575) and (1.5,1.075). The highest objective function value in the new

simplex is at vertex (1.625, 0.825) which is reflected against the centroid of remaining

vertices and then contracted to find a favorable vertex (1.688, 0.7). This process of

reflection and contraction continues until the minimum of the objective function is

reached. Only the objective function value is calculated at each vertex and compared with

the other vertices in every simplex. The minimum point could not be shown clearly due

to clustering of small simplexes near the minimum.
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Figure 4-2. Movement of Simplex towards the minimum for SiteA5_93

4.2. Results from O'Neill's implementation of Neider Mead Simplex

As mentioned earlier, this method is same as NeIder Mead Simplex except that

the convergence criterion is different. Also, this algorithm restarts with a smaller step size

if the small excursions at the converged point in the coordinate directions show a lower

objective function value than the current minimum. A summary of results from this

method is shown in Table 4-3.

In some cases, the algorithm does not restart since the small excursions don't

provide the objective function value less than the previously found minimum. Figure 4-3

shows the small excursions in the coordinate directions.
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Minimum found

Kg.,UI

K soil

0.woUI

Figure 4-3. Small excursions in both the coordinate directions

Table 4-3. Summary of results for O'Neill's Simplex Algorithm for 50 hours ofdata

Estimated
Function

Site Ksoil Kgrout Standard
Evaluations

Deviation

SiteA1 98 1.368 0.562 0.25764 54

SiteA2 114 1.450 0.866 0.22356 59

SiteA2 170 1.432 1.158 0.17610 83

SiteA5 93 1.426 0.585 0.15725 47

SiteA6 240 1.317 0.782 0.09832 74

Chickasha 1.478 0.764 0.15523 58
I

Weatherford 1.634 1.193 0.12062 55

This algorithm was started with small simplex (with step size = 0.05) in both the

Ksoil and Kgrout directions to see the effects of different starting simplexes. The summary

of results is shown in Table 4-4. It is observed that the number of objective function

evaluations is, in some cases, less than the 0.5 step size case and more in some other

cases without any specific order.

When this algorithm runs, a log file is created which keeps track of the Simplex

vertices. When these vertices are plotted, it was observed that since the valley of the

objective function is flat, the simplex rolls down the valley and lot of objective function
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values are evaluated in the flat part. Hence, to make the valley deeper, the urn of the

fourth power of the error values was calculated and minimized, or

ERROR = L (Texperiment aI, n - Tnumerical, n) ~
0=1

(4-2)

Table 4-5 shows a summary of the results thus obtained. It is observed that soil

and grout conductivity values converge to a different number other than their true

minimum values.

Table 4-4. Summary of results for O'Neill's Simplex algotithm for step size=O.05 in both

K soil and Kgrout directions

, Estimated
Site Ksoil Kgrout Standard

Function

Deviation
Evaluations

SiteA1 98 1.371 0.561 0.25762 73

SiteA2 114 1.459 0.863 0.22390 56

SiteA2 170 1.416 1.177 0.17654 69

SiteA5 93 1.443 0.577 0.15877 38

SiteA6 240 1.312 0.782 0.09844 66

Chickasha 1.496 0.751 0.15575 45

Weatherford 1.640 1.191 0.12064 49
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Table 4-5. Summary of results from O'Neill's Simplex Algorithm for the sum of the

fourth power of the error for all the test sites

% Ksoil
Estimated

Site Ksoil
Difference

Kgrout Standard
Function

from True Evaluations
Minimum

Deviation

SiteA1 98 1.251 8.557 0.609 0.48034 84

SiteA2 114 I 1.335 7.903 0.978 0.37408 50

SiteA2 170 1.282 10.471 1.420 0.42543 64

SiteA5 93 1.385 2.859 0.604 0.19956 98

SiteA6 240 1.316 0.081 0.781 0.13809 43

Chickasha 1.547 -4.639 0.713 0.34211 40

Weatherford 1.596 2.342 1.214 0.24472 46

Other exponents of the error, 0.8, 1.5, 1.8, were also tried and the results did not

converge to the true parameter values. For comparison purposes, Estimated Standard

Deviation was calculated in each case and then compared with true minimum. Figure 4-4

shows the exponent of the error with respect to the Estimated Standard Deviations for

four sites. It can be concluded that the Estimated Standard Deviation is minimum for the

case of exponent of 2. Other cases provide higher Estimated Standard Deviation than the

mll1lmum,
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Figure 4-4. Estimated Standard Deviation vs. Exponent of error

4.3. Results from Box's Complex metbod

The algorithm of Box's method is similar to NeIder Mead Simplex except that it

has 2·ndim+1 vertices instead ofndim+l vertices. Box's method combines the expansion

and reflection steps into one by reflecting the vertex by an amount a. greater than 1. [t

then contracts if the objective function value comes out to be more than the maximum

objective function value of the complex. The parameters that can be varied are the value

of a., the value of a.low and the number of vertices which can be higher or lower than

2·ndim+1. Table 4-6 shows the comparison of results for SiteA1_98, for 50 hours of data

with different values of parameters.

It is observed that if the value of a.low is changed from 0.000001 to 0.001, the

number of function evaluations get reduced by about 6%, without effecting the results up

to 3 significant digits in the conductivity values and SSQERR value. This is because

when the contraction about the centroid is tried, 0.001 times the distance between the
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reflected point and the centroid is considered suffici nlly close. Going very clos to the

centroid of the complex is not that significant. Hence, a value of alow = 0.001 is

sufficient. As the value of a is changed, for some values of a, parameter values did not

converge to the right numbers (especially where a values were less than I) for six

vertices in the complex. When the number of vertices in the complex were r duced from

6 to 5, the number of function evaluations decreased by 36% for other parameters b ing

constant.

