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DETERMINATION OF PHOSPHORUS NUTRITIONAL STATUS USING

SPECTRAL RESPONCE

ABSTRACT

Sensor - based methods of determining the phosphorus (P) status of

plants have not been developed. The objective of this research was to

determine the feasibility of measuring in-situ P levels in winter wheat (Triticum

aestivum L.) using spectral data. Spectral irradiance measurements were taken

and investigated from wheat that was grown with different nitrogen (N) and P

rates on a soil low in soil test P. Total P in wheat plant tissue and forage P

uptake were correlated with various wavelengths but not always consistent

across growth stages or years. However, there was some consistency for

correlation between P tissue concentration and spectral irradiance from.

wavelengths 705 - 725 (numerators) to 505 - 515 (denominators). Grain yield

was correlated with spectral irradiance readings near 755 nm using the UV light

at night for both years from Feekes growth stages 4 through 7. Improvements in

data collection and data processing need to be addressed for further research.

INTRODUCTION

Light is absorbed by plants and turned into chemical energy. The initial

process occurs in the chloroplast through photosystem I (PS I) and photosystem

II (PS II). Phosphorus is an essential part of the transformation of this energy in

the plant. This study focused on finding an indirect method to determine the P
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nutritional status of winter wheat (Triticum aestivum l.). It would be ideal if P

deficiencies could be detected before levels were low enough to produce

externally visible symptoms, such as purple coloration on the older leaves, fewer

tillers, and dark green young leaves (80110ns and Barraclough, 1997).

Increased yields could possibly be achieved if the P nutrient needs were

treated early on in the growing season. Miller et al. (1994) reported that P

uptake peaked near the stage of flag leaf emergence, which is late in the

season, thus showing that P deficiency might be corrected if detected early on.

However, it should be noted that some work has shown that P application at

anathesis can increase yield (Sherchand and Paulsen, 1985). Alternatively the

majority of all fertility work has shown that P must be applied early in the season

in order to impact grain yields (Smith, 1969). A sensor application system could

be developed to determine P level and immediately apply the needed amount of

fertilizer for optimum yields. This may also reduce the adverse impact on the

environment from high P sediment runoff into streams and lakes.

LITERATURE REVIEW

P uptake method

Phosphorus is taken up by plants as an anion, H2PO..ior HPO,/", at the

plasma membrane of the root cell via a proton-anion co-transport (Dunlop,

1989). Another probable way for P uptake is with an OH"'phosphate counter

transport as reported by Liu (1979). For the plant to be able to assimilate P by

either of these methods its roots need to be close enough for these chemical
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reactions to take place. Fohse and Jungk (1983) noted that root hairs were

abundant in soil that was low in available P, while no hairs were observed when

P was readily available. In low available P soils, root exudates like citrate and

phenolics, allow the bound-up inorganic P to come into solution by binding with

the cation half (Parfitt, 1979; Gerke 1992). In soils where P is abundant but

most of it is tightly bound, the plant will show yield reductions due to low P

availability. Thus total soil P is not a good indicator of P availability for the plant.

In this regard numerous of different extracting solutions have been evaluated, in

an attempt to simulate plant available P.

Methods of soil and tissue P analysis

Total soil P analysis is an unreliable indicator of plant available P since

most of the P is tightly bound thus making it unavailable for plant uptake. For

organic P extraction, acids, bases or both are added to the soil so the

orthophosphates can be determined from the extract before and after the

oxidation of organic matter (Page et al. 1990). Other methods of extracting P

from the soil that resemble the P available to the plants include Bray and Kurtz

(1945), Mehlich III (1984), Olsen et al. (1954), and Nelson et al. (1953). These

methods are time consuming, require lab analysis and correlation for different

types of soils.

Shchurina (1990) reported that x-ray fluorescence could be used for P

determination in soil and plant tissue. Their procedure required about one

minute per sample giving an error of 3.4% for plant matter; however, if not

sufficiently ground the error can rise to 80%. Valdes and Leeson (1989), and
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Ruiz and Cordoba (1991) reported using x-ray fluorescence spectroscopy to

analyze P concentration in poultry feeds and flours respectively. Treeby et al.

(1987) used electron probe x-ray microanalysis to estimate the P concentration

in Lupinus luteus, but this method required extensive sample preparation.

Therefore the present methods for extracting and determining P levels in soil

require that the soil be taken from the field and sent to a lab which involves time

and introduces errors due to sampling techniques and soil P variability as found

by Raun et aL (1998). Total P analysis in forage is sUbject to analytical error,

but is an accurate measure of the P availability in the area from which it was

taken. In extreme deficiencies plants can show characteristic vegetative

symptoms.

Low P effect on wheat

Yield is reduced when there is low P availability in the soil; total leaf P is

reduced when there is low P availability in the soil and thus total P in the leaf is

positively correlated with yield (Hargrove et al. 1984). Purpling of the edge of

the older leaves is associated with P deficiency along with retarded growth.

Inside the leaf the effect of low P on wheat (Triticum aestivum L.) has been

shown by Jacob and Lawlor (1991) to severely hinder the mesophyll capacity for

photosynthesis. They ruled out the possibility of lower CO2 assimilation being

caused by lower stomatal conductance. They did find smaller cells overall, but

there were more cells per leaf. They also found that the total protein content

was negatively affected, while the chlorophyll content in wheat was not. Rao et

al. (1986) reported more light scattering and a change in fluorescence due to the
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incapability of the Calvin cycle to transform the Ught energy into chemical energy

of the sugar beet leaf (Beta vulgaris L. cv. F58-554H1). Robinson and Walker

(1981) found that the low P availability in the chloroplast hindered

photosynthesis by inhibiting 3-PGA (3-phosphoglycerate) production and sugar

phosphates while excessive inorganic phosphorus (Pi) availability can hinder

photosynthesis by increasing the export of trios phosphates (glyceraldehyde-3­

phosphate and dihydroxyacetone phosphate). Lower concentration of Pi in the

leaves reduced the rate of photosynthesis, and resulted in a lower sucrose to

starch ratio (Foyer and Spencer, 1986). They concluded that P concentration in

the leaf is not a good ir:ldicator for P deficiency since the vacuole can act as a

buffer for the cytoplasmic P concentration.

Fluorescence

Lauer et. al. (1989) reported that low P nutrition stimulated greater

chlorophyll fluorescence in soybe,ans (Glycine max. L.) and reduced crop yields.

They proposed that Pi stress would have more effect on the Calvin cycle

products than the phosphorylation of the enzymes. Phosphorus defiiCiency

lowered the concentration of ATP and ADP in the leaves of both Zea mays L.

and Helianthus annuus L.. Phosphorus deficiencies were correlated with a

change in chlorophyll-a fluorescence, indicating that a low Pi concentration

lowered the efficiency of excitation capture by open PSII reaction centers (Jacob

and Lawlor, 1993). Alternatively, Abadia et. al. (1987), indicated that decreased

P status increased PSI chlorophyll-protein complexes compared to PSII, and that

there was little affect on chlorophyll fluorescence of sugar beet leaves (Beta
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vulgaris l. cv. F58-554H1). A saturating light on barley (Hordeum vulgare L.)

and spinach (Spinacia aleracea l.) leaves caused chlorophyll fluorescence

quenching when carbon assimilation was limited. This provides evidence that

there is surplus electron transport capacity which is not being used (Stitt and

Schreiber 1988). Similar work by Sivak and Walker (1986) indicated that some

of the excitation energy that is not converted is dissipated as red fluorescence,

and the lower concentration of orthophosphate in the chloroplast can limit

photosynthesis in spinach leaves. Sun et. al. (1989) reported that N, P, and K

nutrient deficiencies in hard red spring wheat (Triticum aestivum L.) did cause a

decline in chlorophyll fluorescence but concluded that diagnosing individual

nutrient deficiencies would not be feasible since they had similar effects.

