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Introduction

Stored-product insects pose a considerable threat to post-harvest food

commodities. Although estimations of dollar loss due to these pests are difficult to

determine; however, Pimentel (1991) placed the amount at $5 billion per year to post­

harvest food commodities in the United States (pimentel 1991). Furthermore, worldwide

food losses to stored-product insects are estiinated to be 5-10% (pedersen 1978,

Burkholder 1990). It is therefore a constant challenge to those in the food industry to

control the damage done by these insects.

Beetles in the genus Tribolium, in particular the red flour beetle, TriboIium

castaneum (Herbst), and the confused flour beetle, Tribolium confusum Jacquelin du Val,

are major pests of many stored-food products and are commonly found in cereal

processing facilities such as flour mills. Present pheromone based trapping systems for

monitoring Tribolium have been perceived as ineffective (phillips 1994, Trematerra et a1.

1996), and therefore efforts to improve on these systems are of considerable interest.

The Indianmeal moth, Plodia interpunctella (Hubner) is a worldwide pest on

many stored food commodities (Sinha & Watters 1985). Traps baited with the moth's

sex pheromone are commonly used and successful at monitoring this pest's activity (Vick

et a1. 1990). Although several trapping studies have targeted this moth, relatively little

has been done to explore the outdoor dynamics of this species relative to stored-product

facilities.

Methyl bromide (MB) is commonly used as a structural fumigant in flour mills

and other food processing facilities (Chakrabarti 1996). This compound will be banned

for use in the U. S. on 1 January 2005, under the Clean Air Act. Researchers and
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industry personnel are scrambling to discover and develop altemative control methods.

Trapping to monitor insect activity within the context of an integrated pest management

(IPM) program will likely increase in practice and necessity ,as a result ofthe MB ban.

This project sought to explore ways ofenhancing Tribolium trap effectiveness by

assessing the attraction of a variety of food materials and compounds for attraction to T.

castaneum. Trap designs and modifications were also assessed for attraction to T.

castaneum and other stored-product beetles. In addition, trapping studies were conducted

during 1997 and:.! 998 at two flour mills, targeting T. castaneum and P. interpuncte/la.

These studies included outdoor trapping for P. interpuncte/la with respect to the mills.

Insect Pests in Food Processing Centers and Flour Mills

Flour mills and other cereal processing facilities host several species of stored­

product insects. These types of facilities provide an ideal habitat in particular to

secondary storage insects (e.g., T. castaneum and P. interpunctella) that cannot infest

sOWld grains. Good (1937) surveyed common insect pests in flour mills by sampling the

elevator boots in 17 mills throughout Missouri, Kansas, and Oklahoma. Tribolium were

the most common pests, present in 78% ofall samples, and 97% of all infested samples.

P. interpunctella is common within flour mills also (Cotton et al. 1945). These moths are

not commonly found in milling machinery or flour stocks; however, they offer a

considerable threat to packaged flour as the gravid females seeka suitable oviposition

site (phillips & Strand 1994). Other common pests of flour mills include species in the

genera Oryzaephilis, Trogoderma, Cryptolestes, Sitophilus. (Agricultural Research Station

1913, Cotton et al. 1945) and the less economically important pests in the genera
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Ahasverus (WoodrofIe 1962) and Typhaea (Jacob 1988). which seem to prefer storage

molds. but may also feed on grain and grain products directly.

The flour mill environment may be viewed as two separate compartments, the

product milling stream. and the physical area outside the product line including

machinery, walls, floors, etc. Mill elevator boots or bulk stored flour bins are areas

where Tribolium are commonly found and likely represent a final stop for these beetles

because these areas provide abundant food supply and are relatively donnant

environments. Although directly sampling the flour stock to assess infestation is

important and a good way to make decisions on control measures, knowledge ofpest

activity outside the milling stream can lead to control measures that would protect the

product from infestation. A system oftrapping throughout the mill can provide this

knowledge and identify "hot spots" of insect activity that allow for more precise control

measures. Chemical or physical spot treatments ofproblem areas could then be applied,

thus avoiding, or delaying, the need of costly mill-wide fumigations (Vick et aI. 1990).

Pheromone trapping can also provide data on the dynamics of a pest population that

would allow for better timing ofcontrol measures (Silverstein 1981; Chambers 1990;

Vick et al. 1990; Phillips 1994, 1997)

Methyl Bromide

Methyl bromide (MB) is commonly used in food processing facilities as a

structural fumigant for control ofpests. Benefits ofusing MB over alternative methods

include reduced exposure time, rapid dispersion. little to no residues and lower

production down-time costs (Chakrabarti 1996). However, this fumigant is scheduled to

be banned by 1 January 2005 as it is suspected as an ozone-depleting compound. This

4



-

deadline, stipulated by the U. S. Clean Air Act, is in accordance with the Montreal

Protocol, a treaty among 167 countries that calls for a 100% phase-out ofMB by 2005 in

developed nations, including the U. S.

Alternative control treatments to MB include the use of phosphine gas and

controlled atmosphere methods including CO2and heat treatments. However, phosphine

is difficult to use for structural fumigation because it is highly corrosive to copper, and

may damage any equipment such as electrical devices that use copper contacts.

Phosphine also requires a much longer exposure time than methyl bromide for effective

kill, and many species have developed resistance to it (Annis & Waterford 1996). Heat

treatments are another alternative (Bell 1996), but are difficult to use effectively because

of the challenge of maintaining sufficient temperatures for an adequate amount of time to

achieve satisfactory kill, particularly in many older buildings that are difficult to seal due

to abundant cracks and other losses of structural integrity. Furthermore, certain

equipment cannot withstand the extreme temperatures and must be removed, increasing

the cost of treatment in time and labor. Sealing the structure is also a problem with C02

treatments, and exposure time is much greater than with MB (Bell 1996). One ofthe

most promising alternatives presently being studied involves a combination treatment

using heat, C02, and low levels ofphosphine (Mueller 1994).

An IPM program can be considered an alternative to MB fumigation and will

likely increase in implementation in food processing facilities with the ban ofMB

(phillips 1997). An IPM program calls for close monitoring of insect activity to include

insect trapping (Flint & van den Bosch 1981). Therefore, an objective of this research

was to explore implementing trapping programs within mills. Trapping within a facility
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immediately before and after chemical treatment has been used to estimate fumigation

impact on the pest populations (Levinson & Buchelos 1979, Sifner & Zdarek 1982), and

was another goal ofthe present study.

Tribolium castaneum and T. confusum

Tribolium (Coleoptera: Tenebrionidae) are dark reddish brown beetles,

approximately 4 mm in length. with a flattened oval body (Sokoloff 1974). Development

from egg to adult may take as few as 30 days. Eggs are laid singly throughout its food

source, are kidney shaped, nearly transparent and small (0.6 mm in length by 0.35 mm in

width) (Brindley 1930). Furthermore, the eggs are sticky and readily adhere to fine

particles such as flour, making them very difficult to recognize (Good 1936). Good

(1936) found that incubation lasts from 3-5 days at 30° C. Larvae are mostly white,

elongate and cylindrical ranging in length from approximately 1.2 mm (first instar), to 6.0

mm (sixth instar) (Brindley 1930). Development oflarvae ranges from 22 to 100 days

depending on food source and environmental conditions (Good 1936). Mature larvae

will come to the surface of the food mediwn to pupate. The period ofpupation ranges

from six to twelve days (Good 1936). Adult Tribolium may begin mating one to two days

after emergence. The beetles have been known to live as long as three years. Males may

be fertile their entire lifetime and females can lay eggs for over one year, averaging 327

eggs laid per female (Good 1936). Adults are fairly resistant to starvation; Good (1936)

found the period of survival without food to range from 18 to 54 days.

There are several practical implications of the biology of Tribolium. All active

stages of the insect feed on stored food products, which makes them a pest throughout

their lifetime. The insects are long lived and are capable ofreproducing during most of
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their adult life; thus, they offer an incredible potential for exponential population growth.

Finally, because these beetles can survive for extended. amounts oftime without food,

they can cause infestations ,in facilities that have discontinuous food sources.

There is no apparent seasonal activity-regulating behavior among Tribolium

beetles. In heated facilities, the beetle remains active all year round. However, in

unheated structures, cold temperatures retard activity. Immature stages are more

susceptible to the cold, and adults may be the only life stage present in these situations.

T. castaneum tends to prefer warmer climates than T. confusum (Good 1936).

Tribo/ium adults are highly mobile and will soon infest all the available food in a

warehouse or mill if not controlled. As a species, T. castaneum is more apt to dispersal

than T. confusum. Based on this and other observations, Zeigler (1976, 1977, 1978)

concluded that T. castaneum is a primary colonist, and T. confusum a secondary colonist.

Although both species have well-developed wings, only T. castaneum has been observed

in flight.

Male T. castaneum and T. confusum produce an aggregation pheromone (4,8­

dirnethyldecanal) that was first identified and synthesized by Suzuki (1981). In

laboratory experiments, the greatest amount of pheromone was produced when the

beetles were feeding in relatively low density (Hussain 1993, Hussain et al. 1994).

Beetles in the genus Tribolium, like many tenebrionid beetles, produce defensive

secretions in the form of quinones from adult odoriferous glands (Alexander & Barton

1943). Quinones are highly oxidizing and are even toxic to the beetle itself (Roth &

Howland 1941). The secretion ofquinones into flour leads to contamination ofthe

medium and is believed to contribute to beetle emigration (Ogden 1969; Ziegler 1976,
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1977, 1978). While the function of these secretions is often defensive in other

Tenebrionidae species, this is likely not an important function for Tribolium infesting

stored food as they have relatively few natural enemies; however, these secretions have

been proposed to play an interesting role that contributed to the success of this beetle as a

stored-product insect. The secretions are toxic to micro-organisms in food sources and

likely play an important ecological function to the beetle by keeping their food material

relatively free of micro-organisms that might otherwise make the habitat unsuitable (Van

Wyk et a1. 1959). Engelhardt et a1. (1965) observed that mutant T. confusum produced

greatly reduced amounts of quinones, and that the flour they were infesting became

moldy and caked, therefore, unsuitable to the beetle.

Tribolium are known to infest a wide variety of both animal and plant-produced

products. Good (1936) listed over 100 food items that T. castaneum could be found

infesting. In addition to whole grain and cereal products, this list includes: animal matter

such as hides and bird skins; preserved insect specimens; pollen and possibly dead insect

matter in bee cells; milk powder; wood, particularly ash and pine, likely as scavengers,

not feeding on the wood itself; plant products such as yams, garlic, cured tobacco, dried

cornstalks, snuff, and orris root; and also the spices ofnutmeg and ginger.

Sokoloff (1974) described Tribolium as an opportunistic generalist feeder. He

concluded that Tribolium's natural habitat was likely as a scavenger Wlder the bark of

trees, feeding primarily on eggs and pupae of its own species and others, and on fungi,

bacteria and carbohydrates secondarily. This conclusion is in accordance with the

occasional observance of Tribolium Wlder tree bark today (Andres 1931, Good 1936).

Furthennore, many other beetles in the family Tenebrionidae commonly inhabit tree bark
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(Borror et al. 1989). T. castaneum has additionally been documented to occur in. rodent

burrows and ant nests (Khare & Agrawal 1964). Despite their origin, T. castaneum and

various other species of the genus Tribolium have long been associated with stored-food.

Beetle remains, believed to be that of T. confusum, were found in ajar ofpresumed cereal

product of a pharaonic tomb, dated at 2500 B.C (Andres 1931).

From the above information, it may be observed that this beetle is a potential pest

ofseveral foodstuffs. Therefore, improving traps for this insect is of great concern to

many producers and .retailers. Also, since flour is not likely this beetle's original diet, a

variety ofother food based trap lures may be attractive to them.

Tribolium causes damage in a couple of ways, first, they contaminate their food

source by their mere presence, and also with frass, exuviae and dead insect body parts

(Mondal & Port 1994). In addition, the release of quinones by the beetles imparts a

pungent odor to their food source, will discolor flour to a grayish pink and reduce its

elasticity and viscous properties (payne 1925). The effects ofquinone-contaminated food

to mammals have been investigated and are suspected to be a carcinogenic (EI-Mofty et

a1. 1989, 1992).

Trapping of Tribolium and Other Stored-Product Beetles

Trapping with in a food-storage facility offers some Wlique challenges. Traps

must overcome factors such as competing food attractants, alternative shelter and

possible competing pheromone production by other insects of the same species. Stejskal

(1995) demonstrated that traps for 1. castaneum where progressively less effective in

laboratory experiments when paper shelters where introduced into the arena. Trap

efficacy was further diminished when food was added, and least when food and shelter
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where added together. In many cases, abundant alternative shelter is present in the

vicinity of an insect trap including machinery, shelving, holes and cracks in walls and

floors, etc. These areas commonly contain spilt food products also, which sustain insect

populations. These sources of shelter and food likely reduce the movement of the beetles

and reduce trap capture.

DeCoursey (1931) designed a trap made ofcorrugated paper baited with flour to

successfully trap the confused flour beetle out ofcom and flour. Because of the habit of

Tribo/ium to seek shelter, corrugated paper has been a popular choice for a trapping

material. Although this trap was effective in isolating the beetle from infested materials,

it did not serve to kill the beetles; therefore, traps had to be destroyed after use to prevent

propagating the insect.

Pinniger (1975) developed a trap known as a bait bag, which consisted ofa mesh

envelope that served both to hold a food bait, and as a sieve to separate insects from food

when inspecting the traps. Pinniger evaluated various food baits within this trap and

found that a bait ofwheat, groundnuts and carobs was most attractive to several species

of stored product insects (Pinniger et a1. 1984). These traps also require frequent

observation and servicing, as they do not kill insects and might be an unintentional source

of further infestation.

A major advance in the development ofmore effective TriboJium traps was the

incorporation of synthetic Tribolium aggregation pheromone. Barak & Burkholder

(1985) designed a pitfall type trap using Tribolium pheromone constructed from four

layers of corrugated paper in a 9 cm square. This trap also used an oil lure consisting ofa

mixture of mineral and wheat germ oils combined with a pentane extract of raw rolled
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oats. The oil bait was useful in attracting the beetle species Oryzaephilus surinamensis.

T. confusum, and Trogoderma variabile, and also served to suffocate the' insects that fell

into the pitfall cup. This design was patented, and sold commercially for several years.

The trap designed by Barak & Burkholder was eventually replaced with a trap

first designed by Mullen (1992). This trap also used an oil and pheromone bait; however,

instead of using corrugated paper, this trap took advantage of the negative geotaxis habit

of the insects by using an inverted concave ramp that had a 4.0 cm hole drilled in the

center. Insects crawling up the ramp would then fall into the center pitfall into the oil

bait. Mullen found this trap to be superior to previous designs. This latest design is

currently sold as the storgard Flit Trak® M2 by Trece, Inc. (Salinas, CA), and is used in

much ofthe lab and field research ofthis project.

Dethier et al. (1960) clarified definitions ofchemicals that elicit insect behavior.

He made distinctions among chemicals that act as arrestants, locomotor stimulants,

attractants, and repellents. He noted that the same chemical might elicit one, or more, of

the above responses depending on factors such as concentration. All references to a

chemical or food material that elicits an attractant response will assume his definition,

"Attractant - a chemical which causes insects to make oriented movements towards its

source." An arrestant can be defined as a chemical that causes insects to aggregate when

coming into contact with it. Chemicals acting as arrestants have been confused with

attractants because the same end result occurs. However. the method by which

aggregation occurs differs in the two.

Many insects use semiochemicals produced from, or associated with, their host in

food location (phillips 1997). Several traps for stored-product pests have incorporated
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food-based lures both in combination with pheromone and as the only attractant

(Chambers 1990, Pinniger 1990, Phillips 1997). An objective ofthis research was to

screen potential food materials and single volatile compounds associated with many host

plants for attractiveness to T. castaneum. Better understanding of semiochemicals

attractive to T. castaneum will allow for more effective traps to be used for monitoring

Tribolium or possibly even control. A good example of this type of work is the extensive

research that has been done to identify attractants associated with food and food-related

microorganisms to beetles in the genus OryzaephiIus (pierce et al. 1981, 1990, 1991a;

Freedman et at 1982; Mikolajczak et a1. 1984; Stubbs et al. 1985).

