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Chapter 1

Introduction

1.1 The Difficulty of Predicting CO2 Corrosion

The extent of CO2 corrosion depends on the action of many parameters:

temperature, pH, partial pressure of C02, water analysis, flow conditions, protective

films, etc. Many experimental studies have been performed on the effect of individual

parameters on CO2corrosion (de Waard and Milliams, 1975; Dugstad, 1994; de Waard

and Lotz, 1993). On the basis of these studies, the effects of individual parameters are

summarized as follows:

• pH - Increased pH lowers the solubility of FeCO), giving a higher

probability for protective film formation. Higher pH also results in a lower

corrosion rate because of the decreased availability of hydrogen ions.

• CO2 - Higher CO2 partial pressure increases the corrosion rate because the

pH is reduced.

• Temperature - Higher temperature increases the corrosion rate because the

electrochemical reactions are accelerated. However, precipitation rates also

increase. Thus, protective films can form more easily at higher temperatures

and can lower the corrosion rate.
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• Protective films - FeC03 films are considered to be protective in many

cases. They reduce the corrosion rate by limiting the transport of chemical

species involved in the electrochemical reactions.

• Flow - Higher flow rates usually increase the corrosion rates by increasing

the transport rates of reacting species to the metal surface by preventing or

destroying protective films.

Beyond the diversity of environmental conditions, the C02 corrosion of steels is basically

a very localized corrosion, which appears as pits and gutters of various sizes (Crolet,

1983).

For more than 50 years, laboratory experiments and theoretical models have been

challenged to accurately represent general corrosion of steels by CO2in oil industry

production waters (Trethewy, 1993). Except for extreme cases of erosion-corrosion, it

appears that a corrosion product layer always covers bare metal surfaces after long

exposures to aqueous CO2solutions. This observation is clear from field experience, but

it is also probably true for laboratory experiments. If bare surfaces exist after sh~rt

exposures, an increase in the duration of the exposure has always lead to an increased

probability of observing corrosion product layers (Dugstad, 1992). Typically, exposures

have never exceeded one month in laboratory tests (Dugstad, 1992). For example,

corrosion by H2S can take considerable time to develop and may go unnoticed in short­

term laboratory tests (Greco and Wright, 1962). Therefore, the effect of time on CO2and

H2S corrosion must be recognized as a phenomenon in its own right, especially when

extrapolating laboratory data to field data.
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Field experience also reveals the protective behavior of certain corrosion product

layers. This is not merely the absence of corrosivity in the medium, but an absence of

corrosion under extremely aggressive conditions that typically cause rapid and deep

attack immediately adjacent to the protected areas. During well-servicing operations,

observations reveal that the real corrosivities are considerably lower than those measured

in the laboratory (Crolet, 1993~ Trethewy, 1993). Therefore, empirical correction factors

reconcile experimentally found corrosion rates to the rates found in the field (de Waard

and Lotz, 1993). In particular, most corrosion "prediction" equations work reasonably

well when corrosion exists, however they fail when corrosion does not occur (Crolet,

1993).

1.2 The Importance of Predicting CO2 Corrosion

The uniform corrosion rate of steel increases with increasing C02 concentration.

Early literature (Bacon et al., 1943, Hackerman et al., 1949~ Bilhartz et al., 1952;

Greenwell, 1952) attributes this increase in corrosion rate to lowering of the solution pH

with CO2 addition. On the basis of correlations between field observations, studies

carried out in the 1950's emphasized the effect of CO2 partial pressure on the corrosivity

of a well through the acidizing of the water phase by carbonic acid (Bacon et al., 1943;

Bilhartz et aL, 1952). While this decrease in pH is a significant factor, it has been shown

that C02 has a more direct role in corrosion, and that corrosion rates are generally higher

in CO2 solutions than in solutions of completely dissociated acids of the same

concentration (de Waard and Milliams, 1975).
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At high CO2 partial pressures, the uniform corrosion rates presented in much of

the literature are extremely high. To combat these high corrosion .rates the use of alloyed

production tubings has increased. However, the cost involved in placing alloyed tubings

in all wells is not economically feasible (Timmins, 1996). For C02 corrosion in the oil

and gas industry alone, the simple alternative between low alloy and stainless steels

represents differences in investment costs of billions of dollars (Trethewy, 1993).

Considering the significant cost associated with the replacement of corroded material, a

method of predicting the corrosivity of a well is significant.

1.3 The Present CO2 Corrosion Prediction Model

Empirical models, based on experimental studies (de Waard and Milliams, 1975;

de Waard and Lotz, 1993; Nesic et al., 1995; Tewari and Campbell, 1979; Trethewy,

1993) are difficult to extrapolate and may have unrealistic limits that do not represent the

full gamut offield conditions (de Waard and Milliams, 1975; de Waard and Lotz, 1993).

These models have been the main tools used by industry to predict corrosion rates.

However, they require a limited number of parameters such as partial pressure of C02, pH

and temperature to calculate the corrosion rate. In addition, many of these models assume

that mass transfer effects are negligible.

A deterministic mass transfer model of uniform C02 corrosion rates in downhole

natural gas well environments, DREAM, has been developed for annular flow (Liu, 1993;

•Sundaram et al., 1996). This model is composed of recent work in chemistry,

thermodynamics, mass transfer, and fluid flow. Recent research has been focused on the

improvement of the thermodynamic and pressure drop correlations of this model
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(Sundaram et al., 1996). Although model predictions of corrosion rates compare fairly

well with caliper surveys obtained from welJs with widely varying corrosion

environments, the ability of the model to predict corrosion rates has been somewhat

insensitive to improvements in these two areas. Therefore, a new approach to diffusion

layer mass transfer modeling was taken.

1.4 The Purpose of This Work

The calculation of corrosion rates is dependent upon the temperature, pressure,

amount of species diffusing to the surface, and the kinetic parameters at the surface. The

primary purpose of this work is to:

• Survey previous work done on improvements to DREAM (Liu, 1991;

Sundaram, 1996).

• Evaluate the current mass transfer model in DREAM and determine the

deficiencies of the modeL

• Compare empirical fonnulations (de Waard and Milliams, 1975; de Waard

and Lotz, 1993; Nesic et al., 1995; Tewari and Campbell, 1979; Trethewy,

1993) to those relying on fundamental principles and incorporate the best

available correlation into DREAM.

• Ensure that the reactions of the active species at the wall are taken into

account in the diffusion layer model.
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Chapter 2

Literature Review

2.1 Electrochemical Reaction Mechanisms of CO2 Corrosion

The unifonn corrosion of iron exposed to C~ dissolved in water proceeds by

coupled electrochemical reactions. When no solid reaction products are formed, the

overall anodic dissolution reaction can be written as:

Fe~ Fe2+ + 2e- (1)

This reaction appears to proceed through intermediates involving hydroxyl ions (OR") in

such a way that the rate of anodic dissolution decreases with decreasing pR from pH 5 to

pH 1 (Weickowski and Gahli, 1983). For example, Davies and Burstein (1980) proposed

the following mechanism for the anodic dissolution of iron:

Fe + 2H20 ~ Fe(OHh + 2W + 2e-

Fe + RC03" ~ FeC03 +W + 2e­

Fe(ORh + RC03-~ FeC03 + R20 + OR­

FeC03+ RC03-~Fe(C03h 2- + W

The rate determining step is the hydrogen evolution reaction, Equation 3.

The usual cathodic reaction is hydrogen evolution as expressed as:

2W +2e- -7 H2

6

(2)

(3)

(4)

(5)

(6)



The increase in the rate of this reaction with decreasing pH more than offsets the pH

dependence of the reaction in Equation 1 (Weickowslci and Gahli, 1983), and the net

effect is that corrosion rates decrease with increasing pH from pH 4 to pH 6.

Carbon dioxide primarily affects the cathodic reaction rate. Since hydrogen

evolution is rate limiting, de Waard and Milliarns (1975) proposed that hydrogen

evolution could occur directly from carbonic acid as follows:

(H2CO 3)ads + e- ~ Hads + HC0 3·

HC03- +W~ H2CO 3

Whereas Schmitt and Rothmann (1984) proposed a non-electrochemical reaction

mechanism with the rate detennined by, Reaction 10:

(C02)soln~ (C02)ads

(C02)ads + H20 ~ (H2C03)ads

(H2C03)ads + e- ~ Hods + (HC03-)OOs

(7)

. (8)

(9)

(10)

(11)

Hydrogen atom combination to H2 can occur via conventional routes. The overall

reaction is the same as Equation 6 and proceeds in two steps. For example, the Volmer­

Heyvrovsky mechanism can be applied to most metals (Gray et a1., 1989):

where Hads is adsorbed hydrogen on the surface. Since the hydrogen adsorbs to the

surface before reacting, the adsorbed hydrogen can be said to "catalyze" the hydrogen

evolution reaction.