Spectrometer and Sensing

Gamon et. al. (1990) used a spectroradiometer suspended 4 m above the

canopy of a sunflower field, to pick up signals and shifts that reflected the

chlorophyll fluorescence quenching and de-epoxidation of violaxanthin to

zeaxanthin, respectively. They found that they could detect the reflectance

change in the green, red, and near-infrared regions of the spectra due to

quenching. Recently, Stone et al. (1996) found that spectral readings in the red

and NIR regions of the spectra were highly correlated with in-season forage N

uptake and that this information could be used to adjust for topdress N needs.
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OBJECTIVE

The objective of this research is to determine the feasibility of measuring

in-situ P levels in winter wheat using daytime spectral data and fluorescence

spectral data from night readings produced using an UV illumination source.

MATERIALS AND METHODS

Pot Studies

Pot and field studies were conducted to evaluate the use of spectral

irradiance measurements (with and without a UV lamp) for detecting plant P

deficiencies in winter wheat at early stages of growth. The soil for both pot and

field studies was a Teller sandy loam; fine-loamy, mixed, thermic Udic Argiustoll

that was known to be low in soil test P. Each pot contained 5 kg of this soil.

Complete soil test data for both the pot and field studies are reported in Table 1.

Planting, harvest, spectral reading dates and growth stages evaluated are

reported in Table 2.

The 1997 pot experiment employed a completely randomized

experimental design with three replications and that included a factorial

arrangement of treatments. Rates of Nitrogen (N) and P included 0, 56, 112,

and 168 kg N ha-1 and 0,7.3,14.7, and 22.0 kg P ha-1
. Nitrogen and P were

applied as ammonium nitrate, 33% N, and triple super phosphate, 22% P,

solutions 5 days after the wheat had sprouted since it was not pre-plant

incorporated. More seeds were planted during the second week of the

experiment to ensure that there would be enough leaf density for spectral
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readings. The second pot study, conducted in 1999, evaluated only two N

levels, 0 and 112 1kg N ha-1 and seven Prates, 0, 9.8,19.6,29.3,39.1,48.9, and

58.7 kg P ha"'. P was applied in a KH2PO.. solution, and KCL was applied of

adjust for the K differences caused by the P treatments. All fertilizing was done

previous to planting.

All pots were placed in controlled environment growing chambers, with

temperature settings at 30°C day and 25°C night. Sixteen hours of light was

provided by 30 fluorescent tubes and 45 incandescent bulbs, giving a klux of

77.5 (960 micromol.es/m2/s). The pots were watered so that they were

maintained at field capacity. The pots were weighed every two weeks and water

was added to bring them up to field capacity. On a daily basis, 200 to 400 ml of

water was added to ensure no moisture stress between the weighing times.

Plates were put under the pots so that if there was water percolation, it could be

re-circulated into the pot. Following spectral readings, plants were harvested,

weighed and then dried at 75°C for at least one week following which they were

weighed again. Forage was ground to pass a 1 mm screen on a Udy Cyclone

Sample Mill for further processing. Total N in wheat forage was determined

using a Carlo Erba NA 1500 dry combustion analyzer (Schepers, 1989). Total

forage P was determined using a HN03 - HCIO.. digest on 0.5 g of ground plant

tissue (Barton, 1942 and Solim and Stamberg, 1944). Concentration was

subsequently determined on the digest, with an Inductive Coupled Plasma (ICP)

spectrometer.
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Field Trials

A field study was conducted at Perkins OSU Agronomy Field Station

(Teller sandy loam; fine-loamy, mixed, thermic Udic Argiustoll), Oklahoma. Initial

surface soil test levels are reported in Table 1. Planting, harvest, and growth

stages at the time spectral readings were taken are reported in Table 2. The

experimental design was a randomized complete block with three replications

using individual plots measuring 3.1 m x 9.1 m. A factorial arrangement of

treatments for Nand Prates (0,56,112, and 168 kg N ha-1 with 0,14.7, and

29.3 kg P ha-1
) was evaluated. Nitrogen and P rates were surface applied and

incorporated prior to planting. Spectral irradiance readings were collected from

an area of (0.91 x 0.91 m) in 1998, and (0.61 x 0.61) in 1999 from within each

plot. Once all spectral irradiance readings were collected, wheat forage was

clipped at ground level from the specified area, weighed and dried in a forced air

oven. FoUowing drying, wheat forage was ground to pass a 106~ (No. 140

sieve) screen and analyzed for Nand P.

Spectrometer Readings

Spectral readings and forage yields were collected at Feekes growth stages 5

(leaf structure strongly erect) from the pot studies. The field studies also

included readings from Feekes growth stages, 7 (second node visible), and 10.5

(post flowering), see figure 1, (Large, 1954). A wide range of spectral irradiance

measurements were obtained from the first pot study in 1997 using a PSD-1000

portable dual spectrometer manufactured by Ocean Optics Inc.. The

spectrometer had two overlapping bandwidths, 30D-850nm and 650-11 OOnm.
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The PSD 1000 was connected to a portable computer through a Personal

Computer Memory Card International Association (PCMCIA) slot using a

PCMDAS 16D/12 AID converter manufactured by Computer Boards Inc.. The

fiber optic spectrometer has a spectral resolution as low as 1nm +/- 6nm. From

the pot studies, the hemisphericallucite™ lens, was extended approx. O.5m

above the rim of the pot, see figure 2.

The readings for field studies and the second pot studies were taken with

a 52000 portable spectrometer manufactured by Ocean Optics Inc., that had a

spectral range of 328 to 1040 nm. The connection to the computer was provided

by a PCMCIA slot using a data acquisition card (analog to digital DAQCard-700

AID) manufactured by National Instruments. This fiber optic spectrometer has a

400 urn diameter fiber entrance slit and a grating of 600 lines blazed at 500 nm

with a coated array, and a 50 nm slit, and that gives a spectral resolution as low

as 1 nm. A UV lamp manufactured by Tracerline TP-1200P that emits primarily

at 365 nm wavelength signal was used. The spectrometer readings were

calibrated by taking a dark reading as a reference. The UV light was placed at a

90° angle to the wheat pots and the lens of the spectrometer was aimed at

approx. 45° relative to the wheat pots. Wheat pots were placed in a holder that

ensured all the pots were read from the same angle, see figure 2. White lights

were turned off during the readings, allowing the UV lamp to be the only source

of light. Four readings from each pot were taken, turning the pots 90° each time.

In the field studies, readings were recorded using a tripod mounting so that

height variation would be negligible across the different plots, see figure 3.
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Individual wavelengths and combinations of wavelengths were used to

predict biological responses, including the Normalized Difference Vegetation

Index (NDVI). Various combinations of these wavelengths were evaluated to

determine the proper indices for predicting wet biomass, dry biomass, total N

uptake, total N concentration, total P uptake, and total P concentration in winter

wheat forage, (Table 3).

