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2005 (c). Data are shown as mean ± SE (n=5).  

 

Fig. 4.4 Changes in green aboveground biomass (AGB) in Aug 2003 (a) and May 2005 

(b) and leaf area index (LAI) in May 2005 (c) with one-year precipitation before 

measurements (OYP) along the precipitation gradient. Panel d shows the relationship 

between green AGB and LAI in May 2005. Data are shown as mean ± SE (n=5).   

 

Fig. 4.5 Changes in belowground biomass (BGB) at the depth of 0-15 cm and 15-30 cm 

(a), total measured BGB at the depth of 0-30 cm (b), total biomass including 

aboveground biomass (AGB) and BGB (c), and AGB:BGB ratio along the 

precipitation gradient. Data are shown as mean ± SE (n=5).  

 

Fig. 4.6 Pattern of rain use efficiency (RUE, ratio of total biomass (AGB+BGB) to 

one-year precipitation before measurements) along the precipitation gradient. Data 

are shown as mean ± SE (n=5). 

 

Fig. 4.7 Changes in standing litter (ST), surface litter (SU), total litter (ST+SU), and 

ST:SU ratio in Aug 2003 (a, d, g), Feb 2004 (b, e, h), and May 2005 (c, f, i) along the 

precipitation gradient. Data are shown as mean ± SE (n=5). 

 

Fig. 4.8 Changes in soil respiration (µmol m-2 s-1), soil moisture (%g), and soil 

temperature (oC) in Aug 2003 (a, d), Feb 2004 (b, e), and May 2005 (c, f) along the 

precipitation gradient. Data are shown as mean ± SE (n=5). 
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Chapter 5 

Fig. 5.1 Schematic diagram of Structure of terrestrial ecosystem (TECO) model. Boxes 

represent pools and dashed cycles stand for four submodels. NSC is non-structural 

carbon, Ra is autotrophic respiration including leaf, stem, and root respiration, and 

Rh is heterotrophic respiration including litter and SOM decomposition. 

 

Fig. 5.2 Observed vs. simulated daily soil respiration (a), aboveground biomass (AGB, 

b), belowground biomass (BGB, c), and net ecosystem exchange (NEE, d) in 

Oklahoma grassland 

 

Fig. 5.3 Simulated net primary productivity (NPP, a), NEE (b), heterotrophic respiration 

(Rh, c), runoff (d), and evapotranspiration (ET, e) dynamics from 2000 to 2100 in 

response to gradual changes in one level of temperature (4oC increase), CO2 

(doubling-700 ppmv), and precipitation (30% increase) and their combinations.  

 

Fig. 5.4 Responses of NPP, Rh, and NEE to single-factor changes in temperature (a, b), 

CO2 (c, d), and precipitation (e, f) 

 

Fig. 5.5 Responses of runoff and ET to single-factor changes in temperature (a, b), CO2 

(c, d), and precipitation (e, f) 

 

Fig. 5.6 Responses of NPP (a), NEE (b), Rh (c), runoff (d), and ET (e) to simultaneous 

changes in temperature and CO2  

 

Fig. 5.7 Responses of NPP (a), NEE (b), Rh (c), runoff (d), and ET (e) to simultaneous 

changes in temperature and precipitation 
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Fig. 5.8 Responses of NPP (a), NEE (b), Rh (c), runoff (d), and ET (e) to simultaneous 

changes in precipitation and CO2  

 

Fig. 5.9 Responses of NPP (a, c, e) and NEE (b, d, f) to simultaneous changes in 

temperature, CO2, and precipitation 

 

Fig. 5.10 Responses of runoff (a, c, e) and ET (b, d, f) to simultaneous changes in 

temperature, CO2, and precipitation 
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ABSTRACT 

 

Terrestrial carbon processes, such as soil respiration and its components, net 

primary production (NPP), net ecosystem carbon exchange (NEE), and litterfall, are the 

important global change issues, which are related to carbon sequestration and ecosystem 

carbon-cycle feedback to climate change. This dissertation summarized four 

independent projects using experimental and modeling approaches. In the first study, I 

took advantage of two manipulative experiments – one long-term with a 2oC increase 

and yearly clipping (Experiment 1) and one short-term with a 4.4oC increase and 

doubled precipitation (Experiment 2) – to investigate main and interactive effects of 

warming, clipping, and doubled precipitation on soil respiration in a tallgrass prairie 

ecosystem. The transient responses to clipping were also studied in Experiment 2 

(referred to as the transient study). On average, warming increased soil respiration by 

13.0% (p < 0.01) in Experiment 1, by 22.9% (p < 0.0001) in Experiment 2, and by 

26.6% (p < 0.0001) in the transient study. Doubled precipitation resulted in an increase 

of 9.0% (p < 0.05) in soil respiration in Experiment 2. Yearly clipping did not 

significantly affect soil respiration (p = 0.66) in Experiment 1, while clipping decreased 

soil respiration by 16.1% (p < 0.05) in the transient study. No significant interactive 

effects among the experimental factors were statistically found on soil respiration or 

their temperature sensitivities except for the warming×clipping interaction (p < 0.05) in 

the transient study. The observed minor interactive effects relative to main ones suggest 
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ABSTRACT


Terrestrial carbon processes, such as soil respiration and its components, net primary production (NPP), net ecosystem carbon exchange (NEE), and litterfall, are the important global change issues, which are related to carbon sequestration and ecosystem carbon-cycle feedback to climate change. This dissertation summarized four independent projects using experimental and modeling approaches. In the first study, I took advantage of two manipulative experiments – one long-term with a 2oC increase and yearly clipping (Experiment 1) and one short-term with a 4.4oC increase and doubled precipitation (Experiment 2) – to investigate main and interactive effects of warming, clipping, and doubled precipitation on soil respiration in a tallgrass prairie ecosystem. The transient responses to clipping were also studied in Experiment 2 (referred to as the transient study). On average, warming increased soil respiration by 13.0% (p < 0.01) in Experiment 1, by 22.9% (p < 0.0001) in Experiment 2, and by 26.6% (p < 0.0001) in the transient study. Doubled precipitation resulted in an increase of 9.0% (p < 0.05) in soil respiration in Experiment 2. Yearly clipping did not significantly affect soil respiration (p = 0.66) in Experiment 1, while clipping decreased soil respiration by 16.1% (p < 0.05) in the transient study. No significant interactive effects among the experimental factors were statistically found on soil respiration or their temperature sensitivities except for the warming×clipping interaction (p < 0.05) in the transient study. The observed minor interactive effects relative to main ones suggest that results from single-factor experiments are useful in informing us of potential responses of soil respiration to multi-factor global change, at least in our ecosystem.

In the second experiment, a long-term experiment was conducted to investigate effects of warming and yearly clipping on soil respiration and its components (autotrophic and heterotrophic respiration, RA and RH) in a tallgrass prairie ecosystem. Interannual variability of these fluxes was also examined. Using the deep-collar insertion to partition soil respiration, heterotrophic respiration accounted for approximately 66% of soil respiration over the six years. Warming treatment significantly stimulated soil respiration and its components (i.e., RA and RH) in most years. In contrast, yearly clipping significantly reduced soil respiration only in the last two years, although it decreased RH in every year of the study. Temperature sensitivity (i.e., apparent Q10 values) of soil respiration was slightly lower under warming (p>0.05) and reduced considerably by clipping (p<0.05) compared to that in the control. However, warming did not change relative contributions of RA or RH to soil respiration. In addition, the apparent Q10 values for RA were higher than those for RH and soil respiration. Annual soil respiration did not vary substantially among years as precipitation did. The interannual variability of soil respiration may be mainly caused by precipitation distribution and summer severe drought. Our results suggest that the effects of warming and yearly clipping on soil respiration and its components did not result in significant changes in RH or RA contribution, and rainfall timing may be more important in determining interannual variability of soil respiration than the amount of annual precipitation. 

The third is to investigate the role of precipitation on ecosystem carbon processes (i.e., biomass, litterfall, and soil respiration) along a natural precipitation gradient in southern Great Plains. Our results show that aboveground biomass (AGB), standing litter (ST), surface litter (SU), and soil respiration often linearly increased with an increase in precipitation along the gradient, although belowground biomass (BGB) and total biomass did not largely change. BGB to AGB ratio and rain use efficiency (RUE) linearly decreased with increasing precipitation due to less plant allocation to roots and high biogeochemical constraints (e.g., nutrients or light), respectively, at mesic sites of the gradient. The one-year precipitation before samplings (OYP) had better correlations with biomass, litterfall, and soil respiration than mean annual precipitation (MAP). Soil respiration was not only affected by precipitation, but also regulated by litterfall in fall and winter and by AGB in spring, which were mainly controlled by precipitation. The results suggest that precipitation is an important driver in shaping ecosystem functioning by controlling soil water dynamics, which directly affects vegetation production and litterfall, and indirectly regulates soil respiration.

In the fourth study, a terrestrial ecosystem (TECO) model was used to examine nonlinear patterns of ecosystem responses to changes in temperature, CO2, and precipitation individually or in combination. The TECO model was calibrated against experimental data obtained from a grassland ecosystem in central USA and ran for 100 years with gradual change at 252 different scenarios. The 100th-year results of ecosystem responses were presented. Variables examined in this study are net primary productivity (NPP), Rh (heterotrophic respiration), net ecosystem carbon exchange (NEE), runoff, and evapotranspiration (ET). The modeling results show that nonlinear patterns were parabolic, asymptotic, and threshold-like in response to temperature, CO2, and precipitation anomalies, respectively, for NPP, NEE, and Rh. Runoff and ET exhibited threshold-like pattern in response to both temperature and precipitation anomalies but were less sensitive to CO2 changes. The combined two- or three-factor changes in temperature, CO2, and precipitation considerably influenced nonlinearity of ecosystem responses by either changing patterns and/or shifting points of abrupt changes. Our results suggest that nonlinear patterns in response to multiple global change factors were diverse and considerably affected by combined climate anomalies on ecosystem carbon and water processes.

Keywords: global change, warming, precipitation, elevated CO2, clipping, grassland, interaction, nonlinear, soil respiration, Q10, heterotrophic respiration, net primary production, net ecosystem carbon excachange, litterfalll, runoff, evapotranspiration. 
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that results from single-factor experiments are useful in informing us of potential 

responses of soil respiration to multi-factor global change, at least in our ecosystem. 

In the second experiment, a long-term experiment was conducted to investigate 

effects of warming and yearly clipping on soil respiration and its components 

(autotrophic and heterotrophic respiration, RA and RH) in a tallgrass prairie ecosystem. 

Interannual variability of these fluxes was also examined. Using the deep-collar 

insertion to partition soil respiration, heterotrophic respiration accounted for 

approximately 66% of soil respiration over the six years. Warming treatment 

significantly stimulated soil respiration and its components (i.e., RA and RH) in most 

years. In contrast, yearly clipping significantly reduced soil respiration only in the last 

two years, although it decreased RH in every year of the study. Temperature sensitivity 

(i.e., apparent Q10 values) of soil respiration was slightly lower under warming (p>0.05) 

and reduced considerably by clipping (p<0.05) compared to that in the control. However, 

warming did not change relative contributions of RA or RH to soil respiration. In 

addition, the apparent Q10 values for RA were higher than those for RH and soil 

respiration. Annual soil respiration did not vary substantially among years as 

precipitation did. The interannual variability of soil respiration may be mainly caused by 

precipitation distribution and summer severe drought. Our results suggest that the 

effects of warming and yearly clipping on soil respiration and its components did not 

result in significant changes in RH or RA contribution, and rainfall timing may be more 

important in determining interannual variability of soil respiration than the amount of 
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annual precipitation.  

The third is to investigate the role of precipitation on ecosystem carbon processes 

(i.e., biomass, litterfall, and soil respiration) along a natural precipitation gradient in 

southern Great Plains. Our results show that aboveground biomass (AGB), standing 

litter (ST), surface litter (SU), and soil respiration often linearly increased with an 

increase in precipitation along the gradient, although belowground biomass (BGB) and 

total biomass did not largely change. BGB to AGB ratio and rain use efficiency (RUE) 

linearly decreased with increasing precipitation due to less plant allocation to roots and 

high biogeochemical constraints (e.g., nutrients or light), respectively, at mesic sites of 

the gradient. The one-year precipitation before samplings (OYP) had better correlations 

with biomass, litterfall, and soil respiration than mean annual precipitation (MAP). Soil 

respiration was not only affected by precipitation, but also regulated by litterfall in fall 

and winter and by AGB in spring, which were mainly controlled by precipitation. The 

results suggest that precipitation is an important driver in shaping ecosystem functioning 

by controlling soil water dynamics, which directly affects vegetation production and 

litterfall, and indirectly regulates soil respiration. 

In the fourth study, a terrestrial ecosystem (TECO) model was used to examine 

nonlinear patterns of ecosystem responses to changes in temperature, CO2, and 

precipitation individually or in combination. The TECO model was calibrated against 

experimental data obtained from a grassland ecosystem in central USA and ran for 100 

years with gradual change at 252 different scenarios. The 100th-year results of 
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ecosystem responses were presented. Variables examined in this study are net primary 

productivity (NPP), Rh (heterotrophic respiration), net ecosystem carbon exchange 

(NEE), runoff, and evapotranspiration (ET). The modeling results show that nonlinear 

patterns were parabolic, asymptotic, and threshold-like in response to temperature, CO2, 

and precipitation anomalies, respectively, for NPP, NEE, and Rh. Runoff and ET 

exhibited threshold-like pattern in response to both temperature and precipitation 

anomalies but were less sensitive to CO2 changes. The combined two- or three-factor 

changes in temperature, CO2, and precipitation considerably influenced nonlinearity of 

ecosystem responses by either changing patterns and/or shifting points of abrupt 

changes. Our results suggest that nonlinear patterns in response to multiple global 

change factors were diverse and considerably affected by combined climate anomalies 

on ecosystem carbon and water processes. 

 

Keywords: global change, warming, precipitation, elevated CO2, clipping, grassland, 

interaction, nonlinear, soil respiration, Q10, heterotrophic respiration, net primary 

production, net ecosystem carbon excachange, litterfalll, runoff, evapotranspiration.  
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Chapter 1 

 
Introduction 

Global atmospheric concentrations of greenhouse gases such as CO2, CH4, and 

N2O have increased dramatically since the industrial revolution at the end of the 18th 

century largely due to fossil fuel combustion and land use change (IPCC 2001). As a 

consequence of rising CO2 and other greenhouse gases, the Earth’s surface temperature 

has increased by 0.6oC in the 20th century and is expected to increase by 1.4 ~ 5.8oC by 

the end of this century due to the enhanced downward infrared radiation reflected by the 

earth’s surface (IPCC 2001). In the US Great Plains, air temperature is predicted to 

increase by 2 to 4oC with doubling of current CO2 concentration (Long and Hutchin 

1991). Such rising CO2 and warming are likely to alter patterns of global air circulation 

and hydrologic cycling that will change global and regional precipitation regimes 

(DelGenio et al. 1991, Trenberth 1999, Huntington 2006). Precipitation is anticipated to 

increase by about 0.5 to 1% per decade in this century globally as it happened in the last 

century (IPCC 2001). More importantly, heavy rainfall events may increase by 16-22% 

per decade in the southern Great Plains (Kunkel et al. 1999). The unprecedented 

changes in CO2 concentration, temperature, and precipitation could profoundly alter 

ecosystem structure and function.  

Land use practice such as mowing or clipping for hay in grasslands, which 

account for more than 20% of the global terrestrial ice-free surface (White et al. 2000) 

and 54% of the conterminous United States (USDA 1972), has widely been applied in 
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Chapter 1

Introduction

Global atmospheric concentrations of greenhouse gases such as CO2, CH4, and N2O have increased dramatically since the industrial revolution at the end of the 18th century largely due to fossil fuel combustion and land use change (IPCC 2001). As a consequence of rising CO2 and other greenhouse gases, the Earth’s surface temperature has increased by 0.6oC in the 20th century and is expected to increase by 1.4 ~ 5.8oC by the end of this century due to the enhanced downward infrared radiation reflected by the earth’s surface (IPCC 2001). In the US Great Plains, air temperature is predicted to increase by 2 to 4oC with doubling of current CO2 concentration (Long and Hutchin 1991). Such rising CO2 and warming are likely to alter patterns of global air circulation and hydrologic cycling that will change global and regional precipitation regimes (DelGenio et al. 1991, Trenberth 1999, Huntington 2006). Precipitation is anticipated to increase by about 0.5 to 1% per decade in this century globally as it happened in the last century (IPCC 2001). More importantly, heavy rainfall events may increase by 16-22% per decade in the southern Great Plains (Kunkel et al. 1999). The unprecedented changes in CO2 concentration, temperature, and precipitation could profoundly alter ecosystem structure and function. 

Land use practice such as mowing or clipping for hay in grasslands, which account for more than 20% of the global terrestrial ice-free surface (White et al. 2000) and 54% of the conterminous United States (USDA 1972), has widely been applied in the southern Great Plains. It may also have considerable effects on ecosystem processes (Leriche et al. 2003, Wan and Luo 2003, Bahn et al. 2006). Corresponding changes in air and soil temperature, atmospheric CO2 concentration, and precipitation will co-occur with ongoing changes in land use and land cover, which are likely to alter ecosystem carbon cycling in terrestrial environments. 


Soil respiration, also referred to as soil CO2 efflux, represents CO2 release at the soil surface from heterotrophic respiration during organic matter decomposition (RH) and autotrophic respiration by live roots and their symbionts (RA, Boone et al. 1998, Högberg et al. 2001, Wan and Luo 2003). This flux is the largest terrestrial source of 
[image: image78.png] 

Fig. 1.1 Schematic diagram of ecosystem carbon processes. Circled are the processes focused in each chapter. GPP: gross primary production, NPP: net primary production, Rp: aboveground plant respiration, Ra: autotrophic root respiration, Rh: heterotrophic respiration, Rs: soil respiration, Re: ecosystem respiration, and NEE: net ecosystem exchange of CO2.


CO2 to the atmosphere, which is about 68 to 80 Pg C yr-1 on a global scale (Schlesinger 1977, Raich and Schlesinger 1992, Raich and Potter 1995, Raich et al. 2002). This is more than 10 times the current rate of fossil fuel combustion (Schlesinger 1997). Global modeling studies have demonstrated that even a small change in soil respiration could significantly exacerbate or mitigate the buildup of this greenhouse gas in the atmosphere (Cramer et al., 2001), with consequent feedbacks to climate change (Kirshbaum 1995, 2000, Woodwell et al., 1998; Cox et al., 2000, Luo et al. 2001a). Furthermore, soil respiration is an integral part of the ecosystem carbon cycle and is closely related to various components of ecosystem production such as net primary production (NPP), net ecosystem exchange of CO2 (NEE), and litterfall (Fig. 1.1, Luo and Zhou 2006). Global climate change can also potentially alter these ecosystem processes according to coupled carbon-climate models and manipulative experiments (Shave et al. 2000, Cramer et al. 2001, Weltzin et al. 2003). Therefore, understanding regulations of soil respiration and other terrestrial carbon processes by global environmental factors is a critical step toward projecting climate change in the future. 


Concern about climate change and associated long-term impact on the earth has intensified research interest in the flux of carbon between terrestrial ecosystem and the atmosphere (Woodwell and Mackenzie 1995, IPCC 2001). Previous studies have shown that CO2 efflux from soil varied largely with temperature (Peterjohn et al. 1993, McHale et al. 1998, Shaver et al. 2000, Rustad et al. 2001, Melillo et al. 2002, Verburg et al. 2005), moisture availability (Knapp et al. 2002, Liu et al. 2002, Lee et al. 2004, Xu et al. 2004, Harper et al. 2005), and substrate supply (Bremer et al. 1998, Craine et al. 1999, Craine and Wedin 2002). The majority of those studies that investigated responses of soil respiration to the above-mentioned variables have been carried out in single-factor experiments, although those results have considerably advanced our understanding of ecosystem responses to climate change. However, global change involves simultaneous changes in multiple factors, which could potentially have complex interactive influences on ecosystem structure and processes. Thus, understanding how ecosystems respond to multiple global change factors and how they interactively affect soil respiration are imperative. 

Autotrophic root respiration (RA) and heterotrophic component (RH) contribute to soil respiration (Hanson et al. 2000, Kuzyakov 2006, Subke et al. 2006). Although warmer temperature has been found to cause significant increases in the efflux of CO2 from soils in various biomes (Rustad et al. 2001), little information is available on how various components of soil respiration respond differently to increasing temperature, especially in natural ecosystems. Partitioning soil respiration into RA and RH components becomes crucial for understanding their differential responses to climatic change. In contrast to climate warming, effects of land use practice on soil respiration have rarely been investigated (Davidson et al. 2000), and virtually nothing is known on how they influence components of grassland soil respiration (Hanson et al. 2000, Bond-Lamberty et al. 2004, Subke et al. 2006). Additionally, it is also not well known how climate warming and clipping would affect interannual variability of soil respiration and its components (i.e., RA and RH).


As we know, considerable research has been conducted to examine the effects of elevated temperature and CO2 concentration on ecosystem structure and function (Koch and Mooney 1996, Shaver et al. 2000, Ainsworth and Long 2005). However, shifts in precipitation regimes may have an even greater impact on ecosystem dynamics than the singular or combined effects of rising CO2 and temperature, especially in grassland ecosystems (Weltzin et al. 2003). How precipitation affects ecosystem carbon gain, reservoir, and loss (i.e., productivity, litterfall, and soil respiration) and how they are interactively regulated are largely limited. 


In global change research, it is commonly acknowledged that ecosystem responses to global changes in temperature, CO2 concentration, and precipitation are nonlinear. However, patterns of the nonlinearity have not been well characterized on ecosystem carbon and water processes. Currently, the majority of the experiments conducted at two discrete treatment levels were inadequate to examine nonlinearity. It is impossible to conduct manipulative experiments to examine nonlinear responses to simultaneous changes in multiple factors due to cost limitation and ecosystem complexities. Thus, it is urgently needed to examine nonlinear patterns in response to a range of potential future climates (e.g., temperature, CO2, and precipitation) using modeling approach. These questions form the focus of this research shown in Fig. 1.1.


This dissertation is an attempt to address the effects of global change factors and land use practice on ecosystem carbon cycling (mainly soil respiration) in grassland ecosystems using three different approaches: warming manipulation, transect study, and modeling. More specifically, four objectives will be explored in this research. The first objective is to investigate how multifactor global change factors interactively affect soil respiration. To achieve this objective, two experiments, one long-term with a 2oC increase and one short term with a 4.4oC increase were conducted to investigate main and interactive effects of warming, clipping, and doubled precipitation on soil respiration and its temperature sensitivity. The second objective is to study effects of warming and clipping on soil respiration and its components (i.e., RA and RH) and on interannual variability of these fluxes. In this study, we will conduct a long-term warming and yearly clipping experiment to investigate effects on soil respiration and its components and interannual variability. The third objective is to evaluate the role of precipitation on ecosystem carbon processes along a natural precipitation gradient. A transect study will be conducted to investigate patterns of biomass, litterfall, and soil respiration along the gradient with the precipitation from 430 to 1200 mm. The fourth objective is to examine nonlinear patterns in response to changes in temperature, CO2 concentration, and precipitation individually and in combination. To achieve this objective, we will use a terrestrial ecosystem (TECO) model to simulate 252 climate change scenarios with individual and combined changes in temperature, CO2, and precipitation, and then present the nonlinear patterns. 

The results from this research will help scientists and public to better understand effects of global change factors and land use practice (i.e., clipping) on the flux of carbon between grassland ecosystem and the atmosphere. The results may provide theoretical results that can serve as a guide for ecosystem service in a changing world. This work can be applicable for management of natural terrestrial carbon sinks and calculating CO2 emission to trade carbon in the carbon mitigation market in the future. It is also important to feed this research back into the policy process. 

This dissertation includes six chapters. Chapter 1 of the dissertation lays out the problem and significance of this research. Chapter 2 examines the main and interactive effects of warming, clipping, doubled precipitation on soil respiration. Chapter 3 addresses the study on source components and interannual variability of soil respiration under experimental warming and clipping. Chapter 4 explores patterns of biomass, litterfall, and soil respiration along a precipitation gradient in southern Great Plains. Chapter 5 presents nonlinear patterns of ecosystem carbon and water dynamics in response to gradual changes in temperature, CO2 concentration, and precipitation using model approach. Chapter 6 of this dissertation provides conclusions of this research and implications for future work on global change research.

Chapter 2

Main and interactive effects of warming, clipping, and doubled precipitation on soil respiration in a grassland ecosystem


[image: image1]
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ABSTRACT


It is well documented that temperature, moisture, and substrate supply are three major factors affecting soil respiration. However, few studies have rigorously examined their interactive effects. We conducted two experiments – one long-term with a 2oC increase (Experiment 1) and one short-term with a 4.4oC increase (Experiment 2) – to investigate main and interactive effects of warming, clipping, and doubled precipitation on soil respiration and its temperature sensitivity in a tallgrass prairie of the US Great Plains.  Infrared heaters were used to simulate climatic warming and clipping to mimic hay mowing. A ‘rainfall collection pan’ device was used to double precipitation in Experiment 2. Additionally, responses of soil respiration to abrupt reduction in substrate supply by clipping were studied in Experiment 2 (referred to as the transient study). On average, warming increased soil respiration by 13.0% (p < 0.01) in Experiment 1, by 22.9% (p < 0.0001) in Experiment 2, and by 26.6% (p < 0.0001) in the transient study. Doubled precipitation resulted in an increase of 9.0% (p < 0.05) in soil respiration in Experiment 2.  Yearly clipping did not significantly affect soil respiration (p = 0.66) in Experiment 1, while clipping decreased soil respiration by 16.1% (p < 0.05) in the transient study.  Temperature sensitivity of soil respiration significantly decreased from an apparent Q10 value of 2.51 in unwarmed plots to 2.02 in warmed plots without extra precipitation and from 2.57 to 2.23 with doubled precipitation in Experiment 2. No significant interactive effects among the experimental factors were statistically found on soil respiration or their temperature sensitivities except for the warming×clipping interaction (p < 0.05) in the transient study. Our observed minor interactive effects relative to main ones suggest that results from single-factor experiments are useful in informing us of potential responses of soil respiration to multi-factor global change, at least in our ecosystem. No matter if this conclusion can be generalized across ecosystems, this study poses testable hypotheses to be examined in other experiments.


Keywords: Carbon cycle, global change, soil respiration, Q10, interaction, warming, precipitation, clipping, substrate supply, tallgrass prairie. 


2.1. Introduction

Global warming resulting from CO2 and other greenhouse gases is expected to increase the mean global temperature by 1.4 ~ 5.8oC by the end of this century (Houghton et al. 2001). In the US Great Plains, air temperature is predicted to increase by 2 to 4oC with doubling of current CO2 concentration (Long and Hutchin 1991). In addition, anthropogenic climate change likely will result in increasingly altered precipitation regimes. The anticipated increase in precipitation is about 0.5 to 1% per decade in this century globally (Houghton et al. 2001) and heavy rainfall events may increase by 16-22% per decade in the southern Great Plains, USA (Kunkel et al. 1999). Warmer temperature and increased precipitation would likely alter the fluxes of carbon from soil to the atmosphere (i.e., soil respiration).


Soil respiration, also referred to as soil CO2 efflux, represents CO2 release at the soil surface from microbial respiration during organic matter decomposition and rhizosphere respiration by live roots and their symbionts (Boone et al. 1998, Högberg et al. 2001, Wan and Luo 2003). This flux is the largest terrestrial source of CO2 to the atmosphere, which is about 68 to 80 Pg C yr-1 on a global scale (Raich and Schlesinger 1992, Raich et al. 2002). Global modeling studies have demonstrated that even a small change in soil CO2 emissions could significantly exacerbate or mitigate the buildup of this greenhouse gas in the atmosphere (Cramer et al. 2001), with consequent feedbacks to climate change (Woodwell et al. 1998, Cox et al. 2000). Therefore, understanding regulations of soil respiration by major environmental factors is a critical step toward projecting climate change in the future. 


 Past research has demonstrated that the rate of CO2 production in the soil varies strongly with temperature (Peterjohn et al. 1993, Rustad et al. 2001), moisture availability (Liu et al. 2002, Xu et al. 2004), and substrate supply (Bremer et al. 1998, Craine et al. 1999). The majority of the studies that investigated responses of soil respiration to the above-mentioned variables have been carried out in single-factor experiments. These single-factor experiments have considerably advanced our understanding of ecosystem responses to climate change. For example, warming experiments have indicated average increases of 20% in soil respiration across a range of temperature increases, with greater increases in the first few years (Rustad et al. 2001). Clipping, instead, significantly reduces soil respiration by 19-49% (Bremer et al. 1998, Wan and Luo, 2003). Increased rainfall variability and/or reduced rainfall amount usually decrease soil respiration (Harper et al. 2005).


Unlike common single-factor experiments, global change involves simultaneous changes in multiple factors, which could potentially have complex interactive influences on ecosystem structure and processes. For example, data from a grassland site in California showed that elevated CO2 suppressed the effects of increased temperature, precipitation, and N deposition on net primary production (NPP) in the third year of manipulations (2000-2001). That result indicates that the multi-factor responses to global changes differed greatly from simple combinations of single-factor responses (Shaw et al. 2002). Conversely, interactive effects of warming with elevated atmospheric CO2 on soil respiration were not observed in other studies (Edwards and Norby 1998, Lin et al. 2001, Niinistö et al. 2004). Thus, evaluating multi-factor interactions in influencing ecosystem structure and processes is critical to understanding their response to global change in the real world. Indeed, when interactive effects dominate over the main effects of individual factors, results from single-factor experiments become less useful for understanding ecosystem changes. In the case that interactive effects are minor relative to main effects, results from single-factor experiments may become useful in informing us of potential changes of ecosystems in response to multi-factor global change.  


In this study, we took advantage of two on-going experiments to evaluate main and interactive effects of three factors – warming, clipping, and doubled precipitation – on soil respiration and its temperature sensitivity in a grassland ecosystem. Experiment 1 was designed to examine effects of long-term warming plus yearly clipping on community structure and ecosystem processes (Luo et al. 2001a, Wan et al. 2005). Experiment 2 was to examine ecosystem responses to short-term (i.e., one-year) warming and doubled precipitation. To examine transient responses of soil respiration to substrate supply, we also clipped aboveground biomass in autumn of 2003 in Experiment 2. We hypothesized that warming and doubled precipitation would increase soil respiration and clipping would decrease it. We also hypothesized that interactive effects of the three factors would occur on soil respiration and its temperature sensitivity. To test these hypotheses, we measured soil respiration at monthly intervals and derived basal respiration rates and temperature sensitivity coefficients by fitting an exponential equation to measured soil respiration and soil temperature. Repeated measures analysis of variance (RM-ANOVA) was applied for significance tests of treatment effects on soil respiration. T-tests of regression coefficients were performed to examine adjustments in temperature-respiration relationships under different treatments.

2.2. Materials and Methods

Site description


The experiments were conducted at the Great Plains Apiaries in McClain County, Oklahoma (34o59’ N, 97o31’ W), approximately 40 km southwest of the Norman campus of the University of Oklahoma, USA. It is a 137.6-ha farm located in the Central Redbed Plains of Oklahoma (Tarr et al. 1980). The study site is an upland tallgrass prairie dominated by four C4 grasses (Schizachyrium scoparium, Sorghastrum nutans, Andropogon gerardii, and Panicum virgatum), two C3 forbs (Ambrosia psilostachyia and Xanthocephalum texanum), and one winter-dominant C3 grass (Bromus japonicus). The four C4 grasses represent approximately 75% of the total plant biomass (R. Sherry and Y. Luo, unpublished data). Mean annual temperature is 16.3oC, with monthly air temperature ranging from 3.3oC in January to 28.1oC in July. Mean annual precipitation is 915 mm, with monthly precipitation ranging from 30 mm in January to 135 mm in May (average values from 1948 to 1998, Oklahoma Climatological Survey). A silt loam soil in the grassland includes 35.3% sand, 55.0% silt, and 9.7% clay (A. Subedar and Y. Luo, unpublished data).  Soil carbon content is 1.42% on a mass basis (Luo et al. 2001a). The soil belongs to part of the Nash-Lucien complex with neutral pH, high available water capacity, and a deep, moderately penetrable root zone (USDA 1979).

Experimental design  


We used two on-going experiments to examine main and interactive effects of warming, clipping, and doubled precipitation on soil respiration and its temperature sensitivity. Experiments 1 examined the long-term warming/yearly clipping effects on ecosystem processes, whereas experiment 2 investigated ecosystem responses to one-

Table 2.1 Comparison of Experiment 1, Experiment 2, and the transient study


		

		Experiment 1a

		Experiment 2b

		The transient study c



		Treatments 


Warming period


Warming effects on soil temperature


  Monthly measurement


  Hourly record


Warming effects on soil moisture


  Monthly measurement


  Hourly record

		Warming and yearly clipping


21 Nov 1999 to present


1.48oC (5 cm)


2.0oC (2.5 cm)


-1.24% (0-15cm)


−

		Warming and doubled precipitation


20 February 2003 to 20 February 2004


2.73oC (5 cm)


4.4oC (2 cm)


−


-5.68% (0-15 cm)

		Clipping, warming, and doubled precipitation


20 February 2003 to 


20 February 2004


2.63oC (5 cm)


4.3oC (2 cm)


-2.47% (0-15cm)


−





Notes: The measurement depths of soil temperature and moisture are shown in parentheses. 

a the long-term experiment with warming and yearly clipping treatments


b the short-term (one-year) experiment with warming and doubled precipitation treatments 


c conducted in Experiment 2 from 16 September to 21 November 2003


year warming/doubled precipitation and subsequent-year lag effects on biogeochemical processes (Table 2.1). In addition, the transient responses to clipping in Experiment 2 were studied in contrast with yearly clipping in Experiment 1. The two experiments and the transient study are described below.


Experiment 1: The experiment was conducted at a site of old-field tallgrass prairie abandoned from crop field 30 years ago without grazing for 27 years. The field experiment used a paired, nested design with warming as the main factor and clipping as a secondary factor. Twelve 2 × 2 m plots were divided into six pairs of control (i.e., unwarmed) and warmed plots. In each warmed plot, one 165 × 15 cm infrared heater (Kalglo Electronics Inc., Bethlehem, Pennsylvania, USA) has a radiation output of 100 Watts m-2 and was suspended in the middle of each plot at the height of 1.5m above the ground. The height of 1.5m was determined by considerations of vegetation height and radiative energy output. The heating is on year around, 24 hours per day and 365 days per year in the field. To simulate shading effects of heaters, we installed one ‘dummy’ heater made of metal flashing with the same shape and size as the heating device over each control plot. A previous study by Wan et al. (2002) has documented that warming increased daily mean air temperature at 25 cm above the ground by 1.1oC and soil temperature at the 2.5-cm depth by 2.0oC. Each 2 × 2 m plot was divided into four 1 × 1 m subplots. Plants in two diagonal subplots were clipped at the height of 10 cm above the ground yearly, usually in July.  The other two were the unclipped control. Usually farmers and ranchers in the southern Great Plains mow grass pasture once to twice per year, depending on rainfall. Our study site is rather xeric, yearly clipping mimic hay mowing once a year. Each treatment – control (C), warmed (W), clipped (CL), and warmed plus clipped (W+CL) – had 6 replicates.


Experiment 2: The experiment was situated approximately 500 meters away from Experiment 1. Twenty 3 × 2 m plots were established in two rows that were separated by approximately 3 m. Within one row, the distance between plots was 1.5 m. Half of the plots were randomly selected for warming treatments with two infrared heaters suspended in the middle of the plots at the height of 1.5m above the ground. The other 10 plots had ‘dummy’ heaters suspended at the same height as in the warmed plots. Five of both the warmed and unwarmed plots were randomly selected to receive doubled precipitation using a ‘rainfall collection pan’ device, which is an angled catchment with the same size and shape as the plot. One rainfall collection pan was installed about 40 cm above the ground with a slope lower near the plot and 30 cm away from each doubled precipitation plot to funnel water onto these plots so that the amount of rainfall was doubled. The pan was connected to three 1.8-cm (inner diameter) polyvinyl chloride (PVC) pipes with 3.0-mm holes to distribute the collected water evenly over the plots. We also installed the PVC pipes in those plots without extra precipitation to have uniform effects of pipes if any.  Thus, four treatments – control (C), warmed (W), doubled precipitation (PPT), and warmed plus doubled precipitation (W+PPT) – had five replicates. 


The transient study: We studied transient responses of soil respiration to abrupt reduction in substrate supply by clipping in Experiment 2. A half of each plot was clipped at 10 cm above the ground on 16 September, 2003. Thus, there were eight treatments – control (C), warmed (W), doubled precipitation (PPT), warmed plus doubled precipitation (W+PPT); clipped (CL), clipped plus warmed (CL+W), clipped plus doubled precipitation (CL+PPT), and clipped plus warmed plus doubled precipitation (CL+W+PPT) – with five replicates.


Measurement protocols


To measure soil respiration, PVC collars (80 cm2 in area and 5 cm in height) were inserted 2-3 cm into the ground at the center of each subplot or quarter at the beginning of the experiments. Living plants inside the soil collars were clipped at the soil surface at least 1 day before the measurement to eliminate aboveground plant respiration. The clipped plant materials were left in the collars. Measurements of soil respiration were taken monthly between 10:00 and 15:00 (local time), using a LI-COR 6400 portable photosynthesis system attached to a 6400-09 soil CO2 flux chamber (LI-COR. Inc., Lincoln, Nebraska, USA). Standard procedures recommended by LI-COR were applied to measure soil respiration. Data were recorded at a 5 second interval by the datalogger in LI-COR 6400 console. Each of the measurements usually took 1 – 3 minutes after placing the chamber over the collar. 


Soil temperature at the depth of 5 cm was monitored adjacent to each PVC collar using a thermocouple probe (LI-COR 6000-09TC) connected to the LI-COR 6400 at the same time when we measured soil respiration. Data were also logged at a 5 second interval.


In Experiment 1 and the transient study, volumetric soil water content (%V) was measured using manual Time Domain Reflectometry (TDR) equipment (Soilmoisture Equipment Corp., Santa Barbara, California, USA) at the depth interval of 0-15 cm. In Experiment 2, TDR probes (ESI Environmental Sensor Inc., Victoria, British Columbia, Canada) were used to automatically monitor soil moisture at depths of 0-15 cm, 15-30 cm, 30-60 cm, 60-90 cm, and 90-120 cm. Soil moisture data were logged hourly through a CR10X datalogger (Campbell scientific, Inc., Logan, Utah). However, due to shrinking and swelling of soils, nine TDR probes were partially damaged or malfunctioned in the middle of the study. Complete data sets of soil moisture were available only in 11 of the 20 plots.  In this study, the readings at the depth of 0-15cm were used because this depth is more closely associated with soil surface CO2 efflux.


In Experiment 1, soil respiration, soil temperature, and soil moisture were monthly measured in one clipped and one unclipped subplot of each plot in 2003. In Experiment 2, each plot was divided into four quarters, and monthly measurements of soil respiration and soil temperature were performed in the southwest and northeast quarters from January 2002 to February 2004 except February and March 2003 (three times per month), while soil moisture was monitored hourly at the center of each plot.  In the transient study, soil respiration, soil temperature, and soil water content (%V) were intensively measured at days 3, 9, 17, 27, 37, 49, 58, 66 after clipping until 21 November, 2003 in both the clipped and unclipped half plots.


Estimation of annual soil respiration


Annual soil respiration for each treatment was estimated by summing the products of monthly mean soil respiration and the number of days between samples. It was corrected further for diurnal patterns in fluxes. Our measurements, collected between 10:00 and 15:00, were assumed to represent daytime averages based on diurnal patterns observed by Wan and Luo (2003) at a similar site. The calculated average daily efflux was 96.5% of the observed daytime average. The corrected daily flux was then multiplied by the number of days between measurements to compute the cumulative flux over the period (Bremer et al. 1998). 


Data analysis


In Experiment 2, each plot was an experimental unit, so replicate measurements were averaged by plot for analysis. In addition, means of soil respiration and soil temperature in February and March 2003 were applied to keep monthly consistent in statistical analysis. The main and interactive effects and temporal changes of warming, precipitation, and clipping treatments on soil respiration, soil temperature, and soil moisture were determined with a repeated measures analysis of variance (RM-ANOVA).  The statistical analyses were performed in SPSS 11.0.1 for windows (SPSS Inc., Chicago, USA 2001). 


We assessed the sensitivity of soil respiration to soil temperature by fitting exponential functions to the data from individual treatments. 
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where Rs is soil respiration (μmol m-2 s-1), T is soil temperature (oC) at the depth of 5 cm, a is the intercept of soil respiration when temperature is zero (i.e., basal respiration rate), and b represents the temperature sensitivity of soil respiration. The b values were used to calculate a respiration quotient (Q10), which describes the change in fluxes over a 10oC increase in soil temperature, by:
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Values of parameters (i.e., a, b, and Q10) derived from seasonal data sets reflect effects of temperature and other co-varying factors on soil respiration (Boone et al. 1998, Högberg et al. 2001). Thus, an apparent Q10 value is used to denote the derived temperature sensitivity of soil respiration hereafter.

A T-test was used to assess the significance of main and interactive effects of regression coefficients a and b among the treatments as presented in Appendix A. The main and interactive effects were considered to be significantly different if p < 0.05. 


2.3. Results


Warming and yearly clipping effects in Experiment 1


Soil respiration exhibited pronounced seasonal variations with average values ranging from 0.52 µmol m-2 s-1 in December to 5.13 µmol m-2 s-1 in June in the control plots in 2003 (Fig. 2.1a). Soil respiration in warmed plots increased significantly by 9.9% in comparison to that in unwarmed plots without clipping, and by 16.4% with clipping (13.0% on average, Fig. 2.1a, Table 2.2). However, no significant effects of yearly clipping and warming×yearly clipping interaction were found on soil respiration. Significant interactions occurred between warming and sampling dates and between yearly clipping and sampling dates (W×D and CL×D, Table 2.2).


Soil temperature at the depth of 5 cm showed a similar seasonal trend as soil respiration (Fig. 2.1b). Warming increased soil temperature by 1.23oC over the whole year in unclipped plots and by 1.73oC in clipped plots based on monthly daytime measurements (p<0.0001, Fig. 2.1, Table 2.1, ). Yearly clipping increased soil temperature by 0.80oC relative to that in the control plots in the daytime (p < 0.001, Fig. 2.1b). Soil moisture (0-15 cm) fluctuated greatly over the season (Fig. 2.1c). The lowest soil moisture was observed in summer (July and August) and the highest in winter. 
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Fig. 2.1 Seasonal variations and overall means of soil respiration (a), soil temperature at the depth of 5 cm (b), and soil water content of 0-15 cm (c) in Experiment 1 in 2003. Clipping was conducted on September 26, 2003. Vertical bars represent the standard error of the mean (n=6). C: control; W: warmed; CL: clipped; W+CL: clipped plus warmed. 


Warming had a marginally significant negative effect on soil moisture (p=0.06), while yearly clipping did not affect soil moisture (p=0.6, Fig. 2.1c).


Our analysis with equation 1 showed that soil temperature accounted for more than 60% of the variation on soil respiration in the four treatments (Fig. 2.2). Warming and yearly clipping both slightly reduced the derived coefficient b, while basal respiration rate (i.e., coefficient a) was not affected. T-test analysis illustrated that those slight differences in coefficients either a or b among treatments were not significant (Table 2.3). 
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Fig. 2.2  The exponential relationships between soil respiration and soil temperature under unclipped (a) and clipped (b) treatments in Experiment 1 in 2003. See Fig. 2.1 for abbreviations.


Table 2.2 Results of RM-ANOVA showing the F values and levels of significance for responses of soil respiration to warmed (W), doubled precipitation (PPT), clipped (CL) treatments and sampling dates (D). * p≤0.05, ** p≤0.01, ***p≤0.0001 


		Experiment 1

		Experiment 2

		The transient study



		 Factor

		df

		F values

		Factor

		df

		F values

		Factor

		df

		F values



		W


CL


D


W×CL


W×D


CL×D


W×CL×D




		1


1


10


1


10


10


10




		 9.32**


 0.20


164.2***


 1.39


 3.63*


 4.05*


 0.85



		W


PPT


D


W×PPT


W×D


PPT×D


W×PPT×D




		1


1


12


1


12


12


12




		26.93***


 4.70*


107.4***


 2.68


12.40**


 1.05


 0.32




		W


PPT


CL


D


W×PPT


W×CL


PPT×CL


W×D


PPT×D


CL×D


W×PPT×CL


W×PPT×D


W×CL×D


PPT×CL×D


W×PPT×CL×D

		1


1


1


7


1


1


1


7


7


7


1


7


7


7


7

		34.85***


 0.06


 7.93*


155.4***


 0.24


 6.25*


 0.93


 1.85


 0.65


 4.18*


 0.13


 0.75


 0.55


 3.60


 0.48





Warming and precipitation effects in Experiment 2


Soil respiration closely tracked the seasonal changes in soil temperature, with average values ranging from 0.54 to 7.64 µmol m-2 s-1 between Jan 2002 and Feb 2004 in the control plots (Fig. 2.3a). Warming and doubled precipitation caused significant increases in soil respiration (Fig. 2.3a, Table 2.2). Soil respiration in warmed plots increased by 32.9% in comparison to that in unwarmed plots without extra precipitation and by 14.5% with doubled precipitation (22.9% on average, Fig. 2.3a). Doubled precipitation increased soil respiration by an average of 9.0% compared to those without extra precipitation treatments (Fig. 2.3a, Table 2.2). No significant interaction was 
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Fig. 2.3 Seasonal variations and overall means of soil respiration (a), soil temperature at the depth of 5 cm (b), and soil water content of 0-15 cm (c) in Experiment 2 from Jan 2002 to Feb 2003. Vertical bars represent the standard error of the mean (n=5). The dashed vertical line indicates the day when warming and precipitation treatments started. C: control; W: warmed; PPT: doubled precipitation; W+PPT: warmed plus doubled precipitation, C* refers to overall means from all pretreatment plots before 20 Feb 2003.


detected between warming and doubled precipitation (p=0.121).