Table 4-6. Comparison of results from Box's Complex method for SiteAI_98 with

different parameter values

~stimated
Function No of

Alpha Alphalow Ksoil Kgrout Standard
Evaluations Vertices

Deviation

0.6 0.001 1.560 0.518 0.36987 74 6
0.8 0.001 1.389 0.561 0.27417 85 5
0.8 0.001 1.463 0.529 0.34738 83 4
0.9 0.001 1.378 0.568 0.27265 128 6
1 0.000001 1.359 0.573 0.27341 167 6

1.1 0.001 1.384 0.567 0.27315 125 6
1.3 0.000001 1.374 0.568 0.27254 192 6
1.3 0.001 1.374 0.568 0.27254 182 6
1.3 0.001 1.381 0.570 0.27317 123 5
1.6 0.000001 1.381 0.567 0.27286 241 6

Table 4-7 shows the results for other sites for the best set of parameters from Table 4-6

(a=O.8, alow=O.OOI, generation=5).

42



-

Table 4-7. Results from Box's Complex method for all the sites with the best s t of

parameter values

% Ksoil
Estimated Converged

. Difference Function
Site Ksoil

from True
Kgrout Standard

Evaluations
to True

Minimum
Deviation Minimum

SiteA1 98 1.389 -1.535 0.561 0.27417 85 Yes

SiteA2 114 1.886 -30.067 0.621 0.73046 140 No

SiteA2 170 2.000 -39.665 0.760 0.46847 74 No

SlteA5 93 1.463 -2.574 0.569 0.16151 297 Yes

SiteA6 240 1.909 -44.925 0.616 0.50817 353 No

Chickasha 1.789 -21.009 0.598 0.29678 392 No

Weatherford 2.000 -22.399 0.974 0.27314 158 No

This method does not always converge to the true parameter values for reflection

coefficient less than 1. Different reflection coefficients were tried and Table 4-8 shows

that the value of the parameters converged in all cases for reflection coefficient 1.3 which

is greater than 1. In fact, it can be concluded from Table 4-6 that the complex always

converges for the values of reflection coefficient greater than or equal to one. Hence, the

reflection coefficient with a value greater than 1 is required to guarantee that the complex

will converge to true parameter values, although the complex might oonverge for lower

value of reflection coefficient too.

Figure 4-5 shows the reflection process for reflection coefficient of 0.8. The

vertex corresponding to the worst objective function value in the complex ABCDE is B,

which is reflected to produce vertex B'. The new complex is ACDEB'. The size of the

complex ACDEB' is less than the size of the complex ABCDE because vertex B is

reflected with reflection coefficient of 0.8 which is less than 1. If this process is

continued further, the size of the complex will keep reducing. There is a possibility that

the fmal complex eventually becomes so small that the objective function values at all the
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vertices fall within the user-specified tolerance without converging to the true minimum.

Hence, in some cases the complex may not converge to the true minimum for reflection

coefficient less than one.
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Figure 4-5. Reflection of the worst point for reflection coefficient of 0.8

Table 4-8. Results from Box's Complex method for reflection coefficient of 1.3

% Ksoil
Estimated Converged

Difference Function
Site Ksoil

from True
Kgrout Standard

Evaluations
to True

Minimum
Deviation Minimum

SiteA1 98 1.381 -0.924 0.570 0.27317 123 Yes

SiteA2 114 1.455 -0.313 0.865 0.22158 116 Yes

SiteA2 170 1.437 -0.346 1.132 0.17631 154 Yes

SiteA5 93 1.432 -0.454 0.584 0.15720 168 Yes

SiteA6 240 1.324 -0.525 0.783 0.10153 155 Yes

Chickasha 1.476 0.166 0.766 0.15530 170 Yes

Weatherford 1.635 -0.087 1.194 0.12068 174 Yes
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4.4. Results from Hooke and Jeeves method

Hooke and Jeeves method is well known for problems where the domain is a

steep, turning valley. The advantage of this method is that it takes larger steps in the

favorable direction called pattern moves and if the valley is turning, the direction also

keeps tuming due to the exploratory steps.

Since our problem domain is also a deep turning valley, we implemented this

method to see if we can reduce the time taken to minimize the objective function or the

number of objective function evaluations. Table 4-9 shows the results for all the sites

using this method. Figure 4-6 shows the steps taken by this method for SiteAl_98.

Results for all the sites converge to their true minimum values. But if we compare it with

O'Neill's Simplex method, this method reaches the minimum by evaluating more number

of objective function values than O'Neill's Simplex method for all the test sites.

The reason behind the higher number of objective function evaluations is the

small excursions, which do not result in a favorable objective function value. Another

source might be evaluating the objective function values when step size is reduced in all

the coordinate directions. All 2ondim+1 objective function evaluations of the previous

step are wasted because no favorable vertex is obtained during this step.
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Table 4-9. Results from Hooke and Jeeves method for all the sit s

0/. Ksoil
Estimated Converged

Difference Function
Site Ksoil

from True
Kgrout Standard

Evaluations
to True

Minimum
Deviation Minimum

SiteA1 98 1.402 -2.454 0.550 0.25978 113 Yes

SiteA2 114 1.453 -0.215 0.866 0.22368 150 Yes

SiteA2 170 1.451 -1.298 1.125 0.17746 126 Yes

SiteA5 93 1.457 -2.204 0.576 0.15952 79 Yes

SiteA6 240 1.326 -0.667 0.777 0.09910 154 Yes

Chickasha 1.489 -0.748 0.755 0.15535 113 Yes

Weatherford 1.624 0.623 1.198 0.12116 149 Yes
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Figure 4-6. Steps taken by Hooke and Jeeves method for SiteAl_98

4.5. Results from Powell's method

Powell's method is supposed to he very efficient in minimizing the sum of the

square of the error. This method consists of line minimization in the coordinate directions
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in the beginning and then generates directions depending upon the maximum decrease in

the objective function value along a particular direction. This process is repeated until the

minimum of the valley of the objective function is reached. Results from this method

have been summarized in Table 4-10.

