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P(r,t)

Ey(r,t)

G (>0)

NOMENCLATURE

Erbium Doped Fiber Amplifiers

pulse energy per unit area

light intesity

saturation energy

population intensity in the energy state 1

population intensity in the energy state 2

group velocity

unsaturable constant loss through the amplifier

emission (absorption) cross section

the saturable absorber/amplifier length

the small signal gain

the small signal gain exp[-y01 g ]

the coupling constant

the total medium polarization

the electric field in the perturbed waveguide

the mth mode amplitude

the amplitude gain (of the mth mode) per unit length
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L (>0)

fJ

P

Q

the amplitude los (of the mth mode) per unit length

propagation constant

polarization.

the transition frequency.

the transverse, dipole-dipole, or spin-spin relaxation time.

the longitudinal, spin-lattice, ar dipole-lattice relaxation time

N 1 - N 2 == N population inversion (difference between state 1 and state 2 in a two-level a

atomic system)

!J.12 total dipole moment

(N I - N 2)" the equilibrium population inversion.

1] damping coefficient so that in the absence of polarization the energy of the

plane wave, which proportional to 1£1 2
, decays as exp[-1]z] for propagation

in the Z direction

saturation intensity

1501 (G)

I SDI(L)

k

G<

saturation intensity of the amplifying waveguide

saturation intensity of the lossy waveguide

the Lorentzian line-shape factor

the characteristic linewidth for the Lorentzian line

the propagation constant

equilibrium value of the gain (the perturbing electric field is absent)

equilibrium value of the loss (the perturbing electric field is absent)

gain per unit length
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nonnalized loss per unit length
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nonnalized gain per unit length

nonnalized equilibrium value of the loss
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Chapter 1

L

INTRODUCTION

Recent developments and research in the field of integrated optics ha expanded because

of the need of such devices in the vast and rapidly growing use of optical fiber in

telecommunications systems. High data rates (>1 Gb/s) and the expenses of electronic

processing at these speeds are motivating the development of all-optical components (such

as switches, modulators, demodulators, amplifiers, and regenerators). Consider for example

the use of Erbium Doped Fiber Amplifiers (EDFAs) in long distance transmission systems.

1.1 Erbium Doped Fiber Amplifiers (EDFAs)

These all-optical amplifiers eliminate the cost of performing optical to electronic to

optical conversions and the cost and reliability drawbacks of electronic amplifiers. ince an

EDFA provides gain at 1.55 J.tm by creating a population inversion via an optical pwnp at

980 urn, the supply of power to these amplifiers has advantages over their electronic counter

parts. This feature makes EDFAs indispensable for transoceanic fiber .links as well as co t

effective for land based systems [1].

The noise performance is found to be virtually quantum-limited and this permits

hundreds of amplifiers to be cascaded without significant degradation. The interactions of

fiber nonlinear effects of Self-Phase Modulation (SPM) and Four-Wave Mixing (FWM) with

signal and Amplified Spontaneous Emission (ASE) noise will render ultra-long-distance

transmission (> 100 Km) of non-return to zero (NRZ) signals very difficult at data rates



higher than 10 Gb/s. An EDF can upp!It many wav di' ion multipl . g M)

channels and the total capacity is limited by the nonlin ar effec .in.. the ttan mis . n fiber

[1].

Currently deployed systems utilize up to 40 different wavelengths, and 100 wavelength

systems are being planned [2]. Capacities of systems utilizing EDFAs vary but it is not

uncommon for these to carry 24 OC-48 signals (yielding a total capacity of 59.7 Gb/s).

1.2 Regenerators

A significant advantage for usmg all-optical transmission is that digital signals lend

themselves to periodic conditioning and reshaping. Thus each repeater can be u ed to

regenerate the pulse waveforms at each sample time. TIlls type of repeater is called a

regenerative repeater.

A regenerator is different than an amplifier since it can actually remove noise and/or

distortion from a signal by using a nonlinear decision element or "slicer". The signal i

"sliced" by setting a threshold: anything above thi threshold is decided to be a one; anything

below it is decided to be a zero. The regenerated signal that is output is then clamped to be

exactly the amplitude chosen for a one (or zero) for regions where the input signal was

decided to be a one (or zero). Thus regenerators can remove the effects of dispersion in

fiber systems (if spaced closely enough) whereas EDFAs, being merely amplifiers, can not.

Removing dispersion can either increase capacity at fixed length or increase lengths at fixed

capacity.

The choice between regenerators or amplifiers is a key technological issue that motivates

network architectures and possible services [3]. Presently, to regenerate an optical sigrul one

2



must go through the very expensive proc s of: optical to electronic conversion; fanning out

the high capacity signal to many lower data rate el ctroruc signal; then recombining the e

regenerated signals into the high capacity optical ignal. To produce an all-optical regenerator

is recognized as a key step towards all-optical networking [4].

3



Chapter 2

SATURABLE AMPLIFIERS/ABSORBERS

The saturable amplifier/absorber is a non-linear material that is amplifying/attenuating

when the light propagating through it has a low intensity, and highly transparent when the

light has a high intensity.

Verdeyen [5] has discussed the pulse propagation in saturable amplifiers and absorbers.

This discussion is important here since our device couples a gain medium to an attenuating

one and both media may exhibit saturation. This coupling is performed to help us balance

the gain and loss at some value. Verdeyen's discussion is presented in this chapter to give us

an idea how these saturable amplifiers/absorbers affect the pulses propagating through

them.

Verdeyen has discussed short duration pulses (its time duration is much less than any

characteristic time scales in the atomic system interacting with the pulse). These pulses carry

energy per unit area of w(t) Goules/area).

The intensity will change because of variations in time, space, and the inversion, which is

also a function of (z', t')

aI I (JI ", , , ,
-,+--,=!ili(z ,t )uI(z ,t )-aoI(z ,t ),oz V g at

t' == time kept by a universal clock,

!ili (t') =N'2 (t') - N] (t'),

N 2 == population intensity in the energy state 2,

(2.1)



N, == population intensity in the energy state 1,

v g == group velocity.

ao == unsaturable constant loss through the amplifier,

u == emission (absorption) cross section.

Using the transformation z =z', t = t ' - z / V g to measure time after the arrival of the

leading edge of the pulse, equation (2.1) becomes

oJ
- = [N 2 (z, t) - Nt (z. t)]0"1(z. t) -ao/(z, t).oz

N =N 2 +N I does not change with time and assumed to be independent of z .

or

I

w(t) = JJ(z,t/)dt' .

From Eq(2.4) we get

1(z,t) =w(z,t).

liz , () th· h \INonna mg w Z, t to e saturation energy ws =- ,we get
2u

( )
_ w(z.t)

u 2,t - .
Ws

Substituting equations (2.5) and (2.6) in equation (2.3) we get

oN2 • N .
--+uN =-u.ot 2 2

5
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(2.3b)

(2.4)

(2.5)

(2.6)

(2.7)



The solution. for equation (2.7) is

N
N 1 (Z,t) = -+ K exp[-U(Z, t)],

- 2
(2.8)

where K is the constant of integration evaluated by the initial conditions (before the arrival

of the pulse) the energy and the popuhtion inversion. At t =-00 the energy is zero,

N z =N~, and N 1 =N,o ,where N~ +N~ =N is a constant. Using these initial conditions,

th .. K!!.N°· () b .e mtegration constant =--, equation 2.8 can e wntten as
2

N 2 (t) - N) (t) = !!.N(t) = !!.NO exp[-u(t)] . (2.9)

Multiplying (2.9) by the gain cross section, substituting it into (2.2), and dividing by the

saturation energy, we get

i-u(z, t) = You(z, t) exp[-u(z, t)] -aou(z, t),at (2.10)

where yo =!!.No (J is the small signal gain coefficient (at t =-00). Integrating equation

(2.10) with respect to time we get

a
-u(z,t) =Yo[l-exp[-u(z,t»).at

where we assumed that the unsaturable loss ao is zero for simplicity.

(2.11)

Figure (2.1) shows a saturable amplifier/absorber with length Lg• Integrating equation

(2.11) with respect to the distance z between the input plane (1) and the output plane (2), as

shown in figure (2.1), we get

6



where Go == the small signal gain expf-rolg]. The solution of th > -abo int aI, aft r

some rearrangements, is

exp[u 2 (t)] =1+Go (exp[u l (t)] -1) . (2.12)

Differentiating (2.12) with respect to the local time, multiplying both sides by W s and then

using (2.12) for exp[u 2 (t)] gives

which gives the output intensity in terms of the input intensity as follows

. 1
2
(t) = I) (t) Go exp[u J (t)]

I+Go [exp[u\ (t)] -1]

In case of saturable amplifier Go >1 and in case of saturable absorber Go <1.

Let the input intensity at plane 1 in Figure (2.1) be given by

(2.13)

W o . 2 111
II (t) =-sm (-)

T 2T
O<t<2T

where Wois the total energy in the pulse. Figure (2.2) shows the output /2 (t) divided by the

peak input intensity (wo I T) for various values of wo / W s for Go = 4 (i.e., 6d.B) and for a

6d.B attenuater. As seen from Figure (2.2) in the case of small values of wo / ws ' the output

is amplified/attenuated by a factor of 4. For Wo / ws equals to - 1 to 2, the puis shape is

quite distorted. In the case of saturable amplifier the leading edge is affect completely by the

gain but the output will saturate the amplifier and the trailing edge will face less amplification

and thus the "risetime" of the pulse is shortened. Decreasing amplification/absorption with

increasing intensity is called bleaching. For the case of saturable absorber the output

bleaches the absorption and the trailing edge of the pulse is sharpened since it is less affected

7



by the attenuation than the leading edge. These differences between an amplifier and

absorber play the basic role in our device.