Soil temperature at the depth of 5 cm in warmed plots increased significantly by 2.97oC compared to that in unwarmed plots without extra precipitation and by 2.50oC with doubled precipitation based on monthly daytime measurements (p<0.0001, Fig. 2.3b). Our continuous measurements showed that warming increased daily mean soil temperature by 4.4oC at the depth of 2 cm (Table 2.1). Soil moisture (0-15 cm) fluctuated greatly due to highly variable rainfall (Fig. 2.3c). Warming significantly decreased soil moisture by 29.4% without extra precipitation and by 25.1% with doubled precipitation. Doubled precipitation increased soil moisture approximately by 2% volumetrically in both warmed and unwarmed plots (Fig. 2.3c). 


On the basis of the temperature relationship of soil respiration in equation 1, soil temperature accounted for more than 57% of variation in soil respiration (Fig. 2.4). The apparent Q10 values decreased from 2.51 in unwarmed plots to 2.02 in warmed plots


Table 2.3 Results of T-test showing t values and levels of significance for response of coefficients a and b to warmed (W), doubled precipitation (PPT), and clipped (CL) treatments. * p<0.05, **p<0.01

		Experiment 1

		Experiment 2

		The transient study



		Factor

		ta

		tb

		Factor

		ta

		tb

		Factor

		ta

		tb



		W


CL


W×CL

		 0.614


-0.244


-0.354




		-0.588


-0.506


0.524

		W


PPT


W×PPT

		2.175*


-0.456


-0.836

		-2.476**


 0.848


 0.508

		W


PPT


CL


W×PPT


W×CL


PPT×CL


W×PPT×CL

		 0.239


 1.767


 0.514


-0.126


-2.482*


 1.044


-1.341

		-0.616


-1.484


-2.076*


-0.429


2.024*


-1.224


 1.348





without extra precipitation and from 2.57 to 2.23 with doubled precipitation. However, coefficient a had an opposite response to warming in comparison to the apparent Q10, being higher under warming. T-test analysis indicated that warming significantly affected coefficients a or b in opposite directions, while doubled precipitation and its interaction with warming did not significantly affect coefficients a or b (Table 2.3).
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Fig.2. 4 The exponential relationships between soil respiration and soil temperature in Experiment 2 in 2002 (a), without extra precipitation in 2003 (b), and with doubled precipitation in 2003 (c). See Fig. 2.3 for abbreviations.


Substrate effects in the transient study


Clipping significantly reduced average soil respiration by 27.0% and 22.2% in warmed and warmed plus doubled precipitation treatments, respectively, but had no significant effect in the control and doubled precipitation (16.1% on average, Fig. 2.5). During the period of the transient study, warming significantly increased soil respiration by 44.5% and 39.3% without and with doubled precipitation, respectively, in unclipped subplots and by 9.0% and 14.1% in clipped subplots (26.6% on average, p < 0.001, Fig. 2.5c). Doubled precipitation did not alter soil respiration in either unclipped or clipped subplots. Interactive effects of warming×clipping and clipping×sampling dates were statistically significant on soil respiration (Table 2.2).  


Soil temperature and soil moisture were not significantly affected by clipping in any of the four treatments (p > 0.1). Warming significantly increased soil temperature and reduced soil water content (p < 0.001, Fig. 2.5d,e,f,g,h,i), whereas doubled precipitation had no effects on either soil temperature or moisture (p > 0.1).  

Clipping significantly decreased the temperature sensitivity of soil respiration (Fig. 2.6). However, the clipping effects on the temperature sensitivity varied with warming treatments, leading to significant interactions between clipping and warming in influencing coefficient b (Tables 2.3). 


Estimated annual soil respiration


In Experiment 1, annual soil CO2 emissions ranged from 782 to 927 g C m-2 yr-1 for the four treatments (Table 2.4). Warming increased annual soil respiration by 10.9% in unclipped plots and by 17.0% in clipped plots. In Experiment 2, warming increased annual soil respiration by 28.7% without extra precipitation and by 15.1% with doubled 
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Fig. 2.5 Variations and overall means of soil respiration (a, b, and c), soil temperature at the depth of 5 cm (d, e, and f), and soil water content of 0-15 cm (g, h, and i) after clipping in the transient study. Vertical bars represent the standard error of the mean (n=5). C: control, W: warmed; PPT: doubled precipitation, CL: clipped.


precipitation. Doubled precipitation also increased annual soil respiration by 15.4% compared to that in the control. However, a large difference existed between 2002 and 2003 in the control plots of Experiment 2 (Table 2.4), largely due to differences in precipitation between the two years.
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Fig. 2.6 The exponential relationships between soil respiration and soil temperature for unclipped (    ) and clipped (    ) treatments in control (a), warmed (b), doubled precipitation (c), and warmed plus doubled precipitation (d) treatments in the transient study. See Fig. 2.5 for abbreviations.


2.4. Discussion


Prediction of ecosystem responses to multi-factor global changes in a future world strongly relies on our understanding of their interactions. Our study showed that among the three factors that we examined in our experiments, warming and doubled precipitation had significant main effects on soil respiration, whereas the main effect of clipping was significant only in the transient study. The interactive effects of the three factors were not significant except for warming×clipping in the transient study. The temperature sensitivity of soil respiration significantly decreased under the warming treatment in Experiment 2 and under the clipping treatment in the transient study. Below we discuss magnitude of soil respiration, main effects of single factors, and interactive effects of multiple factors. 


Table 2.4 Annual soil respiration (g C m-2 yr-1) in Experiment 1 with warmed (W) and clipped (CL) treatments and Experiment 2 with warmed (W) or doubled precipitation (PPT) treatments. Data are shown by mean ( 1SE.  

		Experiment 1

		Experiment 2



		Year

		Treatments

		Annual soil respiration

		Year

		Treatments

		Annual soil respiration



		2003


2003


2003


2003

		C


W


CL


W+CL

		835±73


927±87


782±67


915±80

		2002


2003


2003


2003


2003

		Control*


C


W


PPT


W+PPT

		1131±93


877 ± 69


1129±70


1013±85


1166±107





Control*: refers to the result calculated from the average in all pretreatment plots.


Magnitude of soil respiration

Soil respiration measured in the control plots ranged from 0.52 to 7.64 µmolm-2 s-1, which is comparable to previous measurements in grasslands (Bremer et al. 1998, Wan and Luo 2003). Although annual soil respiration is not the main focus of this study, our estimates are consistent with the studies on Konza Prairie (Bremer et al. 1998) but greater than estimates of 340 to 480 g C m-2 yr-1 from less productive grasslands in California (Luo et al. 1996). Overall, our estimates fall within the upper limits of the estimates which range from 160 to 1060 g C m-2 yr-1 in North America and Europe (Hanson et al. 1993). The difference in annual precipitation (890 mm in 2002 and 647 mm in 2003) likely contributed to the significant difference in annual soil respiration between 2002 and 2003 in the control plots of Experiment 2 (Table 2.4). 


Main effects of single factors on soil respiration 


The increase in soil respiration in response to warming has been observed in various ecosystems (Rustad et al. 2001). The short-term response to warming in Experiment 2 is similar to those observed in a temperate forest (McHale et al. 1998) and a boreal pine forest (Niinistö et al. 2004). The observed increase of soil respiration in our study is 0.74 μmol m-2 s-1, which is slightly lower than the mean increase of 1.20 μmol m-2 s-1 in the first-year warming from a meta-analysis of 17 ecosystem warming experiments (Rustad et al. 2001). The increased respiration likely resulted from enhanced oxidation of labile soil carbon compounds on warmed plots (Peterjohn et al. 1993, Lin et al. 2001).  

The long-term response of soil respiration to warming is regulated by acclimatization (Luo et al. 2001a), physiological adjustments to pool size changes by plants and microbes (Melillo et al. 2002), extension of growing seasons (Dunne et al. 2002, Wan et al. 2005), and stimulated C4 plant productivity (Wan et al. 2005). In Experiment 1, soil respiration increased by 9.9% in the fourth year (Fig. 2.2), by 8.0% and 15.6% in the third and second year, respectively (Wan et al. 2005), and decreased by 5% in the first year (Luo et al. 2001a). The increases in soil respiration observed in this study are lower than the 20% mean increase reported from a meta-analysis (Rustad et al. 2001). The meta-analysis synthesized studies mainly from high latitude regions. The year-to-year variation in warming-induced changes in soil respiration observed in Experiment 1 likely resulted from changes in productivity (Wan et al. 2005) and other abiotic factors such as drought.  The lower response of soil respiration to warming observed in our experiments is likely related to the fact that our grassland has lower soil organic C content than other ecosystems (Luo et al. 2001a).


This study demonstrated that warming significantly increased basal respiration rate (coefficients a) and decreased temperature sensitivity of soil respiration (coefficient b) in Experiment 2, whereas neither of the parameters was significantly altered by warming in Experiment 1 (Table 2.3). The different responses of the two parameters to warming between the experiments may be due to a few reasons. First, the temperature increase was ~ 2oC in Experiment 1 and 4.4oC in Experiment 2. Thus, the experimental forcing was stronger in Experiment 2 than in Experiment 1. Second, Experiment 1 was in the fourth year. Ecosystem processes may adjust to warming treatment over time (Melillo et al. 2002). After three-year warming in Experiment 1, labile carbon could be in a steady state between supply and depletion (A. Tedla and Y. Luo, unpublished data). In addition, the shift in soil microbial community structure toward more fungi (Zhang et al. 2005) likely resulted in lower sensitivity of soil respiration to temperature because fungi are more tolerant to higher soil temperature and drying due to their filamentous nature. The opposite responses of coefficients a and b to warming could result from changes in root phenology and acclimation of roots and microbes to climate (Janssens and Pilegaard 2003).  


Doubled precipitation significantly increased soil respiration in Experiment 2 (Table 2.2), greatly due to stimulation of soil respiration in the dry growing season of 2003 (Fig. 2.3). Similar effects of additional water on soil respiration have been observed in other experiments (Laporte et al. 2002, Liu et al. 2002). During the period of the transient study, CO2 efflux from soils was not significantly affected by doubled precipitation due to the absence of water stress. Although the basal respiration rate and temperature sensitivity were not affected by doubled precipitation (Table 2.3), the apparent Q10 value in the control was significantly higher in 2003 than 2002 (p<0.05), largely resulting from differences in precipitation. Dörr and Münnich (1987) found that the apparent Q10 values were low in the wet years and high in the dry years in a multiyear study of a grassland and a beech-spruce forest in Germany. But others found that the apparent Q10 values were lower in the well-drained sites than the wetter sites (Davidson et al. 1998, Xu and Qi 2001). Complex interactions between soil water and temperature, which influence CO2/O2 diffusion, root and microbial activities, could result in these diverse responses of the temperature sensitivity of soil respiration to water availability. 


A large portion of soil respiration is derived from recently fixed carbon, thus making it responsive to changes in carbon supply due to clipping, girdling, and shading (Craine et al. 1999, Högberg et al. 2001, Wan and Luo 2003). Clipping reduces soil respiration by 19% to 49% in grassland ecosystems (Bremer et al. 1998, Craine et al. 1999, Wan and Luo 2003). Our study showed that yearly clipping had no significant effects on soil respiration in the fourth year of Experiment 1 and clipping significantly reduced soil respiration in the transient study within two months (Figs. 2.1, 2.5; Table 2.2). In Experiment 1, we evaluated the effect of yearly clipping against monthly measurements of soil respiration over a whole year. The treatment of yearly clipping in our study likely has less impact on soil respiration than mowing several times per year. However, the transient effects of clipping were examined within two months in the transient study. In addition, Wan and Luo (2003) kept clipping aboveground biomass to maintain bare ground in the clipped plots during the whole study period of one year, leading to a 33% decrease in mean soil respiration. Thus, frequency of clipping and durations of study can be sources of variable results. Our transient study showed that clipping significantly reduced respiratory sensitivity to temperature (Table 2.3), similar to the results in other studies both from the laboratory (Townsend et al. 1997) and field experiments (Boone et al. 1998, Wan and Luo 2003).


Interactive effects of warming, precipitation, and clipping


Global climate change in the real world involves changes in multiple factors (Shaw et al. 2002, Norby and Luo 2004). Therefore, the effects of warming on terrestrial ecosystems must be evaluated in combination with other factors. In this study, we found that interactive effects of warming, precipitation, and clipping on soil respiration were minor except for the warming × clipping interaction in the transient study. Minor interactive effects among multiple global change factors on soil respiration have been reported in the literature. For example, Edwards and Norby (1998) and Niinistö et al. (2004) did not find interactive effects of elevated CO2 and temperature on soil respiration statistically significant. Similarly, there were no significant interactions among elevated CO2, nitrogen supply, and plant diversity on soil respiration (Craine et al. 2001) and between elevated CO2 and O3 (Kasurinen et al. 2004). However, significant interactive effects of elevated CO2 and warming were found on ‘old’ pool C decomposition in a warming-CO2-N experiment in tunnels with ryegrass swards (Loiseau and Soussana 1999). The interaction was largely regulated by N supply. 

The lack of significant interactive effects in Experiment 1 suggests that soil respiration was determined by warming and yearly clipping treatments in a statistically independent manner. Warming increased soil respiration while yearly clipping decreased it. The effect size of the warming plus yearly clipping treatment was between that of the warming treatment and the one of the yearly clipping treatment. The insignificant interaction between warming and doubled precipitation in Experiment 2 resulted largely from the anomalously low precipitation in 2003. Precipitation was 647 mm, which was 29.3% less than the average (915 mm). The long period of drought in June and July (34 days without rain) negated the doubled precipitation treatment. A heavy rain of 108.0 mm in two days on 30-31 August, 2003 resulted in substantial water loss through surface runoff.  Although doubled precipitation increased soil water content by 10.6% and soil respiration by 9.0% relative to those without extra precipitation treatments, high variability in rainfall events in our ecosystem did not generate statistically significant interaction. In addition, our monthly measurements may not detect fast transient responses of soil respiration to individual rainfall events (Liu et al. 2002). Thus, we do expect that soil water content and temperature interactively regulate soil respiration under different circumstances in spite of the fact that we did not detect significant interactions between them in this particular study.


An interactive response to warming and clipping was observed on soil respiration and its temperature sensitivity in the transient study (Tables 2.2 and 2.3). Clipping immediately reallocated assimilate to regrowth of shoots (Bremer et al. 1998, Craine et al. 1999) and reduced supply of current photosynthates to roots and their mycorrhizal fungi (Högberg et al. 2001). As a consequence, soil respiration decreases. However, experimental warming accelerated plant regrowth in comparison with that in unwarmed plots after clipping either with or without doubled precipitation. Thus, warming made soil respiration more responsive to clipping, contributing to the observed significant interaction during the transient period. In addition, complex and unpredictable interactions do occur in regulating soil respiration in other ecosystems (Loiseau and Soussana 1999) or other ecosystem attributes such as biomass growth (Shaw et al. 2002). A mechanistic understanding of interactions of warming and other global change factors on soil respiration also requires study of root and microbial processes, which may have different sensitivities to temperature and other factors in complex soil physical and chemical environments.


2.5. Conclusions


This study investigated the main and interactive effects of warming, doubled precipitation, and clipping on soil respiration and its temperature sensitivity in a tallgrass prairie of Central Oklahoma. The main effects of warming and doubled precipitation were significant on soil respiration. Clipping significantly decreased soil respiration in the transient study but not in the long-term warming experiment. Our statistical analysis showed no significant interactive effects of the three factors on soil respiration or its temperature sensitivity except for the warming× clipping in the transient study. The minor interactive effects observed in this study suggest that results from single-factor experiments are useful in informing us of potential responses of soil respiration to multi-factor global change, at least in our ecosystem. It is yet to be examined whether our conclusion on minor interactive effects could be generalized across ecosystems.  Regardless, this study posed testable hypotheses, which can be examined in other ecosystems.  Furthermore, the statistical methods used in this study to rigorously detect interactive effects of global change factors are useful for other multi-factor experiments. 
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Appendix A: Statistical tests of regression coefficients


We tested the significance of coefficients a and b of equation 1 in the temperature-respiration relationship primarily according to methods presented by Toutenburg (2002). Below is an array of coefficients a or b and standard errors for calculating t values of main and interactive effects between two factors: warming vs. precipitation and warming vs. clipping:
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where xij are values of coefficients a or b (i, j=1, 2), Sij are standard errors of coefficients a or b in different treatments, 
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The t value of the main effects was calculated for factor 1 by:
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Similarly, the t values for factor 2 was also calculated by equation (A1) with 
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. The t value of the interactive effects of factor 1 and factor 2 on coefficients a and b was calculated by:
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For the 3-way factorial experiment with warming, precipitation (ppt), and clipping, coefficients a or b and their standard errors can be arranged as follows to calculate t values of main and interactive effects:
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where xijk are values of coefficients a or b (i, j, k = 1, 2), Sijk are standard errors of coefficients a or b in different treatments, 
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The t values of the main effects of clipping, precipitation, and warming were calculated by equation (A1) with 
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. The t value of the 2-way interactive effect of factor 1 (clipping) and factor 2 (precipitation) was calculated by:
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Similarly, the t values of the interactive effects of clipping and warming, or of precipitation and warming were calculated by equation (A3) with 
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The t value of the 3-way interactive effects of clipping, precipitation, and warming on coefficients a or b was calculated by:
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Chapter 3

Source components and interannual variability of soil respiration under experimental warming and clipping in a grassland ecosystem



This part has been published in Global Change Biology (2007) 13: 761-775. 

ABSTRACT

Partitioning soil respiration into autotrophic (RA) and heterotrophic (RH) components is crucial for understanding their differential responses to climate change. We conducted a long-term experiment (2000 - 2005) to investigate effects of warming and yearly clipping on soil respiration and its components (i.e., RA and RH) in a tallgrass prairie ecosystem. Interannual variability of these fluxes was also examined. Deep collars (70 cm) were inserted into soil to measure RH. RA was quantified as the difference between soil respiration and RH. Warming treatment significantly stimulated soil respiration and its components (i.e., RA and RH) in most years. In contrast, yearly clipping significantly reduced soil respiration only in the last two years, although it decreased RH in every year of the study. Temperature sensitivity (i.e., apparent Q10 values) of soil respiration was slightly lower under warming (p>0.05) and reduced considerably by clipping (p<0.05) compared to that in the control. On average over the four years, RH accounted for approximately 65% of soil respiration with a range from 58 to 73% in the four treatments. Over seasons, the contribution of RH to soil respiration reached a maximum in winter (~90%) and a minimum in summer (~35%). Annual soil respiration did not vary substantially among years as precipitation did. The interannual variability of soil respiration may be mainly caused by precipitation distribution and summer severe drought. Our results suggest that the effects of warming and yearly clipping on soil respiration and its components did not result in significant changes in RH or RA contribution, and rainfall timing may be more important in determining interannual variability of soil respiration than the amount of annual precipitation. 


Keywords: soil respiration, root respiration, heterotrophic respiration, partitioning, global warming, clipping, interannual variability, tallgrass prairie 

3.1. Introduction

Global warming induced by elevated atmospheric greenhouse gases has increased Earth’s surface temperature by 0.6oC in the past century and the temperature is predicted to continue to increase by1.4 – 5.8oC by the end of this century (IPCC 2001). In the Great Plains, air temperature is predicted to increase by 2 to 4oC with the doubling of the current CO2 concentration (Long and Hutchin 1991). This projected warming is probably altering ecosystem carbon (C) cycling, causing positive feedback if warming increases soil respiration more than plant production (Cox et al. 2000). At a global scale, climate warming of 1oC would result in an extra 11-34 Pg C yr-1 release to the atmosphere due to enhanced decomposition, equivalent to as much as five times the annual CO2 release from all fossil fuel burning (Jenkinson et al. 1991, Schimel et al. 1994, IPCC 2001). 


Soil respiration, also referred to as soil CO2 efflux, is the second largest C flux (68 to 80 Pg C yr-1) between terrestrial ecosystems and the atmosphere in the global C cycle (Raich and Schlesinger 1992, Raich et al. 2002), and is therefore an important regulator of climate change as well as determinant of net ecosystem C balance. It is largely influenced by soil temperature (Lloyd and Taylor 1994, Boone et al. 1998, Rustad et al. 2001), water content (Davidson et al. 2000, Liu et al. 2002), nutrient availability (Raich and Tufekcioglu 2000), and current photosynthetic rates (Högberg et al. 2001). Both autotrophic respiration (RA) from plant roots and rhizosphere microbes and heterotrophic component (RH) during litter and soil organic matter (SOM) decomposition contribute to CO2 efflux from soils (Hanson et al. 2000, Wan and Luo 2003, Kuzyakov 2006, Subke et al. 2006). 

The relative contribution of RA or RH generally accounts for approximately one half of the total soil respiration according to three recent reviews (Hanson et al. 2000, Bond-Lamberty et al. 2004, Subke et al. 2006). However, the average estimates mask considerable variation because of the diversity of ecosystems and potential biases of different techniques and time scales. Hanson et al. (2000) synthesized 50 studies published in the literature, suggesting a mean contribution of 48% and 37% from autotrophic sources for forest and non-forest ecosystems with a wide range of 10-90%. In addition, the contribution of RA exhibits large seasonality, usually being low during the dormant season and high during the active growing season since autotrophic respiration mainly depends on supply of carbohydrates from canopy photosynthesis (Rochette et al. 1999, Lin et al. 2001). Due to year-to-year changes in climate variables and consequently indirect changes in physiological and ecological processes and nutrient availability, soil respiration and its components usually exhibit the interannual variability (Savage and Davidson 2001, Scott-Denton et al. 2003, King et al. 2004, Luo and Zhou 2006). Understanding the seasonal and interannual variability and their responses to climate change is urgently needed to improve the prediction of ecosystem C cycling. 

The dynamics of the two components, RA and RH, may be controlled by different abiotic and biotic factors, such as temperature, water availability, photosynthetic activity, or plant phenological development. Heterotrophic processes control soil C storage and nutrient dynamics, while autotrophic respiration reflects plant activity and the supply of organic compounds to roots from the canopy (Högberg et al. 2001, Bhupinderpal-Singh et al. 2003, Binkley et al. 2006). In addition, the responses of RA and RH to temperature largely differ, exhibiting different Q10 values (Boone et al. 1998, Rey et al. 2002). The potential change in soil respiration associated with global warming will largely depend on the relative contribution of autotrophic and heterotrophic components (Buchmann 2000). Therefore, quantifying the components of soil respiration is imperative to understand the nature and extent of feedbacks between climate change and soil processes and to predict ecosystem responses to climate change (Melillo et al. 2002, Ryan and Law 2005). 

Although warmer temperature has been found to cause significant increases in the efflux of CO2 from soils in various biomes (Rustad et al. 2001), little information is available on how various components of soil respiration respond differently to increasing temperature, especially in natural ecosystems. The results from modeling, mesocosm experiments, and transect studies are highly controversial (Lin et al. 1999, 2001, Lavigne et al. 2003, Eliasson et al. 2005). For example, Lin et al. (1999, 2001) observed that litter decomposition and SOM oxidation were more sensitive to elevated temperature than rhizosphere respiration (RA) in experimental forest mesocosms. However, a transect study by Lavigne et al. (2003) indicated that the response of soil respiration to temperature are controlled more by autotrophic than heterotrophic respiration in balsam fir ecosystems. To date, we did not find any published results for warming effects on the source components of soil respiration. It is essential that, at a long-term scale, warming responses of source components of soil respiration are investigated in natural ecosystems. 


Land use practices such as mowing or clipping for hay in grasslands, which account for about 20% of the global terrestrial ice-free surface, may also have considerable effects on soil respiration and its components, especially in the short term (Bahn et al. 2006). Clipping usually reduces soil respiration by 21 – 49% despite the fact that it increases soil temperature (Bremer et al. 1998, Wan and Luo 2003). Craine et al. (1999) found that RA and RH also responded to a decrease of assimilate supply after clipping in a C4-dominated grassland. However, Bahn et al. (2006) suggested that autotrophic respiration was little affected by clipping due to carbohydrate reserves which sustained root metabolism for several days, and heterotrophic respiration strongly responded to short-term changes in assimilate supply. The long-term response of soil respiration and its components to clipping remains uncertain.


In this study, we investigated the responses of soil respiration and its components to experimental warming and yearly clipping over a period of six years in a tallgrass prairie ecosystem. The interannual variability of these fluxes was also examined. Deep PVC collars (70 cm in depth) were used to exclude roots, so measured CO2 efflux in these collars represents RH. RA was quantified by comparing soil respiration with RH. We hypothesized that warming would increase soil respiration and its components in most years but yearly clipping would decrease them, with large interannual variability. 

3.2. Materials and methods

Site description

The study was conducted at the Kessler Farm Field Laboratory (KFFL) in McClain County, Oklahoma (34o59’ N, 97o31’ W), approximately 40 km southwest of the Norman campus of the University of Oklahoma, USA. The field site is an old-field tallgrass prairie abandoned from agriculture 30 years ago and without grazing during the past 20 years. The grassland is dominated by three C4 grasses: Schizachyrium scoparium, Sorghastrum nutans, and Eragrostis curvula, and two C3 forbs: Ambrosia psilostachyia and Xanthocephalum texanum. Mean annual temperature is 16.3oC, with monthly air temperature ranging from 3.3oC in January to 28.1oC in July. Mean annual precipitation is 915 mm, with monthly precipitation ranging from 30 mm in January to 135 mm in May (average values from 1948 to 1998, data from Oklahoma Climatological Survey). In the study period (1999-2005), daily and annual rainfall data are shown in Fig. 3.1a,b. A silt loam soil includes 35.3% sand, 55.0% silt, and 9.7% clay (A. Subedar and Y. Luo, unpublished data, 2003). Soil carbon content is 1.42% on a mass basis (Luo et al. 2001a). The soil belongs to part of the Nash-Lucien complex with neutral pH, low permeability rate, high available water capacity, and a deep, moderately penetrable root zone (U.S. Department of Agriculture 1979). 


Experimental design

The experiment used a paired nested design with warming as the main factor and clipping as a secondary factor. Twelve 2 × 2 m plots were divided into six pairs of control (i.e., unwarmed) and warmed plots. In each warmed plot, one 165 × 15 cm infrared heater (Kalglo Electronics Inc., Bethlehem, Pennsylvania, USA) was suspended in the middle of each plot at the height of 1.5 m above the ground with a radiation output of 100 Watt m-2. The heating has been operated year round, 24 hours per day and 365 days per year in the field since 21 November, 1999. A previous study found that the effects of infrared heaters on soil temperature were spatially uniform in the warmed plots (Wan et al. 2002). To simulate shading effects of heaters, we installed one ‘dummy’ heater made of metal flashing with the same shape and size as the heating device over each control plot. For each paired plot, the distance between the control and the warmed plots was approximately 5 m to avoid heating the control plot by the infrared heater. The distances between the individual sets of paired plots varied from 20 to 60 m. 


Each 2 × 2 m plot was divided into four 1m ( 1m subplots. Plants in two diagonal subplots were clipped at the height of 10cm above the ground yearly, usually in July. The other two were the unclipped subplots. Clipping in the manner effectively mimics hay mowing, a widely practiced land use in the southern Great Plains. Usually farmers and ranchers in the southern Great Plains mow grass pasture once or twice per year, depending on rainfall. Our study site is rather dry, yearly clipping mimics hay mowing once a year. After clipping, plants were allowed to grow until the next clipping. The four treatments in the experiment were unclipped control (UC), unclipped warmed (UW), clipped control (CC), and clipped warmed (CW) with six replicates. Further details of the study site were described in Wan et al. (2002, 2005).


Measurement protocols

To measure soil respiration, PVC collars (80 cm2 in area and 5 cm in height) were inserted 2-3 cm into the soil permanently at the center of each subplot. Small living plants inside the soil collars were clipped at the soil surface at least 1 day before the measurement to eliminate aboveground plant respiration. The clipped plant material was left in the collars to decompose. To detect the responses of heterotrophic respiration (RH) to warming and yearly clipping, the original soil collars (see above) in one clipped and one unclipped subplots in each plot were replaced with deep PVC tubes (80 cm2 in area and 70 cm in depth) in October 2001. The 70-cm-long PVC tubes cut off old plant roots and prevented new roots from growing inside the tubes. The measurements of CO2 efflux above these PVC tubes began immediately after installation to examine the transient response of dead root decomposition. After several months, CO2 efflux measured above these PVC tubes represents RH. Autotrophic respiration (RA) is calculated as their difference. RS and RH were measured once or twice a month between 10:00 and 15:00 (local time), using a LI-COR 6400 portable photosynthesis system attached to soil CO2 flux chamber (LI-COR. Inc., Lincoln, Nebraska, USA). A measurement consisted of placing the chamber on PVC collars, scrubbing the CO2 to sub-ambient levels, and determining soil respiration over the periods. Data were recorded at a 5-second interval by the datalogger in the LI-COR 6400 console. Each of the measurements usually took 1 – 3 minutes after placing the chamber over the collar. 

Soil temperature at the depth of 5 cm was monitored adjacent to each PVC collar using a thermocouple probe (LI-COR 6000-09TC) connected to the LI-COR 6400 at the same time when soil respiration was measured. Data were also logged at a 5 second interval. Soil moisture content was measured gravimetrically twice a month from September 1999 to December 2000. Soil samples from the top 5 cm were taken from one clipped and one unclipped subplots in each plot and oven dried at 105°C for 24 hours and weighed. Soil moisture was expressed as a percent of dry soil on a mass basis. Beginning from January 2001, volumetric soil water content (%V) was measured using manual Time Domain Reflectometry (TDR) equipment (Soilmoisture Equipment Corp., Santa Barbara, California, USA) at the depth interval of 0-15 cm. To be consistent for analysis, those gravimetric soil moisture data taken before December 2000 were calibrated to volumetric soil moisture according to their relationship between mass-based and volumetric soil moisture. The measurement frequency of soil temperature and volumetric soil water content was the same as soil respiration, once or twice a month.


Estimation of annual CO2 efflux


Annual soil respiration for each treatment was estimated by summing the products of soil respiration and the number of days between samples. It was corrected further for diurnal patterns in efflux. Our measurements, collected between 10:00 and 15:00, were assumed to represent daytime averages based on diurnal patterns observed by Wan and Luo (2003) at a similar site. The calculated average daily efflux was 96.5% of the observed daytime average. The corrected daily flux was then multiplied by the number of days between measurements to compute the cumulative flux over the period (Bremer et al., 1998, See Chapter 2).


Modeling soil respiration and heterotrophic respiration


Soil temperature and soil moisture content are two main abiotic factors influencing soil respiration. We used a reverse exponential decay function (Equation 1) to simulate moisture effects and an exponential function (Equation 2) to simulate temperature effects (Hui and Luo 2004):
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where R is the measured soil respiration or heterotrophic respiration (µmol CO2 m-2 s-1); R0 is the base respiration when soil temperature is 0oC and changes with soil moisture; T is soil temperature (oC); and θv is volumetric soil moisture (%); a, b, c, d, and f are parameters related to soil temperature and moisture. When 
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, soil respiration is hardly limited by soil moisture and largely controlled by soil temperature. The reverse exponential decay function fits our observations better than other moisture functions (Luo and Zhou 2006). 


Data analysis


Each plot was an experimental unit, so replicate measurements were averaged by plot for analysis. In addition, monthly means of soil respiration, RH, RA, soil temperature, and soil moisture were used to keep consistent in statistical analysis and calculation of annual mean values. Due to paired design of experiment, we used paired sample t-test to examine annual statistical significance of warming, yearly clipping, and their interactive effects on soil respiration, RH, RA, soil temperature, and soil moisture. The effects were considered to be significantly different if p < 0.05. The statistical analyses were performed in SPSS 11.0.1 for windows (SPSS Inc., Chicago, USA 2001). 


We assessed sensitivity of mean soil respiration, RH, and RA to soil temperature by fitting exponential functions to the data from individual treatments. 




[image: image41.wmf]bT


ae


R


=


                               (3)


where R is mean soil respiration, RH, and RA (μmol m-2 s-1), T is soil temperature (oC) at the depth of 5 cm, a is the intercept of soil respiration when temperature is zero (i.e., basal respiration rate), and b represents the temperature sensitivity of soil respiration, RH, and RA. The b values were used to calculate a respiration quotient (Q10), which describes the change in fluxes over a 10oC increase in soil temperature, by:
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Values of parameters (i.e., a, b, and Q10) derived from seasonal data sets reflect effects of temperature and other co-varying factors on soil respiration and its components (Boone et al. 1998, Högberg et al. 2001). Thus, an apparent Q10 value is used to denote the derived temperature sensitivity of soil respiration, RH, and RA. In the analyses of temperature sensitivity and modeling, four data points of soil respiration per treatment during the summer severe drought period (Fig. 3.2) were excluded when volumetric soil moisture was below 10% (Luo et al. 2001a). 


The significance of the effects of regression coefficients a and b among the treatments was examined by a t-test method as described in Chapter 2. Because the heterotrophic flux is recorded directly from measurements on deep collars, we decided to show RH/RS ratio as the relative contribution of RH rather than RA/RS ratio as RA contribution (Subke et al. 2006).


3.3. Results


Microclimate

Soil temperature at the depth of 5 cm exhibited pronounced seasonal variations over the six years, with a decrease in maximum values from 2001 to 2004 (Fig. 3.1c). Annual 
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Fig. 3.1 Daily (a) and annual (b, inserted figure) rainfall at the experimental site, and seasonal and interannual variability of soil temperature at the depth of 5 cm (c) and soil moisture of 0-15 cm (d) from 1999 to 2005 in the long-term warming and clipping experiment. Yearly clipping was usually conducted in July. Vertical bars represent the standard error of the mean (n=6). The dashed vertical line in c and d indicates the day when warming treatment started (Nov 21, 1999). UC: unclipped control; UW: unclipped warmed; CC: clipped control; CW: clipped warmed.


Table 3.1 Annual mean soil respiration (µmol m-1 s-1), heterotrophic respiration (µmol m-1 s-1), autotrophic respiration (µmol m-1 s-1), soil temperature (oC) at the depth of 5 cm, and volumetric soil moisture (%V) at the depth of 0-15cm from Jan 2000 to Dec 2005. 

		

		2000

		2001

		2002

		2003

		2004

		2005



		Soil respiration

		

		

		

		

		

		



		UC

		2.08

		1.85

		2.10

		2.20

		2.36

		2.50



		UW

		2.16

		2.13

		2.31

		2.41

		2.54

		2.71



		CC

		1.95

		1.83

		2.04

		1.97

		1.96

		2.27



		CW

		2.18

		2.12

		2.36

		2.35

		2.30

		2.51



		Heterotrophic respiration

		

		

		

		

		

		



		UC

		/

		/

		1.43

		1.57

		1.42

		1.61



		UW

		

		

		1.55

		1.73

		1.72

		1.74



		CC

		

		

		1.35

		1.44

		1.25

		1.31



		CW

		

		

		1.42

		1.48

		1.44

		1.67



		Autotrophic respiration

		

		

		

		

		

		



		UC

		/

		/

		0.67

		0.63

		0.94

		0.89



		UW

		

		

		0.76

		0.68

		0.82

		0.97



		CC

		

		

		0.69

		0.53

		0.71

		0.96



		CW

		

		

		0.94

		0.87

		0.86

		0.84



		Soil temperature

		

		

		

		

		

		



		UC

		17.6

		19.3

		17.7

		17.9

		17.0

		17.4



		UW

		19.4

		20.4

		18.8

		19.3

		18.2

		19.0



		CC

		19.8

		21.9

		19.1

		18.6

		17.6

		18.5



		CW

		21.8

		24.3

		20.8

		20.3

		19.2

		20.6



		Soil moisture

		

		

		

		

		

		



		UC

		23.3

		29.8

		27.6

		22.1

		27.5

		24.8



		UW

		21.8

		28.8

		26.8

		20.5

		26.8

		21.6



		CC

		19.5

		28.7

		27.5

		22.1

		27.8

		23.6



		CW

		17.2

		28.3

		26.8

		20.5

		26.7

		20.8





UC: unclipped control; UW: unclipped warmed; CC: clipped control; CW: clipped warmed.
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Fig. 3.2 Seasonal and interannual variability of soil respiration from Aug 1999 to Dec 2005 under: (a) unclipped and (b) clipped treatments in the long-term warming experiment. See Fig. 3.1 for notes and abbreviations.


mean soil temperature ranged from 17.0oC (2004) to 19.3oC (2001) with an average of 17.8oC in the control plots based on monthly daytime measurements (Table 3.1). The main effects of both warming and yearly clipping on annual mean soil temperature were statistically significant in every year of the study (p < 0.001). However, no significant interactive effects of warming and yearly clipping were found except in 2000 (p<0.05). Specifically, warming significantly increased annual mean soil temperature by1.4 ± 0.1 oC in the unclipped plots and by 2.0 ± 0.1 oC in the clipped plots from 2000 to 2005 (Table 3.1). Yearly clipping also increased soil temperature by 1.4 ± 0.3 oC relative to that in the control plots (Table 3.1).


Unlike soil temperature, volumetric soil moisture at the depth of 0-15 cm fluctuated greatly over the season (Fig. 3.1d). Usually the lowest soil moisture was observed in summer (July and August) and the highest in winter. Throughout the duration of the experiment, warming and yearly clipping significantly reduced soil moisture (p<0.05), although, in 2001 and 2003, effects of yearly clipping were not significant (p>0.05). 


Soil respiration

The temporal dynamics of soil respiration followed the distinct seasonal pattern of soil temperature in all six years, which was high during summer and low in winter (Figs.3.1c and 3.2). However, long droughts in summer (August – September 2000, August 2001, July 2002, and July 2003) suppressed soil respiration irrespective of the higher soil temperature (Figs. 3.1d and 3.2). From year to year, there were also observable variations. For example, the summer peak of soil respiration reached nearly 6 (mol m-2 s-1 in 2002 and was less than 4 (mol m-2 s-1 in 2001 in the control plots (Fig. 3.2). Soil respiration in the winter is as low as nearly 0 (mol m-2 s-1 in 2002 but 0.3 - 0.5 (mol m-2 s-1 in other years. Annual mean soil respiration ranged from 1.85 (mol m-2 s-1 (2001) to 2.50 (mol m-2 s-1 (2005) with an average of 2.18 (mol m-2 s-1 in the control plots (Table 3.1). 
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Fig. 3.3 Exponential relationships between soil respiration and soil temperature under unclipped (a) and clipped (b) treatments and between heterotrophic respiration and soil temperature under unclipped (c) and clipped (d) treatments. Vertical and horizontal bars represent the standard error of the mean (n=6). See Fig. 3.1 for abbreviations.


Table 3.2 Q10 values of soil respiration, heterotrophic respiration, and autotrophic respiration from 2000 to 2005 calculated from equation 1 and 2. 

		

		2000*

		2001

		2002

		2003

		2004

		2005

		All data



		Soil respiration

		

		

		

		

		

		



		UC

		2.74

		2.21

		2.13

		2.33

		3.62

		2.64

		2.23



		UW

		2.66

		2.09

		2.10

		2.22

		3.18

		2.62

		2.28



		CC

		1.94

		1.92

		1.85

		2.13

		3.62

		2.19

		1.93



		CW

		1.94

		1.82

		1.70

		2.13

		3.20

		2.39

		1.89



		Heterotrophic respiration

		

		

		

		

		

		



		UC

		/

		/

		1.94

		1.98

		2.66

		2.69

		1.99



		UW

		

		

		1.85

		1.85

		2.68

		2.83

		1.96



		CC

		

		

		1.84

		2.07

		2.68

		2.21

		1.90



		CW

		

		

		1.82

		2.16

		3.10

		2.55

		1.88



		Autotrophic respiration

		

		

		

		

		

		



		UC

		/

		/

		2.23

		4.06

		4.37

		2.82

		2.35



		UW

		

		

		2.39

		3.86

		4.98

		2.81

		2.65



		CC

		

		

		2.01

		2.75

		5.22

		2.62

		2.18



		CW

		

		

		1.91

		2.34

		3.23

		2.16

		2.24





* Note: Q10 in paper by Luo et al. (2001a) was based on data in both 1999 and 2000. 


UC: unclipped control; UW: unclipped warmed; CC: clipped control; CW: clipped warmed.


The stimulation of soil respiration by warming was statistically significant for 5 years out of the 6-year study period (except 2000). On average, warming increased annual mean soil respiration by 9.0±1.5 % in the unclipped plots and by 15.6±1.5 % in the clipped plots from 2000 to 2005 (Table 3.1). Effects of yearly clipping on soil respiration were significant only in the last two years (p<0.05), while no interactions of warming and yearly clipping were found in any of the six years (p>0.05). 


On the basis of the temperature relationship with soil respiration in equation (3), soil temperature accounted for 81% of variation in the unclipped plots and nearly 70% in the clipped plots across the six-year period (Fig. 3.3). The apparent Q10 values were slightly lower under warming (p>0.05) and reduced considerably by clipping (p<0.05) compared to that in the control, ranging from 1.70 to 3.62 for all four treatments (Table 3.2). There were higher Q10 values for the four treatments in 2004 than that in the other years, probably resulting from the effects of abundant rainfall or less drought stress.


Heterotrophic (RH) and autotrophic respiration (RA)


RH also showed a distinct seasonal pattern and followed the changes in soil temperature across the four years of the study (2002 - 2005), although RH had larger variability than soil respiration (Fig. 3.4a). There were dips in the measured RH during each summer due to the combined effects of low soil moisture and high temperature. Annual mean RH ranged from 1.42 to 1.61 µmol m-2 s-1 with an average of 1.51 µmol m-2 s-1 in the control plots (Table 3.1). The effects of warming on RH were statistically significant for 3 years of the 4-year study period (except 2003). Yearly clipping significantly reduced RH in all the four years (p<0.05). However, no interactions of warming and yearly clipping on RH were found in any of the four years as well as its temperature sensitivity (p>0.05).


RH contribution to soil respiration and its annual mean values are displayed in Fig. 3.4b,c. Immediately after collar installation, decomposition of dead roots by deep-collar insertion contributed considerably to this efflux, which was larger than soil respiration, but this phenomenon disappeared after 5 months. Thereafter, an opposite seasonal pattern occurred on the relative contribution of RH compared to soil temperature (Fig. 3.4b). On average, annual mean RH contributed to approximately 65% of soil respiration across the four years (Fig. 3.4c). Warming and yearly clipping did not significantly affect RH contribution to soil respiration.
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Fig. 3.4 Seasonal and interannual variability of heterotrophic respiration (a) and its contribution to total soil respiration (b) under four different treatments from Oct 2001 to Dec 2005. Annual mean values of heterotrophic contribution to soil respiration are shown in inserted figure (c). Vertical bars represent the standard error of the mean (n=6). See Fig. 3.1 for abbreviations.


Annual mean RA was calculated from the difference between soil respiration and RH, ranging from 0.53 to 0.96 µmol m-2 s-1 for the four treatments across the four-year period (Table 3.1). Warming treatment also significantly stimulated RA for 3 years of the 4-year study period (except 2004). Neither yearly clipping nor the interactions of warming and yearly clipping significantly affected RA and its temperature sensitivity (p>0.05). The temperature sensitivity of RA (i.e., apparent Q10) was higher than that of RH (Table 3.2). 


Seasonal and interannual variability

We calculated coefficient of variation (CV) from monthly and annual means to represent seasonal and interannual variability, respectively, in soil respiration, RH, RA, soil temperature, soil moisture, and rainfall (Table 3.3). The seasonal variability was distinctly much greater than interannual variability for all the variables. It appeared that yearly clipping decreased the interannual variability of soil respiration and increased that of soil temperature, while warming did not affect them. Interestingly, the highest mean soil respiration occurred in 2005 when seasonal variability of precipitation during the growing season was lowest, indicating the importance of precipitation distribution (Tables 3.1 and 3.3). In addition, there was larger seasonal variability in autotrophic respiration than that of other variables because estimates of RA combined uncertainties of both RS and RH measurements.


Table 3.3 Seasonal and interannual variability (IAV) of soil respiration, heterotrophic respiration, autotrophic respiration, soil temperature, soil moisture, and annual precipitation as coefficient of variation from Jan 2000 to Dec 2005 

		

		2000

		2001

		2002

		2003

		2004

		2005

		IAV



		Soil respiration

		

		

		

		

		

		

		



		UC

		0.69

		0.65

		0.82

		0.76

		0.79

		0.80

		0.11



		UW

		0.69

		0.67

		0.82

		0.76

		0.76

		0.78

		0.09



		CC

		0.65

		0.60

		0.79

		0.74

		0.84

		0.71

		0.07



		CW

		0.65

		0.59

		0.74

		0.83

		0.80

		0.73

		0.06



		Heterotrophic resp

		

		

		

		

		

		

		



		UC

		/

		/

		0.70 

		0.64 

		0.64 

		0.72 

		0.07 



		UW

		

		

		0.64 

		0.64 

		0.67 

		0.72 

		0.05 



		CC

		

		

		0.56 

		0.63 

		0.64 

		0.62 

		0.06 



		CW

		

		

		0.56 

		0.65 

		0.70 

		0.80 

		0.07 



		Autotrophic resp

		

		

		

		

		

		

		



		UC

		/

		/

		1.18 

		1.17 

		1.03 

		1.07 

		0.20 



		UW

		

		

		1.22 

		1.19 

		1.12 

		1.00 

		0.17 



		CC

		

		

		1.06 

		1.13 

		1.34 

		0.91 

		0.25 



		CW

		

		

		0.86 

		1.21 

		1.16 

		0.69 

		0.05 



		Soil temperature

		

		

		

		

		

		

		



		UC

		0.50 

		0.50 

		0.53 

		0.43 

		0.51 

		0.42 

		0.04 



		UW

		0.46 

		0.46 

		0.47 

		0.40 

		0.46 

		0.37 

		0.04 



		CC

		0.50 

		0.47 

		0.52 

		0.42 

		0.51 

		0.40 

		0.08 



		CW

		0.44 

		0.40 

		0.43 

		0.38 

		0.45 

		0.34 

		0.07 



		Soil moisture

		

		

		

		

		

		

		



		UC

		0.44 

		0.28 

		0.19 

		0.32 

		0.23 

		0.17 

		0.11 



		UW

		0.47 

		0.30 

		0.18 

		0.36 

		0.24 

		0.26 

		0.14 



		CC

		0.47 

		0.32 

		0.17 

		0.33 

		0.22 

		0.22 

		0.15 



		CW

		0.58 

		0.30 

		0.18 

		0.36 

		0.22 

		0.29 

		0.19 



		Precipitation

		0.86

		0.76

		0.51

		0.94

		0.77

		0.76

		0.24



		Precipitation in growing season

		0.96 


(60%)

		0.83


(62%)

		0.37


(68%)

		0.79


(72%)

		0.78


(62%)

		0.31


(78%)

		0.16


(66%)





Note: Percentages in brackets of the bottom row are precipitation contribution in growing season to annual precipitation. 