At each stage of growth the readings were taken from the exact area used

for the forage clipping. Three readings were collected; 1) during the day; 2) dark

readings at night using a UV source 30 minutes after the sun had set to ensure

dark adaptation, 3) the following day using an enclosed box (shielding outside

light) whereby the plant was not dark adapted (1998); 4} and with a grow light at

night (1999). Statistical analyses were performed using SAS (SAS institute,

1990).

RESULTS

Field Study:

For both 1997-98 and 1998-99 crop years, applied P significantly

increased grain yiields and grain P concentration (Tables 4 and 5). Similarly, N

applications increased grain yields and grain N concentration levels for both

crop years (Tables 4 and 5).

For the 1997-98 crop year, applied P increased forage yields at Feekes

growth stages 5 and 7 but did not effect forage yields at Feekes growth stage

10.5 (Tables 6, 7,and 8). With only one exception (Feekes 5), applied P did not

11



alter tissue P concentration (Tables 6, 7, and 8). It is important to note that the

one exception was at an early stage of growth where increased P uptake was

also detected (Table 6). Although no differences in forage yield were detected

at the two late forage sampling dates (7 and 10.5) the tissue P deficiencies that

were reflected in 1st forage harvest at Feekes 5 also impacted final grain yields.

Early P nutrition was therefore important for early forage harvest and final grain

yields but which did not alter mid-season forage production to such a large

extent. Applied N resulted in increased forage yields and forage N

concentration at Feekes 5, but had relatively less effect at the later stages of

growth (Tables 6,7, and 8).

In 1998-99, applied P had no effect on the forage yields at the early

stages of growth (Feekes 4, Table 9) but significantly increased forage yields at

all late stages of growth (Tables 10 -12). Applied P resulted in increased

forage P concentration and forage P uptake at all stages of growth (Tables 9­

12) in 1999.

Applied N resulted in increased forage yields, forage N concentration and

forage N uptake at all stages of growth (Tables 9 - 12). No N*P interaction was

detected at any growth stag,e for either P concentration or for P uptake (Tables 6

-12).

Feekes 5 Perkins 1997-98

In general, higher correlation was found for forage P uptake and grain

yield with individual wavelength data collected during the day versus night at

Feekes growth stage 5 for 1997-98 (Table 13).
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Limited significance was found for spectral irradiance readings collected

at any wavelength or using alternative indices when evaluating simple

correlation coefficients with P tissue concentration. With or without the UV light

(day), forage P uptake was significantly correlated with spectral irradiance in the

424 to 445 nm region. It was equally important to find that even at these early

stages of growth, daytime spectral irradiance readings from the 382 to 393 nm

region ended up being highly correlated with final grain yield (Table 13).

Feekes 7 Perkins 1997-98

Limited significance was found for single wavelength spectral readings

correlated with P tissue concentration. Forage P uptake was slightly correlated

with some indices but no single wavelength was significant. Grain yield was

highly correlated with several single wavelengths and with several indices when

spectral irradiance was recorded during the day, but not at all the same

wavelengths as was reported for Feekes 5 (Table 14).

Feekes 10.5 Perkins 1997-98

No single wavelength was significantly correlated with P tissue

concentration and only limited significance was noted for the indices reported.

Forage P uptake was highly correlated using night readings for both single

wavelengths and indices. Spectral irradiance reading from the 730 to 765 nm

region during the night and 393 to 403 nm region during the day were

significantly correlated with grain yield. Indices with a 705 nm numerator and a

526 to 546 nm denominator were also highly correlated for daytime readings

(Table 15).
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Feekes 4 Perkins 1998-99

For P tissue concentration, daytime readings were limited in significance

in the 725 and 729 nm spectral region. Spectral irradiance from 413 to 434 nm

was significantly correlated with forage P uptake using daytime readings.

Individual wavelength data showed limited correlation with grain yield in the

spectral region of 711 to 758 nm (Table 16).

Feekes 5 Perkins 1998-99

Phosphorus tissue concentration was correlated with several indices

compiled from dark readings. The spectral region of 459 to 469 nm for single

wavelengths and several indices were significantly correlated with forage P

uptake during daytime readings. The spectral region of 744 to 753 nm showed

slight correlation for both forage P uptake and gratn yield during the night

readings (Table 17).

Feekes 8 Perkins 1998-99

Phosphorus tissue concentration was correlated with spectral irradiance

in the 530 to 540 nm spectral region for daytime readings. Forage P uptake was

significantly correlated with spectral irradiance readings in the 398 to 418 nm

region for daytime readings, the 744 to 753 nm region using the UV night

readings and several indices. The spectral irradiance readings in the 739 to 758

nm region, using the UV night readings, and at this stage of growth, were

significantly correlated wi,th grain yield (Table18).
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Feekes 11.1 Perkins 1998-99

In general spectral irradiance from nighttime readings were more highly

correlated with the dependant variables analyzed using single wavelengths

while the daytime readings had higher significant correlation using the computed

indices.

Spectral irradiance readings in the 413 to 449 nm region were positively

correlated with P concentration for daytime readings (Table 19). Forage P

uptake was highly correlated with spectral irradiance readings in the 744 to 753

nm region for nighttime readings. Daytime readings in the 398 to 408 nm region

and growlight readings in the 525 to 540 nm region were also highly correlated

with forage P uptake. Grain yield was significantly correlated with spectral

irradiance readings in the 744 to 758 nm range when collected at night using UV

light (Table 19).

DISCUSSION

Some thought should be given as to why we are developing indirect

measures for plant nutrient status. Detecting P deficiencies in-season will

unlikely lead to an in-season treatment, largely because others have shown

limited yield response from in-season applied P in either foliar or granular form.

However, some work has shown that foliar applied P at anathesis can be

beneficial (Sherchand and Paulsen, 1985). Paulsen (1985) stated that foliar

applied P is typically used in China to protect the plant against hot, dry winds

that cause desiccation, which in turn causes lower yields. Barber (1977) showed
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that uptake of P by roots decreases as much as 100 fold per meter between 20

and 80 days, so as the plant ages there is less of a possibility to utilize applied P

fertilizer. Even though in"'season response to applied P is unlikely, it would be

important to identify lowered yield potential due to P deficiency. This is largely

because in-season N-fertilization based on a lowered yield potential has been

shown to be beneficial when individual 1m2 areas were sensed and treated

independently (OSU VRT project 1999). Thus by detecting lower yield potential

areas due to P deficiency, in-season N application to this area would be

corrected. This information could be used to create a field map of the P deficient

areas and then integrating this with a global positioning system (GPS); P

fertilizer could be applied to those areas, which had been P deficient the

previous year. In this regard any index capable of identifying altered or lowered

yield potential could be extremely useful as it relates to in-season treatment of

wheat.

Phosphorus deficiencies are generally visible early in the life cycle of

cereal crops; therefore, sensing techniques should target early stages of growth.

In addition treatment of P stress early on, may result in increased yields, and

that are unlikely from late-season applied P.

CONCLUSIONS

Many individual wavelengths and indices were correlated with P tissue

concentration, some consistency was found at early growth stages though not

always consistent over the different growth stages or years. However, there was
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some consistency to find correlation between P tissue concentration and

spectral irradiance from wavelengths 705 - 725 (numerator) to 505 - 515

(denominator). Some consistency was found between forage P uptake and

wavelengths around the 430nm region. Grain yield was correlated with spectral

irradiance readings near 755 nm at early stages of growth (Feekes 4 - 7), for

both years, when readings were collected at night using UV illumination.

