
A GRAPHICAL USER INTERFACE TO MONITOR

AND MANAGE THE DDAS SYSTEM

PERFORMANCE

By

SEONG SEOl HONG

Bachelor of Science
Hallym University
Chunchon, Korea

1994

Master of Engineering
Soongsil University

Seoul, Korea
1996

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

December, 1999

A GRAPHICAL USER INTERFACE TO MONITOR

AND MANAGE THE DDAS SYSTEM

PERFORMANCE

Thesis Approved:

ii

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my thesis advisor, Dr. K.

M. George for his supervision, constructive guidance, encouragement, and

friendship during this study. My sincere appreciation extends to my other

committee members Dr. H. K. Dai and Dr. N. Park, whose guidance, assistance

and friendship are also invaluable.

I wish to express my sincere gratitude to my father in Korea and my

mother in Heaven for their endless love, encouragement and support. My special

appreciation extends to my wife, Nam-Youn, for her strong love and

understanding. Thanks go to my lovely family for their encouragement and faith. I

would also like to thank to Dr. K. Lee who has been my advisor in Korea for his

academic support.

Finally, I would like to thank the Department of Computer Science during

two and one-half years of study.

iii

Chapter

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

II. LITERATURE REVIEW 4

2.1 Client-Server Model 4

2.1.1 Distributed Computing Environment (DCE) 7

2.1.2 Remote Procedure Call (RPC) 10

2.2 Mobile Agents 12

2.2.1 Telescript 14

2.2.2 Agent Tel 14

2.2.3 Agents for Remote Access (Ara) 15

2.3 Middleware 16

2.4 Common Object Request Broker Adapter (CORBA) 17

2.5 Condor 19

2.6 Piranha 20

III. PREVIOUS WORK 22

3.1 The DDAS System 22

3.2 Drawbacks of the DDAS System 23

IV. ENHANCED DDAS SySTEM 25

4.1 The Monitoring Function , 25

IV

4.2 The Dynamic Network 27

4.3 The User Interface for Application Programs 27

V. IMPLEMENTATION OF THE EDDAS SySTEM 29

5.1 Implementation of the Monitoring Function 30

5.2 Construction of the Dynamic NetWork 32

5.3 User Interface 36

VI. PERFORMANCE EVALUATION 38

6.1 System Environment 38

6.2 Distributed Quicksort Algorithm 40

6.3 System Performance 45

VII. CONCLUSIONS 56

REFERENCES 57

APPENDIXES

APPENDIX A. EDDAS SYSTEM SOURCE CODE IN JAVA 62

APPENDIX B. SYSTEM LOAD INFORMATION 86

APPENDIX C. ABBREVIATIONS AND ACRONYMS IN ALPHABETICAL

ORDER 89

v

Table

LIST OF TABLES

Page

Table 4.1 Responsibilities of each window 26

Table 6.1 Host environment.. 39

Table 6.2 Command set of the EDDAS system .40

Table 6.3 Generated files after execution of the quicksort algorithm 44

vi

Figure

LIST OF FIGURES

Page

Figure 2.1! Configuration of client-server model 5

Figure 2.2 Client-server modeL 6

Figure 2.3 DCE components 9

Figure 2.4 Remote Procedure Call 12

Figure 2.5 CORBA architecture 19

Figure 3.1 Basic operations of the DDAS system 23

Figure 4.1 Interface file for a quicksort algorithm 28

Figure 5.1 Task flow for the EDDAS system 30

Figure 5.2 Monitoring of setup processes 31

Figure 5.3 Monitoring of the message-passing 32

Figure 5.4 CPU usage: connecting 34

Figure 5.5 Degree of CPU usage 34

Figure 5.6 Initial status of the system configuration file 35

Figure 5.7 Status of the system configuration file with machines 36

Figure 5.8 User interface 37

Figure 6.1 Flow chart for intermediate hosts 41

Figure 6.2 Flow chart for final host.. 42

Figure 6.3 Processes of distributed computation .45

vii

Figure 6.4 Test 1: CPU states .47

Figure 6.5 Test 1: Setup time and working time (sec.) 48

Figure 6.6 Test 2: CPU states 49

Figure 6.7 Test 2: Setup time and working time (sec.) 50

Figure 6.8 Test 3: CPU states 51

Figure 6.9 Test 3: Setup time and working time (sec.) 52

Figure 6.10 Test 4: CPU states 53

Figure 6.11 Test 4: Setup time and working time (sec.) 54

Figure 6.12 Working time (sec.} 55

CHAPTER I. INTRODUCTION

The computer industry has continuously evolved over the past few

decades. Although the computer industry is young compared to other industries,

it has made rapid improvement in a short time. The merging of computers and

communications has had a profound influence on the way computer systems are

organized. These systems are called computer networks. A computer network

means the collection of interconnected autonomous computers.

This evolution experienced two major advances in the process of

development. They are, namely, the production of powerful microprocessors and

the invention of high-speed computer networks. They have contributed the

computer systems composed of large number of processors and connected over

high-speed networks. These systems are called distributed systems. The need

for exchanging information among different areas accelerates the rapid

deployment of distributed systems. The sharing of rare resources is another

motivation for using distributed systems [1].

Distributed systems have been very popular and have been considered as

a major issue during the past two decades. In a distributed system. there are

several interacting and running processes in different hosts for exchanging

information. That is, distributed systems can be defined as a collection of

independent computers interconnected over networks. The applications of

distributed systems are caUed distributed computing that is opposed to

centralized process computing or single process computing. The major goal of

1

distributed computing is to reduce the processing time of tasks by distributing

execution among multiple processors.

Compared with centralized computing, distributed computing has a lot of

advantages. First of all, distributed computation is less expensive to operate

intensive computation tasks that have been run on supercomputers. The second

is that distributed computing yields higher performance by using high-speed

networks and dividing computation. The third is that computation can be migrated

from a host with high workload to a host with low workload. This advantage

causes more resource utilization and shorter execution time. Distributed

computing, moreover, provides sharing expensive resources such as hardware

device and data file.

In general, distributed computation systems are classified as distributed

computation tools and distributed computation applications. Distributed

Computing Environment (DCE), Remote Procedure Call (RPC) and Common

Object Request Broker Adapter (CORBA) provide basic models for transferring

structured data over networks as programming tools [13]. Based on these tools,

client-server model and mobile agents have been applied for distributed

computation applications.

Security is one of the most important concerns in the distributed system.

Sending data, receiving results and accessing resources are performed on open

communication port. Distributed systems, therefore, have to support security of

environment [16].

2

The main goal of this thesis is to enhance the Dynamic Distributed Agents

Server (DDAS) system and to develop an interface between the enhanced DDAS

system and applications. The enhanced system is called the Enhanced DDAS

(EDDAS). The EDDAS system constructs a dynamic network. That is, a user is

able to add or remove any host by using the EDDAS system. In the EDDAS

system, a user executes application program through the Interface file. The

Interface file is in the middle between the EDDAS system and an application

program. Java object oriented programming language is used to implement the

EDDAS system. Java object oriented programming language provides various

communication methods and object message-passing methods [17].

The rest of this thesis is organized as follows. Chapter II provides the

literature review related to distributed systems such as client-server model and

mobile agents. Chapter III presents the previous work related to the DDAS

system. Chapter IV and Chapter V contain the design and implementation of the

EDDAS system. Chapter VI discusses the performance of the EDDAS system

with application programs. Finally, Chapter VII gives the conclusions and the

future work.

3

CHAPTER u. LITERATURE REVIEW

The use of distributed systems is one of the most important events of

computer technology, and is constantly evolving during the last decade. The

reason for this development is the availability of lower cost and more powerful

hardware and the improvement in higher execution speed that can be achieved

by use of parallelism [2]. With a distributed system, it is possible to concurrently

execute a variety of distributed applications.

A distributed system can be defined as a collection of processors

interconnected by a communication network. The major goal for using distributed

systems is to share resources among a lot of different sites. The distributed

systems have become better alternative than other architectures for developing

new distributed applications. The distributed systems can achieve better

performance, higher system reliability and lower cost. But there are several

security problems that have been a major issue in distributed systems. Many

distributed applications have tried to resolve these security problems using better

algorithms and architectures [16]. This chapter describes distributed computation

applications and tools.

2.1 Client-Server Model

The client-server model was first used in the 1980s and actually accepted

in the late 1980s [36]. This model is extensively used in modern software

4

l

products. The use of client-server model ensures higher execution speed,

possibility to divide the computing load into other machines and possibility to

develop many user interfaces referring to different computer systems. The c1ient-

server model is a versatile, message-based and modular infrastructure and is

intended to improve usability, flexibility, interoperability and scalability as

compared to centralized, mainframe, time sharing computing [36]. The most

common model of modern client-server model, the traditional software and

hardware configuration of client-server model is shown in Figure 2.1.

Local DB

Client

U : User Interface
P : Processing Logic
D : Data Log ic

Server

p

Figure 2.1 Configuration of client-server model (adopted from [35])

Many distributed systems use a client-server model. Client-server model

has always been an implementation of a distributed environment. Client-server

systems contain two main parts: a client part and a server part. The client part

5

runs on one computer and the server part runs on another computer. That is,

they are distributed. However, some client-server systems are not distributed. In

these systems, client and server are separate processes running on the same

computer.

As shown in Figure 2.2, the client part makes request for some service

and the server part makes response by providing that service. The client might

be referred to as a master and the server may be referred to as a slave. In the

traditional client-server model, client and server have fixed relationship.

USER CLIENT

Client Process

System Services

Hardware

Request

Response

SERVER

Server Process

System Services

Hardware

Figure 2.2 Client-server model (adopted from [30])

The major functions of the client are to perform the presentation functions

and user's interactions and to execute any client-resident business logic.

Although the server is a working machine in the client-server model, the client

6

-

has enough power to process the applications and handle the presentation

requirements. The server is a working machine that supports multi-user access

for services and data. There are many kinds of servers: computation.

communication, application and database. Both client and server are expected to

execute in a homogeneous system with the exact location of the server known to

the client [1].

The client-server model provides several benefits such as longer system

life cycle, higher execution speed, lower cost and better software reusability [4].

This model can make it easier for user to access information, to develop

application and to manage a distributed computing system. It is easy to construct

the client-server model with a software mechanism because this model is

constructed on hardware independent environment. On the other hand, one of

the problems of the client-server model is that both client and server have the

same communication interfaces. When a server and some clients upgrade their

functions and interfaces, but some clients do not upgrade their functions and

interfaces, it produces ser"ous communication problems in multi-user distributed

computation application. In this model, therefore, the maintenance of software

version is very important [30].

2.1.1 Distributed Computing Environment (DCE)

A distributed application is composed of separate parts that are executed

on different nodes of the network. They cooperate in order to achieve a common

7

T
goal. An infrastructure should make the complexity of distributed processing

transparent as much as possible. This infrastructure is required to integrate a

wide range of computer systems. The Open Software Foundation (OSF)

presented an infrastructure called Distributed Computing Environment (DCE)

[23]. DCE is a collection of integrated software components that are added to a

computer operating system. DCE provides support to build and run distributed

applications in heterogeneous environments.