UC: unclipped control; UW: unclipped warmed; CC: clipped control; CW: clipped warmed.


Modeled soil respiration and RH

The inclusion of both soil temperature and moisture slightly improved model fitting of observed soil respiration and RH for the four treatments over seasons compared to the exponential model only using temperature (Figs. 3.3 and 3.5). Although soil temperature and moisture often co-vary, the comparison between the two models suggests that soil temperature is the dominant environmental factor in regulating seasonal dynamics of soil respiration and RH across the whole study period. Unfortunately, the combined function of soil temperature and moisture did not fit the data well under severe water stress, where soil moisture was less than 10%, and we decided to exclude the four points in model fitting (see Materials and Methods). Therefore, biological factors such as biomass or net primary productivity (NPP) may be other important components controlling soil respiration and RH and should be included in future studies. In addition, we did not predict RA with confidence because RA only contributed a small proportion of soil respiration with larger uncertainties than RS and RH, and seasonal changes in plant roots and closely associated organisms may have confounded the response to environmental soil variables (Trumbore et al. 1996), making it more difficult to find clear relationships with environmental variables.


Estimated annual soil respiration and its components 

Annual soil CO2 emissions ranged from 682 to 968 g C m-2 yr-1 across the six years for the four treatments (Fig. 3.6). On average, warming treatment increased annual soil respiration by 9.4±1.4 % in the unclipped plots and by 15.1±1.6 % in the clipped plots from 2000 to 2005. In contrast, yearly clipping decreased annual soil respiration by 6.1±1.6 % compared to that in the control. Lower annual soil respiration occurred in 2000 and 2001 than in the other years (Fig. 3.6), largely owing to the long drought and high temperature. 


Annual RH contributed 56.0 -71.7% to total annual soil respiration, ranging from 427 to 657 g C m-2 yr-1 across the four years (2002 – 2005) for the four treatments. On average, warming increased annual RH by 14.5% in the unclipped plots and by 13.3% in the clipped plots across the four years, and yearly clipping decreased annual RH by 12.5%. For annual RA, which contributed 28.3 – 44.0 % to total annual soil respiration, annual RA increased 2.3 % by warming and 21.9% by yearly clipping compared to that in the control. 
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Fig. 3.5 Measured vs. modeled soil respiration (a and b) and heterotrophic respiration (c and d) under the four treatments. See Fig. 3.1 for abbreviations. 
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Fig. 3.6 Annual soil respiration and heterotrophic respiration (g C m-2 s-1) under the four treatments. Vertical bars represent the standard error of the mean (n=6). The hatched columns represent annual heterotrophic respiration.


3.4. Discussion


Partitioning soil respiration

In our study, the surface CO2 efflux measured in deep soil collars (70 cm), which were inserted beyond the main rooting zone to exclude roots, was used to represent heterotrophic flux component after severed roots caused by deep-collar insertion have been decomposed. On average over the four years, the relative contribution of RH to soil respiration was 66% in the control (Fig. 3.4), very close to the mean contribution in non-forest ecosystems (63%, Hanson et al. 2000) and in temperate grassland (67%, Subke et al. 2006), and well within the range of 60-88% in grasslands and croplands (Raich and Tufekcioglu 2000). 

Results from this and previous studies indicate that the deep-collar insertion is a useful technique to estimate relative contributions of RH and RA to soil respiration after collars were installed several months (Buchmann 2000, Wan et al. 2005). Buchmann (2000), for example, compared results from the deep-collar insertion with those from trenching methods and found similar partitioning of soil respiration to RA vs. RH (~30% vs. ~70%). The insertion method is simple, cost effective, and easy to maintain over a long time. However, insertion of deep collars cut roots and stimulated decomposition of dead roots in the first several months (Fig. 3.4b), and thus the data during the disturbance period should be excluded from analysis. The insertion method may cause biases in estimated RH in a few sources. First, there may be still some roots that grew underneath the 70-cm collars. In temperate grasslands, 83% of root biomass is grown in the upper 30-cm depth (Jackson et al. 1996). Our own data from ingrowth cores also showed that roots were very rare below 60 cm (data not shown). Usually, deep soil CO2 production (including both RA and RH) is quite small relative to soil horizons nearer to the surface (Davidson and Trumbore 1995, Hui and Luo 2004, Davidson et al. 2006). Second, a small quantity of severed roots may slowly decompose for a long time after the collar insertion, possibly contributing to overestimation of heterotrophic respiration. Third, the inserted deep collars excluded root exudates and root litter and thus decreased organic matter input. As a consequence, measured RH was supposed to gradually decline in comparison to the surrounding soil. Our four years of observation showed that the gradual decline was very minor. Lastly, the deep-collar insertion potentially resulted in different soil moisture content and possibly different temperature from those in soil outside of collars. The impacts of the differential environment on estimation of Rh are yet to be assessed.


Seasonal and interannual variability


The range of soil respiration measured in the control plots over the six years is comparable to that in other studies (e.g., Davidson et al. 1998, Law et al. 1999, Xu and Qi 2001, Bremer and Ham 2002, Wan and Luo 2003). Similar seasonal trends in soil respiration have also been observed in a variety of ecosystems (e.g., Conant et al. 2000, Xu and Qi 2001, Wan and Luo 2003) except for arid ecosystems, where soil moisture dominates CO2 efflux from soil (Davidson et al. 2000). In our study, seasonal variation in soil respiration and its components considerably followed the temporal dynamics of soil temperature with some dips due to summer severe drought (Figs. 3.1, 3.2, and 3.4). 


The significant year-to-year variability in soil respiration has been reported in various ecosystems such as grasslands (Frank et al. 2002), a beech forest (Epron et al. 2004), mixed temperate forests (Savage and Davidson 2001), a mixed hardwood forest (Melillo et al. 2002), ponderosa pine forests (Irvine and Law 2002), and forest plantations (King et al. 2004). Compared to those studies, the observed interannual variability in this study was relatively low for both soil respiration and its components. Surprisingly, the year-to-year variation in soil respiration did not follow the interannual pattern of precipitation at our site (Figs. 3.1b and 3.6). For example, the highest annual soil respiration occurred in 2005 when annual precipitation was lowest but a large proportion (78%) was present in the growing season and was evenly distributed (Table 3.3, Fig. 3.1a,b). In the first two years of the study, annual rainfall was relatively high while annual soil respiration was lower than that in other years, largely resulting from high seasonal variability of precipitation with the long period of drought in the growing season of 2000 (55 days without rain) and 2001 (41 days without rain) and the negative effects of extremely high temperature in July of 2001 (Tables 3.1 and 3.3, Fig. 3.1). A general negative correlation between summer rainfall and high temperatures was also found throughout the tallgrass prairie (Rose 1936). We carefully checked soil moisture pattern and found that some dips in soil respiration corresponded with those points, where volumetric soil moisture was lower than around 12% (Fig. 3.1c). In a water manipulation experiment, Liu et al. (2002) observed that soil respiration dropped very quickly when gravimetric soil moisture was below around 8%, which was very close to 12% of volumetric moisture, while there was little response of soil respiration above this point. Evenly distributed precipitation during the growing season of 2005 caused intermediate soil moisture and then the highest soil respiration. Therefore, the interannual variability of soil respiration was controlled by precipitation distribution or soil moisture dynamics instead of annual precipitation. Similar results have been observed in other ecosystems (Davidson et al. 2000, Savage and Davidson 2001). The linear relationship between annual soil respiration and precipitation, which occurred at the global scale (Raich and Schlesinger 1992), may not work at local scale.


Effects of warming and yearly clipping


Numerous studies have observed increases in soil respiration in response to warming (Peterjohn et al. 1994, McHale et al. 1998, Rustad et al., 2001, Melillo et al. 2002, Niinistö et al. 2004). The warming-induced responses in soil respiration may be regulated by acclimatization of respiration (Luo et al. 2001a), physiological and phenological adjustments of plants and microbes (Melillo et al. 2002), extensions of growing seasons (Dunne et al. 2003, Wan et al. 2005), changes in net N mineralization (Wan et al. 2005), and stimulated C4 plant productivity (Wan et al. 2005). In our study, warming significantly increased the mean soil respiration for 5 years out of the 6-year study period (except 2000). The warming-induced increases in soil respiration likely resulted from extensions of growing season and increased plant productivity (Wan et al. 2005). A positive linear correlation between soil respiration and aboveground biomass across the first three years indicated that increase in soil respiration largely enhanced belowground C allocation and RA (Wan et al. 2005). The magnitude of warming effects on soil respiration was lower than the 20% mean increase found in 17 ecosystem warming experiments (Rustad et al. 2001), likely due to low soil organic C content in our experimental site (Luo et al. 2001a). We did not observe a decline in warming stimulation of soil respiration as shown by Rustad et al. (2001), mainly because soil respiration is tightly coupled with carbon uptake through plant growth. 


Few studies have examined the effects of warming on components of soil respiration in the field (Melillo et al. 2002). Our study found that warming significantly increased both RH and RA except for RH in 2003 and RA in 2004. The increased respiration likely resulted from enhanced oxidation of soil carbon compounds on warmed plots for RH (Lin et al. 2001, Eliasson et al. 2005) and from an increase in root biomass for RA (Wan et al. 2005). Similarly, Lin et al. (1999, 2001) also observed significant increases in soil respiration and its components in response to warming in sun-lit controlled-environment terracosms. 

Removal of aboveground biomass by clipping temporarily reduces the supply of current photosynthates to roots and mycorrhizal fungi, usually resulting in a decrease in soil respiration by 19 – 49% at a short-term period (i.e., several days to months) (Bremer et al. 1998, Craine et al. 1999, Craine and Wedin 2002). In our study, yearly clipping significantly reduced soil respiration in the last two years and RH for all the four years (p<0.05), while there was no significant effect on RA. At a yearly scale, the reduction in assimilate supply by clipping may strongly decrease RH (Bahn et al. 2006) and this trend increased through time from 2002 to 2005. RA was slightly stimulated by clipping due to an increase in root biomass (Wan et al. 2005). This increase offset the reduction in RH, resulting in no significant effects on soil respiration in the first four years. In the last two years, however, the compensation of RA was not enough to offset declining RH. However, frequent clipping to keep the ground bare over the whole study period of one year significantly decreased soil respiration by 33% at a similar grassland (Wan and Luo 2003). Thus, frequency of clipping and duration of study can be sources of variation among studies.


Temperature sensitivity 


The apparent Q10 values of soil respiration were slightly lower under warming (p>0.05) and reduced considerably by clipping (p<0.05) compared to the control, while there was no consistent trends among the apparent Q10 values of RH and RA. The decrease in Q10 values in response to warming had been observed in other studies (McHale et al. 1998, Luo et al. 2001a, Strömgren 2001, Niinistö et al. 2004), suggesting that temperature acclimation could have occurred, although the magnitude largely varied. Clipping not only affected the supply of current photosynthates to roots and their associated symbionts but also changed microclimate variables such as soil temperature and moisture (Wan et al. 2002), resulting in a decrease in temperature sensitivity of soil respiration. 

The apparent Q10 values for RA were higher than those for RH and soil respiration (Table 3.2). Similar results have been observed in other studies (Boone et al. 1998, Epron et al. 1999, Jiang et al. 2005). The higher Q10 values for RA than RH may result not only from higher sensitivity of the specific root respiration to soil temperature, but also from seasonal variation in root biomass, which is usually high when temperature is high (Boon et al. 1998, Rey et al. 2002). The different Q10 values for RA and RH suggest that temperature sensitivity of soil respiration depends on the relative root contribution. An ecosystem in which roots contribute the largest portion of soil respiration should be most sensitive to warming. 


3.5. Conclusions

This study showed that heterotrophic respiration accounted for approximately 66% of soil surface efflux over the six years in a grassland ecosystem. Throughout the duration of this experiment, warming significantly stimulated soil respiration and its components. However, warming did not change relative contributions of RA or RH to soil respiration. Yearly clipping significantly reduced soil respiration in the last two years and heterotrophic respiration in all the four years, while there was no significant clipping effect on RA. The apparent Q10 values of soil respiration were slightly lower under warming (p>0.05) and reduced considerably by clipping (p<0.05) compared to the control. 

We found that seasonal variability was distinctly much greater than interannual variability for soil respiration and its components. Yearly clipping decreased the interannual variability of soil respiration, while warming did not affect it. The interannual variability of annual soil respiration was not related to fluctuations in precipitation, suggesting that rainfall distribution over seasons, especially during the growing season, is more important than annual precipitation. 
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Chapter 4


Patterns of biomass, litterfall, and soil respiration along a precipitation gradient in southern Great Plains




This part has been prepared for Ecology. 


ABSTRACT


Precipitation is a key driver in influencing ecosystem structure and function, especially in grassland ecosystems, and its regional control along natural gradients is thought to mirror long-term climate change. Along precipitation gradients, aboveground production is positively correlated with precipitation. However, how precipitation affects ecosystem belowground carbon gain, reservoir of litterfall, and loss of soil respiration and how they are interactively regulated are largely unknown. To address the role of precipitation in controlling ecosystem C gain, reservoir, and loss and their interaction, we measured aboveground and belowground biomass (AGB and BGB), standing and surface litter (ST and SU), and soil respiration for three seasons along a natural precipitation gradient from southeast to northwest Oklahoma in southern Great Plains. Our results show that AGB, ST, SU, and soil respiration often linearly increased with an increase in precipitation along the gradient, although belowground biomass (BGB) and total biomass varied little. BGB to AGB ratio and rain use efficiency (RUE) linearly decreased with increasing precipitation due to less plant allocation to roots and high biogeochemical constraints (e.g., nutrients or light), respectively, at mesic sites of the gradient. The one-year precipitation before samplings (OYP) had better correlations with biomass, litterfall, and soil respiration than mean annual precipitation (MAP). Soil respiration was not only affected by precipitation, but also regulated by litterfall in fall and winter and by AGB in spring, which were mainly controlled by precipitation. Our results suggest that precipitation controls soil water dynamics, which directly affects vegetation production and litterfall, and indirectly regulates soil respiration.


Keywords: aboveground biomass, belowground biomass, litterfall, standing litter, surface litter, soil respiration, precipitation gradient, grassland 

4.1. Introduction

Precipitation is a dominant environmental driver in influencing ecosystem structure and function, especially in grassland ecosystems (Webb et al. 1978, Sala et al. 1988, Lane et al. 2000, Epstein et al. 2002, Zerihun et al. 2006), and its availability could mediate the responsiveness of communities and ecosystems to global changes (Smith et al. 2000, Shaw et al. 2002, Huxman et al. 2004). The IPCC (2001) has projected a probable increase in precipitation of 0.5 to 1% per decade in this century, globally. However, predictions from the Vegetation-Ecosystem Modeling and Analysis (VEMAP) suggest that the Great Plains region of the North America would experience an approximate 30% decrease in annual precipitation by the end of this century (USGCRP 2003). Changes in precipitation may be of great consequence for ecosystem carbon cycling process because precipitation drives both biotic and abiotic processes and has the potential to affect grassland types, productivity, and decomposition rates (Lauenroth and Sala 1992, Milchunas et al. 1994, Knapp et al. 2001, 2002, Fay et al. 2002, Santiago and Mulkey 2005). Furthermore, Weltzin et al. (2003) suggested that shifts in precipitation regimes may have an even greater impact on ecosystem dynamics than the singular or combined effects of rising CO2 and temperature, respectively. Therefore, understanding the role of precipitation is imperative to improve the prediction of ecosystem carbon cycling in the changing climate.


Regional controls on ecosystem structure and function have been explored through the use of spatial variation of key climatic factors (e.g., temperature and precipitation). Rgional analyses have elucidated control of precipitation on species assemblages (Epstein et al. 1996), primary production (Sala et al. 1988, Austin and Sala 2002, Epstein et al. 2002, Zerihun et al. 2006), litter decomposition (Meentemeyer et al. 1982, Austin 2002), and trace gas flux (Matson and Vitousek 1987, Simmons et al. 1996, McCulley et al. 2005). Those results are crucial for assessing the potential response to long-term global climate change (decades to centuries), and have thus been incorporated into statistical and simulation models (Burke et al. 1997), when experimental manipulation provides short-term responses (annual to decadal scales) (Shaver et al. 2000). In Oklahoma of the USA, annual precipitation shows a strong northwest-southeast gradient from 430 to 1200 mm, with a shift in grassland types from short grass steppe to mixed grass and tallgrass prairie. This precipitation gradient provides a unique opportunity to examine ecosystem carbon processes in different grassland types occurring in close proximity. 


Along spatial precipitation gradients, the majority of previous studies have evaluated the control of precipitation on aboveground net primary production (ANPP), which often linearly increased with increasing precipitation from deserts to grasslands, but not all biomes (Webb et al. 1978, Sala et al. 1988, McNaughton et al. 1993, Paruelo et al. 1998, 1999, Austin and Sala 2002, Epstein et al. 2002, Zhou et al. 2002, Huxman et al. 2004, Santiago and Mulkey 2005, McCulley et al. 2005, Zerihun et al. 2006). However, ANPP represents only one-half or less of NPP of grasslands (Sims and Singh 1978, Milchunas and Lauenroth 2001), although it determines forage availability for herbivores In contrast, belowground compartment of the vegetation likely contributes to a more important source of soil C than aboveground one. Due to methodological difficulties (Medina and Klinge 1983, Olson et al. 2001), few studies have quantified belowground production, and even fewer were made along natural precipitation gradients (Sims and Singh 1978, McCulley et al. 2005). Thus, quantifying belowground response to regional precipitation patterns becomes necessary to better understand ecosystem functioning in the changing world.


The litter of an ecosystem is one of the reservoirs of carbon and nutrients. It is an important transfer station of material and energy from plant to soil (Yin and Huang 1996). This reservoir is an input-output system, which receives dead vegetation input, loses biomass by decomposition, and storesorganic matter in soil until released by decomposing organisms. The CO2 flux from the last two parts is called heterotrophic respiration, which approximately contributes to 70% of soil respiration, and another component is root respiration (~30%) in grasslands (Hanson et al. 2000, See Chapter 3). At the global scale, litter decomposition and soil respiration are strongly influenced by precipitation (Raich and Schlesinger 1992). Along precipitation gradients, increasing primary production may largely enhance litterfall production (Read and Lawrence 2003, Lawrence 2005), and then stimulate soil respiration (Gärdenäs 2000, McCulley et al. 2005). However, ecosystem carbon gain, reservoir, and loss (i.e., productivity, litterfall, and soil respiration) may be interactively constrained by the magnitude of precipitation. In addition, standing (ST) and surface (SU) litter may have different responses to precipitation along the gradient compared to total litterfall. Therefore, it is essential to examine how ST and SU respond differentially to change in precipitation and how biomass, litterfall, and soil respiration are interactively regulated along the precipitation gradient. 

In gradient studies, nearly all analyses have used mean annual precipitation (MAP) to describe response patterns of ecosystem processes (e.g., Sala et al. 1988, Lane et al. 2000, Austin and Sala 2002, Huxman et al. 2004, Santiago and Mulkey 2005, Zerihun et al. 2006). However, measurements in the field were usually conducted in a simple snapshot of long-term responses to precipitation. MAP may not reflect the snapshot measurements compared to one-year precipitation before sampling (OYP). Therefore, in this study, we compared relationships between measured variables and MAP or OYP to determine which one better represents ecosystem functioning. 


In this study, our objectives were to examine spatial controls of precipitation on biomass, litterfall, and soil respiration and how they are interactively regulated, and to attempt to identify how well MAP and OYP reflect these processes along a precipitation gradient in southern Great Plains grasslands. We hypothesized that biomass, litterfall, and soil respiration all would increase along the precipitation gradient and litterfall and soil respiration would be regulated by biomass. We also hypothesized that OYP would better reflect ecosystem carbon processes than MAP. 


4.2. Materials and methods


Site descriptions


This transect study was conducted in temperate grasslands of Oklahoma along a precipitation gradient through the southern Great Plains region of the USA (Fig. 4.1). Nine grassland sites were selected to represent three grassland types which differ substantially in physiognomy: short-grass steppe, mixed-grass prairie, and tallgrass prairie (Sims 1988). We chose sites with the minimum amount of disturbance and land-use impact possible based on conversations with site owners and managers of government organization, although light to intermediate grazing had or was occurring. Mean annual precipitation (MAP) across these sites varied from 430 mm in northwest Oklahoma to 1200 mm in southeast Oklahoma (Table 4.1). Across this precipitation gradient, mean annual temperature (MAT) had a relatively little change. Table 4.1 shows location (Latitude and Longitude), elevation, MAP, MAT, and soil types of nine 

Table 4.1 Location (latitude and longitude), elevation, mean annual precipitation (MAP), mean annual temperature (MAT), and soil type at nine grassland sites from southeastern to northwestern Oklahoma.

		Site

		Latitude

		Longitude

		Elevation (m)

		MAP


(mm)

		MAT


(oC)

		Soil Type



		HU

		34o01'50" N

		95o25'24" W

		174

		1203

		16.5

		Fine sandy loam



		PR

		34o30'05" N

		96o36'59" W

		309

		1048

		16.2

		Silt loam



		KF

		34o58'54" N

		97o31'14" W

		340

		915

		16.3

		Silt loam



		HP

		35o14'53" N

		98o51'41" W

		480

		806

		15.3

		Clay loam



		HL

		35o37'50" N

		98o30'24" W

		493

		760

		15.4

		Fine sandy loam



		CL

		36o07'30" N

		98o37'55" W

		485

		735

		14.4

		Fine sandy loam



		UW

		36o26'04" N

		99o23'58" W

		579

		660

		13.6

		Loam fine sand



		OL

		36o38'45" N

		101o13'18" W

		913

		465

		13.8

		Loam



		RB

		36o31'43" N

		102o50'01" W

		1263

		434

		13.0

		Fine sandy loam





Notes: HU- Hugo Lake 


   PR-Pontotoc Ridge preserve

KF- Kessler’s farm field laboratory    HP-Hulsey’s private land 

HL- American Horse Lake           CL- Canton Lake 

OL- Optima Lake                  RB-Rita Blanca national grassland 


UW- USDA southern plains range research station in Woodward 

Elevation, MAP, and MAT are NOAA monthly normals of the nearest weather station from each site (http://cdo.ncdc.noaa.gov/climatenormals/clim81/OKnorm.pdf). Soil type is from Soil Conservation Services (SCS), State Soil Geographic Datatbase (STATSGO) http://www.xdc.arm.gov/data_viewers/sgp_surfchar/Oklasoil_new.html

grassland sites from southeastern to northwestern Oklahoma. Species composition and phonological habit changed across this precipitation gradient (X. Zhou and Y. Luo, unpublished data, 2005).

Sampling design


Samples were collected within one week in fall (August 2003) and spring (May 2005) to reduce effects of temperature variation. In winter (February 2004), sampling was extended to two weeks. In fall and winter, only seven sites were selected (excluding CL


and UW, Table 4.1), and measured variable included aboveground biomass (AGB), standing litter (ST), surface litter (SU), soil respiration, soil moisture, and soil temperature. In May 2005, we also measured belowground biomass (BGB), leaf area index (LAI), field capacity, pH, total C and N besides those variables measured in fall and winter. 


At each sampling site, five randomly selected plots were investigated on 0.5 m × 0.5 m quadrants. Within the selected plot, we firstly measured LAI using LAI-2000 and soil respiration and temperature by LiCor 6400 connected with soil CO2 efflux chamber and thermocouple probe, respectively. Then all vegetation including AGB, ST, and SU was harvested. Finally, we collected one soil core with two increments (0-15 and 15-30 cm, diameter = 4.0 cm) for root biomass and one core (diameter =3.5 cm, height=5 cm) for field capacity at each plot. Soil moisture, pH, total C and N contents were measured in 0-15-cm soil core after picking roots. We stored soil samples in an ice chest until they were brought back to the laboratory stored in a freezer (-4oC).


Biomass and litterfall measurements

Aboveground biomass (AGB) and standing litter (ST) were determined by the harvest method. All vegetation within a 0.5 × 0.5 m2 quadrant was clipped at 5 cm above the soil surface at each plot. Once return to the laboratory, samples were oven dried at 60oC for 48 h right away, and then separated into categories of live and dead biomass (i.e., AGB and ST) and weighted. 
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Fig. 4.1 Map showing location of grassland sites and normal annual precipitation (1971-2000) over state of Oklahoma from Oklahoma Climatological Survey. See Table 4.1 for abbreviations. 


Belowground biomass (BGB): One soil core sample was collected at the two increments: 0-15 and 15-30 cm using 4 cm diameter steel corer in each sampling plot. After washing soil through 0.25 mm mesh sieve, roots were oven dried at 60oC for 48 h and weighted. 


Surface litter (SU) was removed with a hand rake in a 0.5 m × 0.5 m quadrant prior to soil sampling at each plot. The litter samples were cleaned, oven dried at 60oC for 48 h and weighted.


Measurements of other variables

Leaf area index (LAI) is the total cone-sided foliage area per unit ground surface area. LAI was measured using LiCor plant canopy analyzer (Model LAI-2000, LI-COR. Inc., Lincoln, Nebraska, USA). LAI-2000 measures the transmitted blue sky light (400-490 nm) under the canopy. A single above-canopy radiation measurement with five below-canopy readings each plot was used to compute the LAI. A 90o view restrictor was used in all measurements to prevent direct sunlight from reaching the sensor and to occlude the operator from the field of view. 

Soil respiration was measured using a LI-COR 6400 portable photosynthesis system attached to soil CO2 flux chamber (LI-COR. Inc., Lincoln, Nebraska, USA). A measurement consisted of placing the chamber on soil, scrubbing the CO2 to sub-ambient levels, and determining soil CO2 efflux over the periods. Data were recorded at a 5-second interval by the datalogger in the LI-COR 6400 console.

Soil temperature at the depth of 5 cm was monitored using a thermocouple probe (LI-COR 6000-09TC) connected to the LI-COR 6400 at the same time when soil CO2 efflux was measured. 


Soil moisture was measured gravimetrically. Soil samples at the top 15 cm were taken from each plot and oven dried at 105°C for 48 hours and weighed. Gravimetric soil moisture was expressed as a percent of dry soil on a mass basis. 


Field capacity (FC) was measured by soaking the soil for 12 h in a plastic cylinder (diameter =3.5 cm, height=5 cm) with a 0.3 mm nylon mesh in the bottom. After the soil was drained for 1h, the soil was emptied into a container and the FC was determined as for gravimetric soil moisture. 

Soil pH was measured at a 1:10 soil-to-water ratio with a pH meter (Model 420A+Thermo Orion, Beverley, MA). Samples were mixed end-over-end for 1h. 

Total C and N content: On prior analysis, it was found that the soil contains carbonates. To avoid misinterpretation of soil C and N data, soils were acid-treated based on a procedure used by Subedar (2005). Briefly, 5 ml of 6N H2SO3 was added to 0.5 g of soil in clean glass vials. The samples were agitated for a few seconds to suspend the soil in the solution. The presence of carbonates was indicated by formation of bubbles. The samples were let to sit at room temperature for approximately 6 hours and then dried overnight at 60° C. The analysis of soil samples for total C and N content was done using a Finnigan DELTA plus Advantage gas isotope-ratio mass spectrometer (Thermo Finnigan MAT GmbH, Barkhausenstr, Germany), which is configured through the CONFLO III for automated continuous-flow analysis of solid inorganic/organic samples using a Costech ECS 4010 elemental analyzer (Costech Analytical Technologies Inc., Valencia, CA). 

Data analysis


The statistical effects of MAP or OYP on biomass, litterfall, and soil respiration were examined using regression analysis with MAP or OYP as an independent continuous variable. Comparisons of biomass, litterfall, and soil respiration were performed with 1-way analysis of variance (ANOVA). Stepwise multiple linear regression analysis was also applied to examine the control factor(s) of AGB, litterfall, and soil respiration using all other measured variables. Differences within the factor (site) were analyzed with a post-hoc Duncan’s multiple range test. The effects were considered to be significantly different if p<0.05 in all cases. All statistical analyses were performed using SPSS 11.0.1 for windows (SPSS Inc., Chicago, IL USA, 2001).

4.3. Results

Soil characteristics along the precipitation gradient 

Soil characteristics measured in this study are field capacity, pH, bulk density, C and N contents, and C:N ratio (Fig. 4.2). Along the precipitation gradient, distinct trends were only shown in pH and C:N ratio (Fig. 4.2b,d). Decreasing trend of pH was due to the existence of calcium carbonate at low precipitation sites based on simple test of HCl 
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Fig. 4.2 Soil characteristics along the precipitation gradient: Field capacity (%, a), pH and soil bulk density (g cm-3, b), %C and %N (c), and C:N ratio (d). Data are shown as mean ± SE (n=5).


(Fig. 4.2b). %C and %N contents and bulk density did not significantly change with increasing precipitation except the wettest site (Hugo Lake, Fig. 4.2b,c). If %C and %N contents were transferred to volume contents (g m-3), C and N contents were similar for all sites (Data not shown) as well as field capacity (Fig. 4.2a).

Comparison of relationships for MAP and OYP


There was considerable difference between the one-year precipitation before measurements (OYP) and mean annual precipitation (MAP), especially in Aug 2003 and Feb 2004, which largely regulate short-term and long-term processes, respectively (Fig. 4.3). Biomass, litterfall, and soil respiration may be affected by both MAP and OYP. However, better correlations occurred between measured variables and OYP than those between measured variables and MAP (Table 4.2), suggesting the larger regulation of biomass, litterfall, and soil respiration from OYP than MAP. Thus, we stated our results using relationships between measured variables and OYP instead of MAP thereafter, which were usually showed in the literature (e.g., Sala et al. 1988, Epstein et al. 2002, Lane et al. 2000, Austin and Sala 2002, Zerihun et al. 2006). 
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Fig. 4.3 Discrepancy between mean annual precipitation (MAP) and one-year precipitation before measurements (OYP) in Aug 2003 (a), Feb 2004 (b), and May 2005 (c). Data are shown as mean ± SE (n=5). 


Table 4.2 Comparison of relationships between measured variables and one-year precipitation before measurements (OYP) and between measured variables and mean annual precipitation (MAP) in Aug 2003, Feb 2004, and May 2005. R2 is the determinant coefficient. P values represent the significance of regression. 


		Time

		Parameters

		One-year precipitation (OYP)

		Mean annual precipitation (MAP)



		

		

		R2       P

		R2       P



		Aug 2003

		AGB


ST


SU


ST/SU ratio


Soil respiration


Soil moisture

		0.85     0.009


0.79     0.007


0.65     0.03


0.45     0.09


0.88     0.006


0.73     0.01

		0.62     0.06


0.75     0.01


0.48     0.08


0.44     0.10


0.80     0.02


0.64     0.04



		Feb 2004

		ST


SU


ST/SU ratio


Soil respiration


Soil moisture

		0.52     0.07


0.62     0.06


0.63     0.03


0.79     0.008


0.70     0.03

		0.65     0.03


0.67     0.05


0.61     0.04


0.60     0.04


0.79     0.02



		May 2005

		AGB


AGB/BGB ratio


ST


SU


ST/SU ratio


Soil respiration


Soil moisture

		0.75     0.006


0.50     0.03


0.12     0.37


0.57     0.02


0.43     0.05


0.66     0.01


0.67     0.007

		0.63     0.02


0.41     0.06


0.14     0.32


0.56     0.02


0.42     0.06


0.65     0.01


0.51     0.05





Pattern of biomass along a precipitation gradient


Green aboveground biomass (AGB) linearly increased along the precipitation gradient in both August 2003 and May 2005 as well as leaf area index (LAI) in May 2005 (Fig. 4.4a,b,c), although there was one outlier at each measurement, both resulting from drought stress. In August 2003, the outlier site was in Kessler farm field laboratory (KFFL) due to the long period of no rain in June and July (34 days). In May 2005, the outlier occurred in Pontotoc ridge preserve (PR) because of a low proportion of rainfall 
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Fig. 4.4 Changes in green aboveground biomass (AGB) in Aug 2003 (a) and May 2005 (b) and leaf area index (LAI) in May 2005 (c) with one-year precipitation before measurements (OYP) along the precipitation gradient. Panel d shows the relationship between green AGB and LAI in May 2005. Data are shown as mean ± SE (n=5).


in the period from Jan to May 2005 (20%). Leaf area index (LAI) controls light interception of plant canopies, and affects carbon exchange between vegetation and the atmosphere. Thus, a good relationship occurred between green AGB and LAI without outliers in May 2005 (Fig. 4.4d). 


Interestingly, root or belowground biomass (BGB) at the depth intervals of 0-15, 15-30, and 0-30cm did not show distinct changes with increasing precipitation as well as total biomass (AGB+BGB) (Fig. 4.5a,b,c). However, BGB to AGB ratios linearly decreased along a precipitation gradient (Fig. 4.5d) as well as rain use efficiency (RUE), which was calculated from total biomass divided by OYP (Fig. 4.6). 
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Fig. 4.5 Changes in belowground biomass (BGB) at the depth of 0-15 cm and 15-30 cm (a), total measured BGB at the depth of 0-30 cm (b), total biomass including AGB and BGB (c), and AGB:BGB ratio (d) along a precipitation gradient. Data are shown as mean± SE (n=5). 
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Fig. 4.6 Pattern of rain use efficiency (RUE, ratio of total biomass (AGB+BGB) to OYP) along a precipitation gradient. Data are shown as mean ± SE (n=5).


Pattern of litterfall and soil respiration along a precipitation gradient


Litterfall was separated into standing litter (ST) and surface litter (SU). Different patterns of ST, SU, total litter (ST+SU), and ST to SU ratio occurred in three seasons along the precipitation gradient (Fig. 4.7). Both ST and SU linearly increased with increasing precipitation except ST in May 2005 (no change, Fig. 4.7c) and SU in February 2004 (decrease, Fig. 4.7e). Total litter and ST to SU ratios also linearly increased along the precipitation gradient except ST+SU in February 2004 due to a decrease in SU (Fig. 4.7b) and ST:SU ratio in May 2005 (decrease, Fig. 4.7i).


Soil respiration and soil moisture linearly increased along the precipitation gradient in all three seasons, while there were not significant changes in soil temperature (Fig. 4.8). An outlier occurred in May 2005 for soil respiration largely due to a significant low rainfall from January to May 2005 (Fig. 4.8c,f). 
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Fig. 4.7 Changes in standing litter (ST), surface litter (SU), total litter (ST+SU), and ST:SU ratio in Aug 2003 (a, d, g), Feb 2004 (b, e, h), and May 2005 (c, f, i) along a natural precipitation gradient. Data are shown as mean ± SE (n=5).
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Fig. 4.8 Changes in soil respiration (μmol m-2 s-1), soil moisture (%g), and soil temperature (oC) in Aug 2003 (a, d), Feb 2004 (b, e), and May 2005 (c, f) along the precipitation gradient. Data are shown as mean ± SE (n=5).


Relationships between biomass, litterfall, and soil respiration


Table 4.3 shows relationships between biomass, litterfall, and soil respiration in the three seasons. Soil respiration was significantly linearly correlated with SU and ST in Aug 2003 and February 2004 and with AGB in May 2005, while AGB was mainly controlled by precipitation. Similarly, ST and SU were also not related to other processes besides between each other. Using all measured variables, stepwise multiple linear regression analysis also showed the similar results above-stated for AGB, litterfall, and soil respiration (data not shown). 


Table 4.3 Relationships between soil respiration, aboveground (AGB) and belowground (BGB) biomass, standing litter (ST), and surface litter (SU) in three seasons. 

		

		Aug 2003

		Feb 2004

		May 2005



		

		Variable

		R2

		P

		Variable

		R2

		P

		Variable

		R2

		P



		Rs

		AGB

		0.50

		0.12

		ST

		0.82

		0.005

		AGB

		0.73

		0.003



		

		ST

		0.87

		0.006

		SU

		0.51

		0.07

		BGB

		0.04

		0.61



		

		SU

		0.80

		0.02

		

		

		

		ST

		0.23

		0.19



		

		

		

		

		

		

		

		SU

		0.12

		0.37



		ST

		AGB 

		0.56

		0.09

		SU

		0.72

		0.02

		AGB

		0.01

		0.85



		

		SU

		0.78

		0.008

		

		

		

		BGB

		0.15

		0.31



		

		

		

		

		

		

		

		SU

		0.53

		0.03



		AGB

		ST

		0.53

		0.10

		/

		BGB

		0.01

		0.77



		

		SU

		0.26

		0.30

		

		SU

		0.11

		0.38



		

		

		

		

		

		ST

		0.21

		0.21





4.4. Discussion


Our study demonstrated that linear relationships often occurred between biomass, litterfall, or soil respiration and precipitation along the precipitation gradient in southern Great Plains grasslands (Figs. 4.4, 4.7, and 4.8), although BGB did not greatly change (Fig. 4.5). BGB:AGB ratio and rain use efficiency (RUE) linearly decreased with increasing precipitation. The one-year precipitation before samplings (OYP) had a better correlation with biomass, litterfall, and soil respiration than mean annual precipitation (MAP, Table 4.2). In addition, biomass, litterfall, and soil respiration are interactively regulated by the magnitude of precipitation (Table 4.3). This transect study provides an effective tool to gain insight and allows us to evaluate trends and regulation in biomass, litterfall, and soil respiration as a function of precipitation without the confounding effect of drastic changes in vegetation type and soil characteristics. 


Comparison of relationships for MAP and OYP


Ecosystem carbon cycling processes are the outcome of combined effects of long- and short-term environmental drivers (Bloom et al. 1985, Burke et al. 1998, Zerihun et al. 2006). Along the precipitation gradient, these processes are not only influenced by mean annual precipitation (MAP) but also regulated by one-year precipitation before sampling (OYP). Our results show that biomass, litterfall, and soil respiration often had better correlations with OYP than MAP in three seasons (Table 4.2). The snapshot measurements in each of three seasons largely reflect effects of OYP more than MAP in this transect study, especially aboveground biomass (AGB). AGB was mainly controlled by current-year precipitation while litterfall and soil respiration were interactively regulated by both OYP and MAP (Tables 4.2 and 4.3). The study of interannual variation in primary production supports our results that ANPP was correlated with both current-year and previous-year precipitation in grassland ecosystems (Oesterheld et al.’s 2001, Nippert et al. 2006). Thus, cautions should be taken when we explained the data from snapshot measurement. Current-year precipitation and MAP both should be considered to evaluate the responses of ecosystem processes to precipitation. 


Pattern of biomass along a precipitation gradient


Vegetation dynamics are tightly coupled with hydrologic processes (Saco et al. 2006). Precipitation has served as a powerful predictor of plant productivity and other ecological attributes (Sala et al. 1988, Knapp et al. 2002, Austin and Sala 2002, Breshears 2005). Our results show the similar trend for AGB, which linearly increased with increasing precipitation along the gradient (Fig. 4.4). The positive relationships between ANPP and precipitation also have been observed in the central grassland region of the USA (Sala et al. 1988, Lane et al. 1998, 2000) and Siberian grasslands (Titlyanova et al. 1999) as well as other regions (Webb et al. 1978, Austin and Sala 2002, Zhou et al. 2002, Huxman et al. 2004, Santiago and Mulkey 2005, Zerihun et al. 2006). However, BGB did not show distinct changes along the precipitation gradient as well as total biomass (Fig. 4.5), largely resulting from a decrease in the proportion of primary production allocated to roots and an increase in turnover of roots with increasing precipitation (Comeau and Kimmins 1989, Pietikäinen et al. 1999, Kahmen et al. 2005). 


Difference between the patterns of AGB and BGB resulted in a decreased trend in BGB to AGB ratio along the precipitation gradient (Fig. 4.5d), indicating marked ecosystem-level adjustments in relative balances of BGB and AGB stocks. The trend of BGB to AGB ratio in our study is consistent with other studies (Comeau and Kimmins 1989, Chapin et al. 1993, Schulze et al. 1996, Zerihun et al. 2006) and prediction of resource balance/optimality theory (Bloom et al. 1985, Friedlingstein et al. 1999) largely due to the difference of the limiting source or plant strategy (Tilman 1988, Vinton and Burke 1997, Craine 2005). In semi-arid short-grass steppe, water is the primary limitation with physiological stress on plant production (Lauenroth et al. 1978), whereas production is limited by water as well as light and nutrient (mainly competition stress) in the tallgrass prairie (Knapp and Seastedt 1986, Schimel et al. 1991, Lane et al. 1998, 2000). Plant biomass distribution is adjusted to facilitate the acquisition of growth-limiting resources.


As a consequence, rain use efficiency (RUE) decreased with increasing precipitation along the gradient (Fig. 4.6), largely resulting from a decrease in vegetational constraints associated with response of dominant plants to changes in resource availability (i.e., water) and an increase in biogeochemical constraints related to the magnitude of nutrient or light limitation (Paruelo et al. 1999). Specifically, at the driest extreme of the gradient, plants with low relative growth rates (RGR) constrain the response of ANPP to precipitation with high BGB:AGB ratio (Fig. 4.5d), low LAI (Fig. 4.4c,d), low stomatal conductance, and low photosynthetic rates (Tilman 1988, Santiago and Mulkey 2005). At the wettest extreme of the gradient, high biomass or LAI reduce vegetational constraints and may result in an increase in nutrient (or light) limitation due to high nitrogen use efficiency or plant shading (Vitousek 1982, Vinton and Burke 1995), that is to say, biogeochemical constraints. Our results were remarkably similar to other studies for different areas of the world (Sala et al. 1988, McNaughton et al. 1993, Paruelo et al. 1998, 1999, Huxman et al. 2004). 


Pattern of litterfall along a precipitation gradient


Litterfall represents an essential link between plant production and CO2 release from soil. Our results show that standing litter (ST), surface litter (SU), total litterfall, and ST to SU ratio increased linearly along the precipitation gradient in fall (Fig. 4.7a,d,g), while, in winter and spring, this trend was not followed by all variables (Fig. 4.7b,c,e,i). The positive relationships between litterfall and precipitation result from different mechanisms along the gradient. At low rainfall, low input of production results in low accumulation of detritus when litter decomposition is also slow. As precipitation increases, litterfall input increases at a higher rate than mass loss, and then accumulates the larger litters at soil surface and in the air (Austin 2002). Slower decomposition of ST in the air than that of SU at the soil surface results in an increase in ST to SU ratio along the precipitation gradient due to low water availability of litter in the air (Kuehn et al. 1998). The trends were consistent with regional and global patterns of detritus for ecosystems in the same precipitation regimes (Schlesinger 1977, Austin 2002). 


However, SU decreased along the precipitation gradient in February 2004 (Fig. 4.7e), largely resulting from enhanced physical leaching (Swift et al. 1979) and confounding effect of temperature (Read and Lawrence 2003). Along the precipitation gradient, the proportion of annual precipitation from September 2003 to February 2004 increased from 25% to 50% in despite of increasing rainfall, too. The greater rainfall accelerates the breakdown of surface litter through physical process of leaching, which is controlled by precipitation (Swift et al. 1979, Austin and Vitousek 2000). In addition, mean annual temperature (MAT) varied from 13.0 to 16.5oC along the precipitation gradient (Table 4.1). A larger response to the small change in temperature may occur in winter compared to summer along the gradient due to higher temperature sensitivity of litter decomposition at low temperature range than high range (Kirschbaum 1995, Janssens and Pilegaard 2003, Chen and Tian 2005). In winter, thus, litter decomposition was faster in mesic than xeric sites, resulting in an opposite trend for SU along the gradient. This trend did not occurred on ST because low water availability of litter largely slow down decomposition in the air (Kuehn et al. 1998). 


In May 2005, ST did not show distinct change along the precipitation gradient (Fig. 4.7c, i) because the snapshot measurement of ST represented those amounts of previous-year recalcitrant litter, which was difficult for microbial decomposition (e.g., stem). The previous-year ST were easier to fall down and decompose at mesic than xeric sites due to high temperature and wet climate along the gradient, although plant C:N ratio increased (Swift et al. 1979, Vitousek et al. 1994, Murphy et al. 2002). The relatively constant trend for ST led to a decreased trend of ST to SU ratio along the precipitation gradient (Fig. 4.7i). Our results suggest that patterns of ST, SU, total litterfall, and ST to SU ratio were not constant in different seasons along the precipitation gradient (Fig. 4.7). 


Litterfall is generally related to vegetation biomass as an interesting index of ecosystem productivity (Olson 1963). However, our correlative analysis did not show this relationship, largely resulting from that these grassland sites may be not in equilibrium due to light or intermediate grazing. Usually, the amount of litter input is also served as a parameter determining the size of soil C pools and soil respired CO2 (Cotrufo 2006). Our study did show the relationship between soil respiration and ST or SU (Table 4.3). However, Sayer et al. (2006) found that roots responded rapidly to changes in fresh leaf litter input and appeared to closely follow the patterns of litter decomposition in increasing litterfall experiments. That is to say, quantity of standing litter is a driving factor of root dynamics. Although we did not carefully examine root dynamics and no correlation between root biomass and either ST or SU was found along the precipitation gradient, such different effects may reflect differences in litter quantity, litter quality, or distribution of detritus. 