Attractive responses by Tribolium to semiochemicals associated with the beetles'

common food sources have been demonstrated. Willis & Roth (1950) studied the

olfactory attraction of T. castaneum to flour at various moisture contents and discovered

that the beetle was attracted to flour based on olfactory stimuli when starved from 2 to 7

days. Seifelnasr et a1. (1982) demonstrated attraction of T. castaneum to whole wheat,

wheat endosperm and wheat germ extracts, with wheat germ extracts being most

attractive. Phillips et al. (1993) observed attractive responses from T. castaneum to rice,

soybean, oat, wheat germ, and com oils. Hussain (1993) found that T. castaneum was

significantly attracted to wheat germ nuts, a pI:ocessed food product. He also observed

that this same food product was able to enhance the attractiveness ofDMD to the beetIe.

Tribolium have been documented to feed on fungi associated with stored grain,

and some ofthe olfactory responses to these fungi have been assessed. Imura (1991)

when comparing the feeding habits of T. castaneum to T. freemani noted that both species

developed well on a diet of the fungus Alternaria alternata. Van Wyk et al. (1959)
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identified Aspergillus glacus, A. flavus, A. candidus, and an unidentified species of the

genus Penicillium as fungal species associated with T. conjusum. These species are also

common storage fungi (Abramson et a1. 1980, Seitz & Sauer 1992). Van Wyk also

reported unidentified bacteria that were isolated from the insect's gut, and found within

the food of T. confusum. Based on olfactory stimuli, the beetles were attracted in

laboratory experiments to both treatments of this bacteria added to flour, and flour plus

the fungi, significantly more than to autoclaved flour alone. The response of Tribolium to

the lightweight compounds produced from the metabolic processes ofmicroorganisms

associated with the beetle and its food should be investigated further. These compounds

may significantly enhance Tribolium attraction to pheromone and/or grain based food

lures when used in combination by simulating the olfactory cues of an ideal habitat to the

beetles.

Compounds such as 3-methyl-l-butanol, 1-octen-3-0I, 3-octanone, and l-octanol

have been identified as some of the volatiles associated with storage fungi in the genera

Aspergillus, Penicillium and Alternaria (Abramson et al. 1980, Seitz & Sauer 1992). It is

interesting to note that l-octen-3-01, as well as being a fungal volatile, is also a known

aggregation pheromone for Oryzaephilus spp. and Ahasverus advena (Waltl), the foreign

grain beetle (pierce et a1. 1989, 1991b). Food baits contaiDing volatiles such as these

may be capable also of attracting Tribo/ium, as well as other insect pests. Volatiles

associated with grain bacteria have also been identified (Seitz & Sauer 1992), and should

be examined for potential food bait enhancement.
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Plodia interpunctella

Adult moths are 9 mm in length, with a 20 mm wing span, trunk whitish yellow in

color. The most striking characteristic of these insects is the copper color with two dark­

brown lateral bands on the distal half of the forewings (Zakladnoi & Ratanova 1973).

Eggs are laid in groups, or singly, in or near a larval food source and incubate for

2-17 days. Larvae are whitish in color, go through five instars, and complete

development in 13 to 288 days, depending on temperature. The mature larva spins a

cocoon in which to pupate. The pupal stage lasts for an average of 15 days.

Development from egg to adult takes an average of26 days at 30°C and 70% relative

humidity. Adults are short-lived (5-13 days), and do not feed. They begin mating as

soon as one hour after emergence (Sinha & Watters 1985).

In heated facilities the moth multiplies throughout the year. In unheated

buildings, mature larvae enter diapause as a combined result of lower temperature and

shorter photoperiod (Tzanakakis 1959). The moth averages five generations a year

(Sinha & Watters 1985). Unlike Tribolium, the larval stage is the only damaging life

stage of this insect.

Adult female moths produce Z-9, trans-E-12-tetradecandienyl acetate (ZETA) as a

component of their sex pheromone (Brady & Nordlund 1971; Brady et aI. 1971;

Kuwahara et al. 1971). This compound is also a pheromone component of other stored­

product moths of the subfamily Phycitnae.

Like T. castaneum, P. interpuncte/la is a pest on a wide variety of foods. They

are known to infest stored grains, cereal products, nuts, dried fruits, chocolate, dried

roots, herbs, and dead insects (Hill 1990). The moth larvae damage foodstuffs by
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contamination with exuviae, fecal matter, dead 'insects, and like material. In addition,

larvae also contaminate food with webbing, which can clog milling and grain movement

machinery (Cox & Bell 1991).

Pheromone Trapping ofP. interpunctella

Traps using synthetic ZETA as a hue are effective and widely used to trap male

Phycitnae moths for survey and detection (Chambers 1990, Vick et aI. 1990). Pheromone

baited traps have proven successful at detecting otherwise unknown infestations of these

moths (Vick et al. 1981). Although many studies have focused on capture ofphycitine

moths inside storage and food processing structures (e.g., Hoppe & Levinson 1979, Vick

et a1. 1986), only a few studies have attempted to document outdoor activity ofP.

interpuncte/la.

In an early study of P. interpunctella, Ganyard (1971) used traps baited with

virgin females as natural pheromone sources and captured < 1 per trap per day at

numerous outdoor locations far from grain storages. A limited trapping study by Vick et

a1. (1981) with synthetic pheromone found P. interpunctella and the almond moth, Cadra

cautella (Hubner), inside a food warehouse, but no moths were trapped outdoors on the

loading dock. Cogburn & Vick (1981) trapped similar high numbers ofe. caute/la both

inside and immediately outside rice storage bins, but recorded very low numbers of this

moth at field sites further away. Vick et a1. (1987) placed pheromone traps for four

species of storage moth pests in five outdoor locations along a 56 km transect from a

peanut warehouse and trapped substantial numbers ofP. interpunctella only in the yard

immediately outside the structure. These early studies suggest that outdoor occurrences

of moths such as P. interpunctella and e. cautella can be attributed to emigration from
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nearby storages, and that these species do not breed in wild habitats. Some researchers

have concluded that moth infestation inside a food processing facility is mainly attributed

to the introduction of infested product (Levinson & Buchelos 1979) rather than by

immigration of adults from outdoor locations.

Study Objectives

The specific objectives of this research can be divided into three broad areas that

correspond with the three following chapters of this thesis. The first set ofobjectives,

which correspond to chapter IT were: 1) Evaluate grain and food oils and other

compounds from plant and microbial origin, as attractants and pheromone synergists for

T castaneum; 2) Evaluate traps for T castaneum in laboratory and field, with specific

goals of comparing pitfall with sticky traps, effects ofpheromone and oil on response to

traps, the potential for improving pitfall trap performance with dust protection, and

evaluate response of the beetle in flight to a pheromone baited trap. Objectives ofchapter

ill were: 1) determine pest species present and their distribution in space and time, 2)

monitor T. castaneum activity before and after methyl bromide fumigation to assess

efficacy of treatment, and 3) correlate T. castaneum trap capture to T castaneum counts

from direct sampling of the product. Specific objectives of chapter IV were: 1) to

observe variation in moth activity in space and time both inside and outside a flour mill.

2) determine P. interpunctella activity before and after methyl bromide fumigations to

obtain a relative measure of fumigation impact on the moth population, and 3) evaluate

the outdoor dispersion of the moth at various distances from a second mill.
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Abstract

A series of laboratory and field experiments were performed to assess the

responses of Tribolium castaneum (Herbst) and other stored-product beetles to various

semiochemicals, traps, and trap components. Of the single volatile compounds assayed,

3-methyl-l-butanol showed the most promise as an attractant to T castaneum. An

experiment to evaluate the effects of aging on the trapping oils with and without the

antioxidant butylated hydroxytoluene (HIlT) added revealed that the oil with BHT

became repellant to the beetle over time. A commercial Tribolium pitfall trap was

superior in both laboratory and field experiments over the other floor trap designs

assessed at capturing T castaneum. In field experiments, Typhaea stercorea (1.) and

Ahasverus advena (Stephens) preferred a sticky trap to the pitfall trap. The synthetic

Tribolium aggregation pheromone lure is an important component of the pitfall trap's

efficacy to T castaneum. Although the food-based pitfall trap-trapping oil was not found

to be attractive to T castaneum when assayed alone, it did have value as an enhancer of

the pheromone bait when the two were used together in the trap. A dust cover

modification made to go over the pitfall trap was effective in protecting the trap from

dust, although the trap was still vulnerable to dust contamination from sanitation

techniques that used compressed air to blow down the mill floors. Capture of T.

castaneum in the modified trap performed as well as the standard trap design in a non­

dusty area of a flour mill, and significantly superior over the standard trap in a dusty area.

T castaneum responded in flight outside a flour mill preferentially to multiple funnel

traps with pheromone lures over traps without pheromone.
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Introduction

Beetles ofthe genus Tribolium, in particular the red flour beetle, Tribolium

castaneum (Herbst), and the confused flour beetle, Tribolium confusum Jacquelin du Val,

are major pests ofmany food commodities. A current method ofmonitoring Tribo/ium

spp. is the use ofpheromone and food-oil baited traps (Burkholder & Ma 1985). Despite

improvements to Tribolium trap efficacy in recent years (Mondal & Port 1994), these

beetles are still thought to be rather difficult to monitor via trapping (phillips 1994,

Trematerra et al. 1996). Therefore, efforts to identify attractive materials that could make

traps more sensitive, and to evaluate and improve current Tribolium traps designs, are of

considerable interest.

Male T. castaneum produce an aggregation pheromone when actively feeding at

relatively low density (Hussain 1993, Hussain et al. 1994b). Suzuki (1981) first

identified and synthesized this pheromone as 4,8-dimethyldecanal (D:MD) from males of

both T. castaneum and T. confusum. The incorporation of synthetic DMD lures into

Tribolium traps was a major improvement to trap efficacy.

Commonly used Tribolium traps include the Storgard Flit Trak® M2 (Trece, Inc.

.
Salinas, CA) (Mondal & Port 1994), which was manufactured after the prototype

designed by Mullen (1992). The trap is a ramp-pitfall design which utilizes both DMD

pheromone and a food-based oil as attractants (Chambers 1990, Pinniger 1990, Barak et

ai. 1991). Other common trap designs include floor mounted adhesive traps that are used

unbaited or baited with Tribolium pheromone lures (Barak et a1. 1991, Monda! & Port

1994).
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The trapping environment can affect the efficacy and longevity oftraps (Barak et

a1. 1991). Tingle & Mitchell (1975) during moth trapping studies demonstrated that

adhesive traps could be detrimentally affected by dust. Large amounts of flour dust is

produced as a result of milling processes in flour mills and has been shown to lower

efficacy of sticky and pitfall traps (Chapter IlI). These observations led to the

development ofa dust-cover modification to the pitfall trap.

An issue ofconcern when using a food-based oil attractants in traps is the effect

of age on oil attractiveness. Natural processes such as auto-oxidation alter the chemical

composition of the material causing rancidity. Although this can negatively affect the

attractiveness ofoil lures, there is evidence that it can actually increase attraction. Barak

(1989), while developing a trap for Trogaderma granarium Everts tested several oils for

their attraction to the beetle and noted how the beetle responded to them over time. He

observed that while oat, pumpkin, and sesame oils were more attractive than wheat germ

oil while fresh, their attractiveness quickly diminished with age and wheat genn oil

actually increased in attractiveness over time. Barak referred to 'an oxidation theory

proposed by O'Donnell et a1. (1983) to explain these data, which suggested that the auto­

oxidation of unsaturated fatty acids results in the fonnation ofvolatile carbonyls and

aldehydes that are potentially attractive to insects. Because wheat genn oil has a high

composition of unsaturated fatty acids relative to the other oils tested (Tamaki et a1.

1971), Barak suggested that the results from his study were consistent with O'Donnell's

theory. Butylated hydroxytoluene (BHT) is a common synthetic phenol used as a food

additive that reduces the rate of auto-oxidation in oils and fats (Sherwin 1985), and has

not been studied as a preservative in oil baits for Tribo/ium.
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Semiochemicals associated with food sources have often been demonstrated as

co-attractants or synergists with pheromones (Chambers 1990, Phillips et al. 1993,

Phillips 1997, Pinniger 1990). Lightweight compounds produced from the metabolic

processes ofmicroorganisms associated with Tribo/ium and its food may act as a strong

attractant to the beetle either alone, or may significantly enhance the beetles' attraction to

pheromone and/or grain based food lures when used in combination. Some work has

been done to explore the odors from microorganisms associated with Tribolium. Van

Wyk et al. (1959) identified Aspergillus glacus, A. jlavus, A. candidus, and an

Wlidentified species of the genus Penicillium as fungal species associated with T.

confusum. He also reported unidentified bacteria that were isolated from the insect's gut,

and found within the food of T. confusum. Based on olfactory stimuli, the beetles were

attracted in laboratory experiments to both treatments of this bacteria added to flour, and

flour plus the fungi, significantly more than to autoclaved flour alone. These findings

hold potential for the enhancement of attractants in traps f"r Tribolium.

Six-carbon alcohols and aldehydes known collectively as green leafvolatiles are

natural products of plant lipid degradation and are ubiquitous among plants (Visser et aI.

1979). They have been shown to enhance the attraction ofpheromones in other insect

species (Dickens et a1. 1990), and may be attractive to Tribolium as well.

Objectives of this present study were: 1) Evaluate grain and food oils and other

compounds from plant and microbial origin, as attractants and pheromone synergists for

T castaneum; 2) Evaluate traps for T castaneum in the laboratory and field, with specific

goals of comparing pitfall with sticky traps, effects of pheromone and oil on response to
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traps, the potential for improving pitfall trap performance with dust protection, and

evaluate response of the beetle in flight to a pheromone baited trap.
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Materials and Methods

Experimental Insects

All laboratory experiments were conducted using established colonies ofT.

castaneum. The insects were reared on whole-wheat flour and brewer's yeast (95:5) in

standard quart jars (0.95 1). Colonies were maintained in a growth chamber at 28° C,

70% relative humidity, in complete darkness. Insects used in bioassays were four to six

weeks old and were separated without food from their colonies 24 h prior to the

experiment to enhance their olfactory response, and to ensure uniform starvation.

Traps Evaluated and Pheromone Lures

Four trap designs, as well as a modification to one ofthe traps, were evaluated in

field and laboratory experiments. The pitfall trap consisted of a 10 cm plastic circular

ramp roughed to allow insects to crawl up with a cup in the center that held the food/oil

bait, which acted as an attractant and also as a killing agent by suffocation (Fig. 2.1a).

The inner edges of the cup were smooth to facilitate insects falling into the cup. The trap

came with a card board cover that provided moderate dust and debris protection, as well

as a means to hold the rubber septum impregnated with DMD. The traps contained 0.5

ml of oil for all lab experiments and 1 ml in field experiments. The pitfall trap

modification consisted ofa 10 cm PVC end-cap that replaced the standard cardboard

cover (Fig. 2.1b). The cap rested on four plastic beads glued on its lower rim to allow

beetles clearance to the ramp-pitfall wtder the cap. A 2 mm hole was drilled in the top of

the cap to receive the pheromone septum lure.
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lbree sticky traps were assessed in these studies. The Detector trap (AgriSense,

Palo Alto, CA) was made of cardboard with a 9.5 X 6.5 cm sticky area. The trap folded

in on itself top to bottom to provide protection to the sticky surface. The Trapper

Monitor insect trap was provided from Bell laboratories. This trap was also made of

cardboard with a 7.5 X 6 cm sticky area. The window sticky trap was provided by Agri

Sense (Barak et a1. 1991, Mondal & Port 1994). The trap's sticky surface was enclosed

under a transparent plastic cover (window) approximately 3mm above the floor of the

trap. Insects enter the trap through short ramps positioned on both sides of the trap and

step or fall off onto the sticky surface. All sticky traps were tested both without

pheromone lures and with the DMD pheromone lures provided with the pitfall trap.

