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(1.1)

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

The method of Pade Approximants is well known from statistical mechanics 1 ,

but the application of this method to perturbative quantum field theories is a recent

innovation. The power of this application lies in the ability to "feel" the effects of

not only lower-order terms, as is the case in any perturbative calculation, but also

the higher-order terms.

I will show that for the function

In(1 + x) 1 1 2 1 3 ~ n 1 n
x = 1 - '2x + 3'x - 4"x + ... = L....t( -1) n + 1x

n=O

the [N1M] Pade converges to the actual value more rapidly, for a given x, than the

partial sums. In fact, the partial sums fluctuate quite noticeably while the Pade

converges to within a few percent on only four or five terms.

The number of Feynman diagrams involved in the exact calculation of given

terms of a ,B-Function is expected to diverge factorially. The computation of the

5-Loop QCD f3 coefficient would require the evaluation of over 1 million Feynman

diagrams! So the need for a less exhaustive calculation is clear. While it is possible

that progress in computer technology and computational theory will someday offer

a means to perform these exact calculations, we have an immediate desire to know

these coefficients.

In this paper I will present my method for making an approximation of this

coefficient as well as comparisons at lower orders. I am confident that the remarkable

accuracy of the 4-Loop predictions will also be seen at the 5-Loop order, should the

exact calculation ever be performed. I will also present a method which will lead

1
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to reasonable error estimates for these 5-Loop predictions. Using the ,p4 theory as a

guide, I can derive error bars based on the radius of curvature of the APAP; after

demonstrating the effectiveness of this method at the 4-Loop level, I will present the

results for the 5-Loop predictions.

When the LHC (Large Hardon Collider) at CERN starts running, it is expected

that one of the results it finds will be a much more accurate measurement of a, than

exists now. If this measurement is accurate enough, it can be used to test the validity

of the predictions made in this paper.



CHAPTER 2

Pac!e Formalism

Assume we know the first several terms of a series

00

S(x) = ESnxn
n=O

(2.1)

(2.2)

and let us define the [NjM] Pade Approximant to be the rational function

[NjM] = ao + alX + a2x2 + + aNx
N

_ PN(X) .
be + b1x + b:zx2 + + bMxM QM(X)

We equate the first N + M terms of S(x) to the Pade Approximant so that we can

rewrite as

00

S(x) = [NjM] + E 8 n X
n

n=N+M+I

(2.3)

If we now neglect terms of order N + M + 2 and higher, we can multiply through by

QM(X) and have

(b b J.._ 2 b .M)( 2 N+M+I)0+ IX + l/2X + ... + MX 80 + SIX + S2X + ... + 8N+M+IX (2.4)

from which we can construct any number of simultaneous equations by increasing

either N or M and letting at = 0 'Vi > N. These equations, however, will form an

increasingly underdetermined system as we go to higher terms since by assumption

we only know a finite number of terms in S(x). So to keep the system within one

degree of being fully determined, we will only allow one unknown to be introduced.

We follow the convention that bo = 1 and construct N + M + 1 equations from

which we can solve for the unknowns ai and bi . For example, say we know only the

3
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coefficients of the series Sex) to 87, if we choose N = 4 and M = 3 we arrive at the

set of equations

ao So

a1 b1s0 + 81

a2 - b280 + bi s1 + 82

aa - baso+ ~81 + b1s2 + 8a

a4, ba8 1 + 1J..l82 + b183 + 84

a5 = 0 baS 2 + b2sa+ b1s4 + 85

a6 = 0 ba8 3 + b2 84, + b1ss + 86

a7 = 0 ba84 + b285 + ht86 + 87

a8 = 0 ba8 5 + b2s6 + b187 + 88 (2.5)

where the first 8 lines allow us to determine the unknown coefficients of the Pade

Approximant and the last line, perhaps the most important, allows us to approximate

the coefficient of the next term in the series Sex) which was, until now, unknown.

This term, 88 in this case, is called the Pade Approximant Prediction (PAP).

2.1 Examples of the PA and PAP

To make the method of the Pade Approximants clearer, and to demonstrate

their power in making predictions and converging to the formal sum faster than the

partial sums, I will now give two concrete examples of well-known functions. The

power of this method is seldom appreciated fully until it is seen in action, and I

believe these examples will serve to convince the reader that this is, in fact, a most

useful tool.