Pattern of soil respiration along a precipitation gradient


Soil respiration linearly increased along a precipitation gradient in the study (Fig. 4.8). Temperature and moisture are the two major factors influencing soil respiration (Luo and Zhou 2006). To reduce temperature effects, our sampling was conducted within one week in fall and spring and within two weeks in winter. Precipitation is the primary input of soil moisture and often important to predict the regional and global variability in soil respiration (Raich and Schlesinger 1992, Conant et al. 1998, Gärdenäs 2000, Epstein et al. 2002). Thus, this trend occurred along the gradient. Other studies also found this trend that soil respiration and decomposition rates both increased with MAP across the Great Plains of North America (McCulley et al. 2005). In addition, leaf litter mass and CO2 fluxes from leaf litter decomposition both were positively correlated with MAP in northern hardwood ecosystems in Maine, USA (Simmons et al. 1996). 

Soil respiration includes autotrophic root respiration and heterotrophic component during litter and soil organic matter (SOM) decomposition. Usually, root respiration is tightly related to root biomass with a linear relationship (Kucera and Kirkham 1971, Edwards and Sollins 1973, Behara et al. 1990). Our results show that root biomass did not change largely along the precipitation gradient (Fig. 4.5), and thus autotrophic root respiration also did not vary greatly. This results in that the contribution of heterotrophic to total soil respiration decreased along the precipitation gradient. Thus, the regional increase in soil respiration along the gradient is largely the result of increasing litter and soil organic matter decomposition. Unfortunately, we still can not determine the exact proportion of root or heterotrophic respiration to soil respiration. 


Soil respiration was not only affected by precipitation, but also regulated by litterfall in fall and winter and by AGB in spring, which were mainly controlled by precipitation (Table 4.3). In the growing season (May 2005), roots were very active, resulting in root respiration contributing a large proportion of total soil respiration because autotrophic component reflects plant activity and the supply or organic compounds to root from the canopy (Högberg et al. 2001, Bhupinderpal-Singh et al. 2003, Binkley et al. 2006, Also see Chapter 3). In non-growing season, the relationship between soil respiration and ST or SU suggests that litter decomposition may contribute a considerable amount to soil respiration. Thus, precipitation directly affects vegetation production and litterfall, and indirectly regulates soil respiration. 

4.5. Conclusion

This transect study examined patterns of biomass (AGB and BGB), litterfall (ST and ST), and soil respiration in southern Great Plains grasslands along a precipitation gradient (430 – 1200 mm). The results show that AGB, litterfall (ST and SU), and soil respiration were often linearly related to precipitation, although BGB and total biomass did not largely change. BGB to AGB ratios and rain use efficiency (RUE) linearly decreased with increasing precipitation due to less plant allocation to roots and high biogeochemical constraints (e.g. nutrients and light), respectively, at the wet sites of the gradient. The one-year precipitation before samplings (OYP) was a better predictor on biomass, litterfall, and soil respiration, than mean annual precipitation (MAP). Our results indicate that precipitation is an important driver in shaping ecosystem functioning by controlling soil water dynamics, which directly affects vegetation production and litterfall, and indirectly regulates soil respiration in grassland ecosystems. It is suggested to incorporate our findings into current biogeochemical models as this will improve the predictions of long-term climate change effects (decades to centuries) on grassland ecosystems’ carbon balances.  
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Chapter 5


Patterns of Nonlinearity in Ecosystem Carbon and Water Dynamics in response to Gradual Changes in Temperature, CO2, and Precipitation: Modeling Analysis



This part has been submitted to Ecological Applications (In review). 

ABSTRACT


It is commonly acknowledged that ecosystem responses to global climate change are nonlinear. However, patterns of nonlinearity have not been well characterized on ecosystem carbon and water processes. We used a terrestrial ecosystem (TECO) model to examine nonlinear patterns of ecosystem responses to changes in temperature, CO2, and precipitation individually or in combination. The TECO model was calibrated against experimental data obtained from a grassland ecosystem in central USA and ran for 100 years with gradual change in 252 different scenarios. The 100th-year results of ecosystem responses were presented. Variables examined in this study are net primary productivity (NPP), Rh (heterotrophic respiration), net ecosystem exchange of CO2 (NEE), runoff, and evapotranspiration (ET). Our modeling results show that nonlinear patterns were parabolic, asymptotic, and threshold-like in response to temperature, CO2, and precipitation anomalies, respectively, for NPP, NEE, and Rh. Runoff and ET exhibited threshold-like pattern in response to both temperature and precipitation anomalies but were less sensitive to CO2 changes. The combined two- or three-factor changes in temperature, CO2, and precipitation considerably influenced nonlinearity of ecosystem responses by either changing patterns and/or shifting points of abrupt changes. Our results suggest that nonlinear patterns in response to multiple global change factors are diverse and were considerably affected by combined climate anomalies on ecosystem carbon and water processes. 


Key Words: Nonlinear pattern, global change, temperature, CO2, precipitation, net primary production, net ecosystem exchange, heterotrophic respiration, runoff, evapotranspiration, grassland 


5.1. Introduction

Global climate change usually involves simultaneous and continuous changes in atmospheric CO2 concentration, earth surface temperature, and precipitation over a time of decades and centuries (IPCC 2001). Changes in the climate forcing variables likely cause nonlinear responses of ecosystem structure and functioning, and alter ecosystem services to human society. Research has been done mostly with two discrete treatment levels of one or two factors to quantify effects of global change on ecosystem processes and mechanisms (Shaver et al. 2000, Weltzin et al. 2003, Ainsworth and Long 2004, Rustad 2006). However, considerable uncertainty occurs in the IPCC (2001) projections for future global changes, making it difficult to predict how ecosystems might respond to future atmospheric conditions. Thus, it is important to understand how ecosystems could respond to a range of potential future climates (e.g., temperature, CO2, and precipitation).


It is commonly acknowledged that ecosystem responses to global climate change are nonlinear (Ackerly and Bazzaz 1995, Gill et al. 2002, Burkett et al. 2005). Ecosystem nonlinearity is now becoming an increasingly important focus on global change research (Pielke et al. 2003, Mayer and Rietkerk 2004), which were identified as high-priority research across the federal government of USA (Lucier et al. 2006). Several international programs have focused on nonlinear and threshold responses to climate change (Körner 2000, Pielke et al. 2003), such as International Geosphere-Biosphere Programme (IGBP) workshop entitled “Non-linear responses to global environmental change: critical thresholds and feedbacks” at Duke University, North Carolina, USA in May 2001. In addition, nonlinear responses may explain some of the apparent contradictory results observed in climate change studies (Zak et al. 1993, Rustad et al. 2001). Therefore, ecosystem nonlinearity is a vital and challenging component of global change science, which may impact on how we design experiments, build models, and perceive ecosystem dynamics in a changing world (Reynolds 2002). 


Most previous research on nonlinearity in response to global change factors was focused on the level of plant individual processes (e.g., photosynthesis and production) and identified a diversity of response patterns for various plant species (Körner 1995, Reddy et al. 1999, Xiong et al. 2000), even in a single CO2 gradient (Ackerly and Bazzaz 1995, Luo et al. 1998). However, those results may not provide a sufficient basis to extrapolate from plant to ecosystem scales. Only a few studies have examined nonlinear responses to global change factors (mainly single global change scenario) on ecosystem carbon and water processes. For example, soil carbon storage and net N mineralization in an intact C3/C4 grassland of central Texas responded nonlinearly to a subambient to superambient CO2 gradient (Mielnick et al. 2001, Gill et al. 2002). Responses to three levels of soil gradient warming (i.e., 2.5, 5.0, and 7.5oC) in a northern hardwood forest were also nonlinear on soil respiration and leaf litter decomposition (Mchale et al. 1998). Although a few experimental studies with multiple levels of individual temperature, CO2, and precipitation changes have been conducted in the field (Mchale et al. 1998, Mielnick et al. 2001, Gill et al. 2002, Yahdjian and Sala 2006), their overall objectives were not to examine patterns and mechanisms of nonlinearity, limiting their applications in ecosystem services. In addition, ecosystem responses to multiple global change factors, which were often conducted at two discrete treatment levels, were inadequate to examine nonlinearity. To date, a range of treatment levels of simultaneous changes in temperature, CO2, and precipitation have not been investigated by experiments, because, in the real world, it is impossible to conduct manipulative experiments to examine nonlinear responses to simultaneous changes in multiple factors due to cost limitation and ecosystem complexities.


The use of models can be of particular importance to simulate multiple global change factors, examine response patterns, and then deliver an idea of possibilities to decision makers (Millennium Ecosystem Assessment 2005, Groffman et al. 2006). Vegetation model simulations revealed potential nonlinearity in response to global change factors at the community or ecosystem level based on competition between plant species or various plant functional types (Ackerley and Bazzaz 1995, Cowling and Shin 2006). However, patterns and mechanisms underlying nonlinearity in responses to simultaneous changes in temperature, CO2, and precipitation remain largely uncertain in natural ecosystems. We are aware of only one modeling study to examine ecosystem nonlinear responses to individual and simultaneous changes in temperature, precipitation, and CO2 (only two levels) using a dynamic global vegetation model (DGVM) within a region of Amazonia (Cowling and Shin 2006). However, this study mainly focused on threshold responses in tropical rainforest ecosystems and the results that temperature thresholds increased with decreasing precipitation were arguable. It is not clear how other ecosystems may respond to a range of levels of multiple global change factors. 


In the present modeling study, we used a terrestrial ecosystem (TECO) model to examine nonlinear patterns of ecosystem carbon and water dynamics in response to a range of individual and simultaneous changes in temperature, CO2, and precipitation in a grassland ecosystem of central USA. Climate change scenarios varied gradually within 100 years. Variables of carbon and water cycles examined in the study are net primary productivity (NPP), heterotrophic respiration (Rh), net ecosystem carbon exchange (NEE=NPP-Rh), runoff, and evapotranspiration (ET). We also discussed implications of experimental studies and model assumptions. 


Response dynamics from 2000 to 2100 to gradual changes under different scenarios were similar as other studies (Fig. 5.3, Campbell et al. 1997, Ollinger et al. 2002, Hanson et al. 2005), which were not the main focus of this study. Thus, we only show the results of one level of three global change factors (i.e., +4oC of temperature, double CO2, and +30% of precipitation) and their combinations. Mostly, the 100th-year results of ecosystem responses were presented for NPP, Rh, NEE, runoff, and ET. 


5.2. Materials and methods


Model description


Terrestrial ecosystem (TECO) model evolves from a terrestrial carbon sequestration (TCS) model (Luo and Reynolds 1999) and is designed to examine ecosystem responses to perturbations in global change factors. The model has been extensively applied to the modeling study at the Duke Forest CO2 enrichment experiment (Luo et al. 2001b,c, 2003, Xu et al. 2005). It has three major components: a canopy photosynthesis model, a soil water dynamic model, and a carbon dynamics model that describes plant and soil carbon transfer processes (Fig. 5.1). The canopy photosynthesis and soil moisture dynamics models were simulated at the hourly time step, while the plant growth and the soil carbon dynamics were simulated at the daily step. Temperature-driven changes in pehnology and the length of growing seasons were simulated on a carbon-gain based scheme (Arora and Boer 2005). Acclimation of physiological and ecological processes to warming and elevated CO2 was not imposed on model runs unless it was simulated internally via changes in nutrient dynamics or water stress. The detailed description of TECO model refers to Gerten et al. (2007), and Luo et al. (2007). 



[image: image57]

Fig. 5.1 Schematic diagram of Structure of terrestrial ecosystem (TECO) model. Boxes represent pools and dashed cycles stand for four submodels. NSC is non-structural carbon, Ra is autotrophic respiration including leaf, stem, and root respiration, and Rh is heterotrophic respiration including litter and SOM decomposition.


The canopy model is a multi-layer process-based model to simulate canopy conductance, photosynthesis, and energy partitioning by calculating radiation transmission based on Beer’s law. For each layer, foliage is divided into sunlit and shaded leaf area index (LAI) to separately simulate canopy conductance, photosynthesis, and energy partitioning as described by Wang and Leuning (1998). Carbon uptake (i.e., leaf photosynthesis) and transpiration is based on the coupled Farquhar photosynthesis model and the Ball-Berry stomatal conductance model as described by Harley et al. (1992). The coupled leaf-level model of stomatal conductance, photosynthesis, and transpiration for the sunlit leaf (i=1) or shaded leaf (i=2) is:


Photosynthesis: 
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Stomatal conductance: 

[image: image59.wmf])


/


1


)(


(


0


,


,


,


,


0


,


D


D


C


A


f


a


G


G


i


s


i


s


i


c


w


l


i


i


s


+


G


-


+


=


      (2)


Transpiration: 
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where Ac,i is the net photosynthesis rate; Ec,i is transpiration rate; Gs,i and G0,i are the bulk stomatal and residual (Gs,i when Ac,i=0) conductance for water vapour, respectively; Da and Ds,i are water vapour mol fraction deficits (VPD) in the ambient air and at the leaf surface, respectively; Gw,i and Gc,i are the total conductance from the intercellular space of the leaves to the reference height above the canopy for H2O and CO2, respectively; s is the slope of the function relating saturated water vapor mol fraction to temperature; ΔTi is the temperature difference between the surface of the big leaf and that of the air at the reference height; bsc is the ratio of diffusivity of CO2 and H2O through the stomata; Ca, Cs,i, and Ci are CO2 mol fractions in the air, at the leaf surface, and intercellular spaces, respectively; Γ is the CO2 compensation point; D0 is a parameter for stomatal sensitivity to VPD; al is related to the intercellular CO2 concentration by Ci/Cs,i=1-1/al at maximal stomatal opening (when both Ds,i and G0,i are zero and fw=1); and fw describes the sensitivity of stomata to soil water content. Canopy photosynthesis and transpiration were closely approximated by integrating values of individual leaves as below. 
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where yi is flux of CO2 or transpiration of individual sunlit or shaded leaf within the canopy; Yi is the flux value for the big leaves; ξ is the cumulative leaf area index from the canopy top, L is the total canopy leaf area index, Y represents the total flux of the whole canopy, wi is the fraction of sunlit (i=1) or shaded (i=2) leaf area within the canopy. 

The carbon dynamic model considers plant growth, plant respiration and soil carbon transfers among pools. Allocation of assimilates over the plant components depends on the growth rate of leaves, stems and roots, and varies with phenology. The soil profile is divided into three layers with water and carbon movement between the layers. Carbon inputs to the soil from plant residues are partitioned into these three layers. Plant growth model contains a non-structural carbon pool and growth equations of leaves, stems and roots:
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where i= leaf, stem or root. Gi is growth rate, Gmax is the maximum relative growth rate, BMi is biomass of leaves, stems or roots. Sr/s, Snsc and SLAI are scaling factors of root/shoot ration, non-structural carbon pool, and LAI, respectively. NPP is the difference between canopy photosynthesis and autotrophic respiration (Ra). The latter is dependent on biomass amounts, specific respiration rates, and regulated by temperature as below:
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where BM is biomass, T is air temperature, and a and b is empirical parameters. 


Soil carbon model is partly from the soil carbon transfer part of VAST (Barret et al. 2002) by simulating carbon transfer from plant to soil and then to atmosphere. The model has multiple plant, litter and soil carbon pools. Heterotrophic respiration (Rh) includes decomposition of litter and soil organic matter, which is regulated by soil temperature and moisture. At steady state, Rh from each litter and soil pool is given by:
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where

[image: image65.wmf]k


f


is the fraction of NPP arriving at the kth pool after traversing upstream pools. For each pool the functions for

[image: image66.wmf]k


f


are




[image: image67.wmf]111


22112


332211


[](1)


(1)


[()](1)


[(())](1)


[((()))]


FLWF


CWC


SRFLWCWS


SRSRFLWCWS


SRSRSRFLWCW


f


f


f


f


f


ahaq


ahq


zaqahaqaq


zaqzaqahaqaq


zaqzaqzaqahaqa


=+-


=--


=+++-


=++++-


=+++++


   (8)


where F, C, S1,S2, and S3 are litterfall, wood, and soil layer 1, 2, and 3.(L,(W, and(R are the allocation coefficients of NPP to leaf, wood, and root, θ is carbon partitioning coefficient of C pools, η is the fragmentation coefficient of coarse woody debris by mechanical breakdown, and ξ is proportion of C-allocated to fine roots in the jth soil layer. Thus, annual heterotrophic respiration from each litter and soil pool at steady state was obtained directly from fk in equation (7) and (8). Net ecosystem exchange of CO2 (NEE) can be calculated as the difference between NPP and Rh. 


The soil moisture dynamics is determined by precipitation (P), evapotranspiration (ET), and runoff. ET includes soil evaporation and plant transpiration. Transpiration is coupled in canopy model (Equation 3) and evaporation of soil surface is from the following equation:
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where ES is soil evaporation, e* (Tsoil) is the saturation vapor pressure at the temperature of the soil, ea is the atmospheric vapor pressure, rsoil is a soil resistance term, rd is the aerodynamic resistance between the ground and the canopy air space, ρ is the density of air, cp is the specific heat of air, γ is the psychrometric constant, λ is the latent heat of sublimation. Runoff is calculated from ecosystem water balance among precipitation, soil evaporation, canopy transpiration, and changes in soil water content in soil layers.


Study site

The study was conducted at the Kessler’s Farm Field Laboratory (KFFL) in McClain County, Oklahoma (34o59’ N, 97o31’ W), approximately 40 kilometers southwest of Norman campus of the University of Oklahoma, USA. The field site is an old-field tallgrass prairie abandoned from agriculture 30 years ago without grazing for 25 years. The grassland is dominated by three C4 grasses: Schizachyrium scoparium, Sorghastrum nutans, and Eragrostis curvula, and two C3 forbs: Ambrosia psilostachyia and Xanthocephalum texanum. Mean annual temperature is 16.3oC, with monthly air temperature ranging from 3.3oC in January to 28.1oC in July. Mean annual precipitation is 915 mm, with monthly precipitation ranging from 30 mm in January to 135 mm in May (average values from 1948 to 1998, Oklahoma Climatological Survey). A silt loam soil in the grassland includes 35.3% sand, 55.0% silt, and 9.7% clay (A. Subedar & Y. Luo, unpublished data, 2003). Soil carbon content is 1.42% on a mass basis (Luo et al. 2001a). The soil belongs to part of the Nash-Lucien complex with neutral pH, high available water capacity, and a deep, moderately penetrable root zone (U.S. Department of Agriculture 1979). 


Input data


Daily climate variables used in this study were from the MESONET station of Washington, Oklahoma (1994 to 2005), including air temperature, soil temperature, vapor pressure deficit, relative humidity, precipitation, and incident photosynthetically active radiation. Equilibrium state was accomplished by running the model using repeated cycles of the 12-year climate set. Simulations were run from bare ground for 1000 years, at which time climate change scenarios were imposed.


Modelling scenarios

Our experimental simulations involved each climate anomaly individually and in combination (i.e., temperature, CO2, and precipitation). Temperature anomaly influences all ecosystem processes by soil and air temperature. CO2 anomaly affects them by stomatal conductance. Precipitation anomaly affects ecosystem processes by soil water 


Table 5.1 Scenarios examined in this study


		Global change factors

		Treatment levels



		Temperature

		-2, 0, +2, +4, +6, +8, +10oC



		CO2 concentration

		-20, 0, +30, +60, +100, +140%



		Precipitation

		-40, -20, 0, +30, +60, 100%





Note: Zero (0) represents the current condition of temperature and precipitation (i.e., control), while CO2 concentration was set to 350 ppm.
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Fig. 5.2 Observed vs. simulated daily soil respiration (a), aboveground biomass (AGB, b), belowground biomass (BGB, c), and net ecosystem exchange (NEE, d) in Oklahoma grassland


dynamics. To evaluate the individual and combined effects of temperature, CO2, and precipitation, we conducted a total of 252 simulations (including all possible crosses of the climate anomalies and control) (Table 5.1). All anomalies were changed gradually (mean changes within 100 years) starting in 2000 and ending by 2100. Because dynamic responses from 2000 to 2100 to changes in different scenarios were not the main focus of this study, we only presented the results of dynamic responses to one level of three global change factors (i.e., 4oC increase in temperature, doubling CO2 concentration, and 30% increase in precipitation) and their combinations. Mostly, we present modelling results of ecosystem responses at the 100th-year data for NPP, Rh, NEE, runoff, and ET.

Model validation


In this grassland, we used soil respiration, aboveground (AGB) and belowground (BGB) biomass, and NEE to validate the simulated values. Observed soil respiration was measured approximately once a month using LiCor 6400 with soil CO2 flux chamber (Luo et al. 2001a, Wan et al. 2005, Also see Chapter 2 and 3). Observed aboveground biomass was measured once a year and belowground biomass was only in October 2002 and 2004 (Wan et al. 2005, X. Zhou and Y. Luo, unpublished data, 2004). NEE was measured monthly in 2001 (X. Liu and Y. Luo, unpublished data, 2001). For all these variables, the simulated results are in good agreement with observational data except an overprediction of soil respiration in summer 2001 (Fig. 5.2). However, paired t tests between simulated and observed soil respiration (p>0.10) indicate no significant difference. 


5.3. Results


Response dynamics to different scenarios

Simulated NPP, NEE, Rh, Runoff, and ET dynamics within 100 years in response to individual and simultaneous increases in temperature (+4oC), CO2 (doubling), and precipitation (+30%) are shown in Fig. 5.3. Usually, multifactor scenarios have greater responses than single-factor ones. For example, combinations of temperature and CO2, temperature and precipitation, and the three factors linearly increased NPP and Rh by about 60, 50, and 75%, respectively, from 2000 to 2100 (Fig. 5.3a, c). In contrast, individual temperature, CO2, and precipitation nonlinearly increased NPP and Rh by about 5 to 27% from 2000 to 2100. The response dynamics of NEE to all scenarios are nonlinear with the largest carbon loss under temperature alone (-50 g C m-2) and the largest carbon gain under the combination of CO2 and precipitation (60 g C m-2) from 2000 to 2100 (Fig. 5.3b). 


Runoff and evapotranspiration (ET) responded largely to precipitation changes in comparison to temperature and CO2. Our modeling analysis shows that both precipitation alone and its combination with CO2 doubling increased by approximately 400% for runoff and by 22% for ET from 2000 to 2100 (Fig. 5.3d, e). Combinations of temperature and precipitation and the three factors also largely increased ET by about 30%. However, temperature increase and its combination with CO2 doubling reduced runoff by 44 and 61%, respectively, from 2000 to 2100.
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Fig. 5.3 Simulated net primary productivity (NPP, a), NEE (b), heterotrophic respiration (Rh, c), runoff (d), and evapotranspiration (ET, e) dynamics from 2000 to 2100 in response to gradual changes in one level of temperature (4oC increase), CO2 (doubling-700 ppmv), and precipitation (30% increase) and their combinations. 


Nonlinear responses to single factor changes


Simulated NPP, Rh, and NEE all show parabola-curve responses to temperature anomalies from -2oC to +10oC compared to current condition (Fig. 5.4a, b). NPP and Rh increased with rising temperature, reached a peak at +5oC (NPP) or +6oC (Rh), and then declined, while NEE had an adverse trend with a lowest value at +7oC. Increases in CO2 concentration from 280 to 840 ppmv stimulated NPP, Rh, and NEE with an asymptotic curve (Fig. 5.4c, d). However, responses of NPP, Rh, and NEE to precipitation changes from -40% to +100% compared to current condition display threshold-like curves (Fig. 5.4e, f), which increased with precipitation increase at the beginning and then reached a plateau around +30% (NPP and NEE) or current condition (Rh). If we define ‘threshold’ as a point at which there is an abrupt change in response to external stimuli, our 
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Fig. 5.4 Responses of NPP, Rh, and NEE to single-factor changes in temperature (a, b), CO2 (c, d), and precipitation (e, f)


modeling results indicate that NPP and NEE had precipitation threshold values in about +30% and Rh had a threshold value near current condition.


For runoff and ET of water cycle, response patterns to individual temperature and precipitation changes were threshold-like, while runoff and ET were less sensitive to CO2 changes (Fig. 5.5). Runoff decreased in response to increasing temperature while ET increased, but both with similar threshold values near current condition. Runoff and ET responded positively to precipitation changes but with different threshold values, which were near current condition for runoff and +30% for ET. 
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Fig. 5.5 Responses of runoff and ET to single-factor changes in temperature (a, b), CO2 (c, d), and precipitation (e, f)
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Fig. 5.6 Responses of NPP (a), NEE (b), Rh (c), runoff (d), and ET (e) to simultaneous changes in temperature and CO2. 
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Fig. 5.7 Responses of NPP (a), NEE (b), Rh (c), runoff (d), and ET (e) to simultaneous changes in temperature and precipitation 


Nonlinear responses to simultaneous changes in multiple factors


Simultaneous changes in temperature and CO2 not only affected optimum or threshold points of temperature responses but also varied nonlinear response curves for NPP, Rh, and NEE, while there were no interactive effects on runoff and ET (Fig. 5.6). Specifically, with increasing CO2 concentration from 280 to 840 ppmv, temperature optimum values increased by 1oC from +5 to +6oC for NPP and from +6 to +7oC for Rh, and nonlinear patterns of responses changed from parabolic (below 560 ppmv) to threshold-like (above 700 ppmv) curves (Fig. 5.6a, c). The lowest values of NEE were in +6oC under 280 ppmv of CO2 concentration and +8oC above 560 ppmv compared to +7oC in the control (CO2=350 ppmv) (Fig. 5.6b). 
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Fig. 5.8 Responses of NPP (a), NEE (b), Rh (c), runoff (d), and ET (e) to simultaneous changes in precipitation and CO2 
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Fig. 5.9 Responses of NPP (a, c, e) and NEE (b, d, f) to simultaneous changes in temperature, CO2, and precipitation
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Fig. 5.10 Responses of runoff (a, c, e) and ET (b, d, f) to simultaneous changes in temperature, CO2, and precipitation


Similarly, with increasing precipitation from -40 to +100%, both response curves and threshold points were also affected (Fig. 5.7). Temperature response curves were relatively insensitive under -40% of precipitation, were parabolic under -20% and current condition, and became threshold-like above +30% for NPP and Rh (Fig. 5.7a, c). The lowest values of NEE are in +2oC under -40 and -20% of precipitation and +8oC above +30% compared to +7oC in the control (Fig. 5.7b). Response magnitude of runoff and ET to temperature anomalies increased largely with increasing precipitation (Fig. 5.7d, e). Specifically, temperature responses were relatively insensitive under -40, -20%, and current condition of precipitation and show threshold-like patterns above +30% for NPP and Rh. Temperature threshold values increased from 0oC under current condition to 4oC under +100% of precipitation for both runoff and ET. With increasing CO2 concentration, precipitation response curves did not vary, while their threshold values decreased from +30% of precipitation under 280 ppmv to current condition under 840 ppmv for NPP, NEE, and Rh (Fig. 5.8a,b,c), while there were no effects on runoff and ET (Fig. 5.8e,d). 


For simultaneous changes in temperature, CO2, and precipitation, we only show NPP and NEE for carbon cycle due to similar trend between NPP and Rh under three CO2 concentrations, representing preindustrial, current, and future conditions. The three factors interactively changed response patterns and optimum or threshold points for NPP and NEE (Fig. 5.9). For example, temperature optimum or threshold values of NPP did not change with increasing precipitation under 280 ppmv of CO2 concentration, increased from +5 to 6oC under 350 ppmv, and increased from 5 to 8oC under 700 ppmv (Fig. 5.9a, c, e). The lowest values of NEE were +2oC at -40% of precipitation under 280 and 350 ppmv, while was 6oC under 700 ppmv (Fig. 5.9b, d, f). However, CO2 concentration did not significantly affect responses of runoff and ET to simultaneous changes in temperature and precipitation (Fig. 5.10). 


5.4. Discussion


Our modeling analysis demonstrates diverse nonlinear patterns of ecosystem carbon and water dynamics in response to global change factors. Response patterns of NPP, Rh, and NEE were in parabola, asymptotic, and threshold-like shapes to individual changes in temperature, CO2, and precipitation, respectively (Fig. 5.4). Runoff and ET also responded nonlinearly to temperature and precipitation anomalies with a threshold-like pattern but were less sensitive to changing CO2 (Fig. 5.5). Combinations of temperature, CO2, and precipitation anomalies interactively affected nonlinearity by changing response patterns (Figs. 5.6, 5.7, 5.9, and 5.10) and/or shifting points of abrupt changes (e.g., threshold values, Figs. 5.6, 5.7, 5.8 and 5.9). The nonlinear dynamics and multifactor interactions on ecosystem carbon and water processes greatly complicate the interpretation and predictability of ecosystem level responses. 


Nonlinear responses to single factor changes


Our results of model simulations exhibit different patterns of nonlinear responses to individual changes in temperature, CO2, and precipitation for NPP, Rh, NEE, runoff, and ET. A parabolic pattern in response to temperature change was observed in NPP and Rh (Fig. 5.4a,b). At a low temperature range, warming stimulated plant biomass growth and soil respiration and extended the growing season (Rustad et al. 2001, Wan et al. 2005), resulting in increases of the two fluxes with increasing temperature. At a high temperature range, the stimulation of warming declined with increasing temperature due to soil moisture limitation (Drake et al. 1997), because the effects of climate warming on production and decomposition were strongly dependent on interactions with soil moisture (Ise and Moorcraft 2006). Our results were consistent with that under three levels of soil gradient warming in a northern hardwood forest, which soil respiration and leaf litter decomposition were less in +7.5oC than +2.5 and +5oC (Mchale et al. 1998). However, Rh was more responsive to warming than NPP, resulting in a decrease in NEE with increasing warming at a low temperature range and slight recovery at a high temperature range. 


The responses of NPP, NEE, and Rh to a gradient of CO2 levels were in an asymptotic shape (Fig. 5.4c,d). The stimulated effects were similar to observed results from a manipulative experiment in central Texas for a continuous gradient of CO2 from 200 to 550 μmol mol-1 (Mielnick et al. 2001, Gill et al. 2002, Polley et al. 2003, 2007). Along that gradient, CO2 enrichment increased photosynthesis (Mielnick et al. 2001), biomass production (Polley et al. 2003), net carbon uptake (Gill et al. 2002), and ecosystem respiration (Polley et al. 2006). A further enhancement of CO2 supply may reduce the stimulated effects on the rate of uptake due to CO2 saturation to photosynthesis and the diminishing CO2 sensitivity (Körner 1995, Lamber et al. 1998). However, the compiled response patterns of plant growth and reproduction along CO2 gradients were diverse with the positive, negative, non-monotonic, and non-significant (flat) responses due to photosynthetic acclimation (Ackerley and Bazzaz 1995, Luo et al. 1998). 


Threshold-like response patterns to climate change are not uncommon in ecosystems. Our results show the threshold-like responses to precipitation change for NPP, NEE, Rh, runoff, and ET (Figs. 5.4e,f and 5.5a,c). Precipitation threshold values are about +30% for NPP, NEE, and ET and near current condition (+0%) for Rh and runoff. The threshold response curves indicate that the carbon and water fluxes are relatively insensitive above the threshold values, while the large response occurs below the values. Little information was available in manipulative precipitation experiments, although the similar threshold response patterns have been reported along natural rainfall gradients (Austin 2002, Austin and Sala 2002). Under water interception, Yahdjian and Sala (2006) showed that aboveground NPP and plant density linearly increased with increasing precipitation, which were consistent with our results at the low precipitation range. Unfortunately, their study did not conduct the experiments of increased precipitation and our results can not be further verified. Runoff and ET also have a threshold response pattern to temperature change. These threshold values were invaluable when we apply this concept to manage and restore ecosystem after perturbation (Groffman et al. 2006). The strategies for sustainable management should focus on maintaining resilience and disturbance, which should not exceed the threshold values (Scheffer et al. 2001).


Nonlinear response to simultaneous changes in multiple factors

Combined temperature, CO2, and precipitation anomalies considerably changed nonlinear responses compared to individual factor, resulting in changes in either response patterns or points of abrupt changes (Figs. 5.6, 5.7, 5.8, 5.9, and 5.10). For example, values of abrupt changes in temperature anomalies for NPP, NEE, and Rh increased with rising CO2 concentration (Fig. 5.6), probably resulting from reduced stomatal conductance and increased water-use efficiency (WUE), and then minimizing the deleterious effects of soil drying and alleviating water stress under high temperature (Drake et al. 1997, Lilley et al. 2001, Ainsworth and Long 2004, Wall et al. 2006). Similarly, increasing precipitation certainly mitigated water stress under high temperature, resulting in higher values of abrupt changes (Fig. 5.7). However, a reduction in precipitation caused large changes in response curves and became more flat with increasing temperature because it enhanced water stress irrespective of climate warming (Ise and Moorcraft 2006). With rising CO2 concentration, precipitation threshold values of NPP, NEE, and Rh decreased because of the effects of CO2 enrichment on stomatal conductance and WUE (Drake et al. 1997). The interaction of combined temperature, CO2, and precipitation anomalies was complicated through both changing response patterns and threshold points (Figs. 5.9 and 5.10). The mechanisms discussed above (i.e., one- or two-factor changes) guided us to understand these changes in response patterns of carbon and water fluxes and points of abrupt points in this grassland. 


To date, there has been no experimental evidence on ecosystem nonlinear patterns in response to multiple treatment levels of combined climate change anomalies, although several mesocosm experiments (e.g., chamber and tunnel) have exposed specific plants to three levels of both temperature and CO2 (Hadley et al. 1995, Horie et al. 1995, Lee et al. 2001, Usami et al. 2001, He et al. 2005). Those results only showed that the interactive effects of warming and elevated CO2 resulted in a larger growth enhancement than warming alone in the one-year experiment. The short-term results could bring out large uncertainty in predicting long-term ecosystem responses to climate change based on leaf- or plant-level response (Körner 1995). Currently, the Boston-Area Climate Experiment (BACE) is designed to characterize ecosystem responses (linear vs. nonlinear) to simultaneous climate change with five levels of warming across each of three precipitation treatments in a New England old-field ecosystem, but it is still under construction by Jeffrey Dukes in Waltham, MA. The only model study by Cowling and Shin (2006) showed that temperature threshold values increased with decreasing precipitation in Amazonia tropical rainforests. We argue that, due to increasing water stress, temperature threshold values were supposed to decrease as illustrated in this study (Ise and Moorcraft 2006, Wall et al. 2006). With very limited data sets, it is too early to rigorously evaluate consistency between model simulations and between modeling and experimental results.


Implications for experimental studies


Our modeling results from numerous scenarios reflect effects of a range of future climates compared to that from manipulative experiments with limited treatment levels and global change factors. Thus, our study will offer suggestions for experimental studies on ecosystem response to multiple global change factors at least in three aspects. First, as expected, our results exhibit ecosystem nonlinearity in response to global change factors. However, the majority of experiments were currently manipulated in two treatment levels of the gradients for one or two factors. Although those results provided single-factor pulse response under climate change and/or two-factor interaction, there was no information on ecosystem nonlinearity along the gradients. Thus, cautions should be taken on interpretation of results. Linear insertion or extrapolation was inappropriate to explain the results under other conditions of the same climate change factor. For example, if nonlinear pattern was parabolic in response to temperature (Fig. 5.4a), the same response magnitude occurred under two treatments (e.g., 3 and 7oC for NPP), resulting in misinterpretation. 


Second, the nonlinear patterns of ecosystem carbon and water dynamics in response to individual changes in temperature, CO2, and precipitation were different. The diverse patterns indicate that it is necessary to conduct experimental studies with individual gradient of temperature, CO2, and precipitation changes. Although some experiments have been manipulated in the field, for example, a continuous gradient of CO2 from 200 to 550 ppmv in central Texas (Gill et al. 2002), the range under experimental manipulation was narrower compared to IPCC projection (668~734 ppmv in 2100, IPCC 2001). Furthermore, the differential responses may occur between the low-range and high-range of climate change factors (Figs. 5.4 and 5.5). 


Third, the combined two- or three-factor anomalies substantially changed nonlinear patterns and/or shifted points of abrupt changes on ecosystem carbon and water processes compared to single-factor changes. The substantial changes would make it very difficult to infer ecosystem responses to multifactor global change from single-factor experimental results. It is also impossible to conduct multisite, multifactorial experiments with a range of treatment levels due to ecosystem complexities and cost limitation. However, some experiments need to be manipulated, such as the Boston-Area Climate Experiment (BACE) in a New England old-field ecosystem (under construction), to verify part of the modeling results and provide technical input to future experimental design and theoretical development. For example, how many treatment levels are needed for two-factor changes to reveal nonlinear responses? What is the interval of treatment levels? Furthermore, new experiments are needed that explicitly account for nonlinear patterns generated from feedback mechanisms and threshold behavior.

Model assumptions


Model simulation results show diverse nonlinear patterns in response to individual and simultaneous global changes on ecosystem carbon and water processes. The diversity of nonlinear responses reflect the fact that the natural ecosystems may have different responses to multiple global change factors (Scheffer et al. 2001, Burkett et al. 2005), which were well simulated by the structure of TECO model. However, ecosystem biogeochemical models share a similar structure of carbon and water flows but have different functions to relate the rate variables that control the flows to temperature, CO2, and precipitation, resulting in large simulation uncertainties of ecosystem response to global change (Burke et al. 2003). Thus, the results may change with incorporated function in various models. It is critical to examine and improve various response functions. 


Although global climate change largely affects ecosystem structure and function and impacts the natural resources on which humans depend, it has to be considered that vegetation may acclimate and adapt to changing climate conditions (Luo et al. 1998, 2001a, Hanson et al. 2005, Rustad 2006). In addition, changes in community composition would be expected because plant species exhibit markedly different response patterns to climate change (Ackerly and Bazzaz 1995). However, the acclimation mechanisms and the changes in vegetation composition were left out from our present study, which was complicated to multiple treatment levels of multiple global change factors. The further research is needed to incorporate them into our TECO model. The expected results will improve ecological forecasting and inform decision makers on managing the conditions leading to nonlinear responses and subsequent changes to ecosystem services. (Carpenter et al. 1999, Scheffer et al. 2001). 

5.5. Conclusions


Using the TECO model, we assessed nonlinear patterns in response to individual and simultaneous changes in temperature, CO2, and precipitation on ecosystem carbon and water dynamics of a grassland ecosystem. Our results show different patterns of ecosystem nonlinearity, which were parabola, asymptotic, and threshold-like in response to individual changes in temperature, CO2, and precipitation, respectively, for NPP, NEE, and Rh. For runoff and ET, threshold-like shape was found in response to both temperature and precipitation anomalies, while the response to changing CO2 was less sensitive. The combinations of two- or three-factor changes in temperature, CO2, and precipitation interactively affected nonlinear curves by changing response patterns (Figs. 5.6 and 5.7) and/or shifting points of abrupt changes (i.e., threshold values, Figs. 5.6, 5.7, and 5.8). Our modeling study indicates that a diversity of nonlinear patterns in response to different global change factors and effects of combined climate anomalies should be concerned with choosing scenarios of climate change to predict ecosystem responses and to set up new experiments. 
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Chapter 6

Conclusions and implications


6.1. Conclusions


In this work, several ecosystem processes of carbon and water cycling (mainly soil respiration) in response to global climate change and land use practice (i.e., clipping) were studied using experimental and modeling approaches (Chapter 1, Fig. 1.1). Some major findings are listed as follows: 


· Based on two multifactor manipulative experiments – one long-term with warming (2oC) and yearly clipping and one short-term with warming (4.4oC) and doubled precipitation (The transient response to clipping was also studied) – in a tallgrass prairie ecosystem, the main effects of warming and doubled precipitation were significant on soil respiration. Clipping significantly decreased soil respiration in the transient study but not in the long-term experiment. No significant interactive effects among the experimental factors were statistically found on soil respiration or their temperature sensitivities except for the warming×clipping interaction (p < 0.05) in the transient study. As a consequence, the interactive effects of warming, clipping, and doubled precipitation were minor relative to main effects on soil respiration. 

· Using the deep-collar insertion to partition soil respiration into autotrophic (RA) and heterotrophic (RH) components, heterotrophic respiration accounted for approximately 66% of soil respiration over the six years in a grassland ecosystem. Warming significantly stimulated soil respiration and its components throughout the duration of experiment. Yearly clipping significantly reduced soil respiration in the last two years and heterotrophic respiration in all the four years, while there was no significant clipping effect on RA. However, the effects of warming and yearly clipping on soil respiration and its components did not result in significant changes in RH or RA contribution. The apparent Q10 values of soil respiration was slightly lower under warming (p>0.05) and reduced considerably by clipping (p<0.05) compared to that in the control. In addition, the apparent Q10 values for RA were higher than those for RH and soil respiration. 

The seasonal variability was distinctly much greater than interannual variability for soil respiration and its components. Yearly clipping decreased the interannual variability of soil respiration, while warming did not affect it. The interannual variability of annual soil respiration was not related to fluctuations in precipitation, suggesting that rainfall distribution or severe drought over seasons, especially growing season, is more important than annual precipitation.


· The transect study examined patterns of biomass, litterfall, and soil respiration in southern Great Plains grasslands along a precipitation gradient. Our results show that aboveground biomass (AGB), standing litter (ST), surface litter (SU), and soil respiration often linearly increased with an increase in precipitation along the gradient, although belowground biomass (BGB) and total biomass did not largely change. BGB to AGB ratio and rain use efficiency (RUE) linearly decreased with increasing precipitation due to less plant allocation to roots and high biogeochemical constraints (i.e., nutrients or light), respectively, at mesic sites of the gradient. The one-year precipitation before samplings (OYP) had better correlations with biomass, litterfall, and soil respiration than mean annual precipitation (MAP). Soil respiration was not only affected by precipitation, but also regulated by litterfall in fall and winter and by AGB in spring, which were mainly controlled by precipitation. 

· Using a terrestrial ecosystem (TECO) model, I examined nonlinear patterns of ecosystem responses to changes in temperature, CO2, and precipitation individually or in combination. The modeling results show that nonlinear patterns were parabolic, asymptotic, and threshold-like in response to temperature, CO2, and precipitation anomalies, respectively, for net primary production (NPP), net ecosystem exchange of CO2 (NEE), and heterotrophic respiration (Rh). Runoff and evapotranspiration (ET) exhibited threshold-like pattern in response to both temperature and precipitation anomalies but were less sensitive to CO2 changes. The combined two- or three-factor changes in temperature, CO2, and precipitation considerably influenced nonlinearity of ecosystem responses by either changing patterns and/or shifting points of abrupt changes.


6.2. Implications for future work


· The minor interactive effects observed in this study suggest that results from single-factor experiments are useful in informing us of potential responses of soil respiration to multi-factor global change, at least in grassland ecosystems. It is yet to be examined whether the conclusion on minor interactive effects could be generalized across ecosystems. Regardless, this study posed testable hypotheses, which can be examined in other ecosystems. Furthermore, the statistical methods used in this study to rigorously detect interactive effects of global change factors are useful for other multi-factor experiments. 

· The higher apparent Q10 values for RA than RH and soil respiration were found in our study as well as some other studies. However, the Q10 values came from the field experiments, which were often confounded by other co-varying factors, and have not been carefully examined for intrinsic Q10 values. To clearly understand the mechanisms, it is imperative to carefully design manipulative experiments in both field and laboratory to eliminate the effects of confounding factors. 

· The significant effects of warming and yearly clipping on soil respiration and its components did not result in considerable changes in RH or RA contribution. The results suggest that RH or RA contribution to soil respiration will not change largely in the changing climate. Although our results may largely simply the prediction of RH or RA contribution in the future, it remains unknown how other ecosystems responded to global change on RH or RA contribution, Therefore, the further studies should be conducted to verify whether the conclusion could be generalized across ecosystems. 

· The linear relationships between precipitation, biomass, litterfall, and soil respiration indicate that precipitation is an important driver in shaping ecosystem functioning by controlling soil water dynamics, which directly affects vegetation production and litterfall, and indirectly regulates soil respiration. If our findings were incorporated into current biogeochemical models, this will improve the predictions of long-term climate change effects (decades to centuries) on grassland ecosystems’ carbon balances. 

· Ecosystem nonlinearity in response to global change factors suggests that cautions should be taken on interpretation of results. Currently, the majority of experiments were manipulated in two treatment levels of the gradients for one or two factors and there was no information on ecosystem nonlinearity along the gradients. Linear insertion or extrapolation was inappropriate to explain the results under other conditions of the same climate change factor. 

· Diverse nonlinear patterns of ecosystem carbon and water dynamics in response to individual changes in temperature, CO2, and precipitation indicate necessary to conduct experimental studies with individual gradient of temperature, CO2, and precipitation changes. Although some experiments have been manipulated in the field, for example, a continuous gradient of CO2 from 200 to 550 ppmv in central Texas (Gill et al. 2002), the range was narrower compared to IPCC projection (668~734 ppmv in 2100, IPCC 2001). Furthermore, the differential responses may occur between the low-range and high-range of climate change factors (Figs. 5.4 and 5.5).

· The combined two- or three-factor anomalies substantially changed nonlinear patterns and/or shifted points of abrupt changes on ecosystem carbon and water processes compared to single-factor changes. The substantial changes would make it difficult to infer ecosystem responses to multifactor global change from single-factor experimental results. However, it is impossible to conduct multisite, multifactorial experiments with a range of treatment levels due to ecosystem complexities and cost limitation, but some experiments still should be manipulated, such as the Boston-Area Climate Experiment (BACE) in a New England old-field ecosystem (under construction), to verify part of the modeling results, provide technical input to future experimental design and theoretical development, and improve ecological forecasting and inform decision makers on managing the conditions leading to nonlinear responses and subsequent changes to ecosystem services.
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the southern Great Plains. It may also have considerable effects on ecosystem processes 

(Leriche et al. 2003, Wan and Luo 2003, Bahn et al. 2006). Corresponding changes in 

air and soil temperature, atmospheric CO2 concentration, and precipitation will co-occur 

with ongoing changes in land use and land cover, which are likely to alter ecosystem 

carbon cycling in terrestrial environments.  