A typical arrangement of DeE components and services is shown in

Figure 2.3. The core services of DCE are security, time, threads, directory and

the remote procedure call. Figure 2.3 represents the interrelationships among the

DeE components [20].

8

APPLICATIONS

S Diskless Support M
e ~N~ a

n
C a
U Distributed File Service 9
r e
I mOther Fundamental
t e

Services (Future) n

~ Remote Procedure Calls ~

1 T_h_re_a_d_s ,

OPERATING SYSTEM AND TRANSPORT SERVICES

Figure 2.3 DCE components (adopted from [20])

The primary goal of DCE is to overcome the obstacle of heterogeneous

transport protocols, operating systems and computer architectures. DCE can be

described as the set of software tools and services that make it much easier to

develop and operate distributed computing applications. For the primary goal of

DCE, DCE supplies services that can be found in other computer network

environments, but packs these services so as to make them easier to use. For

example, DCE RPC provides a communication method between software

modules running on different systems that is simpler to code than older methods

[27J. Second, DeE supplies new capabilities. The DCE Security Service supplies

a reliable way that decides if a user is allowed to perform a certain action [27].

Third, DCE integrates software components to make them more valuable

9

components. The DCE RPC uses threads in such a way that a developer can

implement a multithreaded server without creating or removing a thread [27].

Finally, DCE supports interoperabmty and portability. DCE can provide the

developer with capability that hides differences among the various hardware,

software and network components [27].

DCE provides a set of integrated services that work across multiple

systems and remain independent of any single system. DCE makes the

distributed computing environment by depending on its own design principles.

DCE has been standardized for developing client-server applications in

distributed computing environments.

2.1.2 Remote Procedure Call (RPC)

RPC implemented by Sun in 1988 was a major milepost in the area of

RPC [31]. The set of RPC tools provided by Sun was designed for performance

on a Unix system. RPC made it possible that same tools can be used regardless

of the program languages. RPC provides a simple way for the programmer to

handle network communication details in client-server applications [15J. The

network programs using RPC become simpler tasks.

RPC is the most important and the simplest way to implement the c1ient

server applications. For client-server programming, a message can be used for

the interaction between client and server. However the message passing may be

prone to error. To ease programming of client-server model, RPC programming

10

model was developed [33]. RPC removes the task of low level message passing

by hiding the complex details of message passing from the user. RPC provides

the client with the ability to call a procedure on a remote server, as if the

procedure is local to the client.

RPC makes it easier to implement clients and servers. The application

developers only have to deal with the simple logic flow of the relationship

between subroutines and their callers. This is exorbitant simplification over other

communications for building distributed applications [31]. In addition, RPC

provides transparency related to the use of the network. Because it hides most of

the communications related to use of the network, the application developers can

ignore the network and focus on tasks related to the application itself. RPC

transparency means that the application developers are hidden from the details

of the network type, operating system and computer hardware. This supports the

goals of portability and interoperability.

Figure 2.4 shows the relationship between application code and RPC

communication during a remote procedure call. In client application code, a

remote procedure call looks like a local procedure call because it is a call to client

stub code [7]. The client stub communicates with the server stub using the RPC

runtime library. The server's RPC runtime library receives the remote procedure

call and sends client information to the server stub. The server stub code invokes

the remote procedure in the server application code. The server application code

is executed in the server address space. When the server finishes executing the

remote procedure, the server stub code sends a reply to the client stub code by

11

using the RPC runtime library. Finally, the client stub code returns output to the

client application code.

Client Application
Code

Server
Application

Code

Stub
Code

RPC
Runtime

Library

-~II 0

'--------::?

Stub
Code

Figure 2.4 Remote Procedure Call (adopted from [15])

RPC is the heart of the heterogeneous OSF DCE [15]. Clients and servers

in DCE applications interact through RPC. Many of the DCE features used by the

applications, including directory and security service, is used through RPC. The

application developers must use DCE RPC to develop distributed applications

with DCE.

2.2 Mobile Agents

12

-

With the recent explosive development of mobile computers and computer

networks, the need for communicating information among people at anyplace

and anytime has been increasing [38]. Mobile agents offer a new method for the

development of applications in distributed systems. Different architectures for

their implementations have been proposed. They are a new approach to the

architecture and implementation of distributed systems.

Mobile agents are programs that are able to travel through a computer

network to fulfill a task on behalf a user. Mobile agents provide effective remote

executions in many areas such as information retrieval, network management,

electronic commerce and mobile computing. They are an efficient paradigm for

distributed applications. Mobile agents are mostly programmed as an interpreted

language. This is why an interpreter is available for a wide range of computer

systems. Also this overcomes the problem of heterogeneity.

There are two reasons that can justify the use of the mobile agents

instead of client-server model. The first is that the size of input data and output

data of mobile agents is smaller than that of client-server. The second is that

mobile agents can minimize the communication traffic in the distributed system

[8]. Using mobile agents in distributed systems has several advantages [10].

(1) Mobile agent is able to autonomously achieve the goal.

(2) The resources that can be used by mobile agent can change

dynamically in distributed systems.

(3) Mobile agent uses the network for their migrations during short period.

13

-

(4) The architecture of mobile agent is very scalable and reliable.

(5) Mobile agent can coexist with client-server model.

Unfortunately, mobile agents involve some serious security problems for

the host and the agent. Because the insertion of foreign code into a local host is

at the core of the mobile agents model, security is the most important concern of

mobile agents. The detection of hostile agents from authorized agents is difficult

because mobile agents use open network systems. There are some solutions to

cover security problems by using safe languages such as Safe-Tel, Safe-Python

or Java [38]. To solve security problems, several mobile agents systems have

been developed.

2.2.1 Teleseript

Telescript, developed by General Magic, Inc., is the first system to bring

network agents into the publJc view. Telescript presents the problems of security,

mobility and transaction in the marketplace. Telescript is the foundation of new

shopping model using online transaction. Telescript is currently used for network

management, active e-mail, electronic commerce and business process

management [14].

2.2.2 Agent Tel

14

Agent Tel, developed by Robert S. Gray and colleagues at the Dartmouth

College Computer Science Department, is a powerful Internet agent system.

Agent Tel runs on UNIX workstation and allows the rapid development of

complex agents. Agent Tcl is based on the Tool Command Language (Tcl)

developed at Sun Microsyst.ems. Tcl is a high-level scripting language that is

both powerful and easy to learn. Tel was designed to allow programmers to tie

together various applications and utilities on UNIX machines. Agent Tel has

simple architecture, communication among agents and docking system that

makes an agent jump off a partially connected computer [24]. Agent Tcl is an

effective platform for Internet agents and small or medium sized applications. An

example Agent Tcl is an agent that travels around a network to look for who is

working on each machine and sends this information back to the agent's home.

2.2.3 Agents for Remote Access (Ara)

Mobile agents should be able to move easily without interfering with their

execution and utilizing many programming languages and programs [18]. They

are independent of the operating systems of the participating machines. This is

the basic idea of the Agents for Remote Access (Ara) system. To do this, the

system supports faciliti:es for the specific requirements of mobile agents in real

application. The Ara system develops a software platform for agents that can

move freely when they decide to. An example Ara based on agents also is an

15

-

agent that travels around to Web site to look for information and sends it back to

the user.

2.3 Middleware

The need to support development of distributed applications using

appropriate layer has grown. Its aim is to give transparency to application

developers [20). This software layer is called middleware. Middleware resides in

the middle between the application and the operating system. Middleware has

been introduced to facilitate the implementation of client-server system in a

heterogeneous environment. Middleware provides a unified programming model

to application developers and mask out problems of heterogeneity and

distribution [6).

Middleware specifies interfaces for distributed operation among computing

system, user interaction, system programming and network management.

Middleware is able to develop multiple implementations that are available on

multiple computing systems. Appl:ication developers and system integrators can

use middleware. Middleware provides them with the information as the format

that they need.

Middleware represents the diverse needs of distributed computing

environments. In particular, the connectivity and interoperability are issues of

middleware. Middleware includes Distributed Component Object Model (formerly

16

-

called Network OLE) of Microsoft, DCE of OSF, RPC of Sun, various standards

of the CCITT such as XAOO, X.SOO and CORBA of OMG [34].

2.4 Common Object Request Broker Adapter (CORBA)

Currently, the integration of object-oriented architecture and distributed

system becomes a new issue in the area of distributed computing system. It is

called distributed object computing. It is used in many successful cases. Security

is still one of the important problems to be solved. Object Management Group

(OMG), a consortium of computer hardware and software vendors, creates the

object model and the secure architecture for distributed object computing [22].

OMG is developing interface standards for distributed object computing known as

Common Object Request Broker Architecture (CORBA).

CORBA is a specification of interfaces and protocols for a distributed

computing application. CORBA is based on the object-oriented architecture. The

language independence of CORBA supports objects written in different

languages to communicate with one another. All object interactions are routed

through Object Request Broker (ORB) that communicates through the industry

standard Internet Inter-ORB Protocol (II0P). CORBA provides the ORB that is a

standard communication hub through which distributed objects and their clients

can interact. Using the ORB, an object and its client can reside in the same

process or in different processes in which case they can execute on different

hosts connected by a network. ORB provides the software to communicate

17

-

requests from client to object and responses from object to client [12]. Also,

CORBA supports the Interface Definition Language (IDL). IDL is a declarative

language that can be used to specify the operation. IDL maps to various

languages like C, C++, Smalltalk and OLE.

CORBA has two major aims. The first is that it makes it easier to

implement new applications that place components on different hosts over the

network or use different programming languages. The second is that it is able to

make open applications that are used as components of large systems. Each

application consists of components. The integration is supported by allowing

other applications to communicate with these components. Figure 2.5 shows

CORBA components.

18

-

Client
Target
Obiect

IDL I~ IDLo~ IOSII ObjectDII ORB Skelet
Stubs Adapter

Interface c::=J

{}
Object Request Broker

Figure 2.5 CORBA architecture (adopted from [3])

CORBA is a powerful set of tools for developing multi-user distributed

applications. CORBA is widely recognized a middleware standard for building

distributed, heterogeneous and object-oriented applications. CORBA provides

the best technical solution for integrating object-oriented architecture and

distributed system [3]. It is robust, interoperable, heterogeneous, multi-platform

and multi-vendor supported.

2.5 Condor

Workstations are powerful machines executing million of instructions each

second. In most cases, the demands of the users are much smaller than the

capacity of the workstation. However, the users can face the problem that the

19

-

capacity of workstations is too small to meet their demands [26]. Condor system

provides a solution to this problem. With Condor, the users take any available

capacity that they can access and that can support their needs.

Condor was designed at the University of Wisconsin - Madison. Condor is

a distributed batch system designed to provide convenient access to unutilized

workstations. Condor supports users who suffer from the limitations of computing

on a single workstation. The basic mechanism of the operation of Condor is to

determine when a workstation is not in use by its owner. If a workstation is not in

use by its owner, the workstation should become a part of available machines.