2.1.1 The [4/3] PA and PAP tu~ at x = 1

To show the power of the Pade Approximant, let us choose the function to be

In(1 + x) 1 1 2 1 a--:.----'- = 1 - -x + -x - -x = ...
x 2 3 4
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and again choose the [4/3] Pade . The simultaneous equations can be expressed in

matrix form as

B·S=A (2.6&)

1 0 0 0 0 0 0 0 0 1 ao

b1 1 0 0 0 0 0 0 0 1 al-2

~ bI 1 0 0 0 0 0 0 1 a2"3

ba ~ ~ 1 0 0 0 0 0 1 aa-4

0 ba ~ b1 1 0 0 0 0 1 a4 (2.6b)5

0 0 ~ ~ b1 1 0 0 0 _1 06

0 0 0 ba b2 b1 1 0 0 1 0"7

0 0 0 a ba ~ b1 1 0 1 0-8

0 0 0 0 0 ~ ~ b1 1 l:/'J 0

which can be solved uniquely since the matrix B is nonsingular •. Putting this

equation into Mathematica we find the solutions

ao 1

11
al -

8
157

a2 -
336
1

aa -
56

1
a4 ---

1120

b1
1
-
15

b2
15
-
14

ba
5

(2.7)-
28

*Note that since the matrix is upper triangular, the determinant is trivially unity.
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The predicted value of 88 is 0.111076 to be compared to the actual value of

1/9 = 0.111111. Also of note is that the [N/M] Pade Approximant is a more accurate

value than the partial sum of the same order. For this example, [4/3](11I=1) = 0.693146

to be compared to the actual value of In 2 = 0.693147 and the partial sum to order

7, 0.634524.

2.1.2 The [4/3] PA and PAP to e~ at x = 1

We now take the series to be

:z; 1 2 1 ae = 1 + x + -x + -x + ...
2! 3!

(2.8)

and assume that only the first several terms are known. Again using the [4/3] Pade

Approximant we have the same matrices A and B while S has changed.

1 0 0 0 0 0 0 0 0 1 ao

b1 1 0 0 0 0 0 0 0 1 a1

1h b1 1 0 0 0 0 0 0 1
~2i

b3 1h b1 1 0 0 0 0 0 1. asal

0 ba b2 b1 1 0 0 0 0 .1. - a4 (2.9)
41

0 a ba b2 b1 1 0 a 0 1 a51

0 0 0 ba ~ b1 1 0 0 1 06i

0 0 0 0 ba 1h b1 1 0 1 07i

0 0 0 a 0 bs ~ b1 1 88 0

Again using Mathematica we find the solutions



(2.11a)

7

ao 1
4

a1 -
7
1

a2 -
7
2

aa -
105

1
a4 -

840

b1
3--
7

b2
1
-
14

ba
1

(2.1O)--
210

The Pade Approximant Prediction of 88 is 2.55102 X 10-5 while the exact value

is ~ = 4O~20 = 2.48015 x 10-5
. The Pade Approximant is

1+ 1 + 1 +...1..+_1
7 3 7 1 105 1 840 = 2.718283582

1 - "1 + 14 - 210

while the partial sum is

111 111
1 + 1 + 2! + 3! + 4! + 5! + 6! + 7! = 2.718253968

both of which should be compared to the exact value

e1 = 2.718281728

(2.11b)

(2.11c)

It is theoretically possible to extend this method to higher orders by using the

predicted results as input for the next calculation. However, as I discuss later, this

method introduces unpredictable and compounding errors.



