
lall m St

TIIE MULTIMEDIA ANIMATION FOR

LEARNING SPLAY TREES

By

YINGJIE DONG

Bachelor of Arts
Hebei Teacher's University

Shijiazhuang, Hebei
People's Republic of China

1990

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1998

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1999

niv. Li Iy

THE MULTIMEDIA ANIMATION FOR

LEARNING SPLAY TREES

Thesis Approved:

ean of the Graduate College

ii

ACKNOWLEDGIvIENTS

I would like to extend my sincere appreciation to my committee members for their

guidance and support. I am particularly grateful to my advisor, Dr. Jacques LaFrance, for

his time and efforts invested in my study and his sincere friendship with me. My thanks

also go to Dr. John P. Chandler and Dr. H. K. Dai for their great help in my study and

their time of serving as members of the committee.

My special thanks go to my husband, Yimin Yang, for his great love and

continuous support in the whole journey of my graduate study. My special thanks are

also extended to my parents, Zhilin Zhang and Wenli Dong, who continuously

encouraged and supported me in every aspect of my life's endeavors. Their great love

helped me overcome all the difficulties I have met in my life.

iii

Chapter

TABLE OF CONTENTS

Page

I INTRODUCTION .

Statement of the Problem...... 2
Purpose of the Study.. 3
Outline of the Work............... 4

II REVIEW OF TIlE LITERATURE.............. 5

Introduction... 5
Data Structures 5
Technology-Based Training 10

An Overview of Various Educational Technologies...... 11
Multimedia 14

Related Works 16

ill DESIGN AND IMPLEMENTATION 20

Introduction.......... 20
Implementation Software and Hardware 20
General Design of the Educational Software 21
Implementation Details 26

Stage 26
Cast Members 34
Frame and Franle Script 38

The Characteristics of the Software Design 40
Demonstration of the Animation with Sample Node 41
Amortized Analysis 45

IV SUMMARY A.ND F1J1'URE WORK 51

Summary 51
Future Work 52

SELECTED REFERENCES 53

IV

APPENDIX 57

v

USTOFTABLES

Table Page

1. Elements of a Multimedia Program 15

vi

UST OF FIGURES

1. Basic structural relationships 7

2. Zig-zag 9

3. Zig-zig 9

4. "Welcome" window 27

5. Software component 27

6. Basic concept of splay tree 29

7. Splay operations 30

8. Algorithms of splay tree 31

9. Algorithm continued 31

10. Instruction window 32

11. Splay tree 33

12. Score script 34

13. "Next" button script 35

14. "Back" button script 35

15. "SPLAY" button script 36

16. '''fest'' button script 36

17. "Answer" button script 37

vii

18.

19.

20.

21.

22.

23.

24.

"Q . "b . 37UJt unon scnpt .

Frame 25's script 39

Frame 30's script 40

Selection of "D" node 41

Red "D" 42

Zig-zag rotation 43

Zig-zig rotation 44

Zig rotation 45

viii

CHAPTER I

INTRODUCTION

With the rapid development of technology, great changes have occurred in

tcaching and training methods. Computers are being more and more widely used in

schools all over the world due to the decrease in computer costs and the development of

more, better, and more diversified learning materials designed for personal computers

(courseware) (Salomon, 1989). Multimedia was born with the increasing power of the

computers and the compact-disc technologies. Visualization can help people understand

complicated models and algorithms easily and is becoming more and more important in

education, science, business industry, and military.

The uses of multimedia are endless. Multimedia can be used in marketing and

advertising, staff and program development training presentations, and sports. For staff

development, multimedia can make the training become more economical. Multimedia

can also be revised and upgraded at a low cost and the trainees retain more knowledge

with the multimedia training (Villamil and Molina. 1997).

Numerous evaluations conducted during the past ten years indicated the power

and efficiency of interactive media as an ideal training tool. It was reported that the

training times had been improved by between 40 and 60 percent by the use of interactive

video (Feldman, 1994).

Multimedia is considered as a combination of a Least three of th foUo iog

media: text, graphics, still pictures, animation, video, and audio(fucker 1997). When the

texts, graphics, and the sound are used together, much more attention aan be paid by the

human being because both left and right brain will be actively involved in processing the

infonnation. Hence, multimedia can promote a better understanding of the abstract

concepts.

Data structures are widely used in the computer programs. Arra (1992)

summarized that a data structure is the mathematical model of the data in an Abstr.act

Data Type (ADT) which is a mathematical abstraction with data and a collection of

operations defined on that data. When we mention the ADT, two things come up to

mind. That is data and operations applied to that data.

The tree-based data structures occupy a very important status among the data

structures and are frequently used in the computer programming. The spla)' tree \'l. a

unique tree-based data structure. It helps make future access cheaper on all the nodes by

restructuring the depth of these nodes. It involves the rotations under zig-zig and zig-zag

cases.

Statement of the Problem

The data structure plays a critical role in doing the computer programming. In

order to meet the requirements of the computer jobs which are needed a lot by the current

labor market, the computer science students must understand and grasp the concept and

operations of the data structures very well. However, the current data structure class is

limited to the traditional teaching method. The computer-based training has not been

2

widely used in the cl.ass due to the lack of the software which gives the graphical

representations of the data structures. Actually, the operation of the data structures

involves a lot of node movement and node traversal. It would be much easier for the

students to study the data structures if they could view the graphical representations of the

structure and its various operations. The splay tree operation involves accessing the

identified node and moving it to the root of the tree by doing the splaying. A series of

node movement occurs during the operation. Hence, it would be much more vivid by

using the multimedia animation to show the concept and operations of the splay tree than

the other data structures. The software designed specifically for the splay tree will

definitely help the students understand this kind of data structure easily.

Purpose of the Study

The purpose of this study was to develop a flexible, interactive, and user-friendly

educational software to study one of the tree-based data structures - splay tree. The

bottom-up algorithm would be applied to the operations of the splay tree in the software

to be developed. The software would work as an individual teaching module and help the

students study the splay tree through the visualization of the data structure. The software

was developed by using Macromedia Director 6 PC version and was run under Windows

95,98, Windows NT authoring environments as well as Mac OS on both 68k and power

PC systems. The simulator can also be put on the internet with shockwave plug-in as a

tool for long-distance learning.

3

Outline of the Work

The study background, problem statement, and the purpose of the study were

described in Chapter I. In Chapter IT, the literature of the data structures, the technology

based training, and the related works would be reviewed. Chapter ill would address the

design and implementation issues. The conclusions of the study and the

recommendations for future study would be given in Chapter IV.

4

I)

CHAPTER II

REVIEW OF THE UTERATURE

Introduction

This study focused on the development of the educational software which showed

the operations of the selected data structure - splay tree by using the multimedia

animation. Three areas were ex.amined in the review of literature: data structures,

technology-based training, and the related works.

Data Structures

Baron and Shapiro (1980) defined the data structures as "a structure whose

elements are items of data, and whose organization is determined both by the

relationships between the data items and by the access functions that are used to store and

retrieve them" (p. 1). They emphasized that data structures were widely used in all areas

of computer science, from application programming to theory, from microprocessors to

large-scale computer systems, and from hardware to operating systems.

Reingold and Hansen (1983) summarized that a data structure consists of three

components including: a) a series of function definitions; b) a storage structure which

specifies classes of values, collections of variables, and relations between variables to

implement the functions; and c) a set of algorithms.

5

Aho, Hopcroft, and Ullman (1983) put forward that there exists diffi renee among

"data type", "data structure", and "abstract data type". They defined the data type of a

variable as the set of values that the variable may assume. An abstract data type was

considered as a mathematical model with a collection of operations defined on that

model, while data structures were defined as collections of variables, probably of several

different data types, connected in various ways.

Stubbs and Webre (1987) described the four basic structural relationships as

follows:

A structure in which there is no relationship among the elements other than their
belonging to the set of elements comprising the data structure is closely related to
the mathematical notion of a set. Structures in which each element is related to
one other element (a one-to-one relationship) are said to be linear. Those in
which the relationships are one-to-many are called tree or hierarchical structures.
Sets of elements in which the relationships are many-to-many are said to have a
graph (i n the graph theory sense) or network structure (p. 30 - 31).

Stubbs and Webre (1987) displayed the basic structural relationships in the

following figure:

6

Set

o

o
o

o

o
o

o

Linear

Tree

Graph

oI-------4ol----l0~----40)----<O

Figure 1: Basic structural relationships

The tree-based data structures occupy an important role in data structures.