Multiple funnel traps (Lindgren 1983) were constructed of plastic with several

funnels approximately 19 cm in diameter, with a 5.5 cm hole at the bottom. Insects

flying into the trap strike the underside ofa funnel, and fall through the lower funnels

into the collecting cup at the bottom of the trap. Strips ofvapona were placed in the cup

to kill captured insects. Traps used in this study were eight tier (eight funnels).

The pheromone lures provided with the Trece pitfall traps were used in the

laboratory trap assessments experiments and-field experiments when traps were

pheromone baited. When used in laboratory experiments, the lures were aged for three

days in a fume hood prior to use to avoid a repellent release rate immediately after

opening (Hussain 1993, Hussain et a1. 1994a).

Semiochemicals

A series of materials were assayed with the goal of identifying substances

attractive to T castaneum. The response of the beetle to a hexane extract of wheat was
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assessed. The extraction procedure involved crushing a total of982.3 g of sound wheat

in four parts for 30 s in a blender. The crushed wheat was then placed in hexane for 42 h

after which the extract was, :filtered from the crushed wheat through a funnel lined with

filter paper. The extract was distilled down to 10 ml making a 98.23 mglml wheat

equivalent (MOE) extract. The extract was diluted (1/10) in hexane three times making

concentrations of 9.82,0.982, and 0.0982 MOE. The following food-based oils were

assessed for attraction to T. castaneum: wheat germ, sesame, walnut, flax, com, castor,

grapeseed, safflower, sunflower, hemp, peanut, avocado, vegetable, apricot, olive, canola,

almond, and coconut. Oils where purchased from a local specialty food store and were

stored in complete darkness at 50 C. Oil manufacturers were contacted, if possible, in

order to obtain infonnation regarding processing, manufacturer date and oil shelf life

(Table 2.1). The literature was reviewed relative volatile compounds given off by fungi

and bacteria associated with wheat and other grains in order to compile a list of

compounds to be assessed as potential attractants to T. castaneum (Hougen et al. 1971,

Abramson et al. 1980, Seitz & Sauer 1992). The following fungal and bacterial volatiles

were identified and purchased for evaluation: 1-octen-3-ol, vinyl acetate,

phenylacetaldehyde, anisole, 3-methyl-l-buIanol, 3-methyl-2-butanone, 3-octanone, 2­

methyl phenol, l-octanol, and styrene. The following green leaf volatiles were tested:

hexanal, hexanol, t-2-hexanal, c-2-hexen-1-01, t-2-hexen-1-ol, c-3-hexen-l-01, and t-3­

hexen-1-0l. All these chemicals were obtained commercially (Aldrich Chemical

Company, Milwaukee, WI) and were ~ 90% pure. A neat sample of DMD was provided

from Trece Inc. and was diluted to various concentrations in hexane for use in pheromone

synergism experiments in the two-choice pitfall bioassay (see below).
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Trece Inc. provided fresh samples of the trapping oil used in the pitfall traps for

the oil aging study. Two samples of the oil were provided, one with BHf added (as sold

commercially), and the other without BHf. Samples ofeach of the individual

components of the trapping oil were also provided for an isolated assessment of T.

castaneum response to each component.

Bioassays

t'

Tray Assay. A tray bioassay was used to evaluate the response of T. castaneum

to different trap designs and components (Hussain et a1. 1994a). The bioassay consisted

ofa 92 X 92 X 9 cm steel tray with one layer ofwhole-wheat grains in the arena. A layer
,

of grains provided a good substrate for moving as well as a natural environment to the

responding beetles. The traps were tested one per tray, placed in the same randomly

detennined position in the arena a minimum of 15 cm from the tray sides. Experiments

were set up in a randomized complete block design with blocks occurring on successive

days. All experiments were replicated! a minimum of four times. One hundred adult

mixed-sex T. castaneum, were introduced into the center ofthe arena under an inverted 6

cm plastic petri dish for 15 min to allow them to calm and adjust to environmental

conditions. The bioassay began after the beetles were released and a screen was placed

over the tray to prevent escape. Bioassays were conducted for 20 h (2:00 p.m. - 10:00

a.m. of the following day) in total darkness at 28 ± 20 C and 70 ± 10% r.h., after which

the number ofbeetles captured was recorded.

A series of four experiments were conducted using the metal-tray bioassay. In the

first experiment the response ofT. castaneum was assessed to trap designs without any

attractants. The treatments were: 1) Detector sticky trap unbaited, 2) Trapper Monitor
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sticky trap unbaited, and 3) pitfall trap unbaited (mineral oil in cup reservoir). ,The

experiment was replicated four times. A second series ofbioassays were conducted to

compare the response of the beetle to the Trapper and Window sticky traps, both without

an attractant and with DMD pheromone lures. The treatments were: I) Trapper sticky

trap without pheromone, 2) Trapper sticky trap with DMD lure, 3) window trap without

pheromone, and 4) window trap with DMD lure. The experiment was replicated four

times. In the next experiment the response of T. castaneum to each of the pitfall trap

components was assessed. The assay contained the following treatments: 1) control trap,

no pheromone nor oil baits, 2) trap with oil bait and no pheromone lure, 3) trap with

pheromone and no oil bait (mineral oil in trap), and 4) trap with pheromone and oil baits.

The experiment was replicated eight times. The fourth selies of bioassays compared the

pitfall traps with the standard cardboard cover to the PVC cap modified trap; both trap

treatments used pheromone and food/oil lures. The experiment was replicated eight

times.

Results from each ofthese experiments were analyzed in SAS (SAS Inst. 1996)

by an analysis ofvariance (ANOVA) using PROC MIXED on arcsine square root

transfonned percent count data. In this, and kll following ANDVA procedures, the null

hypothesis was no significant difference (a = 0.05) in capture among the trap treatments.

IfANDVA results were significant, a mean separation test (LSD) was performed.

Two-choice PitfaU Assay. Experiments to evaluate T. castaneum's response to

the wheat extracts, food-based oils, pitfall trapping oil and volatile compounds employed

a two-choice pitfall bioassay similar to that used by Pierce et al. (1981). Beetles oriented

to one of two holes in the floor of an arena, below which were placed stimulus or control
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materials. Bioassay ,arenas were 9 cm glass petri dishes modified with two holes in the

bottom approximately 6 mm in diameter, on opposing sides ofthe dish, 8 mm from the

sides. The surface of the Petri dishes was roughed up with sandpaper to facilitate the

beetle's footing and allow them to right themselves when overturned. Under each hole

was placed a 13x45 mm vial with either the test or control substance. The following

treatment amounts will apply to all like materials assayed unless noted otherwise. When

testing oils, 0.1 ml ofthe test oil was compared to 0.1 ml ofheavy mineral oil as the

control. In preliminary experiments, beetles had no significant preference between the

choice of heavy mineral oil or an empty vial. The mineral oil was an ideal control

substance because the beetles were suffocated when falling into it, just as they were when

falling into the various oils to be screened for attraction. Single volatile compounds were

tested by applying 10 III ofthe compounds in aliquots ofhexane solutions to a 13 mm

filter paper disk in the bottom ofthe vials. The control vial contained a filter paper disk

with 10 1J1 ofhexane alone. Two tables were constructed from plywood and pine lumber

to allow for positioning of vials, and to support the petri dishes above them. Each table

could accommodate twenty dishes, allowing four treatments often replications to be done

at a time. Treatments were assigned in a completely randomized design across the forty

available positions. A batch of 10 adult mixed-sex beetles was used in each dish. Prior

to releasing beetles, they were held under a 17 m.m glass vial for 15 min to allow them to

calm and adjust to environmental conditions. The bioassay was ron for 1 h in total

darkness at 28 ± 2° C and 65 ± 10% r.h., after which the numbers of beetles found in the

treatment dish, control dish, and remaining in the arena were recorded. Results were

reported using a response index (RI), calculated by dividing the number ofbeetles
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responding to the treatment vial by th.e total number of beetles out often 1iesponding to

either the treatment or control vials, multiplied by 100 ([T/(T + C)] 100). RI values could

theoretically range from 0 for complete repellency, to 100 for complete attraction. Ten

replicates were performed for each test material or combination ofmaterials studied,

Wlless otherwise noted. A one-population t-test was performed to evaluate the hypothesis

that the mean RI was equal to 50 using SAS PROC UNIVARIATE. Materials or

compoWlds exhibiting RI values significantly greater, or less, than 50 were deemed

"attractive" or "repellant", respectively.

A series ofseven experiments utilized the two-choice pitfall bioassay. In the first

experiment the response of T. castaneum to the wheat extract was assessed. The stock

concentration, as well as the three dilutions, were assessed. The second series of assays

involved evaluating T. castaneum 's response to the wheat extracts in combination with

DMD to detennine if any enhancement/synergism occurred when they were added

together. These assays involved three treatments: 1) The 9.82 MOE wheat extract, 2)

0.000001 J-lg ofDMD, and 3) the extract and DMD together. The third series of

bioassays evaluated the response of T. castaneum to the eighteen food-based oils. The

oils that tested attractive in either the study reported, or in preliminary assessments (com,

sesame, walnut, hemp, apricot kernel, wheat germ, and flax), were then assayed an

additional time in two groups. The first assay was performed to observe the beetle's

response to com, sesame and walnut oils, and the second to apricot kernel, flax and hemp

oils. A fourth series of experiments assessed the beetle's response to the four individual

components of the pitfall trapping oil, as well as the oil mix. Because there were five

treatments and 40 available bioassay devices, each oil component and the oil mix were
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replicated only eight times. A fifth series of experiments tested the effect ofaging on T.

castaneu", 's response to pitfall trap-trapping oil samples with and without BlIT. Ten ml

of each of the oils were placed in 50 ml beakers, covered with a filter paper disk, and left

under a fume hood. Each week, for four weeks, samples from the oils in the beakers

(aged) were compared to samples from the stock oils that were stored in darkness at 5° C

(fresh). There were four treatments: 1) fresh trapping oil with BHT (fresh control with

BRT), 2) fresh trapping oil without BRT (fresh control without BlIT), 3) trapping oil

aged one-four weeks with BHT, and 4) trapping oil aged one-four weeks without BRT.

The sixth series of bioassays evaluated the response of T. castaneum to the 10 bacterial

and fungal single volatile compounds, and the seven green leaf volatiles. These were

evaluated in four doses (0.0001 Jlg, 0.01 Jlg, 1 Jlg, and 100 J.1g). The last series of

experiments sought to identify volatiles that had a synergistic/enhancing effect on the

attractiveness of the beetle when combined with DMD. All compounds that did not test

repellant when tested alone in the previous series of experiments were used. This

bioassay consisted of three treatments: 1) 1 Jlg of the volatile compound alone, 2)

O.OOOOOlJlg ofUMD alone, and 3) IlJ.g ofthe volatile compound + O.OOOOOlJlg of

.
DMD. The dose ofDMD was determined by doing a dose response experiment in the

two-choice bioassay where concentrations of DMD were reduced by 1/10 until a

concentration was found that was not significantly attractive to the beetle alone.

Field Experiments

Experiments were done in a flour mill (mill 1 of Chapters III & N) in order to

evaluate various traps, trap modificatim:~s, and trap components in field conditions.

Comparison of the pitfall trap to the Detector sticky trap capture on the most commonly
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trapped stored-product beetles (T. castaneum, .T. stercorea, and A. advena) was done

from I May to 26 November 1997. Traps were placed in paired treatment blocks on five

floors of the mill (floors three to eight, Fig. 3.1), as well as an area above the bulk stored

flour bins. Trap positions were not changed during the study. A total of26 blocks were

placed throughout the mill, 13 biweekly observations were taken and pheromone lures

were replaced every four weeks. The contents of the pitfall traps were placed in a ziplock

bag and taken back to the laboratory for identification under a dissecting scope. The

sticky floor traps were collected, replaced with a new trap, and taken to the laboratory for

identification of their contents. The mean beetle per trap counts were square root

transformed and analyzed through an ANOVA (PROC MlXED) for differences among

trap treatments.

A study was done in an attempt to both quantify the amount of dust accumulated

in various areas ofmill 1 during a one-week interval, and to assess the efficacy ofthe

pitfall trap dust cover modification at protecting the trap from dust. The experiment

consisted of the following two treatments: I) ramp/pitfall portion of the pitfall trap with

no cover, and 2) the ramp/pitfall portion of the pitfall trap covered with the PVC cap

modification. The traps were placed in paired treatments (randomized complete block

design). Mineral oil was placed in both trap treatments. Four distinct areas of the mill

were chosen to place the traps, 1) the third floor of the mill, which was very dusty and

also cleaned daily with a compressed air blow-down, 2) the second floor packing area,

which was dusty and was cleaned once a week with compressed air blow-down, 3) the

area below the bulk stored product, which was dusty and was not cleaned during this

experiment, and 4) the warehouse area that was relatively dust free (see Chapters ill &
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IV). The traps were weighed in ziplock bags prior to deployment in the mill, and again

after collecting. Any insects trapped during the study were removed so as to account

only for increased weight due to dust and debris. The difference in the two weights was

recorded and analyzed by treatment and mill location using PROC MIXED.

The response of T. castaneum to the standard design and modified pitfall traps

was evaluated in two areas of the mill. The first experiment was conducted in a low dust

area (warehouse 1, see chapters III & IV). This was done to assess the efficacy of the

modified pitfall traps in field conditions, without dust interference. In addition to

evaluating the PVC end-cap modification, the role of the Tribolium aggregation

pheromone to T. castaneum capture was evaluated by in this experiment by employing

the following four treatments: 1) standard trap design (cardboard cover) pheromone and

food/oil baited, 2) standard trap design food/oil baited with no pheromone, 3) modifi.ed

trap design (pVC cap) pheromone and food/oil baited, and 4) modified trap design,

food/oil baited with no pheromone. Another experiment was done in a dusty mill area

(feed area, see chapters ill & IV) consisting of the following two treatments: 1) standard

trap design (cardboard cover), pheromone and oil baited, and 2) modified trap design

(PVC cap), pheromone and oil baited. In both experiments, treatments were arranged in

a randomized complete block design, 3 m between each trap, 6 m between blocks. Three

blocks were set up for the two-treatment experiment (feed area), and six for the four­

treatment experiment (warehouse 1). Both experiments were conducted for sixteen days

from 16 June to 2 July 1998. Traps were checked and serviced twice in eight-day

intervals, and re-randomized halfway through the experiment. An ANOVA was

performed using PROC MIXED on the square root transformed trap captures.
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The response of T. castaneum to th.e eight tier funnel traps was assessed in an

experiment setup outside, approximately 100 m north ofthe mill. Trap treatments were

arranged in a randomized complete block design consisting of a trap with no attractant

and one with a DMD pheromone lure. Traps were placed ~ 2 m high attached to either a

fence outlining the mill property or on utility poles within the mill yard, approximately

10 m apart. Traps for blocks one and two were placed on 16 June 1998. Block three was

added on 17 September, and block four was added on 24 September. All traps were

monitored until 5 November 1998. Traps were checked and re-randomized weekly, the

trap contents were removed, placed in a ziplock bag, and taken to the lab for

identification. The Tribolium aggregation pheromone lures provided with the pitfall trap

pitfall traps were used and replaced every four weeks. Data were sorted by month, then

an ANOVA (pROC MIXED) was performed on the square root transformed trap capture

counts.
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Results

Response of T. castaneum to food oils

When the commercial trapping oil components were assessed individually,

components A and D were significantly repellant, components B and C, as well as the

mix of all the components, showed no significant difference from the response to control

(Fig. 2.2). Results from the oil aging study are presented in Figure 2.3. The oil with no

BRT was repellant after aging for one week, and neutral on weeks two through four. The

oil with BRT was neutral after aging for one week, and repellant on weeks two through

four. Dfthe eighteen food oils assessed for attraction to T. castaneum, walnut, hemp and

apricot kernel oils all tested significantly attractive (Table 2.2). The test statistic for com

and sesame oils were nearly significant (0.05 < P < 0.1). When the oils that tested

significantly or moderately attractive were tested an additional time in two groups (Table

2.3), T. castaneum showed no significant response to any ofthese materials.