Soil respiration, also referred to as soil CO2 efflux, represents CO2 release at the 

soil surface from heterotrophic respiration during organic matter decomposition (RH) 

and autotrophic respiration by live roots and their symbionts (RA, Boone et al. 1998, 

Högberg et al. 2001, Wan and Luo 2003). This flux is the largest terrestrial source of 

  

Fig. 1.1 Schematic diagram of ecosystem carbon processes. Circled are the processes 

focused in each chapter. GPP: gross primary production, NPP: net primary production, 

Rp: aboveground plant respiration, Ra: autotrophic root respiration, Rh: heterotrophic 

respiration, Rs: soil respiration, Re: ecosystem respiration, and NEE: net ecosystem 

exchange of CO2. 
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CO2 to the atmosphere, which is about 68 to 80 Pg C yr-1 on a global scale (Schlesinger 

1977, Raich and Schlesinger 1992, Raich and Potter 1995, Raich et al. 2002). This is 

more than 10 times the current rate of fossil fuel combustion (Schlesinger 1997). Global 

modeling studies have demonstrated that even a small change in soil respiration could 

significantly exacerbate or mitigate the buildup of this greenhouse gas in the atmosphere 

(Cramer et al., 2001), with consequent feedbacks to climate change (Kirshbaum 1995, 

2000, Woodwell et al., 1998; Cox et al., 2000, Luo et al. 2001a). Furthermore, soil 

respiration is an integral part of the ecosystem carbon cycle and is closely related to 

various components of ecosystem production such as net primary production (NPP), net 

ecosystem exchange of CO2 (NEE), and litterfall (Fig. 1.1, Luo and Zhou 2006). Global 

climate change can also potentially alter these ecosystem processes according to coupled 

carbon-climate models and manipulative experiments (Shave et al. 2000, Cramer et al. 

2001, Weltzin et al. 2003). Therefore, understanding regulations of soil respiration and 

other terrestrial carbon processes by global environmental factors is a critical step 

toward projecting climate change in the future.  

Concern about climate change and associated long-term impact on the earth has 

intensified research interest in the flux of carbon between terrestrial ecosystem and the 

atmosphere (Woodwell and Mackenzie 1995, IPCC 2001). Previous studies have shown 

that CO2 efflux from soil varied largely with temperature (Peterjohn et al. 1993, McHale 

et al. 1998, Shaver et al. 2000, Rustad et al. 2001, Melillo et al. 2002, Verburg et al. 

2005), moisture availability (Knapp et al. 2002, Liu et al. 2002, Lee et al. 2004, Xu et al. 

2004, Harper et al. 2005), and substrate supply (Bremer et al. 1998, Craine et al. 1999, 

Craine and Wedin 2002). The majority of those studies that investigated responses of 
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soil respiration to the above-mentioned variables have been carried out in single-factor 

experiments, although those results have considerably advanced our understanding of 

ecosystem responses to climate change. However, global change involves simultaneous 

changes in multiple factors, which could potentially have complex interactive influences 

on ecosystem structure and processes. Thus, understanding how ecosystems respond to 

multiple global change factors and how they interactively affect soil respiration are 

imperative.  

Autotrophic root respiration (RA) and heterotrophic component (RH) contribute 

to soil respiration (Hanson et al. 2000, Kuzyakov 2006, Subke et al. 2006). Although 

warmer temperature has been found to cause significant increases in the efflux of CO2 

from soils in various biomes (Rustad et al. 2001), little information is available on how 

various components of soil respiration respond differently to increasing temperature, 

especially in natural ecosystems. Partitioning soil respiration into RA and RH 

components becomes crucial for understanding their differential responses to climatic 

change. In contrast to climate warming, effects of land use practice on soil respiration 

have rarely been investigated (Davidson et al. 2000), and virtually nothing is known on 

how they influence components of grassland soil respiration (Hanson et al. 2000, Bond-

Lamberty et al. 2004, Subke et al. 2006). Additionally, it is also not well known how 

climate warming and clipping would affect interannual variability of soil respiration and 

its components (i.e., RA and RH). 

As we know, considerable research has been conducted to examine the effects of 

elevated temperature and CO2 concentration on ecosystem structure and function (Koch 

and Mooney 1996, Shaver et al. 2000, Ainsworth and Long 2005). However, shifts in 
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precipitation regimes may have an even greater impact on ecosystem dynamics than the 

singular or combined effects of rising CO2 and temperature, especially in grassland 

ecosystems (Weltzin et al. 2003). How precipitation affects ecosystem carbon gain, 

reservoir, and loss (i.e., productivity, litterfall, and soil respiration) and how they are 

interactively regulated are largely limited.  

In global change research, it is commonly acknowledged that ecosystem 

responses to global changes in temperature, CO2 concentration, and precipitation are 

nonlinear. However, patterns of the nonlinearity have not been well characterized on 

ecosystem carbon and water processes. Currently, the majority of the experiments 

conducted at two discrete treatment levels were inadequate to examine nonlinearity. It is 

impossible to conduct manipulative experiments to examine nonlinear responses to 

simultaneous changes in multiple factors due to cost limitation and ecosystem 

complexities. Thus, it is urgently needed to examine nonlinear patterns in response to a 

range of potential future climates (e.g., temperature, CO2, and precipitation) using 

modeling approach. These questions form the focus of this research shown in Fig. 1.1. 

This dissertation is an attempt to address the effects of global change factors and 

land use practice on ecosystem carbon cycling (mainly soil respiration) in grassland 

ecosystems using three different approaches: warming manipulation, transect study, and 

modeling. More specifically, four objectives will be explored in this research. The first 

objective is to investigate how multifactor global change factors interactively affect soil 

respiration. To achieve this objective, two experiments, one long-term with a 2oC 

increase and one short term with a 4.4oC increase were conducted to investigate main 

and interactive effects of warming, clipping, and doubled precipitation on soil 
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respiration and its temperature sensitivity. The second objective is to study effects of 

warming and clipping on soil respiration and its components (i.e., RA and RH) and on 

interannual variability of these fluxes. In this study, we will conduct a long-term 

warming and yearly clipping experiment to investigate effects on soil respiration and its 

components and interannual variability. The third objective is to evaluate the role of 

precipitation on ecosystem carbon processes along a natural precipitation gradient. A 

transect study will be conducted to investigate patterns of biomass, litterfall, and soil 

respiration along the gradient with the precipitation from 430 to 1200 mm. The fourth 

objective is to examine nonlinear patterns in response to changes in temperature, CO2 

concentration, and precipitation individually and in combination. To achieve this 

objective, we will use a terrestrial ecosystem (TECO) model to simulate 252 climate 

change scenarios with individual and combined changes in temperature, CO2, and 

precipitation, and then present the nonlinear patterns.  

The results from this research will help scientists and public to better understand 

effects of global change factors and land use practice (i.e., clipping) on the flux of 

carbon between grassland ecosystem and the atmosphere. The results may provide 

theoretical results that can serve as a guide for ecosystem service in a changing world. 

This work can be applicable for management of natural terrestrial carbon sinks and 

calculating CO2 emission to trade carbon in the carbon mitigation market in the future. It 

is also important to feed this research back into the policy process.  

This dissertation includes six chapters. Chapter 1 of the dissertation lays out the 

problem and significance of this research. Chapter 2 examines the main and interactive 

effects of warming, clipping, doubled precipitation on soil respiration. Chapter 3 
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addresses the study on source components and interannual variability of soil respiration 

under experimental warming and clipping. Chapter 4 explores patterns of biomass, 

litterfall, and soil respiration along a precipitation gradient in southern Great Plains. 

Chapter 5 presents nonlinear patterns of ecosystem carbon and water dynamics in 

response to gradual changes in temperature, CO2 concentration, and precipitation using 

model approach. Chapter 6 of this dissertation provides conclusions of this research and 

implications for future work on global change research. 
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ABSTRACT 

It is well documented that temperature, moisture, and substrate supply are three 

major factors affecting soil respiration. However, few studies have rigorously examined 

their interactive effects. We conducted two experiments – one long-term with a 2oC 

increase (Experiment 1) and one short-term with a 4.4oC increase (Experiment 2) – to 

investigate main and interactive effects of warming, clipping, and doubled precipitation 

on soil respiration and its temperature sensitivity in a tallgrass prairie of the US Great 

Plains.  Infrared heaters were used to simulate climatic warming and clipping to mimic 

hay mowing. A ‘rainfall collection pan’ device was used to double precipitation in 

Experiment 2. Additionally, responses of soil respiration to abrupt reduction in substrate 

supply by clipping were studied in Experiment 2 (referred to as the transient study). On 

average, warming increased soil respiration by 13.0% (p < 0.01) in Experiment 1, by 

22.9% (p < 0.0001) in Experiment 2, and by 26.6% (p < 0.0001) in the transient study. 

Doubled precipitation resulted in an increase of 9.0% (p < 0.05) in soil respiration in 

Experiment 2.  Yearly clipping did not significantly affect soil respiration (p = 0.66) in 

Experiment 1, while clipping decreased soil respiration by 16.1% (p < 0.05) in the 

transient study.  Temperature sensitivity of soil respiration significantly decreased from 

an apparent Q10 value of 2.51 in unwarmed plots to 2.02 in warmed plots without extra 

precipitation and from 2.57 to 2.23 with doubled precipitation in Experiment 2. No 

significant interactive effects among the experimental factors were statistically found on 

soil respiration or their temperature sensitivities except for the warming×clipping 

interaction (p < 0.05) in the transient study. Our observed minor interactive effects 
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relative to main ones suggest that results from single-factor experiments are useful in 

informing us of potential responses of soil respiration to multi-factor global change, at 

least in our ecosystem. No matter if this conclusion can be generalized across 

ecosystems, this study poses testable hypotheses to be examined in other experiments. 

 
Keywords: Carbon cycle, global change, soil respiration, Q10, interaction, warming, 

precipitation, clipping, substrate supply, tallgrass prairie.  

 

 

2.1. Introduction 

Global warming resulting from CO2 and other greenhouse gases is expected to 

increase the mean global temperature by 1.4 ~ 5.8oC by the end of this century 

(Houghton et al. 2001). In the US Great Plains, air temperature is predicted to increase 

by 2 to 4oC with doubling of current CO2 concentration (Long and Hutchin 1991). In 

addition, anthropogenic climate change likely will result in increasingly altered 

precipitation regimes. The anticipated increase in precipitation is about 0.5 to 1% per 

decade in this century globally (Houghton et al. 2001) and heavy rainfall events may 

increase by 16-22% per decade in the southern Great Plains, USA (Kunkel et al. 1999). 

Warmer temperature and increased precipitation would likely alter the fluxes of carbon 

from soil to the atmosphere (i.e., soil respiration). 

Soil respiration, also referred to as soil CO2 efflux, represents CO2 release at the 

soil surface from microbial respiration during organic matter decomposition and 

rhizosphere respiration by live roots and their symbionts (Boone et al. 1998, Högberg et 

al. 2001, Wan and Luo 2003). This flux is the largest terrestrial source of CO2 to the 
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atmosphere, which is about 68 to 80 Pg C yr-1 on a global scale (Raich and Schlesinger 

1992, Raich et al. 2002). Global modeling studies have demonstrated that even a small 

change in soil CO2 emissions could significantly exacerbate or mitigate the buildup of 

this greenhouse gas in the atmosphere (Cramer et al. 2001), with consequent feedbacks 

to climate change (Woodwell et al. 1998, Cox et al. 2000). Therefore, understanding 

regulations of soil respiration by major environmental factors is a critical step toward 

projecting climate change in the future.  

 Past research has demonstrated that the rate of CO2 production in the soil varies 

strongly with temperature (Peterjohn et al. 1993, Rustad et al. 2001), moisture 

availability (Liu et al. 2002, Xu et al. 2004), and substrate supply (Bremer et al. 1998, 

Craine et al. 1999). The majority of the studies that investigated responses of soil 

respiration to the above-mentioned variables have been carried out in single-factor 

experiments. These single-factor experiments have considerably advanced our 

understanding of ecosystem responses to climate change. For example, warming 

experiments have indicated average increases of 20% in soil respiration across a range 

of temperature increases, with greater increases in the first few years (Rustad et al. 

2001). Clipping, instead, significantly reduces soil respiration by 19-49% (Bremer et al. 

1998, Wan and Luo, 2003). Increased rainfall variability and/or reduced rainfall amount 

usually decrease soil respiration (Harper et al. 2005). 

Unlike common single-factor experiments, global change involves simultaneous 

changes in multiple factors, which could potentially have complex interactive influences 

on ecosystem structure and processes. For example, data from a grassland site in 

California showed that elevated CO2 suppressed the effects of increased temperature, 
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precipitation, and N deposition on net primary production (NPP) in the third year of 

manipulations (2000-2001). That result indicates that the multi-factor responses to 

global changes differed greatly from simple combinations of single-factor responses 

(Shaw et al. 2002). Conversely, interactive effects of warming with elevated 

atmospheric CO2 on soil respiration were not observed in other studies (Edwards and 

Norby 1998, Lin et al. 2001, Niinistö et al. 2004). Thus, evaluating multi-factor 

interactions in influencing ecosystem structure and processes is critical to understanding 

their response to global change in the real world. Indeed, when interactive effects 

dominate over the main effects of individual factors, results from single-factor 

experiments become less useful for understanding ecosystem changes. In the case that 

interactive effects are minor relative to main effects, results from single-factor 

experiments may become useful in informing us of potential changes of ecosystems in 

response to multi-factor global change.   

In this study, we took advantage of two on-going experiments to evaluate main 

and interactive effects of three factors – warming, clipping, and doubled precipitation – 

on soil respiration and its temperature sensitivity in a grassland ecosystem. Experiment 

1 was designed to examine effects of long-term warming plus yearly clipping on 

community structure and ecosystem processes (Luo et al. 2001a, Wan et al. 2005). 

Experiment 2 was to examine ecosystem responses to short-term (i.e., one-year) 

warming and doubled precipitation. To examine transient responses of soil respiration to 

substrate supply, we also clipped aboveground biomass in autumn of 2003 in 

Experiment 2. We hypothesized that warming and doubled precipitation would increase 

soil respiration and clipping would decrease it. We also hypothesized that interactive 
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effects of the three factors would occur on soil respiration and its temperature sensitivity. 

To test these hypotheses, we measured soil respiration at monthly intervals and derived 

basal respiration rates and temperature sensitivity coefficients by fitting an exponential 

equation to measured soil respiration and soil temperature. Repeated measures analysis 

of variance (RM-ANOVA) was applied for significance tests of treatment effects on soil 

respiration. T-tests of regression coefficients were performed to examine adjustments in 

temperature-respiration relationships under different treatments. 

 

2.2. Materials and Methods 

Site description 

The experiments were conducted at the Great Plains Apiaries in McClain County, 

Oklahoma (34o59’ N, 97o31’ W), approximately 40 km southwest of the Norman 

campus of the University of Oklahoma, USA. It is a 137.6-ha farm located in the 

Central Redbed Plains of Oklahoma (Tarr et al. 1980). The study site is an upland 

tallgrass prairie dominated by four C4 grasses (Schizachyrium scoparium, Sorghastrum 

nutans, Andropogon gerardii, and Panicum virgatum), two C3 forbs (Ambrosia 

psilostachyia and Xanthocephalum texanum), and one winter-dominant C3 grass 

(Bromus japonicus). The four C4 grasses represent approximately 75% of the total plant 

biomass (R. Sherry and Y. Luo, unpublished data). Mean annual temperature is 16.3oC, 

with monthly air temperature ranging from 3.3oC in January to 28.1oC in July. Mean 

annual precipitation is 915 mm, with monthly precipitation ranging from 30 mm in 

January to 135 mm in May (average values from 1948 to 1998, Oklahoma 

Climatological Survey). A silt loam soil in the grassland includes 35.3% sand, 55.0% silt, 
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and 9.7% clay (A. Subedar and Y. Luo, unpublished data).  Soil carbon content is 

1.42% on a mass basis (Luo et al. 2001a). The soil belongs to part of the Nash-Lucien 

complex with neutral pH, high available water capacity, and a deep, moderately 

penetrable root zone (USDA 1979). 

 

Experimental design   

We used two on-going experiments to examine main and interactive effects of 

warming, clipping, and doubled precipitation on soil respiration and its temperature 

sensitivity. Experiments 1 examined the long-term warming/yearly clipping effects on 

ecosystem processes, whereas experiment 2 investigated ecosystem responses to one- 

 
Table 2.1 Comparison of Experiment 1, Experiment 2, and the transient study 

 Experiment 1a Experiment 2b The transient study c

Treatments  

 

Warming period 

 
Warming effects on soil 
temperature 
  Monthly measurement 

  Hourly record 

Warming effects on soil 
moisture 
  Monthly measurement 

  Hourly record 

Warming and 
yearly clipping 

21 Nov 1999 to 
present 
 

 
1.48oC (5 cm) 

2.0oC (2.5 cm) 

 
 
-1.24% (0-15cm)

− 

Warming and 
doubled precipitation

20 February 2003 to 
20 February 2004 
 

 
2.73oC (5 cm) 

4.4oC (2 cm) 

 
 

− 

-5.68% (0-15 cm) 

Clipping, warming, and 
doubled precipitation 

20 February 2003 to  
20 February 2004 
 

 
2.63oC (5 cm) 

4.3oC (2 cm) 

 
 
-2.47% (0-15cm) 

− 

Notes: The measurement depths of soil temperature and moisture are shown in parentheses. 

a the long-term experiment with warming and yearly clipping treatments 

b the short-term (one-year) experiment with warming and doubled precipitation treatments  

c conducted in Experiment 2 from 16 September to 21 November 2003 
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year warming/doubled precipitation and subsequent-year lag effects on biogeochemical 

processes (Table 2.1). In addition, the transient responses to clipping in Experiment 2 

were studied in contrast with yearly clipping in Experiment 1. The two experiments and 

the transient study are described below. 

Experiment 1: The experiment was conducted at a site of old-field tallgrass 

prairie abandoned from crop field 30 years ago without grazing for 27 years. The field 

experiment used a paired, nested design with warming as the main factor and clipping as 

a secondary factor. Twelve 2 × 2 m plots were divided into six pairs of control (i.e., 

unwarmed) and warmed plots. In each warmed plot, one 165 × 15 cm infrared heater 

(Kalglo Electronics Inc., Bethlehem, Pennsylvania, USA) has a radiation output of 100 

Watts m-2 and was suspended in the middle of each plot at the height of 1.5m above the 

ground. The height of 1.5m was determined by considerations of vegetation height and 

radiative energy output. The heating is on year around, 24 hours per day and 365 days 

per year in the field. To simulate shading effects of heaters, we installed one ‘dummy’ 

heater made of metal flashing with the same shape and size as the heating device over 

each control plot. A previous study by Wan et al. (2002) has documented that warming 

increased daily mean air temperature at 25 cm above the ground by 1.1oC and soil 

temperature at the 2.5-cm depth by 2.0oC. Each 2 × 2 m plot was divided into four 1 × 1 

m subplots. Plants in two diagonal subplots were clipped at the height of 10 cm above 

the ground yearly, usually in July.  The other two were the unclipped control. Usually 

farmers and ranchers in the southern Great Plains mow grass pasture once to twice per 

year, depending on rainfall. Our study site is rather xeric, yearly clipping mimic hay 
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mowing once a year. Each treatment – control (C), warmed (W), clipped (CL), and 

warmed plus clipped (W+CL) – had 6 replicates. 

Experiment 2: The experiment was situated approximately 500 meters away 

from Experiment 1. Twenty 3 × 2 m plots were established in two rows that were 

separated by approximately 3 m. Within one row, the distance between plots was 1.5 m. 

Half of the plots were randomly selected for warming treatments with two infrared 

heaters suspended in the middle of the plots at the height of 1.5m above the ground. The 

other 10 plots had ‘dummy’ heaters suspended at the same height as in the warmed plots. 

Five of both the warmed and unwarmed plots were randomly selected to receive 

doubled precipitation using a ‘rainfall collection pan’ device, which is an angled 

catchment with the same size and shape as the plot. One rainfall collection pan was 

installed about 40 cm above the ground with a slope lower near the plot and 30 cm away 

from each doubled precipitation plot to funnel water onto these plots so that the amount 

of rainfall was doubled. The pan was connected to three 1.8-cm (inner diameter) 

polyvinyl chloride (PVC) pipes with 3.0-mm holes to distribute the collected water 

evenly over the plots. We also installed the PVC pipes in those plots without extra 

precipitation to have uniform effects of pipes if any.  Thus, four treatments – control 

(C), warmed (W), doubled precipitation (PPT), and warmed plus doubled precipitation 

(W+PPT) – had five replicates.  

The transient study: We studied transient responses of soil respiration to abrupt 

reduction in substrate supply by clipping in Experiment 2. A half of each plot was 

clipped at 10 cm above the ground on 16 September, 2003. Thus, there were eight 

treatments – control (C), warmed (W), doubled precipitation (PPT), warmed plus 
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doubled precipitation (W+PPT); clipped (CL), clipped plus warmed (CL+W), clipped 

plus doubled precipitation (CL+PPT), and clipped plus warmed plus doubled 

precipitation (CL+W+PPT) – with five replicates. 

 
Measurement protocols 

To measure soil respiration, PVC collars (80 cm2 in area and 5 cm in height) 

were inserted 2-3 cm into the ground at the center of each subplot or quarter at the 

beginning of the experiments. Living plants inside the soil collars were clipped at the 

soil surface at least 1 day before the measurement to eliminate aboveground plant 

respiration. The clipped plant materials were left in the collars. Measurements of soil 

respiration were taken monthly between 10:00 and 15:00 (local time), using a LI-COR 

6400 portable photosynthesis system attached to a 6400-09 soil CO2 flux chamber (LI-

COR. Inc., Lincoln, Nebraska, USA). Standard procedures recommended by LI-COR 

were applied to measure soil respiration. Data were recorded at a 5 second interval by 

the datalogger in LI-COR 6400 console. Each of the measurements usually took 1 – 3 

minutes after placing the chamber over the collar.  

Soil temperature at the depth of 5 cm was monitored adjacent to each PVC collar 

using a thermocouple probe (LI-COR 6000-09TC) connected to the LI-COR 6400 at the 

same time when we measured soil respiration. Data were also logged at a 5 second 

interval. 

In Experiment 1 and the transient study, volumetric soil water content (%V) was 

measured using manual Time Domain Reflectometry (TDR) equipment (Soilmoisture 

Equipment Corp., Santa Barbara, California, USA) at the depth interval of 0-15 cm. In 

Experiment 2, TDR probes (ESI Environmental Sensor Inc., Victoria, British Columbia, 
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Canada) were used to automatically monitor soil moisture at depths of 0-15 cm, 15-30 

cm, 30-60 cm, 60-90 cm, and 90-120 cm. Soil moisture data were logged hourly through 

a CR10X datalogger (Campbell scientific, Inc., Logan, Utah). However, due to 

shrinking and swelling of soils, nine TDR probes were partially damaged or 

malfunctioned in the middle of the study. Complete data sets of soil moisture were 

available only in 11 of the 20 plots.  In this study, the readings at the depth of 0-15cm 

were used because this depth is more closely associated with soil surface CO2 efflux. 

In Experiment 1, soil respiration, soil temperature, and soil moisture were 

monthly measured in one clipped and one unclipped subplot of each plot in 2003. In 

Experiment 2, each plot was divided into four quarters, and monthly measurements of 

soil respiration and soil temperature were performed in the southwest and northeast 

quarters from January 2002 to February 2004 except February and March 2003 (three 

times per month), while soil moisture was monitored hourly at the center of each plot.  

In the transient study, soil respiration, soil temperature, and soil water content (%V) 

were intensively measured at days 3, 9, 17, 27, 37, 49, 58, 66 after clipping until 21 

November, 2003 in both the clipped and unclipped half plots. 

 

Estimation of annual soil respiration 

Annual soil respiration for each treatment was estimated by summing the 

products of monthly mean soil respiration and the number of days between samples. It 

was corrected further for diurnal patterns in fluxes. Our measurements, collected 

between 10:00 and 15:00, were assumed to represent daytime averages based on diurnal 

patterns observed by Wan and Luo (2003) at a similar site. The calculated average daily 

efflux was 96.5% of the observed daytime average. The corrected daily flux was then 
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multiplied by the number of days between measurements to compute the cumulative 

flux over the period (Bremer et al. 1998).  

 

Data analysis 

In Experiment 2, each plot was an experimental unit, so replicate measurements 

were averaged by plot for analysis. In addition, means of soil respiration and soil 

temperature in February and March 2003 were applied to keep monthly consistent in 

statistical analysis. The main and interactive effects and temporal changes of warming, 

precipitation, and clipping treatments on soil respiration, soil temperature, and soil 

moisture were determined with a repeated measures analysis of variance (RM-ANOVA).  

The statistical analyses were performed in SPSS 11.0.1 for windows (SPSS Inc., 

Chicago, USA 2001).  

We assessed the sensitivity of soil respiration to soil temperature by fitting 

exponential functions to the data from individual treatments.  

bT
s aeR =                        (1) 

where Rs is soil respiration (µmol m-2 s-1), T is soil temperature (oC) at the depth of 5 cm, 

a is the intercept of soil respiration when temperature is zero (i.e., basal respiration rate), 

and b represents the temperature sensitivity of soil respiration. The b values were used 

to calculate a respiration quotient (Q10), which describes the change in fluxes over a 

10oC increase in soil temperature, by: 

beQ 10
10 =                        (2) 

Values of parameters (i.e., a, b, and Q10) derived from seasonal data sets reflect effects 

of temperature and other co-varying factors on soil respiration (Boone et al. 1998, 
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Högberg et al. 2001). Thus, an apparent Q10 value is used to denote the derived 

temperature sensitivity of soil respiration hereafter. 

A T-test was used to assess the significance of main and interactive effects of 

regression coefficients a and b among the treatments as presented in Appendix A. The 

main and interactive effects were considered to be significantly different if p < 0.05.  

 

2.3. Results 

Warming and yearly clipping effects in Experiment 1 

Soil respiration exhibited pronounced seasonal variations with average values 

ranging from 0.52 µmol m-2 s-1 in December to 5.13 µmol m-2 s-1 in June in the control 

plots in 2003 (Fig. 2.1a). Soil respiration in warmed plots increased significantly by 

9.9% in comparison to that in unwarmed plots without clipping, and by 16.4% with 

clipping (13.0% on average, Fig. 2.1a, Table 2.2). However, no significant effects of 

yearly clipping and warming×yearly clipping interaction were found on soil respiration. 

Significant interactions occurred between warming and sampling dates and between 

yearly clipping and sampling dates (W×D and CL×D, Table 2.2). 

Soil temperature at the depth of 5 cm showed a similar seasonal trend as soil 

respiration (Fig. 2.1b). Warming increased soil temperature by 1.23oC over the whole 

year in unclipped plots and by 1.73oC in clipped plots based on monthly daytime 

measurements (p<0.0001, Fig. 2.1, Table 2.1, ). Yearly clipping increased soil 

temperature by 0.80oC relative to that in the control plots in the daytime (p < 0.001, Fig. 

2.1b). Soil moisture (0-15 cm) fluctuated greatly over the season (Fig. 2.1c). The lowest 

soil moisture was observed in summer (July and August) and the highest in winter.  
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Fig. 2.1 Seasonal variations and overall means of soil respiration (a), soil temperature at 

the depth of 5 cm (b), and soil water content of 0-15 cm (c) in Experiment 1 in 2003. 

Clipping was conducted on September 26, 2003. Vertical bars represent the standard 

error of the mean (n=6). C: control; W: warmed; CL: clipped; W+CL: clipped plus 

warmed.  
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Warming had a marginally significant negative effect on soil moisture (p=0.06), while 

yearly clipping did not affect soil moisture (p=0.6, Fig. 2.1c). 

Our analysis with equation 1 showed that soil temperature accounted for more 

than 60% of the variation on soil respiration in the four treatments (Fig. 2.2). Warming 

and yearly clipping both slightly reduced the derived coefficient b, while basal 

respiration rate (i.e., coefficient a) was not affected. T-test analysis illustrated that those 

slight differences in coefficients either a or b among treatments were not significant 

(Table 2.3).  
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Fig. 2.2  The exponential relationships between soil respiration and soil temperature 

under unclipped (a) and clipped (b) treatments in Experiment 1 in 2003. See Fig. 2.1 for 

abbreviations. 
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Table 2.2 Results of RM-ANOVA showing the F values and levels of significance for 

responses of soil respiration to warmed (W), doubled precipitation (PPT), clipped (CL) 

treatments and sampling dates (D). * p≤0.05, ** p≤0.01, ***p≤0.0001  

Experiment 1 Experiment 2 The transient study 
 Factor df F values Factor df F values Factor df F values 

W 

CL 

1 

1 

 9.32** 

 0.20 

W 

PPT 

1

1

26.93*** 

 4.70* 

W 

PPT 

1 

1 

34.85***

D 

W

D 

D 

CL×D 

.2*** D 

W

D 

D 

PPT×D

.4*** 
CL 

D 

W×P

W×CL 

L 

D 

L×D 

1 

1 

 0.06 

 7.93* 

4***

 6.25* 
×CL 

W×

CL×

W×

 

 

 

 

10 164

1 

10

10

10

 

 

 

 

 1.39 

 3.63* 

 4.05* 

 0.85 

 

 

 

 

×PPT 

W×

PPT×

W×

 

 

 

 

12 107

1

12

12

12

 

 

 

 

 2.68 

12.40** 

 1.05 

 0.32 

 

 

 

 

PT 

PPT×CL 

W×D 

PPT×D 

CL×D 

W×PPT×C

W×PPT×D 

W×CL×D 

PPT×CL×

W×PPT×C

7 155.

1 

1 

7 

7 

7 

1 

7 

7 

7 

7 

 0.24 

 0.93 

 1.85 

 0.65 

 4.18* 

 0.13 

 0.75 

 0.55 

 3.60 

 0.48 

 

Warming and pr

Soil respiration closely tracked the seasonal changes in soil temp tu  

average values ranging from .54 to 7.64 m  m-2 s-1 between Jan 2002 and Feb 2004 

in the control plots (Fig. 2.3a). Warming and doubled precipitation caused significant 

increases in soil respiration (Fig. 2.3a, Table 2.2). Soil respiration in warmed plots 

increased by 32.9% in comparison to that in unwarmed plots without extra precipitation 

and by 14.5% with doubled precipitation (22.9% on average, Fig. 2.3a). Doubled 

precipitation increased soil respiration by an average of 9.0% compared to those without 

extra precipitation treatments (Fig. 2.3a, Table 2.2). No significant interaction was  

ecipitation effects in Experiment 2 

era re, with

 0  µ ol
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Fig. 2.3 Seasonal variations and overall means of soil respiration (a), soil temperature at 

the depth of 5 cm (b), and soil water content of 0-15 cm (c) in Experiment 2 from Jan 

2002 to Feb 2003. Vertical bars represent the standard error of the mean (n=5). The 

dashed vertical line indicates the day when warming and precipitation treatments started. 

3. 

C: control; W: warmed; PPT: doubled precipitation; W+PPT: warmed plus doubled 

precipitation, C* refers to overall means from all pretreatment plots before 20 Feb 200
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detected between warming and doubled precipitation (p=0.121). 

Soil temperature at the depth of 5 cm in warmed plots increased significantly by 

2.97oC compared to that in unwarmed plots without extra precipitation and by 2.50oC 

with doubled precipitation based on monthly daytime measurements (p<0.0001, Fig. 

2.3b). Our continuous measurements showed that warming increased daily mean soil 

temper

 

 soil 

). The 

Table 2

Experiment 1 Experiment 2 The transient study 

ature by 4.4oC at the depth of 2 cm (Table 2.1). Soil moisture (0-15 cm) 

fluctuated greatly due to highly variable rainfall (Fig. 2.3c). Warming significantly 

decreased soil moisture by 29.4% without extra precipitation and by 25.1% with 

doubled precipitation. Doubled precipitation increased soil moisture approximately by

2% volumetrically in both warmed and unwarmed plots (Fig. 2.3c).  

On the basis of the temperature relationship of soil respiration in equation 1,

temperature accounted for more than 57% of variation in soil respiration (Fig. 2.4

apparent Q10 values decreased from 2.51 in unwarmed plots to 2.02 in warmed plots 

 

.3 Results of T-test showing t values and levels of significance for response of 

coefficients a and b to warmed (W), doubled precipitation (PPT), and clipped (CL) 

treatments. * p<0.05, **p<0.01 

Factor ta tb Factor ta tb Factor ta tb

W 

CL 

W×CL 

 0.614 

-0.244 

-0.354 

-0.588 

-0.506 

0.524 

W 

PPT 

W×PPT

2.175* -2.476** W  0.239 -0.6

 

-0.456

-0.836

 0.848 

 0.508 

PPT 

CL 

W×PPT 

W×CL 

PP

W×PPT×CL 

 1.767 

 0.514 

 1 4 

-1.341 

16 

-1.484 

-2.076*

024* 

-1.224 

 1.348 

T×CL 

-0.126 

-2.482* 

-0.429 

2.

.04
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without extra precipitation and from  2 d led precipi ow

c icien  s spon ar  co ison to th nt

being higher under warming. T-test analysis indicated that warming si tly

affected coefficients a or b in opposite directions, while d preci an

interaction with warming did not significantly affect co r b  2.

 2.57 to .23 with oub tation. H ever, 

oeff t a had an oppo ite re se to w ming in mpar e appare  Q10, 

gnifican  

 double pitation d its 

efficients a o  (Table 3). 
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Fig.2. 4 The exponential relationships between soil respiration and soil temperature in 

Experiment 2 in 2002 (a), without extra precipitation in 2003 (b), and with doubled 

precipitation in 2003 (c). See Fig. 2.3 for abbreviations. 
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Substrate effects in the transient study 

Clipping significantly reduced average soil respiration by 27.0% and 22.2% in 

warmed and warmed plus doubled precipitation treatments, respectively, but had no 

significant effect in the control and doubled precipitation (16.1% on average, Fig. 2.5). 

During the period of the transient study, warming significantly increased soil respiration 

by 44.5% and 39.3% without and with doubled precipitation, respectively, in unclipped 

subplots and by 9.0% and 14.1% in clipped subplots (26.6% on average, p < 0.001, Fig. 

2.5c). Doubled precipitation did not alter soil respiration in either unclipped or clipped 

subplots. Interactive effects of warming×clipping and clipping×sampling dates were 

statistically significant on soil respiration (Table 2.2).   

Soil temperature and soil moisture were not significantly affected by clipping in 

any of the four treatments (p > 0.1). Warming significantly increased soil temperature 

and reduced soil water content (p < 0.001, Fig. 2.5d,e,f,g,h,i), whereas doubled 

precipitation had no effects on either soil temperature or moisture (p > 0.1).   

Clipping significantly decreased the temperature sensitivity of soil respiration 

(Fig. 2.6). However, the clipping effects on the temperature sensitivity varied with 

n 

 

% 

warming treatments, leading to significant interactions between clipping and warming i

influencing coefficient b (Tables 2.3).  

 

Estimated annual soil respiration 

In Experiment 1, annual soil CO2 emissions ranged from 782 to 927 g C m-2 yr-1

for the four treatments (Table 2.4). Warming increased annual soil respiration by 10.9

in unclipped plots and by 17.0% in clipped plots. In Experiment 2, warming increased 

annual soil respiration by 28.7% without extra precipitation and by 15.1% with doubled  
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Fig. 2.5 Variations and overall means of soil respiration (a, b, and c), soil temperature at 

the depth of 5 cm (d, e, and f), and soil water content of 0-15 cm (g, h, and i) after 

clipping in the transient study. Vertical bars represent the standard error of the mean 

(n=5). C: control, W: warmed; PPT: doubled precipitation, CL: clipped. 
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 29

precipitation. Doubled precipitation also increased annual soil respiration by 15.4% 

compared to that in the control. However, a large difference existed between 2002 and 

2003 in the control plots of Experiment 2 (Table 2.4), largely due to differences in 

precipitation between the two years. 
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Fig. 2.6 The exponential relationships between soil respiration and soil temperature for 

(    ) and (    ) treatments in control (a), warmed (b), doubled 

precipitation (c), and warmed plus doubled cipitation (d) treatments in the transient 

 in a future 

orld strongly relies on our understanding of their interactions. Our study showed that 

unclipped clipped 

pre

study. See Fig. 2.5 for abbreviations. 

 

2.4. Discussion 

Prediction of ecosystem responses to multi-factor global changes

w



among the three factors that we examined in our experiments, warming and doubled 

precipitation had significant main effects on soil respiration, whereas the main effect of

clipping was significant only in the transient study. The interactive effects of the thr

factors were not significant except fo

 

ee 

r warming×clipping in the transient study. The 

temperature sensitivity of soil respiration significantly decreased under the warming 

treatment in Experiment 2 and under the clipping treatment in the transient study. Below 

we discuss magnitude of soil respiration, main effects of single factors, and interactive 

effects of multiple factors.  

 

Table 2.4 Annual soil respiration (g C m-2 yr-1) in Experiment 1 with warmed (W) and 

clipped (CL) treatments and Experiment 2 with warmed (W) or doubled precipitation 

(PPT) treatments. Data are shown by mean ± 1SE.   

Experiment 1 Experiment 2 

Year Treatments Annual soil 
respiration 

Year Treatments Annual soil 
respiration 

 

2003 
 

C 

W 

 

835±73 

927±87 

2002

03

2003

Control*

C 

W 

1131±93 

877 ± 69 

1129±70 2003 

2003 

2003 
CL 

W+CL 

782±67 

915±80 

2003

2003

PPT 

W+PPT 

1013±85 

1166±107

20

Control*: refers to the result calculated from the average in all pretreatment plots. 

Soil respiration measured in the control plots ranged from 0.52 to 7.64 µmolm-2 

s-1, which is comparable to previous measurements in grasslands (Bremer et al. 1998, 

Wan and Luo 2003). Although annual soil respiration is not the main focus of this study, 

 

Magnitude of soil respiration 
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our estimates are consistent with the studies on Konza Prairie (Bremer et al. 1998) bu

greater than estimates of 340 to 480 g C m-2 yr-1 from less productive grasslands in 

California (Luo et al. 1996). Overall, our estimates fall within the upper limits of the 

estimates which range from 160 to 1060 g C m-2 yr-1 in North America and Europe 

(Hanson et al. 1993). The difference in annual precipitation (890 mm in 2002 and 647

mm in 2003) likely contributed to the significant difference in annual soil respiration 

between 2002 and 2003 in the control plots of Experiment 2 (Table 2.4).  

 

t 

 

ain effects of single factors on soil respiration  

te forest (McHale et al. 1998) and 

a boreal pine f et al. 2004). The observed i respiration in 

our study is 0.74 µmol m- s sligh we ean increase of 1.20 

µmol m-2 s-1 in the first-year warming from 7 ecosyste g 

experiments (Rustad et al. 2 e incre espir n likely resulted

enhanced oxidation of labile soil carbon com ed plots (Pe l. 

1993, Lin et ).   

cclimatization (Luo et al. 2001a), physiological adjustments to pool size changes by 

l. 2002), extension of growing seasons (Dunne et al. 

2002, W

M

The increase in soil respiration in response to warming has been observed in 

various ecosystems (Rustad et al. 2001). The short-term response to warming in 

Experiment 2 is similar to those observed in a tempera

orest (Niinistö ncrease of soil 

2 s-1, which i tly lo r than the m

 a meta-analysis of 1 m warmin

001). Th ased r atio  from 

pounds on warm terjohn et a

 al. 2001

The long-term response of soil respiration to warming is regulated by 

a

plants and microbes (Melillo et a

an et al. 2005), and stimulated C4 plant productivity (Wan et al. 2005). In 

Experiment 1, soil respiration increased by 9.9% in the fourth year (Fig. 2.2), by 8.0% 

and 15.6% in the third and second year, respectively (Wan et al. 2005), and decreased by 
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5% in the first year (Luo et al. 2001a). The increases in soil respiration observed in this 

study are lower than the 20% mean increase reported from a meta-analysis (Rustad et

2001). The meta-analysis synthesized studies mainly from high latitude regions. The 

year-to-year variation in warming-induced changes in soil respiration observed in 

Experiment 1 likely resulted from changes in productivity (Wan et al. 2005) and other 

abiotic factors such as drought.  The lower response of soil respiration to warming 

observed in our experiments is likely related to the fact that our grassland h

 al. 

as lower soil 

rganic C content than other ecosystems (Luo et al. 2001a). 

cantly increased basal respiration 

rate (co ent 

 

l 

 

e 

upply and depletion (A. Tedla and Y. Luo, unpublished data). 

In addi  (Zhang et 

 

o

This study demonstrated that warming signifi

efficients a) and decreased temperature sensitivity of soil respiration (coeffici

b) in Experiment 2, whereas neither of the parameters was significantly altered by

warming in Experiment 1 (Table 2.3). The different responses of the two parameters to 

warming between the experiments may be due to a few reasons. First, the temperature 

increase was ~ 2oC in Experiment 1 and 4.4oC in Experiment 2. Thus, the experimenta

forcing was stronger in Experiment 2 than in Experiment 1. Second, Experiment 1 was

in the fourth year. Ecosystem processes may adjust to warming treatment over tim

(Melillo et al. 2002). After three-year warming in Experiment 1, labile carbon could be 

in a steady state between s

tion, the shift in soil microbial community structure toward more fungi

al. 2005) likely resulted in lower sensitivity of soil respiration to temperature because 

fungi are more tolerant to higher soil temperature and drying due to their filamentous 

nature. The opposite responses of coefficients a and b to warming could result from
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changes in root phenology and acclimation of roots and microbes to climate (Janssens 

and Pilegaard 2003).   

Doubled precipitation significantly increased soil respiration in Experiment 2 

(Table 2.2), greatly due to stimulation of soil respiration in the dry growing season 

2003 (Fig. 2.3). Similar effects of additional water on soil respiration have been 

observed in other experiments (Laporte et al. 2002, Liu et al. 2002). During the perio

of the transient study, CO

of 

d 

 basal respiration rate and 

temper

that 

 

1999, Wan and Luo 2003). Our study showed that yearly clipping had no significant 

2 efflux from soils was not significantly affected by doubled 

precipitation due to the absence of water stress. Although the

ature sensitivity were not affected by doubled precipitation (Table 2.3), the 

apparent Q10 value in the control was significantly higher in 2003 than 2002 (p<0.05), 

largely resulting from differences in precipitation. Dörr and Münnich (1987) found 

the apparent Q10 values were low in the wet years and high in the dry years in a 

multiyear study of a grassland and a beech-spruce forest in Germany. But others found 

that the apparent Q10 values were lower in the well-drained sites than the wetter sites 

(Davidson et al. 1998, Xu and Qi 2001). Complex interactions between soil water and 

temperature, which influence CO2/O2 diffusion, root and microbial activities, could 

result in these diverse responses of the temperature sensitivity of soil respiration to 

water availability.  

A large portion of soil respiration is derived from recently fixed carbon, thus 

making it responsive to changes in carbon supply due to clipping, girdling, and shading

(Craine et al. 1999, Högberg et al. 2001, Wan and Luo 2003). Clipping reduces soil 

respiration by 19% to 49% in grassland ecosystems (Bremer et al. 1998, Craine et al. 
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effects on soil respiration in the fourth year of Experiment 1 and clipping significantly 

reduced soil respiration in the transient study within two months (Figs. 2.1, 2.5; Table 

2.2). In

 

 year. 

 

 

d field 

strial 

evaluated in combination with other factors. In this study, we found 

that int  

 

respiration statistically significant. Similarly, there were no significant interactions 

 Experiment 1, we evaluated the effect of yearly clipping against monthly 

measurements of soil respiration over a whole year. The treatment of yearly clipping in

our study likely has less impact on soil respiration than mowing several times per

However, the transient effects of clipping were examined within two months in the 

transient study. In addition, Wan and Luo (2003) kept clipping aboveground biomass to

maintain bare ground in the clipped plots during the whole study period of one year, 

leading to a 33% decrease in mean soil respiration. Thus, frequency of clipping and

durations of study can be sources of variable results. Our transient study showed that 

clipping significantly reduced respiratory sensitivity to temperature (Table 2.3), similar 

to the results in other studies both from the laboratory (Townsend et al. 1997) an

experiments (Boone et al. 1998, Wan and Luo 2003). 

 

Interactive effects of warming, precipitation, and clipping 

Global climate change in the real world involves changes in multiple factors 

(Shaw et al. 2002, Norby and Luo 2004). Therefore, the effects of warming on terre

ecosystems must be 

eractive effects of warming, precipitation, and clipping on soil respiration were

minor except for the warming × clipping interaction in the transient study. Minor 

interactive effects among multiple global change factors on soil respiration have been

reported in the literature. For example, Edwards and Norby (1998) and Niinistö et al. 

(2004) did not find interactive effects of elevated CO2 and temperature on soil 
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among elevated CO2, nitrogen supply, and plant diversity on soil respiration (Craine et 

al. 2001) and between elevated CO2 and O3 (Kasurinen et al. 2004). However, 

significant interactive effects of elevated CO2 and warming were found on ‘old’ po

decomposition in a warming-CO

ol C 

sed 

 

d of drought in June and July (34 

ays without rain) negated the doubled precipitation treatment. A heavy rain of 108.0 

water loss through 

surface % 

e do 

2-N experiment in tunnels with ryegrass swards 

(Loiseau and Soussana 1999). The interaction was largely regulated by N supply.  