Plane 1 Plane 2

Output

Peak input

. ,
I I
I I
I I1'91- r'/)

z=O z=1
8

FIGURE 2.1: Saturable absorber/amplifier medium.

0.5 1

tIT
l.~

FIGURE 2.2: The relative transmission through a saturable amplifier/absorber.



Chapter}

THE FORMULATION

OF THE MATHEMATICAL MODEL

Our device consists of two evanescently coupled optical waveguide . One of th e

waveguides is lossy and the other is amplifying. In this section the equations that govern the

behavior of light signals traveling through this device are derived. These equations are

derived in the semiclassical manner. This semiclassical treatment does not use quantum

theory to describe the radiation field but instead treats the electromagnetic field as clas ical

force acting on the atomic system providing the gain (attenuation) mechanism. This

approximation yields highly accurate results when applied to standard (coherent state) laser

light fields at frequencies within the visible light specttum and is valid for actu.al devie

intensities capable of saturating a nonlinear medium [6].

In section 3.1 a time dependent coupled mode theory is developed. Two equations that

describe the transient behavior of the mode amplitudes of waves traveling through a two

coupled single-mode slab dielectric waveguides are derived. In section 3.2 the interaction of

electromagnetic energy with atoms is described and two rate equations for both waveguides

are derived. Then a dimensionless form of the four dynamic equations is deftned.

9



3.1 Coupled Mode Theory in Space and Time

Pierce et aL [7] introduced the original work of coupling of modes. nergy coupling

between parallel channels has been discussed extensively in the past [8J and reformulated

lately by several groups under the title of "improved coupling mode theory" [9J-[12]. The

coupled mode theory for optical waveguides was developed by Marcuse [13J, Synder

[14][15], Yariv and Taylor [16J. Many other papers have also been published: discussing

different applications to the coupled mode theory in all optical and in optoelectronic devices

such as optical directional couplers; TE/TM polarization converters; optical filters;

modulators; multiplexers; demultiplexers; etc. Many of these applications are well

documented and summarized in [1.7].

Coupled mode theory is approximate, with approximations that are not always self-

evident [18]. In 1958, H. A. Haus showed that the coupled mode theory is derivable from a

variational expression for the propagation constant [19].

Here Yariv's fonnalism [20J that describes exchange of power between modes is used. In

his development, Yariv assumed that the mode amplitudes are time invariant. ince we study

the transient behavior of coupled waveguides, Yariv's fonnulation needs to be extended to

consider time and space variant mode amplitudes.

Starting with the wave equation

where per, t) is the total medium polarization and can be taken as the sum

per, t) = Po (r, t) + Ppm (r, t)

and

10
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Po (r, t) =[t:(r) - Co lE(r, t) (3.3)

is the polarization induced by ECr, t) in the ll11perturbed waveguide whose dielectric constant

is c(r). Ppm (r, t) is th.en defined by (3.2) and represents any deviation of the polarization

from that of the unperturbed waveguide due to the external force, the bianisotropy of the

medium, corrugations in the waveguide surface, or whatever else might be causing the

deviation between P and Po' Systems in which polarization of this more general form

occurs may be analyzed in terms of coupled modes.

Using (3.2) and (3.3) in (3.1) gives

(3.4)

and similar expressions for Ex and Ez.

Ignoring the possibility of coupling to the continuum of radiation modes, the electric

field in the "perturbed" waveguide may be expanded as a superposition of confined modes.

For example, considering only plane waves that travel in the + Z direction,

(3.5)

where the mode amplitudes Am are allowed to vary with z. To determine the transient

behavior of the mode amplitudes due to the turning on or off, or temporal variation of the

perturbation, one must allow for the time dependence of the mode amplitudes, thus

E, (T, t) ~ ~ Re{~ A", (z,t)E:
rnl

(x) exp[i(ax - ,ernZ)]}. (3.6)

Assuming "slowly" varying envelope (the mode amplitudes vary only slightly over a distance

of an optical wavelength and within a time interval of an optical period) so that

11



and

equation (3.6) can be written as

Since the modes E;n1) are orthogonal, we have

Multiplying (3.7) by £;') and integrating from _oc to oc. The result, using (3.8), is

aA aA' ae. {- f_"' + Wf..l£ _m =_1 Ie? (- t)] Elm) ( )dxaZ f3m at 2w dt 2 __ Pm r, y y X .

(3.7)

(3.8)

(3.9)

The term on the right hand side of the above equation is a source term, i.e., it represents

energy that is either imparted to or taken from the energy of the mth mode due to the

presence of the perturbation.

Two cases important to our proposed device are discussed here to analyze the source

tenn. First, consider the case of a single isotropic waveguide. Suppose a perturbation is

induced in the form of an external pump to achieve a population inversion that causes light

wave amplification. In the steady state the mode amplitudes are assumed not to vary in time

and (3.9) can be written as:

12



aAm _ i a2 {f- - - (m) }-a---2 • [PPe,,(r,t)]yE y (x)dx .z 2wat _ (3.10)

Neglecting gain saturation, equation (3.10) can be written as dAm =GAm' where the
dz

source term takes the form GAm' and G (>0) is the amplitude gain (of the mth mode) per

unit length. Similarly if the medium had nonsaturating losses, then the following equation

d.A
would hold _m_ = LAm' where L (>0) is the loss per unit length.

dz

In case of saturable amplifier/absorber medium the above equations would still hold

except that G and L would become functions of z. To solve for the mode amplitude we

need to combine the above mode equations with the steady state rate equations that describe

the medium saturation effects.

The second case is the uniform structure that consists of two adjacent waveguides.

We will consider the case where the waveguides are adjacent to each other closely enough

that the evanescent fieJds from each waveguide extend slightly into the other wa eguide. The

energy of this evanescent field can be considered as an external source term that perturbs or

couples energy to the propagating modes of the waveguide that it has penetrated into. The

energy that is added or subtracted is proportional to the perturbing evanescent field that is

proportional to the mode amplitude of the other waveguide.

Consider two waves (each travels in one of the waveguide), with the unplicit time

dependence ex.p[- j,B. t] that, uncoupled, have the spatial dependences exp[- j,8. z] and

ex.p[- j,82 z], respectively. Considering a uniform structure, the propagation constants of the

waves, 13\ and ,82' must be of same sign and approximately equal, if the waves are to affect

each other [18].

13



We will consider the case when the p; 0 modes are phase matched. For the uniform

structures, the phase matching requires that /3, =/32" Under phase matching. th c upled

mode equations assume the simpler form;

~ =-KA
dz J'

(3.11a)

(3.11b)

where Al and A2 are the amplitudes of the single modes of propagation (one for each of

the two waveguides) and K is the coupling constant. The selection of the sign of the source

terms in (3.11) is arbitrary as long as one is positive and the other is negative, as may be

proved by power conservation arguments for modes traveling in the same direction, or from

evaluating the time derivatives of the polarization integral [6].

For two closely adjacent single mode waveguides, one of which is amplifying and the

other is lossy (not described by E) the dynamic behavior is governed by

a~ I a~
-+---=-~-1C4az v

g
at l'

(3.12)

(3.13)

where the unperturbed speed of propagation V g = L is assumed the sam for the two
mp,e

waveguides. The time dependence of the mode amplitudes allows the source terms be time

dependent also which makes L =L(z,t) and G = G(z,t).

14



3.2 Gain and Loss Saturation Rate Equations

To analyze saturation of both the loss and the gain media the semi.calssical apptoach is

used. In this apptoach, the field remains classical, but atom is quantized. The

interconnection between media and fields is provided by the electric dipole interaction.

The interaction that takes place between a classical electromagnetic fidd and a quantized

medium by means of the dectric dipole transition can be described by a set of coupled

nonlinear differential equations which as derived in [21] are:

and

_ _ _ n TJ dE n 2 d 2 E d2 P
Vx(VxE)+--+---=-Ji -

c dt c 2 at 2 0 dt 2 '

where

P == polarization.

Q == the transition frequency.

T2 == the transverse, dipole-dipole, or spin-spin relaxation time.

T) == the longitudinal, spin-lattice, or dipole-lattice relaxation time.

(3.14)

(3.15)

(3.16)

N] - N 2 == N == population inversion (difference between state 1 and state 2 in a two-level

atomic system).

Jil2 == total dipole moment.

is



(N I - N 2 Y == the equilibrium population inversion.

J.loO'C
"7 ==-- == damping coefficient so that in the absence of polarization the energy of the

n

plane wave, which proportional to lif, decays as exp[-"7Z] for propagation In th

z direction where (J is the absorption cross section.

To study the saturation we start with

(3.15)

The first term on the left-hand side of (3.15) represents power being delivered to the dipole

system. the second term on the left-hand side represents the net power interchange with the

surrounding medium, and the right-hand side corresponds to the power delivered by the

applied field.

In the absence of an applied field E, the steady-state solution to the population

difference is:

For plane wave propagation in the z direction, we assume a solution to (3.14) of the

form

- 1-
P =- P exp[i(ax - kz)] + C.c.

2

- I-
E =- E exp[i(ax - kz)] +c.c.

2

(3.17a)

(3.17b)

where C.c. denotes the complex conjugate and the tilde (-) indicates a complex amplitude.

Assuming traveling waves of the form (3.17) for P and E and equating the time-

independent components on either side of (3.15), we obtain:

16



(3.18)

where the asterisk denotes the complex conjugate. Since the poLarization can be expressed in

terms of the field as:

equation (3.18) can be written as;

(3.19)

The susceptibility can be eliminated from (3.19) with the aid of

(3.20)

yielding, for the homogeneously broadened Line,

(3.21)

nEoC '-1 2

where I =-2- A is the power per unit area carried by the wave, and

(3.22)

is referred to as the saturation intensity which is the power per unit area that a wave on

resonance must carry in order to reduce the population difference to one-half its unsaturated

value.

g L (OJ, Q) is the Lorentzian Line-shape factor and is given by

(3.23)

17



The characteristic linewidth for the Lorentzian line, !1wL , i given by

2
!1w =

L T
2

(3.24)

where D.WL is the frequency difference between the points on either side of the central

maximum where g L (w, Q) drops to one-half its line-center value and is called the full width

at half maximum (FWHM).