CHAPTER 3

4- and 5-Loop Predictions

3.1 A Brief Introduction to Quantum Field Theories

In Quantum Field Theories, the {3 function is given by the relation

(3{g) = JL 8g
811

(3.1)

where J1. is the energy scale of the interaction and 9 is the coupling "constant". In

the ¢4 theory the coupling is given the symbol" X', in QED it is "e", and in QCD

we use "g~". In this paper I will use the more common QCD parameter a~ = 9:/411'.
It is also notable that while the {3 function is itself a polynomial in the coupling

constant, each of the coefficients is also a polynomial. In QCD these coefficients are

polynomials in the number of quark flavors taking place in the interaction, NF. So

the QCD {3-Function can be written as

as (as )2 (as )3 (4)-{3o--;- - {31 -; - {32 -; + 0 a~

-{Ao+ BoNF } ~ - {A1 + B1NF } (~r

-{A2 + B2 NF + C2N;} (:,)3 + O(a:)

3.2 The WAPAP at Order 4-Loops

(3.2)

(3.3)

It has been shown 8,3 that if the coefficients of a series, Sn, diverge as n! for

large n, then the relative error of the PAP is given by

S PAP S
N+M+l - N+M+l

CN+M+l = S
N+M+l

and that for a fixed value of M

M!AM

lim CN+M+l = - LM
N~oo [N/M]

8

(3.4)
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where L[N/MJ = N + M + aM + h, with A, a, b constant. We greatly simplify the

prediction by only considering the cases where M = 1. With this prescription we

have the means to correct the asymptotic behavior of the PAP, thus resulting in the

Asymptotic Pade Approximant Prediction (APAP)

SPAP
SAPAP = N+M+l

N+M+l - 1 + C'
~N+M+l

It has been noted that we can now make a further refinement of our method

by using a weighting procedure over the values used in the X~ fit of S~-tr+1' Since

the ,8-function can be written as a polynomial in the number of quark flavors in­

volved in the process, i.e. ,8; = A. + B,NF + CiN~ + ... + X.N}, we can find the

Pade Approximant over a range of values of NF . It has been observed that more

accurate predictions are found, in most cases, if the fit is done over negative val­

ues of NF. While this may initially strike us as a problem with the method, we

must remember that while the ,8-function is representative of a physical quantity,

the APAP method is simply a mathematical tool and is thus not restricted to the

physical realm NF > O. The introduction of a rational function to approximate a

polynomial clearly creates the possibility of vertical asymptotes in the f3 - NF plane.

This is, in fact, the case in QeD where the prediction f3f PAP has vertical asymp­

totes at NF E {6.2228, 8.06263, 12.4095, 84.3174}. It is these vertical asymptotes at

positive values of NF which prompts us to use negative values for the X2 fit.

My method of calculation is based on algebraically manipulating the input

functions and then evaluating them over the various N F (App. B). This method

allows not only the answers to the question of using negative NFl but makes it very

easy to perform the method on any interval we wish rather than just working on

integer values. We can now argue that because the predicted values are the result of

a x2 fit, the most accurate values of the coefficients of the polynomial form of the f3

function are given when the coefficient times the corresponding power of NF is equal
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to the constant term. i. e.
NmG~

A
J
. = B. 1 ~ N = BjN~ = B~

J Nrrw:r. + 1 L- F 2 - J
F 0-

NmG~

A
J
. C. 1 ~ N2 = Cj~(2~+1) =Cw

J Nrrw:r. + 1 L- F 6 - j
F 0

(3.6)

In most respects, my method of weighting mirrors that of reference [1] except

for the "interpolation" factor. For two consecutive values of B, call them B(1) and

B(2), and the corresponding NF I calculate the predicted value, call it B<P) by
B(1) N(1) + B(2) N(2)

B(P) - B(1) F F (3 7)
- B(1) N(2) + B(2) N(1) .

F F

This new method, as used by the authors of [1], is called the Weighted Asymptotic

Pade Approximant Predictions (WAPAP). Eventhough I have used a different method

in my calculations, I will also use this nomenclature when I refer to my results.

3.2.1 The QCD ,B-Function

The QCD ,B function up to and including the three-loop level in MS-type

schemes is

(3.8)

And each of the coefficients /3;, are themselves polynomials in the number of

quark flavors involved in the process, N F , and other representation-group-dependent

factors. The expressions CA , OF and T are group operators dependent on the sym­

metry group of the theory. (App. A)

,Bo

/31 (3.9)
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The f3 function coefficient at four loops is given by,

This can be put into the usual form by collecting powers of N F and using the simple

expression

(3.11)

It is these values of Aa, Ba, and Oa that I have predicted using the Pade method.