According to Baron and Shapiro (1980), a tree is used to represent a hierarchical

relationship among items of data. This hierarchical structure is made up of cells named

nodes. The distinguished node at the top level (level 0) of the hierarchy is called the root

node. Each node of the tree is the parent of zero or more child nodes associated with the

parent. The children of one parent node are called siblings and are in one level below the

level of their parent. A node with no children is called a leaf node, while a node that has

7

children is called a branch node. The connection be een a branch node and one of its

children can be called a branch or link. A tree structure with no nodes is called a null

tree.

The splay tree belongs to the tree-based data structures. Sleator and Tarjan (1985)

created the splay tree and defined the splay tree as a self-adjusting fonn of binary search

tree. "The restructuring heuristic used in splay trees is splaying, which moves a specified

node to the root of the tree by performing a sequence of rotations along the (original) path

from the node to the root" (Sleator & Tarjan, 1985, p. 653). The splay tree is based on

the plausible assumption that the accessed item is likely to be accessed again soon.

Ramaiyer (1998) described in his dissertation which was put on the web site that the splay

trees are self-adjusting binary trees and form a simple and very interesting class of

"balanced" binary search trees. Weiss (1997) explained that the splay tree ensures that

any M consecutive tree operations starting from an empty tree take at most O(MlogN)

time. N refers to the number of the nodes in the tree. The basic implementation method

for the splay tree is that once a node is accessed, it is pushed to the root by a series of

rotations which include zig, zig-zig, and zig-zag rotations. Different from AVL tree, the

splay tree does not need maintain the height or balance information. The splaying not

only moves the accessed node to the root, but also roughly halves the depth of most nodes

on the access path.

There are several variations of splay trees including the bottom-up and top-down

variations. This study utilizes the bottom-up method to develop the software. The

splaying rotations involve three cases including zig, zig-zig and zig-zag cases. Weiss

8

,

(1997) described the zig-zig and zig-zag cases and their corresponding rotatton methods

as foHows (p. 126):

Figure 2: Zig-zag

Figure 3: Zig-zig

Obviously, under the zig-zag case, a standard AVL double rotation is performed,

while the zig-zig case is two consecutive single rotations.

According to Moret & Shapiro (1991), the splaying is the only operation that is

directly performed on the tree. The operation splay (x) is to promote the node with key x

9

to the root of the tree by a sequenoe of rotations after this node is found. The operations

of find, insert, and delete are all defined based on the splaying operation. The operation

find (x) is nothing but splay (x), followed by a check to see whether or not the desired key

was in the tree. The operation insert (x) is to insert key x as a leaf based on the rule of the

binary search tree and then rotate it to the root of the tree through the splaying opetation.

The operation delete (x) is done by accessing the node x first. This puts the node x at the

root. After the node is deleted, two subtrees TL and TR (left and right) are obtained.

Then we can find the largest element in TL and rotate it to the root of 'fL. TL will now

have a root with no right child. We can finish the deletion by making TR the right child.

Weiss (1997) described the amortized time to splay a tree with root l' at node X is

at most 3(R(T)-R(X»+1 =O(logN). R(T) is the rank of root l' of the tree, while R(X) is

the rank of the accessed node X. R(T) = 10gS(T), where SeT) represents the number of

descendants ofT (including T itself). R(X) =logS(X), where Sex) represents the number

of descendants of X (including X itself).

Technology-Based Training

The successful use of established technologies including computer-based training

and interactive video, as well as the emerging multimedia and communication

technologies are promoting performance improvement in training and development and

making a positive contribution to the teaching-learning transactions. "The term

'technology-based training' is applied to training or learning which is undertaken using

10

computer and/or communications technologies to enable learning to take place' (Tucker,

1997, p. 3).

An Overview of Various Educational Technologies

Technology-based training involves computer-based training, interactive audio,

interactive video, digital video interactive, expert systems/artificial intelligence,

multimedia, CD-ROM, CD-ROM(XA), compact disc interactive, digital video disc,

simulation, virtual reality, video conferencing, desk-to-desk conferencing, satellite

broadcasting, networks/internet/intranet, and electronic performance support systems

(Tucker, 1997). Some selected technologies are reviewed in this study.

According to Tucker (1997), the training delivered, tested or managed by a

computer is called the computer-based training (CBT). The learning becomes more

individualized and self-paced by using the computer-based training.

With the advent of CD-ROM and compression techniques, interactive audio

became a workable methodology. The capacity of storing more data in both main

memory and hard disk together with the advent of sound processing cards brought a new

era. The sound processing card made the student's voice be able to be recorded for the

purpose of comparison and hence promoted the learning. Besides language training,

interactive audio has also played its role in the courses covering human resource skills,

such as interviewing (Tucker, 1997).

Copeland (1989) defined interactive video as "the presentation of video and audio

information according to the response input made by the viewer" (p. 111). One of several

devices such as video disc, videotape or compact disc can be the source of video. The

11

video disc that could store both video and sound brought the possibihty for true

interactive video. Interactive video has allowed users to simulate complicated technical

skills.

Digital video interactive (DVI) is a different approach to the medium of

interactive video and uses digital video. It compresses the video and audio and stores the

compressed data on a CD-ROM, and then decompresses the data for delivery on the

screen. With DVI, it is possible to run the video at controlled variable speeds (Tucker,

1997).

It is said that artificial intelligence and expert system would revolutionize

technology-based training. But this did not happen because artificial intelligence required

a huge amount of processing power and the programming of a course was expensive and

very time consuming. One advantage of this type of system was that it was possible for

learners to learn by discovery once the knowledge was in the system. The artificial

intelligence/expert system has been uti.lized by some subject domains, such as, the field of

medicine.

The simulation technology can be used as: "a) software products, such as word

processing systems, and databases; b) fonn filling; c) office procedures; d) industrial

processes; and e) train and road driving" (Tucker, 1997, p. 16).

Virtual reality is a stage up from simulation. It is a practical training option. In

some cases that involves the simulation of precise instrument or weapons such as laser

guns, virtual reality can be used in a training role. Aircraft simulators belong to virtual

reality (Tucker, 1997).

L2

Video conferencing uses video cameras, television monitors and multiple-channel

telephone links. It is used for training and basic conferencing. The video conferencing

can make the remote lecturer become available to an audience across a wide geographical

spread. It can also help the tutor in one location be able to communicate with students in

a number of locations. The students can interact with each other and hence effective

learning is promoted (Tucker, 1997).

Galbreath (1997) defined the internet as "a network of networks with a universal

addressing scheme allowing real-time, computer-to-computer, location-independent

communication and information exchange" (p. 39). Today, the internet is used for

various applications including electronic mail (E-mail), integrated messaging, voice and

video traffic, electronic commerce, and world wide web. One growing use of the internet

is to provide education and training. The internet web presents visually compelling

content to train and educate people across the world. The trainers in the companies are

using listservs, newsgroups, and on-line courses. Colleges and universities including the

Open University and Mind Extension University are utilizing the internet to deliver

education. According to Starr and Milheim (1996), many internet programs have already

been conducted in primary and secondary education.

Carr (1992) defined the electronic performance support system (EPSS) as "a

computer-based system that uses knowledge-based systems, hypertext, on-line reference,

extensive databases, and allied technologies to provide support to performers on the job,

where they need it, when they need it, in the form most useful to them" (p. 45).

Compact disc read-only memory (CD-ROM) is not a delivery method. Instead, it

is a storage device. CD-ROM is a very good storage medium and is widely applied in

13

training (Tucker, 1997). With the introduction of the CD-ROM, multimedia became

available for the mass market.

Multimedia

Feldman (1994) defined multimedia as follows:

Multimedia is the seamless integration of data, text, images of all kinds and sound
within a single, digital infonnation environment (p. 4).

Rosenborg and the others (1993) described today's common definition of

multimedia as the integration of sound, animation, still images, hypertext, or video used

in conjunction with computing technology.

Galbreath (1997) put forward that there were basically two types of applications

for multimedia systems including symmetrical and asymmetrical. Symmetrical

multimedia refers to those applications that require real-time communications such as

video conferencing/video telephone. Asymmetrical multimedia communications refers to

those applications that are store-and-forward in nature such as video-on-demand, and CD-

ROM.

Rathbone (1995) summarized the elements of a multimedia program as described

in table 1.

14

Table 1: Elements of a Multimedia Program

This Part of Multimedia Allows for This
Text This part of multimedia - displaying words on the screen - is

the base layer of almost all programs. Text is till a quick way
to spread infonnation, so programs will always use it.