7
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2.2 Physical Model

The downhole system in a gas well can be physically described by examining the

corrosion process as follows (Sundaram et al., 1996): Natural gas with or without

formation water leaves the reservoir and enters the tubing at high temperature and

pressure (see Figure 1). Water condensation may occur at some upper position in the well

due to temperature and pressure gradients. Under most circumstances, gas flow rates are

relatively high, and the flow regime is classified as annular, two phase flow. The

corrosive gases, CO2 and H2S, solubilize and dissociate in the liquid film and are

transported through the turbulent film layer to the diffusion layer. In this layer, the mass

transfer is dominated by diffusion and ion migration. Reactive species and dissolved

gases (HC03", HS", CO2, and H2S) diffuse and migrate through the diffusion layer to the

tubing wall. The reactive species and dissolved gases (RC03', HS', C02, and H2S) react

with ferrous ions at the wall to form a corrosion product layer either through a direct

formation reaction or through precipitation. This corrosion product layer remains

attached to the wall forming a protective layer. Disruption of this protective layer can be

caused by erosion and/or dissolution and is strongly influenced by the structure of fluid

flow (Trethewy, 1993).

2.3 Mass Transfer Models

Processes in which mass transfer is enhanced by chemical reaction are frequently

encountered in the process industry (Littel et al., 1991). The chemical reactions that can

occur in such processes range from a single irreversible reaction to multiple parallel and

consecutive reactions. Well-known examples are the amine gas-treating processes where

8



the acid gas components C~ and H2S are consumed by a chemical reaction in the

alkanolamine solution during the absoxption step and subsequently released by the reverse

reaction (Versteeg et aI., 1989).

9
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Several numerical models th.at describe gas absoJ'Ption accompanied by chemical

reaction have been described in the literature (Kvarek.vaI, 1997; Comelisse et al., 1980;

Versteeg et al., 1989; Versteeg et al., 1990; Bosch et al., 1989; Littel et al., 1991) .

KvarekvaI (1997) developed a model that simulates the conditions in the stagnant layer

close to a dissolving iron surface, where heterogeneous reaction of W ions and H2C03

occurs. One-dimensional diffusion was calculated using a finite element method.

Homogeneous chemical reaction rates are determined from the rate constants and

differential rate expressions. The assumptions of this model include the following:

• The cathodic rate of reaction is controlled by the transport of W ions and

carbonic acid.

• . The flux of molecules is exclusively caused by diffusion.

• The diffusion is one-dimensional, and occurs only in the diffusion layer.

• Diffusion of each species involved (H+, H2C03• CO2, HC03', col', OH' and

Fe21 is independent of the others.

However, electroneutrality criteria are not strictly applied to each point in the diffusion

layer; the presumed presence of a supporting electrolyte is assumed to depress the electric

field set up by the diffusing ions. The mathematical method applied to this model was the

sequential explicit space point method. Concentration changes caused by one­

dimensional diffusion were calculated for all species by the following procedure:

• During the time ~t, the concentration of an arbitrary ion or molecule at the

point i in the diffusion layer changes from Cj to C'i.

Cj'=Ci+~Cj

11
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• The magnitude of the change is ACj, and depends on the concentrations of the

particular species at the adjacent points i-I and i +1.

(15)

where 0 is the diffusion coefficient of the specific ion or molecule and h is the

distance of each step in the numerical method.

The model results are strongly dependent upon the time step for unsteady state

predictions. If this time step is too large, the fast r~actions are "degraded" to slower

reactions, thereby, decreasing their weighted effect on the results. A large time step could

also exaggerate the diffusion in the diffusion layer. This model overpredicted corrosion

rates from 25% up to 250%. Consequently, the results of this model are purely

theoretical "worst case" predictions for the given conditions.

Comelisse et aI. (1980) created a mass transfer model for a system involving the

simultaneous transfer of two components from or to a medium where complex, reversible

reactions take place. The specific application, represented in the following equations,

was the simultaneous transfer of COz and HzS into and out of an amine solution.

COz + 2R2NH~ R2NHt + RzNCOO'

The kinetics of this system were obtained from the published literature:

where R is the rate of transfer of C02 into and out of an amine solution.

12
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To reduce the number of parameters and variables, only overall reactions were

considered. The stagnant film model described the mass transfer in the gas phase, as no

reaction occurs in this region. Higbie's penetration theory (Bird et al., 1960) was applied

to the liquid phase mass transfer. The model begins with total species balances and ends

with a total acid balance that states that the accumulation of acid is equal to the net inflow

by diffusion. This model, however is restricted to only a few stoichiometric schemes.

One drawback to this approach is that the diffusivities of each species were averaged and

a mean diffusivity was used. The mathematical treatment of this model is as follows:

The equations are fIrst transformed into dimensionless form and then discretized. A

three-point backward-difference numerical scheme is then used to numerically solve for

the mass transfer rates (Baker and Oliphant, 1960; Comelisse et al., 1980). This

numerical method is not only quite involved, but also introduces a large truncation error

into the result (Versteeg et al., 1989). Therefore, the accuracy of this model is subject to

the minimization of this truncation error.

Versteeg et al. (1989, 1990) presented a numerical model that describes the

absorption of a gas accompanied by multiple parallel, reversible chemical reactions.

Their objective to describe the absorption of CO2 and H2S in alkanolamine solutions laid

the framework for the reaction schemes modeled. The reaction stoichiometry and the

reaction rate expressions were of a generalized form:

A(g) + )bB(l)~i'cC(l) + 'YdD(l)

Ra =k m,n,p.q [A]m[Bt[C]p[D]q - k r.s,t,v [AnBt[C]t[Dt

(19)

(20)

Versteeg et al. (1989) used Higbie's penetration model to describe the system in the

liquid phase. Material balances for each species yielded four nonlinear partial differential

13



equations (POEs). The concentration profiles are time dependent and were developed as

a system of coupled nonlinear POEs. These POEs were subject to specified initial and

two-point boundary conditions.

The model of Versteeg et aI. (1989) satisfactorily explained the experimentally

obtained absorption rates of CO2and H2S in aqueous solutions of aIkanolamines. Bosch

et al. (1989) successfully applied the same model to interpret literature data for the

absorption of CO2 in sterically hindered amine solutions. However, the approximations

made are of restricted use and can be applied to only a limited number of reactions.

Furthermore, erroneous results occur when the linearization technique used is applied to

reversible reactions.

Some mathematical models that describe simultaneous absorption of CO2 and H2S

in an alkanolarnine solution are presented in the literature ( Haimour and Sandall, 1983;

Bosch et al., 1989). The models of Haimour and Sandall (1983) describe the absorption

of H2S and C02 in secondary and tertiary amine solutions, in which interacting liquid

phase reactions were taken into account. Haimour and Sandall (1983) assumed

irreversibility and specific reaction rate expressions for the reactions involved, which

suggests that these models are of limited use.

The penetration theory model presented by Bosch et aI. (1989) describes

simultaneous absorption of H2S and CO2 in mixtures of atkanolamines. Bosch et

al.(1989) assumed reversibility, generalized reaction rate expressions, and generalized

stoichiometry. Therefore, the general applicability of their model is limited only by the

type of reactions modeled. However, some parallel and consecutive reactions were not

taken into account in this model. Ionic species were involved in all reactions which take

14



place in aqueous amine solutions, but this model did not account for the concentration

changes of these species.

Most models presented in the literature have not accounted for the coupling of the

diffusion of ionic species. Diffusion of ionic species has been modeled similar to that of

neutral species and electroneutrality maintained by applying a mean ion diffusivity.

However, Littel et al. (1991) developed a numerical model based on Higbie's penetration

theory to study the effect of the coupled diffusion of ions and parallel and consecutive

reactions on the simultaneous absorption of H25 and CO2 in aqueous solutions of

alkanolamines. The following reactions describe the system:

CO2+ R3N + H20 ~R3NW + HC03' (21)

CO2+2R2NH R2NJIIT + R2NCOO' (22)

CO2 + OH-~HC03- (23)

H25 + OH- = HS- + H2O (24)

HC03' + OK =CO? + H2O (25)

R3NH+ + OH- =R2NH + H2O (26)

H30+ + OH- = 2H2O (27)

HS· + OR- = 52- + H2O (28)

Littel et al. (1991) believed that the mass transfer rates of ionic species is greatly affected

. by the reverse reaction rates. Littel et aI. (1991) also held that ionic species do not diffuse

independently of each other, rather that the diffusion of ions is coupled to maintain

electroneutrality throughout the system. The Nernst-Plank equation describes this

coupling of the diffusion of ionic species.
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Littel et al. (1991) compared their model with two of their les rigorous models.

One of these less rigorous models described the diffusion of ionic species by assuming

equal diffusivities for all ionic species, with the same reaction scheme used in the

complex model. The second less rigorous model also assumed equal diffusivities, but

took into account only the following direct reactions of CO2 and H2S.

CO2 +R~ + H20 ~R3N"lr + HC03-

CO2 + 2R2NH R2NM¥ + R2NCOO-

H2S + R3N = R3NIr + HS­

H2S + R2NH = R2NH2+ + HS-

(30)

(29)

(31)

(32)

Comparing these models they concluded that incorporating all relevant reactions in the

mass transfer model instead of only the direct reactions between CO2 and H2S results

only minor changes absorption rate predictions. However, incorporating the coupling of

the diffusion of ions in the mass transfer model can result in a significant effect on the

mass transfer rate of up to 20% (Littel et al., 1991). The model was solved numerically

via the discretization technique described by Comilesse et aI. (1980) and is subject to the

same large truncation errors.