Response of T. castaneum to Host and Host-related Materials and Compounds

No significant response was observed to any of the four concentrations ofthe

wheat extract (Table 2.4). When this extract was tested with DMD there was no

significant response (Table 2.5). Among the bacterial and fungal volatile compounds

assayed, T. castaneum responded preferentially to anisole at 100 J.Lg, and to 3-methyl-l­

butanol at 0.0001 J.Lg (Table 2.6). Three-methyl-2-butanone and 2-methylphenol tested

nearly attractive at one of the concentrations assessed. One-octen-3-oI,

phenylacetaldehyde, 2-methylphenol and I-octanol were either significantly, or nearly
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significantly~repellant at at least one ofthe concentrations assessed. Non.e ofthe green

leafvolatiles tested significantly attractive at any ofthe amounts assessed (Table 2.7).

Trans-2-hexenal was nearly significantly attractive at .01 g; t-2-hexen-l-01 wasnearly

significantly attractive at 0.0001 g, and significantly repellant at 1 g and 100 g. Cis-3-

hexen-I-ol~ hexanol, and t-3-hexen-l-01 all were either significantly~ or nearly

significantly, repellant at one of the amounts assessed. In the pheromone synergism

assay~ 3-methyl-l-butanol was found to enhan.ce attraction of T. castaneum to DMD

(Table 2.8).

Response of T. castaneum and other Stored-Product Beetles to Traps

The results of the experiment to assess the response of T. castaneum to the pitfall

and two sticky traps without attractants are plotted in Figure 2.4. There was a significant

difference in capture by the three traps with significantly more beetles captured by the

pitfall trap. Capture by the Detector sticky trap, and the Trapper Monitor sticky trap were

not significantly different. The response of T. castaneum to the Trapper and the window

sticky traps with and without pheromone lures is plotted in Figure 2.5. This experiment

constituted a 2x2 factorial arrangement of treatments in a randomized complete block

design. The pheromone by trap interaction was significant. When the two traps without

pheromone lure were compared there was no significant difference in capture (F = 0.14;

df= 1, 9; P = 0.7174). When the catch of the Trapper sticky trap was analyzed with and

without the pheromone lure it had similar capture (F = 1.26; df = I, 9; P = 0.2915). The

window sticky trap; however~ had significantly higher capture with the DMD lure than it

did without pheromone (F= 55.81; df= 1~ 9; P = 0.0001). The capture ofT. castaneum~

T. stercorea, and A. advena by the Detector sticky floor trap and the pitfall trap within a
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flour mill are plotted in Figure 2.6. Capture by the pitfall trap was significantly higher

for 1. castaneum than the Detector sticky trap. However, T. stercorea and A. advena

were captured significantly higher in the Detector sticky trap over the pitfall trap.

The difference in weight due to dust accumulation of the traps both with and

without the PVC cap cover are plotted in Figure 2.7. No significant difference was

observed in the increase ofpre and post-study trap weights among trea~entswithin the

third floor (F= 0.22; df= 1,6; P = 0.6584), and second floor (F= 2.18; df= 1,6; P =

0.1907) as well as among the warehouse treatments (F= 0.06; df= 1,6; P =0.8169).

Traps placed below the bulk storage area did exhibit a signjficant difference in weight

among treatments. The relative dustiness ofeach mill location can be observed by noting

the uncovered trap weight difference for each of the four mill locations. The dustier areas

of the mill (third & second floors and the area below bulk flour bins) experienced an

increase in weight due to dust of anywhere from 0.62 to 1.14 g. The average weight

change for the uncovered traps in the warehouse area was not different.

When the standard pitfall trap (cardboard cover) was compared to the modified

pitfall trap in the metal tray laboratory assay, the two had statistically similar capture of

1. castaneum (Fig. 2.8). When these two traps were compared in non-dusty (warehouse)

and dusty (feed area) areas of mill 1, significantly more beetles were captured by

modified traps in the feed area (Fig. 2.9). Capture was not different in the warehouse

area, and the additional two treatments in this area, which consisted of the standard and

modified traps without pheromone lures, captured no 1. castaneum.

Effects of Pheromone and Oil on T. castaneum Response to Pitfall Traps
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Results from the four treatment pitfall trap lab assessment are plotted in Figure

2.10. This experiment constituted a 2x.2 factorial arrangement of treatments. Pheromone

by oil interaction was significant. The trap treatment with oil attractant alone did not

have different capture of T. castaneum from control (mineral oil) (F =0.11; df= 1, 21; P

= 0.7404). The trap with pheromone alone captured significantly more beetles than

control (F = 11.65; df = 1,21; P = 0.0026). The treatment ofboth oil attractant and

pheromone lure had significantly higher capture than control (F = 66. I0; df= 1, 21; P =

0.0001) as well as significantly higher capture than pheromone alone (F= 22.27; df= 1,

21; P = 0.0001). When the capture of the T. castaneum by modified pitfall traps with oil

and pheromone lures was compared to that of the same trap without the pheromone lure,

there was no significant difference in capture among the two traps in location 1 (Fig.

2.11). Capture was significantly different within location 2 and location 3.

In-Flight Response of T. castaneum to Pheromone-Baited Traps

Capture was not significantly different among trap treatments during July (Fig.

2.12), but was significantly higher in the pheromone-baited traps during August,

September and October.

46



Discussion .

The response of T. castaneum to the pitfall trapping oil was unexpectedly low in

both two-choice assays that evaluated it. Furthennore, the observation that over time the

oil with BHT became repellant where the oil without BHT remained neutral was

unexpected. The effect ofage on the oil with BHT may be explained by the conversion

of the BHT to quinones as the antioxidant absorbed O2 as a process ofblocking oil auto­

oxidation (Kikugawa et a!. 1990). Quinones, if present, may have been perceived by the

beetle causing them to be repelled.

As far as the author is aware, many of the food oils assessed in this study had not

been previously evaluated for attraction to Tribolium. Ofthe oils that elicited either

significant, or nearly significant attraction, com, sesame, and walnut oils come from

foods that the beetle is known to feed on (Sokoloff 1974). Sesame oil was attractive in

these experiments despite eliciting no significant response in previous assessments

(phillips et. al 1993). Though Phillips et aI. found wheat genn oil to be an effective

attractant, and this oil was attractive in the preliminary assessments of this study, it did

not attract T castaneum in the experiments presented. This lack of repeatability was also

observed in the follow-up assessment of the oils that had previously been attractive to T.

castaneum. More in-depth and controlled assessments should be made ofthese oils in

regards to the response of T castaneum before any defmite conclusions are drawn. More

of these oils may have been attractive to the beetle ifth.ey had been evaluated earlier.

From Table 2.1 it can be noted that many ofthese oils were past their estimated shelf

lives. Therefore, their attractiveness may have been diminished (Barak 1989) even

though they were stored in darkness at 5° C. The method ofprocessing of these materials
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as provided by the manufacturer should be carefully considered when. noting these data

(Table 2.1). For instance, refined oils are generally produced for the purpose of cooking

and the manufacturer in processing has the goal of removing as many impurities from the

oils as possible (Mounts 1985). The resulting product consists almost exclusively of

triglycerides, and many ofthe lighter volatile compounds that would otherwise serve as

olfactory cues to the beetle have been removed. Therefore, it is likely that the beetle

could not recognize these highly refined oils. The results suggest this, of the food oils

that elicited an attractive response from T. castaneum, all with the exception of com oil,

were pure, WU'efmed oils.

No significant response from T. castaneum was observed from the hexane wheat

extract when assessed alone or with DMD. Seifelnasr et a1. (1982) assessed the response

of T. castaneum to ether extracts ofwhole wheat flour, whole wheat kernels, as well as

wheat germ, bran, and endosperm fractions. All the extracts elicited a significantly

higher response from control. Perhaps the polar ether extracts isolated compounds more

active in inducing an attractive response than did the non-polar hexane extract in this

study.

Ofthe 16 volatile compounds evaluated, 3-methyl-l-butanol seems to offer the

most promise as a both an attractant and enhancer of DMD. This compound tested

attractive at 0.001 Ilg when assessed alone, and increased attraction to 0.000001 DMD

when the two were evaluated together. Three-methyl-l-butanol is a common odor

component of fungi in the genera Aspergillus and Penicillium, both common post-harvest

storage fungi (Seitz & Sauer 1992). Borjesson et a1. (1989) reported the volatile

compounds of four fungi species grown on wheat. They noted that 3-methyl-l-butanol
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was associated predominantly with early growth stages ofAspergillus flavus and

Penicillium eye/opium. Perhaps because this compound seems to be associated with

early growth of storage fungi, it may cue the beetle to a relatively uncontaminated and

thus preferential habitat, which would explain the attractive responses. Conversely, the

response ofthe beetle to l-octen-3-01 was moderately to significantly repellant at all

concentrations assayed. In addition to being a common fungal volatile, this compound is

also an aggregation pheromone of Oryzaephilis spp. and the foreign grain beetle,

Ahasverus advena (Waltl) (pierce et a1. 1989, 1991). Furthennore, these beetles prefer

moister habitats and therefore habitats that more suitable for large amounts of fungi than

does T castaneum (Sinha & Watters, 1985). Therefore, this compound may cue T.

castaneum of an unsuitable or less preferred habitat.

The overall low response of the beetle to the volatile compounds along with the

repeatability difficulties among the food-oils tested led the author to question the efficacy

of the pitfall bioassay device used to assess these materials. It is possible another assay

method (e.g., wind tunnel or V-tube assays) could have better identified compounds and

materials that were attractive to the beetle. However, the value of the pitfall assay is that

it mimics the conditions by which the beetle would respond to a pitfall trap. Therefore,

identifying attractive materials by another assay device more sensitive than the pitfall

assay may be of little value since the goal of this research was to find compounds and

materials that would improve pitfall trap efficacy.

Much more work could, and should, be done to further evaluate these and other

microbial and host chemicals. For instance, it might be discovered that although many of

the single compounds that were tested alone elicit no attractive response from the beetle,
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that combinations with other microbial andhost volatiles are successful at attracting T.

castaneum, thus leading to an improved Tribolium lure.

Another area that should be addressed is that of identifying the most attractive

single compounds to the beetle from flour, com,. rice, and other common Tribolium

foods. Perhaps a bait could be formulated that incorporates the most attractive

compounds from the beetles food sources, and attractive microbial volatiles along with

pheromone as an optimal lure. This bait could possibly allow for a nonperishable oil

such as mineral oil to be used as a trapping medium, thus avoiding food oil-aging issues.

The pitfall trap proved superior to the Detector and Trapper sticky traps in capture

of T. castaneum in all experiments that compared them. Interestingly, T. stercorea and A.

advena were captured more competently by the Detector sticky trap over the pitfall trap

in the flour mill assessment. Perhaps these two beetles are simply more susceptible to the

sticky traps, or they are. repelled by the Tribolium pheromone..

Interesting results were observed from experiments to isolate and evaluate

specific pitfall trap components. The four treatment assessment of this trap in the

laboratory revealed again that the trapping oil alone did not attract T. castaneum;

however, when used in combination with the pheromone lure the oil was able to

significantly enhance capture over the trap with pheromone alone. The value of the

Tribo/ium pheromone was confirmed in this experiment as well as three others. As

mentioned before, the treatments lacking pheromone lures in the experiment to compare

the modified and standard pitfall traps (warehouse area) captured no T. castaneum.

Additionally, results from the experiment done in the mill to compare capture of T.

castaneum in modified pitfall traps with and without pheromone lures revealed a
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significantly higher capture by the traps with pheromone in two ofthree locations. It is

likely that the first location (third floor ofmill) did not support a high enough beetle

population to reveal differences in trap capture. Another possibility for the lack of

significant difference is that the traps in this area may have been lowered in efficacy due

to dusty conditions and mill floor cleaning techniques (see below & Chapter ITI). Finally,

the funnel traps with pheromone lures also captured more T castaneum than those with

no attractants. It is noteworthy that this study is the first the author is aware of which

documents this beetle responding to its pheromone in flight.

The PVC end-cap modification seems to improve trap efficacy in dusty mill

environments. The modified trap showed no inhibitory effects in capture of T. castaneum

in dust-free laboratory and field environments. Furthermore, when these two traps were

compared in a dusty area the modified trap captured significantly more beetles.

The dust accumulation study produced interesting results regarding various areas

of the flour mill, and the efficacy ofthe dust cover trap modification in protecting the

trap. The third floor traps experienced a relatively large amount ofweight gain due to

dust. Furthermore, the dust cover did not offer protection from the dust as evidenced by

the statistically similar amount of weight increase ofboth covered and uncovered traps.

However, the area below the bulk flour bins did have significantly different weight

increase. Noteworthy as well is that the uncovered trap experienced the greatest dust

weight increase of all areas. Therefore, the cap was apparently efficient in protecting the

trap from dust. This difference can be attributed to the frequency and technique of floor

cleaning used in these areas. The area below the bulk. stored flour, although the area of

greatest dust accumulation was undisturbed during the study. Conversely, the third floor
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ofthe mill was cleaned daily during the study with compressed air blow-downs. These

blow-downs were apparently able to force dust up under the cap, causing an increase in

weight. Thus, traps were efficiently protected from even the largest amounts of dust if

this technique of floor cleaning was not used; where it was used, the efficacy of the cap

modification was diminished.
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Table 2.1. Summary of food oils tested.

Oil Processing Age when Assayed Estimated Shelf Life

Almond '" '" '"
Apricot kernel EP 12 rno 12 rno

Avocado CP,R,D 27rno 24mo

Canola EP,R,B,D 13 rno 12mo

Castor CP * '"
Coconut E, R, B, D '" *
Com EP, R,B, D 15 rno 12mo

Flax * '" '"
Grapeseed EP 11 rno 12 rno

Hemp CP 21 rno 12rno

Olive * * '"
Peanut E, R, B, D 15 rno 30rno

Safflower E,R,B,D 14rno 30 rno

Sesame CP 19 rno 12 rno

Sunflower EP,R,B,D 15 rno 12 rno

Vegetable EP,R,B,D 15 mo 12mo

Walnut CP 27mo 12 rno

Wheat germ E 9rno 12 rno

EP, Expeller Pressed; CP, Cold Pressed; E, Extracted (Hexane); D, Deodorized; B,

Bleached; R, Refined. *, Unable to locate information.
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Table 2.2. Response of T. castaneum to various food oils.

Oil MeanRI± SE P-value

Walnut 77.06 ± 5.10 0.0005 * * *

Hemp 65.88 ± 3.54 0.0015 * *
Apricot kernel 61.07 ± 4.54 0.0374 *
Corn 64.42 ±6.62 0.0576

Sesame 70.30 ± 6.77 0.0682

Almond 45.23 ± 7.28 NS

Avocado 47.39 ± 5.96 NS

Canola 45.98 ± 5.60 NS

Castor 42.60 ± 5.35 NS ~.

55.49 ± 8.96 NS
t\)

Coconut ::T
0

Flax 55.48 ± 6.70 NS :3
t\)

Grapeseed 43.92 ± 7.57 NS C/)-Olive 41.18 ± 8.12 NS

Peanut 47.25 ± 8.09 NS

Safflower 56.13 ± 8.67 NS

Swrllower 47.94 ± 5.99 NS

Vegetable 54.92 ± 7.71 NS

Wheat germ 56.21 ± 7.03 NS

*, P < 0.05; * *, P < 0.01; • * *, P < 0.001; NS not significant (P > 0.1); n = 10. RI =
([T/(T + C)] 100). Null hypothesis RI = 50, alternative hypothesis RI :1= 50.
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Table 2.3. Reo-spon e of T. c.astaneum to oils that had previously t t d attractive.