Pictures Multimedia computers can display photograph-quality pictures
on the monitor. Seeing a shiny garden slug on the screen
carries a lot more impact than lust reading about one.

Movies With a multimedia program or part, your computer can tum
into a TV set, letting you watch Bewitched reruns. Or the
computer can store snippets of your own home movies onto
disks, letting you mail baby-food movies to the relatives on a
floppy.

Animation Sometimes animation (cartoons) can express a point better than
movies. Without animation, for example, nobody could show
footage of dinosaurs biting each other. Some industry folks
use the word animation to describe any type of moving picture,
including movies.

Sound A biting dinosaur isn't much unless you can hear the bones
crunch, as well.

Increased control Best yet, multimedia lets you jump around. Bored with the
biting dinosaurs? Click on a button and switch to the flying
pterodactyls, instead.
Unlike a nonnal, television-style movie, a computerized
multimedia program lets you skip past the boring parts and
watch the fun stuff, over and over. Plus, there's no delay while
the VCR rewinds; multimedia programs can jump quickly to
different areas.

According to Villamil and Molina (1997), the educational multimedia programs

include training programs, edutainment, games, cyberArt, magazine and newspapers,

multimedia interactive kiosks. The training programs using the multimedia technology

on the market covers from foreign language training programs, software applications

training programs, programming languages, diets and nutrition, to self-help programs,

cooking programs, and music education, etc.

15

Related Works

Several decades ago, it was hard to implement the computer technology-based

teaching and training due to the high cost of the graphics hardware. Since the 1960s,

people started to utilize visualization as a method to understand programs and algorithms.

But at the beginning, the visualization was mainly implemented by using the films. A

review of literature shows that Knowlton (1996) produced the first computer-generated

movie named "L6: Bell Telephone Laboratory Low Level Linked List Language". The

movie described how the list processing language works at the assembly level.

Several other important films were also produced following the first computer

generated movie. Hopgood's film about hashing algorithms (1974) was one of these

films. This movie displayed a hash table, a graph showing the number of probes to finish

the insertion of an item, and the maximum number of collisions in the course of item

insertion. The actions based on different types of input were shown by using the hash

table and the graph. Booth's (1975) PQ-trees described the actions of several algorithms

on PQ-trees. Baecker's well-known work "sorting out sorting" (1981) is a good

algorithm animation film which illustrated the visualization of a number of different

sorting algorithms. Each sorting method was explained and the comparison on the

perfonnance of all the nine sorting methods was conducted based on sample data. The

film was also accompanied with a narrative through a sound track. It was considered that

Baecker's system was the first known system to aim at algorithm animation (Arra, 1992).

In the 1980s, there occurred several algorithm animation systems used for

education. The well-known ones are BALSA-I (Brown University Algorithm Simulator

16

and Animator) andBALSA-Il. Brown (1988) stated that "the user can watch :xecution of

an algorithm through various views. Each view 1S displayed in a window on the areen."

BALSA-I (Brown, 1988) was developed in the early 1980s and used in the electronic

classroom at Brown University. It focused more on algorithm animation and involved

good interactivity and some Smalltalk techniques including popup menus, overlapping

windows and the shape changes of the cursors. BALSA-II was later developed based on

BALSA-I. It utilized several Macintosh user interface functions including zoom in/out

and dialog boxes and displayed the detailed and overall views of an object simultaneously

(Brown, 1988). These systems require internal Macintosh coding to create new animation

view and the animation must be executed on a Macintosh. This constraint blocked the

systems from being widely used.

Lee (1988) designed a system which provided the graphical representations of a

variety of data structures and allowed the user to execute and study the step-by-step

movement of an operation on a particular data structure. The display system was

implemented for VT 100 type terminals. It can be executed using one-screen or two

screen modes.

Stasko (1990) introduced an algorithm animation framework named ''TANGO''

which helped simplify the animation design. The framework was based on four abstract

data types: locations, images, paths, and transitions. Stasko (1997) did some research

examining algorithm animations as a learning tool in computer science education. The

project named "Evaluating Algorithm Animations as Learning Aids" and sponsored by

Stasko (1997) sought to demonstrate whether algorithm animation could provide an

effective pedagogical tool in algorithm instruction.

17

Shimomura and Isoda (199'1) designed a system called Visualization and

Interactive Programming Support Debugging System" (VIPS). The system presented

linked-list visualization for debugging and used UNIX's debugger - DBX to execute the

program to be debugged. It displayed linked list as syntax trees.

Arra (1992) developed a prototype to demonstrate data structure animation. The

prototype includes a simple user-friendly Graphical User Interface (GUI) and a library

that aids the dynamic animation of data structures. To run the package, the user needs

Microsoft window 3.0 or later.

Shen (1994) displayed the dynamic behavior of the algorithms of several tree

based data structures including AVL tree, reeL-black tree, B-tree, and splay tree. This

system was developed under the X window environment. According to Xu (1997), this

system can not accept the input data from the users for visualization.

Vikas (1996) developed a graphical tool for the visualization of a number of

sorting method. It was coded in c++ programming language and was designed to run on

the sequent symmetry 5/81 computer running the Dynixlptx operating system.

Xu (1997) designed and implemented a simulator to help the user execute and

visualize the operations on three ADTs including the linked list, stack, and the queue. It

focused on the display of various operations associated with the three ADTs. The

simulator is run on the Microsoft window 95 operating system.

Shen (1998) developed an animated presentation of the concept and algorithms of

binary search trees. The simulator displayed various operations of the binary search tree

including insertion, deletion, and inorder, preorder, and postorder traversal. It was

implemented with Director and runs on both IBM PC and Macintosh systems.

18

A search of the Internet has found a complete collection of algorithm animations

including the sorting, tree, geometric, graph, data structures and miscellaneous

algorithms. The animations were developed by using JAVA programming language and

can be accessed in the following web site:

http://www.cs.hope.edu/-alganim/ccaaJalgo.html. For the tree algorithm animation,

several research institutes posted the animation of the algorithms. Among them, the

University of Toronto did the Band B+ trees; Michael Bahl at the University of Hartford

did the binary search tree; Georgia Institute of Technology did the binomial heap;

Lawrence University did the heap insertion; and the University of Southern California

posted the red-black tree, splay tree, and treaps (randomized search trees). However,

these animations did not show the step-by-step movement of the operations of various

algorithms. They just displayed the final results. No narratives accompanied the

algorithm animation. It is necessary to develop an interactive educational software which

works as an independent teaching module and shows the step-by-step movement of

various operations of the selected algorithms through the multimedia animation.

19

CHAPTER ill

DESIGN AND IMPLEMENTAnON

Introduction

This chapter discussed the design and implementation issues of this study. Five

areas were covered in this chapter including hnplementation Software and Hardware,

General Design of the Educational Software, Implementation Details, the Characteristics

of the Software Design, Demonstration of the Animation with a Sample Node, and the

Amortized Analysis. The area of Implementation Details covered the descriptions of the

stage, cast members, frame and frame script which were used in the animation.

Implementation Software and Hardware

The educational software introduced in the study was developed by using

Macromedia Director 6 PC version and run under Windows 95,98, Windows NT

authoring environment as well as MacOS on both 68K and power PC systems.

Director lets you create, combine, and display various images on the
computer, and allows your users to control what displays and when. It
does this with a degree of detail and precision that other programs can't
begin to match (Fisher, 1995, p. 3).

The Macromedia Director developed by Macromedia Inc, the leader in digital arts,

multimedia and web publishing software, is the most powerful authoring tool for

20

multimedia productions. The Director provides good interacti tty and combine viti 0

with text and graphics. According to Fisher (1995), on one hand, Dir ctor was a

tremendously powerful animation program; on the other hand, Dir cror was an extremely

powerful integration tool which introduced you a great way to combine disparate

graphical elements, such as QuickTirne movies, video clips, and sound effects coming

from external applications or special hardware. Director 6 is the new and upgraded

version of the Macromedia Director. Comparing with previous versions, Director 6

added several new things that are used to enhance the easiness and better effects of the

visualization. It is an ideal tool to develop the flexible and interactive graphical

representations for learning the selected data structures. The movie developed by the

Director can also be put on the internet with shockwave plug-in for Director, which can

definitely promote the long-distance learning.

Lingo is the scripting language that comes with Director. It is used to write scripts

or instructions to create powerful interactive multimedia projects. Lingo adds powerful

functionality to Director and creates animations that would be difficult to accomplish by

only using the score. With the commands and functions of Lingo, the developer can

create unforgettable non-linear presentations and applications (Bennett, 1997).