The following is a summary of the literature survey:

• Mass transfer models that incorporate the coupling of the diffusion of ionic

species can have a significant effect on the mass transfer rates.

• Incorporating all relevant reactions in the mass transfer model instead of

taking a simplified. view may not be practical.

• The choice of numerical methods may have a significant affect on the results.

For example, the large truncation errors which result from the method

16



described by Comelisse et al. (1980) are introduced into the solution. If this

truncation error is larger than the accepted error in the calculation, it would

not be wise to use this numerical method. Therefore, careful choice of a

numerical method is essential in obtaining credible concentration profiles.

17



Chapter 3

Diffusion Layer Mod.eling

3.1 Existing Diffusion Layer Model in DREAM

To model the mass transfer in downhole systems, expressions were developed to

account for the flux of corrosive species through an annular film. The current mass

transfer model in DREAM considers molecular diffusion and ion migration as the

dominant mechanisms of mass transfer in the diffusion layer and incorporates both the

concentration and electrical potential gradients in its formulation. A mass balance for a

species in the diffusion layer can be written as (Sundaram et aI., 1996):

d
2
ci d ( dCl»

D..s<-'-2 +z.u.p-. c.-. =0
~Jl dy 1 1 dy 1 dy

where

D.
u.=_1

I RT

(33)

(34)

There are two types of boundary conditions for Equation 33 at y* =8: (1) the active wall,

at which no corrosion product has formed; and (2) the non-active wall, in which a

corrosion product has formed on the wall. For each of the two types of boundary

conditions, there are two possibilities that can occur: (i) the species reacts at the wall and

(ii) the species is nonreactive.

The second boundary condition at the turbulent layer-diffusion layer interface is

given as (Sundaram et al., 1996):

18



Cj = Cisd at y* =0. (35)

If no corrosion product is formed (Newman, 1991),

dC j d<l>
D 1-'+z.u.Fc.-. =0

mo dy 1 I I dy

for nonreactive species, and

dc. d<l> i.
D l-~+z.u.Fc.-. =_1

mo dy I I 1 dy oF

for. reactive species (Sundaram et al., 1996; Newman, 1991).

Equation 33 with boundary condition 35 and either 36 or 37 is a system of

(36)

(37)

nonlinear equations for which no analytical solution is known (Sundaram et al., 1996)

The system of equations which constitute the corrosion model are readily solved

wi-th the exception of the set of nonlinear differential equations resulting from the

diffusion layer model. The electrical potential term in Equation 33 is an implicit function

of concentration and can be eliminated by using the zero net current flow condition

(Newman, 1991). The flux of any species through the diffusion layer can be expressed as

(Sundaram et al., 1996):

Applying the net current condition yields

L I dc j I 2 d«I>
z.J. =0=- D.z-. - z.u.Fc.-.

. J J . J J dv . J J J dy
J J" J

Rearranging Equation 39 gives

19
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Substituting Equation 40 into Equation 38 yields

Introducing dimensionless length variables,

..
yx=­
80

=0

(40)

(41)

(42)

and taking the derivative of the bracketed tenn with respect to y* results in (Sundaram et

al.,1996):

(43)

where

(44)

dc
+-'

dX
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This model has been solved by a discretization technique using a second order flnite-

difference method (Liu, 1991; Cornelisse et al., 1980; Versteeg et al., 1989).

Although the existing model takes both concentration and potential gradients into

account, the existing mode] and software has three problems. First, as stated previously,

there are large roundoff errors associated with the discretization of this equation.

Therefore, another numerical method was sought.

Second, the corrosion rate (mils per year) is calculated by the following equation

(DREAM 3.1)

(45)

where 8.89 x 108 is a conversion factor from mol m-2
S·1 to mils per year.

The first term of Equation 45 is always calculated incorrectly to be zero, since the

concentration gradient in DREAM is always calculated as zero. The concentration

gradient in the diffusion layer is zero as a result of the following:

• The concentration at each point in the diffusion layer is not calculated, rather,

the value of the concentration at the turbulent layer-diffusion layer boundary

is incorrectly assigned to the remaining points in the diffusion layer. Hence,

there is no concentration gradient in the diffusion layer and the first term on

the right hand side of Equation 45 is always erroneously zero.

• Secondly, the reaction flux at the wall of the reactive species is given by the

following equations (Sundaram et al., 1996) based on the experimental data of

de Waard and Milliams (1975) :
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(
-5385)

Jr.C0 2 = -525exp T Pco2
(46)

(47)

Since the concentration does not change at each point in the diffusion layer, as

previously mentioned, Equations 46 and 47 erroneously return only one value

throughout the diffusion layer.

The second tenn on the right hand side of Equation 45 does not significantly

contribute to the corrosion rate and, therefore, the corrosion rate remains zero.

Last, the software does not return a value of zero for the corrosion rate because the labels

"Corrosion Without Film" and " Corrosion With Film" were switched.

Therefore, a new approach to modeHng mass transfer in the diffusion layer was

initiated.

3.2 Proposed Diffusion Layer Model Development

The development of the diffusion layer mass transfer model follows Newman's

(1991) development of the basic equations for the analysis of electrochemical systems.

The flux, Nj, represents the number of moles passing per unit of time through a unit area

oriented perpendicular to the velocity. In dilute solutions, the velocity of migration of an

ion can be generalized to express the flux density of an ionic species as

N. = cv· = -zu.Fc.v<l>- D.Vc. +c.v.
1 I 1 I 1 1 J J I

where,

D
u.=-'

I RT
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The first term on the right-most side of Equation 48 represents transport by migration.

The second term represents transport by diffusion and is proportional to the gradient of

concentration. The third term represents transport by convection. Since the diffusion

layer is considered to be stagnant, migration and diffusion become the dominant modes of

transport (Newman, 1991).

Using a species continuity equation,. and taking into account the effect of the

electrostatic potential gradient on the diffusion of ionic species, the following differential

equation was developed by Littel et aI. (l991) for -each component i:

Under the assumption of steady state, Equation 51 becomes

where <I> represents the electrostatic potential gradient which couples the diffusion of

ionic species. The potential can be expressed as a function of ion concentrations and

diffusivities (Newman, 1991; Litte] et al., 1991) as follows:

Substitution of Equation 52 into Equation 51 gives

d2c. dn--;=-z.D-
I dy I J dy
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Expanding the first term on the right hand side of Equation 53 and introducing

dimensionless length variables from Equation 42, results in

ct2c.
D-2'=zD

I dX I I
(54)

de+_1
dX

To this point, the derivation of Equation 54 is similar to that of the existing model in

DREAM (see Equation 44) except for the reaction term. To simplify Equation 54, let

(55)

NC

0'1 = I,ZjD j Yj2
j=1

NC

0'2 =LZ~DJYjl
j=1

NC

0'1 =I,Z~DjYj2 .
j=J

Substituting Equations 55-58 into Equation 54 gives
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(57)
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Further expansion gives

In order to eliminate the second derivative on the right-hand side of Equation 54, the

summation in Equation 60 must be separated into

Substituting Equation 61 into Equation 60 gives

[
1_(ZiYilJ(Z.D.)]dYi2 _ ZiYiI ~ z.D. dYj2 -z.. ~+z.. (J'\<J 3 =0

(J' I I dX (J' ~ J J dX .Y12 (J' ,Y,J (J'2
2 2 J"" 2 2

(60)

(61)

(62)

The first set of boundary conditions for each component i at the turbulent layer-diffusion

layer is given as follows:

Cj(X) =Ci.bulk atX=O (63)

The second set of boundary conditions is classified into two categories: (i) those for

nonreactive species, and (ii) those for reactive species and is given by the following

equation (Newman, 1991, Littel et al., 1991).

At X =~;

( )
Z D F d<1> {o F . .D. <1>(X)c. (X) +-'_._i__- C.= or nonre~ctlves~ecles

J J RT dX' DR; For reactIve specIes
(64)

The species charge, Zi, and temperature, T, are constants. The values for D i were obtained

from the turbulent layer calculations (DREAM v.3.1). The bulk concentrations used for

the first set of boundary conditions were found from the turbulent-diffusion layer

boundary.

25



-

Equation 62 was solved numerically as a two-point boundary value problem

through a shooting method using a fIfth order Runge-Kutta method with a truncation error

of Lih5
, and a Newton-Raphson convergence method (Press et al., 1997). The flux

calculated in the turbulent layer model was used as an "estimate" for the fIrst iteration.

3.3 Determination of the Boundary Conditions for Reactive Species

The boundary condition, Ri in Equation 64, is nonzero for the reactive species,

Fe2
+, He03-, and HS-. There are two methods of calculating the flux at the wall for the

reactive species.

Method I. The following reactions are assumed to occur on the metal surface for

this model (de Waard and Milliams, 1975, Morris et al., 1980, Liu, 1991, Sundaram et al.,

1996), the:

A similar reaction can be written for H2S:

2H2S + 2e-~ H2 + 2HS·.