In our case, we assume a resonant (w = Q) traveling wave of the fonn (3.17) incident

on a medium (with loss or gain). We are considering propagating wave solutions that are

steady-state oscillations in time of frequency 0 but are allowed to vary slowly in space and

- -time through the complex amplitudes P(z, t), A(z, t) . The quantity k in (3.17) is the

. k On un
propagation constant, == - == - .

c c

Substituting of (3.17) into (3.14) and (3.15) yields

P(z) = -iT2 M 1,u121
2

NA
11 3

where N == N] -N2 .

(3.25)

(3.26)

. th b . th I l' . 0
2

A k ~~In deriVlllg . e a ove equations e s ow y varytng wave assumption --2« ~oz oZ

alAI ~Aand « OJ has been taken.at 2 ot

Substitution of (3.25) and its conjugate in (3.26) gives
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· . nEOC 1.412 . .Usmg the relanon I =-- "1 th.e above relanon can be watten as
2

(3.27)

where I sal is given by (3.22).

The instantaneous loss seen at the photon-electron interaction site is proportional to the

probability of absorption. Therefore the macroscopic loss is proportional to (N1 - N 2 ).

Similarly the macroscopic gain is proportional to (N2 - N 1). Thus, for the case of a lossy

medium, (3.27) can be written as

TI(L) I sa/(L)

and for a gain medium as

T1(G) I sar(G)

(3.28a)

(3.28b)

The subscripts reflect the fact that the two different waveguide media may be characterized

by different parameters, I sal and T•.

We have derived four partial differential eyuations which model the dynamic re ponse of

our proposed device where we have two coupled single-mode waveguides (one of which

exhibits saturable giin and the other exhibit saturable loss). These equations governs the

dynamic response of the mode amplitudes and are given as

(3.12)
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d~ 1 d~-- +--- =-LA2 -1G41 ,
dz v g dt

dG(Z,t) G(z,t)-G t IAI 1
2
G(z,t)

---+ =
dt TI(G)

(3.13)

(3.28a)

(3.28b)

The above equations can be written in a simplified dimensionles fonn. ssuming that

~(G) =TI(L) =- T I , I sal(G) = I sa/(L) =- 1sal and defining the following set of dimensionless

parameters:

1=LI Lt

y=t/~

10 =Vg~Lt

K =KVg~

a2 =Az 1.JI::
g = GIG t

X =z/(vT.)

go =Vg~Gt

give the following dimensionless fonn of our differential equations

20
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Chapt er 4

Non-Critical Point Clamping in the Steady State

The main objective of this research is to show how Out proposed device clamps the mode

amplitudes to a certain value (if any). Ibis value is determined by the critical points of the

system. In this chapter critical points and the phase plane are defined in general and then

these definition are applied to our coupled eyuations (3.29). Some of the results from [6] are

repeated here.

The critical point analysis and stability criteria for the case of dual saturation (where the

effects of both loss and gain saturation are considered) is considered, as well as that for linear

gain and linear loss. The main conclusion of the discussion in this chapter is that we can

achieve clamping to a fixed value without waiting for convergence to a critical point to

happen (hence "non-criticaJ point clamping").

4.1 The Steady State Equations

The dimensionless parameters (a j ,u2 ,l, g) in the coupled equations of (3.29) (derived

in chapter 3) vary with both time and space. In the steady state these parameters become

. d d f' L all . .. S' dl 0 d dg O' th 1 dill epen ent 0 tlme lOr positIons ill space. ett:1ng - = an - = 'ill e oss an
dy dy

gain saturation equations gives the steady state loss and gain saturation equations:

(4.1a)
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(4.1b)

and the steady state limit of the mode amplitude equations is

(4.2a)

(4.2b)

Substituting (4.1) in (4.2) results in

(4.3a)

(4.3b)

where the "ss" subscript is dropped and it will not be used since the remaining of the

discussion in this chapter will refer to the steady state. Equations (4.3a) and (4.3b) are two

nonlinear autonomous ordinary differential equations that describe the steady state behavior

of our device.

4.2 Critical Point and Stability Analysis

Consider the following general autonomous first order system [22]

dx dy
dt = X(x, Y), dt =Y(x, y) (4.4)

this system is called autonomous since the time variable does not appear in the right-hand

side of (4.4).
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We may represent the solutions X(I), yet) of (4.4) on a plane with Cart . . ax ,y.

When t increases, (x(t), yet»~ points in the plane traces out a dir cted curve call d a phase

path and also can be called as a trajectory. Assuming the following initial conditions of (4.4)

x = X o' Y = Yo at t = to,

by the existence and uniqueness theorem there is one and only solution intersecting thi

point when (xo' Yo) is an "ordinary point".

The solutions of such a system describe trajectories (with t as the parameter) in a 2-

dimensional phase plane which describes the phase paths.

Since y I x= dy / dx on a path, a relevant equation is

dy = Y(x, y)

dx X(x,y)
(4.5)

The solution curves of (4.5) (the phase paths) may meet at two kinds of points. First the

singular points where Y / X has some manifest singularity so that the uniqueness theorem

fails. Second the critical points, of more interest here, where X (x, y) =Y(x, y) =O. These

critical points are also called equilibrium points and fixed points.

The direction to be associated with a trajectory can not be known from equation (4.5),

but equation (4.4) can help us as follows: the signs of X and Y at a point detennine the

direction through the point, and generally the directions at all other points can be settled by

continuity [22]. In equations (4.3a) and (4.3b) independent variable is x and the axes of the

phase plane are at and a2 . Plots for the phase plane of equation (4.3) will be presented

later.

There are four types of trajectory behavior near the critical point, these are:

1. a center, closed paths or cycles trajectories around the critical point;
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2. a saddle point, trajectorie approach the critical point and then go a a from it

3. a spiral point, trajectories spiral towards (stable) or away from (unsmble) the

critical points; or

4. a node, trajectories are asymptotic to straight lines through the critical point

moving toward (stable) or away from (unstable) the critical point.

In practice, physical and other systems are always subject to small, unpredictable

variations. If such variations produce large changes in the operating conditions the system is

probably unstable, and its nonnal operating condition would be described as un table.

Shepard [6] has presented the critical point analysis of the steady state equations for the

following different cases:

a. Dominant Loss Saturation Qinear gain): the saturation of the loss is the dominant

effect, i.e., l.la,([.) «1.101(0) which means that G will change very little with time and

may be assumed to remain at its unperturbed value. For this case, (4.3) becomes

b. Dominant Gain Saturation Qinear loss): the effects of gain saturation are the

dominating phenomenon, i.e., 1.101([.) » I sa/(O)' For this case, (4.3) becomes

c. Dual Saturation: both loss and gain saturation effects are considered.
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In cases (a) and (b), there are only three real critical points (under the condition K 2 < goIo),

whereas in case (c) there are three real and two complex critical points.

Since our interest in this thesis is the Dual Saturation case, an extended discussion of it

will be presented Later in this chapter. One important result of this discussion i how to

avoid the complex critical points in the dual saturation.

For the second order system, linearized near the critical point, the linearized soLutions

are of the form

where AI' BI ' A2 , B2 are constants determined by the initial condition and A(, A2 are the

eigenvalues which determine the type of the system behavior near the critical point

(depending on the i o ' go' K parameters). If A( and A2 are real and positive, then the

critical point is an unstable node; if A) and A2 are real and negative, then the critical point is

a stable node; and if both are real but one is negative and the other is positive, then the

critical point is a saddle point. If A.) and A.2 are complex and the real part is negative, then

the critical point is a stable spiral point; if the real part is positive, then the critical point is an

unstable spiral; and if the real part is zero, then the critical point is a center.

In general, the critical points for the cases mentioned above is as follows:

Case (a):

Case (b):

[

l ]1/2
where ac = g;2°-1
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As seen from Q" it is needed that K 2 < golo in order to have the two real non-origin

(hereafter referred to as "off-center") critical points, otherwise we will only have one critical

point, the origin. In case K 2 = golo, we will have only the origin as a critical point.

Remember here that the axes for the phase plane are a j , Q 2 .

Case (c):

where

The off-center critical points again exist in the real phase plane only when K 2 < gala.

Detailed stability criteria for cases (a) and (b) have been presented in general in [6]. In

case (c) all types of critical point behavior are possible and we can tudy tIli behavior for

specific values of go' Lo and K . Here we present the stability criteria of the off-center critical

point for four cases that we used in this thesis.

Figures (4.1)-(4.4) shows plots of the real parts {(a) and (b)} and the imaginary parts {(c)

and (d)} of the eigenvalues A, and..1.2 respectively for the system with specific value of

go,lo and varying K 2 for the dual saturation case when linearizing the system near the off-

center critical points. In these plots K 2 is va.ried from 0.01 to g ala so that we have three

real critical points. The real part of the eigenvalue detennines the stability whereas the

imaginary part determ..ines the type of the critical point (i.e., a node, a spiral, a saddle or a

center).
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FIGURE 4.1: Plots of the real parts {(a) and (b)} and the imaginary parts {(c) and (d)} of

the eigenvalues AI and A2 respectively for the system with the parameter

go = 2, 10 =5 and variable k 2 for the dual saturation case.
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In Figure (4.1) since the real part values of both eigenvalues are ne rive th. n the ystem

is always stable in that region where we used the parameters go = 2,10 = 5 . The eigenvalue

are complex when K 2 is within the range 0.01-8.6869 which means the system has stable

spiral off-center critical points at that range. When K 2 is larger than 8.6869 the y tem has

stable node off-center critical points.