General Design of the Educational Software

The educational software developed in this study works as an individual teaching

module for learning the selected tree-based data structure - splay tree. The animator aims

to help the students study the splay tree in an effective and efficient way through

visualizing the animation of the splay tree's operations. The software was designed to

21

emphasize the splaying operation which is directly performed upon th play tree. During

the animation of the splaying operation, the number of the splaying p for each

accessed node was dynamically calculated through the "pointer change" box which was

shown at the left comer of the -stage. The software was designed to contain the following

three parts:

Part 1: Concepts and algorithms of the splay tree.

Part II: The animation of splay tree's basic operations.

Part ill:. Test:

Text was mainly used for part I and part III to explain the basic concepts,

algorithms and the splaying steps of each accessed node and to help the students evaluate

their learning from the splay tree algorithm animation. Static displays were used for these

two parts. Part I consisted of several screens of different text descriptions and some

"Next" buttons which were used to forward the screen one by one. Part III gave the

students a chance to evaluate their mastery of the class. After finishing the test, the

students can look at the correct answer by clicking "Answer" button shown at the bottom

of the stage.

Part II demonstrated the animation of the splay tree's algorithms, operations, and

the splaying steps of each accessed node. It is the core part of the whole software. The

combination of the static displays and dynamic displays were adopted in this part. The

static display was used to show the text of data, and the image of data structures. The

dynamic displays were emphasized in this part to demonstrate the behavior of the

operations and the changes in the data structure.

22

The software aimed to show the basic operations of the splay tre through the

graphical representations and display the splaying steps of each accessed node during the

animation. A splay tree with more depth should be used in order to show all the

possibilities of the splaying operations. However, the limited stage size of the Director

constricted the building of a deep splay tree. If a fixed tree can be used in the animation,

it can be designed to reach the maximum depth of the splay tree which would be shown at

the stage. So, a sample tree was developed as the original tree to occur at the initial stage

based on the considerations of effectively demonstrating different cases of the splaying

rotations and meanwhile taking car..e of the stage limitation of the Director.

The original tree contained both internal nodes and the corresponding subtrees

which were respectively represented with the circle and the triangle. The user could

select each of the internal nodes occurred in the original tree to see the splaying steps of

this node through the visualized animation. To select the accessed node, the user need

type the key of the node into the input box which was designed at the left corner of the

stage and then click "SPLAY" button which was placed next to the input box. A subtree

can't be selected.

The color of the stage was designed as blue, while the original color of the nodes

was made yellow. When a node to be accessed was selected, its color was changed from

the original yellow to the red color to obtain more attention from the users and hence

promote the ideal learning effects. The red and yellow colors were chosen because of

their sharp comparison effect. During the step-by-step node movements, the two different

colors effectively and vividly reflected the data structure changes occurred in the tree.

23

Based on the algorithms of the splay tree operations, the accessed node was

promoted to the root step by step through a sequence of rotations. To optimize the

visualization design, smooth and continuous node movements were emphasized during

the whole animation period. The whole splaying animation was synchronized by the

sound which explained various operations of the splaying and described what happened

during the animation. After the accessed node was splayed to the root of the tree, the

sound was again used to instruct the students to click "Continue" button to select next

node to be splayed. In this way, the students could select different nodes which represent

different cases and study the corresponding splaying steps through the visualized

animation. The number of the splaying steps for each accessed node was dynamically

calculated and displayed at the stage during the whole animation. After finish studying

this part, the students could choose the "Test" button to go to the test and its

corresponding answers.

The software utilized a lot of director functions and lingo scripts. Concerning the

Director, totally 194 cast members, 119 frames, and 120 channels were used in the

software. For the lingo scripting language, both cast script and frame script were used in

the software.

The software used several elements which were described by Macromedia (1997)

as follows:

a. Stage: It is one of the most common elements of Director's user interface. It is the

place where the movie takes place.

24

b. Cast Window: It is used to store all the media elements or cast memb rs that will be

used in the Director movie. It is the off-stage area where the cast members stay to

wait for the use by the movie. Any element utilized by the movie must be in the cast.

c. Score Window: It is used to instruct the cast members when to enter, how to act,

what to say, and when to exit the stage. The score consists of the frames and channels

that intersect to form the shape of cells.

d. Channel: Each row in the score is a channel. There are 120 numbered channels in the

score window. Each cell in a numbered channel contains a sprite. A sprite is a

representation of a cast member that is placed on the stage.

e. Frame: Each column in the score is a single frame. Each frame contains the sprites

whieh are located in the different numbered channel. Director animates the sprites

over a series of frames. The frame controls the sequential appearance of the sprites

based on the order of the numbered frame.

f. Paint Window: It is the place to create new graphics or edit the things imported into

the movie. The paint window has a text window where text can be entered as much

as you do with a word processor.

g. Lingo Script: Lingo is the English-based scripting language built for Director. It is

used to write scripts or instructions to control where the playback head goes, allow

users to do what they want to do, and create animations that would be difficult to

implement using the score alone. So, lingo gives more functionality to Director.

Generally, four steps were undertaken for the design of the animation. At the first

step, the sprites needed by the stage at different moments were identified; At the second

25

step, the cast members were designed and created based on the sprites needed; At the

third step, the score window was designed to locate the cast members to their

corresponding frames; At the fourth step, various lingo scripts wer developed to control

the sprites' behaviors at the stage to accomplish the specific animation.

Implementation Details

The software used many Director functions and lingo scripts. Totally, 194 cast

members, 119 frames, and 120 channels were used during the whole animation. The

implementation details of the stage, cast members, frame and frame script utilized in the

software would be discussed in this section.

The stage was the place where the animation took place. It was open from the

start of the movie. The stage used in this software was designed as blue color. The

maximum stage size was set with 752 width and 440 height.

The first stage shown in the software was the "Welcome" window (Figure 4). The

stage was accompanied by the sound which instructed the user to click "Begin" button to

tart the animator. Then the next stage (Figure 5) descried the objectives of the software

and the three parts ihcluded in the software.

26

Figure 4: "Welcome" window
)

Figure 5: Software component

27

Part I of the software discussed the concepts and algorithms of the splay tree. For

the basic concept of the splay tree, the definition of splay tree and the basic operations of

the splaying were described (Figure 6). Three figures were shown at the stage (Figure 7)

to demonstrate the data structure changes respectively under the zip, zig-zig, and zig-zag

rotations. The three figures were done by using the paint window. For the algorithms of

the splay tree, the stage (Figure 8) showed the explanations of various operations of the

splay tree including splaying, insertion, and deletion. The amortized analysis formula

was also given at the stage (Figure 9). After part I, the instruction on how to use animator

was described (Figure 10). For each of the above-mentioned stages, there was a "next"

button placed at the bottom of the stage to forward the stage one by one. After the "Next"

button on the instruction stage was clicked, the software went to its second part, the

animation part.

28

Figure 6: Basic concept of splay tree

29

Figure 7: Splay operations

30

The only operatlon Itlat Is dlrectJy per10nned upon Itl.e splay tree
s splaying. The operallon SPLAY (xl is to nnd the record with I<ey)(

promote It to the root of the tree by a series of rotation
rallons. The stanelard operatlons of FIND, INSERT, ancl DELETE

re all denned In tems or tnls, basic operation,

INSERT (le) Is to Insert key x as a leaf tlased on lt1e rute o'the
Inary search tree anel tIlen promote It to lt1e root of lt1e tree tIlrough

splaying operation.

. Deletion

DELETE (X) Is per10nneel by access n9 the noele x. This puts tile
ooe)(at the root. Alter ttle nOde Is deleted', we get two SJJbtrees TL
no TR (left and right). Then we can nnd the largest element In TL
no rotate lUo the root or TL TL will now have a root With no right
lid. we can 11nlsh ttle d.eletlon by maklng TR the right child.

Next

Figure 8: Algorithms of splay tree

Figure 9: Algorithm continued

31

Part II, the animation of splay tree's splaying operation, is the core part of the

software. A tree was developed based on the considerations ofdemonstrating all

possibilities of the splaying operation and meanwhile taking care of the limited stage size

and was displayed at the initial stage (Figure 11) of the animation part. The left comer' of

the stage showed the "Input" box, "SPLAY" and "TEST' button. The users were asked

to enter the key ofnode to be accessed in the "Input" box and then click "SPLAY" button

to see the splaying operation of the accessed node. When ''TEST' button was clicked, the

animator went to the third part of the software which gave several questions to test the

users' learning results. To show a tree of sufficient depth at the stage, the node ofthe tree

was designed to its minimum size that is large enough to encompass the value of the node.

