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ABSTRACT 

 The concentration of mercury in the biosphere has increased, primarily due to 

anthropogenic activities like the burning of coal, and now constitutes one of the most 

important environmental problems facing the planet.  Mercury is toxic and has negative 

effects on the neurological, cardiovascular, and reproductive systems of both humans 

and wildlife, particularly during development. Humans and wildlife are exposed to 

mercury primarily by consuming mercury-contaminated fish.  Although mercury is 

ubiquitous in fish tissue, there is a tremendous amount of variation in the concentration 

of mercury between fish, with some individuals having concentrations high enough that 

they could suffer negative health effects or pose a risk to organisms that consume them.  

Determining which factors regulate the level of mercury contamination in fish is critical 

to understanding which organisms and ecosystems are at risk.  

 Previous research on mercury contamination in fish focused on factors 

responsible for between-lake variation, and identified pH, dissolved organic carbon, and 

connections to wetlands as important predictors of mercury in fish.  Within-lakes, fish 

also exhibit variability in mercury concentration but within-lake differences have 

received limited attention.  Further, mercury contamination in fish from the southeastern 

United States has received less attention than in other regions, despite high levels of 

mercury emissions from coal-burning power plants and high rates of mercury deposition.  

In this dissertation I used Caddo Lake, a shallow reservoir on the border of northern 

Texas and Louisiana as a model system to study factors related to within-lake variation 

in the mercury concentrations of fish. 
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 Chapter one is a survey of mercury contamination in largemouth bass 

(Micropterus salmoides) from Caddo Lake.  We found that largemouth bass collected 

from forested wetland habitats had higher concentrations of mercury relative to 

largemouth bass collected from open water habitats.  Habitat-specific differences in 

largemouth bass size, age, growth rate, trophic position (based on δ15N), and horizontal 

food web position (based on δ13C), characteristics known to influence mercury 

accumulation, did not explain the observed differences in mercury contamination.  

Rather, differences in mercury concentrations in a primary consumer, grass shrimp 

(Palaemonetes kadiakensis) across the two habitat types indicated that food webs in 

forested wetland habitats may be more contaminated with mercury.  Spatial variation in 

mercury contamination within lakes and elevated mercury levels in forested wetlands 

should be of special concern, not only to researchers, but to public and environmental 

health officials dealing with mercury contamination in aquatic environments and human 

health risks associated with consumption of mercury-laden fish.  

 In Chapter two, we present the results of a survey of mercury contamination in 

ten species of fish from Caddo Lake.  We also examined how size, age, and food web 

position (estimated using δ13C and δ15N) were related to mercury concentrations in fish.  

Concentrations of mercury in the Caddo Lake fish assemblage were high enough to pose 

a threat to human and wildlife health.  Similar to Chapter 1, we found that mercury 

concentrations in fish were elevated in forested wetland habitats relative to open water 

habitats most likely because there is more mercury entering the base of the food web in 

wetland habitats relative to open water habitats.  Trophic position was the best predictor 

of mercury concentrations between species and the biomagnification coefficient (the 
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slope of the relationship between trophic position and mercury) was similar to that found 

in other studies.  Age and size were the best predictors of mercury concentration within 

species.  In contrast to previous studies, we did not find a relationship between 

horizontal food web position and mercury in Caddo Lake fish.  This study indicates that 

there are similarities and differences in the processes governing mercury accumulation in 

fish that inhabit shallow lakes and reservoirs (common in subtropical regions) relative to 

large lakes (often found in cold temperate and arctic regions) where most previous 

studies were conducted. 