Finding that early-season spectral irradiance from wheat canopies at

specific wavelengths were correlated with grain yield was considered important

since this information could be used to adjust in-season fertilization. However,

our experience suggests that improvement needs to be made when processing

the initial data. The collection of light from samples needs to be increased for

the UV night readings in order to enhance signals 10 raise ratios. At this time,

the feasibility of using this technology to determine in-situ P levels of winter

wheat using spectral data is limited, largely due to problems with data collection.

The potential for this technology to be used is great.
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Table 1. Initial surface (0 -15cm) soil test characteristics from the Teller sandy loam soil
used In both field and pot studi.es, 1996

Characteristics Method
pH 1:1 soil:H~O

Organic Carbont Dry Combustion
Total Nitrogent Dry Combustion
NH4-N:I: 2 M KCI extract
NO~N:I: 2 M KCI extract
Phosphorus§ Mehlich-3
Potassium§ Mehlich-3

tSchepers et at (1989)
:l:Lachat instruments (1989)
§Mehlich (1984)

Unit

9 kg·1

g kg-1
mg kg·1

mg kg-1

mg kg-'
mg kg,1

Soil test level
5.9
5.336
0.504
3.0
2.8
8.9

133.0

Critical level
5.7

40
32.5

125

Table 2. Experiment Location, year, planting date, spectral reading date and
growth stage at that reading.

Experiment Year Planting date Spectral reading Growth stage

Perkins- field 1997 10/21/97 02124/98 Feekes 4
04/01/98 Feekes 5
04/21/98 Feekes 7
05/07/98 Feekes 10.5

Perkins- field 1998 10/15/98 02123/99 Feekes 4
03/09/99 Feekes 5
04/06/99 Feekes 8
05/08/99 Feekes 11.1

Perkins- pot 1997 10/06/97 11/07/98 Feekes 5

Perkins- pot 1999 06/04/99 06/29/99 Feekes 5
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Table 3. Combinations of multi-wavelength indices tested for winter wheat forage spectral
irradiance readings collected for both field and pot studies, 1997, 1998, and 1999.

NPCI1 = (W685 - W435)/(W685 + W435)
NPCI =(NPCIX1 + NPCIX2)12
WBI2 =W695 - Wa95
PRl1 = (W555 - W535)/(W555 + W535)
PRI = (PRI1 + PRI2)/2
NOVI = (Waos - W695) / (W805 + 695)
NIRGI =W795/(11W545)
PFR =W7251W655
W735_665 =W7351W66S
W805_415 =W8051W415
W735_655 = W7351W655
W705_515 =W7051W515
W705_535 =W7051W535
W715_505 = W7151W505
W715_525 =W7151W525
W715_545 =W7151W545
W725_515 =W7251W515
W725_535 =W7251W535
W735_505 = W7351W505
W735_525 =W7351W525
W735_545 =W7351W545
W735_715 =W7351W715
W695_405 = W6951W405

NPCI2 =(W675 - W425)/0N675 + W425)
WBI1 =W975 - W905
WBI =(WB11 + WBI2)/2
PRI2 =(W545 - W525)/0N545 + W525)
GR = (W515 + W525 + W535 + W545)/4
PNSI = (W805 + W695}/(W805 - W695)
NR = W8051W695
PFR2 =W725 / W655
W405_635 =W4051W635
W795_735 =W7951W735
W705_505 = W7051W505
W705_525 =W7051W525
W705_545 =W705MJ545
W715_515 =W7151W515
W715_535 = W7151W535
W725_505 =W7251W505
W725_525 = W7251W525
W725_545 =W7251W545
W735_515 = W7351W515
W735_535 =W7351W535
W725_715 =W7251W715
W785_50S = W78S1W505
W405_63S = W4051W635

W_ wavelength in nm used either alone or with other combinations of spectral data.
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Table 4. Analysis of variance, sing e-degree-of-freedom-contras1s, and treatment means for
grain yield, N concentration, and P concentration in the grain, Perkins, OK, 1997-98 crop year.

Source of Variation df Grain Yield
Yield N P

Mghs,l gkg,1 gkg,1

mean squares ----_._--
Rep 2 0.44 0.36 0.12
N rate 3 2.04- 18.09- 0.99*
Prate 2 0.59· 3.43 0.81*
N rate • Prate 6 0.04 0.94 0.10
MSE 22 0.14 2.90 0.21
Contras1
N rate linear 1 5.85- 50.82- 2.61-
N rate quadratic 1 0.23 0.02 0.32
P rate linear 1 1.18- 6.39 0.95*
P rate quadratic 1 0.00 0.46 0.66

Treatment means

N rate kg ha'1
0 1.15 20.6 3.88
56 1.60 21.2 3.51
112 2.06 23,1 3.17
168 2.20 23.5 3.19

SED 0.18 0.80 0.21

P rate kg ha,1
0 1.53 22.7 3.14
14.5 1.74 22.0 3.63
29 1.98 21.7 3.54

SED 0.15 0.69 0.18
CV,% 21 8 13

t, *, -, --significant at the 0.10, 0.05, 0.01, and 0.001 probability levels, respectively.
SED- s1andard error of the difference for two equally replicated means.
CV- coefficient of variation.
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Table 5. Analysis of variance, single-degree-of-freedom-contrasts, and treatment means for
grain yield, N concentration, P concentration, in the grain, Perkins, OK, 199s.99 crop year.

Source of Variation df

Yield
Mgha,1

------

Grain Yield
N P

gkg,1 gkgo1

mean squares--------------

Rep
N rate
Prate
N rate * Prate
MSE

2
3
2
6
22

0.29t
2.11***
0.72­
0.11
0,10

2.6
75.1***
21.9*

5.6
3.8

0.09
2.40***
0.79*
0.05
0.17

Contrast
N rate linear
N rate quadratic
P rate linear
P rate quadratic

N rate kg ha,1
o
56
112
168

SED

P rate kg ha,1
o
14.5
29

SED
CV,%

1
1
1
1

5.74*** 198.3***
0.50* 26.3*
1.39- 25.2*
0.05 18.5*

Treatment means

0.83 21.5
1.34 21.7
1.83 24.2
1.86 27.7

0.15 0.9

1.20 25.3
1.52 22.8
1.68 23.2

0.13 0.8
21 8

6.28-·
O.64t
1.08*
0.49

4.76
3.96
3.82
3.56

0.20

3.73
4.19
4.16

0.17
1'0

t, *, -, --significant at the 0.10, 0.05, 0.01, and 0.001 probability levels, respectively.
SED- standard error of the difference for two equally replicated means.
CV- coefficient of variation.
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Table 6. Analysis of variance, single-degree-of-freedom-contrasts, and treatment means for dry
matter, N concentration, P concentration, total N uptake, and total P uptake, Per1dns, OK,
Feekes growth Stage 5, 1997-98 crop year.