(65)

(66)

Sundaram et al. (1991) modified the de Waard and Milliams (1975) flux equation for CO2

and included a CO2 partial pressure correction:

(67)

Similarly for H2S (Sundaram et al., 1991),

(68)

The Fe2
+ flux can be found from the contributions from both the CO2 and H2S in

the system (Sundaram et aI., 1996).
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(69)

If there is no H2S present, only CO2 contributes.

Although this method is sensitive to temperature, only temperature and partial

pressures of CO2 and/or H2S are used; no pH corrections were made to this equation.

Therefore, it is insensitive to both the pH and errors in the water analysis. The errors in

the water analysis will, however, be reflected in the bulk properties via Equation 50.

Method II. The reaction tenn at the wall, Ri , can also be found from the reaction

current density (Liu, 1991; Bockris and Reddy, 1970; Newman, 1991). The Butler-

Volmer expression (Bockris and Reddy, 1970; Newman, 1991) can be applied to kinetics

of system reactions. For the anodic reaction, (Fe -7 Fe2
+ + 2e-),

i, = i.n exp(o:.Fl1. / RT)

where Tla =Eeorr - Ea, and for the cathodic reaction, (2W + 2e- -7 H2),

where Tle = Eeorr - E,.

(70)

(71)

For the anodic reaction, the equilibrium potential can be derived from the Fe2
+/Fe

electrode reaction which has an equilibrium potential (Bockris and Reddy., 1970)

(72)

The equilibrium potential at the cathode can be calculated as (Bockris and Reddy, 1970):

(73)

The rate of corrosion of a metal is given directly by the rate of metal dissolution.

Therefore, the corrosion current is equal to the metal-dissolution current.

27



(74)

If it is assumed that the cathodic and anodic reactions have equal surface areas over

which these reactions occur, the following relation is true (Bockris and Reddy, 1970).

(75)

This assumption is applicable to a metal corroding by a Wagner-Traud mechanism

(Bockris and Reddy, 1970). The essence of the Wagner-Traud mechanism is that, for

corrosion to occur, the electron-sink and electron-source areas o~ the corroding metal do

not have to be spatially separated. Therefore, impurities or other surface imperfections

can be present, but are not required for corrosion to occur. The necessary and sufficient

condition for corrosion is that the metal dissolution reaction and some electronation

reaction proceed simultaneously at the metal-environment interface (Bockris and Reddy,

1970).

By knowing En and Ee and the other parameters in Equations 57-60, Eeorr can be

calculated by substituting Equations 70-73 into Equation 75 thereby giving ia and ie, the

reaction current densities:

(76)

(77)

(78)

(79)
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E E 1n(ico Pc ( E )
aJrr = a + (. \,. ECO" - c

In\loo Po

E In(ico )-xc E + In(ico )-xc E = E
carr - InC· \,. Carr I ( \,. c 0

lao Po n\ioo Po

vaiues for iJO (2.00 x lO'7rnNcm2
) and icc (4.00 x 1O-6rnNcm2) were obtained

(80)

(81)

(82)

(83)

(84)

from Gray et al. (1989) and Morris et al. (1980), respectively. Values for a.a and au were

obtained from Newman (1991). The reaction current density is directly proportional to

the to the reaction flux and units can be easily converted from A/cm2 to moles/m2 s as

follows (Newman, 1991; Bockris and Reddy, 1970):

i rnA I mole ( lOOcm)2 A mol
nF = cm2 x 96500 A.s x ill x l000mA = m2 .s·

3.4 Comparison of Boundary Conditions

Concentration profiles for Fe2
+ and HC03" resulting from each method of

(85)

determining boundary conditions were obtained for three temperatures: 1500f', 2000f', and

300°F, which represent the wellhead, middle and bottomhole temperatures, respectively.
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The concentration profiles for Method I were then compared to those of Method ll.

Figures 2-5 illustrate the results.
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In Figures 2, and 4, the concentration of ferrous ion increases while moving

toward the wall. The concentration profIles from Method I (Figure 2) and Method n

(Figure 4), exhibit a change in the concentration profile with respect to temperature. The

concentration of iron is identical for the first two-thirds of the diffusion layer for the first

two temperatures evaluated. However, the resulting concentration of iron at the wall

varies with respect to temperature: the highest concentration of iron corresponds to the

lowest temperature evaluated. Figures 2 and 4 show that the concentration of ferrous ion

decreases when moving down a well. Therefore, the concentration of ferrous ion

decreases with increasing temperature.

In Figures 3 and 5, the concentration of bicarbonate decreases while moving

toward the wall. The concentration profile for Method I (Figure 3) shows only a slight

change in concentration of HC03' with respect to temperature. The concentration profiles

for Method II, (Figure 5), show a slightly greater change in the concentration of HC03'

with respect to temperature than for Method I. However, both Method I and Method II

returned virtually the same concentration profiles for HC03'.

In summary, Method II for determining boundary conditions results in more

realistic concentration profiles in the diffusion layer for the ferrous ion. As mentioned

before, Method II yields a lower concentration of ferrous ion for higher temperature,

whereas Method I does not. Therefore, the complete diffusion layer model includes

Method II; evaluation of the boundary conditions via current density calculations. This

method was also chosen because it relies on fundamental principles in its derivation,

whereas, Method I is an empirical formulation used to fit laboratory data.
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Chapter 4

Results

4.1 Comparison of Corrosion Rates

The proposed diffusion layer model, with boundary conditions calculated via

Method n, was used to calculate the corrosion rate for three actual wells from the same

field using data from caliper surveys obtained through regular well maintenance. These

caliper surveys showed no clear trends in corrosivities. rather scattered pitts concentrating

on the upper portion of the wells. The cases studied are for gas wells that had been in

production for a period of time and had never been treated with inhibitors (Sundaram et.

al. 1996). In all the cases, low carbon steel was used as the tubing material. It should be

noted that this model development is based on the assumption of uniform corrosion

which rarely occurs. Therefore, in this sense a direct comparison cannot be made.

However, the model should give a practical guide to the prediction of corrosion rates.

Case 1. The upper portion of the well in Case 1 is considered corrosive. In particular,

the concentrations of carbon dioxide and dissolved solids are high. These high

concentrations of corrosive species combined with significant water production provides

an environment conductive to corrosion. Field data indicate that corrosion was observed

to begin around 1800 m. Below 1800 m, the caliper survey reported corrosion rates

below the detection threshold of 200 Jlm/yr. Table 1 gives the gas well conditions for this

case.
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Table 1
Well Specifications for Case 1

Well Conditions Constituent ppm Component Mole %

Water Production 28 BID Sodium 6490 Methane 90.94
Gas Production 2150 MSCFD Calcium 298 Ethane 4.37
Wellhead Magnesium 38 Propane 1.14

Temperature 130 of Barium 4 Isobutane 0.27
Pressure 1890 psia Strontium 0 n-butane 0.23

Bottomhole Potassium 0 Isopentane 0.13
Temperature 290°F Iron 36 n-pentane 0.08
Pressure 4000 psia Chloride 10100 Hexane 0.11

Sulfate 111 Hexanes + 0.27
Depth 9700 ft. Carbonate 0 Nitrogen 0.25
Tubing ID 2.441 in. Bicarbonate 879 Carbon Dioxide 2.21
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Case 2. The well in Case 2 has a relatively high carbon dioxide concentration of

1.26%. The caliper survey data indicates a moderate corrosion rate in the upper portions

of the well. The gas well conditions for this case are summarized in Table 2.

Case 3. Case 3 was chosen to test the accuracy of the model in a noncorrosive

well. As has been pointed out by Crolet (1993), the accurate prediction of corrosion

includes not only predicting when corrosion will occur, but also predicting the lack of it.

The caliper data showed corrosion rates below the detection threshold of the caliper

device (200 Jlmfyr). Table 3 gives the gas well conditions for this case.

The flux at the wall for these cases was calculated via Equation 85 and converted

to mmlyr by the following equation

yr

mmmol 31536000s cm~ 55.847g lOmm
x x--x x ---

cm2
. s yr 7.8g mol 1cm

(86)

The results of the proposed model were then compared with (i) an empirical model (de

Waard and Milliams 1975), (ii) the values currently calculated from DREAM using the

existing diffusion layer model, (iii) and the field data. The results of this comparison are

presented in Table 4.