It can be observed from Table 4-10 that the parameter values do not necessarily

reach the true minimum for all the test cases. For some cases the number of objective

function evaluations are quite large (e.g. SiteA2_170, 561 objective function evaluations)

and still the method does not reach the true minimwn. Hence, it is not guaranteed with

this method, that the minimum reached will be the true minimum after one pass of the

method, even after large number of objective function evaluations. The reason for not

converging to true minimum can be attributed to stopping prematurely at a point where

the convergence criteria is satisfied. Since the convergence criteria can not be improved,

the only possibility of obtaining a converged value is by restarting the method with

previous best point. This works for some cases and we obtained a converged value of

parameters close to the optimum. But the number of objective function evaluations is

unusually high hence a restart was not performed for all the cases. According to Powell,

it takes more than n*(n+1) line minimization for a non-quadratic objective function to

reach minimum, where n is the number of coordinate directions. That is why this method

takes very large number of objective function evaluations.
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Table 4-10. Results from Powell's method for all the Sites

% Ksoit Estimated Converged
Difference FunctionSite Ksoil
from True

Kgrout' Standard
Evaluations

to True

Minimum
Deviation Minimum

SiteA1 98 1.334 2.489 0.574 0.26255 124 Yes

SiteA2 114 2.186 -50.730 0.583 0.70103 159 No

SiteA2 170 1.576 -10.039 0.961 0.24088 561 No

SiteAS 93 1.458 -2.234 0.575 0.15944 123 Yes

SiteA6 240 1.553 -17.911 0.684 0.27855 319 No

Chickasha 1.494 -1.070 0.752 0.15563 462 Yes

Weatherford 4.506 -175.781 0.608 0.93958 226 No

Figure 4-7 shows the steps taken by Powell's method for the test site SiteA2_170.
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Figure 4-7. Steps taken by Powell's method for SiteA2_170
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4.6. Results from BFGS method

BFGS method is a well-known gradient based method for minimization. The

inverse of Hessian matrix is updated with some approximation rather than evaluating the

Hessian matrix whose components are second partial derivative of objective function.

Since, it is already difficult to calculate the gradients due to uncertainty in step size, it

will even be more difficult to calculate the second partial derivatives. Hence, this method

is better than some other Quasi-Newton methods that require accurate computation of

inverse of Hessian matrix. Once the direction is computed in which the objective function

has to be minimized, golden section search is used to minimize the objective function in

that particular direction. Table 4-11 summarizes the results for aU the sites for this

method.

Table 4-11. A summary of results from BFGS method for all the sites

% Ksoil
Estimated Close to

Site Ksoil Difference Kgrout Standard
Function

True
from True

Deviation
Evaluations*

Minimum
Minimum

SiteA1 98 1.466 -7.147 0.531 0.29286 672 No

SiteA2 114 1.484 -2.349 0.841 0.22771 419 Yes

SiteA2 170 1.434 -0.153 1.149 0.17753 988 Yes

SiteA5 93 1.438 -0.809 0.580 0.15949 412 Yes

SiteA6 240 1.443 -9.560 0.736 0.16581 326 No

Chickasha 1.759 -19.021 0.600 0.27369 498 No

Weatherford 2.551 -56.147 0.797 0.52859 220 No

* Program was stopped and the convergence criteria was not satisfied

From Table 4-11, it is observed that this method does not always converge to the

true minimum even after a large number of objective function evaluations. For the cases

this method provide parameter values close to the minimum but the program did not stop
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due to convergence and was stopped by us, it took a very large number of objective

function evaluations as compared to other methods like Neider Mead Simplex and

O'Neill Simplex.

The reason for not converging to true minimum can be attributed to inaccurate

computation of the gradient of the objective function due to numerical errors.

Susceptibility to divergence is caused if step lengths during line minimization are not

found accurately. Also the inverse of Hessian matrix looses its positive definiteness after

a lot of updates which is only approximate. Figure 4-8 shows the steps taken by this

method for SiteA6_240. The initial direction takes the starting point directly into the

valley but the future steps just hover around the minimum without satisfying the

convergence criteria.
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Figure 4-8. Steps taken by BFGS method for SiteA6_240
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4.7. Results from Geneti.c AJgorithms

This stochastic based method is a global search method in a domain. Mutation and

Crossover are the two main features of these classes of algorithms. This search uses

random number generation. David L. Carroll (1996), Ph.D. at the University of Illinois,

Urbana-Champaign, developed the FORTRAN code for this algorithm. Table 4-12 shows

the results for all the sites using genetic algorithms for our problem.

From Table 4-12 it can be concluded that for maximum of 100 generations,

genetic algorithms does not always reach true minimum but it is close to the minimum.

So, it is expected that if we run the program for more than 100 generations, it might reach

the true minimum. This has been verified for some test cases. We chose 100 generations

due to the time constraint because there is no specific convergence criteria in these kinds

of algorithms that use random numbers. Hence, the minimum obtained is optimum only

in probabilistic sense. These methods are suitable only where the objective function

evaluations are not the performance criteria and obtaining the global optimum parameters

are more important.