In Figure (4.2) the real part values of both eigenvalues are also negative and the ystem is

always stable in that region where we used the parameters go =2.5, Lo =6. The eigenvalues

are complex when K 2 is within the range 0.01-13.241 which means the system has stable

spiral off-center critical points at that range. When K 2 is larger than 13.241 the system has

stable node off-center critical points.

In Figure (4.3) we used the parameters go =2.3,10 = 4.1. As seen from these plots the

system has unstable spiral points when K 2 is within the range 0.01-0.248 and it has stable

spiral points after that till K 2 reaches the value 9.001 where the system start to have stable

node off-center critical points.

In Figure (4.4) we used the parameters go =3.5, Lo =5.5. As seen from these plots the

system has unstable spiral points when K 2 is within the range 0.01-0.9532 and it has table

spiral points after that till K 2 reaches the value 18.7332 where the system start to have

stable node off-center critical points.

The above discussion proves that all types of critical point behavior are possible in the

dual saturation case. Appendix (A) shows a program that can be used to generate plots

similar to those in Figures (4.1)-(4.4).

Appendix (B) shows a small program to find the critical points and the eigenvalues in the

case of dual saturation.
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Mathematica 3.0 [24] has the ability to numerically solve some nonlinear ordinary

differential equations. Figures (4.5)-(4.8) show the phase diagrams and the vector field plots

for dominant loss saturation, dominant gain saturation, and dual saturation. I used different

values for lo' go' K so that we can see different system behavior . The vector field plots

show the direction of the trajectories in the phase plane. These figures are generated using

the Mathematic:! program of appendix (C). A point we notice from the plots is that when the

trajectory is near the critical point, it becomes very slow (the lines are each drawn for a fixed

length from its initial condition).
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FIGURE 4.5: Phase plane (a) and vector field (b) plots for the case of dominant loss

saturation where 10 =5, go =2.3, K 2 =9.695. Each critical point is marked with a dot (.).

The off-center critical points are stahle spirals and the center one is a saddle.
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FIGURE 4.6: Phase plane (a) and vector field (b) plots for the case of dominant gain

saturation 10 = 5, go = 2.3, K 2 =9.695. Each critical point is marked with a dot (e). The

off-center critical points are stable nodes and the center one is a saddle.
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FIGURE 4.7: Phase plane (a) and vector field (b) plots for the case of dual saturation where

10 =5,80 =2.3,K 2 =9.695. Each critical point is marked with a dot (e). The off-center

critical points are a stable spiral and the center one is a saddle.
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the system presented in Figure (4.7).
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4.3 Complex Critical Points Analysis for Dual Saturation

Let us return to case (c), the dual satunltion, to discuss the existenc of the two compl

critical points. Assuming that

a\ = r+ js

a 2 =t + ju

I 1
2 • 2 2 1 1

2
• 2 2where r,s,t,u are real numbers, then a j = a l ·at = r +s , a 2 = a 2 'a2 = t +u .

Plugging the above fonnulae into equation (4.3) and equating the real and imaginary parts

glves

dr go
r+Kt

d.x 1+(r2 +S2)

ds go
s+Ku--

d.x 1+(r2 +S2)

dt -10

(4.6)

-- t-Kr
d.x 1+ (t 2 + U 2)

du -10 u-Ks=
fix 1+ (t 2 +u 2)

It turns out that the general solution of these equations for the critical point values and

stability criteria is too algebraically cumbersome to be mentioned here. The general point

that we do want to mention here is that these have an infinite range of critical point values

that exhibit all possible stability criteria.

'The main and important result we found using the numerical solution of equation (4.6),

with the Mathematica program of appendix (D), is that when the initial point is (ro ,0, to ,0) ,

the values of sand u stay zero all the time. In other word, real valued initial amplitudes

produce trajectories that remain in the real phase plane. This result is true for all values of To

and to' The analytic proof of this result depends on the step-by-step method of finding the

37



values of r, s, t, u and on our need to stay in the real plane so that we asswned our initial

condition to be (ro ,0, to ,0). Linearzing (4.6) by a Taylor expan ion, with (ro'O to ,0) a the

initial condition gives a system defined as

When deriving the above equations we noticed the following:

The initial conditions of sand u do not appear in either ;- nor i equations (onI

because they are both assumed to be zeros). So that if sand u stay zero, then the

values of rand t in the next step after which we linearize the equations will never be

affected by them.

The ;- equation is only coupled with the i equation, whereas the s equation 15

coupled only with the uequation. This simplifies the solution of th above

equations.

Since we are interested in the behavior of sand u, let us assume they have the non-trivial

form (i.e., AtO, B;t:O):

s(z) = Aexp[AZ],U(Z) = Bexp[AZ], (recall that Z == "time" here, the independent

variable).

Substituting the above solution in s, uequations gives
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.....

(~-A)A+KB=O,
I+ro

lo
-KA-(--+A)B =0

1+t 2
o

Non-trivial solutions exist if and only if

(4.7)

we substitute the values of A, fOWld from the above equation, ill (4.7) to find the

corresponding values for A and B. Fortunately, the only values we get for A and B are

zeros.

Thus we have analytic confirmation that real amplitudes remain real. Figure (4.9) shows

plots for r(Z),s(z),t(z),u(z)generated by numerically solving (4.6) for the parameters

10 =5, go =2, K 2 =8.505, and the initial conditions ro =1, So =0,1 0 =2, Uo =O. s shown

in these plots, sand u stay at their initial conditions. In Figure (4.10) we used the same

parameters and the same initial conditions for r, t, u but we now used 0.1 as the initial

condition for s. This small deviation from zero for So causes s and u to have values other

than zero in the phase plane, which means that we have complex values for a, and a2 • Al 0

we can notice how r(z), s(z), t(z), u(z) are clamped to the critical point.

Physically, this result that real amplitudes remain real, simply means that the electrical

fields (corresponding to a, and a2 ) do not incur any extra phase shifts.
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FIGURE 4.9: Plots for {r(z), s(z) lea), {t(z),u(z) }(b) generated by numerically solving

equations (4.6) for the parameters 10 =5, go = 2, K 2 = 8.505, and the initial conditions

To =l,so =O,to =2,uo =O.
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FIGURE 4.10: Plots for {r(Z),s(z)}(a),{t(Z),u(z)}(b) generated by numerically solving

equations (4.6) for the parameters [0 = 5,!: 0 = 2, K 2 =8.505, and the initial conditions

ro =1, So =0.1, to =2, Uo =O.
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4.4 Non-Critical Point Clamping

The relevancy of the critical point analysis i to show to what values (if any) a l and Q 2

will be clamped to. These values determine the phy ical parameters and dimensions of ow:

device.

A key question here (reg-rrding the manufacturability of a usable device) is "do we need

really to wait for at and a z to reach the critical point?" The surprising and very useful

answer is "No!" Figures (4.11) -(4.14) show a major improvement on the concept of

clamping to the critical point. In these plots we clamped a range of amplitudes of the input

signal to a certain value which is not necessarily the critical point of the system. These plots

are generated for the case of dual saturarion. This clamping is achieved with smaller lengths

than what is really needed to reach the critical point.

Figure (4.11a) is generated using the program of appendix (E), Figures (4.11b), (4.12),

(4.13) and (4.14) are generated using the program of appendix (F) but with changing the

parameters, the range of the input signal and the length to suit each case. The programs of

appendices (E) and (F) are written with Mathematica software package.

Figure (4.11) shows the non-critical point clamping for a system with the following

parameters go =5, Lo =6, K 2 =6.9. In this figure, the aJ input signal range is (-1.1 to -1.7)

.and it is clamped to at =-1.583 with a length x =0.654. Plot (a) in this figure shows the

trajectories, whereas plot (b) shows only the final values for a. and a2 , i.e.,

(a j (0.654),Q2(O.654». Figure (4.12) shows the non-critical point clamping for a system

with the following parameters go =3'/0 =3.01,K =5.9. In this figure, the a] input signal

range is (-1.4 to -2.0) and it is clamped to Q l =-1.078 with a length x =0.637. In this

figure we show only the plot of the final values for a l and Q2' i.e., (a l (0.637), a z(0.637») .
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Figure (4.13) shows the non-critical point clamping for a system with the following

parameters go = 3,10 = 4.5, K 2 = 7.9. In this figure, the at input signal range is (-1.2 to -1.8)

and it is clamped to at = -1.027 with a length x = 0.592. In this figure we show only the

plot of the final values for at and a2 , i.e., (at (0.592), a2 (0.592)). We used different

parameters to show that the non-critical point clamping can be achieved for different values

giving different required results. In Figures (4.11)-(4.13) we clamped al' whereas in Figure

(4.14) we show that it is also possible that a2 could be clamped to a certain value. This

figure is generated using go =3.5,10 =5.5, K 2 =5. In this figure, the at input signal range

is (-1.6 to -2.0) and a 2 is clamped to 1.05 with a length x =1.49 . In all figures generated the

initial value of a2 is always zero and the off-center critical points are stable spiral points.
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FIGURE 4.11: Trajectory plot (a) and the final values of the trajectories (b) of the system

with the parameters go =5,10 =6, K 2 =6.9 and x =0.654. The critical point marked with

a (*) is a stable spiral point. The initial value of a\ has the range (-1.1 to -1.7) and the initial

value of a2 is zero.
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FIGURE 4.12: The final values of the trajectories of the system with the parameter

go =3,10 =3.01,K z =5.9 and x=O.637. The off-center critical points arc stable spirals.