This is supported by measuring both the CPU load and the time since the last

keyboard or mouse action. The default for considering a machine as idle state is

when the average CPU load measured by UNIX is less than 0.3, and the

keyboard or mouse movement is not detected for at least 15 minutes. The

workstation owners can adjust these parameters [26].

The networks with workstations have increased in great numbers in recent

years. These networks represent powerful computing environments. Using

Condor, users can expand their capacity to that of the entire network.

2.6 Piranha

Most parallel processing is static. These programs execute on fixed

processors throughout a computation. Adaptive parallelism provides dynamic

processors. That is, the number of processors may vary according to availability.

20

-

Adaptive parallelism is based on the process model. Processes are dynamically

reallocated among free nodes. When a node becomes unavailable, its processes

move elsewhere. Piranha is adaptively parallel.

Piranha was developed at Ya'ie University. Piranha gathers idle network

nodes and uses them for executing parallel computations. In Piranha, only the

number of workers can change while the computation proceeds. Whenever a

node becomes idle, the system makes a new worker process on that node.

Piranha has task descriptors that are movable and remappable computation

units. The task descriptor supports strong heterogeneity [9].

Piranha provides a mechanism for solving large problems by using parallel

programs on idle workstations.

21

CHAPTER III. PREVIOUS WORK

3.1 The DDAS System

To achieve better security and more effective management of distributed

computing, Dynamic Distributed Agents Server (DDAS) system is proposed by

[21]. The DDAS system is one of the distributed computing applications based on

the TCPIIP network environment. The DDAS system provides user with a

dynamic network. In this network, nodes can be added or removed as necessary.

The DDAS system provides better security because only an authorized user can

access a dynamic network.

The DDAS system consists of a DDAS and a Manager. The DDAS uses a

specific communication port to construct a dynamic network. After the

construction of a dynamic network,. the Manager distributes processes, creates

processes, runs processes or deletes processes through DDAS. The Manager

serves as an interface between the DDAS and a distributed application program.

The application program communicates with the Manager through a message-

passing method. Jobs are distributed to the nodes over dynamic network, and

results are returned to the main node when all nodes complete the jobs.

Figure 3.1 shows the basic operations of the DDAS system. lif there is a

job in a certain host, the DDAS system constructs a dynamic network. The

Manager checks available nodes and sends DDAS components to these nodes.

The Manager distributes application program through a dynamic network. After

22

3
III

-

the computation of application program, the DDAS system in the main host

disconnects the dynamic system and removes nodes occupied by the DDAS

system in the remote host [21].

Host 2 L...- ---J

23

t

r~········6DAS""····"·II+----.

L..·· ·Ir. +
......... "

(' Manager ../

:.~::..:::::~]I~:::::~:::·""'l
~ Sub Task !"" _ -: ..:

,. • Construction of a dynamic network
- - - - ~ Message passing
+- Disconnection & delete nodes

Figure 3.1 Basic operations of the DDAS system (adopted from [21])

The security problem that is one of the major problems in open network

users and accessible machines.

3.2 Drawbacks of the DDAS System

system can be reduced because the dynamic network consists of only authorized

-

When a distributed computing process is running and one of the hosts

with the DDAS system is slow or down, the DDAS system wastes lots of time to

wait for the result of computation. A solution to deal with this drawback is to

implement monitoring functions over the network. A monitoring function can

notify machine status to the user. It may also inform user of hosts that completed

their work.

When the DDAS system constructs a dynamic network, each host has a

fixed priority. This may cause that a busy host has a higher priority than an idle

host. A busy host with a high priority may have larger data to compute than host

with lower priority. Therefore, this can decrease the performance of DDAS

system. To avoid this weakness, it needs to measure system load degree of

each host. A user can give a proper priority to a host according to the system

load degree.

The implementation of these functions can improve the performance of

DDAS system.

24

a
?\'"
PJ
.::ro

CHAPTER IV. ENHANCED DDAS SYSTEM

For more effective performance. of the DDAS system, the DDAS system is

modified and is equipped with a Graphical User Interface (GUI) to monitor and to

manage performance. The DDAS system with the addition of these new features

is called the Enhanced DDAS (EDDAS) system. A distributed computing system

like the DDAS system requires a monitoring function to view status of all

machines that participate in communication and a dynamic network to utilize an

idle host and to support better security. The EDDAS system satisfies these

functions. Also, the EDDAS system can change the priority of remote hosts. A

host priority decides the data size to be computed. Therefore, the EDDAS

system can adjust the system load of remote hosts. These functions make the

performance of the EDDAS system better.

4.1 The Monitoring Function

As observed in the previous chapter, a distributed computing process

wastes a long time to wait for the result of computation when the host with a

distributed computing process is too slow or down. To detect this problem, it

needs to have access to monitoring functions. A monitoring function can notify a

user of the status of all hosts that participate in communication. A monitoring

function for EDDAS system is developed in this research. It is composed of

several windows: Manager window to manage all hosts, CPU Usage window to

25

check the degree of CPU usage on remote hosts, Select Remote Hosts window

to select remote hosts that a user wants to use, Remote Host window to

understand status of remote hosts and Application Program window to execute

an application program. Table 4.1 presents responsibilities of each window.

Responsibilities

use

Represent the status of remote hosts

Communicate with the Manager window

Execute an application program

Notify Interface, computing algorithm and,

data

3. Use Telnet and FTP

Window

Manager window

The main goal of using GUI is to develop monitoring function. A user can

Table 4.1 Responsibilities of each window

26

1. Main window

2. Manage all hosts that participate i'n

communication

Commands

CPU Usage window Measure the degree of CPU usage on

remote hosts

2. UNIX shell programming

Application Program window

seieCi Remote Hosts window 1. Show available remote hosts

2. Select remote hosts that a user wants tq

GUI.

--':<---- -

obtain all processing information of the system from monitoring function using

4.2 The Dynamic Network

When an application program invokes the EDDAS system, this system

constructs a dynamic network. Dynamic network construction is adopted from the

DDAS system. For establishing a dynamic network, the system checks the

system configuration file as one of the configuration setup of this system. The

system configuration file named vns.data has the IP addresses of the remote

hosts that are chosen by a user, the user 10 and the user password. By reading

the system configuration file, the system investigates if a user is an authorized

user in the accessible remote hosts. This means that the dynamic network

consists of the only authenticated remote hosts. This makes the EDDAS system

a highly secure network using an open network system.

The dynamic network means that a user can add or delete any host as

necessary. In EDDAS system, a user can select any host that a user wants to

use. Also, a user can change a host priority according to the degree of CPU

usage. Both the IP addresses and the priorities of selected hosts are written into

the system configuration file. The host selected first by a user has the highest

priority. The host with a high priority has larger data than the host with a low

priority. Therefore, a user can adjust the system load of remote hosts.

The EDDAS system performs these operations in its own dynamic

network environment.

4.3 The User Interface for Application Programs

27

-

There are many different application programs. These application

programs have different formats. A user must build a common format to execute

different application programs, For creating a common format, the interface fite is

made by user. The Interface file is in the middle between the EDDAS system and

an application program. The Interface file has the proper format for the EDDAS

system and an application program. The EDDAS system calls an application

program through the Interface file. The called application program is performed

by communicating with a main host and remote hosts. Figure 4.1 shows the

Interface file for a quicksort algorithm.

r·-······----··..,..."'··- --------··· ·-- ····-·· ······· _.._.,
r Intenace "'
r ~

f" Functions: 'f
r 1 This program is an Interface program between the EDDAS system and an application program. 'f
f" 2. A quicksort algorithm is used as an application program. "',._*,..•••.•-. _ "11 ••••_ -_••_ •• _ ••- .• _ _ •••_ _._ _ •••,

import java.io.";

class Interface {
static public void main(Slring argsm (

Quicksort q =new QuiCksort();

DDASConlrol.readSetupFilllO:

if (IDDASConlrol.nllxtMachine.equals("final"» (
q.qsort(1, 'inpu1.dat");
DDASConlrol.sendData{DDASConlrol.nextMachlne, ·output2.dar, "input.dar);
DDASConlrol.messageCommunicatlon(OOASConlrol.nextMachlne):
q.qsort(2, "output1.dar);

eise{
q.qsort(2, "Input.dal');
DDASConlrol.sendData(DDASControl.prevMachine, "output3.dat", "retum.dal');
DDAS.msgSend = 'return";
DDASConlrol.messageSend(DDASControl.prevMachlne);

Figure 4.1 Interface file for a quicksort algorithm

28

-

CHAPTERV. IMPLEMENTATION OF THE EDDAS SYSTEM

The EDDAS system has a monitoring function to view status of all hosts

that participate in inter-networking and a dynamic network to utilize an idle host.

The EDDAS system also is easy to use user interface for execution of an

application program. These functions are implemented in Java programming

language. Java programming language provides various communication

methods and object message-passing methods. Java programming language

provides support for networking. The networking support encapsulates

networking classes for better security. Also, the Java bytecode allows solving

both the security and the portability problems. Figure 5.1 describes the task flow

for the EDDAS system.

29

-

Invokes the EDDAS system on the main host

Check the system load of remote hosts

Determine remote hosts to use

Construct a dynamic network

Send the EDDAS components to the remote hosts

Execute the EDDAS system on the remote hosts

Run an application program

Delete all the EDDAS components and results

Exit the EDDAS system

Figure 5.1 Task flow for the EDDAS system

5.1 Implementation of the Monitoring Function

The monitoring function of the EDDAS system provides a user with the

status of all hosts with the EDDAS components. The Manager window is used for

the monitoring of a main host, and the Remote Host window is used for the

monitoring of remote hosts.

For communication among hosts, the EDDAS system has two major

methods, connectSocket() and openSocket(), and two major classes, SenderO

and ReceiverO. The connectSocketO method tries to connect to other hosts, and

the openSocket() method waits for connecting the hosts. These methods are the

30

cbe.tu.c8.ot.Uu.edu ta.u .uc.c•••tully ••t up.

-

basic functions for the dynamic network, and they are executed on the specific

communication port, port number 7777. The connectSocketO and openSocket()

are in a main host. Using these methods, the main host sets up the remote hosts.

After the remote hosts are set up, they display their current status in the Remote

Host window. Figure 5.2 shows the monitoring of setup processes of all hosts

that take part in the communication.

Figure 5.2 Monitoring of setup processes

The SenderO and ReceiverO classes execute all communications in the

system. These classes provide message-passing method for the communication

among hosts. With these classes, the EDDAS system distributes system

31

-

components, monitors the current status of the remote hosts and executes

application algorithms. After the message-passing among hosts is completed, the

main host and each remote host inform a user of the its current status. Figure 5.3

presents the monitoring of the message-passing among hosts.

Figure 5.3 Monitoring of the message-passing

••cdv1n9 D".w.UI .d..Uu.n Ub f .._ ... n

It lclb

tn J.cU.