Source of Variation df Feekes 5
Dry Matter N P N uptake P uptake

Mgha" gkg" gkg·1 kg ha'1 kg ha"
mean squares--

Rep 2 224742 14.6 0.08 122 1.53
N rate 3 849226t 97.4- 0.13 1163- 3.27
Prate 2 2870079- 129.2- 0.39t 910* 29.70**
N rate * Prate 6 58582 8.3 0.03 72 0.59
MSE 22 331026 6.9 0.16 162 4.21

Contrast
N rate linear 1 2098440t 288.7- 0.35 3125- 5.98
N rate quadratic 1 270192 7.4 0.03 70 2.49
P rate linear 1 5714382- 209.0- 0.78 1741- 58.20-
P rate quadratic 1 25776 57.3- 0.00 53 0.65

Treatment means

N rate kg ha·1

0 1231 22.8 2.53 27.3 3.1
56 1494 24.4 2.40 34.6 3.7
112 1900 27.2 2.29 49.5 4.5
168 1816 30.3 2.27 53.6 4.4

SED 271 1.2 0.19 6.0 1.0

P rate kg ha-1

0 1141 29.9 2.18 32.8 2.4
14.5 1572 24.4 2.37 38.9 3.7
29 2117 24.1 2.55 50.3 5.6

SED 235 1.1 0.16 5.2 0.8
CV,% 36 10 17 31 52

t. *, -, --significant at the 0.10, 0.05, 0.01, and 0.001 probability levels, respectively.
SED- standard error of the difference for two equally replicated means.
CV- coefficient of variation.
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Table 7. Analysis of variance, single-degree-of-freedom-contrasts. and treatment means for dry
matter, N concentration, P concentration, total N uptake, and total P uptake, Perilins, OK,
Feekes growth Stage 7,1997-98 crop year.

Source of Variation df Feekes 7
Dry Matter N P N uptake P uptake

Mgha" gkg,f gkg" kg ha,1 kgha"
-----------mean squares

Rep 2 575977 0.13 0.00 104.2 2.79
N rate 3 235599 24.70- 0.68- 280.0t 1.33
Prate 2 54561 24.70- 0.09 117.4 0.60
N rate * Prate 6 687422t 1.72 0.05 173.9 4.84
MSE 22 333141 2.99 0.09 98.2 2.44

Contrast
N rate linear 1 349396 71.66*** 1.76....... 776.3* 2.04
N rate quadratic 1 140650 1.89 0.22 0.1 0.18
P rate linear 1 5594 40.53- 0.17 216.2 0.97
P rate quadratic 1 103527 8.86t 0.00 18.6 0.22

Treatment means

N rate kg ha,1
0 2070 11.0 2.50 22.7 5.2
56 2144 11.6 2.07 24.6 4.5
112 2441 13.2 1.98 32.3 4.8
168 2265 14.7 1.87 34.0 4.4

SED 272 0.8 0.14 4.7 0.7

P rate kg ha·1

0 2177 14.3 2.03 31.9 4.4
14.5 2306 11.9 2.09 27.4 4.8
29 2208 11.7 2.20 25.9 4.8

SED 236 0.7 0.12 4.0 0.6
CV,% 26 14 14 35 33

t, ., -, --significant at the 0.10, 0.05, 0.01, and 0.001 probability levels. respectively.
SED- standard error of the difference for two equally replicated means.
CV- coefficient of variation.
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Table 8. Analysis of variance, single~egree-of-freedom-contrasts, and treatment means for dry
matter. N concentration. P concentration, total N uptake, and total P uptake, Perkins, OK,
Feekes growth Stage 10.5, 1997-98 crop year.

Source of Variation df Feekes 10.5
Dry Matter N P Nuptake P uptake

Mgha" gkg,f gkg" kgha" kgha"
-mean squares-----------

Rep 2 657481t 0.93 0.04 75 1.91*
N rate 3 564422 8.93- 0.16* 216- 0.29
Prate 2 64194 9.62- 0.01 84 0.45
N rate * Prate 6 547823t 1.88 0.05 48 0.71
MSE 22 245844 1.58 0.05 38 0.48

Contrast
N rate linear 1 1501429* 23.69- 0.44- 643.... 0.22
N rate quadratic 1 186023 2.60 0.00 2 0.32
P rate linear 1 58262 18.39- 0.00 150t 0.14
P rate quadratic 1 70106 1.24 0.01 18 0.77

Treatment means

N rate kg ha,1
0 2431 7.4 1.14 17.4 2.7
56 2740 7.6 1.09 21.1 3.0
112 2950 8.2 0.89 24.3 2.7
168 2970 9.6 0.87 29.0 2.6

SED 233 0.6 0.10 2.9 0.3

P rate kg ha,1
0 2755 9.2 1.00 26.0 2.8
14.5 2710 8.0 0,97 21.9 2.5
29 2853 7.5 1.02 21.0 2.9

SED 202 0.5 0.09 2.5 0.3
CV,% 18 15 22 27 25

t, *, -, --significant at the 0.10, 0.05, 0.01, and 0.001 probability levels, respectively.
SED- standard error of the difference for two equally replicated means.
CV- coefficient of variation.
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Table 9. Analysis of variance, single-degree-of-freedom-contrasts, and treatment means for dry
matter, N concentration, P concentration, total N uptake, and total P uptake, Perkins, OK,
Feekes growth Stage 4, 1998-99 crop year.

Source of Variation df Feekes 4
Dry Matter N P N uptake P uptake

Mgha" gkg" gkg" kg ha-' kgha-'
mean squares--------·---

Rep 2 62328 2.7 0.14 72 0.11
N rate 3 1164003* 89.5- 0.19 1426- 3.48
Prate 2 775589 2.1 0.73- 546 5.78t
N rate * Prate 6 204320 3.5 0.12 160 0.96
MSE 22 359520 4.9 0.10 285 1.99

Contrast
N rate linear 1 2499386* 261.5*** 0.51* 3683- 5.74
N rate quadratic 1 133736 1.1 0.02 59 1.14
P rate linear 1 1547876* 4.0 1.38- 1090t 11.52*
P rate quadratic 1 3302 0.2 0.08 1 0.04

Treatment means

N rate kg ha·1

0 677 24.1 2.04 16.2 1.39
56 758 27.5 2.03 20.9 1.54
112 1409 28.9 1.84 40.3 2.74
168 1246 31.7 1.74 39.9 2.17

SED 283 1.0 0.15 8.0 0.66

P rate kg ha"
0 762 28.5 1.64 22.4 1.29
14.5 1036 27.9 1.98 29.6 1.91
29 1269 27.7 2.12 35.9 2.68

SED 245 0.9 0.13 6.9 0.57
CV,% 59 8 16 58 71

t. *, -, ***-significant at the 0.10, 0.05, 0.01, and 0.001 probability levels, respectively.
SED- standard error of the difference for two equally replicated means.
CV- coefficient of variation.
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Table 10. Analysis of variance, single-degree-of-freedom-contrasts, and treatment means for dry
matter, N concentration, P concentration, total N uptake, and total P uptake, Perkins, OK,
Feekes growth Stage 5, 1998-99 crop year.