The initial value of a 1 has the range (-1.4 to -2.0) and the initial value of az is zero.
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FIGURE 4.13: The final values of the trajectories of the system with the parameter

go =3,lO =4.5,K 2 =7.9 and x=O.592. The off-center critical points are stable spirals.

The initial value of a l has the range (-1.2 to -1.8) and the initial value of a2 is zero.
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FIGURE 4.14: The final values of the trajectories of the system with the parameters

go =3.5, lo =5.5, K 2 =5 and x =1.49 . The off-center critical points are stable spirals. The

initial value of a l has the range (-1.6 to -2.0) and the initial value of a2 is zero.
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Chapter 5

DYNAMIC RESPONSE for DUAL SATURATION

In this chapter we discuss the dynamic response of our proposed device when arbitrary

input excitations are used.

In the first section we will give a reasonable mathematical and physical explanation of

why we need to consider the case of dual saturation. In the second section the pulse frame

transformation and the numerical scheme for solving the equations in (3.29) for the dual

saturation case are briefly presented. Based on the quantized form of the equations in (3.29),

a simulation program is written with Mathematica 3.0. Results from excitation by two

different waveshapes for various heights and widths are presented in the third section for

different device parameterizations. To understand how this proposed device works, physical

interpretations of the results are offered in the last sectIon.

5.1 Why Dual Saturation?

The coupled equations (3.29) are nonlinear since they involve la l 1
2

and la 2 1
2

where a,

and a2 are the mode amplitudes nonnalized to I sal(G) and I S(l/(Ll respectively. If I sot is so

large for either L or G , then L or G will change very little with time and may be assumed

to remain at its unperturbed value.

Let us assume that I SOI(G) is so large, then
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ag 1 2
- = 0 => g = , but la 11 is so small compared to 1 so this gi es g = 1 and we
dy 1+la,1

2

will have

which means that the gain saturation has no effect (i.e., we neglect the gain saturation) and

the system works in the linear gain region.

When linearizing the coupled equations by assuming that A «...JT::, K 2 -? (-)golo for

the case of stable critical point. But as K 2-?(-)golo, a =~gOlO -1 will approach zero.
r K 1

This means that we still have stable critical points even if they are very close to zero. From

this we learn that we can not always linearize the gain and loss effects and the dual saturation

case is needed.

Linearizing the gain or the loss requires building our device with two different values of

the saturation intensity implying that we use two different materials for the waveguides. But

when this happens, we have to look to the other parameter T.. and V g which depend on

the materials of the waveguides. Designing the device with different materials change our

coupled equations, unless we assume certain approximations like TI(G) = ~(L) and

Vg(G) =Vg(L)'

In this thesis we will use the above assumption as a start but we will add a new variable

f -= 1 501 (0) / 15al(L)' This new variable will give an indication of small or big is our gain

saturation intensity compared to the loss saturation intensity, i.e., the coupled equations will

be written as
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da)
dx

= go a +Ka
I + (a~ I f) I 2'

da 2 -lo
--=--, a.., -Ka l ,

dx I +ai -

Then when f ~ 00 , we will get the linear gain case. Thus f will affect the location of the

critical points and the stability criteria as expected.

By studying the dynamic response we will prove that the case when f =I (i.e.,

ISaI(G) = IS01(L) ' a practical case that heIps us to fabricate our device with similar materials for

the waveguides) we observe improved behavior.

5.2 Numerical Solution of the Mathematical Model

Most of the physics and engineering problems fall naturally into one of the following

physical categories: equilibrium problems, eigenvalue problems, and propagation problems

[24]. Our problem in this thesis can be categori.zed as a propagation pr blem which in

mathematical parlance is known as initial boundary value problem. The governing quation

of any problem can be classified using the concept of characteristics. U ing thi concept the

propagation problems are parabolic or hyperbolic. Our mathematical model governed by the

coupled equations in (3.29) may be classified as a parabolic system that has one characteristic

direction along the lines y =x +b where y is the dimensionless time variable (normalized

to T), x is the dimensionless space variable (normalized to vgT(), and b is the y intercept

The coupled equations in (3.29) have two basic directions of propagation:

the y direction along which the loss and gain saturate,
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the char-acteristic direction (i.e., the lin s y = x +b) along which th mode

amplitude propagate.

Based on the above discussion, Shepard [6} used what he referred to as pulse frame

transfoonation that results in a significant reduction of mathematical complexity and

computational difficulty. In this transformation we assume that

x =xes) =s; y = yes) =s +b, (see Figme (5.1»

d a a
then -=-+- and

ds dX cry

g(x, y) = g(s, y), at (x, y) =a\ (s, y), lex, y) =[(s, y),az(x, y) =a z(s, y).

Therefore, the coupled equations in (3.29) can be written as:

dl(s, y)as =1-l(s,y)[l+(az(s,y»2J,

dg(s,y) 2
ds =l-g(s,y)[l+(a.(s,y» If]·

(S.la)

(S.lb)

(S.lc)

(S.ld)

The pulse frame transformation results in substantial simplification since equation (5.1) h-as

derivatives with respect to one independent variable only.

Shepard [6] has presented a detail discussion of the problems of convergence, stability,

and computation time, which arise when choosing a quantization scheme for the numerical

solution of a differential equation. Here we will not present this discussion and we will only

adopt his choice of choosing two different finite difference schemes. These are a third order
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backward difference scheme for the time (y) deri. ati e and a first rder bac ard

difference fonnula for the derivatives with resp ct to (s).

The use of these schemes results in the following quantization of the dynamic equation

for the dual saturation case (that is the case we are interested in here):

(5.2a)

(5.2b)

l1g U,j) -18g (i,j-I) +9g U,j-2) - 2g U,j-3) +6(bY)g (i,j) [l + (a l (i,j»2 / f] - 6(6)') =0, (S.2c)

(5.2d)

where bY and t5s arc the step length on y and s axes respectively.

The main results of the discussion of the convergence and stability of the above

numerical scheme devised by Shepard [6J are:

;l- Ie;/) I:5 lEI ' where e;l) represents the total quantization error for 1 at that point and

lEI is some maximum error, hence the scheme is "stochastically stable,"

b- (&so) < (l/ go)' Equation (5.2) is proven to be non-convergent when thi condition is

violated.

In solving the equations in (5.2) we assume an input pulse, say pulse(y), is fed into the

gain medium waveguide while the lossy waveguide input is kept at zero. We assume that the

system is initially unperturbed, the initial boundary conditions are:

at (x,O) =0, a 2 (x,D) = 0, L(x,O) = 1,

at (0, y) =puLse(y), a2 (0, y) =0, L(O, y) =1,

and all previous condition were unperturbed also, i.e.,

[(i,O) =L(i,_I) =[U,-2) =1, g (i,0) =g (i,-I) =g U,-2) =1.
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Figure (5.1) shows how we numerically integrate the equation (5.2) to find the value of a\ at

all the points in the propagation ( pace-time) diagram.
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FIGURE 5.1: The propagation (space-time) diagram used to integrate equations (5.2)

numerically. The (.) represents the (n,m) steps where n =steps U1 space and m =steps in

time.
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5.3 Dynamic Response Results and Interpre.tations

In this section certain results for the dynamic response of different ca es will be

represented. These results are generated using the Mathematica simulation program of

appendix [G] which gives the shape of the pulse at any point along the waveguides. Our

plots will represent the shapes of a. that propagate along the gain waveguide (the waveguide

with pump).

Two different pulse types are considered here as the initial value (injected pulse in the

gain waveguide). The first one is a logic pulse defined as:

{

A[l-eXp(-y I r)

Po (y) = A[1-exp(-4)]

A[l-exp((y -12r)/ r)]

where

A == the pulse amplitude,

0$ Y $4r

4r $ y $ 8r ,

8r $; y $12r

r == a normalized time constant that determines the rising!dropping time of the

leading! trailing edge and in the above pulse it also determines the pulse width.

The second input pulse to be considered here is the hyperbolic secant pulse. This pul e

shape is close to the ones used in fiber optic communication systems and also is known to

be a soliton for various media. The pulse is defined as:

Po (y) =A· Sech[0.8844(y - 6r) I r],

where

A == the pulse amplitude,

and 2r is the pulse full width at half maximum (FWHM).

The plots presented here are for the nonnalized pulse amplitude,a., versus nonnalized

time y at four different values of nonnalized distance, x. These distances are at steps, ,
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i = 2,4,8,16 when uSlIlg a logic pulse as the input and i = 4,8,12,18,24 when uSlIlg a

hyperbolic secant pulse as the input. Using & =0.4 these steps correspond to x = Ji i.

Three-dimension (3-D) plots for the pulse amplitude, ai' propagating through the

waveguide will be given for some cases.

Figure (5.2) shows a plot that represents the difference between the value of a l at the

critical point for the case of linear gain and the case of dual saturation for various f. This

plot is generated using the program of appendix (H) to determine if for large values of f

(and then how large) the dual saturation case results will resemble tho e predicted by the

dominant loss saturation equations. Figure (5.2) is generated using the parameters

go = 2, Lo =5, K 2 = 8.505. From this figure we see that when f ~ 15 the difference

between the value of a, at the critical point for the case of linear gain and the case of dual

saturation is ::; 0.038. So the case when f = 15 is a reasonable choice where the dual

saturation case results will resemble those predicted by the dominant loss saturation

equations.