Assay 1

NS, not significant (P> 0.1); n = 10. RI =([T/(T + C)] 100). Null hypothesis RI = 50,

alternative hypothesis RI '* 50.

Oil

Com

Sesame

Walnut

Assay 2

Apricot kernel

Flax

Hemp

MeanRI±SE

54.78±6.68

54.60 ± 7.17

51.95 ± 4.90

42.25±6.02

44.42 ± 3.78

49.16 ±4.89

P-value

NS

NS

NS

NS

NS

NS

--
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Table 2.4. Response of T. castaneum to vari.ous concentrations ofa hexane wheat

extract.

NS, not significant (P> 0.1); n = 10. RI = ([T/(T + C)] 100). Null hypothesis RI = 50,

alternative hypothesis Rl:f; 50.

Concentration (MGE)

98.2

9.82

0.982

0.0982

MeanRI±SE

41.62 ± 8.08

46.84 ± 6.28

45.31 ± 7.89

52.94 ±4.97

P-value

NS

NS

NS

NS
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Table 2.5. Response of T. castaneum to wheat extract +DMD.

Extract/DMD MeanRI±SE P-value

extract (9.82 MGE) 46.33 ± 4.28 NS

DMD 41.36 ± 7.15 NS

extract + DMD 41.80 ± 4.52 NS

NS, not significant (P> 0.1); n = 10. RI = ([T/(T + C)] 100). Null hypothesis RI = 50,

alternative hypothesis RI :i:- 50.
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Table 2.6. Response of T. castaneum to four doses of volatile compounds associated

with stored-grain microorganisms.

Compound Dose (J.1g) MeanRI± SE P-value

anisole 100 64.78 ± 3.44 0.0020 * *

1 49.82 ± 6.73 NS

0.01 43.96 ± 6.66 NS

0.0001 57.69 ± 6.18 NS

3-medlyl-l-butanol 100 53.25 ± 5.96 NS

1 43.93 ± 5.45 NS

0.01 47.67 ± 5.77 NS

0.0001 68.05 ± 6.52 0.0217 *
3methyl-2-butanone 100 53.58 ± 5.67 NS

1 49.25 ± 7.77 NS

0.01 46.00 ±4.02 NS

0.0001 59.10 ±4.70 0.0851

2-methylphenol 100 35.18 ±7.12 0.0669

1 60.93 ± 5.83 0.0936

0.01 49.29 ± 5.64 NS

0.0001 55.66 ± 8.87 NS
l-octen-3-o1 100 37.33 ± 5.86 0.0589

1 32.99 ± 7.61 0.0522

0.01 30.20 ± 7.62 0.0288 *

0.0001 37.02 ± 5.19 0.0339 ",

1-octanol 100 21.41 ± 5.17 0.0004 * *

1 54.93 ± 5.81 NS

0.01 43.10 ± 7.77 NS

0.0001 47.22 ± 6.62 NS
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Table 2.6. (continued)

Compound Dose (~g) MeanRI± SE P-value
~~- -

3-octanone 100 48.97 ± 8.31 NS

I 56.61 ± 6.30 NS

0.01 54.19 ± 5.37 NS

0.0001 40.78 ± 8.89 NS

phenylacetaldehyde 100 35.25 ± 7.49 0.0804

1 41.93 ± 5.47 NS

0.01 34.71 ±4.51 0.0080 * *
0.0001 40.01 ± 6.47 NS

styrene 100 41.91 ± 7.33 NS

1 57.51 ± 8.04 NS

0.01 43.25 ±7.17 NS

0.0001 41.93 ±6.98 NS

vinyl acetate 100 57.16 ± 5.70 NS

1 54.56 ± 3.00 NS

0.01 51.92 ± 7.89 NS

0.0001 47.00 ± 8.16 NS

*, P < 0.05; * *, P < 0.01; NS, not significant (P> 0.1); n =10. RI =([T/(T + C)] 100).

Null hypothesis RI =50, alternative hypothesis Rl :;; 50.
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Table 2.7. Response of T. castaneum to the green leaf volatile compounds.

Compound Dose (J.1g) MeanRI±SE P-value

hexanal 100 52.56 ± 4.69 NS

1 50.97 ± 7.05 NS

0.01 46.62 ± 7.14 NS

0.0001 47.00 ± 5.57 NS

t-2-hexenal 100 42.92± 7.80 NS

1 64.85 ± 6.85 0.0582

0.01 58.72 ±6.68 NS

0.0001 48.82 ± 6.21 NS

hexanol 100 36.48± 7.13 0.0906

1 41.25 ± 7.04 NS

0.01 45.80 ± 6.13 NS

0.0001 60.70 ± 7.57 NS

c-2-hexen-l-01 100 41.61 ± 8.03 NS

1 45.49 ± 7.10 NS

0.01 58.58 ± 8.03 NS

0.0001 45.12 ± 6.26 NS

t-2-hexen-l-01 100 36.27 ± 4.51 0.0140 *
1 35.42 ± 5.03 0.0176 *

0.01 49.14 ± 7.02 NS

0.0001 67.17 ± 8.38 0.0708

c-3-hexen-1-o1 100 33.94 ± 5.90 0.0235 *

1 48.10 ± 6.31 NS

0.01 45.27 ± 5.84 NS

0.0001 43.19 ± 6.12 NS
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Table 2.7. (continued)

Compound

t-3-hexen-1-o1

Dose (Jlg)

100

0.01

0.0001

MeanRI±SE P-value

26.11 ± 4.95 0.0009 * *
45.67 ± 6.87 NS

62.21 ± 6.72 NS

61.11 ± 6.30 NS

*, P < 0.05; * *, P < 0.01; NS, not significant (P> 0.1); n = 10. RI = ([T/(T + C)] 100).

Null hypothesis Rl = 50, alternative hypothesis Rl ~ 50.
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Table 2.8. Response of T. castaneum to various volatile compounds + DMD.

CompoWld MeanRI±SE P-value

anisole 55.46 ± 6.60 NS

DMD 43.75 ± 3.97 NS

anisole + DMD 52.30 ± 4.52 NS
3-methyl-l-butanol 47.27 ± 2.90 NS

DMD 49.30 ± 4.42 NS

3-methyl-l-butanol + DMD 66.11 ± 7.25 0.0534

3-methyl-2-butanone 45.38 ± 6.24 NS

DMD 53.79 ± 2.38 NS

3-methyl-2-butanone + DMD 48.83 ± 7.61 NS

2-methylphenol 56.97 ± 8.56 NS

DMD 51.48 ± 6.38 NS

2-methylphenol + DMD 49.42 ± 6.38 NS

3-octanone 60.62 ± 4.12 0.0297 ..

DMD 67.83 ± 5.06 0.0065 * *

3-octanone + DMD 60.25 ± 7.78 NS

Styrene 54.72 ± 5.02 NS

DMD 57.78 ± 5.39 NS

Styrene + DMD 48.06 ± 3.55 NS

vinyl acetate 47.17 ± 6.72 NS

DMD 63.86 ± 7.18 0.0858

vinyl acetate + DMD 42.21 ± 6.41 NS

hexanal 52.98 ± 5.25 NS

DMD 79.17 ± 3.62 0.0001 .. *

hexanal + DMD 56.77 ± 6.20 NS

t-2-hexenal 48.89 ± 8.95 NS

DMD 55.19 ± 7.76 NS

t-2-hexenal + DMD 61.74 ± 5.92 0.0785
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Table 2.8. (continued)

._------

Compound MeanRI±SE P-value
hexanol 43.55 ±7.41 NS

DMD 70.14 ± 5.59 0.0057 * *

hexanol + DMD 53.58 ± 7.53 NS
c-2-hexen-l-01 35.40 ± 6.40 0.0484 *

DMD 70.10 ± 5.80 0.0071 * *

c-2-hexen-l-ol + DMD 51.22 ± 3.45 NS
t-2-hexen-l-01 42.31 ± 6.33 NS

DMD 58.67 ± 7.44 NS

t-2-hexen-l-01 + DMD 59.10 ± 7.14 NS

c-3-hexen-l-01 51.31 ± 7.50 NS

DMD 75.11 ± 4.68 0.0005 * *

c-3-hexen-l-01 + DMD 66.20± 5.70 0.0193 *
t-3-hexen-l-01 28.45 ± 6.80 0.0114 *

DMD 78.36 ± 9.40 0.0166 *

t-3-hexen-l-ol + DMD 52.83 ± 7.50 NS

*, P < 0.05; * *, P < 0.01; NS, not significant (P> 0.1); n = 10. RI =([T/(T + C)l 100).

Null hypothesis RI = 50, alternative hypothesis RI:F- 50.
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Fig. 2.1. Standard design and modified pitfall traps. (a) standard trap with cardboard

cover. (b) modified trap with PVC end-cap.
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Fig. 2.2. Mean response index (RI) of T. castaneum to each ofthe individual pitfall

trapping oil components as,well as the oil mix in the pitfall bioassay. An analysis of

variance revealed that components A and D had a significantly repellant Rl (P = 0.026

and 0.0083, respectively). RI's ofall other components, as well as the oil mix, were not

significantly different than 50 (neutral). Each treatment was replicated eight times. Rl =

[T/(T+C)] 100. Null hypothesis Rl = 50, alternative hypothesis Rl * 50.
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Fig. 2.3. Mean response index (RI) ± SE of T. castaneum to pitfall trapping oil samples

with and without the antioxidant BHT added, in the pitfall bioassay. The control oil

without BHT (stored at 50 C) tested neutral throughout the study. The control oil with

BHT (stored at 50 C) tested neutral all weeks ofthe study except for week 3 where it

tested significantly repellant (RI = 35.25 ± 5.75, P = 0.0304). The aged oil without BHT

tested significantly repellant on week 1 (RI = 37.89 ± 3.84, P = 0.0117), and neutral all

other weeks. The aged oil with BHT tested neutral on week one and significantly

repellant on weeks 2-4, (RI = 31.86 ± 6.84, P = 0.0264), (RI = 32.05 ± 6.04, P = 0.0157)

and (RI = 30.08 ± 4.46, P = 0.0016), respectively.
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Fig. 2.4. Response of T. castaneum to three unbaited trap designs (Sticky 1, Detector

sticky trap; Sticky 2, Trapper sticky trap; and Pitfall, Flit Trak pitfall trap) in the metal

tray bioassay. Analysis ofvariance revealed a significant difference in trap capture (F =

18.84; df= 2; P = 0.0026). Means with the same letter are not significantly different.

Percent captures were arcsine square root transfonned for ANOVA.
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Ytg~ 2.5. Response of T. castaneum to Trapper and Window sticky traps, with and

without DMD lures in the metal tray bioassay. Analysis ofvariance revealed a

significant pheromone by trap interaction (F= 20.16; df= 1, 9;P= 0.0015). Means with

the same letter are not significantly different Percent captures were arcsine square root

transfonned for ANOVA.
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Fig. 2.6. Captures of three species of stored-product beetles by pitfall and Detector

sticky trap designs in a flour mill (mill 1, see Chapter ill & N). Signifi~antlymore T.

castaneum were captured in the pitfall over the sticky traps (F = 6.59; df= 1,38; P =

0.0143). The sticky trap captured significantly more T. stercorea (F= 10.92; df= 1,38;

P = 0.0021), and significantly more A. advena (F = 10.95; df= 1,38; P = 0.0021) than

the pitfall trap. Results are from 13 biweekly observations from 26 pitfall and 26 sticky

traps. Count data were square root transformed for ANOVA.
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L

Fig. 2.7. Difference in. weight (g), from dust accumulation, ofuncovered and covered

pitfall traps after one week in a flour mill (milll, see Chapters ill & IV). Uncovered

traps weighed significantly more than covered traps in the area below the bulk flour bins

(F = 18.59; d.f= 1,6; P = 0.0050). Differences oftrap weights in other locations were

not significantly different.
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Fig. 2.8. Mean % ± SE response ofT. castaneum to standard (cardboard cover) and

modified (dust-cap cover) pitfall trap designs in the metal tray bioassay. An analysis of

variance revealed no significant difference in capture between the two traps (F =2.08; df

= 8, 12; P = 0.1218). Percent captures were arcsine square root transformed for

ANOVA.

82



ModifiedStandard

o~-

n=8

20

30 .--------------------------,

10 .

83



Fig. 2.9. Capture ofT. castaneum by standard (cardboard cover) and modified (cap dust

cover) pitfall traps. Capture was not significantly different in warehouse 1 (F =2.14; elf

= 12, 11; P = 0.1097). In the feed area, the modified trap captured significantly more

beetles (F = 4.79; df= 4,3; P = 0.1144). Warehouse 1 was a relatively dust-free

environment (see dust accwnulation study) where the feed area was relatively dusty. N =

4 for the feed area study, and n = 12 for warehouse 1 study. Count data were square root

transformed for ANOVA.
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Fig. 2.10. Response of T. castaneum to the pitfall trap components in the metal tray

bioassay. Treatments were: 1) control (1 m.l mineral oil, no pheromone lure), 2) Oil (1 m.l

trapping oil, no pheromone lure) 3) Pheromone (1 ml mineral oil, pheromone lure), and

4) Oil + Pher. (l ml trapping oil, pheromone lure). Analysis of variance revealed a

significant interaction among oil and pheromone in the trap (F= 12.77; df= 1,21; P =

0.0018). Means with the same letter are not significantly different. Percent captures

were arcsine square root transformed for ANOVA.
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Fig. 2.11. Capture of T castaneum in modified pitfall traps with or without HMD lures

within three locations of a flour mill. Capture was not significantly different in location 1

(F = 0.48; df = 1, 5; P = 0.5207). Capture was significantly higher in pheromone traps in

location 2 (F = 0.115.65; df= 1,5; P = 0.0001) and location 3 (F = 475.36; elf= 1,5; P =

0.0001). Results are from the following: in location 1, six weekly observations among

four, two-treatment blocks; in location 2, six weekly observations among two, two­

treatment blocks; and in location 3, four weeldy observations from one, two-treatment

block. Counts data were square root transformed for ANOVA.
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Fig. 2.12. Capture of T. castaneum in multiple funnel traps with and without DMD

pheromone lures outside a flour mill (mill 1). Capture was not significantly different

among trap treatments during July (F= 3.06; df= 1, 11.5; P = 0.1071). Capture was

significantly higher in pheromone traps during August (F= 18.32; df= 1, 11.5; P =

0.0012), September (F = 28.56; df= 1, 11.5; P = 0.0002), and October (F = 5.82; df= 1,

11.5; P = 0.0336). Cmmt data were square root transformed for ANOVA.
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CHAPTER ill

MONITORING TRIBOLIUM CASTANEUMAND OTHER STORED-PRODUCT

BEETLES IN FLOUR MILLS

..
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Abstract

The red flour beetle, Tribolium castaneum (Herbst) and other insect pests

common to mills and food processing facilities were targeted during 1997 and 1998

trapping studies conducted in two flour mills. Objectives of the studies were: 1) use

insect traps to determine pest species present and their distribution in space and time, 2)

monitor T castaneum activity before and after methyl bromide fumigation to assess

efficacy of treatment, and 3) correlate T. castaneum trap capture to T. castaneum counts

from direct sampling of the product. T. castaneum was the most commonly trapped

beetle during both years in mill 1. In mill 2, Typhaea stercorea (L.) and Cryptolestes

ferrugineus (Stephens) were both captured in higher numbers than T castaneum. In mill

1, trap capture was higher overall during 1998 for most of the species compared with

capture during 1997, likely due to the dust cover modification made of the pitfall trap

used during 1998, as well as more frequent trap servicing during 1998. Trap capture was

also evaluated by location within the mills and a significant difference was found in the

capture of T. stercorea during both years in mill 1. In some cases, T. castaneum captures

were significantly reduced following fumigations; however, in no cases were beetle

population eliminated. These results indicate either that the fumigations were not entirely

effective, or that the beetles were entering the mill immediately after treatment. When

trap captures of T. castaneum were compared with counts of this beetle from samples of

siftings from the flour, the test for correlation coefficient of the 1998 data were nearly

significant.
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Introduction

Pest management in food processing is critical to the industry because: I) their

facilities support persistent pest populations, 2) processing is the last place where pests

can be eliminated before marketing, 3) FDA and EPA regulations limit certain pest

management approaches and tools available in processing, and 4) limited time constraints

require that most processors run 24 h per day with little time to correct pest problems.