Table 4 compares the corrosion rates of each case at three different temperatures,

which represents the top, middle, and bottom of a well. The corrosion rates were

calculated using the previously discussed methods. The field data, as mentioned before,

do not show clear trends in corrosivity. Therefore, Table 4 gives a range encompassing

the variation in the field data.
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All model predictions in Table 4 calculate the corrosion rate in the absence of a

corrosion product layer. Considering the complex phenomena for the downhole

corrosion

Table 2
Well Specifications for Case 2

Well Conditions Constituent ppm Component Mole %

Water Production 27 BID Sodium 6280 Methane 91.6
Gas Production 1352 MSCFD Calcium 454 Ethane 4.39
Wellhead Magnesium 50 Propane 1.18

Temperature 130 OF Barium 2 Isobutane 0.33
Pressure 1440 psia Strontium 0 n-butane 0.25

Bottornhole Potassium 0 Isopentane 0.14
Temperature 290°F Iron 0 n-pentane 0.09
Pressure 4000 psia Chloride 10300 Hexane 0.13

Sulfate 196 Hexanes + 0.33
Depth 9450 ft. Carbonate 0 Nitrogen 0.3
Tubing ill 2.441 in. Bicarbonate 313 Carbon Dioxide 1.26
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Table 3
Well Specifications for Case 3

Well Conditions Constituent ppm Component Mole %

Water Production 124 BID Sodium 127 Methane 90.1
Gas Production 2800 MSCFD Calcium 21 Ethane 6
Wellhead Magnesium 0 Propane 1.68

Temperature 130 OF Barium 2 Isobutane 0.45
Pressure 1440 psia Strontium 0 n-butane 0.34

Bottomhole Potassium 0 Isopentane 0.2
Temperature 290°F Iron 0 n-pentane 0.18
Pressure 4000 psia Chloride 195 Hexane 0.4

Sulfate 0 Hexanes + 0.22
Depth 9700 ft. Carbonate 0 Nitrogen 0.31
Tubing ill 2.88 in. Bicarbonate 60 Carbon Dioxide 0
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process the proposed model gives good estimates for the corrosion of wells in various

environments. All three models show an increase in the corrosion rate when moving

down a well. Although this is incorrect from field experience, the values obtained still

provide a prediction of how corrosive a well will be. The magnitudes of the corrosion

rates obtained using the de Waard and Milliams (1975) model are not realistic. For

example, this model reports that the well in Case 1 would have a maximum corrosion rate

of 1100 mrn/yr.

The model used in DREAM predicted extremely high corrosion rates for all three

cases considered. Since this model is the modified de Waard and Milliams (1975) model

with a partial pressure modification (Sundaram et al., 1996), it is susceptible to the same

dependency on CO2 partial pressure. The model used in DREAM also predicts that the

well in Case 1 is more corrosive than the well in Case 2 which is more corrosive than the

well in Case 3. However, it does not predict when very little corrosion will occur.

For wells with annular flow, the proposed model gives good correlation with the

field data. The corrosion rate predictions for the most corrosive well, Case 1, are slightly

lower than the maximum observed corrosion rate from the caliper survey. However, the

predict~d corrosion rates are well within the range of corrosivities encompassing the field

data. The proposed model shows a significant decrease in the predicted corrosion rate for

Case 3 compared to the values returned by DREAM or the De Waard and Milliams

(1975) model. Therefore, the proposed model not only predicts when a high corrosion

rate is probable, but also when a low corrosion rate will occur. The ability to give good

correlation to field data for high, medium, and low corrosivities is a significant

improvement over the existing model in DREAM. Although the general approach to
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modeling was not changed, two differences exist in the model used in DREAM and the

proposed model. The addition of a reaction tenn in the species continuity equation

allowed for the reacting species at the wall to be considered. Employing the current

density calculations as boundary conditions resulted in corrosion rates closer to the range

observed in the field data than the values currently calculated in DREAM. These changes

produced a model that predicts the corrosion rates very close to the actual field data.
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Table 4
Comparison of Corrosion Rate Predictions

Corrosion Rate (mm1yr)

Case Temperature DREAM de Waard & Proposed Field
Numbe (oF) v.3.1 Milliams (1975) Model Data
r

150 5.7 7.9 0.9
1 200 32 1.9 1.3 0.2-3.6

290 1100 130 3.2
150 2.4 4.9 0.4

2 200 17 20 1.1 0.1-0.80
290 42 43 2.1
150 0.7 1.7 0.4

3 200 4.7 11 0.7 <0.2
290 13 33 1.3
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Chapter 5

Conclusions and Recommendations

5.1 Conclusions

The following conclusions were drawn at the end of this research:

• A mathematical model for modeling the diffusion layer in downhole natural

gas systems has been developed. This model relies on fundamental principles

in its fonnulation and takes into account the reaction of active species at the

wall in the boundary conditions.

• The numerical method used to solve this model relies on a fifth order Runge­

Kutta method and a Newton-Raphson convergence method (Press et al.,

1997). This numerical method results in less round-off error than the second­

order discretization technique presently used in DREAM.

• The proposed model greatly surpasses the de Waard and Milliams (1975)

model in predicting corrosion rates for the downhole wells modelled. .

1. The de Waard and Milliams (1975) model uses bulk concentrations

to calculate the corrosion rate, therefore, there is no need to model

the diffusion layer. However, the proposed model takes into

account the reaction mechanism at the surface and uses surface

concentration to calculate the corrosion rate.

2. The corrosion rates calculated from the proposed model also give

good agreement with field data. Not only is corrosion predicted for
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both medium to highly corrosive wells, but also when low

corrosion occurs.

3. The de Waard and Milliams (1975) equation can only be applied to

systems that have a C~ partial pressure less than 2 bars (de Waard

and Milliams 1975, de Waard and Lotz 1993).

4. The de Waard and MiUiams (1975) equation assumes no mass

transfer effects. This assumption is in error since an increase in

both gas and liquid flow rates in a two-phase flow system will

yield a substantial increase in the corrosion rate.

• As has been stated by Crolet (1993), the accurate prediction of corrosion

includes not only predicting when corrosion will occur, but also predicting the

absence of corrosion. The proposed model not only predicted corrosion for

highly corrosive wells, but also gave good agreement with field data for

downhole wells with low to moderate corrosion.

5.2 Recommendations

• It is recommended that the proposed model be implemented into DREAM.

• It is also recommended to model wells with widely varying conditions such as gas

and water production rates and temperature to obtain the limitations of the model.

• The pH calculation in DREAM is for a non-buffered solution which makes the pH

predictions quite low. Although this should be a point of reex,amination, it does

not affect the results of the proposed model as it is insensitive to the actual pH

calculation.
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• Localized corrosion, in practice, is more difficult to predict than uniform

corrosion but it is also more important. Localized corrosion is also defined as the

partial attack of a metal surface. Caliper surveys indicate that this partial surface

attack appears in the zone of water vapor condensation and near pipe joints and

fittings. Localized corrosion can also occur between pipe and corrosion product

layers. If the periodic up and down liquid film flow causes fatigue in the

corrosion product film, a localized attack can occur. Therefore, in order to fully

model the corrosion in downhole natural gas wells, it would be practical to add a

localized corrosion model.
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Appendix
FORTRAN Code for the Mass Transfer Calculations in the Diffusion Layer
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SAMPLE INPUT DATA

Species Charge Deff(dm~/s) Cio(mol/dm;j) dco/dx
Na+ 1 2.788605E-07 2.822805E-01 0
Ca++ 2 1.655073E-07 7.435130E-03 0
MQ++ 2 1.475011 E-07 0.001563143 0
Ba++ 2 1.770013E-07 2.913329E-05 0
Sr++ 2 1.405434E-07 0 0
K+ 1 4.091067E-07 0 0
Fe++ 2 1.502841 E-07 2.694464E-02 3.314041 E-2
CI- -1 4.247473E-07 2.B49083E-01 0
S04-- -2 2.226431 E-07 1.155528E-03 0
C03-- -2 1.928646E-07 2.703652E-1 0 0
HC03- -1 2.476905E-07 9.679772E-03 1.005385E-2
H+ 1 1.947014E-06 2.551950E-04 0
OH- -1 1.099857E-06 5.051893E-10 0
HS- -1 3.617950E-07 0 0
S-- -2 2.226431 E-07 0 0
CO2 0 3.71100BE-07 5.781635E-02 6.710422E-3
H2S 0 3.118133E-07 0 0

SAMPLE OUTPUT
The output prints out the interval" for which the calculation is performed, xCi), and

then prints out the concentration values, yO)

.10099E-Ol
YO)

.540695E-02

.523952E-03

.000000E+OO

.145666E-04

.000000E+OO

.OOOOOOE+OO

.108986E-02

.55OO70E-02

.OOOOOOE+OO

.991425E-1O

.458581E-03

.686549E-04

.117031E-08

.000000E+OO

.000000E+00

.725198£-02

.000000E+00
.29450E-01
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y(i)

.540695E-02

.523952E-03

.OOOOOOE+OO

.145666E-04

.OOOOOOE+OO

.OOOOOOE+OO

.109169E-02

.55OO70E-02

.OOOOOOE+OO

.991425E-1O

.458028E-03

.686549E-04

.11703IE-08

.OOOOOOE+OO

.OOOOOOE+OO

.725161E-02

.OOOOOOE+OO
.65785E-Ol

y(i)
.540695E-02
.523952E-03
.000000E+00
.145666E-04
.OOOOOOE+OO
.OOOOOOE+OO
.109511E-02
.55OO70E-02
.000000E+OO
.991425E-1O
.456989E-03
.686549E-04
.117031E-08
.OOOOOOE+OO
.OOOOOOE+OO
.72509IE-02
.OOOOOOE+OO

.13695
yO)

.540695E-02

.523952E-03

.OOOOOOE+OO

.145666E-04

.000000E+OO

.000000E+OO

52



-
.110182E-02
.550070E-02
.OOOOOOE+OO
.991425E-1O
.454955E-03
.686549E-04
.117031E-08
.OOOOOOE+OO
.OOOOOOE+OO
.724953E-02
.OOOOOOE+OO