32

The original color of the nodes was designed as yellow, while the color of the node to be

accessed was made as red. The key value of each node was written in black. Once the

animation started, the stage showed the dynamically changed data structures at each

different moment.

Part ill was the test provided for the users. The corresponding answers were

given at the "Answer" stages. The "Quit" button placed at the bottom of the stage was

used to exit the animator.

Figure 11: Splay tree

33

Cast Members

The cast members referred to any element utilized by the movie. They were

located in the cast window of the Director. There could be various types of cast members

including graphic, text, sound, digital video, palette, lingo, and behavior inspector cast

members. The thumbnail in the bottom-right comer of the cast member indicated the

type of the cast member.

This software used 194 cast members. Various types of cast members were

covered in the software including text, sound, paint, lingo, behavior inspector, button, and

shape cast members.

The descriptions of the concepts and algorithms of the splay tree, the test, and the

corresponding answers belonged to the text cast members. The sound accompanying the

whole animation added the sound cast members to the software. The nodes of the tree

and the figures given at both part I and part ill of the software were developed by using

the paint window. They were the paint cast members. The internal score behavior was

asked to control the loop within a certain frame by using its corresponding script (Figure

12). Several behavior inspector cast members were created in the software.

On exitFrame
Go to the frame

End

Figure 12: Score script

34

In the software. there were several" ext" buttons to forward the stage one by

one. There were also the "SPLAY" button used to start the splaying animation, the

''TEST' button to change to the "test" frame, the "Answer" button to go to the "answer"

frame, and "Quit" button to exit the animator. Those buttons fonned the type of button

cast members. Attached to each button, there was the corresponding script to h lp

accomplish the frame change. The selected scripts attached to certain buttons were given

as follows:

On mouseUp
Go to the frame + 1

End

Figure 13: "Next" button script

On mouseUp
Go to the frame - 1

End

Figure 14: "Back" button script

on mouseUp
set Token to field "Word"
put "" into field "Word"

if Token="E" then
go to "Esplay"

end if

35

if Token="C" then
go to "Csplay"

end if

ifToken="D" then
go to "Dsplay"

end if

if Token="B" then
go to "Bsplay"

end if

if Token="F" then
go to "Fsplay"

end if

if Token="H" then
go to "Hsplay"

end if

if Token="J" then
go to "Jsplay"

end if

if Token="L" then
go to "Lsplay"

end if
end

Figure 15: "SPLAY" button script

On mouseUp
Go to "Test"

End

Figure 16: "Test" button script

36

On mouseUp
Go to "Answer"

End

Figure 17: "Answer" button script

On mouseUp
puppetSound "thank"
updateStage
startTimer
repeat while the timer < 4 * 60

nothing
end repeat
quit

End

Figure 18: "Quit" button script

Each edge between the two nodes belonged to the shape cast member. Several

shape cast members were used in the software.

Several lingo scripts were used to implement the animation of the splay tree

algorithm and control where the playback head went. The selected scripts written for the

software would be given in Appendix.

37

Frame and Frame Script

Each column in the score has a single frame. The sprites were displayed at the

stage frame by frame. So, the frame controlled the time sequence of the objects displayed

in the movie. The frame script was used to implement what would be done at that frame.

There were 119 frames used in the software. Basically, the sprites were placed in

the different frames based on the order in which the sprites occurred at the stage. The

first frame showed the "Welcome" window. Once the «Begin" button was clicked, the

playback head went to the second frame. Then the objects at the second frame occurred

at the stage. The contents of part I of the software were placed in the corresponding

frame based on their appearance order. Then the playback head went to the animation

frame. The displaying of the original tree was placed from frame 25 to 30. The attached

frame scripts were shown in Figure 19 and Figure 20. Frames 35 to 40 encompassed the

animation of node E's splaying operation with the marker "Esplay" set above frame 35.

In the same way, frames 45 to 50, frames 55 to 60, frames 65 to 70, frames 75 to 80,

frames 85 to 90, frames 95 to 100, and frames 105 to 110 respectively recorded the

splaying animation of the accessed node C, D, B, F, H, J, and L with the separate

"Csplay", "Dsplay", "Bsplay", "FspJay", "Hsplay", "Jsplay", and "Lsplay

markers set above at each corresponding starting frame. Each node's splaying animation

was accomplished by using di fferent frame scripts. The selected frame scripts would be

described at the Appendix. The contents of the test were placed at frame 112, while the

corresponding answers were gi ven at frame 117, 118, and 119. The frame scri pts were

also used to keep the playback head to loop within the certain frame.

38

on exitFrame
repeat with i =103 to 115

puppetSprite i, FALSE
end repeat

set the visible of sprite 118 to TRUE
set the visible of sprite 117 to TRUE

-- initialize all base nodes and edges' visible to FALSE
repeat wi th i =1 to 102

puppetSprite i, TRUE
end repeat
repeat with i =1 to 102

set the visible of sprite i to FALSE
end repeat
-- set the edges in the original tree to be visible.
set the visible of sprite 53 to TRUE
set the visible of sprite 54 to TRUE
set the visible of sprite 55 to TRUE
set the visible of sprite 56 to TRUE
set the visible of sprite 59 to TRUE
set the visible of sprite 60 to TRUE
set the visible of sprite 67 to TRUE
set the visible of sprite 68 to TRUE
set the visible of sprite 83 to TRUE
set the visible of sprite 84 to TRUE
set the visible of sprite 93 to TRUE
set the visible of sprite 94 to TRUE

end

Figure 19: Frame 25's script

39

On exitFrame
Go to the frame

End

Figure 20: Frame 30's script

The Characteristics of the Software Design

The software design done in the study owned the following characteristics:

a. The software was designed and developed by using the extensive combination of

Director functions and lingo scripts. There were 194 cast members, 119 frames, and

120 channels used in the software. Several cast scripts and frame scripts were written

to control the position of the playback head and implement the animation.

b. The software was interactive and user-friendly. Hence, it was easy to use.

c. The software was easy to be maintained. The codes developed in the software was

easy to debug and hence easy to improve. For the animation of the data structure

changes, one major function was developed to be used as the basic function for

various cases of splaying operation. This function was called throughout the lingo

scripts developed respectively for each accessed node.

d. Groups of node movements were designed and implemented by using the technique

of setting certain nodes and their edges visible or invisible based on the time

sequence. With this technique. the subtrees were moved to become another node's

children as a group during the animation. Hence, the data structure changes were

reflected more effectively and vividly in the animation.

40

Demonstration ofthe Animation with Sample Node

There were 8 internal nodes designed in the tree which could be selected by the

users to see the corresponding splaying operations. The key values ofthese nodes were

respect1'vely"L" "}" "H" "F" "B" '"D" "e" and "E" The node '"D" was chosen in this" ", " ..

section as a sample node to demonstrate the animation ofthe splaying operation ofthe

accessed node.

a. The value '1>" was entered into the "Input" box by the user to see its splaying

operation (Figure 21).

Figure 21: Selection of '"D" node

41

b. The accessed node '1)" was marked as red color (Figure 22).

Figure 22: Red '1)"

c. The zig-zag rotation was done among the accessed node '1)", its parent "B", and its

grandparent "F' (Figure 23).

42

Figure 23: Zig-zag rotation

43

d. The zig-zig rotation was done among the accessed node "0", its parent "H", and its

grandparent "1" (Figure 24).

Figure 24: Zig-zig rotation

44

Figure 25: Zig rotation

Amortized Analysis

The zig rotation was done between the accessed node "D" and its parent "L" which

was the original root ofthe tree.

c

e.

u. The amortized running time analysis is the technique in complexity analysis ofa

variety ofdata structures. Tarjan (1985) put forward that the amortized running time not

only provided a more exact method to measure the running time of known algorithms but

also it suggested the possible new algorithms efficient in an. amortized rather than a worst-

case sense.

• I

45

TaIjan (1985) defined "amortize" as "to average the running times of operation

in a sequence over the sequence" (p. 306). The author asserted that tbe amortized

analysis which averages the running time per operation over a (worst-c e) s quenc of

operations could yield a both realistic and robust answer comparing with the worst-case

analysis and the average-case analysis. Moret and Shapiro (1991) also stated the

amortized complexity as a technique for dealing with the complexity of sequences of

operations. "While both worst- and average-case complexity measures apply to

individual operations, amortized complexity applies only to sequences of operations and

says nothing about the actual running time of any particular operation" (p. 94).