Source of Variation df Feekes 5
Dry Matter N P N uptake P uptake

Mgha· f gkg,f gkg,f kg ha'1 kg ha'f
--------mean squares--------------

Rep 2 566600 31.9-* 0.05 427 1.87
N rate 3 2093654- 129.4- 0.43* 2094* 5.15
Prate 2 3051929- 2.1 1.08- 1282 22.51-
N rate * Prate 6 451873 7.5 0.12 253 2.17
MSE 22 405308 5.7 0.10 530 2.93

Contrast
N rate linear 1 6220399- 380.2- 1.27- 6195- 13.55*
N rate quadratic 1 45518 0.4 0.00 55 1.53
P rate linear 1 5885848- 1.9 2.06- 2473* 43.91-
P rate quadratic 1 218009 2.1 0.10 91 1.11

Treatment means

N rate kg ha-1

0 846 20.4 2.27 17.2 1.93
56 1253 24.4 2.09 29.7 2.71
112 1679 26.2 1.98 43.9 3.53
168 1944 29.4 . 1.75 51.5 3.48

SED 300 1.0 0.15 10.8 0.81

P rate kg ha-1

0 990 25.7 1.69 26.6 1.68
14.5 1321 24.9 2.10 33.3 2.66
29 1981 24.4 2.28 46.9 4.39

SED 260 0.9 0.13 9.4 0.70
CV,% 44 9 16 65 59

to *, **, --significant at the 0.10, 0.05, 0.01, and 0.001 probability levels, respectively.
SED- standard error of the difference for two equally replicated means.
CV- coefficient of variation.
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Table 11. Analysis of variance, single-<1egree-of-freedom-contrasts, and treatment means for dry
matter, N concentration, P concentration, total N uptake, and total P uptake, Pert.ins, OK,
Feekes growth Stage 8, 1998-99 crop year.

Source of Variation df Feekes 8
Dry Matter N P N uptake P uptake

Mgha· f gkg· f gkg,1 kg he,f kg ha,1

mean squares --------_.-
Rep 2 2467644 1.3 0.16 780 9.69
N rate 3 18548471 *** 88.8- 0.71- 13362- 43.77-
Prate 2 14383546*** 8.7 0.48* 5367- 87.66-
N rate * Prate 6 2940670t 3.3 0.12 1754t 10.40
MSE 22 1327469 3.7 0.12 786 6.57

Contrast
N rate linear 1 53104319- 262.2- 1.81- 38805- 124.91-
N rate quadratic 1 41141 2.4 0.17 752 0.35
P rate linear 1 26784388- 12.3t 0.89* 9177** 167.11***
P rate quadratic 1 1982704 5.1 0.07 1558 8.21

Treatment means

N rate kg ha,1
0 1666 15.0 2.48 24.3 4.00
56 3156 16.5 2.02 51.3 6.60
112 3535 19.5 2.00 70.4 7.17
168 5160 22.1 . 1.82 115.6 9.37

SED 543 0.9 0.16 13.2 1.2

P rate kg ha"
0 2489 19.3 1.86 50.5 4.48
14.5 3047 17.8 2.14 56.1 6.11
29 4602 17.8 2.24 89.6 9.76

SED 470 0.8 0.14 11.4 1.05
CV,% 34 10 16 43 38

t, *, **, --significant at the 0.10, 0.05, 0.01, and 0.001 probability levels, respectively.
SED- standard error of the difference for two equally replicated means.
CV- coefficient of variation.
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Table 12. Analysis of variance, singlfHjegree-of-freedom-contrasts, and treatment means for dry
matter, N concentration, P concentration, total N uptake, and total P uptake, Perkins, OK,
Feekes growth Stage 11.1, 1998-99 crop year.

Source of Variation df Feekes 11.1
Dry Matter N P N uptake P uptake

Mgha-f gkg· f gkg" kgha-1 kgha- f

-mean squares---------------

Rep 2 33746535- 0.4 0.06 2727 23.29
N rate 3 55559511 .... 14.4- 0.72.... 8063- 22.16"
Prate 2 22630852" 5.1 0.16" 795 25.68"
N rate .. Prate 6 4126205 1.8 0.07 334 2.72
MSE 22 4865741 2.5 0.04 602 6.38

Contrast
N rate linear 1 161334721 ..•• 31.1·· 1.55.... 23649- 65.26-
N rate quadratic 1 2641708 11.8· 0.43- 358 1.19
P rate linear 1 38236077· 10.3t 0.18t 1060 49.71·
P rate quadratic 1 7025626 0.0 0.13t 530 1.64

Treatment means

N rate kg ha-1

0 3034 8.0 1.52 23 4.32
56 5960 7.5 0.99 43 5.84
112 7118 8.6 0.99 60 7.12
168 8960 10.4 . 0.90 93 7.91

SED 1040 0.7 0.10 12 1.19

P rate kg ha·1

a 5318 9.3 0.97 51 5.01
14.5 5643 8.6 1.18 50 6.00
29 7842 8.0 1.14 64 7.89

SED 900 0.6 0.08 10 1.03
CV,% 35 18 19 45 40

t. *, -, ....-significant at the 0.10, 0.05, 0.01, and 0.001 probability levels, respectively.
SED- standard error of the difference for two equally replicated means.
CV- coefficient of variation.
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Table 13. WlMlIengths., correlation coefficient:B end significance of indepelldent specnI readings with tissue P concentration,
forage P uptake, and grain yields, from spectral data coIIeded at Feekes growth 5, Perkins, OK 1997-98.

Reading Crop property
Conditions

P tissue concentration Forage P uptake Grain Yield

Daytime W335 W940 W435 W440 W445 W705 W701 W696
No diode 0.36 0.28 -0.52 -0.52 -0.52 -0.50 -0.50 -0.50

0.035 0.099 0.001 0.001 0.001 0.002 0.002 0.002

Daytime W429 W388 W440 W429 W424 W445 W382 W388 W393
diode -0.37 -0.37 -a.36 -0.55 -a.55 -a.55 -0.62 -0.60 -0.60

0.029 0.031 0.035 0.001 0.001 0.001 0.001 0.001 0.001

Box W738 W742 W893 wros W536 W615 W571 W576 W536
-a.44 -a.43 -a.43 -a.35 -a.34 -a.33 -a.57 -a.56 -0.56
0.008 0.010 0.010 0.038 0.047 0.049 0.001 0.001 0.001

UVlighl W761 W806 W756
nighl 0.29 0.29 0.28

0.084 0.086 0.097

UVlIghl Wl001 W993 W728 W429' W440 W435 W345 W361 W356
day -0.47 -a.47 -a.46 -a.57 -0.57 -0.57 -0.67 -0.62 -0.62

0.005 0.005 0.006 0.001 0.001 0.001 0.001 0.001 0.001

Indices

Daytime W705Jj06 W806_414 W715_506 W705_506 W715_506 WB06_414 W797_733 W733_715 NDVI
No diode 0.36 0.31 0.30 0.60 0.56 0.56 0.54 0.50 0.50

0.035 0.070 0.082 0.001 0.001 0.001 0.001 0.002 0.002

Daytime W696_403 Wl05_506 WB06_414 W705_506 W715_506 Wa06_414 W705_536 W705_546 W705_526
Diode 0.49 0.42 0.40 0.59 0.55 0.54 -a.58 -a.58 -a.57

0.003 0.012 0.020 0.001 0.001 0.001 0.001 0.001 0.001

Box NIRGI GR W696_403 Wl97_733 W696_403 W715_506 W797_733 PNSI GR
-a.38 -0.37 -a.32 0.45 -a.42 -a.33 0.56 -a.55 -a.53
0.026 0.027 0.063 0.006 0.011 0.054 0.001 0.001 0.001

UVlighl W733_546 W724_546 W733_536 W733_536 W733_715 W724_536
night -a.37 -a37 -a.35 -0.40 -a.39 -a.38

0.028 0028 0.042 0.014 0.018 0.023

UVlIght Wl05_506 NIRGI PRI Wl05J/J6 W715_506 W806_414 GR W733J15 W705_536
day 0.46 -0.43 0.40 0.62 0.58 0.57 -0.59 0.56 -a.56

0.006 0.011 0.020 0.001 0.001 0.001 0.001 0.001 0.001

W - wavelength in nm used either alone or with other combinations of spectral data.
No diode - the fiber optic cable that was used did not have the diode on the end, thus the field of view was reduced to r.
Lucile lens - the fiber optic cable was fitted with a Lucile lens that increased its field of view.
Box - this reading was taken using 8 box to cover the reading area during the day 80 as to provide II dar!< reading.
GR, NDVI, NIRGI, NPCI, NPCll, NPCI2, NR, PFR, PFR2, PNSI, PRI, PRll, PRI2, WBI, WBll, WBI2 - see Table 3.
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Table 14. Wavelengths, correlation coeffJClents and significance of Independent spectral readings with tissue P concentration,
forage P uptake, and grain yields, from spectral datacollec:ted at Feebe growth sbIge 7, PerI<ln8, OK 1997-98.