The values I have computed are shown in Table 3.2.1, along with the exact results 9

and those of John Ellis, Ian Jack, Tim Jones, Marik Karliner, and Mark Samuel 2.
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Figure 3.1. The APAP for the QeD ,B-Function Coefficient plotted VB. the actual
,B-Function at order 4-loops in the N F - ,B3 plane. Note the vertical
asymptote in the APAP graph which forces us to useN~ < O. Other
values of NF for which the denominator of our APAP is zero are all
positive.
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JFH EJJKS EXACT %erTor(JFH) %eTTOT(EJ JK S)

Aa 24625.2 24670 24632.8 -0.03086 0.13

Ba -6371.7 -6383 -6374.55 -0.04471 0.13

Ca 402.7665 405 398.478 1.07622 1.6

D4 input input 1.49931 --- -- -- ---

TABLE 3.1. The QCD ,a-Function at 4-Loops with NF=3 and Nc=3. Current pre­
dictions (JFH) vs. those of Ellis, Jack, Jones, Karliner, and Samuel
(EJJKS) and the exact values (EXACT). Percent errors are also given
for both methods of prediction. The value for D4 was input from large
NF calculations 4.
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3.2.2 Other 4-Loop Predictions

I have applied this method to other series from QFT's and while the results are,

in some cases, not as impressive as those found in QCD, the method still seems to be

a reliable predictor of the perturbative coefficients.

Of particular note are the results for the scalar ¢-4 theory since it is known

exactly at 5, and higher, loops. The ¢4 theory is characterized by the Lagrangian

1 ( )2 2 2 1 4-[, = 2" a,.,.¢o - mo¢o - 4! >'o¢o (3.12)

Notice especially that the errors in QCD are much smaller than the errors of the

predictions for ¢4. I believe that this will also be true at the 5-loop level, and that

the predicted error in ¢4 sets a strict, and generous, upper bound on the error.

The most disquieting results are those for Supersymmetric Quantum Chromody­

namics (SQCD) in the NSVZ renormalization scheme 7,5,6. This scheme is proported

to be an exact theory, yet the error of the Pade is significant in this case. Dr. Ellis has

conjectured that perhaps the Pade method is sensitive to the Minimal Subtraction

(MS or MS) schemes, since it is guided by the ¢4 theory, and that this could be the

reason the NSVZ scheme does not yield accurate values. It should be noted that the

correct values for the NSVZ scheme are included in the generated predictions, it is

only that the weighting does not select those values in this case.
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-10

-1000

-1500

Figure 3.2. The APAP for the ¢4 ,a-Function Coefficient plotted vs. the actual
tJ-Function Coefficient at order 4-loops in the NF - {33 plane. Note
that the vertical asymptote in this case occurs at negative NFl thus we
use Nr > 0 for the X2 fit.



JFH EXACT %error

A3 -105.12 -100.463 4.636

B3 -34.21 -33.281 2.7925

C3 -1.8800 -2.0593 -8.705

D4 input 0.000643 -----

TABLE 3.2. The ¢4 {3-Function at order 4-Loops.

JFH EXACT %error

A3 -7807.59 -7776 0.4063

B3 3094.753 3207.19 -3.508

C3 -515.082 -451.626 14.051

D4 input -.222222 -----

TABLE 3.3. The SQCD .a-Function in the DRED scheme at order 4-Loops.

JFH EXACT %errOT

A3 -2044.24 -1944 5.15633

B3 682.8961 990.519 -31.0567

C3 -158.584 -231.331 -31.4471

D4 input -5.33333 -----

TABLE 3.4. The SQCD {3-Function in the NSVZ scheme at order 4-Loops.

JFH EXACT %error

A3 96.44787 96.4386 0.00961

B3 -21.0668 -18.8291 11.884

C3 0.299205 0.276163 8.3436

D4 input 0.00579 -----

TABLE 3.5. The Anomalous Quark Mass Dimension

16
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3.3 The WAPAP at Order 5-Loops.