Beetles in the genus Tribolium, in particular the confused flour beetle, T.

confusum Jacquelin du Val, and the red flour beetle, T. castaneum (Herbst), are major

pests of many stored-food products and are commonly fOWld in cereal processing

facilities such as flour mills (Agricultural Experiment Station Bull. 1913, Cotton et a1.

1945). Good (1937) surveyed insect pests in 17 flour mills throughout Missouri, Kansas,

and Oklahoma. Beetles in the genus Tribolium were found in 78% ofall samples, and

present in 97% of all infested samples.

Methyl bromide (MB) is a compoWld commonly used as a structural fumigant by

many flour mills. TIris chemical is preferable to other fumigants because it is effective

against a wide variety of pests, relatively fast acting and leaves little to no residues

(Chakrabarti 1996). However, MB is scheduled to be banned 1 January 2005 under the

Clean Air Act. Therefore, users of this compound need to find viable alternatives.

Trapping to monitor Tribolium and other mill pests plays an important role within an

integrated pest management (IPM) program (Flint & van den Bosch 1981), and win

likely increase in practice and necessity with the ban ofMB. Current stored-product

insect trapping methods include the use of pheromone and food baited traps (Burkholder

& Ma 1985, Chambers 1990, PhiUips 1997).
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This study was conducted in 1997 and 1998 in two flour mills with the following

objectives: 1) determine pest species present and their distribution in space and time, 2)

monitor T castaneum activity before and after methyl bromide fumigation to assess

efficacy oftreatment, and 3) correlate T. castaneum trap captures to T castaneum cOWlts

from direct sampling ofthe product.
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Materials and Methods

Traps

Two trap' designs, as well as a modification to one of the traps, were used in these

studies. The Storgard Flit Trak® M2 (Trece Inc. Salinas, CAl is a ramp-pitfall trap baited

with a grain-based oil and Tribolium aggregation pheromone, and were used throughout

the 1997 study (Fig. 2.1a). This trap was designed after a prototype by Mullen (1992).

The trap is constructed ofa 10 cm plastic circular ramp in the shape of an inverted cone.

The ramp portion of the trap is roughed to facilitate insect footing. A cup (~ 4 cm in

diameter) in the center of the trap holds the oil bait that is designed to act both as an

attractant and a trapping medium. A filter paper disk lines the bottom ofthe cup to

facilitate removing its contents. The trap comes with a cardboard cover that provides

moderate dust and debris protection to the oil cup, as well as a means to hold the rubber

septum impregnated with synthetic Tribolium aggregation pheromone, 4,8-

dimethyldecanal (DMD) (Suzuki 1981). Traps were serviced by removing the contents

and placing them in a sealed plastic bag, depositing approximately 1 ml of fresh trapping

oil in the cup reservoir on a new filter paper disk, and placing a new pheromone lure in

the trap, if needed. Pheromone lures were replaced every four wk. The contents of the

pitfall traps were taken back to the laboratory for identification under a dissecting scope.

A modification of the pitfall trap was constructed in an attempt to improve trap

efficacy in dusty environments and was used throughout the 1998 study (Fig. 2.1b). The

modification consisted of a durable 10 cm PVC end-cap that replaced the standard

cardboard cover. The cap rested on four pl~tic beads glued on its lower rim to allow
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beetles clearance to the ramp-pitfall under the cap, and to allow release ofvolatile

attractants. A 2 mm. hole was drilled in. the top of the cap to receive the pheromone lure.

Sticky traps were also used during the' 1997 trapping study to monitor insects at

the floor level. The Detector trap (AgriSense, P'alo Alto, CA) is made ofcardboard with

a 9.5 X 6.5 em sticky area. The trap folds in on itself top to bottom to provide protection

to the sticky surface. The traps use no pheromone or food attractants and are designed to

capture any insect crawling onto them. These traps are not reusable, so were removed,

replaced with a new trap, and the old trap was taken to the laboratory for identification.

Trapping Sites and Study Design

MilIt. Mill 1 was relatively large, producing 750,000 kg of flour per day.

Trapping studies occurred during 1997 from 1 May to 26 November, and during 1998

from 16 June to 5 November. Traps were deployed in three main areas of the mill.

Floors three through eight, which consisted of the milling areas where wheat was

processed into flour (Fig. 3.1). Each milling floor was approximately ~ 25 X 50 m.

Areas above and below the 36 bins containing the bulk stored flour were also monitored

for insects; each measured ~ 20 X 20 m. Finally, insects were sampled in one ofthe two

mill warehouses (warehouse 1 of chapter IV). The warehouse was divided into two

separate areas: the main warehouse (~65 X 85 m), where the packaged product was

stored before shipping by rail or truck, and the feed area (~ lOX 15 m) that contained

systems for processing animal feeds. Traps were placed in non-random paired treatment

blocks containing one pitfall and one sticky trap, 3 m between each trap and each block,

along the perimeter of the rooms. Trap placement was not changed throughout the 1997

study. A total of 36 pitfall traps and 26 sticky traps were placed throughout the mill.
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Four, two-treatment blocks were placed on each of the mill floors (four pitfall traps and

four sticky traps on each); two blocks above bulk storage bins (two pitfall and two sticky

traps). Pitfall traps only (no sticky traps) were deployed below the bulk storage area (two

traps), in the feed area of the warehouse (four traps), and in the main warehouse (four

traps).

During the 1998 study, only the modified pitfall trap was used because of its

design to reduce dust interference and the relatively poor performance of Tribolium

capture by the sticky traps in 1997 (Chapter II). Floors four through eight were not

included in the 1998 study because capture was low among these floors during the 1997

study. The first and second mill floors were used, which were not used during the 1997

study, and the third floor was again used. Two traps were placed on the first floor (::::l 12

X 50 m); this area was adjacent to a loading dock and experienced a lot oftrattic from

forklifts transporting bagged product. Four traps were placed on the second floor, which

was used for flour packaging and was the same dimensions as floors three through eight

(::::l25 X 50 m). This area was chosen because the load-out tailings (see below) were

collected, and the potential existed for capturing insects escaping the tailing collection

bags.

Live Tribolium adults were monitored directly from product flow out of the bulk

stored flour bins. Accumulated tail-over material from the six load-out systems that

transported the flour from bulk storage bins to various packaging and bulk shipment

systems was inspected regularly by mill staff. Tail-over or tailings refers to the particles

of debris too large to pass through selective sieves in sifting devices. As the product is

transported from storage to packaging and bulk load-out, it is directed through a final sift
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that removes any foreign matter, including insects, and is collected as tail-over. Data

from tail-over samples were used by mill personnel to assess insect infestation and plan

control measures in the mill. There was interest in what relationship would be observed

between T. castaneum sampled in tail-overs, and the number ofbeetles trapped

throughout the mill. During the 1998 study, trap capture below the bulk stored flour bins

was high enough to allow a correlation ofit to the tail-over counts as well. The area

below the bulk flour bins was isolated. because it was in closest proximity to the bins, and

therefore a closer correlation may have been observed between these trapping data than

from the data collected from trapping data from throughout the entire mill Mill 2

sampling data of the bulk product tailings were collected as well, but low beetle counts

prevented a meaningful comparison.

Methyl bromide fumigations occurred on 31 May and 30 August 1997, and on 4

July 1998. The fumigant was applied to all areas of the mill used in trapping. The stored

product bins, which were not used in trapping, but from which tail-over data were

collected, were fumigated· with magnesium phosphide on the same date ofmethyl

bromide application. Phosphine from metal phosphides is generally used as opposed to

methyl bromide on products such as bulk flour and wheat because it is better able to

penetrate into the commodity. Nevertheless, to ensure adequate phosphine penetration,

the bins had to contain less than 18,000 kg of flour out of a I::: 60,000 kg capacity. Any

bins containing more than 18,000 kg of flour were therefore not treated.

MiU2

11ris mill was smaller than mill 1, producing 225,000 kg of flour per day.

Trapping occurred from 24 June to 5 November 1998. The mill consisted offour floors,
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as well as a basement that contained the product elevator boots (Fig 3.1). The mill floors

were divided into two separate areas: the main milling area (~25 X 50 m), and the

warehouse area. The warehouse area was north of the milling area, corresponding to the

basement, and floors one through three of the main mill. A doorway on each floor

connected these two areas of the mill. The warehouse area contained the bulk storage

bins, and various equipment and supplies. From the basement up to the second floor, the

warehouse areas were comparable in size to the milling areas (~25 X 50 m), and the third

floor warehouse was ~ 25 X 25 In. Two modified pitfall traps were placed in the

perimeters of each milling floor (basement to fourth floor) and in each warehouse area

(basement up to the 2nd floor); one trap was placed in the third floor warehouse area.

Methyl bromide was applied on 1 August 1998 to all areas ofthe mill sampled by

trapping.

Data Analysis

The total numbers of stored-product beetle pests trapped (larvae and adult) for a

given year in each mill were plotted as totals, and as functions of date and location. The

total number of the most commonly trapped beetles are plotted for each years' study in

each mill. The number ofbeetles captured were combined for the pitfall and sticky traps

for the 1997 study due to the lower competency of the sticky traps for Tribolium (Chapter

ll), and only from the modified pitfall traps during the 1998 studies. Spatial variation

was analyzed by plotting capture of the three most commonly trapped beetles for each

mill. Captures ofbeetles per trap per trapping period at each designated location within

the mills were computed and plotted on a biweekly (1997) or weekly (1998) basis. An

analysis ofvariance using PROC MIXED in SAS (SAS Inst. 1996) was performed
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followed by a mean separation (LSD) to determine significant difference in capture of

each of the beetles by location within the mill. Seasonal activity was plotted by summing

beetle capture from all traps within the mills during a trapping period, and were

expressed as the mill-wide number of beetles per trap per day. Seasonal activity was

plotted for T castaneum in milli, and for T castaneum, Typhaea stercorea (L.) and

Cryptolestes ferrugineus (Stephens) in mill 2. These additional two species were plotted

for mill 2 because they were trapped more abundantly than T. castaneum in this mill. T.

castaneum seasonal activity from tail-over samples was observed in mill 1 by

consolidating the daily counts into biweekly (1997) or weekly (1998) counts that

corresponded to the same intervals used for trapping. Values are plotted as live beetles

per system per day. The daily beetle per system counts from the six systems were

consolidated into biweekly (1997) or weekly (1998) beetle per system COWlts. In order to

estimate the effects ofphosphine and methyl bromide fumigation on beetle populations, a

paired t-test was performed using PROC UNIVARIATE on square root-transfonned

beetle COWlts from traps and tail-over samples immediately before and after MB and

phosphine fumigations with the null hypothesis that the difference between the two

captures was not different from zero. The relationship between numbers of T castaneum

trapped to those sampled directly from the bulk flour bin tailings was assessed by

correlating the biweekly or weekly beetles per trap capture to the mean number of beetles

per system sampled from tailings for the same interval of time using PROC CORR. The

confidence level for all analyses was set at 0: = 0.05.
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Results

During the 1997 study in mill 1, T. castaneum was the most commonly captured

pest, other species captured, in order ofdecreasing abundance, include: Typhaea

stercorea, Ahasverus advena (Waltl), Sitophilus oryzae (L.), Oryzaephilus surinamensis

(L.), and Crypto/estesferrugineus (Stephens) (Fig. 3.2). During the 1998 study in mill 1,

T. castaneum was again the most abundantly captured beetle pest, other species captured,

in order of decreasing number, include: T. stercorea, 0. surinamensis, C ferrugineus,

and A. advena (Fig. 3.3). Capture of all beetles increased during 1998 in mill lover

1997 captures. In mill 2 (1998 only), T. stercorea was the most abundant pest species

captured throughout the study, followed by Cferrugineus, T. castaneum, Trogoderma

spp., 0. surinamensis, and A. advena (Fig. 3.4).

Capture of T. stercorea was significantly different by location within mill Iduring

1997, being highest in the feed area ofwarehouse. Capture of this beetle among all other

locations was not significantly different (Fig. 3.5). The capture of T. castaneum and C.

ferrugineus revealed no significant differences by location. During 1998 in mill 1,

capture of T. stercorea was again significantly different by location with the highest

capture being within the first floor. The capture of T. castaneum and 0. surinamensis

was not different among locations (Fig. 3.6). In miIl2, the capture of T. castaneum, C

ferrugineus, and T stercorea was not different among locations (Fig. 3.7).

The seasonal capture of T. castaneum in mill 1 during 1997 was initially lower at

the beginning of the study and was highest toward the end, regardless of MB fumigation

(Fig. 3.8). Capture of the beetle was significantly lower following the 31 May MB

fumigation, and increased after the 30 August fumigation, though not significantly over
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pre-fumigation capture (t = 1.74; df= 50; P = 0.0900). Seasonal activity of T. castaneum

from bulk load-out tailing samples in mill 1 during 1997 were generally higher at the

beginning of the study (Fig. 3.8). Live beetles sampled from the load-out raised slightly

following the 31 May phosphine fumigation, but not significantly higher than pre­

fumigation capture (t = 2.49; df= 5; P = 0.2434). Captures were significantly lower

following the 30 August fumigation (Fig. 3.8). The test of the correlation coefficient of

T. castaneum trapping data to data from tailing samples revealed no significant

relationship during the 1997 study (r = 0.3973; P = 0.1789). T. castaneum capture was

highest during the first week of the 1998 study in mill 1, and dropped significantly

following the 4 July MB fumigation (Fig. 3.9). Observations of T. castaneum sampled in

bulk load-out tailings during 1998 also dropped significantly following the 4 July

fumigation (Fig. 3.9). Beetles in load-out samples remained relatively low until 10

September, followed by a steady increase throughout the remainder of the study. The test

for the correlation coefficient comparing the mill 1 1998 T· castaneum trapping data

throughout the entire mill to beetles sampled from tail-over revealed a nearly significant

positive correlation (Fig. 3.10). Correlation of beetle counts from tail-over samples to the

mean beetles per trap per day capture of the area below the bulk stored product bins was

similarly nearly significant (Fig. 3.10).

The highest capture of T. stercorea in mill 2 during 1998 was observed during the

second week ofthe study and declined over the following three weeks. Capture rose

slightly following the 1 August MB fumigation, but not significantly from pre-fumigation

capture (t = 1.58; df= 16; P = 0.1761), and remained relatively steady throughout the

remainder of the study (Fig. 3.11). Capture of C. ferrugineus was cyclic for the first five
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weeks of the study followed by steady lower captures throughout the remainder (Fig.

3.11). Capture fell immediately preceding MB fumigation and was not significantly

different following treatment (t = 1.81; df= 16, P = 0.0947). Capture of T. castaneum

was highest during the first week of the study, and decreased significantly following MB

fumigation. Following fumigation, weekly beetle capture remained relatively low and

steady throughout the remainder of the study.
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Discussion

Trap catches were lower than expected during the 1997 study in mill 1,

particularly on the mill processing floors, despite evidence ofa substantial beetle

population observed from visual observations while at the mill. Low capture of T.

castaneum was likely attributed to low efficiency of traps due to dusty conditions in the

mill. Flour dust, particularly ablUldant among the mill processing floors, can offer a food

source to beetle populations and appears to also interfere with the efficacy oftraps that

rely on sticky or oily surfaces to capture insects. It was commonly observed that the

traps in the warehouse area were still effective after the two-week interval between trap

servicing, whereas the trapping oil reservoir of traps in other areas of the mill had been

saturated with dust to the point that they could not have killed any insects falling into

them. Furthennore, the amount ofdust covering the inner sides of the pitfall trap was

often sufficient that any trapped insect could have likely crawled out of the trap; further

reducing trap efficiency. Evidence of trap interference from dust was observed from the

mill dust study reported in Chapter II. Traps placed in the warehouse area experienced

little to no increase in weight due to dust, whereas the third floor of the mill experienced

the highest dust increase. Tingle & Mitchell (1975) during moth trapping studies

demonstrated that adhesive traps could be detrimentally affected by dust.