.28212
y(i)

.540695E-02

.523952E-03

.OOOOOOE+OO

.145666E-04

.OOOOOOE+OO

.OOOOOOE+OO

.111550E-02

.550070E-02

.OOOOOOE+OO

.991425E-1O

.450805E-03

.686549E-04

.117031E-08

.OOOOOOE+OO

.OOOOOOE+OO

.724672E-02

.OOOOOOE+OO
.57846

y(i)
.540695E-02
.523952E-03
.OOOOOOE+OO
.145666E-04
.OOOOOOE+OO
.OOOOOOE+OO
.114342E-02
.550071E-02
.OOOOOOE+OO
.991425E-1O
.442332E-03
.686549E-04
.117031E-08
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.OOOOOOE+OO

.OOOOOOE+OO

.724098E-02

.OOOOOOE+OO
ooסס.1

y(i)
.540695E-02
.523952E-03
.OOOOOOE+OO
.145666E-04
.OOOOOOE+OO
.OOOOOOE+OO
.118315E-02
.55OO71E-02
.OOOOOOE+OO
.991425E-1O
.430281E-03
.686549E-04
.117031E-08
.OOOOOOE+OO
.OOOOOOE+OO
.723282E-02
.OOOOOOE+OO

.10099E-Ol
y(i)

.540795E-02

.523952E-03

.OOOOOOE+OO

.145666E-04

.OOOOOOE+OO

.OOOOOOE+OO

.108986E-02

.550070E-02

.OOOOOOE+OO

.991425E-1O

.458581E-03

.686549E-04

.117031E-08

.000000E+00

.OOOOOOE+OO

.725198E-02

.OOOOOOE+OO
.27963E-Ol

y(i)
.540974E-02
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.523952E-03
.OOOOOOE+OO
.145666E-04
.OOOOOOE+OO
.OOOOOOE+OO
.109155E-02
.550070E-02
.OOOOOOE+OO
.991425E-1O
.458071E-03
.686549E-04
.117031E-08
.OOOOOOE+OO
.OOOOOOE+OO
.725164E-02
.OOOOOOE+OO

.61985E-Ol
y(i)

.541314E-02

.523952E-03

.()()()()()OE+OO

.145666E-04

.OOOOOOE+OO

.OOOOOOE+OO

.109475E-02

.550070E-02

.OOOOOOE+OO

.991425E-1O

.457098E-03

.686549E-04

.117031E-08

.OOOOOOE+OO

.OOOOOOE+OO

.725098E-02

.OOOOOOE+OO
.12892

y(i)
.541983E-02
.523952E-03
.OOOOOOE+OO
.145666E-04
.OOOOOOE+OO
.OOOOOOE+OO
.110106E-02
.550070E-02
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.OOOOOOE+OO

.991425E-1O

.455184E-03

.686549E-04

.117031E-08

.OOOOOOE+OO

.OOOOOOE+OO

.724968E-02

.OOOOOOE+OO
.26826

y(i)
.543377E-02
.523952E-03
.OOOOOOE+OO
.145666E-04
.OOOOOOE+OO
.OOOOOOE+OO
.111419E-02
.55OO71E-02
.OOOOOOE+OO
.991425E-1O
.451201E-03
.686549E-04
.117031E-08
.OOOOOOE+OO
.OOOOOOE+OO
.724699E-02
.OOOOOOE+OO

.55722
y(i)

.546266E-02

.523952E-03

.OOOOOOE+OO

.145666E-04

.OOOOOOE+OO

.OOOOOOE+OO

.114142E-02

.550071E-02

.OOOOOOE+OO

.991425E-1O

.442940E-03

.686549E-04

.117031E-08

.OOOOOOE+OO

.000000E+00
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.724139E-02

.OOOOOOE+OO
OOסס.1

y(i)
.550693E-02
.523951E-03
.OOOOOOE+OO
.145666E-04
.OOOOOOE+OO
.OOOOOOE+OO
.118315E-02
.55OO71E-02
.OOOOOOE+OO
.991426E-1O
.430282E-03
.686548E-04
.117031E-08
.OOOOOOE+OO
.OOOOOOE+OO
.723282E-02
.OOOOOOE+{)O

$debug
Integer n,NMAX

Parameter (NMAX=50,n=17)
Common lParamlCio(n),dcdxo(n),z(n),D(n),Ri(n),T
Real Cio,dcdxo,D,Ri,T
Integer z

Common ICaller/x 1,x2,nvar
Integer nvar
Real xl,x2

Logical check
Real dx

C n = number of species
C nvar = number of equations = 2*n
C xl = starting point
C x2 = ending point
C dx =stepsize in diffusion layer

dx=l.Oe-4
xl=O.O+dx
x2=1.0
nvar=2*n
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$debug

Integer n,NMAX
Parameter (NMAX=50,n= 17)
Common lParamJCio(n),dcdxo(n),z(n),D(n),Ri(n),T
Real Cio,dcdxo,D,Ri,T
Integer z,i

Common /Caller/x l,x2,nvar
Integer nvar
Real xl,x2

Logical check
Real dx

C n = number of species
C nvar = number of equations = 2*n
C xl = starting point
C x2 = ending point
C dx = stepsize in diffusion layer

dx=l.Oe-4
xl=O.O+dx
x2=l.O
nvar=2*n

C Read in values for charge, effective diffusivity, initial concentration
C initial guess of the first derivative

Open(Unit=1 , File='datainp7.inp', Status='old OJ

Open(Unit=2, File='dataout.out)
Open(Unit=3, File='temp.inp', Status='oldj
Read(3,*) T

C Write(2,'("z(i) d(i) Cio(i) dcdxo(i) ))
Print *, 'z(i) d(i) Cio(i) dcdxo(i) ,
Do i=l,17

Read (1,*) z(i),D(i),Cio(i),dcdxo(i)
C Write(2,*) z(i),D(i),Cio(i),dcdxo(i)

Print* ,z(i),D(i),Cio(i),dcdxo(i)
End Do
Close(Unit=1, Status='Keep')
Close(Unit=3, Status='Keep')
Call newt(dcdxo,n,check)
Close(Unit=2, Status='keep)
End

Subroutine Load(xl,v,y)
Parameter (NMAX=50,n=17)
Real xl,v(n),y(2*n)
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Common lParamlCio(n),dcdxo(n),z(n),D(n),Ri(n),T
Real Cio,dcdxo,D,Ri,T
Integer z,k,i
Do 5 i=l,2*n,2

k=(i+l)/2
y(i+ l)=dcdxo(k)
y(i)=Cio(k)

5 Continue
End

C This subroutine calculates the sums needed for calculation of the first
C and second derivatives.

Subroutine Sigmas(s 1,s2,s3,s,y,dydx)
Parameter (NMAX=50,n=17,nvar=2*n)
Real s1,s2,s3,s(n),y(nvar),c1,c2,dydx(nvar)
Real Ea,Ec,Ecorr,alphaa,alphac,R,F,iao,ico
Real Flux(n)

Integer i,j ,k

Co"mmon lParamlCio(n),dcdxo(n),z(n),D(n),Ri(n),T
Real Cio,dcdxo,D,Ri,T
Integer z

sl=O.O
s2=O.0
53=0.0

Ciao and ico (rnAfcm"2)are found from Liu et al(l991) and Bard et al(l989)
C F is Faraday's constant in C/mol
C R is the universal gas constant in kcallmoI K

iao=2.ooE-7
ico=4.ooE-6
alphaa=O.8524474
alphac=O.9458974
R=8.314
F=965oo
Ea=-O.44+(R*T/(2*F»*log(y(13»
Ec=(R*T/(2*F))*log(y(23»
Ecorr=[Ea+Wog(ico)*alphac)/(log(iao)*alphaa)]*Ec]/
# [1 +(log(ico)*alphac)/(log(iao)*alphaa)]
Do 100 i=l,n

Ri(i)=O.O
100 Continue

c Flux(l1)=-52.5*exp(-5385ff)*y( 16)
c Flux(l4)=-9.8E6*exp(-926lff)*y(17)
c Aux(7)=2*(F1ux(ll)+Flux(l4»
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C print*,Flux(lI),Flux(l4),Flux(7)
Ri(7)=(iao*exp«alphaa*F*(Ecorr-Ea))/(R*T)))* 1.036E-8
Ri(lt )=(ico*exp« alphac*F*(Ecorr-Ec»/(R*T»)* 1.036E-8

C print*,Ri(7)
Do 2 i=l,n,2

k=(i+l)/2
c 1=z(k)*D(k)
c2=z(k)*cl
sl=sl+cl *y(i+l)
s2=s2+c2*y(i)
s3=s3+c2*y(i+l)
s(i)=O.O

Do 1 j=l,n,2
k=(k+l)/2
if (j .ne.k) s(i)=s(i)+z(k)*D(k)*dydx(j+1)

1 Continue
2 Continue

Return
End

C This subroutine calculates the first and second derivatives. They are stored
C in one vector. The first derivatives are stored in the odd values of (i) and
C the second derivatives are stored in the even values of (i).