The results of the dynamic response when using the logic pulse input are pre ented in

three groups of plots. In the first group we study the response of the system when changing

the value of f. The values of f used in Figure (5.3) are 1 in (5.3a), 5 in (5.3b), and 15 in

(5.3c). This group of plots IS generated uSlIlg the parameters

go =2, Lo =5, K 2 =8.505, T =4, A = 0.2. From Figure (5.3) we notice that the overshoot

experienced by the leading edge is less for the case when f = 1. This makes f =1 (dual

saturation case) a good choice when builcling our device. AU of the remaining plots are

generated using f =1.
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FIGURE 5.2: The difference between the value of a l at the critical point for the case of

linear gain and the case of dual saturation for variable f .
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FIGURE 5.3: Device dynamic response for a logic pulse input at the labeled positions with

f=1 U1 (a), 5 U1 (b) and, 15 ill (c). The parameters used are

go =2,10 =5, K 2 =8.505, r =4, A =0.2 .
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In the second group, Figure (5.4), we vary the amplitude of the input pulse in an attempt

to show how the overshoot (or ringing) vane with different input amplitude (allIes and

near the critical point value, which in this case i at a, =0.28). The plots where generated

using the parameters go = 2,10 = 5, K 2 = 9.0, r = 4. In Figure (S.4a) the input amplitude is

0.15, in Figure (5.4b) it is 0.2 and in Figure (5.4c) it is 0.25. We observe in Figure (5.4) that

the overshoot increases slightly as the amplitude increases. Since the device must operate

over a range of input pulse amplitudes, we need to find some other way to decrease the

overshoot.

The third group is generated in an attempt to reduce this problem by altering K 2. In

generating the plots in Figure (5.5) we used the parameters go = 2, lo = 5, A = 0.15, r = 4

and the value of K 2 is 9.0 in Figure (S.5a), 9.2 in Figure (5.5b) and 9.4 in Figure (5.5c). All

the cases in this group have stable node critical points. These plots show that the overshoot

decreases with increasing the coupling coefficient. Perhaps this is because the device reaches

the critical point faster when the coupling coefficient is higher.

The more interesting and practical results a.re when injecting the device with hyperbolic

secant pulses. For this pulse shape we generated two groups. The first is in Figure (5.6)

where we changed the coupling coefficient with fixing the other parameter as follows

go = 2.3,10 = 4.1, A = 0.18, r = 4. The value of K 2 is 8.305 in Figure (5.6a), 8.505 in

Figure (5.6b) and 8.705 in Figure (S.6c). All the cases in this group have stable spiral critical

points. As seen from the 3-D plot, Figure (5.7), for the larger overshoot case of Figure

(S.6a), the pulst: starts to be amplified in its first steps in the device. After that the leading

edge starts to feel the effect of the critical point and it starts to steepen up while experiencing
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FIGURE 5.4: Device dynamic response for a logic pulse input at the labeled positions with

varying input pulse amplitude which is 0.15 in (a), 0.2 in (b), and 0.25 in (c). The parameters

used are go =2,lo =5, K 2 =9.0,7: =4 .
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FIGURE 5.5: Device dynamic response for a logic pulse input at the labeled positions with

varying K 2 as 9.0 in (a), 9.2 in (b), and 9.4 in (c). The parameters used are

go = 2,10 = 5, A = 0.15, T = 4.
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FIGURE 5.6: Device dynamic response for a secant hyperbolic pulse input at the labeled

positions with varying K 2 as 8.305 in (a), 8.505 in (b), and 8.705 in (c). The parameters used

are go =2.3, fo = 4.1, A =0.18, r =4.
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FIGURE 5.7: The pulse propagation in the device for the case of a secant hyperbolic pulse

input where K 2 is 8.305 and go =2.3,10 = 4.1, A =0.18, l' =4.
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an overshoot. The main result from these plots in Figure (5.6) is that the over hoot is Ie s

when increasing the coupling coefficient (as we also observed, in Figure (5.5), for the logic

pulse). The third group of plots is generated for different input amplitudes while fixing the

other parameters as go == 2.3,10 =4.1, K 2 =8.605, T =4. The input amplitudes used are

0.18 in Figure (5.8a), 0.2 in Figure (5.8b) and 0.22 in Figure (5.8c). These plots are generated

to show how the device responds over a range of input amplitudes. 3-D plot for the ca e

used in Figure (5.8c) is shown in Figure (5.9).
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FIGURE 5.8: Device dynamic response for a secant hyperbolic pulse input at the labeled

positions with varying the amplitude as 0.18 in (a), 0.2 in (b), and 0.22 in (c). The parameters

used are go =2.3,/0 =4.1,K 2 =8.605,1:=4.
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FIGURE 5.9: The pulse propagation in the device for the case of a secant hyperbolic pulse

input where K 2 is 8.605 and go =2.3, [0 =4.1. A =0.22. r =4 .
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5.4 Conclusions and Suggestions for Future Research

In this thesis we have studied a device consisting of two e anescently coupled

waveguides as an all-optical pulse regenerator. One of these waveguides is losy and the

other is amplifying. Both waveguides may exhibit saturation. In this research we show how

our proposed device clamps the mode amplitude input to a certain desired value. This value

is the critical point of the system which detennines the physical parameters and dimensions

of our device. This device is inexpensive compared to the presently used techniques for

regenerating the optical pulses.

We have studied the dynamic response of the device when arbitrary input excitations are

used. By studying the dynamic response we proved that when the saturation intensities of

the waveguides are the same (a practical case that helps us to fabricate our device with

sunilar materials for the waveguides) we observed improved behavior (for example, less

overshoot).

In this study we also found that it is possible to clamp the mode amplitud to a certain

nlue which is not necessarily the critical point of the system. This clamping is achieved with

smaller lengths than what is really needed to reach the critical point. This result is useful also

for some cases where it is hard to reach the critical point of the system with reasonable

lengths.

While studying the critical point analysis and the stability criteria for the case of dual

saturation (where the effects of both loss and gain saturation are considered) we showed that

the electrical fields (<:.orresponding to the mode amplitudes in both waveguides) do not mcw:

any extra phase shifts while propagating through the device.

For future work, an experimental effort would certainly be useful. Fabricating this device

for cases of interest would help comparing our theoretical results with experimental ones.
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This detailed theoretical study and any future experimental study could be u eful to explore

the possibility of using such inexpensive device in fiber optic telecommunications sy tems.

In this study we have assumed a constant separation between the waveguid s . hich

gives a constant value for the coupling constant along the propagation axis.

In case of a slowly varying separation between the waveguides and assuming that the

material properties and all other dimensions are independent of x (i.e., along the

propagation axis) the coupling coefficient will be a function of x and may be written a [25]:

K(x) = constant ·exp[-y· d(x)], (5.3)

where d(x) represents the separation at any point X and y is the decay constant of the

evanescent fields.

The function d(x) can be written as d(x) =do + f(x) , where do is the initial separation

at x =0 and f(x) rt:presents the rate of departure of the waveguides from being parallel.

Using this representation of d(x) , equation (5.3) can be written as

K(x) = constant ·exp[-y ·do]· exp[-y· I(x)].

Assuming that K =K 0 at X =0 we get

K 0 =constant· exp[-y. do ] ,

and (5.4) becomes

K(x) =Ko ·exp[-y· f(x)].

(5.4)

(5.5)

A more detailed study of our device under the above case will be interesting and could

provide a solution for the required K(x) to produce a given output waveform from a given

input wavefonn.
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APPENDIX A

ClearAll[x,y,jac,r,q,e.ig1,g,k,1,e.ig2,mat,sol,x1,x2,eigenvalues,cpx,cpy u,v]

1=5.;g=2.;

r[x->y_l=-l*y1(1 +y"'2)-k*x;

q[x->y_]=g*x/ (1 +x"'2)+k*y;

For[i= 1,i< 1OOO,k=Sqrt[i/100];sol=Solve[{r[x,y]==O,q[x,y]==O},{x,y}];

jac= {{D[q[x,y],x],D[q[x,y],yJ}, {D[r[x,yJ,x],D[r[x,y],y]} };

mat=MatrixFonn~ac];cpx=x/.N[sol];cpy=y/ .N[sol];xl = Extract[cpx,l ];

yl = Extract[cpy,1];cx[i]=xl;x=x1 ;y=y1 ;eigenvalues=Eigenvaluesuac];

exrl = Extract[e.igenvalues,1];exr2=Extract[eigenvalues,2];re1=Re[exr1];

im1 = Im[exrl ];retl {i]=rel ;imt1 [i]=im1;re2=Re[exr2];im2=Im[exr2];ret2[i]=re2;

imtZ[i]=im2;

CleatAll[x,y,xl,y1,sol,jac,mat,eigenvalues,cpx,cpy,k,re1,im1,re2,im2]~+ = 1]

ul =Table[ret1 U], {j,1,999}];

vl =Table[imtl [j], {j,l,999}];

u2=Table[retZO], {j,1,999}};

v2=Table[imtZUJ, {j,1,999}];

Istl =ListPlot[u1,PlotJoined->True,AxesLabel-> {"1 OOk","Rel "}];

lst2=ListPlot[v1,PlotJoined->True,AxesLabel-> {"1 OOk","Im1"}];

15t3=ListPlot[u2,PlotJoined->True,AxesLabel-> {"1OOk","Re2"}];

lst4=ListPlot[v2,PlotJoined->True,AxesLabel-> {"1Oak","1m2"} ];

Show[GraphicsArray[{{lstl ,1st3}, {lst2,lst4} }]]
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APPENDIXB

ClearAll[x,y,jac,r,q,eigl,g,k,l,eig2,mat,sol,xl ,x2,eigenvalues,cpx,cpy]

1=5.5;

g=3.5;

k=Sqrt[18.7332];

r[x_,y_] =-l*y/ (1 +y"2)-k*x;

q[x_,y_]=g*x/ (1 +x"'2)+k*y;

sol=Solve[{r[x,y]==O,q[x,y]==O}, {x,y}];

jac= {{D[q[x,y],x],D[q[x,y],y]}, {D[r[x,y] ,x],D[r[x,y],y]} };

mat=MatrixFormUac];

cpx=x/.N[sol];

cpy=y/.N[sol];

xl = Extract[cpx,l ];

yl =Extract[cpy,l];