In idl.

sM1od1n.t DefaulU...... ta & 1lan&V-1: til.. t.o ••!Unr~tnlu .out.ate ...
S.wlintl DelaulU.C.uta 8 IlalU.pr .fU•• to che-.t.Z'.c.•. ok,.t.t.e
Sen41ng De1'...ulU,It IlanaV-E ~U•• to •.c •.obbta ••da.a

Runn1nlJ DOU pl'09I"" on ••la,b•• r .WIIlab .ole.tat......
R~,' DDU provr'" lOon theet.ar .c.••ok.tat.•. edu
I.UnnJ..n4I DJ)J.S prOfJr" on a.e..ot.t.atA .•du

5.2 Construction of the Dynamic Network

The EDDAS system establishes its own dynamic network for the inter-

networking among hosts. Initially, when the EDDAS system is invoked, the

system investigates the system load of remote hosts. The system load of remote

32

hosts is measured by using Telnet and UNIX command TOP. The UNIX

command TOP displays the running processes on the system. CPU percentage.

is used to rank the running processes. The TOP shows general information about

the state of the system including the last process ID assigned to a process, the

three load averages, the current time and the number of existing processes. It

also includes information about the number of processes in each state such as

sleeping, running, starting, zombies and stopped and about the load percentage

spent in each of the processor states such as user, kernel, IOwait and swap. The

EDDAS system investigates the system load of remote hosts by calling the UNIX

command TOP, and a user determines an idle remote host and that host's

priority. Appendix B describes the system load information through the TOP.

The priority is determined by a user. Consider that a user selects Host A

first and selects Host B second. Then, Host A would have priority 1 and Host B

would have priority 2. The Host A with priority 1 has larger data than the Host B

with priority 2. This means that a user can adjust the data size that is sent to a

remote host. Figure 5.4 and Figure 5.5 show the degree of CPU usage of remote

hosts.

33

-

d CPU Usage 00 1• I..J
ealab,vx.walab.otatat•••du aeceivinq ... tb

l

che.tex.ca.okatat•• edu Connectinq... ,L;J

r

L z.c•.ok.tate .•du Connectinq ... 1t1
Er --- --- -- -

Figure 5.4 CPU usage: connecting

.:::J CPU UsageC'6) I ·f~
.alabavx.walab.okatat•••du 3% idle I~

l~ -I'

~l~
cheatex.ca.ok.tate ••du g·n idle II~

I~
T"

z.c••ok.tate.edu gU idle]f:J
f"""";;j",

r.:c--r-- 1:1""'-'

Figure 5.5 Degree of CPU usage

34

-

After a user selects the remote hosts, the EOOAS system checks by

reading the system configuration file on the main host whether the user is a valid

user in the remote hosts or not. If the user is an authorized user in the remote

hosts, the user has read-, write-, and execute-privilege. The dynamic network is

composed of the only authorized remote hosts and the construction of the

dynamic network makes a high secure network.

The system configuration file has the IP addresses and the priorities of

remote hosts selected by a user, a user 10 and a user password. Figure 5.6

shows the initial status of the system configuration file and Figure 5.7 shows the

status of the system configuration file after remote hosts are chosen.

machines:
userid:

Figure 5.6 Initial status of the system configuration file

35

machines:
chester.cs.okstate.edu
z.cs.okstate.edu
eslabsvr.wslab.okstate.edu
userid:
..................

password:
......................'"

Figure 5.7 Status of the system configuration file with machines

In Figure 5.6, the initial system configuration file has only one user 10 and

one user password. After a user chooses the remote hosts, the system

configuration file in Figure 5.7 has the IP addresses and the priorities of remote

hosts, a user 10 and a user password. In Figure 5.7, chester.cs.okstate.edu has

priority 1 and eslabsvr.wslab.okstate.edu has priority 3. The system checks the

priorities of remote hosts by reading the system configuration file.

5.3 User Interface

An application algorithm takes advantage of the EOOAS system since the

system distributes the application algorithm to the remote hosts. The EOOAS

system has easy to use user interface shown Figure 5.8.

36

--J-...

-

.::1 Application Program I ·I~

Inte:r:face :rnterf..c:. J

Application Quicksort)I
Input input.dat I

I'

OK II Cancel I

Figure 5.8 User interface

For execution of an application program, the user informs the system of

the Interface file, an application algorithm and input. The EDDAS system sends

these files to the chosen remote hosts. The Interface file that is in the middle

between the EDDAS system and an application program calls the application

program as the proper format for the system. A computation is completed by the

application algorithms on the remote hosts. As a result of these, each remote

host has some output files and returns these files to the remote host with a

higher priority than itself. With these files, the main host makes a final file, named

the result.dat.

37

-5".....
3
~
;:.....
t,
)

31..

--

CHAPTER VI. PERFORMANCE EVALUATION

This chapter shows the host environment and the command set of a test

system. We present an application program, network status and the process of

an application computation used for the test. We also measure the performance

of the EDDAS system under various numbers of hosts.

6.1 System Environment

We test the EDDAS system on four machines: a.cs.okstate.edu,

z.cs.okstate.edu, chester.cs.okstate.edu and eslabsvr.wslab.okstate.edu. Three

machines, a.cs.okstate.edu, z.cs.okstate.edu and chester.cs.okstsate.edu, are

the host computer system of Computer Science Department and one machine,

eslabsvr.wslab.okstate.edu, is the host computer system of Electrical

Engineering Department. The a.cs.okstate.edu is used as a main host. This

means that a user must execute the EDDAS system from a.cs.okstate.edu.

For execution of an application program, the EDDAS system sends the

Interface file and an application algorithm to the remote hosts that are selected

by a user. The EDDAS system in the remote host executes the application

algorithm and returns the resulting file to the remote host with a higher priority

than itself. For example, the remote host with priority 3 returns the resulting file to

the remote host with priority 2. Table 6.1 shows the IP address, as name and

Java Virtual Machine (JVM) version of each host used for this test.

38

--;,:.
)
.~

:;:..'.:r.,
)

J
'to

-
Host Name IPAddress OS JVM

a.cs.okstate.edu 139.78.113.1 SunOS5.7 1

z.cs.okstate.edu 139.78.113.110 SunOS5.7 1
a

chester.cs.okstate.edu 139.78.113.102 SunOS 5.6 1

eslabsvr.wslab.okstate.edu 139.78.96.1 Solaris 2.5.1 1
;., -~:,~~

Version

Table 6.1 Host environment

When the EDDAS system is executed I a user can set up and check the

system by using commands of the system. The EDDAS system provides a user

with user control functions such as checking a system load, selecting remote

hosts, creating a dynamic network, transferring files and running an application

algorithm. Table 6.2 presents the commands and the their descriptions of the

EDDAS system.

39

-3'
:::.

r
\
)

~..

-

Command

Main Setup

Connect

Close

Delete

Description

Set up all hosts participating in inter

networking
=~Ii:!::~~

Create a dynamic network

Close the processes of the remote hosts

Delete the EDDAS components on the

remote hosts

i
-"
-

Check the processes of the remote

hosts

Display a system copyright
~ -- ~~"~----:i'~'+'

Display a system version

About Manager

About Version

Exit Exit the EDDAS program

Tools RUnlrniTirn~gi~ii~lcClh~eecc~k:1thheenruUinmniilin~giipr~0~ce9ss~o~ntlth~e;===~
remote hosts

Special

Table 6.2 Command set of the EDDAS system
),
)

;:
,-6.2 Distributed Quicksort Algorithm r,
)

s..
A quicksort algorithm is used as an application program. Figure 6.1 and

Figure 6.2 describes the flow chart of the distributed quicksort algorithm using the

EDDAS system. Figure 6.1 shows the flow chart for intermediate hosts and

Figure 6.2 shows the flow chart for final host. The EDDAS system and a

40

-

-

quicksort algorithm are in the main host, a.cs.okstate.edu. When a user informs

the main host of the quicksort algorithm as an application program, the main host

transfers the quicksort algorithm to the remote hosts selected by the user.

Receive input data from the host with one higher priority

Split input data into two parts

Sort one part

Send the other part to the host with one lower priority

Receive output file from the host with one lower priority

Merge its own sorted file and received output file

Return result file to the host with one higher priority

Figure 6.1 Flow chart for intermediate hosts

41

....
r
,:-

...
r,
)

•..

--

Receive input data from the host with one higher priority

Sort input data

Send output file to the host with one higher priority

Figure 6.2 Flow chart for final host

The main host splits the input data for the application algorithm into two

parts. The main host sorts one part with the quicksort algorithm and sends the

other part to the remote host with priority 1. Like the main host, the remote host

with priority 1 divides the input data received from the main host into two parts

and performs the quicksort algorithm with one part. The other part is transferred

to the remote host with priority 2. These processes are repeated up to the final

remote host.

The input data that are split into two parts in the main host are named

output1.dat and output2.dat. The output1.dat is sorted in the main host by the

quicksort algorithm, and the sorted output1.dat is named output3.dat. The

output2.dat is transferred to the remote host with priority 1. The remote host with

42

'...

),
)

;:
...
r
I
I
I
~

--

-

priority 1 receives output2.dat as input.dat. This remote host performs the same

jobs as the main host. That is. the remote host with priority 1 divides input.dat

into output1.dat and output2.dat and executes the quicksort algorithm with

output1.dat. The sorted output1.dat is named output3.dat. The output2.dat of this

remote host is sent to the remote host with priority 2. These executions are

performed up to the final remote host. The final remote host receives output2.dat

as input.dat, sorts input.dat by using the quicksort algorithm and generates

output3.dat.

The output3.dat in the final remote host is returned as return.dat to the

remote host with one higher priority. The remote host with one higher priority

merges both its own output3.dat and return.dat and generates result.dat. This

result.dat is transferred as return.dat to the next remote host. These processes

are repeated up to the main host. The main host merges both its own output3.dat

and return.dat and generates result.dat. This result.dat is the computation result.

Table 6.3 shows the generated files in each host after execution of the quicksort

algorithm, and Figure 6.3 describes the processes of distributed computation.

Table 6.3 and Figure 6.3 suppose that four hosts participate in inter-networking

and their priorities are as follows:

(1) a.cs.okstate.edu: Main host

(2) z.cs.okstate.edu: Priority 1

(3) chester.cs.okstate.edu: Priority 2

(4) eslabsvr.wslab.okstate.edu: Priority 3

43

...-,
:-.
)
I
I
~.

..
,r
t

"

I.

--

-

Table 6.3 Generated files after execution of the quicksort algorithm

Host Files

input.dat

output3.dat

input.dat

output1.dat

output2.dat

output3.dat

result.dat

return.dat

- - - - -- - ----:-----..,...,,-~~------_ ... -
Main Host a.cs.okstate.edu input.dat

oufput1.dat

output2.dat

output3.dat

result.dat

return.dat

Remote Host . z.cs.okstate.edu
chester.cs.okstate.edu

......
J
:~

....
r
I
I

I.