Hence this method is not recommended for this type of problem. Deterministic

methods will be more appropriate.
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Table 4-12. A summary of results from Genetic Algorithms for all the sites for maximum

of 100 generations

Of. Ksoil
Estimated Converged

Difference Function
Site Ksoil

from True
Kgrout Standard

Evaluations
to true

Minimum
Deviation minimum

SiteA1 98 1.363 0.388 0.563 0.26040 500 Yes

SiteA2 114 1.478 -1.940 0.850 0.22655 500 Yes

SiteA2 170 1.480 -3.355 1.084 0.18363 500 No

SiteA5 93 1.431 -0.352 0.584 0.15983 500 Yes

SiteA6 240 1.411 -7.117 0.739 0.14521 500 No

Chickasha 1.359 8.079 0.899 0.20967 500 No

Weatherford 1.749 -7.019 1.095 0.15066 500 No

4.8. Results from Quadratic fit method

This method is based on line minimization and minimization along a quadratic

curve. The line minimization, which is perfonned by fixing KsoiJ. produces a point that

has minimum objective function value along the Kgrout direction. Three-line minimization

at three different Ksoil values produce three different points on the floor of the valley. A

quadratic polynomial is fit using those three points and the objective function is

minimized along the quadratic. Table 4-13 shows the results for all the sites using this

method. The main reason of not converging to true optimum parameter values is that the

fitting of quadratic may not pass through the optimum point for all the test cases and

valley is not truly quadratic. It can provide only a set of parameters that are close to the

optimum. Hence, the errors encountered range from less than 1% to as high as 13% in the

soil conductivity values. Number of objective function evaluations present a great

advantage of this method and this method might give a set of parameters close to

optimum if the valley turns out to be close to quadratic for any test case. A further

investigation into this method is required to fully realize the advantages of this method
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and variations of this method. No recommendation on whether to use this method or not

can be made at this stage.

Table 4-13. Results of all the sites using Quadratic fit method

% Ksoil
Estimated Converged

Difference Function
Site Ksoil

from True
Kgrout Standard

Evaluations
to True

Minimum
Deviation Minimum

Site A1 98 1.416 -3.539 0.548 0.27136 26 No

Site A2 114 1.444 0.395 0.841 0.33753 24 Yes

Site A2 170 1.489 -4.005 I 1.074 0.18727 22 No

Site AS 93 1.556 -9.097 0.550 0.20628 27 No

Site A6 240 1.500 -13.895 0.720 0.21934 25 No

Chickasha 1.427 3.447 0.779 0.23929 23 No

Weatherford 1.496 8.450 1.357 0.17969 22 No

4.9. Results from O'Neill's implementation of Neider Mead Simplex method with

exploratory search

O'Neill's Simplex method provides good results in the sense that it converges for

all initial guesses and even for small starting simplexes. But if we can start with an initial

guess that is close to the minimum, the objective function evaluations can be reduced to

some extent. Hence, an exploratory search is perfonned which is based on the line source

method. This exploratory search gives a better starting point than just any arbitrary guess.

Since we have a better guess of parameters, we can start with a smaller simplex that we

hope will reduce the number of objective function evaluations and which in turn reduce

the time taken to minimize the objective function. Table 4-14 shows the results ofjust the

exploratory search for all the sites.
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From Table 4-14, it can be seen that the values ofK oil and Kgrout are closer to the

optimum values than our starting guess of Ksoil =1.5 Btu/hr-ft-F and Kgrout = 0.575 Btu/hr­

ft-F. It is also observed that the average deviation from the optimum values is between

0.1-0.15 Btu/hr-ft-F except for one case. Hence, we can take a step size of 0.1 in both the

parameter directions to construct the simplex.

Table 4-14. Results of exploratory search for all the sites

% Ksoil
Estimated Exploratory

Difference
Site Ksoil

from True
Kgrout Standard I Function

Minimum
Deviation Evaluations

SiteA1 98 1.127 17.642 0.651 0.67879 69

SlteA2 114 1.354 6.655 0.797 0.40956 59

SiteA2 170 1.352 5.613 0.941 0.27989 45

SiteA5 93 1.264 11.370 0.632 0.37550 47

SiteA6 240 2.182 -65.674 0.625 1.12559 107

Chickasha 1.351 8.578 0.879 0.15427 67

Weatherford 2.057 -25.862 0.918 0.61358 114

Table 4-15 provides the results for all the sites by O'Neill's Simplex method

using exploratory search results as the starting guesses. The average number of objective

function evaluations without exploratory search and with exploratory search is 62 and 49

respectively. The average is calculated based on 7 sites used to compare the results.

Hence, we can say that there is an improvement of about 20% in the number of objective

function evaluations.
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Table 4-15. Results of O'Neill Simplex method with exploratory search for all th sit s

% Ksoil
Estimated Converged

Difference Function
Site Ksoil

from True
Kgrout Standard

Evaluations
to True

Minimum
Deviation Minimum

SiteA1 98 1.363 0.357 0.561 0.25731 60 Yes

SiteA2 114 1.469 -1.343 0.853 0.22592 36 Yes

SiteA2 170 1.441 -0.658 1.147 0.17574 52 Yes

SIteA5 93 1.430 -0.256 0.585 0.15728 40 Yes

SiteA6 240 1.309 0.618 0.786 0.09875 49 Yes

Chickasha 1.485 -0.466 0.759 0.15520 57 Yes

Weatherford 1.636 -0.130 1.190 0.12083 49 Yes

4.10. Comparison of results

The basis of comparing the results from all the methods is the number of objective

function evaluations. This is because the number of objective function evaluations is

directly proportional to the time taken to obtain the optimum parameter values. All the

methods are compared against Neider Mead Simplex / O'Neill Simplex method, which

consistently provides the best solution. Another fonn of comparison is made between

using an exploratory search and not using an exploratory search for the same method.

Genetic Algorithms do not require a starting guess, hence exploratory search can not be

applied for this method.