Subroutine Derivs(x,y,dydx)
Parameter (NMAX=50,n=17)
Real y(2*n),dydx(2*n),s 1,s2,s3,s(n),x(n)
Integer i,k

Common lParam/Cio(n),dcdxo(n),z(n),D(n),Ri(n),T
Integer z
call sigmas(sl,s2,s3,s,y,dydx)

C write(2,'(" dy2/dx"))
Do 3 i=I,2*n,2

k=(i+ 1)/2
C dy 1i/dx, i=odd

dydx(i)=y(i+ I)
C dy2i.dx, i=even

dydx(i+1)=«z(k)*s1*s3/(s2*s2»*y(i»/« 1.0-z(k)*z(k)*D(k)/s2)
# -z(k)*s(k)/s2)

C Write(2,*) dydx(i+l)
3 Continue

Return
End

C This Subroutine calculates the function to be minimized.
Subroutine Score(x2,y,tvec)
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Parameter(NMAX=50,n=17)
Real y(2*n),fvec(n),s 1,s2,s3,s(n),ion_flux,mole_flux,
# dydx(2*n),x2
Integer i,k
Common lParamlCio(n),dcdxo(n),z(n),D(n),Ri(n),T
Real Cio,dcdxo,D,Ri,T,del
Integer z

call sigmas(sl,s2,s3,s,y,dydx)
C print*, 'SCORE'

del=O.OOl
Do 4 i=I,2*n,2

k=(i+l)/2
ion_flux=( l-(z(k)*(s l/s2)*y(i)*z(k)*D(k»)*dydx(i+1)

# -(z(k)*y(i)*(sl/s2»
C mole_flux=-(z(k)*dydx(i)*(s l/s2)+z(k)*y(i)*s 1*s3)/(s2*s2)

mole_flux=-D(k)*y(i+1)
fvec(k)=ion_flux + mole_flux - Ri(k)*del

4 Continue
Return
End

C.This subroutine is fdjac.for from Numerical Recipies. It evaluates the
C Jacobian for newt.for.

SUBROUTINE fdjac(n,x,fvec,np,df)
INTEGER n,np
REAL df(np,np),fvec(n),x(n),EPS
PARAMETER (NMAX=50,EPS=] .e-6)

CU USES funcv
INTEGERi,j
REAL h,temp,f(NMAX)
do 12 j=l,n

temp=x(j)
h=EPS *abs(temp)
if(h.eq.O.)h=EPS
x(j)=temp+h
h=x(j)-temp
call funcv(n,x,f)
x(j)=temp

write(2,'("i j df(i,jr)j
do 11 i=l,n

df(i,j)=(f(i)-fvec(i»/h
write(2,*)i,j,df(i,j)

11 continue
12 continue

return
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END

C This subroutine is fmin.for from Numerical Recipies for use with newtJar.
FUNCTION fmin(x)
INTEGER n,NP

PARAMETER (NMAX=50, NP=NMAX)
REAL fmin,x(NMAX),fvec
COMMON /newtvl fvec(NP),n
SAVE /newtvl

CU USES funcv
INTEGERi
REAL sum
call funcv(n,x,fvec)
sum=O.
do 11 i=l,n

sum=sum+fvec(i)**2
11 continue

fmin=O.5*sum
return
END

C This Subroutine is lnsrch.for from Numerical Recipies for use with
C newt.for.

SUBROUTINE lnsrch(n,xold,fold,g,p,x,f,stpmax,check,func)
INTEGERn
LOGICAL check
REAL f,fold,stpmax,g(n),p(n),x(n),xold(n),func,ALF,TOLX
PARAMETER (ALF=1.e-4;TOLX=1.e-7)
EXTERNAL func

CD USES func (This is passed through the calling argument and is equal
C to fmin)

INTEGERi
REAL a,alarn,alam2,alamin,b,disc,f2,fold2,rhs 1,rhs2,slope,sum,temp,
*test,tmplam
check=.false.
sum=O.
do 11 i=l,n

sum=sum+p(i)*p(i)
II continue

sum=sqrt(sum)
if(sum.gt.stpmax)then
do 12 i=l,n

p(i)=p(i)*stpmaxlsum
12 continue

endif
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slope=O.
do 13 i=l,n

slope=slope+g(i)*p(i)

13 continue
test=O.
do 14 i=l,n

temp=abs(p(i))/max(abs(xold(i», 1.)
if(temp.gt.test)test=temp

14 continue
alamin=TOLXltest
alam=l.
continue
do 15 i=l,n

x(i)=xold(i)+alam*p(i)
15 continue

f=func(x)
if(alam.lt.alamin)then

do 16 i=l,n
x(i)=xold(i)

16 continue
check=.true.
return

else if(f.leJold+ALF*alam*slope)then
return

else
if(alam.eq.1.)then
tmplam=-slope/(2.*(f-fold-slope»

else
rhs l=f-fold-alam*slope

rhs2=f2-fold2-alam2*slope
a=(rhs l/alam**2-rhs2/alam2**2)/(alam-alam2)
b=(-alam2*rhsl/alam**2+alam*rhs2/alam2**2)/(alam-alam2)
if(a.eq.0.)then

tmplam=-slope/(2.*b)
else

disc=b*b-3.*a*slope
if(disc.lt.O.) pause 'roundoff problem in lnsrch'
tmplam=(-b+sqrt(disc))/(3.*a)

endif
if(tmplam.gt..5*alam)tmplam=.5*alam

endif
endif
alam2=alam
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f2=f
fold2=fold
alarn=max(tmplam,.1 *alarn)

goto 1
END

C This Subroutine is lubksbJor from Numerical Recipies for use with newt.for.
SUBROUTINE lubksb(a,n,np,indx,b)
INTEGER n,np,indx(n)
REAL a(np,np),b(n)
INTEGER i,ii,j,ll
REAL sum
ji=D
do 12i=l,n

ll=indx(i)
sum=b(ll)
b(ll)=b(i)
if (ii.ne.O)then
do 11 j=ii,i-l

sum=sum-a(i,j)*bG)
] 1. continue

else if (sum.ne.D.) then
ll=l

endif
b(i)=sum

12 continue
do 14 i=n,I,-1

sum=b(i)
do 13 j=i+l,n

sum=sum-a(i,j)*bG)
13 continue

b(i)=sumla(i,i)
14 continue

return
END

C Thsi Subroutine is ludcmpJor from Numerical Recipies for use with newt.for
SUBROUTINE ludcmp(a,n,np,indx,d)
INTEGER n,np,indx(n),NMAX
REAL d,a(np,np),TINY
PARAMETER (NMAX=5D,TINY=1.0e-30)
INTEGER i,imax,j,k
REAL aarnax,dum,sum,vv(NMAX)

d=1.
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do 12 i=1,n
aamax=O.
do 11 j=l,n

if (abs(a(i,j».gt.aamax) aamax=abs(a(i,j»
11 continue

if (aamax.eq.O.) pause 'singular matrix in Iudcmp'
vv(i)= 1./aarnax

12 continue
do 19 j=1,n

do 14 i=1,j-l
sum=a(i,j)
do 13 k=1,i-1

sum=sum-a(i,k)*a(k,j)
13 continue

a(i,j)=sum
14 continue

aamax=O.
do 16 i=j,n

sum=a(i,j)
do 15 k=1,j-1

sum=sum-a(i,k)*a(k,j)
15 continue

a(i,j)=sum
dum:vv(i)*abs(sum)
if (dum.ge.aamax) then

imax=i
aamax=dum

endif
16 continue

if (j.ne.imax)then
do 17 k=1,n

dum=a(imax,k)
a(imax,k)=aU,k)
a(j,k)=dum

17 continue
d=-d
vv(imax):vv(j)

endif
indx(j)=imax
if(a(j,j).eq.O.)a(j,j)=TINY
ifG.ne.n)then
dum= 1.1a(j,j)

do 18 i:j+1,n
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a(i,j)=a(i,j)*dum
18 continue

endif
19 continue

return
END

C This subroutine is newt.for from Numerical Recipies. It is a globally
C convergent Newton-Raphson routine.

SUBROUTINE newt(x.,n,check)
INTEGER n,nn,NP,MAXITS
LOGICAL check
REAL x(n),fvec,TOLF,TOLMIN,TOLX,STPMX
PARAMETER (NMAX=50,NP=NMAX,MAXITS=200,TOLF=I.e-4,TOLMIN=I.e-

6,
*TOLX= l.e-7,STPMX=100.)