We again start with the standard PAP

fJ.PAP _ f3i
4 - f32 (3.13)

and compute the errors in the same manner as the 4-Loop case. It should be noted

that my method differs from that of [1] in that I do not calculate A a.nd a b but do

the entire calculation by algebraically manipulating the lower-order, known terms of

the series. (App. B)

In the exact calculation [3] of the 4-Loop QCD f3-Function there occurred, for

the first time, quartic Casimir operators. Since the PAP uses the earlier terms to

estimate the first unknown, the contributions due to these non-planar diagrams could

not be predicted. It was assumed, and later verified by the exact calculation, that

the contributions from a new type of diagram should be very small compared to the

evolution of the already existing types. We assume that the same will hold true in

the 5-Loop orders, and that our prediction will thus be a good, though not perfect,

estimation.

Without the exact values of these functions at order 5-Loop, how are we to

know if our predictions are even reasonable? I offer two suggestions based on our

freedom to do the X2 fit of the data with either the known value of E4 input or leave

E4 as a free parameter to be determined in the fit.

• If we leave E4 free, we can then compare it to the known value

• We can consider the stability of all the coefficients comparing the two different

fitting schemes. A small change might instill confidence, while a large change

in any of the coefficients could undermine our confidence in the results.

Of particular importance is the accuracy of the highest-order term when it is

left as a free parameter. It is seen that in almost all cases under consideration, the

highest-order term is approximately 5 orders of magnitude smaller, 1/10000, than the

lowest-order (constant) term. The accuracy of this parameter then gives a very finely
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tuned estimate of the accuracy of the fit; especially when one considers that for the

smaller values of N F , this term is negligible when compared to the constant, but for

NF >~ 12 this term dominates all others in the polynomial.

A final check of the accuracy of the prediction might be to compare the constant

term in the WAPAP fit to an average of the values of the functions from the X2 fit

at NF = O. Since I have generated 20 or more predictions of the {3 function, as

N F = Npin -+ Npax, I will have a large number of predicted values of An which I

can compare the prediction with. For example, in the QeD case at 4-Loops, I used

INpinl = 2 and INrzl = 20. Thus I can evaluate each of these 19 functions at

N F = 0 and average the results; doing this I find A3 = 24891.45, very close to the

WAPAP Aa = 24625.2 and the exact result A3 = 24632.8. The standard deviation at

order 4-Loop is 696.85, or less than 2%. Similarly for the 5-Loop predictions, without

the quartic Casimir contributions, we find that in the cases of holding E4, fixed,

~ = 470886 to be compared to the WAPAP A4 = 471307; the standard deviation is

2983, or 0.6%. In the case of allowing E4, to be a free parameter, k = 468295 while

the WAPAP is A4, = 468500; the standard deviation is 2076.7, or .44%.

While none of these criterion is, in and of itself, a guarantee of the prediction's

correctness, the high degree of correlation amongst all of them does tend to make the

prediction more credible. Of course, the true accuracy of these predictions may never

be known. The exact calculation of {34, is a daunting task which almost certainly could

not be completed in less than several decades given current calculation techniques.
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E-fixed,wC E-free,wC o/odiff

As. (JFH) 720013.9 719459 0.0771

~(EJJKS) 759000 751000 1.06

B4 (JFH) -210918.2 -211473.6 -0.263

B4(EJJKS) -219000 -220000 -0,456

C4 (JFH) 19583.32 18856.02 3.78

C4 (EJJKS) 20500 19700 3.98

D4(JFH) -52.486 -65.689 -22.3

D4 (EJJKS) -49.8 -93.8 -61.3

E4 (JFH) -1.84 -1.874 -1.83

E4(EJJKS) -1.84 -2.03 -9.82

TABLE 3.6. The QCD ,B-Function at Order 5-Loop with the 4-Loop Quartic Casimir
contributions. The two treatments of E4 are shown as E-fixed and
E-free. Percent differences are then shown to give a measure of stability.