Table 4-16 shows the average number of objective function evaluations for all the

methods used. For the cases in which the method does not converge to the true minimum

it is assumed that a restart of the method might allow it to converge. However, the

number of objective function evaluations will only add to the current average value. It

can also be concluded from Table 4-16 that the O'Neill Simplex method takes the

minimum average number of objective function evaluations. Although the Quadratic fit

method takes less objective function evaluations compared to O'Neill Simplex method, it
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does not converge to true minimum in aU cases. Hence, the O'Neill Simplex method is

considered the best optimization method for our problem of steep, turning valley.

Table 4-162
. Comparison of methods based on average number of objective function

evaluations

Method
Average Function

Evaluations

Neider Mead Simplex 79

O'Neill Simplex 62

Box Complex 152

Powell* > 292

Hooke and Jeeves. 127

BFGS* > 505

Genetic A1gorithm* > 500

Quadratic Fit* 25

NeIder Mead Simplex method and Hooke and Jeeves method are the two potential

methods that might be further considered. Hence, these methods are rerun with

exploratory search so that they can start with a better initial guess. The results are shown

in Table 4-17.

2 • Indicates that the method does not converge to the true minimum in all the test cases.
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Table 4-17. Comparison of results with exploratory search

Method
Average Function

Evaluations

Neider Mead Simplex 68

O'Neill Simplex 49

Hooke and Jeeves 138

From Table 4-16 and Table 4-17 it can be concluded that O'Neill Simplex method

with exploratory search produces the best results and minimizes the objective function in

an average of49 objective function evaluations.

Although the Quadratic fit method does not converge to true optimum parameter

values, this method may have the potential to reduce the number of objective function

evaluations significantly if we use exploratory search to obtain an initial guess of

parameters. This option was realized towards the latter part of the project and could not

be considered in a greater detail. Hence, a further investigation will establish whether this

method has the potential to reduce the number of objective function evaluations or not.
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5. Online Parameter Estimation

Off-line parameter estimation has the disadvantage that the temperature and

power data is first collected in the field and then taken to the computer to estimate ground

thennal properties. This estimation takes some computer time before we can get ground

thennal property values. Another disadvantage of off-line parameter estimation is that if

there is some error while collecting the data in the field, may it be experimental error, it

can not be detected.

Disadvantages of off-line parameter estimation can be overcome by some other

means and one of them is online parameter estimation. Online parameter estimation, as

the name implies, is a parameter estimation method by which the values of ground

thermal properties can be estimated as the data is collected in the field. A graph of

parameters can be plotted to see where the values of parameters might be converging.

This is very advantageous because if the value of parameters are not changing much (if

they are within some tolerance), then the experiment can be stopped. Hence, this provides

a better measurement of the length of the experimental test.

Online parameter estimation is also called Sequential Non-Linear Estimation in

some literature (Sorenson, 1980). The term sequential refers to updating the previous

parameter estimate using the newly collected data sequentially. Two approaches to

estimate the parameters are considered here:

• Non-linear Recursive Estimator.

• Application of non-linear optimization method.

Sorenson (1980) and Salsbury (1996) presented Non-linear recursive algorithm

for general optimization problems. lang et al (1986) presented extended Kalman filter

approach to account for general nonlinear systems and standard optimization method

approach which they call Horizon approach. They compared both the approaches for

their problem of chemical process.
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5.1. Non-linear Recursive Estimator

Salsbury (1996) applied the nonlinear recursIve estimator equations for the

problem of fault detection in HVAC systems. The nonlinear recursive estimator quations

presented are in the following fonn:

Ck = f k(9k_.)-Yk (5-1)

\II k = V'fk(9k-J ) (5-2)

r rPk = L'Vi'VT . (5-3)
.=1

~9k =9 le - 9k-1 (5-4)

Where, ~ is the vector containing parameters at k1h step, \Ilk is the gradient of

objective function at kth step, P contains curvature information and Yk is the experimental

value of temperature.

The complete algorithm is stated as:

9 k = 9 k_1 -Lot '€k

L k =Pk-l'Vk(I + \jI~Pk-l'Vk)

Pk = (I -L.t",r)Pk••

(5-5)

(5-6)

(5-7)

Lk is called gain vector, P matrix is the inverse of Hessian matrix and -\II is the

direction of steepest descent according to Salsbury.

The algorithm starts with a positive definite symmetric matrix Po of ndim x ndim

dimensions. It is taken as Identity matrix for the first step. 90 contains an initial guess of

parameters. \Ilk 1S calculated for the next step from equation (5-2) and Lk is computed

from equation (5-6). 9k is then updated using equation (5-5) and Pk is then updated for the

next step. This process is repeated until the parameters are converged.
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5.2. Application of Non-linear optimization method

The basic idea behind online parameter estimation method is that if we compute

the parameter values for M points, can this value be utilized for M+N points where N is

the number of additional points collected within the time period of estimation of

parameters for M points. This value will certainly be closer to the optimum value instead

of any initial guess for the next set of points. It has already been established from off-line

parameter estimation that the number of objective function evaluations is reduced if we

have an initial guess of parameters which is closer to optimum values of those

parameters.

Another issue that is worth addressing is how much information or how many

hours of data are needed before updating the parameters. Should we update the

parameters for every collected data point or should parameters be updated after a set of

data points have been collected?

It mainly depends on the information that is coming from the experiment. If the

experimental data is changing slowly with time, probably we do not need to update the

parameters for each collected data point. But if the incoming information is changing

rapidly with time, we need to update the parameters for each collected point.

An extensive analysis of the data collected from the seven test sites has been done

and online parameter estimation has been performed using different strategies. NeIder

Mead Simplex algorithm is used to perform the online parameter estimation. Four

different alternatives were investigated.

• Construct a starting simplex for a fixed number of data points, increase the number of

points by one at each reflection, contraction and expansion, evaluate the average

SSQERR and find the best set of parameters at every step.
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• Construct a starting simplex for a fixed number ofdata points increase the number of

points by a fixed number at each reflection, contraction and expansion, evaluate the

average SSQERR and find the best set of parameters at every step.