44

(1) split "input.dat"

(2) sort "output1.dat" & (6) send "output2.dat"

"output3.dat"

(16) merge & "result.dat"

-

a.cs

•
(3) send "output2.dat"

....-------------(15) send "return.dat"

z.cs

(4) split "input.dat"

(5) sort "output1.dat" &

"output3.dat"

(14) merge & "result.dat"

+
I
I
I
I

I (13) send "return.dat"
I

(9) send "output2.dat"
41

------------+
(11) send "return.dat"

eslabsvr.wslab
(10) sort "input.dat" &

"output3.dat"

•

(7) split "input.dat"

(8) sort "output1.dat" &

"output3.dat"

h t
(12) merge & "result.dar

c es er.cs

Figure 6.3 Processes of distributed computation

6.3 System Performance

We measure the performance of the EDDAS system using several remote

hosts. All remote hosts run in the UNIX environment: as type is SUN Solaris and

machine type is SPARe station. The dynamic network of the EDDAS system is

created on the specific communication port, port number 7777.

This test consists of setup time, working time and different data sizes. The

setup time is the average elapsed time needed to set up remote hosts so that

remote hosts are ready to run an application algorithm. Also, the working time is

the average elapsed time needed to execute an application algorithm. To

45

...
J
:-

•I
I
j..

..

-

detennine the setup time of system, we measure the time needed to initialize

remote hosts, to forward the EDDAS components to remote hosts and to run the

EDDAS system on remote hosts. We also measure the working time needed to

execute an application algorithm and to transfer output files among remote hosts.

if the number of hosts is one

Tsetup = 0

Tworking = Te

where Te = time for executing an application algorithm

else

Tsetup = Ti + Ts + Tr

where Ti = time for initializing all remote hosts

Ts = time for sending the EDDAS components to all

remote hosts

Tr = time for running the EDDAS system on all remote

hosts

Tworking =Tend - Tstart

where Tend = end time ofexecuting an application

algorithm

Tstart =start time of executing an application

46

......
J
:-

I,
I....
..

algotirhm

Four inputs are used to control the workload of the remote hosts. This test

is performed with different data sizes: SODa, 1DODO, 20000 and 30000. In this

test, a quicksort algorithm is used to illustrate the performance of the EDDAS

system. Four tests are made. Results of these tests are shown in Figure 6.4 -

Figure 6.12.

CPU States: 49.4% idle
45.1% user

5.0% kernel
0.5°10 iowait
0.0% swap,

Figure 6.4 Test 1: CPU states

47

......
I

.:

70

60

50

40

30

20

10

o

I
/

/
/ -- Setup Time

-.... Working Time

--/
~

• •

5000 10000 20000 30000

Figure 6.5 Test 1: Setup time and working time (sec.)

48

:)
Il~--II.:)

::r
~

3:
)

'')..
»..,
)..

:

..

CPU states with main host:
61.2% idle

6.7% user
9.9% kernel

22.2% iowait
0.0% swap

CPU states with priority 1:
49.8% idle
44.6% user

5.5% kernel
0.1% iowait
0.0% swap

Figure 6.6 Test 2: CPU states

49

...
I

:

:

50

40

30

20

10

o

/

/

.

1-- Setup Time

... Working Time

5000 10000 20000 30000

Figure 6.7 Test 2: Setup time and working time (sec.)

50

..

:

:

--

CPU states with main host:
62.8% idle
29.6% user
7.6% kernel
0.0% iowait
0.0% swap

CPU states with priority 1
50.0% idle
46.0% user

3.9% kernel
0.1% iowait
0.0% swap

CPU states with priority 2
49.8% idle
45.1% user

5.1% kernel
0.0% iowait
0.0% swap

Figure 6.8 Test 3: CPU states

51

-.

--

50

40

30

20

10

o

/
I

5000 10000 20000 30000

-- Setup Time

--.- Working Time

Figure 6.9 Test 3: Setup time and working time (sec.)

52

".

"

CPU states with priority 2
49.3% idle
45.5% user

5.2% kernel
0.0% iowait
0.0% swap

CPU states with priority 3
49.2% idle
46.1% user

4.6% kernel
0.1% iowait
0.0% swap

CPU states with priority 1
66.1% idle
30.4% user

3.5% kernel
0.0% iowait
0.0% swap

CPU states with main host
62.8% idle
21.8% user
10.1 % kernel
5.3% iowait
0.0% swap

Figure 6.10 Test 4: CPU states

'.

53

50

-- Setup Time

-.. Working Time

. ..30 .-

40 ~._-------7'/"-------
/7

20

10

o .
5000 10000 20000 30000

Figure 6.11 Test 4: Setup time and working time (sec.)

'.

54

70

60

50

40

30

20

10

o

/
/

/ ~

- - ... - -~ /
/ .. /

..--

Test 1

Test 2

..... -Test 3

v Test 4

5000 10000 20000 30000

Figure 6.12 Working time (sec.)

Results shown in Figure 6.4 - Figure 6.12 indicate that the performance of

using one-host is best in data size 5000. However, the performance of using

four-host is best in data size 30000. We can conclude that the EDDAS system

supports effective system performance and management in large data size.

55

"

CHAPTER VII. CONCLUSIONS

When a user invokes the EDDAS system, the system investigates the

system load of remote hosts. According to the system load of remote hosts, the

user determines the priority of remote hosts, and the system constructs a

dynamic network. Unlike other distributed computation applications, the EDDAS

system does not require a predefined network. The EDDAS system creates its

own dynamic network by authenticating the remote hosts. It means that the

dynamic network consists of the only authorized remote hosts. An application

program is performed by using message-passing method for the EDDAS system.

For execution of the application program, the system uses an easy user

interface. Using this user interface, a user informs the system of the Interface,

algorithm and input for the application program. After the application program is

....."""'...,~..J ~.~ ~ ~~""" ~ ~_.~. .~"" .. ~...~ "",_oot ~-
CVH~"...v, u~ systenl u~uu~~ n~ v:t~ ~tft'Vtl?\. ili1tHU ~~ ll~

processes and the ~~nts 1m the EDDASs~ h'l' tOO~fi~ta

These processes- are~ by GUt lbe ~~lOOng~pro~$~. user

withlhe status of aD hosts that take part ininter~.During~ fUftning

REFERENCES

[1] Istabrak Abdul-Fatah and Shikharesh Majumdar, Performance Comparison of

Architectures for Client-Server Interactions in CORBA, Distributed Computing

Systems, IEEE Computer Society, pp. 2-11, 1998.

[2] T. K. Apostolopoulos and K. C. Pramataris, A Client-Server Architecture for

Distributed Problem Solving, Proceedings of IEEE Singapore International

Conference, pp. 513-517,1995.

[3] Sean Baker, CORBA Distributed Objects Using Orbix, Addison-Wesley, 1997.

[4] Regis J. Bates, Hands-On Client/Server Internetworking, McGraw-Hili, Inc.,

1998.

[5] M. Bertocco, F. Ferraris, C. Offelli and M. Parvis, A Client-Server Architecture

for Distributed Measurement Systems, Instrumentation and Measurement

Technology Conference, IEEE, Vol. 1, pp. 67-72, 1998.

[6] Gordon S. Blair, Geoff Coulson, Nigel Davies, Philippe Robin and Tom

Fitzpatrick, Adaptive Middleware for Mobile Multimedia Applications, Network

and Operating System Support for Digital Audio and Video, IEEE, pp. 245

254, 1997.

[7] John Bloomer, Power Programming with RPC, O'Reilly & Associates, Inc.,

1992.

[8] L. M. Camarinha-Matos and Walter Vieira, Mobile Agents and Remote

Operation, Intelligent Engineering System, IEEE, pp. 463-468, 1997.

57

)

.....

[9] Nicholas Carriero, Eric Freeman, David Gelernter and David Kaminsky,

Adaptive Parallelism and Piranha, Computer, Vol. 28, Issue. 1, pp. 40-49,

IEEE,1995.

[10] Manfred Dalmeijer, Eric Rietjens, Dieter Hammer, Ad Aerts and Michiel

Soede, A Reliable Mobile Agents Architecture, Object-Oriented Real-Time

Distributed Computing, IEEE, pp. 64-72, 1998.

[11] A. A. EI-Zoghabi, M. A. Ismail, S. N. T. Shen and E. A. Korany, A Client

Server Computing Model for Heterogeneous Distributed knowledge

Management, Southeastcon '93, Proceedings, IEEE, 1993.

[12] Eric Evans and Daniel Rogers, Using Java Applets and CORBA for Multi

User Distributed Applications, IEEE Internet Computing, Vol. 1, Issue. 3, pp.

43-55, 1997.

[13] Jim Farley, Java Distributed Computing, O'Reilly & Associates, Inc., 1998.

[14] Robert Gray, David Katz, Saurab Nog, Daniela Rus and George Cybenko,

Mobile Agents: The Next Generation in Distributed Computing, Parallel

Algorithms/Architecture Synthesis, IEEE Computer Society, pp. 8-24,1997.

[15] David Gunter, Client/SeNerProgramming with RPC and DEC, QUE, 1995.

[16] P. W. Halliden, Security for Distributed Applications, Security and Detection,

pp. 156-160, lEE, 1995.

[17] Elliotte Rusty Harold, Java Network Programming, O'Reilly & Associates,

Inc., 1997.

58

...-)
r-

--

[18] Craig Hunt, TCPIIP Network Administration, O'Reilly & Associates, Inc.,

1993.

[19] Jerry R. Jackson and Alan L. McClellan, JAVA by Example, SunSoft Press,

1997.

[20] Raman Khanna, Integrating Personal Computers in a Distributed Client

Server Environment, Prentice-Hall, Inc., 1995.

[21] Kwan-Sung Kim, DDAS: Design and Implementation of a Kernel Application

for Adaptive Distributed Computation, Oklahoma State University, 1999.

[22] Kyeongbeom Kim, Youngkyun Kim, Youngkee Song and Saran Ine, A

Software Platform for Secure Applications based on CORBA, Distributed

Computing Systems, IEEE Computer Society, pp. 22-27, 1997.

[23] Charles knouse, Practical DCE Programming, Prentice-Hall, Inc., 1996.

[24] David Kotz, Robert Gray, Saurab Nog, Daniela Rus, Sumit Chawla and

George Cybenko, Agent Tel: Targeting the Needs of Mobile Computers, IEEE

Internet Computing, Vol. 1, Issue. 4, pp. 58-67, 1997.

[25] John Lewis and William Loftus, JAVA Software Solutions, Addison-Wesley,

1998.

[26] Mike Litzkow and Miron Livny, Experience with the Condor Distributed Batch

System, Experimental Distributed Systems, IEEE, 1990.

[27] Harold W. Lockhart, OSF DCE, McGraw-Hili, Inc., 1994.

[28] David Medinets, Unix Shell Programming Tools, McGraw-Hili, Inc., 1999.