E- fixed, wloC E- free, wloC %diff

As. (JFH) 471307.5 468500.6 0.597

As. (EJJKS) 488000 485000 0.617

B4(JFH) -151088 -151446 -0.237

B4(EJJKS) -156000 -157000 -0.640

C4 (JFH) 15779.96 15258.83 3.36

C4(EJJKS) 16400 15800 3.73

D4 (JFH) -61.849 -147.047 -81.6

D4 (EJJKS) -60.5 -163 -91.7

E4(JFH) -1.84 -2.339 -23.8

E4(EJJKS) -1.84 -2.56 -32.7

TABLE 3.7. The QCD ,B-Function at Order 5-Loop Without the Quartic Casimir
contributions. The two treatments of E4 are shown as E-fixed and
E-free. Percent differences are then shown to give a measure of stability.
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Predicted EXACT %erTOT'

A4 (JFH) 954.1259 1001.99 -4.777

B4(JFH) 366.6934 385.604 -4.904

C4(JFH) 37.33699 30.2681 23.352

D4(JFH) 0.319645 0.576413 -44.546

E4(JFH) input -0.00129 ----

TABLE 3.8. The ¢4,B-Function at Order 5-Loop. Percent errors are also shown.

E - fixed E - free %diff

A4 (JFH) 118402 118413 -0.00929

k(EJJKS) 113000 112000 0.889

B4(JFH) -61057.05 -61294.33 -0.388

B4 (EJJKS) -58500 -58700 -0.341

C4 (JFH) 13206.9 12810.4 3.04

C4(EJJKS) 12900 12500 3.15

D4 (JFH) -301.75 -374.54 -12.5

. D4 (EJJKS) -307 -400 -26.3

E4(JFH) -6.64 -3.814 54.1

E4 (EJJKS) -6.64 -4.53 37.8

TABLE 3.9. The SQCD ,B-Function in the DRED Scheme at Order 5-Loop. The two
treatments of E4 are shown as E-fixed and E-free. Percent differences
are then shown to give a measure of stability.
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E - fixed E - free %diff

~(JFH) 10974 16169.11 -38.28

A4 (EJJKS) 10400 10500 -0.957

B4(JFH) -1970.202 -1315.32 39.86

B4 (EJJKS) -7870 -7800 0.8934

C4(JFH) 3297.47 2953.597 11.00

C4 (EJJKS) 3100 2870 7.705

D4(JFH) -109.7583 -134.719 -20.419

D4(EJJKS) -90.1 -241 -91.151

E4 (JFH) -7.49 -7.04659 6.101

E4(EJJKS) -7.49 -13.28 -55.753

TABLE 3.10. The SQCD ,B-Function in the NSVZ Scheme at Order 5-Loop. The two
treatments of E4 are shown as E-fixed and E-free. Percent differences
are then shown to give a measure of stability.



CHAPTER 4

Error Estimates for the 4- and 5-Loop t3-Functions

4.1 Method for Estimating Error

Because the Pade Approximant is closely related to the Taylor expansion of a

function, notice that the [N/O] PA is identically the Nth order Taylor series, we know

that the errors of the Approximants must satisfy

lim £ = 0 '1M.
N-+oo

(4.1)

It is unfortunate, however, that the behavior of the error at small N is not predictable.

For example, the error for the function In(:+l) in the [4/3] PAP is 0.03088%, while at

the next order we have the error in the [4/4] = 0.0063% and in the [5/3] the error is

0.01417%. In the case of e~, the errors are €([4/3]) = 2.857, £([4/4]) = 1.42857, and

E{[5/3]) = 1.78571. So although the error is reduced with more input, the reduction

is not predictable either as an absolute amount or percentage. Thus it is necessary

to derive an alternative method to predict the error.

Recall that at order 4-loops, the coefficient of the t3 function is a polynomial

which can be written

(4.2)

It is in the case of estimating errors that the previously undesireable aspect of the

coefficients of the t3 function being themselves polynomials becomes an asset. Since

a x2 fit over progressivly longer intervals was performed to find these polynomials, I

have generated from twenty, at order 4-loops, to forty, at order 5-100ps, values of each

term in the polynomial. Thus I can consider that, for example, at order 4-loops I have

a polynomial representation of the constant term A and the value chosen, 24625.2,
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is simply a point on that curve. For example, in regular QeD at order 4-loops, the

data are

NFflZ A B C

-2 24137.3 -6447.86 331.999

-3 24168.1 -6448.46 336.528

-4 24201.5 -6444.25 341.697

-5 24239.4 -6434.88 347.365

:

-20 26445.3 -5582.54 457.276

TABLE 4.1. Predictions generated for the A, Band 0 curves as N~ ranges from
-2 to -20.