• Start with a fixed number of data points. Get the best set of parameter values by

optimizing for a fixed time. Increase the number of points by a fixed number,

optimize for a fixed amount of time using the previous set of parameters as initial

guess to this set.

• Start with a fixed number of points. Get the optimum parameter values. Then take this

optimum value as initial guess for the next set of points collected during that time

period. Construct the initial simplex and minimize. In other words, minimize the

average SSQERR for a variable number of experimental data points.

5.3. Results from Salsbury's method

Salsbury's method of recursive parameter estimation was applied for our non­

linear problem of parameter estimation. This approach yields parameter values that are

quite off from the true optimum parameter values obtained from off-line parameter

estimation. The main reason for this method to fail to converge appear to be:

• This method requires an initial guess of parameter values to begin with. It is desirable

to choose a guess of parameters, which is closer to the true values. This depends upon

the experience of the problem at hand. The performance of the algorithm is strongly

influenced by the initial guess. Inability to start with a better initial guess might be a

reason for the divergence of the method.

• To compute the gradient of SSQERR function, a finite difference approach is used.

Since the problem is highly non-linear, the uncertainty in step size in both the

parameter directions can cause an inaccurate first derivative of the objective function.

The objective function is linearized using Taylor series given in equation (5-8) and
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this linear approximation is used to derive the recursive form of quations, which

introduces a significant amount of error for highly non-linear problems like ours.

(5-8)

5.4. Results from application of optimization method

The four variations in application of off-line optimization method applied to

online parameter estimation presented above are analyzed for the seven test sites. For the

case of updating the parameters after every data point, since one objective function

evaluation takes somewhere between one to three minutes depending on the number of

points, the program has to wait till the next data point is collected. In our case, since we

already had the data, we assumed that each data point is coming only after 2.5 minutes

and ran the simulation for 50 hours of data. Table 5-1 shows the results for all the test

sites for this case.

This process of updating the parameters at each collected point does not always

lead to the optimum value of parameters as seen by Table 5-1. The errors in the

conductivity values are as high as 33%, as compared to the values obtained from off-line

NeIder Mead Simplex method. The reason might be that if the starting guess is far away

from the minimum point, then the chances are more that it will converge at some point

other than the optimum.
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Table 5-1. Comparison of results for six test-sites for updating the paramet r after every

collected data point

% Ksoil
Estimated

Site Ksolil Kgrout
Difference

Standard
from True... Deviation

SiteA1 98 0.921 0.695 -32.643 0.35612

SiteA2 114 1.289 0.977 -11.712 0.19322

SiteA2 170 1.427 1.156 0.005 0.17539

- -
SiteA5 93 1.168 0.650 -18.587 0.08935

SiteA6 240 1.279 0.795 -3.003 0.06387

Chickasha 1.843 0.667 23.657 0.28906
-

Weatherford 1.310 1.393 -20.028 0.13172-

Taking a fixed number of points for updating the parameters at each reflection,

contraction and expansion process also has the same problem as updating the parameters

at each collected points has. Table 5-2 shows the comparison of results for this case

where the number of collected points is equal to 15. Table 5-2 also shows the percent

difference of Ksoil and Kgroul from off-line parameter estimation. It is observed that the

percentage error can be as high as 10-12% in both soil conductivity and grout

conductivity after 50 hours of test. Hence, the method does not lead to the true optimum

point in some cases.
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Table 5-2. Comparison of results for six test-sites for updating the paramet r after every

15 collected data points

°/. Ksoil
Estimated

Site Ksoil
Difference

Kgrout ' Standard
from True
Minimum

Deviation

SiteA1 98 1.336 -2.269 0.571 0.26544

- -

SiteA2 114 1.305 -10.662 0.962 0.19972

-

SiteA2 170 1.411 -1.093 1.184 0.17671

SiteA5 93 1.329 -7.363 0.612 0.12200

SiteA6 240 1.300 -1.386 0.785 0.08352

Chickasha 1.484 -0.415 0.759 0.15644

Weatherford 1.550 -5.368 1.254 0.13788

The previous two methods don't necessarily lead to the minimum point. Hence, a

better method is needed, which can provide a better update of the values of the

parameters at each step. A method, which takes a fixed number of collected data points

and minimizes with those set of points till we receive the next set of data points will be

more suitable. In our case, we tried 15 experimental data points to be the fixed number of

points for which the minimization process continues. The time for the process is fixed

since we have fixed the number of data points and each data point is collected after 2.5

minutes. Hence, total time will be 15*2.5=37.5 minutes before the minimization starts for

the next set of points. This gives us a better estimate of parameters since at each step we

get a value of parameters which is closer to optimum for those set of points. A new

simplex is constructed after every 37.5 minutes and minimization is done during that time

starting with the best guess from the previous step. Table 5-3 gives a comparison of the

results obtained from this method at the end of 50 hours of test length. Figure 5-1 shows

how the parameters vary as the experimental data is collected for SiteA1_98.
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Table 5-3. Comparison ofresults for updating parameters during a fix d amount of time

% Ksoil
Estimated

Site Ksoil
Difference

Kgrout Standard
from True
Minimum

Deviation

SiteA1 98 1.364 -0.164 0.562 0.26117

SiteA2 114 1.450 -0.728 0.868 0.22820

SiteA2 170 1.424 -0.189 1.161 0.17764

SiteA5 93 1.431 -0.259 0.584 0.16118

SiteA6 240 1.318 -0.034 0.781 0.10373

Chickasha 1.476 -0.980 0.769 0.15442

1.6 -r-------------------------------,

.............,... .1.4

1.2

~ ......