59

.-,
~

--

[29] Patrick Naughton and Herbert Schildt, The Complete Reference JAVA 1.1,

McGraw-Hili, 1998.

[30] Paul E. Renaud, Introduction to Client/Server Systems, John Wiley & Sons,

Inc., 1993.

[31] C. Sashidhar and S. M. Shatz, Design and Implementation Issues for

Supporting Callback Procedures in RPC-Based Distributed Software,

Computer Software and Application Conference, IEEE Computer Society, pp.

460-466, 1997.

[32] Jeffrey D. Schank, Novell's Guide to Client-Server Applications and

Architecture, Novell Press, 1994.

[33] Alexander Schill, Christian Mittasch, Otto Spaniol and Claudia Popien,

Distributed Platforms, Chapman & Hall, 1996.

[34] Alan R. Simon and Tom Wheeler, Open Client/Server Computing and

MiddJeware, AP Professional, 1995.

[35] Seungwoo Son, Injoong Yoon and Changkap Kim, A Component-Based

Client/Server Application Development Environment Using Java, Technology

of Object-Oriented Language, pp. 168-179, 1998.

[36] Antonella Di Stefano, Lucia Lo Bello and Corrado Santoro, A Distributed

Heterogeneous Database System Based on Mobile Agents, Seventh IEEE

International Workshops, pp. 223-228, 1998.

[37] Andrew S. Tanenbaum, Computer Networks, Prentice-Hall, Inc., 1996.

60

.•r-

[38] Hartmut Vogler, Thomas Kunkelmann and Marie-Louise Moschgath,

Distributed Transaction Processing as a Reliability Concept for Mobile

Agents, Distributed Computing System, IEEE, pp. 59-64, 1997.

61

-.,

--

APPENDIX A

EDDAS SYSTEM SOURCE CODE

IN JAVA

62

)--,....

/***/
1*
/* Manager.java
1*
/* Functions:
/* 1. This program manages DDAS system.
/* 2. This program executes each command.
/*

*/
*/
*/
*/
*/
*/
*/

/**/

import java.io.*;
import java.uti!.*;
import java.lang.*;
import Synchronization. *;

class Manager extends DDAS {
public static final int MAX_MACHINE = 100;
static final int ENROLLED_CMD_NO = 11;
static final int MAX_ARGS = 5;

public static String[] machineNames =new String[MAX_MACHINE];

static String userlD = null;
static String passWord = null;

static String inputCommand = null;
public static int machineNumber = 0; II available machine counts
static StringTokenizer st;

static String[] enrolledCommands = {"?", "busy?", "delete",
"establish", "execute", "exit",
"kill", "running?", "send",
"set", "status"};

public static boolean debug = true;
static Quicksort q = new QuicksortO;

public static void managerO {
initialSystemO;

}

static void initialSystemO {
machineNumber = readSetupFile();

63

)

-

}

static void inputCheckO {
int commandNumber = 0;

try{
BufferedReader stdin =

new BufferedReader(new InputStreamReader(System. in));
inputCommand =stdin.readLineO;

st = new StringTokenizer(inputCommand);
String[] arguments = new String[MAX_ARGS];

int saveBufCnt = st.countTokensO;

for (int i =0; i < saveBufCnt; i++)
arguments[i] = st.nextTokenO;

commandNumber =makeCommandTolnt(arguments[O]);
commandService(command Number, arguments, saveBufCnt);

} catch (IOException e) {
System.err.println(e);

}
}

Ilinput command service Method

public static void commandService(int exeNo, String[] argsOther, int argNo) {
String sendMessage = null;

switch(exeNo) {
1/ ? help service

case 0:
if (argNo == 1) {

for (int i = 0; i < ENROLLED_CMD_NO; i++)
System.out.println(enrolledCommands[i]);

}
else

helpService(argsOther);
break;

II busy? check service
case 1:

sendMessage ="busy?";

64

)-

makeSendMessage (sendMessage);

if (argNo == 1)
messageCommunicationO;

else if (argNo == 2)
messageCommunication(argsOther[1]);

else
displayErrorMessage(O);

break;

/I delete file service
case 2:

deleteAIIFilesO;
break;

II establish service
case 3:

if (argNo < 2) {
sendFilesO;
executeFilesO;

}
else

displayErrorMessage(0);

break;

/I execute file service
case 4:

q.qsort(1, "input.datll
);

sendData(machineNames[O], "output2.dat", "input.datil);

sendMessage = "execute";
makeSendMessage (sendMessage);
messageCommunication(machineNames[O]);

Ilexecute quicsort ...
q.qsort(2, l output1.dat");

openSocketO;
while(nextFlag == 0)

pause(PAUSE);

q.concatFileO;
break;

65

).-

1/ exit service
case 5:

System.exit(O) ;
break;

1/ kill process service
case 6:

sendMessage ="kill";
makeSendMessage (sendMessage);

if (argNo == 1)
messageCommunicationO;

else if (argNo == 2)
messageCommunication(argsOther[1]);

else
displayErrorMessage(O);

break;

II running? service
case 7:

sendMessage ="running?";
makeSendMessage (sendMessage);

if (argNo == 1)
messageCommunicationO;

else if (argNo == 2)
messageCommunication(argsOther[1]);

else
displayErrorMessage(O);

break;

/I send service
case 8:

if (argNo == 1) {
sendMessage = "send";
makeSendMessage (sendMessage);
messageCommunicationO;

}
else if (argNo == 2) {

sendMessage ="send II + argsOther[1];
makeSendMessage (sendMessage);
messageCommunicationO;

}
else

displayErrorMessage(O);
break;

66

)-

/I set environment service
case 9:

if(argNo== 1)
displayEnvironmentO;

else if (argNo == 3)
setEnvironment(argsOther);

else
displayErrorMessage(O);

break;

/I status service
case 10:

sendMessage = "status";
makeSendMessage (sendMessage);

if (argNo == 1)
messageCommun icationO;

else jf (argNo == 2)
messageCommunication(argsOther[1]);

else
displayErrorMessage(O);

break;

default:
break;

}
}

static void messageCommunicationO {
try {

FileReader fr = new FileReader("vns.data");
BufferedReader br = new BufferedReader(fr);
String s;

br. read LineO;

for (int i = 0; i < machineNumber; i++) {
Server = machineNames[i];

connectSocketO;
while(nextFlag == 1)

pause(PAUSE);

openSocketO;

67

)-

}

while(nextFlag == 0)
pause(PAUSE);

s = br.readLineO;
}
fr.close{);

} catch (IOException e) {
System.err.println(e);

}
}

static void messageCommunication(String machine) {
Server =machine;

connectSocketO;
while(nextFlag == 1)

pause(PAUSE);

openSocketO;
while(nextFlag == 0)

pause(PAUSE) ;

static void makeSendMessage(String sendMessage) {
msgSend = sendMessage;

}

/* Set Environment (commands and arguments)
* set
* set changeld userid
* set changePasswd password
* set addMachine machineName
* set deleteMachine machineName
*/

static void setEnvironment(String[] argsOther) {
if(argsOther[1].equals("changeld")) {

userlD =argsOther[2];
}
else if(argsOther[1].equals(lchangePasswd")) {

passWord =argsOther[2];
}
else if(argsOther[1].equals(OIaddMachine")) {

68

)-...

machineNames[machineNumber] = argsOther[2];
machineNumber++;

}
else if(argsOther[1].equals("deleteMachine"» {

machineNames[machineNumber] =argsOther[2];
machineNumber--;

}
else {

displayErrorMessage(2);
}

}

static void displayEnvironmentO {
System.out.println("Machines:");

for (int i=O ; i < machineNumber; i++)
System.out.println(" II + machineNames[i));

System.out.println("UserID: " + userID);
System.out.println("password: " + passWord);

}

static void helpService(String[] argsOther) {
int serNo;

serNo =makeCommandTolnt (argsOther[1));

switch(serNo) {
II?

case 0:
System.out.println("? Commands display service.");
break;

II busy?
case 1:

System.out.println(" busy? Check running program in other
machines.");

System.out.printlnO;
System.out.println(" busy? --- Display all conected machine");
System.out.println(" busy? machine_name --- Display input machine");
break;

II delete
case 2:

69

).-

System.out.println(" delete Delete all files about DDAS.");
System.out.printlnO;
System.out.println(" delete --- Deleted all connected

machine");
System.out.println(" delete machine_name --- Deleted input machine");
break;

II establish
case 3:

System.out.println(" establish Establish dynamic virtual network. ");
break;

II execute
case 4:

System.out.println(" execute Execute program.");
System.out.println0;
System.out.println(1I' execute program_name --- execute input

program");
System.out.println(" execute program_name machine_name");
break;

II exit
case 5:

System.out.println(" exit Exit DDAS program.");
break;

II kill
case 6:

System.out.println(U kill Kill the process of other machines.");
System.out.printlnO;
System.out.println(" kill machine_name");
break;

II running?
case 7:

System.out.println(" running? Check running process");
System.out.printlnO;
System.out.println(" running? machine_name");
break;

II send
case 8:

System.out.println(" send Send file to other machine.");
System.out.printlnO;
System.out.println(" send program");
System.out.println(U send program machine_name");

70

)

break;

II set
case 9:

System.out.println(" set Set the configuration of virtual network.");
System.out.printlnO;
System.out.println(" set changeld userid");
System.out.println(" set changePasswd password");
System.out.println(" set addMachine machine_name");
System.out.println(" set deleteMachine machine_name");
break;

II status
case 10:

System.out.println(" status Check the status of other machines,");
System.out.printlnO;
System.out.println(" status machine_name");
break;

default:
break;

}
}

static int makeCommandTolnt(String inputCommand) {
int commandNo = 0;

for(commandNo = 0; commandNo < ENROLLED_CMD_NO;
commandNo++) {

if(enrolledCommands[commandNo].equals(inputCommand))
return commandNo;

}
return commandNo;

}

static int readSetupFileO {
String readData = null;
String MACHINE = "machines:";
String USERID ="userid:";
String PASSWORD = "password:";

int index =0;

try {

71

)

Ilread from Virtual Network Setup data file
BufferedReader in =

new BufferedReader(new FileReader(new File("vns.data"»));

while ((readData = in.readLine(» != null) {
if(readData.equals(PASSWORD»

passWord =in.readLineO;
else if(readData.equals(USERID»

userlD = in.readLineO;
else if(readData.equals(MACHINE» {

machineNames[index] =in.readLineO;
index++;

}
else {

machineNames[index] = readData;
index++;

}
}
in.closeO;

} catch (FileNotFoundException e) {
System.err.println("vns.data file does not exist !!!");

} catch (IOException e) {
System.err.println(e);

}
return index;

}

public static void sendFilesO {
String commands = null;
String fileName[] = new String[machineNumber];