 Chapter three describes a survey of mercury contamination in three species of 

planktivorous fish, brook silverside (Labidesthes sicculus), threadfin shad (Dorosoma 

petenense) and gizzard shad (Dorosoma cepedianum), from Caddo Lake, Texas in which 

we identified species-specific differences in mercury contamination. We also examined 

trophic position (determined using δ15N), growth rate, and horizontal food web position 

(determined using δ13C) of planktivorous fish as factors that could have led to species-

specific differences in mercury contamination.  Mean trophic position differed by less 

than one trophic level between planktivorous fish species but this difference was likely 

responsible for species-specific differences in mercury concentration.  We observed 

biomagnification between the species and the biomagnification coefficient (the slope of 

the relationship between trophic position and mercury) was similar to a previous study 

that examined the biomagnification in the Caddo Lake fish assemblage.  Species-specific 

differences in growth rate and horizontal food web position could not explain differences 

in mercury concentrations between planktivorous fish.  This implies that trophic position 

is one of the most important predictors of interspecific mercury concentration in fish, 
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even among species within a trophic guild that only exhibit fine scale differences in 

trophic position. 

 Chapters 1-3 demonstrated the utility of stable isotope analyses (SIA) for 

interpreting patterns of mercury contamination in fish.  However, fish tissues have 

historically been prepared for mercury analysis and SIA using different techniques. 

United States Environmental Protection Agency protocols for analyzing total mercury 

concentration in fish tissue recommend using wet tissues, but SIA requires that tissues 

be dried.  In Chapter four we compared total mercury concentration from wet and dry 

tissues, using 30 individual fish representing 11 freshwater and estuarine species.  After 

correcting for water content, estimates of mercury concentrations from dry tissue were 

not significantly different from estimates of mercury concentrations from wet tissue.  

Variation in estimates of mercury concentration from wet and dry tissues was random 

and was not related to the level of contamination of the tissue.  Our data indicate that 

dried fish tissues are suitable for estimating mercury concentration, and give results 

equivalent to those of wet tissues. 
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Abstract 

We conducted a survey of mercury contamination in largemouth bass (Micropterus 

salmoides) from Caddo Lake, Texas, and found that largemouth bass collected from 

forested wetland habitats had higher concentrations of mercury relative to largemouth 

bass collected from open water habitats.  Habitat-specific differences in largemouth bass 

size, age, growth rate, trophic position (based on δ15N), and horizontal food web position 

(based on δ13C), characteristics known to influence mercury accumulation, did not 

explain the observed differences in mercury contamination.  Rather, differences in 

mercury concentrations in a primary consumer, grass shrimp (Palaemonetes 

kadiakensis) across the two habitat types indicated that food webs in forested wetland 

habitats may be more contaminated with mercury.  Spatial variation in mercury 

contamination within lakes and elevated mercury levels in forested wetlands should be 

of special concern, not only to researchers, but to public and environmental health 

officials dealing with mercury contamination in aquatic environments and human health 

risks associated with consumption of mercury-laden fish.  
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Introduction 

 Since the industrial revolution (ca. 1850), mercury deposition rates have 

increased by a factor of three to four (Swain et al. 1992), with some regions experiencing 

11 fold increases in mercury deposition (Schuster et al. 2002).  The largest 

anthropogenic source of environmental mercury is emissions from coal-burning power 

plants (Pacyna and Pacyna 2002).  Power plants release inorganic mercury into the 

atmosphere where it resides until being deposited onto the earth’s surface (Morel et al. 

1998; Pacyna and Pacyna 2002).  In aquatic ecosystems, bacteria convert inorganic 

mercury to highly toxic methylmercury (Morel et al. 1998; Ullrich et al. 2001).  

Organisms at the base of the food web such as phytoplankton and periphyton absorb 

methylmercury directly from the water (Miles et al. 2001), while consumers, including 

fish, are primarily exposed to methylmercury through their diet (Hall et al. 1997; Tsui 

and Wang 2004).  Methylmercury bioaccumulates in aquatic organisms (Wiener et al. 

2003) and most of the mercury found in fish is in the form of methylmercury (Bloom 

1992).   