=-

0.4

0.2

-+-Ksol

..... Kgroul

60504030
Hours

2010

O.J-----.--------,--------r------,------.--------i
o

Figure 5-1. Variation of updated parameters for a fixed interval of optimization time

as the test for SiteAl_98 progresses
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If we want to find out whether the experiment should be stopped or continu d to

collect more data, we have to look at the plot which shows the variation of the

parameters. If the parameters were not changing significantly then we would like to stop

the experiment. The method which updates parameters for a fixed interval of time will

not give us optimum value at each step since the optimization process may not have

reached the true optimum within that intervaL With this we can not find out whether we

should stop the experiment or not since we are not dealing with optimum parameter

values.

To avoid this and get an optimum value at each step, we start with 5 hours of data.

Construct the simplex, minimize using Neider Mead Simplex and get the optimum set of

parameters. This process takes some time and during that time we must have collected

some data from the experiment. We take those data points, add them in the previous set

and again minimize for that set of data points starting with the optimum value of the

parameters from the previous step. Table 5-4 shows the comparison of results obtained

from this method and off-line Neider Mead Simplex method. The difference between the

Neider Mead Simplex values and values obtained from online parameter estimation are

within 1% for 50 hours of data. The variation of parameters is shown in Figure 5-2 for

SiteAl_98, Figure 5-3 for SiteA2_114, Figure 5-4 for SiteA2_170. Figure 5-5 for

SiteA5_93, Figure 5-6 for SiteA6_240, Figure 5-7 for Chickasha, Figure 5-8 for

Weatherford.
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Table 5-4. Comparison of results obtained from minimization at each step and off-line

NeIder Mead Simplex method

Ksoil e;. Ksoil

Site Ksoil
Obtained Difference

Kgrout
from NM from True
SimDlex Minimum

SiteA1 98 1.373 1.367 0.472 0.558

SiteA2 114 1.453 1.460 -0.476 0.865

SiteA2 170 1.432 1.427 0.355 1.153

SiteA5 93 1.435 1.435 0.027 0.584

SiteA6 240 1.323 1.319 0.319 0.779

Chickasha 1.485 1.490 -0.364 0.760

Weatherford 1.634 1.638 -0.238 1.194
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Figure 5-2. Variation of estimated parameters for minimization at each data set for

SiteAl 98

1.6.,--------------------------------,

1.4

1.2

~

N

~
~ 08

~
"0c:
8 0.6

0.4

• L- -
•

0.2

60504030
Hours

2010
O+-----~----__r_----__,_----__r----___,r__---___l

o

Figure 5-3. Variation of estimated parameters for minimization at each data set for

SiteA2_114
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Figure 5-4. Variation of estimated parameters for minimization at each data set for

SiteA2 170
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Figure 5-5. Variation of estimated parameters for minimization at each data set for

SiteA5_93
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Figure 5-6. Variation of estimated parameters for minimization at each data set for

SiteA6 240
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Figure 5-7. Variation of estimated parameters for minimization at each data set for

Chickasha data
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5.5. Determination of the length of the experimental test

As the experiment is performed and parameters are updated, one is interested in

knowing how long the test has to be run to get the set of parameter values close to the

true minimum within some error band. The analysis of online parameter estimation

results obtained from optimization algorithm for variable point has been perfonned for

the seven test sites. The convergence criterion is if there is a variation of less than X% in

the parameter values for Y hours of collected data, then the experiment is stopped and the

length of the experiment obtained is sufficient for practical purposes. The variation is

calculated as:

X=
N

-100 (5-9)
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Several convergence c.riteria are applied to get an optimum length of the

experimental tests by changing the X and Y values. Some of the criteria did not converge

for all the test sites, hence are not discussed here. The criteria were applied only within

50 hours of experimental test. The possibility that a particular criterion will converge

after 50 hours of experimental data can not be avoided. The best set of values are X =

0.5% and Y = 5 hours, which are obtained by trial and error. Table 5-5 shows a summary

of the length of the experimental test for all the seven test sites.

Table 5-5. A summary of length of experiment for all the test sites

Ksoil %
Max Time

Site Ksoil from Difference Kgrout
Taken(Hrs)

O'Neill Ksoil

SiteA1 98 1.290 1.367 5.624 0.581 26.46

SiteA2 114 1.453 1.450 -0.202 0.865 48.21

SiteA2 170 1.393 1.432 2.670 1.185 34.50

, SiteA5 93 1.334 1.426 6.467 0.612 28.38

SiteA6 240 1.256 1.317 4.672 0.800 10.08 !

Chickasha 1.420 1.478 3.890 0.794 14.79

Weatherford 1.513 1.634 7.403 1.270 21.88

From Table 5-5, it can be observed that in the worst case, soil conductivity is off

by 7.5% from the true minimum obtained from O'Neill Simplex method. The length of

the experimental test can be reduced as low as 10 hours in some cases with only 4.6% of

error in soil conductivity. The average length of the test turns out to be approximately 27

hours.
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6. Conclusions and Recommendations

The main objective of this project, as stated earlier, is to investigate the best

parameter optimization algorithm which will reduce the time taken to estimate ground

thermal properties using the numerical model which best fits the experimental data.

Investigation of online parameter estimation method is also performed which will

eliminate the need for off-line parameter estimation and help in determining the length of

the experimental test so that unnecessary collection of data can be avoided.

6.1. Off-line parameter estimation

Several parameter optimization methods have been applied to see whether the

number of objective function evaluations can be reduced because each objective function

evaluation takes about 3 minutes on a Pentium II 233 MHz computer for 50 hours of

experimental data. Hence, a lot of computer time is required if number of function

evaluations are quite large.

Both gradient and non-gradient based, deterministic and stochastic methods have

been applied for 50 hours of experimental data. Non-gradient and deterministic methods

perform the best if comparison is made in terms of number of objective function

evaluations.