TaIjan (1985) used two ways to analyze the amortized running time of operations

on a data structure. The first was the "banker's view" of amortization. The computer

user was regarded as a customer of a bank. The credits were defined as the amortized

time of the operation. A certain number of credits were allocated to each operation.

These credits were then deposited into or withdrawn from the account based on the

operation sequence. The final account balance was then used to obtain the upper and

lower bounds of perfonnance of that data structure. The second view of amortization was

that of physicist. A potential function <1> was defined to map any configuration D of the

data structure into a real number <I>(D) called the potential of D.

Having the idea of explicitly seeking only amortized efficiency instead of worst

case efficiency, Sleator suggested the possibility of simplifying dynamic trees. Based on

this idea, Sleator and Tarjan came up with a new data structure, splay tree, which was a

self-adjusting binary search tree that was as efficient as balanced trees but only in the

amortized sense (Tarjan, 1987).

46

Sleator and Tarjan (1985) used the potential function to analyze theammtized

complexity of splaying. The authors defined a potential function <P to map each possible

configuration of the data structure into a real number called the potential of the given

configuration of the data structure. The amortized time a of an operation is:

a =t + 4>' - 4>

where t = the actual time of the operation

4> = data structure configuration before the operation

4>' ::::; data structure configuration after the operation

With this definition, the total time of sequence of m operations can be obtained by

m m m

Lt; =L(a; + 4>j -1- 4>i) =La; + <l>o-«Pm
i=1 ;=1 i=1

Hence, the total amortized time of sequence of m operations is:

m m

L Qi = L ti + 4>m - <1>0
;=) ;=1

where a,::::; amortized time of operation i

ti::::; actual time of operation I

4>0 =the initial data structure potential

4>m =the potential after operation I, for i ~ 1

The equation indicated that the total amortized time equals the total actual time of

the m operations plus the net increase in potential from the initial to the final

configuration. The initial potential is zero. If the final potential is no less than the initial

potential, then the total amortized time serves as an upper bound of the total actual time.

47

For the splay tree, a potential function cI> over all nodes i in the tree T is defined

as: cI>(T) = LlogS(i)
ieT

Where S(i) represents the number of descendants of i including i itself

R(i) =logS(i), R(i) represents the rank of node i.

Hence, cI>(T) =L R(i)
iET

Sleator and Tarjan (1985) used the number of rotations done as the measure of the

running time of a splaying operation. If there are no rotations, one is counted for the

splaying. Based on the analysis of the three basic cases of the splaying operation, Sleator

and Tarjan (1985) derived the following lemma:

The amortized time to splay a tree with root t at node x is at most 3(r(t) - rex)) + 1

=O(log(S(t)IS(x))) (p. 658).

The lemma was proven through three cases of the splaying operation.

Let s =size before a splay

r = rank before a splay

s' =size after a splay

r' =rank after a splay

am = tm +cI>(Dm) - cI>(Dm -I)

48

case 1: (zig) one rotation

y

a b

c -- a

b c

Amortized time of this step is:

1 + [r'(x) + r'(y)}-[r(x) + r(y)]

~ 1 + r'(x) - rex)

~ 1 + 3(r' (x) - rex»~

Case 2: (zig-zig) Two rotations

c

a

since r(y) ~ r'(y)

since r'(x) ~ rex)

Amortized time of this step is:

2 + [r'(x) + r'(y) + r'(z)] - [r(x) + r(y) + r(z)]

=2 + r'(y) + r'(z) - r(x) - r(y) since r'(x) =r'(z)

~ 2 + r'(x) + r'(z) - 2r(x) since r'(x) ~ r'(y) and r(y) ~ rex)

~ 3(r' (x) - rex)) This is the claim.

Now we need to prove the claim 2 + r'(x) + r'(z) - 2r(x) ~ 3(f'(X) - rex)).

Simplifying the above equation, we get: rex) + r'(z) - 2r'(x) ~ -2 (need to prove)

49

From the zig-zig figure, we can see

sex) + s'(z) < s'(x)

then,

sex) + s'(z) < 1
s'(x) s'(x)

Based on the lemma (weiss, 1997):

If a + b ~ c (a > 0, b > 0), then loge a) + loge b) ~ 210g(c) - 2

We obtained

log sex) + log s'(z) ~ 210g 1- 2
s'(x) s'(x)

logs(x) -logs'(x) + log s'(;::) -logs'(x) ~ -2

rex) - r'(x) + r'(z) - r'(x) ~-2

rex) + r'(z) - 2r'(x) ~ -2

Hence, the claim is true.

Case 3: (zig-zag) two rotations

z

a J\
b c

d

a b c d

Amortized time of this step is:

2 + [r'(x) + r'(w) + r'(z)] - [rex) + r(w) + r(z)]

~ 2 + r'(w) + r'(z) - 2 rex)

~ 2 (r'(x) -r(x»

< 3 (r'(x) - r(x»

50

since r'(x) =r(z) and rex) ~ r(w)

CHAPTER IV

SUMMARY AND FUTURE WORK

Summary

The educational software in this study was developed under Windows 95

operating system with the authoring tool of multimedia production Director 6.0 and its

scripting language Lingo.

The software developed in this study worked as an individual teaching module to

help the students study one, of the tree-based data structures, splay tree, in an effective and

efficient way through visualizing the animation of the splay tree's basic operations. The

software contained the following three parts:

Part I: Concepts and algorithms of the splay tree.

Part IT: The animation of the splaying operation.

Part ill: Test.

Part I described the definition of splay tree, various cases of the splaying, and the

algorithms of the splay tree including the splaying, insertion, deletion, and the amortized

analysis formula. Part II is the core part of the software, which demonstrated the splaying

operation through the graphical representations and displayed each splaying step of each

accessed node during the animation. Smooth and continuous node movements, color, and

the sound were emphasized in the whole animation period to pursue the ideal teaching

51

result. Part ill was the test to help the users evaluate their mastery of he class. Th

corresponding answers were also given in the software.

Finally, the study gave a brief description on the concept of the amortized analysis

and the amortized complexity of the splaying which was analyzed by using a potential

function.
....f Ii ' orrr/1n

Future Work

The splay tree animator used a fixed tree to demonstrate the algorithms of the

splay tree in order to show all the possibilities of the splaying operation and meanwhile

meet the requirement of the limited stage size of the Director. A more effective way

could be developed in future to overcome the difficulty of stage limitation.

The software developed in the study could be put on the Internet with Shockwave

plug-in to act as the long-distance learning tool.

There are some other important data structures in computer science. The

animation of those data structures' algorithms could be done in future.

52

SELECTED REFERENCES

Aho, A. V. , Hopcroft, J. E., & Ullman, J. D. (1983). Data Structures and Algorithms.

Reading, Massachusetts: Addison-Wesley Publishing Company.

AlTa, S. K. (1992). Object-Oriented Data Structure Animation. Unpublished master's

thesis, Oklahoma State University at Stillwater.

Baron, R. J. & Shapiro, L. G. (1980). Data Structures and Their Implementation. New

York: VanNostrand Reinhold Company.

Bennett, J. (1997). Director 6 and Lingo Interactive. Berkeley, CA: Macromedia Press.

Booth, K. (1975). PQ-Trees. 16m.m color silent film, 12 minutes.

Brown, M. H. (1988). Algorithm Animation. MA: The rvIIT Press.

Carr, C. (1992). "Performance Support System: A New Horizon for Expert Systems". AI

Expert, 7(5),44-49.

Copeland, P. (1989). Interactive Video. In M. Eraut, The International Encyclopedia of

Educational Technology. Oxford: Pergamon Press.

Feldman T. (1994). Multimedia. London: British Library Board.

Fisher, S. (1995). Macromedia Director: Your Personal Consultant. Emeryville, CA:

Ziff-Davis Press.

53

Galbreath, J. (1997). ''The Internet: Past, Present, and Future '. 'EducaJionafTechnology,

37(6), 39-45.

http://www.cs.hope.edu/-aJganimlccaalaJgo.html

Knowlton, K. C. (1966). L6: Bell Telephone Laboratories Low-Level Linked List

Language. Two black and white sound films. Murray Hill, NJ: Bell Telephone

Laboratories.

Lee, W. (1988). An Implementation ofa Data Structures Display System. Unpublished

master's thesis, Oklahoma State University at Stillwater.

Moret, B.M.E. & Shapiro, RD. (1991). Algorithmsfrom P to NP. CA: The

Benjamin/Cummings Publishing Company, Inc.