I can now perform a X2 fit of these data points to find As, Bs, and/or 0 3

independently as a function of NWa:c. I can then perform any number of evaluations

on them, including finding radius of curvature, extremum, etc. It is, in fact, the radii

of curvature that finally led to a means by which the error of the WAPAP's can be

predicted.

As is usually the case, the method grew out of trial and error on the ¢} theory.

This scalar QFT was used as a guide because it is known to order 5-100ps and thus

enables us to examine the development of the WAPAP's as the order is increased.

Taking the data generated by the WAPAP process, I fit the coefficients A, B, and C

to eubie polynomials,

-105 + 0.281NF - O.0263NJ, + 1.73 x 1O-4 N;

-34.7 + 0.0667Np + 8.17 x 1O-4N'j;. + 4.03 x 1O-4N~

-1.6 - 0.00822Np - 0.00175NJ, + 7.11 x 10-5N;

(4.3)
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for which I found the rOOuis of curvature at the NFcorresponding to the value

B(P) •. I then calculate two values, d and d' which are the orthogonal distance from

the point (NF,B(P») to the curve and the vertical distance from (NF,B(P») to the

curve, respectively. These values I then divided by B(P) and called the results { and

c.
The values (. and c can thus be thought of as a percent measurement of the

error between the value predicted by the interpolation of equation 3.7 and the X2 fit

of the data. There are at least two natural questions to ask at this point, and I now

present them with answers.

1. Why fit the data to a cubic polynomial as opposed to a quadratic, quartic or

quintic?

• In doing the X2 fits of the data, the coefficients changed drastically in going

from a quadratic to a cubic polynomial, but there was little, if any, change

in going from fitting a cubic to a quartic polynomial. The coefficient of

the new term, N~, was at least four orders of magnitude smaller than the

N~ coefficient, and the other coefficients changed by less than 0.001%.

2. Can the (: and/or c be related to the errors in the WAPAP?

• Yes, the value {' seems to very closely related to the error of the WAPAP.

This correlation is best in MS-type regularization schemes, and is not as

good in other types.

'" All the curves were single-valued around this point, hence inverting to find N~

was a trivial exercise
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4.2 Error Bars at Order 4-Loop

Once the data points are fit to a polynomial, the radius of curvature is given

by the formula

(4.4)

where y is any of the polynomials A, B, or C. I then evaluate the raduis of curvature

and the value of the polynomial at the value of NFwhich corresponds to B(P). From

this I calculate the value of e to be

r-:-------;========:-:-
,_ I R(NF)- R(N~')J1 - 4(R(~~)):l

t - ~ y(N~)

and define the 4-loop Error Parameter, a, to be

(4.5)

(4.6)

For ¢4 the values (' for the A, Band C curves are, eA = .876871, <8 = .702197

and (c = .423359 while the actual errors of the Pade approximant are 4.6355, 2.9726

and -8.70482, respectively. Thus the 4-loop Error Parameters are

aA = 6

aB = 4

ac = 21

For QCD, NF = 3, the e, ac and actual error are shown in table 4.2. As you

can see this method gives quite generous error estimates for QCD. Unfortunately,

that is not the case with other theories. Again, perhaps supporting the hypothesis

of John Ellis that Pade , at least a Pade scheme based on the ¢} theory, doesn't like

non-minimal subtraction schemes, the DRED formalism works fairly well while the

NSVZ results are less than adequate.
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e (jf' %error

A .884354 5.306 -0.03086

B .190030 0.7601 -0.04471

C .18712 3.930 1.07622

TABLE 4.2. The 4-Loop for Error Estimate for the Quantum Chromodynamics {3
function.

(' (1C %error

A .1990625 1.194 0.406313

B 1.61415 6.457 -3.50578

C .793347 16.66 14.051

TABLE 4.3. The 4-Loop Error Estimate for SQCD in the DRED scheme

C (1t' %error

A 2.75147 16.51 5.0948

B 4.10948 16.438 -31.0567

C .83844 17.61 -32.2457

TABLE 4.4. The 4-Loop Error Estimate for SQCD in the NSVZ scheme
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4.3 Error Bars at Order 5-Loop

Again we look initially to the ¢'4. theory to give us the value of the 5-loop Error

Parameter. This is then applied to the Pade Approximant Prediction of the 5-Loop

coefficient with the 4-Loop Quartic Casimir operators included in the calculation.