COMMON /newtv/ fvec(NP),nn
SAVB /newtv/

CU USES fdjac,frnin,lnsrch,lubksb,ludcmp
INTEGER i,its,j,indx(NP)
REAL d,den,f,fold,stpmax,sum,temp,test,fjac(NP,NP),g(NP),p(NP),
*xold(NP),fmin
EXTERNAL fmin
nn=n
f=fmin(x)
test=O.
do 11 i=l,n
if(abs(fvec(i».gt.test)test=a~s(fvec(i»

11 continue
if(test.lt..01 *TOLF)then

check=.false.
return

endif
sum=O.
do 12 i=l,n

sum=sum+x(i)* *2
12 continue

stpmax=STPMX*max(sqrt(sum),float(n»
do 21 its=l,MAXITS

call fdjac(n,x,fvec,NP,fjac)
do 14 i=l,n

sum=O.
do 13 j=l,n

sum=sum+fjac(j ,i)*fvec(j)
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13 continue
g(i)=sum

14 continue
do 15 i=l,n

xold(i)=x(i)
15 continue

fold=f
do 16 i=l,n

p(i)=-fvec(i)
16 continue

call1udcmp(fjac,n,NP,indx,d)
call1ubksb(fjac,n,NP,indx,p)
call1nsrch(n,xoldJold,g,p,x,f,stpmax,check,fmin)
test=O.

do 17 i=l,n
if(abs(fvec(i».gt.test)test=abs(fvec(i»

17 continue
if(test.lt.TOLF)then

check=.false.
return

endif
if(check)then

test=O.
den=max(f,.5*n)
do 18 i=l,n

temp=abs(g(i»*max(abs(x(i»,I.)/den
if(temp.gt.test)test=temp

18 continue
if(test.lt.TOLMIN)then
check=.true.

else
check=.false.

endif
return

endif
test=O.
do 19 i=l,n

temp=(abs(x(i)-xold(i»)/max(abs(x(i»,I.)
if(temp.gt.test)test=temp

19 continue
if(test.1t.TOLX)return

21 continue
pause MAXITS exceeded in newt'
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END

C odeintfor
SUBROUTINE odeint(ystart,nvar,x 1,x2,eps,h 1,hrnin,nok,nbad,derivs,
*rkqs)
INTEGER nbad,nok,nvar,KMAXX,MAXSTP,NMAX
REAL eps,hl ,hmin,xl ,x2,ystart(nvar),TINY
EXTERNAL derivs,rkqs
PARAMETER (MAXSTP=I0000,NMAX=50,KMAXX=200,TINY=I.e-30)
INTEGER i,kmax,kount,nstp
REAL dxsav,h,hdid,hnext,x,xsav,dydx(NMAX),xp(KMAXX),y(NMAX),
*yp(NMAX,KMAXX),yscal(NMAX)
COMMON /path/ kmax,kount,dxsav,xp,yp
x=xl
h=sign(h1,x2-xl)
nok=O
nbad=O
kount=O
do 11 i=l,nvar

y(i)=ystart(i)
11 continue

if (kmax.gt.O) xsav=x-2.*dxsav
do 16 nstp=1,MAXSTP

call derivs(x,y,dydx)
do 12 i=l,nvar

yscal(i)=abs(y(i))+abs(h*dydx(i»+TINY
12 continue

if(kmax.gt.O)then
if(abs(x-xsav).gt.abs(dxsav» then

if(kount.lt.kmax-1 )then
kount=kount+1
xp(kount)=x
do 13 i=1,nvar

yp(i,kount)=y(i)
13 continue

xsav=x
endif

endif
endif
if«(x+h-x2)*(x+h-x l).gt.O.) h=x2-x

call rkqs(y,dydx,nvar,x,h,eps,yscal,hdid,hnext,derivs)
if(hdid.eq.h)then

nok=nok+1
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else
nbad=nbad+1

endif
if«x-x2)*(x2-xl).ge.O.)then
do 14 i=l,nvar

ystart(i)=y(i)
14 continue

if(kmax.ne.O)then
kount=kount+ I
xp(kount)=x
do IS i=l,nvar

yp(i,kount)=y(i)
IS continue

endif
return

endif
if(abs(hnext).lt.hmin) pause

*'stepsize smaller than minimum in odeint'

h=hnext
16 continue

pause 'too many steps in odeint'
return
END

C This subroutine is rkqs.for ftom Numerical Recipies for use with newtJor.
C It is a fifth order Runge-Kutta method.

SUBROUTINE rkqs(y,dydx,n,x,htry,eps,yscal,hdid,hnext,derivs)
INTEGER n,NMAX
REAL eps,hdid.hnext,htry,x,dydx(n),y(n),ysca1(n)
EXTERNAL derivs
PARAMETER (NMAX=50)

CU USES derivs,rkck
INTEGERi
REAL errmax,h,htemp,xnew,yerr(NMAX),ytemp(NMAX),SAFETY,PGROW,
*PSHRNK,ERRCON
PARAMETER (SAFETY=O.9,PGROW=-.2,PSHRNK=-.25,ERRCON=1.8ge-4)
h=htry
call rkck(y,dydx,n,x,h,ytemp,yerr,derivs)

errmax=O.
do 11 i=l,n

errmax=max(errmax,abs(yerr(i)/yscal(i»)
11 continue

errmax=errmax/eps
if(errrnax.gt.l.)then
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htemp=SAFETY*h*(emnax.**PSHRNK)

h=sign(max(abs(htemp),O.1 *abs(h»,h)
xnew=x+h
if(xnew.eq.x)pause 'stepsize underflow in rkqs'
goto 1

else
if(emnax.gt.ERRCON)then

hnext=SAFETY*h*(emnax**PGROW)
else

hnext=5.*h
endif
hdid=h

C Increment x here for the next stepsize.
x=x+h
do 12 i=l,n

y(i)=ytemp(i)
write(2,'("y(i)")')

write(2,*) i,y(i)
12 continue

return
endif
END

C This Subroutine is for use with rkqsJor from Numerical Recipies.
SUBROUTINE rkck(y,dydx,n,x,h,yout,yerr,derivs)
INTEGER n,NMAX
REAL h,x,dydx(n),y(n),yerr(n),yout(n)
EXTERNAL derivs
PARAMETER (NMAX=50)

CU USES derivs
INTEGERi
REAL ak2(NMAX),ak3(NMAX),ak4(NMAX),ak5(NMAX),ak6(NMAX),
*ytemp(NMAX),A2,A3,A4,A5,A6,B21,B31,B32,B4l,B42,B43,B51,B52,B53,
*B54,B61,B62,B63,B64,B65,Cl,C3,C4,C6,DCl,DC3,DC4,DC5,DC6
PARAMETER (A2=.2,A3=.3,A4=.6,A5=I.,A6=.875,B21=.2,B31=3.140.,

*B32=9.140.,B41=.3,B42=-.9,B43=1.2,B51=-11.154.,B52=2.5,

*B53=-70.l27.,B54=35.127.,B61=163l.l55296.,B62=175.1512.,
*B63=575 .l13824.,B64=44275.1110592.,B65=253.14096.,C 1=37.1378.,
*C3=250.l621.,C4=125.1594.,C6=512.11771.,DC I=C 1-2825.127648.,
*DC3=C3-18575.148384.,DC4=C4-13525.155296.,DC5=-277 .114336.,
*DC6=C6-.25)
do 11 i=},n
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ytemp(i)=y(i)+B21 *h*dydx(i)
11 continue

call derivs(x+A2*h,ytemp,ak2)
do 12 i=l,n

ytemp(i)=y(i)+h*(B3 I*dydx(i)+B32*ak2(i»
12 continue

call derivs(x+A3*h,ytemp,ak3)
do 13 i=l,n

ytemp(i)=y(i)+h*(B41 *dydx(i)+B42*ak2(i)+B43*ak3(i»

13 continue
call derivs(x+A4*h,ytemp,ak4)
do 14 i=l,n

ytemp(i)=y(i)+h*(B51 *dydx(i)+B52*ak2(i)+B53*ak3(i)+B54*ak4(i»
14 continue

call derivs(x+A5*h,ytemp,ak5)
do 15 i=l,n

ytemp(i)=y(i)+h*(B61 *dydx(i)+B62*ak2(i)+B63*ak3(i)+B64*ak4(i)+
*B65*ak5(i»

15 continue
call derivs(x+A6*h,ytemp,ak6)
do 16 i=l,n

yout(i)=y(i)+h*(C 1*dydx(i)+C3*ak3(i)+C4*ak4(i)+C6*ak6(i»
write(2, '("yout(i) tI) ')
write(2,*) yout(i)

16 continue
do 17 i=l,n

yerr(i)=h*(DC 1*dydx(i)+DC3*ak3(i)+DC4*ak4(i)+DC5*ak5(i)+DC6*
*ak6(i»

write(2, '("yerr(i)"))
write(2,*) yerr(i)

17 continue
return
END

C shootJor
CU SUBROUTINE shoot(n2,v,f) is named "funcv" for use with "newt"

SUBROUTINE funcv(n2, v ,f)
INTEGER n2,nvar,kmax.,kount,KMAXX,NMAX
REAL f(n2),v(n2),x 1,x2,dxsav,xp,yp,EPS
PARAMETER (NMAX=50,KMAXX=200,EPS= l.e-6)
COMMON /caller/ x1,x2,nvar
COMMON /path/ krnax.,kount,dxsav .xp(KMAXX),yp(NMAX,KMAXX)

CU USES derivs,load,odeint,rkqs,score
INTEGER nbad,nok
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REAL hl,hmin,y(NMAX)
EXTERNAL derivs,rkqs
kmax=O
hl=(x2-xl)/lOO.
hmin=O.

call1oad(xLv,y)
call odeint(y,nvar,x l,x2,EPS,h1,hmin,nok,nbad,derivs,rkqs)
call score(x2,y,f)

return
END
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