It was discovered that the method of cleaning the various mill areas played an

important role in trap interference as well. An observation from the Chapter II dust

accumulation study was that traps within some areas of the mill (i. e. the area below the

bulk stored four bins and the feed area of warehouse 1), unlike the third floor processing

area, were adequately protected from dust by the trap dust cover. Ibis may explain why
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dusty areas such as the feed area ofwarehouse 1 and the area below the bulk storage bins

experienced relatively high beetle capture compared with the milling floors. The notable

difference between these areas (below bulk bins and feed area) and the milling floors is

that the feed area and the area below the bulk bins were only cleaned weekly with

compressed air blow-downs, whereas the milling floors (floors 3 to 8) were cleaned daily

with compressed air. These compressed air blow-downs proved rather detrimental to

both the sticky and pitfall traps. The high pressure air currents created from this cleaning

technique forced dust under even the PVC end-cap cover modification used to protect the

pitfall trap (Chapter II). The standard cardboard covers for the pitfall traps used during

1997 likely offered even less protection from this cleaning technique. Therefore, trap

efficacy in the mill seemed to be a function both of the amount of dust in the particular

mill location, as well as the method and frequency ofcleaning within that area. Thus, an

accurate estimation ofbeetle spatial distribution in mill 1 was likely not recorded during

either year, although possibly more accurate during 1998 over 1997 due to the dust cover

modified traps used in the 1998 study. The suspected lower efficacy of traps used during

1997 may explain the lack of correlation observed between data from T. castaneum trap

capture and those sampled from bulk load-out tailings. Trap efficiency was likely higher

in mill 2 compared with mill 1, as mill 2 did not perform compressed air blow-downs, but

rather cleaned with a vacuum system and sweeping.

Capture of T. castaneum in mill 1 was increased during the 1998 study, perhaps

due to factors in addition to use of the modified trap. The decreased interval of trap

servicing interval from biweekly to one-week likely played a role in higher tap capture.

Many of the traps on the mill floors were likely rendered ineffective after one or two of
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the daily compressed-air floor cleanings described above. Therefore, more frequent trap

servicing would allow more time overall to capture insects before they would be

inundated with dust from cleaning. This idea is further suggested by the fact that all

other beetle pests captured during the 1998 study, with the exception ofS. oryzae,

increased over 1997 captures as well. The overall T castaneum populations may have

been higher in the mill during 1998. Based on the only independent measure of beetle

abundance available, namely, the number of beetles sampled from tailings of the bulk

load-out, the total number ofbeetles observed for the 1997 study was 410.55 (30 wk),

compared with 1,100.00 (20 wk) for the 1998 study.

Mill 2 was different than mill 1 in relative abundance of beetle pests captured. T

stercorea was the most abundantly captured pest in mill 2. The location of T. stercorea

capture is likely explained by this species' fungivorous feeding habits (Sinha & Watters

1985), and therefore it is not surprising that this beetle was commonly trapped in the

musty basement areas. C. jerrugineus was the second most abundantly captured beetle in

mill 2 and was largely concentrated in space and time to the fourth floor during the first

and fourth weeks of the study. These data indicate a "hot spot" of activity, which was

apparently temporal, as capture of this beetle was relatively low following the initial

peaks of activity. T. castaneum was the third most abundantly captured species in mill 2.

Capture of this beetle both spatially and temporally was less variable than the other two

species and likely reflects a steady and relatively evenly dispersed population throughout

the mill. It is interesting to note that T stercorea and C. jerrugineus were captured more

abundantly than T casfaneum, despite using pheromone-baited traps specifically for

Tribolium. 1ms observation, as well as the low number of Tribolium sampled from the
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bulk product, are evidence that T. castaneum was not as abundant as other pests in this

mill. Another difference ofmill 2 beetle capture over mill 1 was that a notable amount of

Trogoderma were captured in mill 2, where they were rarely captured in mill 1. These

differences between the two mills probably reflect varying beetle populations among the

two locations.

One striking difference between the two mills was the apparent lack of large

beetle populations in mill 2 bulk flour bins compared with mill I as evidenced from tail-

over samples. This can most likely be explained by the high turn-over in mill 2-each bin

was emptied twice a day according to the mill manager. Mill 2 had much less storage

capacity than mill 1, furthermore a1110ad-out systems were bulk to rail or truck, which

facilitated fast turn-over compared with bagging systems used in mill 1. Therefore, flour

was cycled through these bins, apparently before a beetle infestation could take hold.

It should be understood that not every pest species captured in the mill is a direct

threat to the product. For instance, the large size, length, and amount of setae on T.

stercorea, which give it its hairy appearance also make it unable to maneuver through

bulk flour. This fact, along with the beetles preference for fungi make it a minor

economic pest to the mill; however, its presence should be of concern as harbouring large

populations ofany pest insect is undesirable. Another beetle, C.ferrugenuis prefers the

germ portion of the wheat kernel (Sinha & Watters 1985). Because flour does not

contain wheat germ, this beetle is more often a pest to whole wheat or intermediate flour

products that still contain germ..

Varying effects on T. castaneum populations offumigations are indicated

according to the particular treatments and m~thodsof sampling. According to the tail-

108

),

r..
",'

:I.



over counts, the 31 May 1997 fumigation in mill 1 seemed to have had no effect on the

beetle population, whereas the beetle trap captures decreased following this same

fumigation. The lack ofeffect observed from tail-over data following the 31 May

phosphine fumigation is most likely due to the fact that many ofthe bins contained too

much flour to be treated. Conversely, the 30 August fumigation does seem to have been

effective according to the tailing counts; not surprisingly, most of the bins were

fumigated. Trap captures, however, increased slightly following the 30 August MB

treatment. The 4 July 1998 fumigation in mill 1 was followed by significant reductions

in both the numbers of beetles sampled from tailings, and beetles trapped.

Conclusions regarding MB effectiveness are difficult to make from these data.

Because phosphine was used in the flour bins, trapping data are the only estimate

available of MB effect. Furthermore, the mill is not a closed system, so trapping data

may have included immigrating beetles from outside following fumigation, and therefore

may confound results. Better attempts should be made to prevent the possible access of

beetles into the mill from outside in order to isolate any fumigation effect. 'Ibis is

obviously a challenge in a functioning mill where bay doors must be opened to ship the

product. Nevertheless, fumigation effects were likely reflected by significant reductions

in beetle captures following treatment, although captures were never eliminated

completely.

Results from 1998 in mill I show a positive relationship between nwnbers of T.

castaneum caught in traps and those sampled in bulk flour load-outs. Both the

comparisons of beetles captured mill-wide, as well as that of beetles captured directly

below the bulk flour bins were similarly nearly significantly correlated to tailings. The
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majority of T casta.neum capture occurred in the area below the bulk stored product bins,

therefore, the overall mill capture was largely made up of capture within this area, and

partly explains the similarities. Also, capture throughout the miJllocations was relatively

consistent; thus, isolating capture below the bins did not reveal any capture patterns that

were not express.ed in the overall mill capture.

An important consideration regarding the comparison of trap capture to tailings

counts is that although the counts were both taken within the same facility, and counted

the same beetle species. the bulk stored product bins and various areas of the mill are

quite different environments. The bulk stored bins offer a large, relatively undisturbed

and unlimited food source, whereas beetles occurring throughout other areas of the mill

(i. e. in machinery, floors, and walls) are likely limited in food supply, shelter, and are

more likely to be frequently disturbed from sanitation procedures. These differences, no

doubt, affect the beetle population dynamics. Therefore, it may not be surprising that the

two data sets in neither 1997 nor 1998 correlated significantly to each other.

Although mill personnel were already actively monitoring insect activity via tail-

over COWltS, trapping offered important additional infonnation on insect activity for a

number of reasons. First, trapping allowed a look at insect activity outside the product

line. This technique could potentially be used to identify "hot spots" ofpest activity

allowing for more localised control measures, and thereby avoiding or reducing the need

for costly fumigations (Vick et a1. 1990). Pheromone trapping can also provide data on

the dynamics of a pest population that would allow for better timing ofcontrol measures

(Chambers 1990, Phillips 1994). Additionally, trapping allows an observation of insect

activity before and after chemical treatment, thereby offering an estimation of
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effectiveness (Levinson & Buchelos 1979). Estimates of insect activity outside the

facility and immigration/emigration can be done through trapping (Vick et ala 1990,

Chapter IV). Additionally, the activity of more insect pests can be monitored from

trapping data than was available from tailings where primarily only Tribo/ium occurred

(Faustini et al. 1990).
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Fig. 3.1. Layout ofmills 1 & 2. Traps were deployed on floors three to eight ofmill 1,

above and below the bulk flour bins, and in warehouse 1. Traps were deployed among all

mill 2 floors (basement to fourth floor) and corresponding warehouse areas of each floor

(basement to third floor).
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Fig. 3.2. Total capture of stored-product beetle pests throughout mill 1 during 1997.

Results are from 13 biweekly observations from 34 pitfall and 28 sticky traps.
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Fig. 3.3. Total capture of stored-product beetle pests throughout mill 1 during 1998.

Results are from 18 weekly observations from 16 modified pitfall1raps.
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Fig. 3.4. Total capture of stored-product beetle pests throughout mill 2 during 1998.

Results are from 18 weekly observations from 17 modified pitfall traps.
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Fig. 3.5. Capture of the three most commonly trapped beetle pests by locations within

mill 1 during 1997. Results are from 13 biweekly observations from 34 pitfall traps.

Capture of T. castaneum was not significantly different by location (F= 1.77; df= 9,25;

P =0.1241). There was a significant difference in capture of T. stercorea (F =10.90; df

= 9, 25; P = 0.0001). Capture ofC./errugineus was not significantly different by

location (F = 1.57; df= 9, 25; P = 0.1791). Means with the same letter are not

significantly different.

122

)

:

'.r
L
~

5



:

,)

T. castaneum

T. stercorea

........ - .. , ..
C. ferrugineus

b' 'b 'b b

b" . 'b" , " , .

·a ... "

1.5

1.2

0.9

0.6

0.3

0.0
W
tn
+-
~ 0.8as
C
~ 0.6
or-......
Q. 0.4
I!
t: 0.2 'b' .
tn
(1)- 0.0..,
(1)
(1)

In

0.3

0.2 ....

0.1 ........

0.0

Location

123



Fig. 3.6. Capture of the three most commonly trapped beetle pests by location within

mill 1 during 1998. Results are from 18 weekly observations from 16 modified pitfall

traps. Capture of T. castaneum was not significantly different by location (F = 2.59; df=

4, 11; P = 0.0952). There was a significant difference in capture of T. stercorea (F =

4.79; df= 4, 11; P =0.0176). Capture of 0. surinamensis was not significantly different

by location (F = 0.66; elf = 4, 11; P = 0.6315). Means with the same letter are not

significantly different.

124

:

.:



L-__*--_0.0

8
T. castaneum

6 ·····r
4

2

0
Wen
+1 3
>a T. stercorea aca
C

2
to--.
Q.

[!
1t:

tn
Q)-..,

0Q)
Q)

m
1.5

O. surinamensis

1.0 .. . .. . .. . . ' . . ., . .. . . :

:
0.5 ......

i

125



Fig. 3.7. Capture of the three most commonly trapped beetle pests by location within

mill 2 during 1998. Results are from 18 weekly observations from 17 modified pitfall

traps. Capture of T stercorea was not significantly different by location (F =2.28; df =

8, 8; P = 0.1326). There was not a significant difference in capture of C. ferrugineus (F

=0.84; df= 8,8; P = 0.5917). Capture of T. castaneum was not significantly different by

location (F = 1.25; df= 8, 8; P = 0.3804).
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Fig. 3.8. Trap capture throughout mill 1 and counts of T. castaneum from six load-out

system tailings during 1997. Results are from biweekly observations from 34 pitfall

traps. Load-out counts are consolidated to correspond with trapping times and intervals.

Arrows denote fumigations on 31 May and 30 August. Significantly fewer numbers of

beetles were trapped following the 31 May methyl bromide fumigation (t = 2.13; df= 23;

P = 0.0455). Significantly fewer beetles were sampled from tail-overs following the 30

August phosphine fumigation (t = 6.83; df= 5; P = 0.0010). Count data for t-tests were

square root transfonned.
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Fig. 3.9. Trap c~pture throughout mill 1 and counts of T. castaneum from six load-out

system tailings during 1998. Trapping results are from weekly observations from 16

modified pitfall traps. Load-out cOWlts are consolidated to correspond with trapping

times and intervals. Arrows denote fumigation on 4 July. Beetle trap capture was

significantly lower following methyl bromide fumigation (t = 3.72; df= 11; P = 0.0047).

Beetles sampled from tail-over samples were significantly lower following phosphine

fumigation (t= 4.10; df= 4; P = 0.0262). Count data fort-tests were square root

transfonned.
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Fig. 3.10. Correlation of T. castaneum trapped in mill 1 to those sampled from bulk load­

out tailovers during 1998. Results are from 18 weekly observations from 16 modified

pitfall traps (mill-wide data) and 2 modified pitfall traps (below bulk flour bins data).

Load-out data are from six load-out systems.
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Fig. 3.11. Capture of T. stercorea, C. ferrugineus, and T. castaneum throughout mill 2

during 1998. Results are from weekly observations from 17 modified pitfall traps.

Arrows denote methyl bromide fwnigation on 1 August. Capture of T. castaneum was

significantly lower following methyl bromide fumigation (t = 3.88; df= 16; P = 0.0015).

Count data for t-tests were square root transformed.
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CHAPTER IV

CAPTURE OF PLODIA INTERPUCTELLA. WITH PHEROMONE-BAITED

TRAPS IN AND AROUND FLOUR MILLS
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Abstract

Studies were conducted at two flour mills where males of the Indianmeal moth,

Plodia interpunctella, were captured using pheromone-baited traps. Objectives were: 1)

to detennine male P. interpunctella distribution in space and time through the use of

pheromone-baited traps, and 2) to monitor insect activity before and after methyl bromide

fumigation to assess efficacy of treatment. Commercially available sticky traps baited

with the P. interpunctella sex pheromone were placed at various locations outside and

within the larger mill. Moths were captured in substantial numbers following methyl

bromide fumigations. The highest numbers ofP. interpunctella were caught outside the

facility and at ground floor locations near outside openings. During the second year of

this study, additional traps were placed in gallery areas located above the mill's concrete

stored-wheat silos and these traps captured more moths than those traps within the mill.

An additional study attempted to detennine the outdoor dispersion of moths relative to

the mill, by trapping moths at various distances from the structure. Results revealed a

negative correlation between moth capture and increasing distance from the facility,

suggesting that the flour mill is the focal point of moth activity. The effectiveness ofthe

methyl bromide fumigations could not be assessed since moths captured after fumigation

may have immigrated from outdoors. lbis study documents high levels ofP.

interpunctella outdoors relative to those recorded inside a food processing facility.

Therefore, potential for immigration ofP. interpunctella into flour mills and other stored

product facilities from outdoor habitats may be greater than previously recognized.
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immediately outside the structure. These early studies suggest that outdoor occurrences

ofmoths such as P. interpunctel/a and C. cautel/a can be attributed to emigration from

nearby storages, and that these species do not breed in wild habitats. Some researchers

have concluded that moth infestation inside a food processing facility is mainly attributed

to the introduction of infested product (Levinson & Buchelos 1979), rather than by

immigration of adults from outdoor locations.