 The primary source of methylmercury in humans is consumption of mercury-

contaminated fish (NRC 2000) and methylmercury is detrimental to human health.  Even 

low doses of methylmercury can damage the nervous and cardiovascular systems of 

humans (NRC 2000; Clarkson 2002).  Fetuses are particularly sensitive to 

methylmercury consumed by pregnant women, and prenatal exposure to low levels of 

methylmercury can cause developmental and cognitive problems (NRC 2000; Clarkson 

2002).  To better understand these human health-related issues, we must first understand 

the ecological factors that regulate mercury accumulation in fish.  
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 Fish that live in ecosystems with high methylmercury availability (i.e., high net 

methylmercury production or bioavailability) have elevated concentrations of mercury 

because more mercury is available for incorporation into the food web (Wiener et al. 

2003).  However, many biological characteristics of fish can also strongly influence 

mercury accumulation.  For example, mercury concentrations in fish are positively 

correlated with fish size, age, and trophic position (i.e., the vertical trophic level at which 

fish feed) (Johnels et al. 1967; Cabana and Rasmussen 1994; McClain in press) and 

negatively correlated with fish growth rate (Rodgers 1996; Stafford and Haines 2001; 

Simoneau et al. 2005).  Because pelagic food webs (i.e., those based on phytoplankton 

production) are more contaminated with mercury than littoral/benthic food webs (i.e., 

those based on periphyton production) (Lindqvist et al. 1991; Power et al. 2002; Gorski 

et al. 2003; Kidd et al. 2003) horizontal food web position (sensu Leibold et al. 1997) 

also influences mercury concentrations in fish.   

 Within lakes, mercury concentrations in fish can exhibit spatial variation (Munn 

and Short 1997; Cizdziel et al. 2002; Campbell et al. 2003a; Burger et al. 2004; Stafford 

et al. 2004; Simoneau et al. 2005), presumably due to heterogeneity in methylmercury 

availability (Munn and Short 1997; Cizdziel et al. 2002; Campbell et al. 2003a; Stafford 

et al. 2004).  However most of these studies were not able to rule out habitat -specific 

differences in fish size, age, growth rate, trophic position, and horizontal food web 

position, factors that could confound conclusions of heterogeneity in methylmercury 

availability (but see Campbell et al. 2003a,b). 

 We conducted a survey of mercury contamination in largemouth bass 

(Micropterus salmoides) from Caddo Lake, a lake located on the border of Texas and 
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Louisiana.  Largemouth bass collected from forested wetland habitats (sensu Cowardin 

et al. 1979) characterized by the presence of bald cypress (Taxodium distichum), shallow 

depths (approximately 1 m), and abundant aquatic vegetation had higher concentrations 

of mercury than largemouth bass collected from open water habitats.  Here we present 

these results and our investigation of some of the mechanisms that may explain the 

observed patterns of habitat-specific mercury contamination in Caddo Lake largemouth 

bass.  Habitat-specific differences in mercury contamination of largemouth bass would 

be expected if biological characteristics of largemouth bass that influence mercury 

accumulation or methylmercury availability differed between the two habitats. To 

distinguish between these alternatives we compared largemouth bass size, age, growth 

rate, trophic position (determined using δ15N), and horizontal food web position 

(determined using δ13C) between the two habitat types.  We also examined mercury 

concentrations in grass shrimp (Palaemonetes kadiakensis) to determine if there were 

habitat-specific differences in the mercury concentrations of organisms near the base of 

the food web, indicative of differences in methylmercury availability (Lindqvist et al. 

1991).   

 

Methods 

Study site 

Caddo Lake, located on the border of northern Texas and Louisiana (Figure 1), is 

approximately 107 km2 in surface area (Van Kley and Hine 1998), with average and 

maximum depths of 1.4 m and 8.2 m, respectively (Ensminger 1999).  The western 

portion of the lake (approx. 40 km2, and mostly in Texas) is composed primarily of a 
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forested wetland (hereafter wetland) dominated by bald cypress, water elm (Planera 

aquatica), and other aquatic vegetation including fanwort (Cabomba caroliniana), 

common waterweed (Egeria densa), and yellow pond-lily (Nuphar luteum) (Van Kley 

and Hine 1998).  The eastern portion of Caddo Lake (mostly in Louisiana) is primarily 

open water habitat, though submerged vegetation can be extensive in summer months 

(M.M. Chumchal personal observation). 