Both Neider Mead Simplex and O'Neill simplex algorithm perform in a similar

manner except that convergence criterion is different. O'Neill simplex method has

advantages of built-in construction of simplex and restart of the algorithm. There are

always slight differences in the optimum parameter values depending upon the starting

guess because of the basic nature of search being at discrete points and no absolute

convergence criteria. Hence differences of about 1% in the optimum parameter values are

ignored for comparison purposes and results from other optimization methods are

compared with O'Neill's Simplex method. These two implementations minimize the

SSQERR in the least number of function evaluations. Neider Mead Simplex takes about

79 and O'Neill's implementation requires about 62 objective function evaluations.

73



Box's Complex method is also a "simplex" method with larg f number of

vertices, 2*n+l, as opposed to n+] in Neider Mead Simplex. This method has been

investigated for various values of reflection coefficient greater than 1 as well as less than

]. For some cases of reflection coefficient, the parameters do not converge to true

minimum. Results obtained for an appropriate reflection coefficient show that the average

number of objective function evaluations is 152, higher than NeIder Mead simplex. This

can be attributed to multiple contractions of the reflected point in the case when reflection

is not successful. Contraction is tried until a favorable point is obtained which involves

waste of objective function evaluations.

Hooke and Jeeves' method performs next best to NeIder Mead Simplex in terms

of number of objective function evaluations. This method has the advantage of increasing

the step length and turning of pattern direction as the favorable points are obtained.

Higher number of function evaluations is due to an unsuccessful exploratory step, which

causes at least 5 objective function evaluations per unsuccessful exploratory step. The

average number of objective function evaluations for this case is 127, a bit higher than

NeIder Mead simplex but less than all the other methods.

Powell's method is considered very efficient in minimizing sum of the square of

the error for quadratic functions. But due to non-quadratic nature of the objective

function surface, this method requires very large number of objective function

evaluations. Each line minimization requires on an average of 15 objective function

evaluations, which means 30 function evaluations for each cycle of minimization for two

dimensions. According to Powell, more than n*(n+1), 6 in our case, line minimization are

required for non-quadratic functions. Hence, this method becomes very inefficient for our

purposes. The average number of objective function evaluations for this case is 292,

considerably higher than NeIder Mead Simplex.

BFGS method, which is based on calculating the gradient of objective function, is

tried because if successful, the gradient method can minimize the objective function

quickly. For our problem, this method could not converge for several test sites. This can

be attributed to uncertainties in computing the gradient of objective function. This
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method is susceptible to divergence if step lengths during line minimization is not found

accurately. The inverse of Hessian matrix looses its positive definiteness after a lot of

updates. For the cases where this method converged, it took about 505 objective function

evaluations.

Genetic algorithms are stochastic based optimization methods, which requIre

random number generation, manipulating the bits of a parent by mutation and crossovers

and evaluation of objective function at those points. The optimum values found from this

method are probabilistic. Even after 100 generations, 500 objective function evaluations

the minimum is not reached for some test sites. But it is observed that the optimum for

those sites can be reached if we run the simulation for more number of generations.

Overall this method presents a hopeless case for our problem.

The Quadratic fit method, which is based on experiences from exhaustive search,

gives parameters values close to optimum for some cases but it is off as high as 14% for

the other test cases. The only advantage is number of objective function evaluations,

which are not useful at the cost of accuracy.

Exploratory search is applied to obtain a better set of initial guess of parameters

because several methods require a good initial guess. The line source method is

implemented and a good starting guess is obtained for both the parameters. Then

O'Neill's Simplex method is applied to get the optimum value. The number of objective

function evaluations reduce to about 49 as opposed to 62 without exploratory search.

This saves about (62-49)*3.0=39 minutes of computer time which is about 21 % of actual

time. Hence, the O'Neill's implementation of Neider Mead Simplex method with

exploratory search is the best method for our problem ofturning valley.

6.2. Online parameter estimation

Online parameter estimation was performed to get the parameter values, as the

experiment commences which saves time to estimate the parameters after the test.

Optimum length of the test can be obtained by applying the convergence criteria on the

estimated parameters with some error. Two conventional estimation methods are applied
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for our case. Salsbury's method diverges due to its approximation of non-linear objective

function as linear. Another method, which is actually application of an off-line

optimization method, is successful in predicting the optimum parameters and is useful in

detennining the length of the test. NeIder Mead Simplex optimization algorithm is

applied to get the optimum parameters for variable number of data points. The

convergence criterion for online parameter estimation, obtained by trial and error, is 0.5%

variance in conductivity values applied on 5 hours ofestimated parameter values.

The convergence criteria when applied to all the test cases, provides that the

required length of the test varies from 10 hours to 48 hours depending upon the specific

test case. But the average length is 27 hours. The maximum error in the predicted soil

conductivity values for all the test cases is 7.5%.
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6.3. Recommendations

• Apply more optimization algorithms that are gradient based and are more robust than

BFGS method to investigate how gradient-based methods fair for this problem.

• A more robust online parameter estimation technique should be applied rather than

the off-line optimization method applied for online parameter estimation, which

updates the parameters in a manner that a true optimum can be obtained successfully

at a particular data set. This will help in determining the length of the experimental

test with further confidence.

• Numerical model should be modified in such a way so that the time taken for each

objective function evaluation is reduced.

• More test sites should be investigated to gain confidence in the average number of

objective function evaluations for off-line parameter estimation case.

• A plot of parameters can be obtained which will help in observing where the

parameter values are converging and when to stop the experimental test.

• Quadratic search method has to be refined to get closer estimates of parameter values

because this method has the potential to reduce number of objective function

evaluations.

• Implement combined data acquisition and online parameter estimation on site.
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