Print["Critical points are->",sol]

x=xl;

y=yl;

eigenvalues=EigenvaluesUac];

Print["Eigenvalues are-> ",eigenvalues]
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APPENDIXC

< <Graphics 'PlotField'

ClearAU[t,a,b,pvc,eqone,eqtwo,x,y];

Array[a,{ll,ll}];

eqooe=2.3x/(1 +x"'2)+Sqrt[9.695]y;

eqtwo= -5y/ (1 +y"2)-Sqrt[9.695]x;

pvc=PlotVectorField[{eqooe,eqtwo},{x,-l,l},{y,-l,l} ,Axes->Automatic,

AxesOrigin-> {O,O} ,AxesLabel-> {a1,a2},DisplayFunction->Identity]

For[i= 1,i<12,ForO=1,j<12,

a[i,j] = NDSoLve[{x'[t] ==2.3x[t]/ (1 +x[t]"Z) +Sqrt[9 .695]y[t],

yilt] ==-5y[t]/ (1 +y[t]"Z)-Sqrt[9.695]x[t],

x[O]== (0.2i-1.2), y[0]==(0.2j-1.2)}, {x,y},{t,0,0.6}]

;j++];i++]

Array(b,{ll,ll }];

For[i=l ~<lZ,ForO=1,j<12,

b[i,j] =

ParametricPlot[

Evaluate({x[t], y[t]} /.a[~j]], {t,0,0.6},

PlotRange-> {{-1,1},{-1,1} },DisplayFunction-> Identity,

AxesLabel-> {a1,a2}];j+ +];i++]

Istl =ListPlot[Tablef{-0.354n,0.232}, {n,1}],Prolog->AbsolutePointSize[5],

DisplayFunction->Identity];

lst2=ListPlot[Table[{0.3540,-0.232}, {n,1}J,Prolog->AbsolutePointSize[5],
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DisplayFunction-> Identity];

Ist3=ListPlot[Table[{On,O}, {n,1}],Prolog->AbsolutePointSize[S],

Disph.yFunction-> Identity];

Array[t, {11,11}];

For[i=l j< l2,ForU=1,j<12,I£[i== 1,

If O==l,t[~j]=Show[{b[i,l J,b[U]} ,PlotRange->All

,DisplayFunction-> Identity],

If{j== 11,tl~11]=Show[ {t[~lO],b[i,j]} ,PlotRange->All

,Disph.yFunction-> Identity],

t[i,j]=Show[ {t[i,j-1],b[i,j+ l]} ,PlotRange->All,

DisplayFunction->Identity]]],

If (j==l,t[i,j]=Show[{t[i-l,11],b[i,j]} ,PlotRange->All,

Disph.yFunction-> Identity],

I£Ij==l l,t[i, 11]=Show[{tli,lO],b[i,j]},PlotRange->All,

DisplayFunction->Identity],

t[i,j] = Showl{t[i,j-1],b[i,j]}, PlotRange->All,

DisplayFunction-> Identity]]]] ;j++];i++]

Show[{t[ll,11] ,lst1 ,lst2,lst3},PlotRange-> {{-1,1}, {-1,1}},

DisplayFunction->$DisplayFunction,AspectRatio-> 1,

Prolog->AbsolutePointSize[S]];

Show[{pvc,lst1 )st2,lst3},PlotRange- > {{-1,1 }, {-1,1}},AspectRatio-> 1,

DisplayFunction->$DisplayFunction,Prolog->AbsolutePointSize[S]];
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APPENDIXD

Clear[r,s,t,u,sol];

sol=NDSolve[{r'[z)==Zr[z]/ (1 +r[z)",Z+s[z)",Z)+Sqrt[8.S0S]t[z],

s'[z)= =2s[z]/ (1 +r[z)"'2+s[z)"'Z)+Sqrt[8.505]u[z],

t'[z)==-st[z)/(l +t[z)",2+u[z)",Z)-Sqrt[8.50s]r[z],

u'[z]==-Su[z]/ (1 +t[z)",2+u[z)",Z)-Sqrt[8.505]s[z],r[O] ==1,s[O]==O,t[O]==Z,

u[O]==O}, {r,s,t,u}, {z,0,1 O}];

par=ParametricPlot3D[Evaluate[{z,r[z],s[Z]} /.501], {z,O,l O},

ViewPoint-> {-Z.320, 2.288, 0.910} ,AxesLabel-> {z,r,s} ,PlotPoints->ZOO,

Boxfulrios-> {2,1,1 },PlotRange->All]

par=ParametricPlot3D[Evaluate[{z,t[z],u[z]} /.sol], {z,0,1 O},

ViewPoint-> {-Z.320, 2.288, 0.910} ,AxesLabel-> {z,t,u} ,PlotPoints->200,

Boxfulrios-> {2,1,1 },PlotRange->All]

ParametricPlot[Evaluate[{r[z],t[z]} /.501], {z,O,l O} ,PlotRange->All]
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APPENDIXE

< < Graphics 'PlotField'

ClearAll[t,a,b,pvc,eqone,eqtwo,x,y,c,d,r,s,lstl ,d,c] :

Array[a, P,l}];

For[i=1,i<8,rorU=1,j<2,

a[i,j] = NDSolve[{x'[t]==5x[t]/ (1 +x[t]"2) +Sqrt[6.9]y[t],

y'lt] ==-6y[t]/(1 +y[t],,2)-Sqrt[6.9]x[t],

x[o]=-= (-O.li-1), y[O]==o}, {x,y},{t,O,.654}];j++];i++]

For[i=1,i<8,w[i]=x[O.654] / .a[i,1];z[i]=y[O.654] / .a[i,1];i+ +]

Array(b,{7,l}];

For[i= 1,i<8,ForU=1,j<2,

b[i,j] =ParametricP1ot[Evaluate[{x[t], y[t]} /.a[i,j]], {t,O,.654},

PlotRange-> {{-2.5,O}, {O,2.5} },DisplayFunction->Identity,

AxesLabel-> {al,a2}];j++];i++1

1stl =ListPlot[Table[{-1.14n,O.94}, {n,1}],Prolog->AbsolutePointSize[5]];

Show[{b[1,1],b[2,1],b[3,1],b[4,1],b[5,1] ,b[6,1],b[7,1] ,1st1 },

PlotRange-> {{-2.S,O.S},{-O.5,2.5}} ,AxesOrigin-> {-2.5,O},

DisplayFunction->$DisplayFunction,AspectRatio-> 1]
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APPENDIXF

Cleat:AJ.l[dif,dift,difj,plot,m,n,j,k,u,v,pxy,PIt,x,y,sx,sy]

Forfj=9,j<16,sol=NDSolve[{X'[t] == 5x[t]/(1 + (x[tr2» +Sqrt [S.5S]y[t],

y'lt] = =-2y[t]/ (1 +y[tr2)-Sqrt[S.S5]x[t],

x[O]== -j/l0, y[O]==O}, {x,y},{t,0,.641}];rn=x[O]l.sol;

k=Extract[m,l ];n=x[.641]1 .N[sol];fina1x=Extract[n,l];1=y[.641] I.N[soL];

finaly=Extract~, 1];sxm=finalx;syO]=finaly;pxyO) =Table[ {sxOJ,syO]}];

dif=k-finalx;pLot[j] =dif;j+ +J

v=Table[pxyO], {j,9,15}];

JjstPlot[v,PlotJoined->True,PlotRange-> {{0,-2.S}, {0,2.5} },AspectRatio-> 1,

AxcsLabel-> {al,a2} ,AxesOrigin-> {-2.5,0}];
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APPENDIXG

Clear[m,n,dy,ds,p,g,a1Ot,a20t,tao,lOt,a1t,a2t,lt,a1ft,a2ft,lft,a,b,c,d,u,v,w,

x,t,r,y,k,s,sol,l,a1,a2,lO,a1O,a20,zf,zt,z,o]

n=16;

f=1;

tao=4;

m=36;

ds=O.4;

dy=6*taol (15);

p=4.1;

g=2.3;

k=Sqrt[8.30S];

a10t=Table[a10,{~1},{j,m}];

a20t=Table[a20,{~1},{j,m}];

lOt=TahleIJ.O, {i,1}, {j,m}];

zOt=Table[zO, {i,1},{j,m} J;

a1t=Tablera1,{i,n-1},{j,m-1}];

a2t=Table[a2, {i,n-1}, {j,m-1}];

It=Taole~,{4n-1}, {j,m-1}J;

zt=Table[z, {~n-1},{j,m-1}J;

a1 ft=Table[a1 f, {i,n}, {j,m}];

a2ft=Table[a2f, {i,n}, {j,m}];

Ift=Table~f,{i,n}, {j,m}];
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zft=Table[zf, {i,n},{j,m});

ct=Table[c, {i,m}];

dt=Table[d, {i,m}];

et=Table[e, {i,m}];

ht=TabLe[h, {i,m}];

Forlj= 1,j<m+l,a1Ot[[1,j]]=0.18*Sech[0.8844G*dy-6*tao)/tao];j+ +]

Forlj=1,j<m+1,a20t[[1,}]]=0;j++1

For(j= 1,j<m+1,10t[[1,j]]= 1;j++]

Forlj= 1,j<m+1,zOt[[1,j]]=1;j++]