 The primary anthropogenic sources of mercury in the region are coal-burning 

power plants (Crowe 1996; TDH 1999).  Caddo Lake is located within 250 km of five of 

the 20 highest mercury-emitting power plants in North America (Miller and Van Atten 

2004).  A fish consumption advisory has been issued for largemouth bass in Caddo Lake 

by the Texas Department of State Health Services (DSHS) (DSHS 1995).  The DSHS 

recommends that consumption of largemouth bass be limited to two meals per month 

(serving size = 227 and 113 g for adults and children, respectively).  The Louisiana 

Department of Environmental Quality (DEQ) monitors largemouth bass on the 

Louisiana side of Caddo Lake but they have not issued an advisory (DEQ 2005). 

 

Fish and invertebrate collection 

 We collected largemouth bass, with assistance from biologists from the Texas 

Parks and Wildlife Department (TPWD), during the early evening of 10 May 2004 and 

the morning of 12 May 2004 using a boat-mounted electrofishing unit.  Largemouth bass 

were collected from five sites in the wetland habitat (n = 44) and from four sites in the 

open water habitat (n = 47) (Figure 1).  After collection, fish were placed on ice and 
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transported to a lab where total length (TL) was measured and otoliths were dissected.  

Fish were then frozen for subsequent mercury and stable isotope analyses.    

 To provide insight into mercury concentrations near the base of the food web, we 

collected grass shrimp, a common macroinvertebrate in Caddo Lake.  Differences in the 

mercury concentrations of short–lived consumers would imply that there may be 

differences in methylmercury availability between habitats (Lindqvist et al. 1991).  

Grass shrimp were collected with a dip net from three sites in the wetland habitat (n = 

26) and three sites in the open water habitat (n = 29) on 10 May 2006.  Grass shrimp 

were placed on ice and transported to a lab where they were identified to species and 

measured (TL) under a dissecting microscope.  Grass shrimp were then frozen for 

subsequent mercury analyses.   

 

Mercury analysis 

 Largemouth bass and grass shrimp were processed separately for mercury 

concentration. Fillets of largemouth bass epaxial muscle were dissected from each fish 

and a small subsample of skinless tissue was collected from the center of each fillet 

using a scalpel and forceps and weighed to the nearest 0.1 mg.  Whole grass shrimp were 

dried at 60°C for 48 hours, homogenized with a ball-mill grinder, and weighed to the 

nearest 0.1 mg.  All lab-ware was rinsed with 50% HNO3 solution (largemouth bass) or 

95% ethanol (grass shrimp) and deionized water between samples.   

 Total mercury concentrations in fish and shrimp tissue were analyzed with a 

direct mercury analyzer (DMA-80, Milestone Inc. Monroe, CT) that uses thermal 

decomposition, gold amalgamation, and atomic absorption spectrometry (USEPA 1998) 
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and are reported as ng total mercury/gwet weight of fish or ng total mercury/gdry weight of 

shrimp tissue.  We used total mercury as a proxy for methylmercury, the predominant 

form of mercury in fish and grass shrimp (Bloom 1992; Cleckner et al. 1998).   

 For largemouth bass mercury analyses, a calibration curve was generated using 

three reference materials from the National Research Council of Canada Institute for 

National Measurement Standards: MESS-3 (marine sediment, certified value = 91 ± 9 

ng/gdry weight total mercury (average ± 95% C.I.)), PACS-2 (marine sediment, certified 

value = 3040 ± 200 ng/gdry weight total mercury) and DORM-2 (dogfish muscle, certified 

value = 4,640 ± 260 ng/gdry weight total mercury).  Quality assurance included reference 

and duplicate samples.  During largemouth bass mercury analyses, reference samples of 