The lack of significant interactive effects in Experiment 1 suggests that soil 

respiration was determined by warming and yearly clipping treatments in a statistically 

independent manner. Warming increased soil respiration while yearly clipping decrea

it. The effect size of the warming plus yearly clipping treatment was between that of the 

warming treatment and the one of the yearly clipping treatment. The insignificant 

interaction between warming and doubled precipitation in Experiment 2 resulted largely

from the anomalously low precipitation in 2003. Precipitation was 647 mm, which was 

29.3% less than the average (915 mm). The long perio

d

mm in two days on 30-31 August, 2003 resulted in substantial 

 runoff.  Although doubled precipitation increased soil water content by 10.6

and soil respiration by 9.0% relative to those without extra precipitation treatments, high 

variability in rainfall events in our ecosystem did not generate statistically significant 

interaction. In addition, our monthly measurements may not detect fast transient 

responses of soil respiration to individual rainfall events (Liu et al. 2002). Thus, w

expect that soil water content and temperature interactively regulate soil respiration 

under different circumstances in spite of the fact that we did not detect significant 

interactions between them in this particular study. 

 35



An interactive response to warming and clipping was observed on soil 

respiration and its temperature sensitivity in the transient study (Tables 2.2 and 

Clipping immediately reallocated assimilate to regrowth of shoots (Bremer et al. 1998, 

Craine et al. 1999) and reduced supply of current photosynthates to roots and thei

mycorrhizal fungi (Högberg et al. 2001). As a consequence, soil respiration decreas

2.3). 

r 

es. 

Howev  in 

s 

l 

 

e effects of the three factors on soil 

er, experimental warming accelerated plant regrowth in comparison with that

unwarmed plots after clipping either with or without doubled precipitation. Thus, 

warming made soil respiration more responsive to clipping, contributing to the observed 

significant interaction during the transient period. In addition, complex and 

unpredictable interactions do occur in regulating soil respiration in other ecosystem

(Loiseau and Soussana 1999) or other ecosystem attributes such as biomass growth 

(Shaw et al. 2002). A mechanistic understanding of interactions of warming and other 

global change factors on soil respiration also requires study of root and microbial 

processes, which may have different sensitivities to temperature and other factors in 

complex soil physical and chemical environments. 

 

2.5. Conclusions 

This study investigated the main and interactive effects of warming, doubled 

precipitation, and clipping on soil respiration and its temperature sensitivity in a 

tallgrass prairie of Central Oklahoma. The main effects of warming and doubled 

precipitation were significant on soil respiration. Clipping significantly decreased soi

respiration in the transient study but not in the long-term warming experiment. Our

statistical analysis showed no significant interactiv
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respira e 

ts 

tudy 

ce 

h 

oundation (NSF) under DEB 

078325 and by the Terrestrial Carbon Program at the Office of Science, US 

, under DE-FG03-99ER62800. 

tion or its temperature sensitivity except for the warming× clipping in th

transient study. The minor interactive effects observed in this study suggest that resul

from single-factor experiments are useful in informing us of potential responses of soil 

respiration to multi-factor global change, at least in our ecosystem. It is yet to be 

examined whether our conclusion on minor interactive effects could be generalized 

across ecosystems.  Regardless, this study posed testable hypotheses, which can be 

examined in other ecosystems.  Furthermore, the statistical methods used in this s

to rigorously detect interactive effects of global change factors are useful for other 

multi-factor experiments.  
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Appendix A: Statistical tests of regression coefficients 

We tested the significance of coefficients a and b of equation 1 in the 

temperature-respiration relationship primarily according to methods presented by 

Toutenburg (2002). Below is an array of coefficients a or b and standard errors for

calculating t values of main and interactive effects between two factors: warming vs.

precipitation and warming vs. clipping: 

  Treatment level of Factor 1  

 

 

  1 2 Ave.-Factor 
1 x

2
11± S11 x21± S21 1.x  Treatment level 

of Factor 2 2 x12± S12 x22± S22 2.x  
 Ave.-Factor 1

.1x  .2x   

where x  are values of coefficients a or b (i, j=1, 2), Sij are standard errors of coefficients 

a or b in different treatments, 

ij

.ix  is a mean of treatment level i of factor 1,  is a j

mean of treatment level j of factor 2.  

The t value of the main effects was calculated for factor 1 by: 

x .

)2,1,(

4

.1.2 =
−

= jixxt
ij

                        (A1) 
2∑ S

Similarly, the t values for factor 2 was also calculated by equation (A1) with 1.x  

and 2.x . The t value of the interactive effects of factor 1 and factor 2 on coefficients a 

and b was calculated by: 

)2,1,(

4

2
2

21122211

=

−−+

=
∑

ji
S

xxxx

t
ij

                 (A2) 

For the 3-way factorial experiment with warming, precipitation (ppt), and 

clipping, coefficients a or b and their standard errors can be arranged as follows to 

calculate t values of main and interactive effects: 

 38



  Treatment level of Factor 1  
   

 
1-Unclipped 2-Clipped 

 Treatment level of Factor 2 Treatment level of Factor 2 
  1-Ambient ppt 2-Double ppt 1-Ambient ppt 2-Double ppt Fa

1-
Unwarmed 111 111 121 121 211 211 221 221

Ave.-
ctor3

x  ± S x ± S x ± S X ± S 1..x  Treatment 

112 112 122 122 212 212 222 222

level of 
Factor 3 2-Warmed x ± S x ± S x ± S X ± S 2..x  

Ave.-Factor1 ..1x  ..2x   

Ave.-Factor2 .1.x    
.2.x   

where xijk are values of coefficients a or b (i, j, k = 1, 2), S  are standard errors of 

coefficients  or b in different treatments, 

ijk

a ..i  is a mean of treatment ng, level i of clippix

is eatment level j of precipitation, .. jx   a mean of tr kx..  is a mean of treatment level k 

of warming.  

The t values of the main effects of clipping, precipitation, and warming were 

calculated by equation (A1) with ..ix , .. jx ,or kx.. , and 
16

2∑ ijkS . The t value of the 2-way 

interactive effect of factor 1 (clipping) and factor 2 (precipitation) was calculated by: 

)2,1,,( =

16

4
2

21122211 −−+

=
∑

∑∑∑∑

S

xxxx

t
ijk

kkkk

 

precipitation and warming were calculated by equation (A3) with 

 or 

kji
                (A3) 

Similarly, the t values of the interactive effects of clipping and warming, or of

∑∑∑∑ −−+ 12212211 jjjj xxxx ∑∑∑∑ −−+ 21122211 iiii xxxx , respectively. 

The t value of the 3-way interactive effects of clipping, precipitation, and 

warming on coefficients a or b was calculated by: 

)2,1,,(

16

4
2

221212122111222211121112

=

−−−−+++

=
∑

kji
S

xxxxxxxx

t
ijk

   (A4) 
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ABSTRACT 

Partitioning soil respiration into autotrophic (RA) and heterotrophic (RH) 

components is crucial for understand tial responses to climate change. 

We conducted a long-term experiment (2000 - 2005) to investigate effects of warming 

and yearly clipping on soil respiration and its components (i.e., RA and RH) in a tallgrass 

prairie ecosystem. Interannual variability of these fluxes was also examined. Deep 

collars (70 cm) were inserted into soil to measure RH. RA was quantified as the 

diff  

so

clipping significantly reduced soil respiration only in the last two years, although it 

decreased RH in every year of the study. Temperature sensitivity (i.e., apparent Q10 

values) of soil respiration was slightly lower under warming (p>0.05) and reduced 

considerably by clipping (p<0.05) compared to that in the control. On average over the 

ur years, RH accounted for approximately 65% of soil respiration with a range from 58 

 73% in the four treatments. Over seasons, the contribution of RH to soil respiration 

um in winter (~90%) and a minimum in summer (~35%). Annual soil 

spiration did not vary substantially among years as precipitation did. The interannual 

ariability of soil respiration may be mainly caused by precipitation distribution and 

ummer severe drought. Our results suggest that the effects of warming and yearly 

lipping on soil respiration and its components did not result in significant changes in 

H or RA contribution, and rainfall timing may be more important in determining 

terannual variability of soil respiration than the amount of annual precipitation.  

ing their differen

erence between soil respiration and RH. Warming treatment significantly stimulated

il respiration and its components (i.e., RA and RH) in most years. In contrast, yearly 

fo

to

reached a maxim

re

v

s

c

R
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Keywords: soil respiration, root resp hic respiration, partitioning, 

global warming, clipping, interannual variability, tallgrass prairie  

 

o s

ck if 

a 

 

 

 

availability (Raich and Tufekcioglu 2000), and current photosynthetic rates (Högberg et 

iration, heterotrop

 

3.1. Introduction 

Global warming induced by elevated atmospheric greenhouse gases has 

increased Earth’s surface temperature by 0.6 C in the pa t century and the temperature is 

predicted to continue to increase by1.4 – 5.8oC by the end of this century (IPCC 2001). 

In the Great Plains, air temperature is predicted to increase by 2 to 4oC with the 

doubling of the current CO2 concentration (Long and Hutchin 1991). This projected 

warming is probably altering ecosystem carbon (C) cycling, causing positive feedba

warming increases soil respiration more than plant production (Cox et al. 2000). At 

global scale, climate warming of 1oC would result in an extra 11-34 Pg C yr-1 release to 

the atmosphere due to enhanced decomposition, equivalent to as much as five times the 

annual CO2 release from all fossil fuel burning (Jenkinson et al. 1991, Schimel et al. 

1994, IPCC 2001).  

Soil respiration, also referred to as soil CO2 efflux, is the second largest C flux 

(68 to 80 Pg C yr-1) between terrestrial ecosystems and the atmosphere in the global C

cycle (Raich and Schlesinger 1992, Raich et al. 2002), and is therefore an important

regulator of climate change as well as determinant of net ecosystem C balance. It is 

largely influenced by soil temperature (Lloyd and Taylor 1994, Boone et al. 1998,

Rustad et al. 2001), water content (Davidson et al. 2000, Liu et al. 2002), nutrient 
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al. 2001). Both autotrophic respiration (RA) from plant roots and rhizosphere microb

and heterotrophic component (R

es 

ecomposition contribute to CO2 efflux from soils (Hanson et al. 2000, Wan and Luo 

003, Kuzyakov 2006, Subke et al. 2006).  

ntribution of RA or RH generally accounts for approximately one 

half of 000, 

 

 

es 

irect changes in physiological and ecological processes and 

nutrien

 

m 

erent 

, 

H) during litter and soil organic matter (SOM) 

d

2

The relative co

the total soil respiration according to three recent reviews (Hanson et al. 2

Bond-Lamberty et al. 2004, Subke et al. 2006). However, the average estimates mask 

considerable variation because of the diversity of ecosystems and potential biases of 

different techniques and time scales. Hanson et al. (2000) synthesized 50 studies

published in the literature, suggesting a mean contribution of 48% and 37% from 

autotrophic sources for forest and non-forest ecosystems with a wide range of 10-90%. 

In addition, the contribution of RA exhibits large seasonality, usually being low during

the dormant season and high during the active growing season since autotrophic 

respiration mainly depends on supply of carbohydrates from canopy photosynthesis 

(Rochette et al. 1999, Lin et al. 2001). Due to year-to-year changes in climate variabl

and consequently ind

t availability, soil respiration and its components usually exhibit the interannual 

variability (Savage and Davidson 2001, Scott-Denton et al. 2003, King et al. 2004, Luo

and Zhou 2006). Understanding the seasonal and interannual variability and their 

responses to climate change is urgently needed to improve the prediction of ecosyste

C cycling.  

The dynamics of the two components, RA and RH, may be controlled by diff

abiotic and biotic factors, such as temperature, water availability, photosynthetic activity
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or plant phenological development. Heterotrophic processes control soil C storage and 

nutrient dynamics, while autotrophic respiration reflects plant activity and the s

organic compounds to roots from the canopy (Högberg et al. 2001, Bhupinderpal-Sing

et al. 2003, Binkley et al. 2006). In addition,

upply of 

h 

 the responses of RA and RH to temperature 

largely

 

2, 

tion is 

99, 

 temperature are controlled more by autotrophic than heterotrophic 

respira

 differ, exhibiting different Q10 values (Boone et al. 1998, Rey et al. 2002). The 

potential change in soil respiration associated with global warming will largely depend

on the relative contribution of autotrophic and heterotrophic components (Buchmann 

2000). Therefore, quantifying the components of soil respiration is imperative to 

understand the nature and extent of feedbacks between climate change and soil 

processes and to predict ecosystem responses to climate change (Melillo et al. 200

Ryan and Law 2005).  

Although warmer temperature has been found to cause significant increases in 

the efflux of CO2 from soils in various biomes (Rustad et al. 2001), little informa

available on how various components of soil respiration respond differently to 

increasing temperature, especially in natural ecosystems. The results from modeling, 

mesocosm experiments, and transect studies are highly controversial (Lin et al. 19

2001, Lavigne et al. 2003, Eliasson et al. 2005). For example, Lin et al. (1999, 2001) 

observed that litter decomposition and SOM oxidation were more sensitive to elevated 

temperature than rhizosphere respiration (RA) in experimental forest mesocosms. 

However, a transect study by Lavigne et al. (2003) indicated that the response of soil 

respiration to

tion in balsam fir ecosystems. To date, we did not find any published results for 

warming effects on the source components of soil respiration. It is essential that, at a 
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long-term scale, warming responses of source components of soil respiration are 

investigated in natural ecosystems.  

Land use practices such as mowing or clipping for hay in grasslands, which 

account for about 20% of the global terrestrial ice-free surface, may also have 

considerable effects on soil respiration and its components, especially in the short term 

(Bahn et al. 2006). Clipping usually reduces soil respiration by 21 – 49% despite the 

fact that it increases soil temperature (Bremer et al. 1998, Wan and Luo 2003). Craine

al. (1999) found that R

 et 

 after 

at 

tabolism for several days, and heterotrophic respiration strongly 

respond

ponents 

 

 in 

  

A and RH also responded to a decrease of assimilate supply

clipping in a C4-dominated grassland. However, Bahn et al. (2006) suggested th

autotrophic respiration was little affected by clipping due to carbohydrate reserves 

which sustained root me

ed to short-term changes in assimilate supply. The long-term response of soil 

respiration and its components to clipping remains uncertain. 

In this study, we investigated the responses of soil respiration and its com

to experimental warming and yearly clipping over a period of six years in a tallgrass 

prairie ecosystem. The interannual variability of these fluxes was also examined. Deep

PVC collars (70 cm in depth) were used to exclude roots, so measured CO2 efflux in 

these collars represents RH. RA was quantified by comparing soil respiration with RH. 

We hypothesized that warming would increase soil respiration and its components

most years but yearly clipping would decrease them, with large interannual variability.
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3.2. Materials and methods 

Site description 

The study was conducted at the Kessler Farm Field Laboratory (KFFL) in 

McClain County, Oklahoma (34 59’ N, 97 31’ W), approximately 40 km southwest of 

tallgrass prairie abandoned from agriculture 30 years ago and without grazing during the 

past 20 years. The grassland is dominated by three C4 grasses: , 

Sorghastrum nutans, and Eragr , and two C3 forbs: Ambrosia psilostachyia 

and Xanthocephalum texanum. Mean annual temperature is 16.3 C, with monthly air 

is 915 mm, with monthly precipitation ranging from 30 mm in January to 135 mm in 

May (average values from 1948 to 1998, data from Oklahoma Climatological Survey). 

In the study period (1999-2005), daily and annual rainfall data are shown in Fig. 3.1a,b. 

A silt loam soil includes 35.3% sand, 55.0% silt, and 9.7% clay (A. Subedar and Y. Luo, 

2001a). The soil belongs to part of the Nash-Lucien complex with neutral pH, low 

permeability rate, high available water capacity, and a deep, moderately penetrable root 

zone (U.S. Department of  

 

The experiment used a paired nested design with warming as the main factor and 

clipping as a secondary factor. Twelve 2 × 2 m plots were divided into six pairs of 

control (i.e., unwarmed) and warmed plots. In each warmed plot, one 165 × 15 cm 

o o

the Norman campus of the University of Oklahoma, USA. The field site is an old-field 

Schizachyrium scoparium

ostis curvula

o

temperature ranging from 3.3oC in January to 28.1oC in July. Mean annual precipitation 

unpublished data, 2003). Soil carbon content is 1.42% on a mass basis (Luo et al. 

Agriculture 1979). 

Experimental design 
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infrared heater (Kalglo Electronics Inc., Bethlehem, Pennsylvania, USA) was suspended 

in the middle of each plot at the height of 1.5 m above the ground with a radiation 

output of 100 -2

365 days per year in the field since 21 November, 1999. A previous study found that the 

plots (Wan et al. 2002). To simulate shading effects of heaters, we installed one 

‘dummy’ heater made of metal flashing with the same shape and size as the heating 

the warmed plots was approximately 5 m to avoid heating the control plot by the 

to 60 m.  

×

 

ally 

per 

 allowed to grow until the next clipping. 

he four treatments in the experiment were unclipped control (UC), unclipped warmed 

CC), and clipped warmed (CW) with six replicates. Further 

details 

To measure soil respiration, PVC collars (80 cm2 in area and 5 cm in height) 

Watt m . The heating has been operated year round, 24 hours per day and 

effects of infrared heaters on soil temperature were spatially uniform in the warmed 

device over each control plot. For each paired plot, the distance between the control and 

infrared heater. The distances between the individual sets of paired plots varied from 20 

Each 2 × 2 m plot was divided into four 1m  1m subplots. Plants in two 

diagonal subplots were clipped at the height of 10cm above the ground yearly, usually in

July. The other two were the unclipped subplots. Clipping in the manner effectively 

mimics hay mowing, a widely practiced land use in the southern Great Plains. Usu

farmers and ranchers in the southern Great Plains mow grass pasture once or twice 

year, depending on rainfall. Our study site is rather dry, yearly clipping mimics hay 

mowing once a year. After clipping, plants were

T

(UW), clipped control (

of the study site were described in Wan et al. (2002, 2005). 

 

Measurement protocols 
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were inserted 2-3 cm into the soil permanently at the center of each subplot. Small 

living plants inside the soil collars were clipped at the soil surface at least 1 day bef

the measurement to eliminate aboveground plant respiration. The clipped plant material 

was left in the collars to decompose. To detect the responses of heterotrophic respiration 

(R

ore 

ed 

cm2 in 

nt 

 

bove these PVC tubes represents RH. Autotrophic respiration (RA) is 

calcula ween 

of 

 

 the 

ed at a 5 second 

terval. Soil moisture content was measured gravimetrically twice a month from 

ber 2000. Soil samples from the top 5 cm were taken from 

H) to warming and yearly clipping, the original soil collars (see above) in one clipp

and one unclipped subplots in each plot were replaced with deep PVC tubes (80 

area and 70 cm in depth) in October 2001. The 70-cm-long PVC tubes cut off old pla

roots and prevented new roots from growing inside the tubes. The measurements of CO2 

efflux above these PVC tubes began immediately after installation to examine the

transient response of dead root decomposition. After several months, CO2 efflux 

measured a

ted as their difference. RS and RH were measured once or twice a month bet

10:00 and 15:00 (local time), using a LI-COR 6400 portable photosynthesis system 

attached to soil CO2 flux chamber (LI-COR. Inc., Lincoln, Nebraska, USA). A 

measurement consisted of placing the chamber on PVC collars, scrubbing the CO2 to 

sub-ambient levels, and determining soil respiration over the periods. Data were 

recorded at a 5-second interval by the datalogger in the LI-COR 6400 console. Each 

the measurements usually took 1 – 3 minutes after placing the chamber over the collar.  

Soil temperature at the depth of 5 cm was monitored adjacent to each PVC collar

using a thermocouple probe (LI-COR 6000-09TC) connected to the LI-COR 6400 at

same time when soil respiration was measured. Data were also logg

in

September 1999 to Decem
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one clipped and one unclipped subplots in each plot and oven dried at 105°C for 24

hours and weighed. Soil moisture was expressed as a percent of dry soil on a mass basis

Beginning from January 2001, volumetric soil water content (%V) was measured using 

manual Time Domain Reflectometry (TDR) equipment (Soilmoisture Equipment Corp., 

Santa Barbara, California, USA) at the depth interval of 0-15 cm. To be consistent for 

analysis, those gravimetric soil moisture data taken before December 2000 were 

calibrated to volumetric soil moisture according to their relationship between mass-

based and volumetric soil moisture. The measurement frequency of soil temperature and 

volumetric soil water content was the same as soil respiration, once or twice a mon

 

 

. 

th. 

Estimation of annual CO  efflux 

Annual soil respiration for each treatment was estimated by summing the 

products of soil respiration and the number of days between samples. It was corrected 

further for diurnal patterns in efflux. Our measurements, collected between 10:00 and 

15:00, were assumed to represent daytime averages based on diurnal patterns observed 

by Wan and Luo (2003) at a similar site. The calculated average daily efflux was 96.5% 

of the observed daytime average. The corrected daily flux was then multiplied by the 

number of days between measurements to compute the cumulative flux over the period 

(Bremer et al., 1998, See Chapter 2). 

 

il 

 

2

Modeling soil respiration and heterotrophic respiration 

Soil temperature and soil moisture content are two main abiotic factors influencing so

respiration. We used a reverse exponential decay function (Equation 1) to simulate

moisture effects and an exponential function (Equation 2) to simulate temperature 
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effects (Hui and Luo 2004): 

)1( )(
)(0

dcbT v

v
eeRR +−−= θ

θ              (1) 

vfaR
v

θθ +=)(0                         (2) 

where R is the measured soil respiration or heterotrophic respiration (µmol CO2 m-2 s-1); 

R0 is the base respiration when soil temperature is 0oC and changes with soil moisture; 

is soil temperature (oC); and θ

T 

e v is volumetric soil moisture (%); a, b, c, d, and f ar

parameters related to soil temperature and moisture. When 
c
d

≤θ , R = 0. When
v

 

cv ≥θ d+)10ln(2 , soil respiration is hardly limited by soil moisture and largely controlled 

y soil temperature. The reverse exponential decay function fits our observations better 

and Zhou 2006).  

 

y 

, 

to 

 

 temperature, and soil moisture. The effects were 

onsidered to be significantly different if p < 0.05. The statistical analyses were 

performed in SPSS 11.0.1 for windows (SPSS Inc., Chicago, USA 2001).  

We assessed sensitivity of mean soil respiration, RH, and RA to soil temperature 

by fitting exponential functions to the data from individual treatments.  

                               (3) 

b

than other moisture functions (Luo 

Data analysis 

Each plot was an experimental unit, so replicate measurements were averaged b

plot for analysis. In addition, monthly means of soil respiration, RH, RA, soil temperature

and soil moisture were used to keep consistent in statistical analysis and calculation of 

annual mean values. Due to paired design of experiment, we used paired sample t-test 

examine annual statistical significance of warming, yearly clipping, and their interactive

effects on soil respiration, RH, RA, soil

c

bTaeR =
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where R is mean soil respiration, RH, and RA (µmol m-2 s-1), T is soil temperature (oC) at 

the depth of 5 cm, a is the intercept of soil respiration ero (i.e., 

basal respiration rate), and b represents th piration, RH, 

m seasonal t 

effects of temperature and other co-varying factors on soil respiration and its 

components (Boone et al. 1998, Högberg et al. 2001). Thus, an apparent Q10 value is 

 data points of soil respiration per 

eatment during the summer severe drought period (Fig. 3.2) were excluded when 

oisture was below 10% (Luo et al. 2001a).  

H S H A S A 

3.3. Results 

Microc

variations over 

the six years, with a decrease in m c). Annual  

when temperature is z

e temperature sensitivity of soil res

and RA. The b values were used to calculate a respiration quotient (Q10), which describes 

the change in fluxes over a 10oC increase in soil temperature, by: 

beQ 10
10 =                              (4) 

Values of parameters (i.e., a, b, and Q10) derived fro  data sets reflec

used to denote the derived temperature sensitivity of soil respiration, RH, and RA. In the 

analyses of temperature sensitivity and modeling, four

tr

volumetric soil m

The significance of the effects of regression coefficients a and b among the 

treatments was examined by a t-test method as described in Chapter 2. Because the 

heterotrophic flux is recorded directly from measurements on deep collars, we decided 

to show R /R  ratio as the relative contribution of R rather than R /R  ratio as R

contribution (Subke et al. 2006). 

 

limate 

Soil temperature at the depth of 5 cm exhibited pronounced seasonal 

aximum values from 2001 to 2004 (Fig. 3.1
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, inserted figure) rainfall at the experimental site, and 

terannual variability of soil temperature at the depth of 5 cm (c) and soil 

moisture of 0-15 cm (d) from 1999 to 2005 in the long-term warming and clipping 

rly clipping was usually conducted in July. Vertical bars represent the 

stan

when warming treatment started (Nov 21, 1999). UC: unclipped control; UW: unclipped 

Fig. 3.1 Daily (a) and annual (b

seasonal and in

experiment. Yea

dard error of the mean (n=6). The dashed vertical line in c and d indicates the day 

warmed; CC: clipped control; CW: clipped warmed. 
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Table 3.1 Annual mean soil respiration (µmol m-1 s-1), heterotrophic respiration (µmol 

m-1 s-1), autotrophic respiration (µmol m-1 s-1), soil temperature (oC) at the depth of 5 cm, 

and volumetric soil moisture (%V) at the depth of 0-15cm from Jan 2000 to Dec 2005.  

 2000 2001 2002 2003 2004 2005 
Soil respiration       

UC 2.08 1.85 2.10 2.20 2.36 2.50 
UW 2.16 2.13 2.31 2.41 2.54 2.71 
CC 1.95 1.83 2.04 1.97 1.96 2.27 
CW 2.18 2.12 2.36 2.35 2.30 2.51 

Heterotrophic respiration       
UC 1.43 1.57 1.42 1.61 
UW 1.55 1.73 1.72 1.74 
CC 1.35 1.44 1.25 1.31 
CW 

/ / 

1.42 1.48 1.44 1.67 
Autotrophic respiration       

UC 0.67 0.63 0.94 0.89 
UW 0.76 0.68 0.82 0.97 
CC 0.69 0.53 0.71 0.96 
CW 

/ / 

0.94 0.87 0.86 0.84 
Soil temperature       

UC 17.6 19.3 17.7 17.9 17.0 17.4 
UW 19.4 20.4 18.8 19.3 18.2 19.0 
CC 19.8 21.9 19.1 18.6 17.6 18.5 
CW 21.8 24.3 20.8 20.3 19.2 20.6 

Soil moisture       
UC 23.3 29.8 27.6 22.1 27.5 24.8 
UW 21.8 28.8 26.8 20.5 26.8 21.6 

 
CC 19.5 28.7 27.5 22.1 27.8 23.6 
CW 17.2 28.3 26.8 20.5 26.7 20.8

UC: unclipped control; UW: unclipped warmed; CC: clipped control; CW: clipped warmed. 
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mean soil temperature ranged from 17.0oC (2004) to 19.3oC (2001) with an average of 

17.8oC in the control plots based on monthly daytime measurements (Table 3.1). The 

main effects of both warming and yearly clipping on annual mean soil temperature were 

statistically significant in every year of the study (p < 0.001). However, no significant 

interactive effects of warming and yearly clipping were found except in 2000 (p<0.05). 

Specifically, warming significantly increased annual mean soil temperature by1.4 ± 0.1 

oC in the unclipped plots and by 2.0 ± 0.1 oC in the clipped plots from 2000 to 2005 

(Table 3.1). Yearly clipping also increased soil temperature by 1.4 ± 0.3 oC relative to 

that in the control plots (Table 3.1). 

Unlike soil temperature, volumetric soil moisture at the depth of 0-15 cm 

fluctuated greatly over the season (Fig. 3.1d). Usually the lowest soil moisture was 

observed in summer (July and August) and the highest in winter. Throughout the 

duration of the experiment, warming and yearly clipping significantly reduced soil 

moisture (p<0.05), although, in 2001 and 2003, effects of yearly clipping were not 

significant (p>0.05).  

 

Soil respiration 

The temporal dynamics of soil respiration followed the distinct seasonal pattern of 

soil temperature in all six years, which was high during summer and low in winter 

(Figs.3.1c and 3.2). However, long droughts in summer (August – September 2000, 

higher soil temperature (Figs. 3.1d and 3.2). From year to year, there were also 

observable variations. For example, the summer peak of soil respiration reached nearly 

6 µmol m-2 s-1 in 2002 and was less than 4 µmol m-2 s-1 in 2001 in the control plots (Fig. 

August 2001, July 2002, and July 2003) suppressed soil respiration irrespective of the 

 55



3.2). Soil respiration in the winter is as low as nearly 0 µmol m-2 s-1 in 2002 but 0.3 - 0.5 

-2 -1 -2 -1 

-2 -1 -2 -1

µmol m  s  in other years. Annual mean soil respiration ranged from 1.85 µmol m  s

(2001) to 2.50 µmol m  s  (2005) with an average of 2.18 µmol m  s  in the control 

plots (Table 3.1).  
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Fig. 3.3 Exponential relationships between soil respiration and soil temperature under 

unclipped (a) and clipped (b) treatments and between heterotrophic respiration and so

temperature under unclipped (c) and clipped (d) treatments. Vertical and horizontal bars 

represent the standard error of the mean (n=6). See Fig. 3.1 for abbreviations. 
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Table 3.2 Q10 values of soil respiration, heterotrophic respiration, and autotrophic 

respiration from 2000 to 2005 calculated from equation 1 and 2.  

 2000* 2001 2002 2003 2004 2005 All data
Soil respiration       

UC 
UW 2.66 

2.74 2.21 2.13 2.33 3.62 2.64 2.23 
2.09 2.10 2.22 3.18 2.62 2.28 

CC 1.94 1.92 1.85 2.13 3.62 2.19 1.93 
CW 1.94 1.82 1.70 2.13 3.20 2.39 1.89 

Heterotrophic respiration       
UC 1.94 1.98 2.66 2.69 1.99 
UW 1.85 1.85 2.68 2.83 1.96 
CC 1.84 2.07 2.68 2.21 1.90 
CW 

/ / 

1.82 2.16 3.10 2.55 1.88 
Autotrophic respiration       

UC 2.23 4.06 4.37 2.82 2.35 
UW 2.39 3.86 4.98 2.81 2.65 
CC 2.01 2.75 5.22 2.62 2.18 
CW 

/ / 

1.91 2.34 3.23 2.16 2.24 

* Note: Q10 in paper by Luo et al. (2001a) was based on data in both 1999 and 2000.  

UC: unclipped control; UW: unclipped warmed; CC: clipped control; CW: clipped 

warmed. 

 

The stimulation of soil respiration by warming was statistically significant for 5 

years out of the 6-year study period (except 2000). On average, warming increased 

annual mean soil respiration by 9.0±1.5 % in the unclipped plots and by 15.6±1.5 % in 

the clipped plots from 2000 to 2005 (Table 3.1). Effects of yearly clipping on soil 

 

rly 70% 

 the clipped plots across the six-year period (Fig. 3.3). The apparent Q10 values were 

respiration were significant only in the last two years (p<0.05), while no interactions of

warming and yearly clipping were found in any of the six years (p>0.05).  

On the basis of the temperature relationship with soil respiration in equation (3), 

soil temperature accounted for 81% of variation in the unclipped plots and nea

in
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slightly lower under warming (p>0.05) and reduced considerably by clipping (p<0

compared to that in the control, ranging from 1.70 to 3.62 for all fo

.05) 

ur treatments (Table 

3.2). There were higher Q es e e ts 4 ther 

years, pro  resulting f e  of abundant rainfall or le ught stress. 

 

H a op sp on  

RH also showed a distinct seasonal pa and w  c s in

temperature across the four years of the stu 00 05 ho H h er 

v iration (Fig. 3.4a). e w ip e m red ring 

each summ e to the com cts o  so isture and high tem re. 

Annual m H ranged from 1.42 to 1.61  m wi av of 1 mol m-

 s  in the control plots (Table 3.1). The effects of warming on RH were statistically 

significant for 3 years of the 4-year study period (except 2003). Yearly clipping 

significantly reduced RH in all the four years (p<0.05). However, no interactions of 

warm

ollar 

asonal 

patte

 

affect RH contribution to soil respiration. 

10 valu  for th four tr atmen in 200  than that in the o

bably rom th effects ss dro

eterotrophic (RH) and utotr hi  rec ir tia  (R )A

ttern  follo ed the hange  soil 

dy (2 2 - 20 ), alt ugh R ad larg

ariability than soil resp Ther ere d s in th easu  RH du

er du bined effe f low il mo peratu

ean R µmol -2 s-1 th an erage .51 µ

2 -1

ing and yearly clipping on RH were found in any of the four years as well as its 

temperature sensitivity (p>0.05). 

RH contribution to soil respiration and its annual mean values are displayed in Fig. 

3.4b,c. Immediately after collar installation, decomposition of dead roots by deep-c

insertion contributed considerably to this efflux, which was larger than soil respiration, 

but this phenomenon disappeared after 5 months. Thereafter, an opposite se

rn occurred on the relative contribution of RH compared to soil temperature (Fig. 

3.4b). On average, annual mean RH contributed to approximately 65% of soil respiration

across the four years (Fig. 3.4c). Warming and yearly clipping did not significantly 
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Fig. 3.4 Seasonal and interannual variability of heterotrophic respiration (a) and its 

contribution to total soil respiration (b) under four different treatments from Oct 2001 to 

Dec 2005. Annual mean values of heterotrophic contribution to soil respiration are 

shown in inserted figure (c). Vertical bars represent the standard error of the mean (n=6). 

See Fig. 3.1 for abbreviations. 
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Annual mean RA was calculated from the difference between soil respiration and 

RH, ranging from 0.53 to 0.96 µmol m-2 s-1 for the four treatments across the four-year 

period (Table 3.1). Warming treatment also significantly stimulated RA for 3 years of the 

4-year study period (except 2004). Neither yearly clipping nor the interactions of 

warming and yearly clipping significantly affected RA and its temperature sensitivity 

(p>0.05). The temperature sensitivity of RA (i.e., apparent Q10) was higher than that of 

RH (Table 3.2).  

 

Seasonal and interannual variability 

We calculated coefficient of variation (CV) from monthly and annual means to 

represent seasonal and interannual variability, respectively, in soil respiration, RH, RA, 

soil temperature, soil moisture, and rainfall (Table 3.3). The seasonal variability was 

distinctly much greater than interannual variability for all the variables. It appeared that 

yearly clipping decreased the interannual variability of soil respiration and increased 

that of soil temperature, while warming did not affect them. Interestingly, the highest 

mean soil respiration occurred in 2005 when seasonal variability of precipitation during 

the growing season was lowest, indicating the importance of precipitation distribution 

(Tables 3.1 and 3.3). In addition, there was larger seasonal variability in autotrophic 

respiration than that of other variables because estimates of RA combined uncertainties 

of both RS and RH measurements. 
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Table 3.3 Seasonal and interannual variability (IAV) of soil respiration, heterotrophic 

respiration, autotrophic respiration, soil temperature, soil moisture, and annual 

precipitation as coefficient of variation from Jan 2000 to Dec 2005  

 2000 2001 2002 2003 2004 2005 IAV 
Soil respiration        

UC 0.69 0.65 0.82 0.76 0.79 0.80 0.11

CC 
UW 0.69 0.67 0.82 0.76 0.76 0.78 0.09

0.65 0.60 0.79 0.74 0.84 0.71 0.07
CW 0.65 0.59 0.74 0.83 0.80 0.73 0.06

Heterotrophic resp        
0.70 0.64 0.64 0.72 0.07 
0.64 0.64 0.67 0.72 0.05 / / 

UC 0.44 0.28 0.19 0.32 0.23 0.17 0.11 

CC 0.47 0.32 0.17 0.33 0.22 0.22 0.15 

Precipitation 0.86 0.76 0.51 0.94 0.77 0.76 0.24

growing season (60%) (62%) (68%) (72%) (62%) (78%) (66%)

UC 
UW 
CC 0.56 0.63 0.64 0.62 0.06 
CW 0.56 0.65 0.70 0.80 0.07 

Autotrophic resp        
UC 1.18 1.17 1.03 1.07 0.20 
UW 1.22 1.19 1.12 1.00 0.17 
CC 1.06 1.13 1.34 0.91 0.25 
CW 

/ / 

0.86 1.21 1.16 0.69 0.05 
Soil temperature        

UC 0.50 0.50 0.53 0.43 0.51 0.42 0.04 
UW 0.46 0.46 0.47 0.40 0.46 0.37 0.04 
CC 0.50 0.47 0.52 0.42 0.51 0.40 0.08 
CW 0.44 0.40 0.43 0.38 0.45 0.34 0.07 

Soil moisture        

UW 0.47 0.30 0.18 0.36 0.24 0.26 0.14 

CW 0.58 0.30 0.18 0.36 0.22 0.29 0.19 

Precipitation in 0.96 0.83 0.37 0.79 0.78 0.31 0.16

Note: Percentages in brackets of the bottom row are precipitation contribution in 

growing season to annual precipitation.  

C: unclipped control; UW: unclipped warmed; CC: clipped control; CW: clipped 

armed. 

U

w
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Modeled soil respiration and RH 

ompared 

temperature and moist en y, n b n t  

suggests that soil temperature is the domi ent tor la

seasonal dynamics of so pira nd ros wh udy d. 

U ombined function of soil temperature and moisture did not fit the 

data well under severe water stress, where soil moisture wa  th

decided to exclude the four points in model fitting a  an tho

Therefore, biological factors such as biom  ne ary productivity (NPP) may be 

other im nt compon ntr ling s pir and nd d b uded 

i  addition, we did not predict RA ith con dence cause A only 

contributed a small prop  of esp n w rge rt  th

RH, and nal change lan  an el cia ga  ma e 

confounded the response to envir nta var  (T ore  1996), making 

it more ult to find ela ips environmental varia

 

E l soil ati d i po s  

 six 

years age, warming treatment increased annual 

d 

lots from 2000 to 2005. In contrast, yearly clipping decreased annual soil respiration by 

.1±1.6 % compared to that in the control. Lower annual soil respiration occurred in 

The inclusion of both soil temperature and moisture slightly improved model 

fitting of observed soil respiration and RH for the four treatments over seasons c

to the exponential model only using temperature (Figs. 3.3 and 3.5). Although soil 

ure oft  co-var the compariso etwee he two models

nant environm al fac  in regu ting 

il res tion a RH ac s the ole st  perio

nfortunately, the c

s less an 10%, and we 

 (see M terials d Me ds). 

ass or t prim

porta ents co ol oil res ation  RH a  shoul e incl

n future studies. In  w fi be R

ortion  soil r iratio ith la r unce ainties an RS and 

 seaso s in p t roots d clos y asso ted or nisms y hav

onme l soil iables rumb  et al.

diffic clear r tionsh  with bles. 

stimated annua respir on an ts com nent

Annual soil CO2 emissions ranged from 682 to 968 g C m  yr  across the

 for the four treatments (Fig. 3.6). On aver

-2 -1

soil respiration by 9.4±1.4 % in the unclipped plots and by 15.1±1.6 % in the clippe

p

6
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2000 and 2001 than in the other years (Fig. 3.6), largely owing to the long drought and 

high te

On 

3% in 

 

espiration, 

t 

mperature.  

Annual RH contributed 56.0 -71.7% to total annual soil respiration, ranging from 

427 to 657 g C m-2 yr-1 across the four years (2002 – 2005) for the four treatments. 

average, warming increased annual RH by 14.5% in the unclipped plots and by 13.

the clipped plots across the four years, and yearly clipping decreased annual RH by

12.5%. For annual RA, which contributed 28.3 – 44.0 % to total annual soil r

annual RA increased 2.3 % by warming and 21.9% by yearly clipping compared to tha

in the control.  
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Fig. 3.5 Measured vs. modeled soil respiration (a and b) and heterotrophic respiration (c 

and d) under the four treatments. See Fig. 3.1 for abbreviations.  
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Fig. 3.6 Annual soil respiration and heterotrophic respiration (g C m-2 s-1) under the four 

treatments. Vertical bars represent the standard error of the mean (n=6). The hatched 

columns represent annual heterotrophic respiration. 

 

3.4. Discussion 

Partitioning soil respiration 

In our study, the surface CO2 efflux measured in deep soil collars (70 cm), which 

were inserted beyond the main rooting zone to exclude roots, was used to represent 

heterotrophic flux component after severed roots caused by deep-collar insertion have 

been decomposed. On average over the four years, the relative contribution of RH to soil 

respiration was 66% in the control (Fig. 3.4), very close to the mean contribution in non-

forest ecosystems (63%, Hanson et al. 2000) and in temperate grassland (67%, Subke et 

al. 2006), and well within the range of 60-88% in grasslands and croplands (Raich and 

Tufekcioglu 2000).  
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Results from this and previous studies indicate that the deep-collar insertion is a 

useful technique to estimate relative contributions of RH and RA to soil respiration after 

collars were installed several months (Buchmann 2000, Wan et al. 2005). Buchmann 

(2000), for example, compared results from the deep-collar insertion with those from 

trenching methods and found similar partitioning of soil respiration to RA vs. RH (~30% 

vs. ~70%). The insertion method is simple, cost effective, and easy to maintain over a 

long time. However, insertion of deep collars cut roots and stimulated decomposition of 

dead roots in the first several months (Fig. 3.4b), and thus the data during the 

disturbance period should be excluded from analysis. The insertion method may cause 

biases in estimated RH in a few sources. First, there may be still some roots that grew 

not shown). Usually, deep soil CO2 

roduction (including both RA and RH) is quite small relative to soil horizons nearer to 

on and Trumbore 1995, Hui and Luo 2004, Davidson et al. 2006). 

ered roots may slowly decompose for a long time after 

the col

sed 

e 

underneath the 70-cm collars. In temperate grasslands, 83% of root biomass is grown in 

the upper 30-cm depth (Jackson et al. 1996). Our own data from ingrowth cores also 

showed that roots were very rare below 60 cm (data 

p

the surface (Davids

Second, a small quantity of sev

lar insertion, possibly contributing to overestimation of heterotrophic respiration. 

Third, the inserted deep collars excluded root exudates and root litter and thus decrea

organic matter input. As a consequence, measured RH was supposed to gradually declin

in comparison to the surrounding soil. Our four years of observation showed that the 

gradual decline was very minor. Lastly, the deep-collar insertion potentially resulted in 

different soil moisture content and possibly different temperature from those in soil 
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outside

 

 al. 2000, 

 

).  

 

l 

le 

3.3, Fig. 3.1a,b). In the first two years of the study, annual rainfall was relatively high 

while annual soil respiration was lower than that in other years, largely resulting from 

 of collars. The impacts of the differential environment on estimation of Rh are 

yet to be assessed. 

 

Seasonal and interannual variability 

The range of soil respiration measured in the control plots over the six years is 

comparable to that in other studies (e.g., Davidson et al. 1998, Law et al. 1999, Xu and

Qi 2001, Bremer and Ham 2002, Wan and Luo 2003). Similar seasonal trends in soil 

respiration have also been observed in a variety of ecosystems (e.g., Conant et

Xu and Qi 2001, Wan and Luo 2003) except for arid ecosystems, where soil moisture 

dominates CO2 efflux from soil (Davidson et al. 2000). In our study, seasonal variation

in soil respiration and its components considerably followed the temporal dynamics of 

soil temperature with some dips due to summer severe drought (Figs. 3.1, 3.2, and 3.4

The significant year-to-year variability in soil respiration has been reported in 

various ecosystems such as grasslands (Frank et al. 2002), a beech forest (Epron et al. 

2004), mixed temperate forests (Savage and Davidson 2001), a mixed hardwood forest

(Melillo et al. 2002), ponderosa pine forests (Irvine and Law 2002), and forest 

plantations (King et al. 2004). Compared to those studies, the observed interannual 

variability in this study was relatively low for both soil respiration and its components. 

Surprisingly, the year-to-year variation in soil respiration did not follow the interannual 

pattern of precipitation at our site (Figs. 3.1b and 3.6). For example, the highest annua

soil respiration occurred in 2005 when annual precipitation was lowest but a large 

proportion (78%) was present in the growing season and was evenly distributed (Tab
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high seasonal variability of precipitation with the long period of drought in the growing

season of 2000 (55 

 

days without rain) and 2001 (41 days without rain) and the negative 

ffects of extremely high temperature in July of 2001 (Tables 3.1 and 3.3, Fig. 3.1). A 

mer rainfall and high temperatures was also 

found t

 

 

interan r 

rred at 

 al. 

e

general negative correlation between sum

hroughout the tallgrass prairie (Rose 1936). We carefully checked soil moisture 

pattern and found that some dips in soil respiration corresponded with those points, 

where volumetric soil moisture was lower than around 12% (Fig. 3.1c). In a water 

manipulation experiment, Liu et al. (2002) observed that soil respiration dropped very 

quickly when gravimetric soil moisture was below around 8%, which was very close to

12% of volumetric moisture, while there was little response of soil respiration above this

point. Evenly distributed precipitation during the growing season of 2005 caused 

intermediate soil moisture and then the highest soil respiration. Therefore, the 

nual variability of soil respiration was controlled by precipitation distribution o

soil moisture dynamics instead of annual precipitation. Similar results have been 

observed in other ecosystems (Davidson et al. 2000, Savage and Davidson 2001). The 

linear relationship between annual soil respiration and precipitation, which occu

the global scale (Raich and Schlesinger 1992), may not work at local scale. 

 

Effects of warming and yearly clipping 

Numerous studies have observed increases in soil respiration in response to 

warming (Peterjohn et al. 1994, McHale et al. 1998, Rustad et al., 2001, Melillo et

2002, Niinistö et al. 2004). The warming-induced responses in soil respiration may be 

regulated by acclimatization of respiration (Luo et al. 2001a), physiological and 

phenological adjustments of plants and microbes (Melillo et al. 2002), extensions of 
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growing seasons (Dunne et al. 2003, Wan et al. 2005), changes in net N mineralization 

(Wan et al. 2005), and stimulated C4 plant productivity (Wan et al. 2005). In our study, 

warming significantly increased the mean soil respiration for 5 years out of the 6-year 

study period (except 2000). The warming-induced increases in soil respiration likely 

resulted from extensions of growing season and increased plant productivity (Wan et al.