Ramaiyer, K. (1998). Web site: Http://www.cs.jhu.edu/-kumar.

Rathbone, A. (1995). Multimedia & CD-ROMsfor Dummies. Foster City, CA: IDG

Books Worldwide, Inc.

Reingold, E. M. & Hansen, W. J. (1983). Data Structures. Boston: Little, Brown and

Company.

Rosenborg, V., Green. B., Hester, l, Knowles, W., & Wirsching, M. (1993). A Guide to

Multimedia. Indiana: New Riders Publishing.

Salomon, G. (1989). Computers in the Cuniculum. In M. Eraut, The International

Encyclopedia ofEducational Technology. Oxford: Pergamon Press.

Shen, B. (1998). Instructional Modulefor Teaching about Binary Search Trees.

Unpublished master's thesis, Oklahoma State University at Stillwater.

Shen, H. (1994). A Visual Aidfor the Learning ofTree-Based Data Stnlcture.

Unpublished master's thesis, Oklahoma State University at Stillwater.

Shimomura, T. & Isoda, S. (1991). "Linked-List Visualization for Debugging".lEEE

Software, 17,44-51.

Sleator, D.D. & Tarjan, R.E. (1985). "Self-Adjusting Binary Search Trees." Journal of

the Association for Computing Machinery, 32(3), 652-686.

Starr, R. M. & Milheim, W. D. (1996). "Educational Uses of the Internet: An Exploratory

Survey". Educational Technology, 36(5), 19-22.

Stasko, 1. T. (1990). "Tango: A Framework and System for Algorithm Animation".lEEE

Computer, 23(2),27-39.

Stasko, J. T. (1997). http://www.cc.gatech.eduJ-cillalcs7100/projectO l/proposal.html

Stubbs, D. F. & Webre, N. W. (1987). Data Stmctures with Abstract Data Types and

Modula-2. Pacific Grove, California: Brooks/Cole Publishing Company.

Tarjan, R. E. (1985). "Amortized Computational Complexity". SIAM JournaL on

ALgebraic and Discrete Methods, 6(2), 306 - 318.

Tarjan, R. E. (1987). "Algorithm Design". Communications ofthe ACM, 30(3),205

212.

Tucker, B. (1997). Handbook afTechnology-Based Training. Yennont: Gower

Publishing Limited.

Vikas, M. (1996). Visualization ofSorting Algorithms. Unpublished master's thesis,

Oklahoma State University at Stillwater.

Villamil, J. & Molina, L. (1997). Multimedia: An Introduction. Indianapolis: Que

Education and Training, Macmillan Computer Publishing.

Weiss, M. A. (1997). Datu Stntctures and Algorithm Analysis in C. Menlo Park,

California: Addison-Wesley Longman, Inc.

55

Xu, C. (1997). Multimedia Visualization ofAbstract Data Type. Unpublished master's

thesis, Oklahoma State University at Stillwater.

56

APPENDIX

Selected Lingo Scripts of the Software

57

Main Script

on startMovie
put 1111 into field "Word"

end startMovie

on movenode number, xl, x2, yl, y2
set stepx to float«x2-xl)/l00.0)
set stepy to float«y2-yl)/100.0)
repeat with i=l to 100

set xl to xl + stepx
set the locH of sprite number to xl
set yl to yl + stepy
set the 10cY of sprite number to yl
updateStage

end repeat
startTimer
repeat while the timer < 30

nothing
end repeat

end

Script of Splaying E

on exitFrame
--puppetSprite Ill, TRUE
repeat with i = 103 to 115

puppetSprite i, TRUE
end repeat
set the castNum of sprite 111 to the number of cast "Red E"
updateStage

puppetSound "begin"
updateStage
startTimer
repeat while the timer < 6*60

nothing
end repeat
puppetSound "zigzig"
updateStage

startTimer
repeat while the timer < 10*60

58

nothing
end repeat

movenode (108, the locH of sprite 108, the locH of sprite 17,,,
the 10cV of sprite 108, the locV of sprite 17)

--move A leftdown
movenode (107, the locH of sprite 107, the locH of sprite 18,,,

the 10cY of sprite 107, the 10cV of sprite 18)
--move B leftdown
set the visible of sprite 91 to TRUE
updateStage
startTimer
repeat while the timer < 2*60

nothing
end repeat

movenode (110, the locH of sprite 110, the locH of sprite 26,-,
the 10cV of sprite 110, the 10cV of sprite 26)

--move C left and become B's right child
set the visible of sprite 93 to False
set the visible of sprite 92 to True
updateS tage
startTimer
repeat while the timer < 2*60

nothing
end repeat

movenode (l09, the locH of sprite 109, the locH of sprite 27,-,
the 10cY of sprite 109, the 10cV of sprite 27)

--move D leftup
movenode (tIl, the locH of sprite 111, the locH of sprite 29,-,

the 10cV of sprite 111, the 10cV of sprite 29)
--move E leftup and single rotation finished
set the visible of sprite 94 to FALSE
updateStage
startTimer
repeat while the timer < 2*60

nothing
end repeat

movenode (108, the locH of sprite 108, the locH of sprite 1,-'
the 10cV of sprite 108, the locV of sprite 1)

--move A leftdown
movenode (107, the locH of sprite 107, the locH of sprite 17,-'

the locV of sprite 107, the locV of sprite 17)

59

--move B leftdown

movenode (110, the locH of sprite 110, the locH of sprite 2,-,
the locV of sprite 110, the 10cV of sprite 2)

--move C to B'g right child
set the visible of sprite 99 to true
set the visible of sprite 100 to true
set the visible of sprite 92 to FALSE
updateStage
startTimer
repeat while the timer < 2*60

nothing
end repeat

movenode (l09, the locH of sprite 109, the locH of sprite 18,-.
the loeV of sprite 109, the locV of sprite 18)

--move D leftdown

movenode (111, the locH of sprite Ill, the loeH of sprite 27"
the loeV of sprite 111, the loeV of sprite 27)

--move E leftup and zig-zig rotation among E,D,B finished
set the visible of sprite 84 to FALSE
updateStage

puppetSound "zigzig"
updateStage

startTimer
repeat while the timer < 10*60

nothing
end repeat

--Next zig-zig rotation among E,F, and H will be done
movenode (I 14, the locH of sprite 114, the locH of spti te 41,...,

the loeV of sprite 114, the 10cV of sprite 41)
--move I rightdown
movenode (l05, the locH of sprite 105, the locH of sprite 46,...,

the locV of sprite 105, the lacY of sprite 46)
--move H rightdown
set the visible of sprite 70 to TRDE
updateStage
startTimer
repeat while the timer < 2*60

nothing
end repeat

60

movenode (115, the locH of sprite 115, the locH of sprite 48,-,
the lacV of sprite 115, the lacY of sprite 48)

--move G right and become H's left child
set the visible of sprite 69 to TRUE
set the visible of sprite 68 to FALSE
updateStage
startTimer
repeat while the timer < 2*60

nothing
end repeat
movenode (106, the locH of sprite 106, the locH of sprite 35,-,

the locY of sprite 106, the lacY of sprite 35)
--move F rightup and finished single rotation of F and H
movenode(lll, the locH of sprite Ill, the locH of sprite 19.-,

the lacY of sprite Ill, the lacY of sprite 19)
--move E rightup
movenode(109, the locH of sprite 109, the locH of sprite 27,-'

the loeY of sprite 109, the lacY of sprite 27)
--move D rightup
movenode(107, the locH of sprite 107, the locH of sprite 18,-'

the 10cV of sprite 107, the lacY of sprite 18)
--move B rightup
movenode(108, the locH of sprite 108, the locH of sprite 17,-'

the 10cV of sprite 108, the 10cV of sprite 17)
--move A rightup
--set the visible of sprite 99 to FALSE
--updateStage
--startTimer
--repeat while the timer < 2*60
-- nothing
--end repeat
movenode(1lO, the locH of sprite 110, the locH of sprite 26,-,

the loeV of sprite 110, the lacY of sprite 26)
--move C as B's right child.
--All E's children finished following E
set the visible of sprite 99 to FALSE
set the visible of sprite 92 to TRUE
set the visible of sprite 100 to FALSE
updateStage
startTimer
repeat while the timer < 2*60

nothing
end repeat

61

movenode(lI4, the locH of sprite 114, the loeH of sprite 42,-,
the JocV of sprite 1J4, the loeY of sprite 42)

--move I rightdown
movenode(115, the locH of sprite 115, the loeH of sprite 45,-,

the 10cV of sprite 115, the 10cV of sprite 45)
--move GasH's left child

movenode(l05, the locH of sprite 105, the loeH of sprite 41,-'
the loeV of sprite 105, the 10cV of sprite 41)