The present study monitored P. interpuncte/la in and around two flour mills in

both 1997 and 1998. Specific objectives ofthe study were: 1) to observe variation in

moth activity in space and time both inside and outside the building, 2) determine P.

interpunctel/a activity before and after methyl bromide fumigations to obtain a relative

measure of fumigation impact on the moth population, and 3) evaluate the outdoor

dispersion of the moth relative to a flour mill.
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Traps

Materials and Methods r I

Two types of sticky traps designed for flying insects, both manufactured by Trece

Inc. (Salinas, CA), were used in these studies. The Pherocon ill D delta trap was used in

both 1997 and 1998 mill trapping studies. The reduced size of the openings of this trap

type makes it more effective for use in dusty environments such as flour mills. This trap

measures 18 cm wide by 11 cm in height. The other model, Pherocon II, was used in the

outdoor dispersion study. It forms a diamond shape when viewed end-on, is smaller than

the Pherocon ill D (15 cm X 18 cm), and lacks the end features to reduce dust

interference. Moths and other flying insects are captured by entering the trap from the

lateral opening and then become stuck when contacting the sticky inner surface.

All traps were baited with pheromone lures provided by the manufacturer for use

with these traps. Lures consisted ofa rubber septum impregnated with ZETA, and were

placed on the trap's bottom inner sticky surface. Mullen et a1. (1991) tested the longevity

of these lures and found that they were effective in capturing P. interpunctel/a for up to

40 wk. However, in these studies lures were replaced every four wk in order to maintain

relatively constant pheromone release.

Mill Trapping Studies

Traps were deployed in and around a commercial wheat flour mill (mill 1 of

Chapter llI). Four main areas inside the mill buildings were monitored for P.

interpuncte//a during either one or both years' studies. Traps were deployed on floors

three through eight which consisted ofmilling areas where wheat was processed into
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flour (Fig. 3.1)~ and measured r::::: 25 X 50 m. Areas above and below the' 28 bins

containing the bulk stored flour were also monitored for moths. These areas measured r:::::

20 X 20 m. Traps were also deployed in each of the mill warehouses where the packaged

product was stored before shipping by rail or truck. Warehouse 1 was divided into two

separate areas~ the main warehouse (~ 65 X 85 m)~ where the packaged product was

stored before shipping~ and the feed area (~ lOX 15 m) that contained systems for

processing animal feeds. Warehouse 2 measured r::::: 65 X 85 m and was adjacent to

warehouse 1. Finally, traps were placed in the gallery (enclosed top area) above the

concrete silos that stored whole wheat in the grain elevator section of the mill which

consisted of three main rooms~ each ~ 30 X 100 m. These'gallery areas were only used

during part of the 1998 study.

Traps were positioned approximately 2 m from the f1oor~ from 3 to 30 m apart~

depending on size of the trapping area. When two traps were deployed within a given

area~ they were placed at opposing ends ofthe area. During both years~ four traps were

placed in warehouse 2 attached to support beams located in the center of the warehouse~

approximately 10 m apart. Traps were replaced as needed when either more than half the

sticky surface was covered with moths~ or the trap had accumulated enough dust that its

effectiveness was likely reduced.

During the 1997 study (1 May - 26 November)~ traps were checked biweekly and

all P. interpunctel/a counted. Two traps were placed on floors three through eight~ in

areas above and below the bulk-stored product, and in warehouse 1. Four traps were

positioned in warehouse 2. Four traps were added outside the mill on 29 August, two

were placed 30 m apart in a field 50 m south ofthe mill, and two others were positioned
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next to the south $ide of the building, one near the rail car mill entrance, and another on

the south loading dock.

During the 1998 study (16 June - 5 November), traps were checked weekly and

placed similarly inside the mill to the 1997 study placement, although no traps were

placed on floors four through eight and in the area above the bulk stored used due to low

capture of moths in 1997. Traps were placed outside the .mill at the beginning of the

1998 study; one in a field 50 m south of the mill, another 50 m north of the mill, a third

two m south of the mill on the south loading dock, and the fourth trap was attached to the

outside wall of the mill on the west loading dock. In addition, one trap was placed in

each of the three gallery areas above the wheat silos on 10 September.

Fumigations with methyl bromide were done on 31 May and 30 August 1997, and

on 4 July 1998 by a contracted fumigator. All areas of the mill were fumigated with the

exception ofwarehouse 2and the wheat silos. Flour inside the bulk storage bins was

fumigated with magnesium phosphide on the same dates. All traps were removed 1-3 d

prior to fumigations and replaced as soon after treatment as possible in order to obtain an

accurate assessment of the impact of fumigation on moth populations.

Outdoor Moth Dispersion Study

11ris experiment utilized mill 2 described in Chapter m. This location was

preferable to mill 1 because the objective was to trap moths at different distances from a

single large food source (the flour mill and its grain elevators). Mill 1 was surrounded by

several neighboring grain structures that likely harbored P. interpuctel/a populations that

may have confounded the results. Traps were positioned throughout the residential area

surrounding mill 2 at distances from 6 to 440 m in various directions (Fig. 4.1). Efforts
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were made to distribute, the traps in. a manor that provided good 'representation of both

distance and direction from the mill. Twenty eight new traps and lures were attached '~ 3

m high on utility poles, collected after one wk, and the number ofP. interpunctella males

captured was recorded. The distance of each trap from the mill was determined using a

survey laser instrument (model Criterion 400, Laser Inc. Technology, Englewood, CO),

sited from the trap location to the top of the mill's grain elevator. Traps were deployed

on 24 September and collected on I October 1998. The mean outside temperature during

the study was 25.3 0 C, ranging from 11.7 to 35.30 C.

Data Analysis

Captures of moths per trap per trapping period at each designated location at mill

1 were computed and plotted on a biweekly (1997) or weekly (1998) basis. An analysis

of variance was then performed in SAS (SAS Inst. 1996) using PROC MIXED followed

by a means separation (LSD) ifANOVA was significant to test for differences in capture

by location within the mill. Seasonal moth activity was plotted by summing male moth

capture across all locations within the mill during a trapping period and are reported as

the number ofmale moths per trap per day ± SE. In order to estimate the effects of

phosphine and methyl bromide fumigation on moth populations, a paired t-test was

performed using PROC UNNARIA1E on square root-transformed beetle counts from

traps and tail-over samples immediately before and after rvm and phosphine fumigations

with the null hypothesis that the difference between the two captures was not different

from zero. Moth captures from the outdoor moth dispersion study were analyzed through

a linear regression ofmoth capture (square root transformed) against distance from the

facility using PROC REG. The trapping area for this study was divided into halves four
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different ways (north versus south, east versus weS4 northwest versus southeast and

northeast versus southwest) in order to identify a directional effect in moth captures. An

ANOVA using PROC GLM was performed on trap captures within the respective halves

to test for differences. Trap captures were adjusted for distance as a covariate for

analysis. The confidence level for all analyses was set at a = 0.05.
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Resul.ts

The occurrence ofP. interpunctella at various locations within mill 1 during 1997

was significantly different with the highest recovery occurring within warehouse 2,

followed by warehouse 1, and the area below the bulk flour bins (Fig. 4.2). Moth capture

among the other mill locations was not significantly different. The two warehouse areas

and the area below the bulk flour bins, which had the highest trap captures, were all

located on the ground floor close to large outside openings. Moth capture in 1998 had a

similar trend by capture among locations to that in 1997 although not significantly

different by location (Fig. 4.3). The highest capture occurred within warehouse 2,

followed by warehouse 1, and the area below the bulk flour bins, and was lowest within

the third floor.

Biweekly moth capture during the 1997 study is shown in Fig. 4.4. There was an

overall rise for the first eight wk of the study to the season high on 7-29 August, followed

by a gradual decline until the end of the study. A significant decline in the number of

moths captured was observed following both MB fumigations during 1997. Although

moth capture following the 30 August 1997 fumigation was highly significantly lower, a

similar decline also occurred near the end of September during 1998, which was not

associated with a fumigation (Fig. 4.5). Therefore, the decline in capture observed

following the 30 August 1997 fumigation might have merely coincided with a seasonal

decline in the overall moth population or activity. Weekly moth capture during 1998 rose

significantly following the 4 July fumigation, and continued to increase until the eleventh

week ofthe study (10-17 September), followed by a decline to the end ofthe study (Fig.

4.5).
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Traps placed outside the facility during the 1997 study captured more moths than

even the areas ofhighest capture (ground floors) within the mill (Fig. 4.6). The first

comparison of the study (2-16 September), revealed more than a 36-fold higher moth

capture outside the facility compared with capture within the mill. Moth capture both

within and outside the mill steadily decreased in subsequent weeks, likely due to a

population decrease associated with seasonal cool temperatures and diapause (Tzanakakis

1959). During the 1998 study, captures ofmoths were again highest outside the mill

(Fig. 4.7), and seasonal capture within the mill followed a pattern similar to that observed

outside the mill. Captures in the gallery areas, above the wheat silos, was initially lower

than that outside the mill, but was followed by higher moth capture than that observed

both within, and outside the mill, for the remainder of the study.

The numbers ofP. interpunctella trapped at various distances from mill 2 ranged

from 2 to 120 during a one-wk trapping period (Fig. 4.8). Regression of the moth capture

data against increasing distance from the mill revealed a significant negative relationship.

A comparison of the mean number of moths per trap (adjusted for distance) north versus

south of the mill was nearly significant (F = 3.90; df= 1; P = 0.0623). No other

divisions of the trapping area revealed difference3 closer to being significantly different;

east versus west (F = 1.55; df= 1; P = 0.2279), northeast versus southwest (F = 1.07; df

= 1; P = 0.3139), and northwest versus southeast (F= 2.15; df= 1; P = 0.1578).
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Discussion

There were three general observations made during these studies: 1) P.

interpunctella trapped inside the mill seemed to be coming from outdoors, 2) The mill's

wheat storage silos were likely a predominant source of moths captured, and 3) P.

interpunctella can be captured regularly in high numbers outside during the summer and

early fall moths, and are concentrated around the flour mill/wheat silos.

An a priori assumption of this research was that P. interpunctella populations

perpetuate inside the mill facility as a closed system. There was no expectation that moth

activity outside the facility would be important to the spatial or population dynamics of

moths in the mill. Thus, traps were initially deployed only inside the mill. However, it

was soon observed that substantial moth activity occurred immediately following

fumigations, and that captme was consistently higher in areas ofthe mill that were near

large outside openings. Based on these observations, additional traps were placed outside

the mill in late August 1997. From the subsequent high capture observed outside, it

seemed probable that a significant contribution of moths inside the mill was a

consequence of direct immigration into the structure from outside, via large opened truck

and rail-loading doors. Based on these observations, captures of moths immediately

following methyl bromide fumigation likely reflects more on the immigration of the

moth, rather than the relative effectiveness ofthe fumigant. Therefore, unless better

measures are taken to prevent moth entry into the mill, suppressing this pest species with

fumigation will be difficult.

Failure to suppress moth populations in a flour mill following fumigation has

been noted in the past. Levinson & Buchelos (1979) trapped storage moths in a flour mill
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in southern Greece and found that P. interpuncte//a and C. cautella were only slightly

suppressed following phosphine fumigation, but that Sitotroga cerealella (Olivier) and E.

lcuehniella were reduced to below economically damaging levels. It is possible that P.

interpuctella and C. cautel/a, which are ecologically similar species (Hinton 1943), are

more inclined to occur in outdoor habitats than other storage pests, and hence may readily

re-invade structures after fumigation.

In the present study, many more moths were captured in the indoor gallery

sections above the grain silos than were caught inside the flour mill building.

Furthennore, numbers of moths captured above the silos were similar to the high

numbers captured just outside the facility, and moths were active in the silo gallery

longer in the season (into the period of cool weather) than those mrtdoors. Therefore, it

seems likely that many of the moths captured outdoors originated in the grain silos,

which contained an abundant food supply. Moths dispersing from the grain silos could

then easily invade the warehouse and other indoor areas through openings. Further study

using mark-recapture methodology is required to investigate this hypothesis.

The outdoor moth dispersion study around mill 2 found a significant negative

correlation of trap catch with distance from the mm, but the relatively low regression

value suggests that additional sources ofmoths, in addition to the mill, existed. This mill

was within a residential location, with many homes that could harbor P. interpunctella.

In addition, the sampling radius contained another single wheat silo in the northeastern

quadrant, and there were two commercial wheat storage facilities within a kilometer of

the area studied (one to the northeast and one southeast). The wheat storages north of the

study mill may have accounted for the greater number ofmoths trapped in the north

148



versus the south quadrants. P. interpunctella males can disperse up to 1.6 km in 24 h

(Ganyard 1971), thus moths captured in this study could have easily dispersed from any

of the potential breeding sites within and outside the study area. Another consideration,

common to all pheromone-trapping studies that use sex pheromones, is that only the

activity ofmale moths was assessed. Therefore, no data are available concerning the

movement of females, the only individuals responsible for introducing the damaging

larval stage of the insect.

In summary, these studies document high levels of outdoor activity ofP.

interpunctella, particularly in the proximity of the flour mills, and point to the potential

for immigration into food processing facilities from outdoors. These data suggest that the

risk of introducing the moth to a facility with contaminated products is not the only

source of infestation to be considered. In addition, an assumption throughout this study,

and most stored-product research, is that the insects reproduce on human-stored food

products. If wild populations do occur, apparently living on some non-human stored

food materials, it only increases the potential ofmoth infestation via immigration. A

practical suggestion to managers of flour mills and other stored-product facilities is to

limit access ofmoths to the facility from outdoors. Two obvious methods of limiting

moth immigration are the use and maintenance of effective screens on doors and

windows, as well as limiting the time that large loading bay doors are open.
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Fig. 4.1. Placement of traps around mill 2 for the moth outdoor moth dispersion study.

Stars denote approximate placement of traps. Lines denote residential streets, dotted line

denotes train tracks, and the separate stored wheat bin north of the mill is denoted by a

single circle.
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Fig. 4.2. Capture ofP. interpunctella by location within mill 1during 1997. Results are

from 13 biweekly observations. Four traps were deployed in warehouse 2; two traps

were deployed in all other locations. Analysis ofvariance revealed significant difference

in capture by mill location (F= 5.28; df= 10, 15; P = 0.0021). Means with the same

letter are not significantly different.
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Fig. 4.3. Capture ofP. interpunctella by location within mill 1 during 1998. Results are

from 18 weekly observations. Two traps were deployed in each area. Analysis of

variance revealed no significant differences in moth capture across various mill locations

(F= 3.54; df= 3,4; P = 0.1269).
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Fig. 4.4. Biweekly capture of P. interpunctella throughout mill 1 during 1997. Results

are mean observations from 24 traps. Arrows denote methyl bromide fumigations on 31

May and 30 August. Significantly fewer numbers ofmoths were trapped following the

31 May (t = 3.82; df= 17; P = 0.0018), and the 30 August (t = 7.51; df= 22; P = 0.0001),

methyl bromide fumigations. Count data for t-tests were square root transformed.
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Fig. 4.5. Weekly capture of P. interpunctella throughout mill 1 during 1998. Results are

mean observations from 8 traps. Arrow denotes methyl bromide fumigation on 4 July.

Significantly more moths were trapped following fumigation (t = 8.44; df= 6; P =

0.0002). COWlt data for t-tests were square root transformed.
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Fig. 4.6. Comparison of biweekly capture ofP. interpunctella in traps outside, and on

ground floors within mill 1 during 1997.
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Fig. 4.7. Weekly capture ofP. interpuncte/la throughout 1998. Results from 8 traps

within the mill, 4 traps outside the mill, and 3 traps placed in the galleries above the bulk­

stored wheat silos.
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Fig. 4.8. Regression ofP. interpuncte//a captures at various distances from a flour mill.

Results are number ofmoths captured (square root transformed) during a seven day

interval from 25 traps positioned from 6 to 440 m from the mill. A significantly negative

relationship was revealed (b = -0.0076, r2 = 0.1883, P = 0.0302). Data were square root

transfonned for regression.
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