2005). A positive linear correlation between soil respiration and aboveground biomas

across the first three years indicated that increase in soil respiration largely enhance

belowground C allocation and R

 

s 

d 

 

 

e soil 

 

s on 

armed plots for RH (Lin et al. 2001, Eliasson et al. 2005) and from an increase in root 

y, Lin et al. (1999, 2001) also observed 

signific  

 

ase in 

A (Wan et al. 2005). The magnitude of warming effects

on soil respiration was lower than the 20% mean increase found in 17 ecosystem 

warming experiments (Rustad et al. 2001), likely due to low soil organic C content in 

our experimental site (Luo et al. 2001a). We did not observe a decline in warming

stimulation of soil respiration as shown by Rustad et al. (2001), mainly becaus

respiration is tightly coupled with carbon uptake through plant growth.  

Few studies have examined the effects of warming on components of soil 

respiration in the field (Melillo et al. 2002). Our study found that warming significantly

increased both RH and RA except for RH in 2003 and RA in 2004. The increased 

respiration likely resulted from enhanced oxidation of soil carbon compound

w

biomass for RA (Wan et al. 2005). Similarl

ant increases in soil respiration and its components in response to warming in

sun-lit controlled-environment terracosms.  

Removal of aboveground biomass by clipping temporarily reduces the supply of

current photosynthates to roots and mycorrhizal fungi, usually resulting in a decre

 68



soil respiration by 19 – 49% at a short-term period (i.e., several days to months) 

(Bremer et al. 1998, Craine et al. 1999, Craine and Wedin 2002). In our study, yearly 

clipping significantly reduced soil respiration in the last two years and RH for all the 

four years (p<0.05), while there was no significant effect on RA. At a yearly scale, the

reduction in assimilate supply by clipping may strongly decrease R

 

 

ffset 

 

land 

s 

 

ming 

while 

ng 

rred, although the magnitude largely varied. 

Clippin

H (Bahn et al. 2006) 

and this trend increased through time from 2002 to 2005. RA was slightly stimulated by

clipping due to an increase in root biomass (Wan et al. 2005). This increase offset the 

reduction in RH, resulting in no significant effects on soil respiration in the first four 

years. In the last two years, however, the compensation of RA was not enough to o

declining RH. However, frequent clipping to keep the ground bare over the whole study

period of one year significantly decreased soil respiration by 33% at a similar grass

(Wan and Luo 2003). Thus, frequency of clipping and duration of study can be source

of variation among studies. 

Temperature sensitivity  

The apparent Q10 values of soil respiration were slightly lower under war

(p>0.05) and reduced considerably by clipping (p<0.05) compared to the control, 

there was no consistent trends among the apparent Q10 values of RH and RA. The 

decrease in Q10 values in response to warming had been observed in other studies 

(McHale et al. 1998, Luo et al. 2001a, Strömgren 2001, Niinistö et al. 2004), suggesti

that temperature acclimation could have occu

g not only affected the supply of current photosynthates to roots and their 

associated symbionts but also changed microclimate variables such as soil temperature 
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and moisture (Wan et al. 2002), resulting in a decrease in temperature sensitivity 

respiration.  

The apparent Q

of soil 

l. 

 

A 

This study showed that heterotrophic respiration accounted for approximately 

66% of soil surface efflux over the six years in a grassland ecosystem. Throughout the 

duration of this experiment, warming significantly stimulated soil respiration and its 

components. However, warming did not change relative contributions of RA or RH to 

soil respiration. Yearly clipping significantly reduced soil respiration in the last two 

years and heterotrophic respiration in all the four years, while there was no significant 

clipping effect on RA. The apparent Q10 values of soil respiration were slightly lower 

under warming (p>0.05) and reduced considerably by clipping (p<0.05) compared to the 

control.  

10 values for RA were higher than those for RH and soil 

respiration (Table 3.2). Similar results have been observed in other studies (Boone et a

1998, Epron et al. 1999, Jiang et al. 2005). The higher Q10 values for RA than RH may 

result not only from higher sensitivity of the specific root respiration to soil temperature,

but also from seasonal variation in root biomass, which is usually high when 

temperature is high (Boon et al. 1998, Rey et al. 2002). The different Q10 values for R

and RH suggest that temperature sensitivity of soil respiration depends on the relative 

root contribution. An ecosystem in which roots contribute the largest portion of soil 

respiration should be most sensitive to warming.  

 

3.5. Conclusions 
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We found that seasonal variability was distinctly much greater than interannual 

variability for soil respiration and its components. Yearly clipping decreased the 

interan

 

t as 

s research was financially supported 
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nual variability of soil respiration, while warming did not affect it. The 

interannual variability of annual soil respiration was not related to fluctuations in 

precipitation, suggesting that rainfall distribution over seasons, especially during the 

growing season, is more important than annual precipitation.  
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Patterns of biomass, litterfall, and soil respiration along a precipitation 

gradient in southern Great Plains 
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ABSTRACT 

Precipitation is a key driver in influencing ecosystem structure and function, 

especially in grassland ecosystems, a ontrol along natural gradients is 

thought to mirror long-term climate change. long precipitation gradients, aboveground 

production is positively correlated with precipitation. However, how precipitation 

affects ecosystem belowground carbon gain, reservoir of litterfall, and loss of soil 

respiration and how they are interactively regulated are largely unknown. To address the 

role of precipitation in controlling ecosystem  gain, reservoir, and loss and their 

standing and surface litter (ST

natural precipitation gradient from southeast to northwest Oklahoma in southern Great 

lains. Our results show that AGB, ST, SU, and soil respiration often linearly increased 

ith an increase in precipitation along the gradient, although belowground biomass 

GB) and total biomass varied little. BGB to AGB ratio and rain use efficiency (RUE) 

nearly decreased with increasing precipitation due to less plant allocation to roots and 

igh biogeochemical constraints (e.g., nutrients or light), respectively, at mesic sites of 

the gradient. The one-year precipitation before samplings (OYP) had better correlations 

ith biomass, litterfall, and soil respiration than mean annual precipitation (MAP). Soil 

spiration was not only affected by precipitation, but also regulated by litterfall in fall 

nd winter and by AGB in spring, which were mainly controlled by precipitation. Our 

sults suggest that precipitation controls soil water dynamics, which directly affects 

egetation production and litterfall, and indirectly regulates soil respiration. 

nd its regional c

 A

 C

interaction, we measured aboveground and belowground biomass (AGB and BGB), 

 and SU), and soil respiration for three seasons along a 

P

w

(B

li

h

w

re

a

re
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Keywords: aboveground biomass, belowground biomass, litterfall, standing litter, 

surface litter, soil respiration, precipitation gradient, grassland  

 

ture 

and function, especially in grassland ecosystems (Webb  1978, Sala  1988, 

ith et 

However, predictions from the Vegetation-Ecosystem Modeling and Analysis (VEMAP) 

 

the potential to affect grassland types, productivity, and decomposition rates (Lauenroth 

2

 

4.1. Introduction 

Precipitation is a dominant environmental driver in influencing ecosystem struc

et al. et al.

Lane et al. 2000, Epstein et al. 2002, Zerihun et al. 2006), and its availability could 

mediate the responsiveness of communities and ecosystems to global changes (Sm

al. 2000, Shaw et al. 2002, Huxman et al. 2004). The IPCC (2001) has projected a 

probable increase in precipitation of 0.5 to 1% per decade in this century, globally. 

suggest that the Great Plains region of the North America would experience an 

approximate 30% decrease in annual precipitation by the end of this century (USGCRP

2003). Changes in precipitation may be of great consequence for ecosystem carbon 

cycling process because precipitation drives both biotic and abiotic processes and has 

and Sala 1992, Milchunas et al. 1994, Knapp et al. 2001, 2002, Fay et al. 2002, 

Santiago and Mulkey 2005). Furthermore, Weltzin et al. (2003) suggested that shifts in 

precipitation regimes may have an even greater impact on ecosystem dynamics than the 

singular or combined effects of rising CO  and temperature, respectively. Therefore, 

understanding the role of precipitation is imperative to improve the prediction of 

ecosystem carbon cycling in the changing climate. 
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Regional controls on ecosystem structure and function have been explored thr

the use of spatial variation of key climatic factors (e.g., temperat

ough 

ure and precipitation). 

gional analyses have elucidated control of precipitation on species assemblages 

pstein et al. 1996), primary production (Sala et al. 1988, Austin and Sala 2002, 

rihun et al. 2006), litter decomposition (Meentemeyer et al. 1982, 

Aus

 

ted 

. 

 unique 

lands, 

 

ingh 

etermines forage availability for 

R

(E

Epstein et al. 2002, Ze

tin 2002), and trace gas flux (Matson and Vitousek 1987, Simmons et al. 1996, 

McCulley et al. 2005). Those results are crucial for assessing the potential response to

long-term global climate change (decades to centuries), and have thus been incorpora

into statistical and simulation models (Burke et al. 1997), when experimental 

manipulation provides short-term responses (annual to decadal scales) (Shaver et al

2000). In Oklahoma of the USA, annual precipitation shows a strong northwest-

southeast gradient from 430 to 1200 mm, with a shift in grassland types from short grass 

steppe to mixed grass and tallgrass prairie. This precipitation gradient provides a

opportunity to examine ecosystem carbon processes in different grassland types 

occurring in close proximity.  

Along spatial precipitation gradients, the majority of previous studies have 

evaluated the control of precipitation on aboveground net primary production (ANPP), 

which often linearly increased with increasing precipitation from deserts to grass

but not all biomes (Webb et al. 1978, Sala et al. 1988, McNaughton et al. 1993, Paruelo

et al. 1998, 1999, Austin and Sala 2002, Epstein et al. 2002, Zhou et al. 2002, Huxman 

et al. 2004, Santiago and Mulkey 2005, McCulley et al. 2005, Zerihun et al. 2006). 

However, ANPP represents only one-half or less of NPP of grasslands (Sims and S

1978, Milchunas and Lauenroth 2001), although it d
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herb

ied 

ang 

, 

y 

pter 3). 

position and soil respiration are strongly influenced by 

prec sing 

, 

ivores In contrast, belowground compartment of the vegetation likely contributes to 

a more important source of soil C than aboveground one. Due to methodological 

difficulties (Medina and Klinge 1983, Olson et al. 2001), few studies have quantif

belowground production, and even fewer were made along natural precipitation 

gradients (Sims and Singh 1978, McCulley et al. 2005). Thus, quantifying belowground 

response to regional precipitation patterns becomes necessary to better understand 

ecosystem functioning in the changing world. 

The litter of an ecosystem is one of the reservoirs of carbon and nutrients. It is an 

important transfer station of material and energy from plant to soil (Yin and Hu

1996). This reservoir is an input-output system, which receives dead vegetation input

loses biomass by decomposition, and storesorganic matter in soil until released b

decomposing organisms. The CO2 flux from the last two parts is called heterotrophic 

respiration, which approximately contributes to 70% of soil respiration, and another 

component is root respiration (~30%) in grasslands (Hanson et al. 2000, See Cha

At the global scale, litter decom

ipitation (Raich and Schlesinger 1992). Along precipitation gradients, increa

primary production may largely enhance litterfall production (Read and Lawrence 2003

Lawrence 2005), and then stimulate soil respiration (Gärdenäs 2000, McCulley et al. 

2005). However, ecosystem carbon gain, reservoir, and loss (i.e., productivity, litterfall, 

and soil respiration) may be interactively constrained by the magnitude of precipitation. 

In addition, standing (ST) and surface (SU) litter may have different responses to 

precipitation along the gradient compared to total litterfall. Therefore, it is essential to 

examine how ST and SU respond differentially to change in precipitation and how 
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biomass, litterfall, and soil respiration are interactively regulated along the precipitation 

gradient.  

In gradient studies, nearly all analyses have used mean annual precipitation (MAP

to describe response patterns of ecosystem processes (e.g., Sala et al. 1988, Lane

2000, Austin and Sala 2002, Huxman et al. 2004, Santiago and Mulkey 2005, Zerihun et 

al. 2006). However, measurements in the field were usually conducted in a simple 

snapshot of long-term responses to precipitatio

) 

 et al. 

n. MAP may not reflect the snapshot 

mea n 

 to 

n 

 

ion 

 

 a 

surements compared to one-year precipitation before sampling (OYP). Therefore, i

this study, we compared relationships between measured variables and MAP or OYP

determine which one better represents ecosystem functioning.  

In this study, our objectives were to examine spatial controls of precipitation o

biomass, litterfall, and soil respiration and how they are interactively regulated, and to

attempt to identify how well MAP and OYP reflect these processes along a precipitat

gradient in southern Great Plains grasslands. We hypothesized that biomass, litterfall, 

and soil respiration all would increase along the precipitation gradient and litterfall and 

soil respiration would be regulated by biomass. We also hypothesized that OYP would

better reflect ecosystem carbon processes than MAP.  

 

4.2. Materials and methods 

Site descriptions 

This transect study was conducted in temperate grasslands of Oklahoma along

precipitation gradient through the southern Great Plains region of the USA (Fig. 4.1). 

Nine grassland sites were selected to represent three grassland types which differ 
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substantially in physiognomy: short-grass steppe, mixed-grass prairie, and tallgrass 

prairie (Sims 1988). We chose sites with the minimum amount of disturbance and land-

use i

 

ows 

ual precipitation (MAP), 

mea rn 

mpact possible based on conversations with site owners and managers of 

government organization, although light to intermediate grazing had or was occurring. 

Mean annual precipitation (MAP) across these sites varied from 430 mm in northwest 

Oklahoma to 1200 mm in southeast Oklahoma (Table 4.1). Across this precipitation

gradient, mean annual temperature (MAT) had a relatively little change. Table 4.1 sh

location (Latitude and Longitude), elevation, MAP, MAT, and soil types of nine  

 

Table 4.1 Location (latitude and longitude), elevation, mean ann

n annual temperature (MAT), and soil type at nine grassland sites from southeaste

to northwestern Oklahoma. 

Site Latitude Longitude Elevation 
(m) 

MAP
(mm)

MAT 
(oC) Soil Type 

HU 34 01'50" N 95 25'24" W 174 1203 16.5 Fine sandy loamo o  
PR 34o30'05" N 96o36'59" W 309 1048 16.2 Silt loam 
KF 34 58'54" N 97 31'14" W 340 915 16.3 Silt loam 
HP 35o14'53" N 98o51'41" W 480 806 15.3 Clay loam 
HL 35 37'50" N 98 30'24" W 493 760 15.4 Fine sandy loam 
CL 36o07'30" N 98o37'55" W 485 735 14.4 Fine sandy loam 
UW 36 26'04" N 99 23'58" W 579 660 
OL 36o38'45" N 101o13'18" W 913 465 

o o

o o

o o 13.6 Loam fine sand 
13.8 Loam 

RB 36o31'43" N 102o50'01" W 1263 434 13.0 Fine sandy loam 

Notes: HU- Hugo Lake   
KF- Kessler’s farm field

    PR-Pontotoc Ridge preserve 
 laboratory    HP-Hulsey’s private land  

HL- American Horse Lake           CL- Canton Lake  
tima Lake                  RB-Rita Blanca national grassland  

 southern plains range research station in Woodward  
 

station from each site 

OL- Op
UW- USDA

Elevation, MAP, and MAT are NOAA monthly normals of the nearest weather

(http://cdo.ncdc.noaa.gov/climatenormals/clim81/OKnorm.pdf). Soil type is from 
Soil Conservation Services (SCS), State Soil Geographic Datatbase (STATSGO) 

http://www.xdc.arm.gov/data_viewers/sgp_surfchar/Oklasoil_new.html 

 78



grassland sites from southeastern to northwestern Oklahoma. Species composition an

phonological habit changed across this precipitation gradient (X. Zhou and Y. Luo, 

unpublished data, 2005). 

 

Sampling design 

Samples were collected within one week in fall (August 2003) and spring (May 

2005) to reduce effects of temperature variation. In winter (February 2004), sampling 

was extended to two weeks. In fall and winter, only seven sites were selected (exc

d 

luding 

L 

e also measured belowground biomass (BGB), leaf area 

in LA pacit C an s va  measured in fall 

a n

t  si ly selected plo e i g  m × 

0 qu in ot, we firstly m ed si

soil respiration and temp or 64 nnec ith O r 

a er b Then geta cl A

was  15-30 

cm, diamet

for fiel  

in 0 icking roots. We stored soil samples in an ice chest until they 

were brough

 

C

and UW, Table 4.1), and measured variable included aboveground biomass (AGB), 

standing litter (ST), surface litter (SU), soil respiration, soil moisture, and soil 

temperature. In May 2005, w

dex ( I), field ca y, pH, total d N beside  those riables

nd wi ter.  

A each sampling te, five random ts wer nvesti ated on 0.5

.5 m adrants. With the selected pl easur LAI u ng LAI-2000 and 

erature by LiC 00 co ted w  soil C 2 efflux chambe

nd th mocouple pro e, respectively.  all ve tion in uding GB, ST, and SU 

 harvested. Finally, we collected one soil core with two increments (0-15 and

er = 4.0 cm) for root biomass and one core (diameter =3.5 cm, height=5 cm) 

d capacity at each plot. Soil moisture, pH, total C and N contents were measured

-15-cm soil core after p

t back to the laboratory stored in a freezer (-4oC). 
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Biomass and litterfall measurements 

Aboveground biomass (AGB) and standing litter (ST) were determined by the 

harvest method. All vegetation within a 0.5 × 0.5 m2 quadrant was clipped at 5 cm 

bove the soil surface at each plot. Once return to the laboratory, samples were oven 

8 h right away, and then separated into categories of live and dead 

biom

a

dried at 60oC for 4

ass (i.e., AGB and ST) and weighted.  

H U

UW

O P
R B

P R

K F
H P

C L

H L

State o
1971-2000

f Oklahoma
Normal Annual Precipitation (mm)
(c) 2002 Oklahoma Climatological Survey

H U

UW

O P
R B

P R

K F
H P

C L

H L

State o
1971-2000

f Oklahoma
Normal Annual Precipitation (mm)

 

 

 × 0.5 m quadrant prior 

(c) 2002 Oklahoma Climatological Survey

Fig. 4.1 Map showing location of grassland sites and normal annual precipitation (1971-

2000) over state of Oklahoma from Oklahoma Climatological Survey. See Table 4.1 for 

abbreviations.  

Belowground biomass (BGB): One soil core sample was collected at the two 

increments: 0-15 and 15-30 cm using 4 cm diameter steel corer in each sampling plot. 

After washing soil through 0.25 mm mesh sieve, roots were oven dried at 60oC for 48 h 

and weighted.  

Surface litter (SU) was removed with a hand rake in a 0.5 m
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to soil sampling at each plot. The litter samples were cleaned, oven dried at 60oC for 48 

h an

nopy analyzer (Model LAI-2000, LI-COR. 

Inc., Lincoln, Nebraska, USA). LAI-2000 measures the transmitted blue sky light (400-

490 nm) under the canopy. A single above-canopy radiation measurement with five 

below-canopy readings each plot was used to compute the LAI. A 90o view restrictor 

was used in all measurements to prevent direct sunlight from reaching the sensor and to 

occlude the operator from the field of view.  

Soil respiration was measured using a LI-COR 6400 portable photosynthesis 

system attached to soil CO2 flux chamber (LI-COR. Inc., Lincoln, Nebraska, USA). A 

measurement consisted of placing the chamber on soil, scrubbing the CO2 to sub-

ambient levels, and determining soil CO2 efflux over the periods. Data were recorded at 

TC) connected to the LI-COR 6400 at the same time when soil CO2 

efflux was m

s expressed as a percent of dry soil on a mass basis.  

(diameter =3.5 cm, height=5 cm) with a 0.3 mm nylon mesh in the bottom. After the soil 

d weighted. 

 

Measurements of other variables 

Leaf area index (LAI) is the total cone-sided foliage area per unit ground surface 

area. LAI was measured using LiCor plant ca

a 5-second interval by the datalogger in the LI-COR 6400 console. 

Soil temperature at the depth of 5 cm was monitored using a thermocouple probe 

(LI-COR 6000-09

easured.  

Soil moisture was measured gravimetrically. Soil samples at the top 15 cm were 

taken from each plot and oven dried at 105°C for 48 hours and weighed. Gravimetric 

soil moisture wa

Field capacity (FC) was measured by soaking the soil for 12 h in a plastic cylinder 
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was drained for 1h, the soil was emptied into a container and the FC was determined as 

for gravimetric soil moisture.  

oil pH was measured at a 1:10 soil-to-water ratio with a pH meter (Model 

). Samples were mixed end-over-end for 1h.  

ns 

 
 

 

 of 

 soil samples for total C and N content was 

done using a Finnigan DELTA eter 

 

ffects of MAP or OYP on biomass, litterfall, and soil respiration 

were ent 

re 

e multiple linear 

regr  

S

420A+Thermo Orion, Beverley, MA

Total C and N content: On prior analysis, it was found that the soil contai

carbonates. To avoid misinterpretation of soil C and N data, soils were acid-treated 

based on a procedure used by Subedar (2005). Briefly, 5 ml of 6N H2SO3 was added to

0.5 g of soil in clean glass vials. The samples were agitated for a few seconds to suspend

the soil in the solution. The presence of carbonates was indicated by formation

bubbles. The samples were let to sit at room temperature for approximately 6 hours and 

then dried overnight at 60° C. The analysis of

plus Advantage gas isotope-ratio mass spectrom

(Thermo Finnigan MAT GmbH, Barkhausenstr, Germany), which is configured through 

the CONFLO III for automated continuous-flow analysis of solid inorganic/organic 

samples using a Costech ECS 4010 elemental analyzer (Costech Analytical 

Technologies Inc., Valencia, CA).  

Data analysis 

The statistical e

 examined using regression analysis with MAP or OYP as an independ

continuous variable. Comparisons of biomass, litterfall, and soil respiration we

performed with 1-way analysis of variance (ANOVA). Stepwis

ession analysis was also applied to examine the control factor(s) of AGB, litterfall,

and soil respiration using all other measured variables. Differences within the factor 
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(site) were analyzed with a post-hoc Duncan’s multiple range test. The effects were

considered to be significantly 

 

different if p<0.05 in all cases. All statistical analyses 

were 001). 

4.3.

Soil characteristics along the precipitation gradient  

Soil characteristics measured in this study are field capacity, pH, bulk density, C 

 performed using SPSS 11.0.1 for windows (SPSS Inc., Chicago, IL USA, 2

 

 Results 

and N contents, and C:N ratio (Fig. 4.2). Along the precipitation gradient, distinct trends 

were only shown in pH and C:N ratio (Fig. 4.2b,d). Decreasing trend of pH was due to 

the existence of calcium carbonate at low precipitation sites based on simple test of HCl  
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Fig. 4.2 Soil characteristics along the precipitation gradient: Field capacity (%, a), pH 

and soil bulk density (g cm-3, b), %C and %N (c), and C:N ratio (d). Data are shown as 

mean ± SE (n=5). 
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(Fig. 4.2b). %C and %N contents and bulk density did not significantly change with 

increasing precipitation except the wettest site (Hugo Lake, Fig. 4.2b,c). If %C and %N 

contents were transferred to volume contents (g m-3), C and N contents were similar for 

ll sites (Data not shown) as well as field capacity (Fig. 4.2a). 

Comparison of relationships for MAP and OYP 

r precipitation before 

measurements (OYP) and mean annual precipitation (MAP), especially in Aug 2003 and 

between measured variables and MAP (Table 4.2), suggesting the larger regulation of 

biomass, litterfall, and soil respiration from OYP than MAP. Thus, we stated our results 

using relationships between measured variables and OYP instead of MAP thereafter, 

which were usually showed in the literature (e.g., Sala et al. 1988, Epstein et al. 2002, 

Lane et al. 2000, Austin and Sala 2002, Zerihun et al. 2006).  

a

 

There was considerable difference between the one-yea

Feb 2004, which largely regulate short-term and long-term processes, respectively (Fig. 

4.3). Biomass, litterfall, and soil respiration may be affected by both MAP and OYP. 

However, better correlations occurred between measured variables and OYP than those 

Aug 2003

O
ne
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a b c

 measurements (OYP) in Aug 2003 (a), Feb 2004 (b), and May 2005 

(c). Data are shown as mean ± SE (n=5).  

 
Fig. 4.3 Discrepancy between mean annual precipitation (MAP) and one-year 

precipitation before

 84



 

 

Table 4.2 Comparison of relationships between measured variables and one-year 

precipitation before measurements (OYP) and between measured variables and mean 

nnual precipitation (MAP) in Aug 2003, Feb 2004, and May 2005. R2 is the 

ficance of regression.  

a

determinant coefficient. P values represent the signi

One-year 
precipitation (OYP)

Mean annual 
precipitation (MAP)Time Parameters 

R2       P R2       P 

Aug 2003 

AGB 

SU 

ST/SU ratio 

Soil respiration 

0.85     0.009

0.65     0.03 

0.45     0.09 

0.88     0.006

0.62     0.06 

0.48     0.08 

0.44     0.10 

0.80     0.02 

ST 

Soil moisture 

0.79     0.007

0.73     0.01 

0.75     0.01 

0.64     0.04 

Feb 2004 

ST 

SU 

ST/SU ratio 

Soil moisture 

0.52     0.07 

0.62     0.06 

0.63     0.03 

0.70     0.03 

0.65     0.03 

0.67     0.05 

0.61     0.04 

Soil respiration 0.79     0.008 0.60     0.04 

0.79     0.02 

May 2005 

AGB 

AGB/BGB ratio 

ST 

SU 

ST/SU ratio 

Soil respiration 

Soil moisture 

0.75     0.006

0.50     0.03 

0.12     0.37 

0.57     0.02 

0.43     0.05 

0.66     0.01 

0.67     0.007

0.63     0.02 

0.41     0.06 

0.14     0.32 

0.56     0.02 

0.42     0.06 

0.65     0.01 

0.51     0.05 
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Pattern of biomass along a precipitation gradient 

Green aboveground biomass (AGB) linearly increased along the precipitation 

ay 

g 

laboratory 

 2005, the 

outlier occurred in Pontotoc ridge preserve se of a low  rainfall  

gradient in both August 2003 and May 2005 as well as leaf area index (LAI) in M

2005 (Fig. 4.4a,b,c), although there was one outlier at each measurement, both resultin

from drought stress. In August 2003, the outlier site was in Kessler farm field 

(KFFL) due to the long period of no rain in June and July (34 days). In May

(PR) becau  proportion of
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Fig. 4.4 Change round bi Aug 2003 (a) and May 2005 

(b) and leaf area  May 2005 r prec

measurements (OYP) along the precipitation gradient. Panel d shows the relationship 

between green AGB and LAI in May 2005. Data are shown as mean ± SE (n=5). 

05
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in the period from Jan to May 2005 (20%). Leaf area index (LAI) controls light 

inter  the 

 

s 

decreased along a precipitation gradient (Fig. 4.5d) as well as rain use efficiency (RUE), 

which was calculated from total biomass divided by OYP (Fig. 4.6).  

ception of plant canopies, and affects carbon exchange between vegetation and

atmosphere. Thus, a good relationship occurred between green AGB and LAI without

outliers in May 2005 (Fig. 4.4d).  

Interestingly, root or belowground biomass (BGB) at the depth intervals of 0-15, 

15-30, and 0-30cm did not show distinct changes with increasing precipitation as well a

total biomass (AGB+BGB) (Fig. 4.5a,b,c). However, BGB to AGB ratios linearly 
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Fig. 4.5 Changes in belowground biomass (BGB) at the depth of 0-15 cm and 15-30 cm 

(a), total measured BGB at the depth of 0-30 cm (b), total biomass including AGB

BGB (c), and AGB:BGB ratio (d) along a precipitation gradient. Data are shown as 

mean± SE (n=5).  

 and 
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Fig. 4.6 Pattern of rain use efficiency (RUE, ratio of total biomass (AGB+BGB) to OYP) 

along a precipitation gradient. Data are shown as mean ± SE (n=5). 

 

Pattern of litterfall and soil respiration along a precipitation gradient 

Litterfall was separated into standing litter (ST) and surface litter (SU). Different 

patterns of ST, SU, total litter (ST+SU), and ST to SU ratio occurred in three seasons 

along the precipitation gradient (Fig. 4.7). Both ST and SU linearly increased with 

increasing precipitation except ST in May 2005 (no change, Fig. 4.7c) and SU in 

February 2004 (decrease, Fig. 4.7e). Total litter and ST to SU ratios also linearly 

increased along the precipitation gradient except ST+SU in February 2004 due to a 

decrease in SU (Fig. 4.7b) and ST:SU ratio in May 2005 (decrease, Fig. 4.7i). 

 low 

y to May 2005 (Fig. 4.8c,f).  

Soil respiration and soil moisture linearly increased along the precipitation gradient 

in all three seasons, while there were not significant changes in soil temperature (Fig. 

4.8). An outlier occurred in May 2005 for soil respiration largely due to a significant

rainfall from Januar
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Fig. 4.7 Changes in standing litter (ST), surface litter (SU), total litter (ST+SU), a

ST:SU ratio in Aug 2003 (a, d, g), Feb 2004 (b, e, h), and May 2005 (c, f, i) along a 

natural precipitation gradient. Data are shown as mean ± SE (n=5). 
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Fig. 4.8 Changes in soil respiration (µmol m-2 s-1), soil moisture (%g), and soil 

temperature (oC) in Aug 2003 (a, d), Feb 2004 (b, e), and May 2005 (c, f) along the 

precipitation gradient. Data are shown as mean ± SE (n=5). 

 

Relationships between biomass, litterfall, and soil respiration 

Table 4.3 shows relationships between biomass, litterfall, and soil respiration in the 

ree seasons. Soil respiration was significantly linearly correlated with SU and ST in 

Aug 2003 and February 2004 and with AGB in May 2005, while AGB was mainly 

controlled by precipitation. Similarly, ST and SU were also not related to other 

processes besides between each other. Using all measured variables, stepwise multiple 

linear regression analysis also showed the similar results above-stated for AGB, litterfall, 

and soil respiration (data not shown).  

 

th
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Table 4.3 Relationships between soil respiration, aboveground (AGB) and belowground 

(BGB) biomass, standing litter (ST), and surface litter (SU) in three seasons.  

Aug 2003 Feb 2004 May 2005  
Variable R2 P Variable R2 P Variable R2 P 
AGB 0.50 0.12 ST 0.82 0.005 AGB 0.73 0.003
ST 0.87 0.006 SU 0.51 0.07 BGB 0.04 0.61 
SU 0.80 0.02    ST 0.23 0.19 Rs 

      SU 0.12 0.37 
AGB  0.56 0.09 SU 0.72 0.02 AGB 0.01 0.85 
SU 0.78 0.008    BGB 0.15 0.31 ST 
      SU 0.53 0.03 
ST 0.53 0.10 BGB 0.01 0.77 
SU 0.26 0.30 SU 0.11 0.38 AGB 
   

/ 
ST 0.21 0.21 

 

 
 

4.4. Discussion 

Great Plains grasslands (Figs. 4.4, 4.7, and 4.8), although BGB did not greatly change 

decreased with 

incre

y 

ides an 

 

pe and soil characteristics.  

Our study demonstrated that linear relationships often occurred between biomass, 

litterfall, or soil respiration and precipitation along the precipitation gradient in southern 

(Fig. 4.5). BGB:AGB ratio and rain use efficiency (RUE) linearly 

asing precipitation. The one-year precipitation before samplings (OYP) had a better 

correlation with biomass, litterfall, and soil respiration than mean annual precipitation 

(MAP, Table 4.2). In addition, biomass, litterfall, and soil respiration are interactivel

regulated by the magnitude of precipitation (Table 4.3). This transect study prov

effective tool to gain insight and allows us to evaluate trends and regulation in biomass,

litterfall, and soil respiration as a function of precipitation without the confounding 

effect of drastic changes in vegetation ty
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Comparison of relationships for MAP and OYP 

Ecosystem carbon cycling processes are the outcome of combined effects of long- 

an  short-term e al drivers (Blo 985, Burke et rihun et 

al. 2006).  the p  g nt, th o  a

m ann recipi  ( ) but also regulated by one-year precipitation before 

sampling (OYP). Our results show that bioma tte an resp had 

better cor  than MAP in three seasons (Table 4.2). Th p

m m  in ea h asons largely reflect effects YP more than MAP in 

this transect study, especially aboveground biomass (AGB). AGB was mainly controlled 

by current-year precipitation while litterfall and soil respiration were interactively 

YP and MAP (Tables 4.2 and 4.3). The study of interannual 

varia  

Pattern of biomass along a precipitation gradient 

Vegetation dynamics are tightly coupled with hydrologic processes (Saco et al. 

2006). Precipitation has served as a powerful predictor of plant productivity and other 

ecological attributes (Sala et al. 1988, Knapp et al. 2002, Austin and Sala 2002, 

Breshears 2005). Our results show the similar trend for AGB, which linearly increased 

with increasing precipitation along the gradient (Fig. 4.4). The positive relationships 

between ANPP and precipitation also have been observed in the central grassland region 

d nvironment om et al. 1  al. 1998, Ze

 Along  preci itation radie ese pr cesses re not only influenced by 

ean ual p tation MAP

ss, li rfall, d soil iration often 

relations with OYP e sna shot 

easure ents ch of t ree se  of O

regulated by both O

tion in primary production supports our results that ANPP was correlated with both

current-year and previous-year precipitation in grassland ecosystems (Oesterheld et al.’s 

2001, Nippert et al. 2006). Thus, cautions should be taken when we explained the data 

from snapshot measurement. Current-year precipitation and MAP both should be 

considered to evaluate the responses of ecosystem processes to precipitation.  
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of the USA (Sala et al. 1988, Lane et al. 1998, 2000) and Siberian grasslands 

(Titl , 

s 

 

005).  

d of 

mins 

 

l. 1978), 

whereas production is limited by water as well as light and nutrient (mainly competition 

86, Schimel et al. 1991, Lane et al. 

1998

yanova et al. 1999) as well as other regions (Webb et al. 1978, Austin and Sala 2002

Zhou et al. 2002, Huxman et al. 2004, Santiago and Mulkey 2005, Zerihun et al. 2006). 

However, BGB did not show distinct changes along the precipitation gradient as well a

total biomass (Fig. 4.5), largely resulting from a decrease in the proportion of primary

production allocated to roots and an increase in turnover of roots with increasing 

precipitation (Comeau and Kimmins 1989, Pietikäinen et al. 1999, Kahmen et al. 2

Difference between the patterns of AGB and BGB resulted in a decreased trend in 

BGB to AGB ratio along the precipitation gradient (Fig. 4.5d), indicating marked 

ecosystem-level adjustments in relative balances of BGB and AGB stocks. The tren

BGB to AGB ratio in our study is consistent with other studies (Comeau and Kim

1989, Chapin et al. 1993, Schulze et al. 1996, Zerihun et al. 2006) and prediction of 

resource balance/optimality theory (Bloom et al. 1985, Friedlingstein et al. 1999) 

largely due to the difference of the limiting source or plant strategy (Tilman 1988, 

Vinton and Burke 1997, Craine 2005). In semi-arid short-grass steppe, water is the

primary limitation with physiological stress on plant production (Lauenroth et a

stress) in the tallgrass prairie (Knapp and Seastedt 19

, 2000). Plant biomass distribution is adjusted to facilitate the acquisition of 

growth-limiting resources. 

As a consequence, rain use efficiency (RUE) decreased with increasing 

precipitation along the gradient (Fig. 4.6), largely resulting from a decrease in 

vegetational constraints associated with response of dominant plants to changes in 
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resource availability (i.e., water) and an increase in biogeochemical constraint

to the magnitude of nutrient or light limitation (Paruelo et al. 1999). Specifically, at the 

driest extreme of the gradient, plants with low relative growth rates (RGR) constrain the 

response of ANPP to precipitation with high BGB:AGB ratio (Fig. 4.5d), low LAI (Fig. 

4.4c,d), low stomatal conductance, and low photosynthetic rates (Tilman 1988, Santiag

and Mulkey 2005). At the wettest extreme of the gradient, high biomass or LAI re

vegetational constraints and may result in an increase in nutrient (or light) limitation due 

s related 

o 

duce 

to hi ), 

ther 

ll, 

results 

itus when litter decomposition is also slow. As precipitation 

incre cumulates 

ion of ST 

long 

the precipitation gradient due to low water availability of litter in the air (Kuehn et al. 

gh nitrogen use efficiency or plant shading (Vitousek 1982, Vinton and Burke 1995

that is to say, biogeochemical constraints. Our results were remarkably similar to o

studies for different areas of the world (Sala et al. 1988, McNaughton et al. 1993, 

Paruelo et al. 1998, 1999, Huxman et al. 2004).  

 

Pattern of litterfall along a precipitation gradient 

Litterfall represents an essential link between plant production and CO2 release 

from soil. Our results show that standing litter (ST), surface litter (SU), total litterfa

and ST to SU ratio increased linearly along the precipitation gradient in fall (Fig. 

4.7a,d,g), while, in winter and spring, this trend was not followed by all variables (Fig. 

4.7b,c,e,i). The positive relationships between litterfall and precipitation result from 

different mechanisms along the gradient. At low rainfall, low input of production 

in low accumulation of detr

ases, litterfall input increases at a higher rate than mass loss, and then ac

the larger litters at soil surface and in the air (Austin 2002). Slower decomposit

in the air than that of SU at the soil surface results in an increase in ST to SU ratio a
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1998). The trends were consistent with regional and global patterns of detritus for 

ecosystems in the same precipitation regimes (Schlesinger 1977, Austin 2002).  

However, SU decreased along the precipitation gradient in February 2004 (Fig. 

4.7e), largely resulting from enhanced physical leaching (Swift et al. 1979) and 

confounding effect of temperature (Read and Lawrence 2003). Along the precipitation 

gradient, the proportion of annual precipitation from September 2003 to February 2004 

increased from 25% to 50% in despite of increasing rainfall, too. The greater rainfall 

accelerates the breakdown of surface litter through physical process of leaching, which 

is controlled by precipitation (Swift et al. 1979, Austin and Vitousek 2000). In addition,

mean annual temperature (MAT) varied from 13.0 to 16.5oC along the precipitation

gradient (Table 4.1). A larger response to the small

 

 

 change in temperature may occur in 

winter compared to summer along the gradient due to higher temperature sensitivity of 

h range (Kirschbaum 1995, 

Jans on 

ig. 

litter decomposition at low temperature range than hig

sens and Pilegaard 2003, Chen and Tian 2005). In winter, thus, litter decompositi

was faster in mesic than xeric sites, resulting in an opposite trend for SU along the 

gradient. This trend did not occurred on ST because low water availability of litter 

largely slow down decomposition in the air (Kuehn et al. 1998).  

In May 2005, ST did not show distinct change along the precipitation gradient (F

4.7c, i) because the snapshot measurement of ST represented those amounts of previous-

year recalcitrant litter, which was difficult for microbial decomposition (e.g., stem). The 

previous-year ST were easier to fall down and decompose at mesic than xeric sites due 

to high temperature and wet climate along the gradient, although plant C:N ratio 

increased (Swift et al. 1979, Vitousek et al. 1994, Murphy et al. 2002). The relatively 
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constant trend for ST led to a decreased trend of ST to SU ratio along the precipitat

gradient (Fig. 4.7i). Our results suggest that patterns of ST, SU, total litterfall, and

ion 

 ST to 

SU r   

f 

ot 

tity, 

Patt

s the 

variability in soil respiration (Raich and Schlesinger 1992, Conant et al. 1998, Gärdenäs 

atio were not constant in different seasons along the precipitation gradient (Fig. 4.7).

Litterfall is generally related to vegetation biomass as an interesting index o

ecosystem productivity (Olson 1963). However, our correlative analysis did not show 

this relationship, largely resulting from that these grassland sites may be not in 

equilibrium due to light or intermediate grazing. Usually, the amount of litter input is 

also served as a parameter determining the size of soil C pools and soil respired CO2 

(Cotrufo 2006). Our study did show the relationship between soil respiration and ST or 

SU (Table 4.3). However, Sayer et al. (2006) found that roots responded rapidly to 

changes in fresh leaf litter input and appeared to closely follow the patterns of litter 

decomposition in increasing litterfall experiments. That is to say, quantity of standing 

litter is a driving factor of root dynamics. Although we did not carefully examine ro

dynamics and no correlation between root biomass and either ST or SU was found along 

the precipitation gradient, such different effects may reflect differences in litter quan

litter quality, or distribution of detritus.  

 

ern of soil respiration along a precipitation gradient 

Soil respiration linearly increased along a precipitation gradient in the study (Fig. 

4.8). Temperature and moisture are the two major factors influencing soil respiration 

(Luo and Zhou 2006). To reduce temperature effects, our sampling was conducted 

within one week in fall and spring and within two weeks in winter. Precipitation i

primary input of soil moisture and often important to predict the regional and global 
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2000, Epstein et al. 2002). Thus, this trend occurred along the gradient. Other studies 

also found this trend that soil respiration and decomposition rates both increased with 

MAP across the Great Plains of North America (McCulley et al. 2005). In addition, leaf 

litter elated 

ponent 

 

ot 

hic 

d 

 by precipitation, but also regulated by 

litter all and winter and by AGB in spring, which were mainly controlled by 

roots were very active, 

resu

. 

 

te 

 mass and CO2 fluxes from leaf litter decomposition both were positively corr

with MAP in northern hardwood ecosystems in Maine, USA (Simmons et al. 1996).  

Soil respiration includes autotrophic root respiration and heterotrophic com

during litter and soil organic matter (SOM) decomposition. Usually, root respiration is

tightly related to root biomass with a linear relationship (Kucera and Kirkham 1971, 

Edwards and Sollins 1973, Behara et al. 1990). Our results show that root biomass did 

not change largely along the precipitation gradient (Fig. 4.5), and thus autotrophic ro

respiration also did not vary greatly. This results in that the contribution of heterotrop

to total soil respiration decreased along the precipitation gradient. Thus, the regional 

increase in soil respiration along the gradient is largely the result of increasing litter an

soil organic matter decomposition. Unfortunately, we still can not determine the exact 

proportion of root or heterotrophic respiration to soil respiration.  

Soil respiration was not only affected

fall in f

precipitation (Table 4.3). In the growing season (May 2005), 

lting in root respiration contributing a large proportion of total soil respiration 

because autotrophic component reflects plant activity and the supply or organic 

compounds to root from the canopy (Högberg et al. 2001, Bhupinderpal-Singh et al

2003, Binkley et al. 2006, Also see Chapter 3). In non-growing season, the relationship

between soil respiration and ST or SU suggests that litter decomposition may contribu
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a considerable amount to soil respiration. Thus, precipitation directly affects vegetation

production and litterfall, and indirectly regulates soil respiration.  

 

4.5. Conclusion 

This transect study examined patterns of biomass (AGB and BGB), litterfall (ST 

 

and 

ss 

 

cts vegetation 

prod ystems. 

s 

s) 

ST), and soil respiration in southern Great Plains grasslands along a precipitation 

gradient (430 – 1200 mm). The results show that AGB, litterfall (ST and SU), and soil 

respiration were often linearly related to precipitation, although BGB and total bioma

did not largely change. BGB to AGB ratios and rain use efficiency (RUE) linearly 

decreased with increasing precipitation due to less plant allocation to roots and high 

biogeochemical constraints (e.g. nutrients and light), respectively, at the wet sites of the 

gradient. The one-year precipitation before samplings (OYP) was a better predictor on

biomass, litterfall, and soil respiration, than mean annual precipitation (MAP). Our 

results indicate that precipitation is an important driver in shaping ecosystem 

functioning by controlling soil water dynamics, which directly affe

uction and litterfall, and indirectly regulates soil respiration in grassland ecos

It is suggested to incorporate our findings into current biogeochemical models as thi

will improve the predictions of long-term climate change effects (decades to centurie

on grassland ecosystems’ carbon balances.   
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Chapter 5 

Patterns of Nonlinearity in Ecosystem Carbon and Water Dynamics in 

response to Gradual Changes in Temperature, CO2, and Precipitation: 

Modeling Analysis 
 

 

 

 

 

 

 

 

 

 

 

 

 

This part has been submitted to Ecological Applications (In review).  

 

 

 

 

 100



ABSTRACT 

It is commonly acknowledged that ecosystem responses to global climate change 

are nonlinear. However, patterns of n  not been well characterized on 

ecosystem carbon and water processes. We used a terrestrial ecosystem (TECO) model 

to examine nonlinear patterns of ecosystem responses to changes in temperature, CO2, 

and precipitation individually or in combination. The TECO model was calibrated 

ecosystem responses were prese  in this study are net primary 

roductivity (NPP), Rh (heterotrophic respiration), net ecosystem exchange of CO2 

EE), runoff, and evapotranspiration (ET). Our modeling results show that nonlinear 

atterns were parabolic, asymptotic, and threshold-like in response to temperature, CO2, 

nd precipitation anomalies, respectively, for NPP, NEE, and Rh. Runoff and ET 

xhibited threshold-like pattern in response to both temperature and precipitation 

nomalies but were less sensitive to CO2 changes. The combined two- or three-factor 

hanges in temperature, CO2, and precipitation considerably influenced nonlinearity of 

cosystem responses by either changing patterns and/or shifting points of abrupt 

hanges. Our results suggest that nonlinear patterns in response to multiple global 

hange factors are diverse and were considerably affected by combined climate 

nomalies on ecosystem carbon and water processes.  