For[i=l,i<n,

Forlj= 1,j<m,

If[i== 1,If[j==1,y=alOt[[1,j+1]];s=a20t[[l,j+1]];u=1;v=1 ;w=1 ;q= 1;b=1;0=1;

sol=Solve[{x-y-ds*g*x*z-ds*k*r==O,

11 t-18 u+9 v-2 w+6 dy*t*(l +r"2)-6 dy==O,

11 z-18 q+9 b-2 0+6 dy*z*(1 + (x"2)/f)-6 dy==O,

r-s+ds*p*t*r+ds*k*x==O}, {x,r,t,z}];ct=x/.N[soL];dt=r/.N[soL);

et=t/.N[soL];ht=z/.N[sol];a1t[[i,j]]=Extract[ct,7];

a2t[[i,j]]= Extract[dt,7];It[[i,j)] = Extract[et,7];

zt[[i,j]] = Extract[ht,7],

!f[j==2,y=alOt[[1,j+1]];s=a20t[[1 ,j+ 1]];u=lt[[i,j-1]];v=1;w=1;

q =zt[[i,j-1 ]];b= 1;0=1;

soL=Solve[{x-y-ds*g*x*z-ds*k*r==O,

11 t-18 u+9 v-2 w+6 dy*t*(1 +r"2)-6 dy==O,

11 z-18 q+9 b-2 0+6 dy*z*(1 + (x"2)/f)-6 dy==O,
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r-s+ds*p*t*r+ds*k*x==O}, {x,r,t.z}];ct=x/.N[sol];dt=r/.N[ 01];

et=t/.N[sol];ht=z/. [sol];a1 t[[i,j]] = Exttact(ct,7];

a2t[[i,j]] = Extract[dt.7] ;It[[i,j]]= Exttact[et,7];

zt[[i,j]]= Extract[ht,7],

IfIj==3,y=a10t[[1 ,j+ 1]];5=a20t[[1,j+1]];u=lt[[i,j-1]];v=lt[[i,j-2]];

w=l ;q=zt[[i,j-1J];b=zt[[i,j-2J];0=1;

sol=Solve[{x-y-ds*g*x*z-ds*k*r==O,

11 t-18 u+9 v-2 w+6 dy*t*(l +r"2)-6 dy==O,

11 z-18 q+9 b-2 0+6 dy*z*(l + (x"2)/f)-6 dy==O,

r-s+ds*p*t*r+ds*k*x= =O}, {x,r,t,z} ];ct=x/.N[sol];

dt=r/ .N[sol];et=t/.N[sol];ht=z/.N[sol];a1 t[[i,j]] =Extract[ct,7];

a2t[[i,j]] = Extract[dt,7J;lt[[i,j]] =Extract[et,7];

zt[[i,j]]=Exttact[ht,7],y=a10t[[1,j+ 1]];s=310t[[1 ,j+1]];

u=lt[[i,j-1]];v=It[[i,j-2]];w=lt[[i,j-3]];q=zt[[i,j-l]];

b=zt[[i,j-2]];0=zt[[i,j-3]];

sol=Solve[ {x-y-ds*g*x*z-ds*k*r= =0,

11 t-18 u+9 v-2 w+6 dy*t*(l +r"2)-6 dy==O,

11 z-18 q+9 b-2 0+6 dy*z*(l + (x"2)/f)-6 dy==O,

r-s+ds*p*t*r+ds*k*x==O}, {x,.r,t,z}];ct=x/.N[soij;

dt=r/ .N[sol];et=t/.N[solJ;ht=z/.N[solJ;a1 t[[i,j]]=Extract[ct,7];

a2t[[i,j]] = Extract[dt,7] ;It[[i,j]]= Exttact[et,7];

zt[[i,j]]=Exttact[ht,7]]]],y=a1t[[i-l ,j]] ;s=a2t[[i-1 ,j]];

IfIj==l ,u=1;v=1;w=1;q=1 ;b=l;o=l;

sol=Solve[{x-y-ds*g*x*z-ds*k*r= =0,
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11 t-18 u+9 v-2 w+6 dy*t*(1 +r"2)-6 dy==O,

11 z-18 q+9 b-2 0+6 dy*z*(1 + (x"2)/f)-6 dy==O,

r-s+ds*p*t*r+ds*k*x==O}, {x,r,t,z}];ct=x/.N[soij;dt=r/. [sol];

et=t/ .N[sol};ht=z/.N[sol];a1 t[[i,j]] = Extract[ct,7];

a2t[[i,j]]=Extract[dt,7)Jt[[i,j))=Extract[et,7);

zt[[i,j))=Extract(ht,7] ,

Iflj==2,u=lt[[i,j-1 ]];v=1 ;w=1 ;q=zt[[i,j-1]];b= 1;0=1;

sol=Solve[{x-y-ds*g*x*z-ds*k*r==O,

11 t-18 u+9 v-2 w+6 dy*t*(l +r/\2)-6 dy==O,

11 z-18 q+9 b-2 0+6 dy*z*(1 +(x"2)/f)-6 dy==O,

r-s+ds*p*t*r+ds*k*x==O}, {x,r,t,z}];ct=x/.N[sol];dt=r/.N[sol];

et=t/ .N[sol];ht=z/.N[sol];a1 t[[i,j]]=Extract[ct,7];

a2t[[i,j]] = Extract[dt,7];lt[[i,j]]= Extract[et,7];

zt[[i,j]]= Extract[ht,7],

If{j= =3,u=lt{[i,j-1]];v=lt[[i,j-2]];w=1;q=zt[[i,j-1]];b=zt[[i,j-2]];

0= 1;sol=Solve[{x-y-ds*g*x*z-ds*k*r= =0,

11 t-18 u+9 v-2 w+6 dy*t*(l +r"2)-6 dy==O,

11 z-18 q+9 b-2 0+6 dy*z*(1 + (x/\2)/f)-6 dy==O,

r-s+ds*p*t*r+ds*k*x==O}, {x,r,t,z}];ct=x/.N[sol];

.. dt=r/ .N[sol];et=t/.N[sol];ht=z/.N[sol];a1 t[(i,j]] =Extract[ct,7];

a2t[[i,j]] = Extract[dt,7] ;It[[i,j]]= Extract[et.7);

zt[[i,j]]= Extract[ht,7],u=It[[i,j-1 ]];v=lt[[i,j-2]];w=lt[(i,j-3]];

q=zt[[i,j-1 ]];b=zt[[i,j-2]];0=zt[[i,j-3]];

sol=Solve[{x-y-ds*g*x*z-ds*k*r= =0,
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11 t-18 u+9 v-2 w+6 dy*t*(1 +1:"'2)-6 dy==O,

11 z-18 q+9 b-2 0+6 dy*z*(l + (xA 2)/f}-6 dy==O,

r-s+ds*p*t*r+ds*k*x==O}, {x,r,t,z}];ct=x/.N[sol];

dt=r/ .N[sol];et=t/.N[sol];ht=z/.N[sol];a1t[[i,;]]=Extract[ct,7];

a2t[[i,j]]=Extract[dt,7J;It[[i,j]] = Extract[et,7];

zt[[i,j]]=Extract[ht,7]]]]];j+ +];i++]

all t2=Extract[al t,1];

alft2=Insert[a11t2,O,2];

a11t4=Extract[a1t,4];

alft4=lnsert[al1 t4,O,1];

a11t6=Extract[a1t,6];

a1 ft6=Insert[a11 t6,O,1];

a11t8=Exttact[a1t,8J;

alft8=Insert[a11 t8,O,1];

a11 t10=Extract[al t,10];

alft10=Insert[alltl0,0,1];

a11 t12=Extract[a1t,12];

a1ft12= Insert[a11 t12,0,1];

a11t14=Extract[alt,14];

alft1.1=Insert[al1t14,O,1];

a11 t16=Extract[a1 t,16J;

alft16=Insert[al1t16,0,1 ];

Ist2=ListPlot[a1ft2,PlotJoined->True,PlotRange->All,

DisplayFu.nction->Identity];
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Ist4=listPlot[alft4,PlotJoined->Tme,PlotRange->All,

DisplayFunction-> Identity);

Ist6=listPlot[al ft6,PlotJoined->Tme,PlotRange->All,

DisplayFunction->Identity);

Ist8=listPlot[al ft8,PlotJoined->Tme,PlotRange->All,

DisplayFunction->Identity);

lstl 0=listPlot[a1ftl O,PlotJoined->Tme,PlotRange->All,

DisplayFunction->Identity);

Ist12=listPlot[a1ft12,PlotJoined->Tme,PlotRange->All,

DisplayFunction->Identity];

lst14=listPlot[a1ft14,PlotJoined->Tme,PlotRange->All,

DisplayFunction->Identity];

lst16=ListPlot[a1ft16,PlotJoined->Tme,PlotRange->All,

DisplayFunction->Identity];

Show[{lst2,lst4,lst6,lst8} ,DisplayFunction-> $DisplayFunction,PlotRange->All,

AxesOrigin-> {1,0}]

Show[{lstl0,lst12,lst14,lst16} ,DisplayFunction->$DisplayFunction,

PlotRange->All,AxesOrigin-> {1,0})
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APPENDIXH

Clea.r[f,dif,eql,eq2,x,y,m,n,x1,x2,solt ,so12]

eq1 =2x/ (1 +(x"'2)/ f)+Sqrt[8.50S]y;

eq2=-S.y/ (1 +y"'2)-Sqrt[8.50S]x;

For[f= 1,f<21,so11=Solve[{eq1 ==O,eq2==O}, {x,y}];

so12=Solve[{2x+Sqrt[8.S0S]y==O,eq2==O},{x,y} ];X1 =x/ .so11 ;rn=Extract[x1,1];

x2=x/.so12;n=Extract[x2,1] ;dif[ij =m-n;f+ +]

u=Table[dif[fj, {f,1,20}];

ListPlot[u,PLotJoined->Troe.AxesLabel-> {"f","diff"} ,AxesOrigin-> {1 ,O}]
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