HostFrame hf =new HostFrameO;

if (hf.state[O] == 1 && hf.state[1] == 0 && hf.state[2] == 0)
fileName[O] ="Default4E.data";

if (hf.state[O] == 0 && hf.state[1] == 1 && hf.state[2] == 0)
fileName[O] =IDefault4C.data";

if (hf.state[O] == 0 && hf.statep] == 0 && hf.state[2] == 1)
fileName[O] = "Default4Z.data";

if (hf.state[O] == 1 && hf.state[1] == 1 && hf.state[2] == 0) {
try {

FileReader fr = new FileReader("vns.data");

72

)

--

BufferedReader br =new BufferedReader(fr);
String s[] = new String[2];

br.readLineO;
s[O] = br.readLineO;
s[1] = br.readLineO;

if (s[O).equals("eslabsvr.wslab.okstate. edu") &&
s[1].equals("chester.cs.okstate.edu"» {
fileName[O] = "DefauIt4E.data";
fileName[1] = "Default4C.data";

}

if (s[O].equals("chester.cs.okstate.edu") &&
s[1].equals("eslabsvr.wslab.okstate.edu"» {
fileName[O] = "Default4C.data";
fileName[1] ="Default4E.data";

}
} catch (IOException e) {

System.err.println(e);
}

}

if (hf. state[O] == 1 && hf.state[1] == 0 && hf.state[2] == 1) {
try {

FileReader fr = new FileReader("vns.data");
BufferedReader br =new BufferedReader(fr);
String s[] =new String[2];

br.readLineO;
s[O] =br.readLineO;
s[1] =br.readLineO;

if (s[O].equals("eslabsvr.wslab.okstate.edu") &&
s[1].equals("z.cs.okstate.edu"» {
fileName[O] = "Default4E.data";
fileName[1] ="Default4Z.data";

}

if (s[O].equals("z.cs.okstate.edu") &&
s[1].equals("eslabsvr.wslab.okstate.edu"» {
fileName[O] ="Default4Z.data";
fileName[1] = "Default4E.data";

}
} catch (IOException e) {

System.err.println(e);

73

}
}

if (hf.state[O] == 0 && hf.state[1] == 1 && hf.state[2] == 1) {
try {

FileReader fr = new FileReader("vns.data");
BufferedReader br = new BufferedReader(fr);
String s[] = new String[2];

br.readLineO;
5[0] =br.readLineO;
5[1) =br.readLineO;

if (s[O].equals("chester.cs.okstate.edu") &&
s[1].equals("z.cs.okstate.edull» {
fileName[O] ="Default4C.data";
fileName[1] = "Default4Z.data";

}

if (s[O].equals("z.cs.okstate.edu") &&
s[1].equals("chester.cs.okstate.edu"» {
fileName[O] = "Default4Z.data";
fileName[1]' ="Default4C.data";

}
} catch (IOException e) {

System.err.println(e);
}

}

if (hf.state[O] == 1 && hf.state[1] == 1 && hf.state[2] == 1) {
try {

FileReader fr =new FileReader("vns.data");
BufferedReader br = new BufferedReader(fr);
String s[] = new String[3];

br. readLineO;
5[0] = br.readLineO;
s[1] =br.readLineO;
s[2] = br.readLineO;

if (5[0].equaIs("esJabsvr.ws lab.okstate.edu"» {
if (s[1].equals("chester.cs.okstate.edu") &&

s[2].equals("z.cs.okstate.edu"» {
fileName[O} ="Default4E.data";
fileName[1] ="Default4C.data";
fileName[2] = "Default4Z.data";

74

}

}

if (s[1].equals("z.cs.okstate.edu") &&
s[2] .equals("chester.cs. okstate.edu"» {
fileName[O] ="DefauU4E.data";
fileName[1] = "Default4Z.data";
fileName[2] ="Default4C.data";

}
}

if (s[O].equals(lchester.cs.okstate.edu")) {
if (s[1).equals("eslabsvLwslab.okstate.edu") &&

s[2].equals("z.cs.okstate.edu"» {
fileName[O] = "Default4C.data";
fileName[1] = "Default4E.data";
fileName[2] = "Default4Z.data";

}

if (s[1].equals("z.cs.okstate.edu") &&
s[2].equals("eslabsvLwslab.okstate.edu"» {
fileName[O) = "Default4C.data";
fileName[1]' ="Default4Z.data";
fileName[2] = "Default4E.data";

}
}

if (s[O).equals("z.cs.okstate.edu"» {
if (s[1].equals("eslabsvLwslab.okstate.edu") &&

s[2] .equals("chester. cs. okstate.edu"» {
fileName[O] = "Default4Z.data";
fileName[1] = "Default4E.data";
fileName[2] = "Default4C.data";

}

if (s[1].equals("chester.cs.okstate.edu") &&
s[2] .equals("eslabsvr.wslab.okstate. edu"» {
fileName[O] = "Default4Z.data";
fileName[1] ="Default4C.data";
fileName[2] = "De.fault4E.data";

}
}

} catch (IOException e) {
System.err.println(e);

}

75

try {
FileReader fr = new FileReader(lvns.data");
BufferedReader br = new BufferedReader(fr);
String s;

br.readLineO;

for (int i = 0; i < machineNumber; i++) {
commands = "mftp" + II II + machineNames[i] +" II + fileName[i];
Process pc = Runtime.getRuntimeO.exec(commands);
pc.waitForO;

s = br.readLineO;
}
fr.c1oseO;

} catch (IOException e) {
System.err.println(e);

} catch (InterruptedException e) {
System.out.println("");

}
}

private static void sendData(String machineNames, String fileName,
String desFilename) {

String commands = null;

try {
commands = "ftpdata" + II II + machineNames + "" + fileName

+ II II + desFilename;
Process pc = Runtime.getRuntimeO.exec(commands);
pc.waitForO;

} catch (IOException e) {
System.err.println(e);

} catch (InterruptedException e) {
System.out.println("11);

}
}

public static void executeFilesO {
try {

FileReader fr = new FileReader("vns.data");
BufferedReader br = new BufferedReader(fr);
String s;

76

br.readLineO;

for (int i =0; i < machineNumber; i++) {
String host = machineNames[i];
String msg = "/home/hseong»";
String msgZ = "Izlhseong»";
String msgMore = "/home/hseong/java/DDAS»";
String msgMoreZ ="lzlhseong/javalDDAS»";
String command = "nohup java Manager\r";
String runMsg = "»> Running DDAS System";

s =br.readLineO;

int hostN = 0;

if (host.equals("z.cs.okstate.edu"»)
hostN = 1;

switch(hostN) {
case 0:

ExecuteFile efO = new ExecuteFile(host, msg, command,
msgMore, runMsg);

break;
case 1:

ExecuteFile ef1 =new ExecuteFile(host, msgZ, command,
msgMoreZ, runMsg);

break;
default:

break;
}

}
fr.closeO;

} catch (IOException e) {
System.err.println(e);

}
}

public static void deleteAIIFilesO {
try {

FileReader fr =new FileReader("vns.data");
BufferedReader br = new BufferedReader(fr);
String s;

br. readLineO;

77

for (int i = 0; i < machineNumber; i++) {
String host =machineNames[i);
String msg = "/home/hseong»";
String msgZ = "Izlhseong»";
String msgMore = I/home/hseong/java/DDAS»";
String msgMoreZ =Ilzlhseong/java/DDAS»";
String command = "rm -r *\r";
String runMsg = "»> Running DDAS System";

s = br.readLineO;

int hostN = 0;

if (host.equals("z.cs.okstate.edu"»
hostN =1;

switch(hostN) {
case 1:

DeleteFile dfO = new DeleteFile{host, msgZ, command,
msgMoreZ);

break;
default:

DeleteFile df1 = new DeleteFile(host, msg, command, msgMore);
break;

}
}
fr.c1oseO;

} catch (IOException e) {
System.err.println{e);

}
}

static void displayErrorMessage (int errNumber) {
switch (errNumber) {
case 0:

System.out.println("Your input arguments are wrong. Try again!");
break;

case 1:
System.out.println(" ");
break;

case 2:
System.out.println ("Set arguments are wrong. Try again");
brea,k;

78

}
}

default:
break;

}

79

/******************************'***/
/* */
/* MakeDefaultTwo.java */
/* ~

/* Functions: */
/* 1. This program is for using two remote hosts. */
/* 2. After reading "vns.data" file, this program makes default files */
/* for selected remotes hosts. */
/* 3. This program makes two default files. */
/* ~

/**/

import java.io.*;

public class MakeDefaultTwo {

public static void makedefaulttwoO {
String machineTemp(J = new String[2];

try {
FileReader fr = new FileReader("vns.data");
BufferedReader br = new BufferedReader(fr);

br.readLineO;
machineTemp[O] =br.readLineO;
machineTemp[1] = br.readLineO;

} catch (IOException e) {
System.err.println(e);

}

try {
if (machineTemp[O].equals("eslabsvr.wslab.okstate,edu"» {

FileWriter ee = new FileWriter("Default4E.data");
ee.write("machines:" + "\n");
ee.write("a.cs.okstate.edu" + "\n");
ee,write(machineTemp[O] + "\n");
ee.write(machineTemp[1] + "\n");
ee.write("userid:" + "\n");
ee.write("******" + "\n");
ee.write("password:" + "\n");
ee.write("********");
ee.f1ushO;
ee.closeO;

80

if (machineTemp[1].equals(lchester.cs.okstate.edu"» {
FileWriter c = new FileWriter("Default4C.data");
c.write("machines:" + "\n");
c.write(machineTemp[O] + "\ntl

);

c.write(machineTemp[1] + ''\n");
c.write("final" + "\n");
c.write("userid:" + "\n");
c.write("******1t + "\nlt

);

c.write("password:" + It\nlt
);

c.write("********It);
c.f1ushO;
c.closeO;

}

else if (machineTemp[1].equals(lz.cs.okstate.edu"» {
FileWriter z:: new FileWriter(ItDefault4Z.data");
z.write("machines:" + "\nlt

);

z.write(machineTemp[O] + "\n");
z.write(machineTemp[1] + "\n");
z.write("final" + It\n");
z.write("userid:" + "\n");
z.write("******" + "\n");
z.write("password:" + "\n");
z.write("********");
z.flushO;
z.c1oseO;

}
}

if (machineTemp[O].equals("chester.cs.okstate.edu"» {
FileWriter c:: new FileWriter("Default4C.data");
c.write("machines:" + "\n");
c.write("a.cs.okstate.edu" + "\n");
c.write(machineTemp[O] + "\n");
c.write(machineTemp[1] + "\n");
c.write("userid:t1 + "\n");
c.write("******" + "\n");
c.write("password:t1 + t1\ntl

);

c. write("********");
c.flush();
c.c1ose();

if (machineTemp[1].equals("eslabsvr.wslab.okstate.edutl» {
FileWriter ee :: new FileWriter("Default4E.data");
ee.write("machines: t1 + "\n");
ee.write(machineTemp[O] + "\n");

81

ee.write(machineTemp[1] + ''\n'');
ee.write("final" + "\n");
ee.write("userid:" + "\n");
ee.write("******11 + ''\n'');
ee.write("password:" + "\n");
ee.write("********");
ee.flush();
ee.c1oseO;