Reeding Crop Property
Conditions

P tissue concentration Forage P uptake GrainYleld

Daytime IN792 IN765 W783 W366 W361 W1005
Diode -0.39 -0.38 -0.38 -0.65 -0.65 -0.64

0.020 0.021 0.022 0.001 0.001 0.001

Box W629 W581 W531
-0.60 -0.60 -0.60
0.001 0.001 0.001

UV light IN747 IN751 W756
Night 0.52 0.50 0.50

0.001 0.002 0.002

Indices

Daytime WBI2 WBI WBI1 W696_403 W806_414 W783_506 NR
Diode 0.37 0.36 0.35 0.33 0.62 0.58 0.58

0.028 0.031 0.037 0.050 0.001 0.001 0.001

Box WBI2 GR NPCI1 NPCI
-0.29 -0.57 0.44 0.42
0.087 0.001 0.007 0.010

UV light IN7r:x5JJf)6 WBI1 W724J15 W797_733 NPCI2 W733_516
Night 0.32 0.47 -0.33 0.51 0.43 -0.42

0.r:x56 0.004 0.047 0.002 0.008 0.012

W - wavelength in nrn used either alone or with other combinations of apectraI data.
lucne lens· the fiber optic cable was fitted with a lucile lens that increased its field of view.
Box - this reading was taken using a box to cover the reading area dUring the day so as to provide a dark reading.
GR, NOVI, NIRGI, NPCI, NPCI1, NPCJ2, NR, PFR, PFR2, PNSI, PRI, PRI1, PRI2, WBI, WBI1, WBI2 - see Table 3.
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Table 15. Wavelengths, correllltion coefficients 1M significance of independent apec:tral readings with t.Isaue P c:oncentratlon,
forIlge P uptake, and grain yields, from apechI d8tII coIIec:ted. F • growth 10.5, P n ,OK 1997-98.

Reading Crop property
Conditions

P tissue concentra.tlon Forage P uptake Gran YIeld

Daytime W335 W382 W3n W403 W393 W398
Diode 0.35 0.33 0.33 .0.63 .0.62 .0.62

0.035 0.046 0.048 0.001 0.001 0.001

UVlight W910 W521 W3n W742 W765 W733
Night .0.43 .0.42 .0.42 0.69 0.69 0.68

0.009 0.010 0.011 0.001 0.001 0.001

Indices

Daytime PRI W715_536 W705_526 W705_546 W705_536
Diode .0.31 .0.28 .0.69 .0.69 .0.68

0.066 0.099 0.001 0.001 0.001

UVlight NPCI2 W724_526 W733_526 W724_516 NIRGI W797_733 GR
Night .0.28 0.48 0.40 0.38 0.59 0.52 0.46

0.094 0.003 0.016 0.024 0.001 0.001 0.005

W - wavelength in nm used either alone or with other combinations of spectral data.
Lucile lens - the fiber optic cable was fitted with a Lucile lens that increased its field of view.
GR, NDVl, NIRGI, NPCI, NPCI1. NPCI2, NR, PFR, PFR2. PNSI. PRI, PRI1, PRI2, WBI, WBI1, WBI2 - see Table 3.
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Table 16. Wavelengths, correlation coefficlents and significance of independent spectnli reed h tissue P concentnIt.lon,
forage P uptake, and grain yields, from spectral data collected at Feel< growth 4, Perkins, OK 1~99.

Reading Crop property
Conditions

P tissue concentration Forage P uptake Grain Yield

Daytime W729 W725 W345 W429 W434 W413 W725 W720 W729
Diode -0.36 -0..34 0.33 -0.61 -0.60 -0.60 -0.48 -0.46 -0.46

0.029 0.044 0.051 0.001 0.001 0.001 0.003 0.005 0.005

UV light W748 W758 W753
Night 0.39 0.36 0.38

0.018 0.021 0.024

Grow lightW725 W715 W6n W691 W643 W720 W711 W715
Night -0.30 -0.29 -0.58 -0.57 -0.57 -0.39 -0.37 -0.36

0.075 0.091 0.001 0.001 0.001 0.018 0.026 0.032

Indices

Daytime NIRGI W804_413 PFR W706JJ05 NIRGI W695_403 GR
Diode -0.40 0.69 0.68 0.67 -0.46 -0.37 -0.34

0.015 0.001 0.001 0.001 0.005 0.025 0.045

UV light W715_545 W725_545 W403_634 W795_734 W403_634 PFR2 W725_505 W795J34 W725J15
Night -0.33 -0.31 0.30 0.32 0.32 -0.31 -0.45 0.44 -0.43

0.052 0.064 0.072 0.056 0.058 0.066 0.006 0.007 0.009

Growlight PRI2 W795J34 NR PFR PRI1 GR W795_734
Night 0.29 0.67 0.67 0.64 -0.38 -0.28 0.28

0.088 0.001 0.001 0.001 0.067 0.096 0.098

W - wavelength in nm used either alone or with other combinations of spectral data.
Lucite lens - the fiber optic cable was fitted with a Lucite lens that increased its field of view.
Growlight - white light that has enhanced output in the spectral region for plant photosynthesis.
GR, NDVI, NIRGI, NPCI, NPCI1, NPCI2, NR,. PFR, PFR2, PNSI, PRI, PRI1, PRI2, WBI, WBI1, WBI2 - see Table 3.
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Table 17. Wavelengths, correlation coerticients and 'ranee of Independent spectral reed with P concentrlItion,
forage P uptake, and gl1lln yields, from spectral data collected at F..... growth 5,P ,OK 1998-99.