--move H rightdown
set the visible of sprite 69 to FALSE
set the visible of sprite 89 to TRUE
set the visible of sprite 90 to TRUE
updateStage
startTimer
repeat while the timer < 2*60
nothing

end repeat

movenode(l06, the locH of sprite 106, the locH of sprite 46,-,
the locV of sprite 106, the lacY of sprite 46)

--move F rightdown
movenode(Ill, the locH of sprite Ill, the locH of sprite 35,-'

the locY of sprite Ill, the lacV of spri te 35)
--move E rightup to the point of zig-zig rotation
movenode(109, the locH of sprite 109, the locH of sprite 19,-,

the loeV of sprite 109, the locY of sprite 19)
--move D rightup
movenode(l07, the locH of sprite 107, the locH of sprite 27"

the loeY of sprite 107, the loeV of sprite 27)
--move B rightup
movenode(l08, the locH of sprite 108, the locH of sprite 18,-'

the loeV of sprite 108, the lacY of sprite 18)
--A follows Bas B's left child

movenode(llO, the locH of sprite 110, the locH of sprite 29,-,
the loeV of sprite 110, the lacY of sprite 29)

set the visible of sprite 91 to FALSE
set the visible of sprite 92 to FALSE
set the visible of sprite 84 to TRUE
updateStage

--c follows B as B's right child
--E's children finished following E's movement
--zig-zig rotation among E,F,and H is finished

62

puppetSound "zigzig"
updateStage

startTimer
repeat while the timer < 10*60

nothing
end repeat

--Next zig-zig rotation among E,J, and L will be done
movenode(l12, the locH of sprite 112, the locH of sprite 13,..,

the locY of sprite 112, the locY of sprite 13)
--move M rightdown
movenode(103, the locH of sprite 103, the locH of sprite 10,'"

the locY of sprite 103, the lacY of sprite 10)
--move L rightdown
set the visible of sprite 58 to TRUE
updateStage
startTimer
repeat while the timer < 2*60

nothing
end repeat

movenode(113, the locH of sprite 113, the locH of sprite 24,'"
the locY of sprite 113, the lacY of sprite 24)

--move K right to make it as L's left child
set the visible of sprite 56 to FALSE
set the visible of sprite 57 to TRUE
updateStage
startTimer
repeat while the timer < 2*60

nothing
end repeat
movenode(l04, the locH of sprite 104, the locH of sprite 16,'"

the locY of sprite 104, the locY of sprite 16)
--move J rightup
movenode(lll, the locH of sprite Ill, the locH of sprite 20,-,

the lacY of sprite Ill, the lacY of sprite 20)
--move E rightup
movenode(106, the locH of sprite 106, the locH of sprite 22,..,

the locY of sprite 106, the lacY of sprite 22)
--move F to follow E
movenode(105, the locH of sprite 105, the locH of sprite 7,'"

the loeY of sprite 105, the lacY of sprite 7)
--move H to follow E

63

movenode(l14, the locH of sprite 114, the locH of sprite 12,'"
the locV of sprite 114, the lacY of sprite 12)

--move I to follow its parent H
movenode(l15, the locH of sprite US, the locH of sprite 38,..,

the 10cV of sprite 115, the 10cV of sprite 38)
--move G to follow H
set the visible of sprite 56 to TRUE
set the visible of sprite 62 to TRUE
set the visible of sprite 73 to TRUE
set the visible of sprite 74 to TRUE
updateStage
set the visible of sprite 60 to FALSE
set the visible of sprite 70 to FALSE
set the visible of sprite 89 to FALSE
set the visible of sprite 90 to FALSE
updateStage
startTimer
repeat while the timer < 2*60
nothing

end repeat

movenode(l09, the locH of sprite 109, the locH of sprite 35,'"
the loeY of sprite 109, the 10cV of sprite 35)

--move D rightup to follow its parent E
movenode(I07, the locH of sprite 107, the locH of sprite 19,'"

the locV of sprite 107, the lacY of sprite 19)
--move B rightup to follow its parent D
movenode(108, the locH of sprite 108, the locH of sprite 27,'"

the 10cY of sprite 108, the lacY of sprite 27)
--move A rightup to follow its parent B

movenode(110, the locH of sprite 110, the locH of sprite 47,""
the locV of sprite 110, the loeV of sprite 47)

--move C to follow its parent B
set the visible of sprite 83 to FALSE
set the visible of sprite 84 to FALSE
set the visible of sprite 68 to TRUE
updateStage
startTimer
repeat while the timer < 2*60

nothing
end repeat

movenode(l12, the locH of sprite 112, the locH of sprite 51,-'
the loeY of sprite 112, the lacY of spri te 51)

64

--move M rightdown
movenode(103, the locH of sprite 103, the locH of sprite 13,-'

the 10cV of sprite 103, the 10cV of sprite 13)
--move L rightdown
movenode(113, the locH of sprite 113, the locH of sprite 28,-,

the 10cV of sprite 113, the 10cV of sprite 28)
--move K to follow its parent L
set the visible of sprite 66 to TRUE
set the visible of sprite 65 to TRUE
set the visible of sprite 57 to FALSE
updateStage
startTimer
repeat while the timer < 2*60

nothing
end repeat

movenode(104, the locH of sprite 104, the locH of sprite 10,""
the locY of sprite 104, the loeY of sprite 10)

--move J rightdown
movenode(llI, the locH of sprite Ill, the locH of sprite 16,-,

the 10cVof sprite 111, the 10cV of sprite 16)
--move E to root
movenode(l06, the locH of sprite 106, the locH of sprite 24,""

the loeV of sprite 106, the lacY of sprite 24)
--move F to make it become 1's left child
movenode(105, the locH of sprite 105, the locH of sprite 9,-'

the 10cV of sprite 105, the lacY of sprite 9)
--move H to follow its parent F
movenode(l14, the locH of sprite 114, the locH of sprite 21,-'

the locY of sprite 114, the 10cV of sprite 21)
--move I to follow its parent H
movenode(115, the locH of sprite 115, the locH of sprite 25,-,

the locY of sprite 115, the lacY of sprite 25)
--move G to follow its parent H
set the visible of sprite 56 to FALSE
set the visible of sprite 62 to FALSE
set the visible of sprite 73 to FALSE
set the visible of sprite 74 to FALSE
updateStage
set the visible of sprite 57 to TRUE
set the visible of sprite 64 to TRUE
set the visible of sprite 77 to TRUE
set the visible of sprite 78 to TRUE
updateStage
startTimer

65

repeat while the timer < 2*60
nothing

end repeat

movenode(l09, the locH of sprite 109, the locH of sprite 20,-,
the lacY of sprite 109, the lacY of sprite 20)

--move D to follow its parent E
movenode(l07, the locH of sprite 107, the locH of sprite 35,-'

the lacY of sprite 107, the locY of sprite 35)
--move B to follow its parent D
movenode(108, the locH of sprite 108, the locH of sprite 19,-'

the lacY of sprite 108, the lacY of sprite 19)
--move A to follow its parent B

movenode(110, the locH of sprite 110, the locH of sprite 46,-'
the lacY of sprite 110, the 10cV of sprite 46)

set the visible of sprite 67 to FALSE
set the visible of sprite 68 to FALSE
set the visible of sprite 60 to TRUE
updateStage
--move C to follow its parent B

puppetSound "root"
updateStage

end

66

)

VITA

YINGJIE DONG

Candidate for the Degree of

Master of Science

Thesis: THE MULTIMEDIA ANIMATION FOR LEARNING SPLAY TREES

Major Field: Computer Science

Biographical:

Personal Data: Born in Hebei Province, P.R. China, October 15, 1968, the daughter
of Zhilin Zhang and Wenli Dong.

Education: Graduated from the Cangzhou High School, Cangzhou, Hebei,
P.R.China, in June 1986; received Bachelor of Arts Degree in English
Literature and Language from Hebei Teacher's University in June 1990~

received Master of Science Degree in Occupational and Adult Education at
Oklahoma State University in May, 1998; completed requirements for the
Master of Science degree in Computer Science at Oklahoma State University
in July, 1999.

Professional Experience: Project Officer, Ministry of Labor of P.R.China, Beijing,
1994-1996; Research Associate, the 4th Research Institute, Beijing, 1992
1994; Instructor, Shijiazhuang Education Institute, Shijiazhuang, P.R.China,
1990-1992.