Key Words: Nonlinear pattern, global change, temperature, CO2, precipitation, net 

f, 

evapotranspiration, grassland 

onlinearity have

against experimental data obtained from a grassland ecosystem in central USA and ran 

for 100 years with gradual change in 252 different scenarios. The 100th-year results of 

nted. Variables examined

p

(N

p

a

e

a

c

e

c

c

a

primary production, net ecosystem exchange, heterotrophic respiration, runof
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5.1. Introduction 

e 

ent 

 

s 

d 

hange 

fied as 

s to 

as International Geosphere-

Biosphere Programme (IGBP) workshop entitled “Non-linear responses to global 

 of the 

Global climate change usually involves simultaneous and continuous changes in 

atmospheric CO2 concentration, earth surface temperature, and precipitation over a tim

of decades and centuries (IPCC 2001). Changes in the climate forcing variables likely 

cause nonlinear responses of ecosystem structure and functioning, and alter ecosystem 

services to human society. Research has been done mostly with two discrete treatm

levels of one or two factors to quantify effects of global change on ecosystem processes

and mechanisms (Shaver et al. 2000, Weltzin et al. 2003, Ainsworth and Long 2004, 

Rustad 2006). However, considerable uncertainty occurs in the IPCC (2001) projection

for future global changes, making it difficult to predict how ecosystems might respon

to future atmospheric conditions. Thus, it is important to understand how ecosystems 

could respond to a range of potential future climates (e.g., temperature, CO2, and 

precipitation). 

It is commonly acknowledged that ecosystem responses to global climate c

are nonlinear (Ackerly and Bazzaz 1995, Gill et al. 2002, Burkett et al. 2005). 

Ecosystem nonlinearity is now becoming an increasingly important focus on global 

change research (Pielke et al. 2003, Mayer and Rietkerk 2004), which were identi

high-priority research across the federal government of USA (Lucier et al. 2006). 

Several international programs have focused on nonlinear and threshold response

climate change (Körner 2000, Pielke et al. 2003), such 

environmental change: critical thresholds and feedbacks” at Duke University, North 

Carolina, USA in May 2001. In addition, nonlinear responses may explain some
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apparent contradictory results observed in climate change studies (Zak et al. 1993, 

Rustad 

 

 

 

 

in an intact C3/C4 grassland of central Texas responded nonlinearly to a 

subamb

 

ted in 

m 

ete 

 

et al. 2001). Therefore, ecosystem nonlinearity is a vital and challenging 

component of global change science, which may impact on how we design experiments, 

build models, and perceive ecosystem dynamics in a changing world (Reynolds 2002). 

Most previous research on nonlinearity in response to global change factors was

focused on the level of plant individual processes (e.g., photosynthesis and production) 

and identified a diversity of response patterns for various plant species (Körner 1995, 

Reddy et al. 1999, Xiong et al. 2000), even in a single CO2 gradient (Ackerly and 

Bazzaz 1995, Luo et al. 1998). However, those results may not provide a sufficient basis 

to extrapolate from plant to ecosystem scales. Only a few studies have examined 

nonlinear responses to global change factors (mainly single global change scenario) on

ecosystem carbon and water processes. For example, soil carbon storage and net N

mineralization 

ient to superambient CO2 gradient (Mielnick et al. 2001, Gill et al. 2002). 

Responses to three levels of soil gradient warming (i.e., 2.5, 5.0, and 7.5oC) in a

northern hardwood forest were also nonlinear on soil respiration and leaf litter 

decomposition (Mchale et al. 1998). Although a few experimental studies with multiple 

levels of individual temperature, CO2, and precipitation changes have been conduc

the field (Mchale et al. 1998, Mielnick et al. 2001, Gill et al. 2002, Yahdjian and Sala 

2006), their overall objectives were not to examine patterns and mechanisms of 

nonlinearity, limiting their applications in ecosystem services. In addition, ecosyste

responses to multiple global change factors, which were often conducted at two discr

treatment levels, were inadequate to examine nonlinearity. To date, a range of treatment
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levels of simultaneous changes in temperature, CO2, and precipitation have not been

investigated by experiments, because, in the real world, it is impossible to conduc

manipulative experiments to examine nonlinear responses to simultaneous changes in 

multiple factors due to cost limitation and ecosystem complexities. 

 

t 

 Shin 

in in 

l 

 study 

o 

The use of models can be of particular importance to simulate multiple global 

change factors, examine response patterns, and then deliver an idea of possibilities to 

decision makers (Millennium Ecosystem Assessment 2005, Groffman et al. 2006). 

Vegetation model simulations revealed potential nonlinearity in response to global 

change factors at the community or ecosystem level based on competition between plant 

species or various plant functional types (Ackerley and Bazzaz 1995, Cowling and

2006). However, patterns and mechanisms underlying nonlinearity in responses to 

simultaneous changes in temperature, CO2, and precipitation remain largely uncerta

natural ecosystems. We are aware of only one modeling study to examine ecosystem 

nonlinear responses to individual and simultaneous changes in temperature, 

precipitation, and CO2 (only two levels) using a dynamic global vegetation mode

(DGVM) within a region of Amazonia (Cowling and Shin 2006). However, this

mainly focused on threshold responses in tropical rainforest ecosystems and the results 

that temperature thresholds increased with decreasing precipitation were arguable. It is 

not clear how other ecosystems may respond to a range of levels of multiple global 

change factors.  

In the present modeling study, we used a terrestrial ecosystem (TECO) model t

examine nonlinear patterns of ecosystem carbon and water dynamics in response to a 

range of individual and simultaneous changes in temperature, CO2, and precipitation in 
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a grassland ecosystem of central USA. Climate change scenarios varied gradually wit

100 years. Variables of carbon and water cycles examined in the study are net primary 

productivity (NPP), heterotrophic respiration (Rh), net ecosystem carbon exchange 

(NEE=NPP-Rh), runoff, and evapotranspiration (ET). We also discu

hin 

ssed implications of 

experim

l. 

ly 

s: a 

hesis model, a soil water dynamic model, and a carbon dynamics 

model 

ental studies and model assumptions.  

Response dynamics from 2000 to 2100 to gradual changes under different 

scenarios were similar as other studies (Fig. 5.3, Campbell et al. 1997, Ollinger et a

2002, Hanson et al. 2005), which were not the main focus of this study. Thus, we on

show the results of one level of three global change factors (i.e., +4oC of temperature, 

double CO2, and +30% of precipitation) and their combinations. Mostly, the 100th-year 

results of ecosystem responses were presented for NPP, Rh, NEE, runoff, and ET.  

 

5.2. Materials and methods 

Model description 

Terrestrial ecosystem (TECO) model evolves from a terrestrial carbon 

sequestration (TCS) model (Luo and Reynolds 1999) and is designed to examine 

ecosystem responses to perturbations in global change factors. The model has been 

extensively applied to the modeling study at the Duke Forest CO2 enrichment 

experiment (Luo et al. 2001b,c, 2003, Xu et al. 2005). It has three major component

canopy photosynt

that describes plant and soil carbon transfer processes (Fig. 5.1). The canopy 

photosynthesis and soil moisture dynamics models were simulated at the hourly time 

step, while the plant growth and the soil carbon dynamics were simulated at the daily 
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step. Temperature-driven changes in pehnology and the length of growing seasons were 

simulated on a carbon-gain based scheme (Arora and Boer 2005). Acclimation of 

physiological and ecological processes to warming and elevated CO2 was not impos

on model runs unless it was simulated internally via changes in nutrient dynamics or 

water stress. The detailed description of TECO m

ed 

odel refers to Gerten et al. (2007), and 

Luo et 

 

es 

s 

heterotrophic respiration including litter and SOM decomposition. 

al. (2007).  

Soil carbon model

Evapotranspiration 

Fig. 5.1 Schematic diagram of Structure of terrestrial ecosystem (TECO) model. Box

represent pools and dashed cycles stand for four submodels. NSC is non-structural 

carbon, Ra is autotrophic respiration including leaf, stem, and root respiration, and Rh i

Canopy model 

NSC pool 

Leaves

Roots

Soil 1 

Soil 2 

Soil 3 

Litters 
Fine/Coarse 

CO2 Precipitation

Stems

Ra Rh

A

Sto

C

D 

B 

rage

Mineral N pool

Plant growth model

Soil water dynamics 
B 
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The canopy model is a multi-layer process-based model to simulate canopy 

conductance, photosynthesis, and energy partitioning by calculating radiation 

transmission based on Beer’s law. For each layer, foliage is divided into sunlit and 

shaded leaf area index (LAI) to separately simulate canopy conductance, photosynthe

and energy partitioning as described by Wang and Leuning (1998). Carbon uptake (i.e., 

leaf photosynthesis)

sis, 

 and transpiration is based on the coupled Farquhar photosynthesis 

model and the Ball-Berry stomatal conductance model as described by Harley et al. 

(1992). The coupled leaf-level model of stomatal conductance, photosynthesis, and 

transpiration r i=1) or shaded leaf (i=2) is: 

Photosynthesis: 

 fo  the sunlit leaf (

)()( ,,,, iaiciisisscic CCGCCGbA −=−⋅⋅=       (1) 

Stomatal conductance
)/1)(( 0,,

,
,0, DDC

Afa
G: G

isis

icwl
iis +Γ−
+       (2) 

Transpiration: ,,, iaisisic TsDDGE

=

(,iwG )= ∆⋅+⋅=              (3) 

where Ac,i is the net photosynthesis rate; Ec nspiration rate; Gs,i and G0,i are the 

bulk stomatal and residual (Gs,i when Ac,i=0) conductance for water vapour, respectively; 

Da and Ds,i are water vapour m VPD) in t air and at the 

leaf ; Gw,i and Gc,i are the total conductanc  the intercellular 

space of the leaves to the reference height above the canopy for H2O and CO2, 

respectively; s is the slope of the function relating saturated water va o ion to 

temperature; ∆Ti is the temperature difference between the surface of the big leaf and 

ce, 

,i is tra

ol fraction deficits ( he ambient 

e from surface, respectively

por m l fract

that of the air at the reference height; bsc is the ratio of diffusivity of CO2 and H2O 

through the stomata; Ca, Cs,i, and Ci are CO2 mol fractions in the air, at the leaf surfa

and intercellular spaces, respectively; Γ is the CO2 compensation point; D0 is a 
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parame

d G0,i are 

opy 

+=

= ∫ ξξξ

where yi is flux of CO2 or transpiration of individual sunlit or shaded leaf within the 

canopy; Yi is the flux value for the big leaves; ξ is the cumulative leaf area index from 

the can otal canopy leaf area index, Y represents  of the 

whole  of sunlit (i=1) or shaded (i=2) leaf he 

canopy.  

The carbon dynamic model considers plant growth, plant respiration and soil 

carbon transfers among pools. Allocation of assimilates over the plant components 

depends on the growth rate of leaves, stems and roots, and varies with phenology. The 

soil profile is divided into three layers with water and carbon movement between the 

layers. Carbon inputs to the soil from plant residues are partitioned into these three 

layers. Plant growth model contains a non-structural carbon pool and growth equations 

of leaves, stems and roots: 

ter for stomatal sensitivity to VPD; al is related to the intercellular CO2 

concentration by Ci/Cs,i=1-1/al at maximal stomatal opening (when both Ds,i an

zero and fw=1); and fw describes the sensitivity of stomata to soil water content. Can

photosynthesis and transpiration were closely approximated by integrating values of 

individual leaves as below.  

21

0

L

ii
                              (4) 

)()(

YYY

dwyY i

opy top, L is the t the total flux

canopy, wi is the fraction  area within t

LAInscsriii SSSBMGG ⋅⋅⋅⋅= /max                     (5) 

i max te, 

i r/s nsc LAI

where i= leaf, stem or root. G is growth rate, G  is the maximum relative growth ra

BM  is biomass of leaves, stems or roots. S , S  and S  are scaling factors of 

root/shoot ration, non-structural carbon pool, and LAI, respectively. NPP is the 
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difference between canopy photosynthesis and autotrophic respiration (Ra). The

dependent on biomass amounts, specific respiration rates, and regulated by temperature 

as below: 

Ta
a eBMbR ⋅⋅⋅=                                  (6) 

where BM is biomass, T is air

 latter is 

 temperature, and a and b is empirical parameters.  

Soil carbon model is partly from the soil carbon transfer part of VAST (Barret et 

al. 2002) by simulating carbon transfer from The 

: 

 plant to soil and then to atmosphere. 

model has multiple plant, litter and soil carbon pools. Heterotrophic respiration (Rh) 

includes decomposition of litter and soil organic matter, which is regulated by soil 

temperature and moisture. At steady state, Rh from each litter and soil pool is given by

k n kR P f= −                                       (7) 

where kf is the fraction of NPP arriving at the kth pool after traversing upstream pools. 

ol the functions for fFor each po k are 

[ ( ( ) )](1 )

S R S R S R F L W C W

f

f
1 1 1

2 2 1 1 2

(1 )
[ ( ) ](1 )

[ ( ( ( ) ))]

F L W F

C W C

S R F L W C W S

S R S R F L W C W S

f
f

f 3 3 2 2 1 1

[ ](1 )α ηα θ

ζ α θ ζ α θ α ηα θ α θ

= + −

= + + + + −

re 

he fragmentation coefficient of coarse woody debris by 

mechanical breakdown, and ξ is proportion of C th soil 

 CO2 

α η θ
ζ α θ α ηα θ α θ

ζ α θ ζ α θ ζ α θ α ηα θ α

= − −

= + + + −

= + + + + +

   (8) 

where F, C, S1,S2, and S3 are litterfall, wood, and soil layer 1, 2, and 3.αL,αW, andαR a

the allocation coefficients of NPP to leaf, wood, and root, θ is carbon partitioning 

coefficient of C pools, η is t

-allocated to fine roots in the j

layer. Thus, annual heterotrophic respiration from each litter and soil pool at steady state 

was obtained directly from fk in equation (7) and (8). Net ecosystem exchange of

(NEE) can be calculated as the difference between NPP and Rh.  
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The soil moisture dynamics is determined by precipitation (P), 

evapotranspiration (ET), and runoff. ET includes soil evaporation and plant transpiration

Transpirati

. 

on is coupled in canopy model (Equation 3) and evaporation of soil surface is 

from the following equation: 

λγ
ρ 1)(*

pasoil
s

ceTe
E

−
=                            (10) 

dsoil

e r r

ity o

sublimation. Runoff is calculated from ecosystem water balance among precipitation, 

rr +

where ES is soil evaporation, e* (Tsoil) is the saturation vapor pressure at the temperature 

of the soil, a is the atmospheric vapor pressure, soil is a soil resistance term, d is the 

aerodynamic resistance between the ground and the canopy air space, ρ is the dens f 

air, cp is the specific heat of air, γ is the psychrometric constant, λ is the latent heat of 

soil evaporation, canopy transpir  

 

The study was conducted at the Kessler’s Farm Field Laboratory (KFFL) in 

McClain County, Oklahoma (34o59’ N, 97o31’ W), approximately 40 rs 

southwest of Norman campus of the University of Oklahoma, USA. The field site is an 

, 

yia 

l Survey). A silt loam 

ation, and changes in soil water content in soil layers.

Study site 

kilomete

old-field tallgrass prairie abandoned from agriculture 30 years ago without grazing for 

25 years. The grassland is dominated by three C4 grasses: Schizachyrium scoparium

Sorghastrum nutans, and Eragrostis curvula, and two C3 forbs: Ambrosia psilostach

and Xanthocephalum texanum. Mean annual temperature is 16.3oC, with monthly air 

temperature ranging from 3.3oC in January to 28.1oC in July. Mean annual precipitation 

is 915 mm, with monthly precipitation ranging from 30 mm in January to 135 mm in 

May (average values from 1948 to 1998, Oklahoma Climatologica

 110



soil in . Subedar & Y. 

 deep, moderately penetrable root zone (U.S. Department 

of Agriculture 1979).  

Input data 

Daily climate variables used in this study were from the MESONET station of 

Washington, Oklahoma (1994 to 2005), including air temperature, soil temperature, 

vapor pressure deficit, relative humidity, precipitation, and incident photosynthetically 

active radiation. Equilibrium state was accomplished by running the model using 

repeated cycles of the 12-year climate set. Simulations were run from bare ground for 

1000 years, at which time climate change scenarios were imposed. 

Modelling scenarios 

Our experimental simulations involved each climate anomaly individually and in 

combination (i.e., temperature, CO2, and precipitation). Temperature anomaly influences 

all ecosystem processes by soil and air temperature. CO2 anomaly affects them by 

stomatal conductance. Precipitation anomaly affects ecosystem processes by soil water  

the grassland includes 35.3% sand, 55.0% silt, and 9.7% clay (A

Luo, unpublished data, 2003). Soil carbon content is 1.42% on a mass basis (Luo et al. 

2001a). The soil belongs to part of the Nash-Lucien complex with neutral pH, high 

available water capacity, and a

 

Table 5.1 Scenarios examined in this study 

Global change factors Treatment levels 

Temperature -2, 0, +2, +4, +6, +8, +10 C o

CO2 concentration -20, 0, +30, +60, +100, +140% 

Precipitation -40, -20, 0, +30, +60, 100% 

Note: Zero (0) represents the current condition of temperature and precipitation (i.e., 

control), while CO2 concentration was set to 350 ppm. 
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dynamics. To evaluate the individual and combined effects of temperature, CO2, and 

precipitation, we conducted a total of 252 simulations (including all possible crosses of 

the climate anomalies and control) (Table 5.1). All anomalies were changed gradually 

(mean changes within 100 years) starting in 2000 and ending by 2100. Because dynamic 

responses from 2000 to 2100 to changes in different scenarios were not the main focus 

of this study, we only presented the results of dynamic responses to one level of three 

global change factors (i.e., 4oC increase in temperature, doubling CO2 concentration, 

and 30% increase in precipitation) and their combinations. Mostly, we present modelling 

results of ecosystem responses at the 100th-year data for NPP, Rh, NEE, runoff, and ET. 

 

Model validation 

In this grassland, we used soil respiration, aboveground (AGB) and belowground 

(BGB) biomass, and NEE to validate the simulated values. Observed soil respiration 

was measured approximately once a month using LiCor 6400 with soil CO2 flux 

chamber (Luo et al. 2001a, Wan et al. 2005, Also see Chapter 2 and 3). Observed 

aboveground biomass was measured once a year and belowground biomass was only in 

October 2002 and 2004 (Wan et al. 2005, X. Zhou and Y. Luo, unpublished data, 2004). 

NEE was measured monthly in 2001 (X. Liu and Y. Luo, unpublished data, 2001). For 

all these variables, the simulated results are in good agreement with observational data 

except an overprediction of soil respiration in summer 2001 (Fig. 5.2). However, paired 

t tests between simulated and observed soil respiration (p>0.10) indicate no significant 

difference.  
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5.3. Results 

Response dynamics to different scenarios 

Simulated NPP, NEE, Rh, Runoff, and ET dynamics within 100 years in response to 

individual and simultaneous increases in temperature (+4oC), CO2 (doubling), and 

precipitation (+30%) are shown in Fig. 5.3. Usually, multifactor scenarios have greater

responses than single-factor ones. For example, combinations of temperature and CO

 

, 

dividual temperature, CO2, and precipitation nonlinearly increased NPP and Rh by 

about 5 to 27% from 2000 to 2100. The response dynamics of NEE to all scenarios are 

nonlinear with the largest carbon loss under temperature alone (-50 g C m ) and the 

largest carbon gain under the combination of CO2 and precipitation (60 g C m ) from 

2000 to 2100 (Fig. 5.3b).  

Runoff and evapotranspiration (ET) responded largely to precipitation changes 

in comparison to temperature and CO2. Our modeling analysis shows that both 

precipitation alone and its combination with CO2 doubling increased by approximately 

400% for runoff and by 22% for ET from 2000 to 2100 (Fig. 5.3d, e). Combinations of 

temperature and precipitation and the three factors also largely increased ET by about 

30%. However, temperature increase and its combination with CO2 doubling reduced 

runoff by 44 and 61%, respectively, from 2000 to 2100. 

 

 

2

temperature and precipitation, and the three factors linearly increased NPP and Rh by 

about 60, 50, and 75%, respectively, from 2000 to 2100 (Fig. 5.3a, c). In contrast, 

in

-2

-2
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Fig. 5.3 Simulated net primary productivity (NPP, a), NEE (b), heterotrophic respiration 

(Rh, c), runoff (d), and evapotranspiration (ET, e) dynamics from 2000 to 2100 in 

response to gradual changes in one level of temperature (4oC increase), CO2 (doubling-

700 ppmv), and precipitation (30% increase) and their combinations.  
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Nonlinear responses to single factor changes 

Simulated NPP, Rh, and NEE all show parabola-curve responses to temperature 

anomalies from -2oC to +10oC compared to current condition (Fig. 5.4a, b). NPP and Rh 

increased with rising temperature, reached a peak at +5oC (NPP) or +6oC (Rh), and then 

declined, while NEE had an adverse trend with a lowest value at +7oC. Increases in CO2 

concentration from 280 to 840 ppmv stimulated NPP, Rh, and NEE with an asymptotic 

curve (Fig. 5.4c, d). However, responses of NPP, Rh, and NEE to precipitation changes 

from -40% to +100% compared to current condition display threshold-like curves (Fig. 

5.4e, f), which increased with precipitation increase at the beginning and then reached a 

plateau around +30% (NPP and NEE) or current condition (Rh). If we define ‘threshold’ 

as a point at which there is an abrupt change in response to external stimuli, our  
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modeling results indicate that NPP and NEE had precipitation threshold values in about 

+30% a

 

nd Rh had a threshold value near current condition. 

For runoff and ET of water cycle, response patterns to individual temperature 

and precipitation changes were threshold-like, while runoff and ET were less sensitive 

to CO2 changes (Fig. 5.5). Runoff decreased in response to increasing temperature while 

ET increased, but both with similar threshold values near current condition. Runoff and

ET responded positively to precipitation changes but with different threshold values, 

which were near current condition for runoff and +30% for ET.  
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Fig. 5.5 Responses of runoff and ET to single-factor changes in temperature (a, b), CO2 

(c, d), and precipitation (e, f) 
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Fig. 5.6 Responses of NPP (a), NEE (b), Rh (c), runoff (d), and ET (e) to simultaneous 

changes in temperature and CO2.  
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Fig. 5.7 Responses of NPP (a), NEE (b), Rh (c), runoff (d), and ET (e) to simultaneous 

changes in temperature and precipitation  

 

Nonlinear responses to simultaneous changes in multiple factors 

Simultaneous changes in temperature and CO2 not only affected optimum or 

threshold points of temperature responses but also varied nonlinear response curves for 

NPP, Rh, and NEE, while there were no interactive effects on runoff and ET (Fig. 5.6). 

Specifically, with increasing CO2 concentration from 280 to 840 ppmv, temperature 
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optimum values increased by 1oC from +5 to +6oC for NPP and from +6 to +7oC for Rh, 

and nonlinear patterns of responses changed from parabolic (below 560 ppmv) to 

threshold-like (above 700 ppmv) curves (Fig. 5.6a, c). The lowest values of NEE were 

in +6oC under 280 ppmv of CO2 concentration and +8oC above 560 ppmv compared to 

+7oC in the control (CO2=350 ppmv) (Fig. 5.6b).  
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Fig. 5.8 Responses of NPP (a), NEE (b), Rh (c), runoff (d), and ET (e) to simultaneous 

changes in precipitation and CO2  
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Fig. 5.9 Responses of NPP (a, c, e) and NEE (b, d, f) to simultaneous changes in 

temperature, CO2, and precipitation 

 121



Temperature change (oC)
-4 -2 0 2 4 6 8 10

0

200

400

600

-4 -2 0 2 4 6 8 10 12
400
600
800
1000
1200
1400
1600

30% increase 
60% increase
100% increase

Ev
ap

ot
ra

ns
pi

ra
tio

n 
(m

m
)

400
600
800
1000
1200
1400
1600

R
un

of
f (

m
m

)

0

200

400

600

400
600
800
1000
1200
1400
1600

0

200

400

600

40% reduction
20% reduction
Control 

Runoff ET
CO2= 280 ppmv

CO2= 350 ppmv

CO2= 700 ppmv

a b

c d

e f

 
Fig. 5.10 Responses of runoff (a, c, e) and ET (b, d, f) to simultaneous changes in

temperature, CO

 

 

Similarly, with increasing precipitation from -40 to +100%, both response curves 

and threshold points were also affected (Fig. 5.7). Temperature response curves were 

relatively insensitive under -40% of precipitation, were parabolic under -20% and 

current condition, and became threshold-like above +30% for NPP and Rh (Fig. 5.7a, c). 

2, and precipitation 
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The lowest values of NEE are in +2oC under -40 and -20% of precipitation and +8oC 

above +30% compared to +7oC in the control (Fig. 5.7b). Response magnitude of runoff 

and ET to temperature anomalies increased largely with increasing precipitation (Fig. 

5.7d, e). Specifically, temperature responses were relatively insensitive under -40, -20%, 

and current condition of precipitation and show threshold-like patterns above +30% for 

NPP and Rh. Temperature threshold values increased from 0oC under current condition 

to 4oC under +100% of precipitation for both runoff and ET. With increasing CO2 

concentration, precipitation response curves did not vary, while their threshold values 

decreased from +30% of precipitation under 280 ppmv to current condition under 840 

ppmv for NPP, NEE, and Rh (Fig. 5.8a,b,c), while there were no effects on runoff and 

ET (Fig. 5.8e,d).  

For simultaneous changes in temperature, CO2, and precipitation, we only show 

NPP and NEE for carbon cycle due to similar trend between NPP and Rh under three 

CO2 concentrations, representing preindustrial, current, and future conditions. The three 

factors interactively changed response patterns and optimum or threshold points for NPP 

and NEE (Fig. 5.9). For example, temperature optimum or threshold values of NPP did 

not change with increasing precipitation under 280 ppmv of CO2 concentration, 

increased from +5 to 6 C under 350 ppmv, and increased from 5 to 8 C under 700 ppmv 

(Fig. 5.9a, c, e). The lowest values of NEE were +2oC at -40% of precipitation under 

280 and 350 ppmv, while was 6oC under 700 ppmv (Fig. 5.9b, d, f). However, CO2 

concentration did not significantly affect responses of runoff and ET to simultaneous 

changes in temperature and precipitation (Fig. 5.10).  

 

o o
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5.4. Discussion 

Our modeling analysis demonstrates diverse nonlinear patterns of ecosystem 

carbon and water dynamics in response to global change factors. Response patterns of 

NPP, Rh, and NEE were in parabola, asymptotic, and threshold-like shapes to individual 

changes in temperature, CO2, and precipitation, respectively (Fig. 5.4). Runoff and ET 

also responded nonlinearly to temperature and precipitation anomalies with a threshold-

like pattern but were less sensitive to changing CO2 (Fig. 5.5). Combinations of 

temperature, CO2, and precipitation anomalies interactively affected nonlinearity by 

changing response patterns (Figs. 5.6, 5.7, 5.9, and 5.10) and/or shifting points of abrup

changes (e.g., threshold values, Figs. 5.6, 5.7, 5.8 and 5.9). The nonlinear dynamics an

multifactor interact

t 

d 

ions on ecosystem carbon and water processes greatly complicate the 

interpre

PP and 

 

ue 

 the effects of climate warming 

n production and decomposition were strongly dependent on interactions with soil 

moisture (Ise and Moorcraft 2006). Our results were consistent with that under three 

tation and predictability of ecosystem level responses.  

 

Nonlinear responses to single factor changes 

Our results of model simulations exhibit different patterns of nonlinear responses 

to individual changes in temperature, CO2, and precipitation for NPP, Rh, NEE, runoff, 

and ET. A parabolic pattern in response to temperature change was observed in N

Rh (Fig. 5.4a,b). At a low temperature range, warming stimulated plant biomass growth 

and soil respiration and extended the growing season (Rustad et al. 2001, Wan et al. 

2005), resulting in increases of the two fluxes with increasing temperature. At a high

temperature range, the stimulation of warming declined with increasing temperature d

to soil moisture limitation (Drake et al. 1997), because

o
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levels of soil gradient warming in a northern hardwood forest, which soil respiration and 

leaf litt . 

 

sults 

m 

t of CO2 supply may 

duce the stimulated effects on the rate of uptake due to CO2 saturation to 

ity (Körner 1995, Lamber et al. 1998). 

Howev

 

er decomposition were less in +7.5oC than +2.5 and +5oC (Mchale et al. 1998)

However, Rh was more responsive to warming than NPP, resulting in a decrease in NEE

with increasing warming at a low temperature range and slight recovery at a high 

temperature range.  

The responses of NPP, NEE, and Rh to a gradient of CO2 levels were in an 

asymptotic shape (Fig. 5.4c,d). The stimulated effects were similar to observed re

from a manipulative experiment in central Texas for a continuous gradient of CO2 fro

200 to 550 µmol mol-1 (Mielnick et al. 2001, Gill et al. 2002, Polley et al. 2003, 2007). 

Along that gradient, CO2 enrichment increased photosynthesis (Mielnick et al. 2001), 

biomass production (Polley et al. 2003), net carbon uptake (Gill et al. 2002), and 

ecosystem respiration (Polley et al. 2006). A further enhancemen

re

photosynthesis and the diminishing CO2 sensitiv

er, the compiled response patterns of plant growth and reproduction along CO2 

gradients were diverse with the positive, negative, non-monotonic, and non-significant 

(flat) responses due to photosynthetic acclimation (Ackerley and Bazzaz 1995, Luo et al.

1998).  

Threshold-like response patterns to climate change are not uncommon in 

ecosystems. Our results show the threshold-like responses to precipitation change for 

NPP, NEE, Rh, runoff, and ET (Figs. 5.4e,f and 5.5a,c). Precipitation threshold values 

are about +30% for NPP, NEE, and ET and near current condition (+0%) for Rh and 

runoff. The threshold response curves indicate that the carbon and water fluxes are 
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relatively insensitive above the threshold values, while the large response occurs below 

the values. Little information was available in manipulative precipitation experiments, 

although the similar threshold response patterns have been reported along natural 

rainfall gradients (Austin 2002, Austin and Sala 2002). Under water interception, 

Yahdjian and Sala (2006) showed that aboveground NPP and plant density linearly 

increas e low 

ould 

 

patterns or points of abrupt changes (Figs. 5.6, 5.7, 5.8, 5.9, and 5.10). For 

exampl h 

re 

Similarly, increasing precipitation certainly mitigated water stress under high 

ed with increasing precipitation, which were consistent with our results at th

precipitation range. Unfortunately, their study did not conduct the experiments of 

increased precipitation and our results can not be further verified. Runoff and ET also 

have a threshold response pattern to temperature change. These threshold values were 

invaluable when we apply this concept to manage and restore ecosystem after 

perturbation (Groffman et al. 2006). The strategies for sustainable management sh

focus on maintaining resilience and disturbance, which should not exceed the threshold

values (Scheffer et al. 2001). 

 

Nonlinear response to simultaneous changes in multiple factors 

Combined temperature, CO2, and precipitation anomalies considerably changed 

nonlinear responses compared to individual factor, resulting in changes in either 

response 

e, values of abrupt changes in temperature anomalies for NPP, NEE, and R

increased with rising CO2 concentration (Fig. 5.6), probably resulting from reduced 

stomatal conductance and increased water-use efficiency (WUE), and then minimizing 

the deleterious effects of soil drying and alleviating water stress under high temperatu

(Drake et al. 1997, Lilley et al. 2001, Ainsworth and Long 2004, Wall et al. 2006). 
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temperature, resulting in higher values of abrupt changes (Fig. 5.7). However, a 

reduction in precipitation caused large changes in response curves and became more fla

with increasing temperature because it enhanced water stress irrespective of climat

warming (Ise and Moorcraft 2006). With rising CO

t 

e 

 both 

s 

is 

e treatment levels of combined climate change anomalies, 

lthough several mesocosm experiments (e.g., chamber and tunnel) have exposed 

 al. 1995, Horie et 

al. 199

th 

ate 

rea 

. 

der 

2 concentration, precipitation 

threshold values of NPP, NEE, and Rh decreased because of the effects of CO2 

enrichment on stomatal conductance and WUE (Drake et al. 1997). The interaction of 

combined temperature, CO2, and precipitation anomalies was complicated through

changing response patterns and threshold points (Figs. 5.9 and 5.10). The mechanisms 

discussed above (i.e., one- or two-factor changes) guided us to understand these change

in response patterns of carbon and water fluxes and points of abrupt points in th

grassland.  

To date, there has been no experimental evidence on ecosystem nonlinear 

patterns in response to multipl

a

specific plants to three levels of both temperature and CO2 (Hadley et

5, Lee et al. 2001, Usami et al. 2001, He et al. 2005). Those results only showed 

that the interactive effects of warming and elevated CO2 resulted in a larger grow

enhancement than warming alone in the one-year experiment. The short-term results 

could bring out large uncertainty in predicting long-term ecosystem responses to clim

change based on leaf- or plant-level response (Körner 1995). Currently, the Boston-A

Climate Experiment (BACE) is designed to characterize ecosystem responses (linear vs

nonlinear) to simultaneous climate change with five levels of warming across each of 

three precipitation treatments in a New England old-field ecosystem, but it is still un
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construction by Jeffrey Dukes in Waltham, MA. The only model study by Cowlin

Shin (2006) showed that temperature threshold values increased with decreasing 

precipitation in Amazonia tropical rainforests. We argue that, due to increasing water

stress, temperature threshold values were supposed to decrease as illustrated in th

study (Ise and Moorcraft 2006, Wall et al. 2006). With very limited data sets, it 

early to rigorously evaluate consistency between model simulations and between 

modeling and experimental results. 

 

Implications for experimental studies 

Our modeling results from numerous scenarios reflect effects of a range of 

climates com

g and 

 

is 

is too 

future 

pared to that from manipulative experiments with limited treatment levels 

and glo

tion, 

s 

o  

bal change factors. Thus, our study will offer suggestions for experimental 

studies on ecosystem response to multiple global change factors at least in three aspects. 

First, as expected, our results exhibit ecosystem nonlinearity in response to global 

change factors. However, the majority of experiments were currently manipulated in 

two treatment levels of the gradients for one or two factors. Although those results 

provided single-factor pulse response under climate change and/or two-factor interac

there was no information on ecosystem nonlinearity along the gradients. Thus, caution

should be taken on interpretation of results. Linear insertion or extrapolation was 

inappropriate to explain the results under other conditions of the same climate change 

factor. For example, if nonlinear pattern was parabolic in response to temperature (Fig. 

5.4a), the same response magnitude occurred under two treatments (e.g., 3 and 7 C for

NPP), resulting in misinterpretation.  
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Second, the nonlinear patterns of ecosystem carbon and water dynamics in 

response to individual changes in temperature, CO2, and precipitation were differe

The diverse patterns indicate that it is necessary to conduct experimental studies with 

individual gradient of temperature, CO

nt. 

 

wer compared to IPCC projection (668~734 ppmv 

 2100, IPCC 2001). Furthermore, the differential responses may occur between the 

ge factors (Figs. 5.4 and 5.5).  

make 

 

2, and precipitation changes. Although some 

experiments have been manipulated in the field, for example, a continuous gradient of

CO2 from 200 to 550 ppmv in central Texas (Gill et al. 2002), the range under 

experimental manipulation was narro

in

low-range and high-range of climate chan

Third, the combined two- or three-factor anomalies substantially changed 

nonlinear patterns and/or shifted points of abrupt changes on ecosystem carbon and 

water processes compared to single-factor changes. The substantial changes would 

it very difficult to infer ecosystem responses to multifactor global change from single-

factor experimental results. It is also impossible to conduct multisite, multifactorial

experiments with a range of treatment levels due to ecosystem complexities and cost 

limitation. However, some experiments need to be manipulated, such as the Boston-

Area Climate Experiment (BACE) in a New England old-field ecosystem (under 

construction), to verify part of the modeling results and provide technical input to future 

experimental design and theoretical development. For example, how many treatment 

levels are needed for two-factor changes to reveal nonlinear responses? What is the 

interval of treatment levels? Furthermore, new experiments are needed that explicitly 

account for nonlinear patterns generated from feedback mechanisms and threshold 

behavior. 
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Model

 

 

ver, 

nties of 

ecosyst ange 

n 

hat 

 

bal 

 

s on 

 assumptions 

Model simulation results show diverse nonlinear patterns in response to 

individual and simultaneous global changes on ecosystem carbon and water processes.

The diversity of nonlinear responses reflect the fact that the natural ecosystems may 

have different responses to multiple global change factors (Scheffer et al. 2001, Burkett

et al. 2005), which were well simulated by the structure of TECO model. Howe

ecosystem biogeochemical models share a similar structure of carbon and water flows 

but have different functions to relate the rate variables that control the flows to 

temperature, CO2, and precipitation, resulting in large simulation uncertai

em response to global change (Burke et al. 2003). Thus, the results may ch

with incorporated function in various models. It is critical to examine and improve 

various response functions.  

Although global climate change largely affects ecosystem structure and functio

and impacts the natural resources on which humans depend, it has to be considered t

vegetation may acclimate and adapt to changing climate conditions (Luo et al. 1998, 

2001a, Hanson et al. 2005, Rustad 2006). In addition, changes in community 

composition would be expected because plant species exhibit markedly different 

response patterns to climate change (Ackerly and Bazzaz 1995). However, the 

acclimation mechanisms and the changes in vegetation composition were left out from

our present study, which was complicated to multiple treatment levels of multiple glo

change factors. The further research is needed to incorporate them into our TECO model.

The expected results will improve ecological forecasting and inform decision maker
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managing the conditions leading to nonlinear responses and subsequent changes to 

ecosyst

n 

response 

, NEE, 

ss 

f two- or three-factor changes in temperature, CO2, and 

precipi . 

, 

se 

hould be 

ses 

at the Office of Science, US Department of Energy, Grants No.: DE-FG03-99ER62800 

and DE-FG02-006ER64317. 

em services. (Carpenter et al. 1999, Scheffer et al. 2001).  

 

5.5. Conclusions 

Using the TECO model, we assessed nonlinear patterns in response to individual 

and simultaneous changes in temperature, CO2, and precipitation on ecosystem carbo

and water dynamics of a grassland ecosystem. Our results show different patterns of 

ecosystem nonlinearity, which were parabola, asymptotic, and threshold-like in 

to individual changes in temperature, CO2, and precipitation, respectively, for NPP

and Rh. For runoff and ET, threshold-like shape was found in response to both 

temperature and precipitation anomalies, while the response to changing CO2 was le

sensitive. The combinations o

tation interactively affected nonlinear curves by changing response patterns (Figs

5.6 and 5.7) and/or shifting points of abrupt changes (i.e., threshold values, Figs. 5.6, 5.7

and 5.8). Our modeling study indicates that a diversity of nonlinear patterns in respon

to different global change factors and effects of combined climate anomalies s

concerned with choosing scenarios of climate change to predict ecosystem respon

and to set up new experiments.  
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Chapter 6 

 

In this work, several ecosystem processes of carbon and water cycling (mainly soil 

respiration) in response to global climate change and land use practice (i.e., clipping) 

were studied using experimental and modeling approaches (Chapter 1, Fig. 1.1). Some 

major findings are listed as follows:  

o o

-term experiment. No significant interactive effects 

ong the experimental factors were statistically found on soil respiration or their 

t for the warming×clipping interaction (p < 0.05) in the 

transien

 

nents, heterotrophic respiration accounted for 

Conclusions and implications 

 

6.1. Conclusions 

 Based on two multifactor manipulative experiments – one long-term with 

warming (2 C) and yearly clipping and one short-term with warming (4.4 C) and 

doubled precipitation (The transient response to clipping was also studied) – in a 

tallgrass prairie ecosystem, the main effects of warming and doubled precipitation were 

significant on soil respiration. Clipping significantly decreased soil respiration in the 

transient study but not in the long

am

temperature sensitivities excep

t study. As a consequence, the interactive effects of warming, clipping, and 

doubled precipitation were minor relative to main effects on soil respiration.  

 Using the deep-collar insertion to partition soil respiration into autotrophic (RA)

and heterotrophic (RH) compo
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approximately 66% of soil respiration over the six years in a grassland ecosystem. 

Warming significantly stimulated soi  its components throughout the 

duration of experiment. Yearly clipping significantly reduced soil respiration in the last 

two years and heterotrophic respiration in all the four years, while there was no 

significant clippin early clipping 

n soil respiration and its components did not result in significant changes in RH or RA 

arent Q10 values of soil respiration was slightly lower under 

warm

the control. In addition, the apparent Q  values for R  were higher than those for R  

istinctly much greater than interannual variability 

for soil respiration and its components. Yearly clipping decreased the interannual 

of annual soil respiration was not related to fluctuations in precipitation, suggesting that 

important than annual precipitation. 

 

 that 

nt, 

e. BGB to 

AGB ratio and rain use efficiency (RUE) linearly decreased with increasing 

precipitation due to less plant allocation to roots and high biogeochemical constraints 

l respiration and

g effect on RA. However, the effects of warming and y

o

contribution. The app

ing (p>0.05) and reduced considerably by clipping (p<0.05) compared to that in 

10 A H

and soil respiration.  

The seasonal variability was d

variability of soil respiration, while warming did not affect it. The interannual variability 

rainfall distribution or severe drought over seasons, especially growing season, is more 

 The transect study examined patterns of biomass, litterfall, and soil respiration

in southern Great Plains grasslands along a precipitation gradient. Our results show

aboveground biomass (AGB), standing litter (ST), surface litter (SU), and soil 

respiration often linearly increased with an increase in precipitation along the gradie

although belowground biomass (BGB) and total biomass did not largely chang
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(i.e., nutrients or light), respectively, at mesic sites of the gradient. The one-year 

precipitation before samplings (OYP) had better correlations with biomass, litterfall, 

soil respiration than mean annual precipitation (MAP). Soil respiration was not only 

affected by precipitation, but also regulated by litterfall in fall and winter and by

spring, which were mainly controlled by precipitation.  

 Using a terrestrial ecosystem (TECO) model, I examined nonlinear patterns of 

ecosystem responses to changes in temperature, CO

and 

 AGB in 

y or in 

y, for net primary production (NPP), net ecosystem exchange of 

CO2 (N

 

 from 

alized 

2, and precipitation individuall

combination. The modeling results show that nonlinear patterns were parabolic, 

asymptotic, and threshold-like in response to temperature, CO2, and precipitation 

anomalies, respectivel

EE), and heterotrophic respiration (Rh). Runoff and evapotranspiration (ET) 

exhibited threshold-like pattern in response to both temperature and precipitation 

anomalies but were less sensitive to CO2 changes. The combined two- or three-factor 

changes in temperature, CO2, and precipitation considerably influenced nonlinearity of 

ecosystem responses by either changing patterns and/or shifting points of abrupt 

changes. 

6.2. Implications for future work 

 The minor interactive effects observed in this study suggest that results

single-factor experiments are useful in informing us of potential responses of soil 

respiration to multi-factor global change, at least in grassland ecosystems. It is yet to be 

examined whether the conclusion on minor interactive effects could be gener

across ecosystems. Regardless, this study posed testable hypotheses, which can be 
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examined in other ecosystems. Furthermore, the statistical methods used in this st

rigorously detect interactive effects of global change factors are useful for other multi-

factor experiments.  

 The higher apparent Q

udy to 

10 values came from the field 

experim

oratory 

ts 

lts 

 

 to verify whether the conclusion could be generalized across ecosystems.  

 The linear relationships between precipitation, biomass, litterfall, and soil 

portant driver in shaping ecosystem 

func n

re 

bon 

10 values for RA than RH and soil respiration were found 

in our study as well as some other studies. However, the Q

ents, which were often confounded by other co-varying factors, and have not 

been carefully examined for intrinsic Q10 values. To clearly understand the mechanisms, 

it is imperative to carefully design manipulative experiments in both field and lab

to eliminate the effects of confounding factors.  

 The significant effects of warming and yearly clipping on soil respiration and i

components did not result in considerable changes in RH or RA contribution. The resu

suggest that RH or RA contribution to soil respiration will not change largely in the

changing climate. Although our results may largely simply the prediction of RH or RA 

contribution in the future, it remains unknown how other ecosystems responded to 

global change on RH or RA contribution, Therefore, the further studies should be 

conducted

respiration indicate that precipitation is an im

tio ing by controlling soil water dynamics, which directly affects vegetation 

production and litterfall, and indirectly regulates soil respiration. If our findings we

incorporated into current biogeochemical models, this will improve the predictions of 

long-term climate change effects (decades to centuries) on grassland ecosystems’ car

balances.  
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 Ecosystem nonlinearity in response to global change factors suggests that 

cautions should be taken on interpretation of results. Currently, the majority of 

experiments were manipulated in two treatment levels of the gradients for one or two 

factors and there was no informa

ient of temperature, CO2, and 

prec ta

n 

 w

near 

proc e it 

tor 

 

), to verify part of the modeling results, provide technical input to future 

tion on ecosystem nonlinearity along the gradients. 

Linear insertion or extrapolation was inappropriate to explain the results under other 

conditions of the same climate change factor.  

 Diverse nonlinear patterns of ecosystem carbon and water dynamics in response 

to individual changes in temperature, CO2, and precipitation indicate necessary to 

conduct experimental studies with individual grad

ipi tion changes. Although some experiments have been manipulated in the field, 

for example, a continuous gradient of CO2 from 200 to 550 ppmv in central Texas (Gill 

et al. 2002), the range was narrower compared to IPCC projection (668~734 ppmv i

2100, IPCC 2001). Furthermore, the differential responses may occur between the lo -

range and high-range of climate change factors (Figs. 5.4 and 5.5). 

 The combined two- or three-factor anomalies substantially changed nonli

patterns and/or shifted points of abrupt changes on ecosystem carbon and water 

ess s compared to single-factor changes. The substantial changes would make 

difficult to infer ecosystem responses to multifactor global change from single-fac

experimental results. However, it is impossible to conduct multisite, multifactorial

experiments with a range of treatment levels due to ecosystem complexities and cost 

limitation, but some experiments still should be manipulated, such as the Boston-Area 

Climate Experiment (BACE) in a New England old-field ecosystem (under 

construction
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experim ng 

ponses 

ental design and theoretical development, and improve ecological forecasti

and inform decision makers on managing the conditions leading to nonlinear res

and subsequent changes to ecosystem services. 
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