Reading Crop property
Conditions

p tissue concentration Forage P uptake Grain YleId

Daytime W459 W469 W464 W691 W696 W687
Diode ~.87 ~.86 ~.86 ~.86 ~.66 ~.66

0.001 0.001 0.001 0.001 0.001 0.001

UV light W753 WT48 WT44 WT48 W753 WT44
Night 0.53 0.53 0.50 0.54 0.54 0.52

0.001 0.001 0.002 0.001 0.001 0.001

Grow lightW711 WT44 WT67 WT48 W677 W696 W663
Night 0.28 0.84 0.84 0.83 ~.62 ~.62 ~.62

0.08 0.001 0.001 0.001 0.001 0.001 0.001

Indices

Daytime W7oo_50S PRI W706_515 W715_505 W725JIJ5 W804_413 WToo_525 W706_535 W705_545
Diode 0.49 0.47 0.44 0.92 0.91 0.90 ~.75 ~.74 ~.74

0.003 0.004 0.009 0.001 0.001 0.001 0.001 0.001 0.001

UVlight W403_634 W695_403 W715_515 PRI1 W795_734 PRI1 PRJ
Night 0.44 ~.43 0.32 0.29 0.37 0.35 0.34

0.006 0.009 0.00 0.09 0.02 0.03 0.04

Grow lightW715_535 W715_545 W734_715 WBI WBI21 W725J15 NOVI W734_715
Night ~.30 ~.28 0.82 0.80 0.79 0.70 0.68 0.68

0.07 0.09 0.001 0.001 0.001 0.001 0.001 0.001

W - wavelength in nm used either alone or with other combinations of spectral data.
Lucite lens - the fiber optic cable was rrtted with a Lucite lens that Increased its rteld of view.
Growllght - white nght that has enhanced output In the spectral region for plant ~osynthesis.
GR, NOVI, NIRGI, NPCI, NPCI1, NPCI2, NR, PFR, PFR2, PNSI, PRI, PRI1, PRI2, WBI, WBJ1, WBI2 - see Table 3.
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Table 18. Wavelengths, correlation coeffICients and significance of~ spectral readlnga with r P concentration,
forage P uptake, and grain yields, from spectral de.ta collected at Feek. growth sbI!ge 8, Per1d"s, OK 1998-99.

Reading Orop property
Conditions

P tissue concentration Forage P u.ptake G n YIeld

Daytime W535 W540 W530 W418 W396 W406 W392 W387 W396
Diode 0.52 0.51 0.51 -0.79 -0.79 -0.79 -o.~ -0.67 -0.67

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

UV light W729 W361 W153 W148 W744 W158 W748 W739
Night 0.40 0.37 0.86 0,.86 0.84 0.71 0.71 0.70

0.Q1 0.03 0.001 0.001 0.001 0.001 0.001 0.001

Grow IlghtW495 W580 W590 W6n W672 W687 W687 W~2 W682
Night 0.49 0.49 0.48 -0.83 -0.83 -0.83 -0.71 0.71 0.71

0.003 0.003 0.003 0.001 0.001 0.001 0.001 0.001 0.001

Indices

Daytime GR NIRGI W115_545 W725_715 NDVI PFR2 W706_545 W7Qi6_535 NOVI
Diode 0.51 0.51 -0.45 0.88 0.87 0.87 -0.72 -0.70 -0.69

0.001 0.001 0.006 0.001 0.001 0.001 0.001 0.001 0.001

UV light W715_535 W795J34 NR NOVI W795J34 W795_734 NR NDVI
Night 0.37 -0.33 0.65 0.63 0.62 0.48 0.45 0.44

0.03 0.05 0.001 0.009 0.019 0.004 0.006 0.007

Grow light GR PRI1 W195_734 PFR2 PFR W734_653 W725_515 NOVI W734J15
Night 0.44 0.37 -0.37 0.91 0.91 0.90 0.71 0.71 0.69

0,006 0.03 0.03 0.001 0.001 0.001 0.001 0.001 0.001

W - wavelength In nm used either alone or with other combinations of spectral data.
Lucite lens - the fiber optic cable was frtted with a Lucite lens that, increased Its field of view.
Growtlght - white light that has enhanced output In the spectral region for plant photosynthesis.
GR, NOVI, NIRGI, NPCI, NPCI1, NPCI2. NR, PFR, PFR2, PNSI, PRI, PRI1, PRI2, WBI. WBI1, WBI2 - see Table 3.
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Table 19. Wavelengths, correlation coefflClents and significance of ¥ldepenclent spectral readings with tlaaue Pconcentratlon,
forage P uptake, and' grain yields, from spectral data collected at Feekea grCM/th stage 11.1, Per1dns, OK 1998-99.

Reeding Crop Properly
Conditions

P tissue con.centration Forage P uptake Grain Yield

Daytime W444 W413 W449 W398 W403 W408 W408 W403 W418
Diode 0.64 0.65 0.65 ~.78 ~.78 ~.78 0.69 0.69 0.69

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

UV light W748 W795 W734 W753 W744 W748 W744 W753 W758
Night -0.43 -0.41 -0.40 0.82 0.82 0.81 0.67 0.66 0.85

0.009 0.01 0.06 0.001 0.001 0.001 0.001 0.001 0.001

Grow lightW1017 W1013 W31515 W535 W525 W540 W530 W545 W550
Night -Q49 ~.48 -0.48 0.84 0.84 0.84 0.83 0.83 0.82

0.002 0.003 0.003 0.001 0.001 0.001 0.001 0.001 0.001

Indices

Daytime GR NIRGI PRll W706_545 PRI W706_535 PRI1 NOVI W725J15
Diode 0.64 0.61 0.50 -0.84 -0.84 ~.83 ~.71 -0.67 0.65

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

UV light PFR2 W734_653 W695_403 NIRGI GR W795J34 W795J34 NIRGI GR
Night 0.38 0.37 -0.38 0.84 0.50 0.49 0.53 0.47 0.33

0.02 0.02 0.03 0.001 0.001 0.002 0.001 0.004 0.05

GraN lightW706_535 NOVI W734J15 GR NIRGI WBI GR NIRGI WBI1
Night 0.55 -0.54 ~.51 0.84 0.82 -0.80 0.82 0.76 -0.75

0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001

W - wavelength in nm used either alone or with other combinations of spectral datil.
Lucile lens - the fiber optic cable was fitted with a Lucile lens that increased its field of view.
Grow1ight - white light that has enhanced output in the spectral region for plant photosynthesis.
GR, NOVI, NIRGI, NPCI, NPCI1, NPCI2. NR, PFR. PFR2, PNSI, PRI, PRI1, PRI2, WBI, WBI1, WBI2 - see Table 3.
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Figure 1. Feekes growth stages for cereals.
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Figure 2. Setup for pot study: UV lamp,. fiber optic cable, wheat pot. and holder.

uv Iilti
~

Spectrometer
lens

41



Figure 3. Tripod with computer and spectrometer, ready for daytime readings.
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APPENDIX h 0

Figure 1. Daytime correlation with P tissue concentration over stages of growth
for 1998.
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Figure 2. Daytime correlation with P tissue concentration over stages of growth
for 1999.
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Figure 3. Daytime correlation with forage P uptake over stages of growth for
1998.
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Figure 4. Daytime correlation with forage P uptake over stages of growth for
1998.
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Figure 5. Daytime correlation with Yield over stages of growth for 1998.
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Figure 6. Daytime correlation with Yield over stages of growth for 1999.
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Figure 7. UV correlation with P tissue concentration over stages of growth for
1998.
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Figure 8. UV correlation with P tissue concentration 'over stages of growth for
1999.
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Figure 9. UV correlati.on with forage P uptake over stages of gfiowth for 1998.
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Figure 10. UV correlation with forage P uptake over stages of growth for 1999.
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Figure 11. UV correlation wi,th Yield over stages of growth for 1998.
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Figure 12. UV correlation with yield over stages of growth for 1998.
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Figure 13. Daytime reading, the irradiance of the sun 1998.
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Figure 14. UV nighttime reading, the irradiance of the UV illumination source
1998.
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Figure 15. UV box reading, 1998.
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Figure 16. Growlight sample of the spectra for 1999:
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