}

else if (machineTemp[1].equals("z.cs.okstate.edu"» {
FileWriter z =new FileWriter("Default4Z.data");
z.write("machines:" + ''\n'');
z.write(machineTemp[O] + "\n");
z.write(machineTemp[1] + "\n");
z.write("final" + "\n");
z.write("userid:" + "\n");
z.write("******" + "\n");
z.write("password:" + "\n");
z.write("********11);
z.flushO;
z.c1ose();

}
}

if (machineTemp[O].equals(lz.cs.okstate.edu"» {
FileWriter z = new FileWriter("Default4Z.data");
z.write("machines:" + "\n");
z.write("a.cs.okstate.edu" + "\n");
z.write(machineTemp[O] + "\n");
z.write(machineTemp[1] + "\n");
z.write("userid:" + "\n");
z.write("******" + "\n");
z.write("password:" + "\n");
z.write("********");
z.flushO;
z.c1ose();

if (machineTemp[1].equals("eslabsvr.wslab.okstate.edu"» {
FileWriter ee = new FileWriter("Default4E.data");
ee.write("machines:" + "\n");
ee.write(machineTemp[O] + "\n");
ee.write(machineTemp[1] + "\n");
ee.write("final" + "\n");
ee.write("userid:" + "\n");
ee.write("******" + "\n");

82

}
}

ee.write("password:" + "\n");
ee.write("********");
ee.f1ushO;
ee.closeO;

}

else if (machineTemp[1].equals("chester.cs.okstate.edu"» {
FileWriter c = new FileWriter("Default4C.data");
c.write("machines:" + "\n");
c.write(machineTemp[O] + "\n");
c.write(machineTemp[1] + "\n");
c.write("final" + "\n");
c.write("userid:" + ''\n'');
c.write("******" + "\n");
c.write("password:" + "\n");
c.write("********");
c.flushO;
c.cIoseO;

}
}

} catch (IOException e) {
System.err.println(e);

}

83

/**/

/* */
/* App.java */
r ~

/* Functions: */
/* 1. This program is for an application algorithm. */
/* 2. A quicksort algorithm is used as an application algorithm. */
/* 3. Steps: */
/* 3.1 Execute the quicksort algorithm */
1* 3.2 Divide input into two data files */
/* 3.3 Send the data file to the next node */
/* 3.4 A distributed computation job is complete */
/* Initial data: input.dat */
/* Sorted data: result.dat */
/* */
/**/

import java.io. *;
import java.uti!.*;

class App extends DDAS {
static final int MAX_MACHINE = 100;
static final int ENROLLED_CMD_NO = 11;
static final int MAX_ARGS =5;

static String[] machineNames = new String[MAX_MACHINE];

static String userlD = null;
static String passWord =null;

static String inputCommand = null;
static int machineNumber =0; /I available machine counts
static StringTokenizer st;

private static boolean debug = true;

static Manager ddas =new ManagerO;

static String[] arguments = new String[3];

public static void main(String[] strg) throws Exception {
ddas.initiaISystemO;

84

}

String sendMessage =null;

arguments[O] = "establish";
ddas.commandService(3, arg:uments, 1);

arguments[O] ="execute";
ddas.commandService(4, arguments, 1);

}

static void messageCommunicationO {
Server = "a.cs.okstate.edu";

connectSocketO;
while (nextFlag == 1)

pause(PAUSE);

openSocketO;
while(nextFlag == 0)

pause(PAUSE);
}

static void messageCommunication(String machine) {
Server =machine;

connectSocketO;
while(nextFlag == 1)

pause(PAUSE);

openSocketO;
while(nextFlag == 0)

pause(PAUSE);
}

static void makeSendMessage(String sendMessage) {
msgSend = sendMessage;

}

85

APPENDIX B

SYSTEM LOAD INFORMATION

86

load averages: 1.50, 1.59, 1.56 14:17:37

542 processes: 529 sleeping, 4 zombie, 7 stopped, 2 on cpu

CPU states: 44.0% idle, 34.0% user, 21.6% kernel, 0.4% iowait, 0.0% swap

Memory: 512M real, 20M free, 396M swap in use, 3092M swap free

prD USERNAME THR PRI NICE SIZE RES STATE TIME CPU COMMAND

26646 wdongch 1 10 0 23M 4400K cpu6 99:02 46.58% .netscape.bin

5054 bhat 1 58 0 24M 12M sleep 5:41 2.26% .netscape. bin

16219 fujino 1 21 o6376K 5448K sleep 0:03 1.19% gs

5820 hseong 1 58 o7096K 5184K sleep 0:13 1.15% dtterm

16200 zxiaozo 1 58 o6832K 5168K sleep 0:01 0.46% emacs-203

16472 hseong 1 18 o1904K 1160K cpu7 0:00 0.31% top

16195 fujino 1 58 o4664K 4016K sleep 0:00 0.15% xdvi.bin

16380 reubinl 1 58 o6760K 5016K sleep 0:00 0.15% emacs-20.3

16384 wanq 1 58 o1416K 1072K sleep 0:00 0.13% csh

11165 cherukr 1 58 o6624K 5616K sleep 0:01 0.12% dtpad

5545 wdongch 1 58 o6864K 5888K sleep 0:22 0.10% dtpad

16220 samad 1 58 o1832K 1296K sleep 0:00 0.06% vi

10233 cherukr 8 58 o9488K 8096K sleep 0:04 0.05% dtwm

5834 hseong 1 48 o2576K 2024K sleep 0:01 0.05% tcsh

14506 cs3423 1 59 o6992K 5304K sleep 0:00 0.03% dtterm

16470 cs3423 1 58 o1832K 1288K sleep 0:00 0.03% vi

5536 wdongch 8 58 o8472K 6544K sleep 003 0.03% dtwm

3981 root 1 49 o1744K 568K sleep 0:10 0.02% rpc.rstatd

11904 cs2113a 1 59 o7000K 5424K sleep 0:02 0.02% dtterm

29388 sherryr 1 48 o1768K 1192K sleep 0:00 0.02% ksh

226 root 1 58 o2056K 640K sleep 1:09 0.01% inetd

16079 fujino 1 58 o7224K 6176K sleep 0:01 0.01% emacs-20.3

5052 bhat 1 59 o6696K 4824K sleep 0:01 0.01% sdtperfmeter

12127 xiaohon 1 48 o1760K 1272K sleep 0:00 0.01% ksh

16276 trotman 1 48 o1760K 1272K sleep 0:00 0.01% ksh

525 root 1 58 o1000K 464K sleep 1:01 0.01% utmpd

5584 wdongch 1 58 o6760K 4816K sleep 0:01 0,01% dtterm

13103 elockha 1 17 14 3256K 1976K sleep 0:00 0.01% xlock

16381 root 1 38 o1752K 1352K sleep 0:00 0.01% in.telnetd

16361 cassk 1 56 o1832K 1288K sleep 0:00 0.01% vi

87

10047 stolhan 1 58 o1832K 1288K sleep 0:00 0.01% vi

15201 Izhilan 1 59 o6696K 5184K sleep 0:00 0.01% sdtperfmeter

1 root 1 58 o 752K 184K sleep 1:37 0.01% init

772 root 1 58 o2072K 952K sleep 0:47 0.01% nmbd

11898 cs2113a 8 58 o8488K 7296K sleep 0:03 0.01% dtwm

11922 cs2113a 1 58 o1760K 1272K sleep 0:00 0.01% ksh

16454 trotman 1 58 o1368K 1128K sleep 0:00 0.01% pica

14488 cs3423 1 59 o6696K 5184K sleep 0:00 0.01% sdtperfmeter

16308 cassk 1 45 o1760K 1272K sleep 0:00 0.00% ksh

11908 cs2113a 1 58 o6696K 5120K sleep 0:00 0.00% sdtperfmeter

16141 gunawan 1 58 o4632K 3352K sleep 0:00 0.00% pine

15545 wangk 1 58 o1760K 1272K sleep 0:00 0.00% ksh

777 root 1 58 o9240K 6360K sleep 5:40 0.00% xfs

775 root 1 0 o1848K 816K sleep 3:02 0.00% sshd1

281 root 10 53 o4464K 3304K sleep 2:25 0.00% nscd

253 root 17 58 a3424K 1584K sleep 1:25 0.00% sysiogd

514 zxing 1 59 0 28M 2008K sleep 1:13 0.00% .netscape.bin

243 root 5 59 o4696K 992K sleep 0:56 0.00% automountd

598 root 1 58 o4768K 2344K sleep 0:40 0.00% dtlogin

23393 root 4 59 o1904K 592K sleep 0:34 0.00% in.rarpd

PID: The process 10

USERNAME: The name of the process's owner

PRI: The current priority of the process

NICE: The nice amount (in the range -20 to 20)

SIZE: The total size of the process (text, data and stack)

RES: The current amount of resident memory

STATE: The current state (one of sleep, wait, run, idl, zomb or stop)

TIME: The number of system and user CPU seconds that the process has used

CPU: The raw percentage

COMMAND: The name of the command that the process is currently running

88

APPENDIX C

ABBREVIATIONS AND ACRONYMS

IN ALPHABETICAL ORDER

89

ARA

CCID

CORBA

DCE

DDAS

EDDAS

FTP

GUI

IDl

IEEE

1I0P

IP

JVM

OMG

ORB

OSF

RPC

TCl

TCP

ABBREVIATIONS AND ACRONYMS

Agents for Remote Access

Consultative Committee on International Telephone and Telegraph

Common Object Request Broker Adapter (OMG)

Distributed Computing Environment (The Open Group)

Dynamic Distributed Agents Server

Enhanced Dynamic Distributed Agents Server

File Transfer Protocol

Graphical User Interface

Interface Definition language

Institute of Electrical and Electronic Engineers

Internet Inter-ORB Protocol

Internet Protocol

Java Virtual Machine

Object Management Group

Object Request Broker

Open Software Foundation, now The Open Group

Remote Procedure Call

Tool Command language

Transmission Control Protocol

90

VITA

Seong Seol Hong

Candidate for the Degree of

Master of Science

Thesis: A GRAPHICAL USER INTERFACE TO MONITOR AND MANAGE THE
DDAS SYSTEM PERFORMANCE

Major Field: Computer Science

Biographical:

Personal Data: Born in Jinhae, Korea, On July 16, 1969, the son of Ke
Pyo and Eul-Soon Jung Hong.

Education: Graduated from Chunchon High School, Chunchon, Korea in
February 1988; received Bachelor of Science degree in Computer
Science from Hallym University, Chunchon, Korea in February
1994; received Master of Engineering degree in Computer Science
from Soongsil University, Seoul, Korea in February 1996.
Completed the requirements for the Master of Science degree with
a major in Computer Science at Oklahoma State University,
Stillwater, Oklahoma in December 1999.

Experience: Employed by Soongsil University, Department of Computer
Science as an undergraduate teaching assistant; Soongsil
University, Department of Computer Science, May 1995 to
December 1995.

,_.