It is my conclusion that these predictions are validated by the small percent errors

derived from this method in addition to the confidence gained by such factors as the

stability of the prediction as E4. is either included in or set before the calculation.
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i %error C1

A 1.1476 -4.77691 5

B 0.91332 -4.90415 6

C 1.12076 23.35424 21

D 1.55061 -44.5458 29

TABLE 4.5. The Error Parameter from 5-1oop 4>4

i (J(' estimated coefficient

A 0.446621 2.2331 720013.9 ± 16078.6

B 0.797506 4.78684 -210918 ± 10096.3

C 0.103368 2.17073 19583.32 ± 425.101

D 0.13042 3.78210 -52.4863 ± 1.9851

TABLE 4.6. The Error Estimate for 5-1oop QCD with contributions from 4-Loop
Quartic Casimir Operators



CHAPTER 5

Summary and Conclusions

5.1 Summary

I have introduced the Pade Approximant Prediction (PAP) and the refinements

which give rise to the Weighted Asymptotic Pade Approximant Prediction (WAPAP).

Through the demonstration of this method using both well known mathematical

series, ea: and loge! + x)/x, and known series from Quantum Field Theories I have

shown that this is indeed a reliable and accurate predictive tool. Plausible arguments

were then made for methods of controlling and estimating errors. A particular method

was then introduced and shown to work well at the 4-Loop order for QFT's utilizing

the MS renormalization method.

The techniques shown to be reliable at order 4-Loops were then applied to series

at order 5-Loops.

5.2 Conclusions

While the exact 5-Loop coefficient of the considered series is only known for the

scalar ¢4 theory, the reliability and accuracy of the 4-Loop calculations is very likely

reproduced. As evidence of this is my "Error Parameter" method which was shown

to give reliable and even generous error bars at the 4-Loop order and was less than

5% for all coefficients at 5-Loops.
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APPENDIX A

Symbols and Notation

The number of quark flavors involved in an interaction

The number of quark colors, taken to be 3
1

cl-l
An SU(N) Operator, by convention T = 1/2 in SU(3).

The Reimann Zeta Function evaluated at 3.

Approximately 1.2020569

The Asymptotic Error of the Predictions

32



APPENDIX B

Mathematica Code Used to Calculate (3 functions

For the sake of clarity, I include and example of the code used to generate the predic­

tions. This is the calculation of the 4-loop {3 function in QeD. I have only included

output from Mathematica where it seems necessary.

We begin by giving a numeric approximation to the Reimann Zeta Function,

setting the Quartic Casimir Operators to 0 and entering the first three coefficients of

the (3 function.

(" = 1.2020569

~dd~bcd = 0

~dc;ro = 0

~d':tbcd = 0

(30

(B.!)

PAP,82 =

The Pade Approximant to (32 is then given by

((3I?
f30

(¥N~ - (lfNc + ~)NF)2
liNe - ~NF
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from which we calculate the asymptotic error formula

(B.2)

(B.3)

= -21238N?z+3Nc(-99+391Nl;+5734N~)NF-6(-63+160Nl-+536N~)N:+4NC(-33+l12Nl-lN}

2(llNC-2NF)(5714N~-(-21-561N~+3418Nt.)NF+2NcC-33+1l:1N~)N:')

We now construct the Pade Approximant for for the 4-loop coefficient

PAPA = (f32)2
/0'3 {3I

and including the asymptotic error formula we arrive at the Asymptotic Pade Ap­

proximant Prediction (APAP) at 4-loops,

APAP = P AP/33
/33 1 + R (BA)

IG44..N

which at Nc = 3 is given by

- (-33+2NF) (1388502-271782 N F+5850N;') 3

52488(918-114NF) 5158630-19280754N".+1204470N;'-11700Nj.

This APAP is then fit to a second degree polynomial over the intervals N F E

{O,N~} as IN~I = 2,3,4, ...20 yielding predictions for As, Ba and Os at each

value of NF . It is these values which are then entered into the "weighting" process.
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