MESS-3 or DORM-2 were analyzed approximately every 10 samples and the mean 

percent recovery was 100 ± 1% (range = 92–107%; n = 41) and 100 ± 2% (range = 95–

104%; n = 11), respectively.  Duplicate samples were analyzed approximately every 20 

samples and the mean relative percent difference was 3.6 ± 1.3% (range = 0.3–11.4%; n 

= 28).  During grass shrimp mercury analyses, reference samples of MESS-3 were 

analyzed approximately every 10 samples and the mean percent recovery was 98.8 ± 

0.6% (range = 98– 100%; n = 6).  Duplicate samples were analyzed approximately every 

20 samples and the mean relative percent difference was 0.2 ± 0.3% (range = 0.0 –0.4%; 

n = 3).  In order to compare grass shrimp and largemouth bass mercury concentrations, 

we converted dry weight-based values for grass shrimp to wet weight equivalents 

assuming a dry weight:wet weight ratio of 0.2 (Vernberg and Piyatiratitivorakul 1998).  

 

Largemouth bass age and growth rates 
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 We examined otolith annuli to estimate the age of a subset of largemouth bass 

(33 from wetland and 32 from open water habitats).  Otoliths were broken perpendicular 

to the longest axis through the nucleus and polished using 400 and 600-grit sandpaper 

(Buckmeier and Howells 2003).  Annuli were counted at 8-40× magnification under a 

dissecting microscope with a fiber-optic light source.  Two readers independently 

estimated the ages of fish without knowledge of fish length, and disagreements were 

resolved by reexamining otoliths and mutually agreeing on age.  Growth rates were 

determined as TL divided by age. 

 

Largemouth bass trophic position and diet 

 Stable nitrogen and carbon isotope ratios in largemouth bass and primary 

consumers (unionid clams and gastropods) were used to examine differences in 

largemouth bass trophic positions and horizontal food web position across the two 

habitat types.  Stable nitrogen isotopes are used differentially in cellular processes (Fry 

2006) resulting in a predictable increase in the heavy isotope, 15N, relative to 14N with 

each increase in vertical trophic level (Minagawa and Wada 1984).  Horizontal food web 

position can be determined using stable carbon isotopes (13C and 12C) because benthic 

and pelagic primary producers have distinct carbon isotope signatures (Hecky and 

Hesslein 1995).   

 Largemouth bass fillet subsamples and foot muscle from gastropods and unionid 

clams were dried in a 60°C oven and homogenized using a ball mill grinder (Dentsply, 

Inc, York, PA).  Sixty-one largemouth bass (31 from wetland and 30 from open water 

habitats) were analyzed at Louisiana State University (LSU) for isotopic composition 
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using a Thermoquest Finnigan Delta Plus isotope ratio mass spectrometer (IRMS).  The 

remaining largemouth bass (13 from wetland and 17 from open water habitats) and 

primary consumers were analyzed at the University of California-Davis (UC-Davis) 

stable isotope facility using a Europa Hydra 20/20 continuous flow IRMS.  Tank 

nitrogen and carbon dioxide gases calibrated with known standards were used as 

working reference materials in daily laboratory operation.  Carbon and nitrogen isotope 

results are given as: 

 

    δ13C or δ15N = (Rsample/Rstandard -1) x 1000                       (1) 

 

where R is δ13C/ δ12C for δ13C and  15N/ 14N for δ15N.  Standards for δ13C and δ15N are 

Vienna Pee Dee Belemnite (VPDB) and air N2, respectively.  Analysis of replicate 

samples of dried bovine liver (National Institute of Standards and Technology) indicated 

good agreement between the results from each lab (mean δ15N and δ13C differed by 

0.5‰ and 0.2‰, respectively).   

 To calculate trophic position, δ15N values in largemouth bass were first corrected 

for habitat-specific differences in basal δ15N using δ15N and δ13C of primary consumers 

according to the method of Vander Zanden and Rasmussen (1999).  Primary consumers 

that utilize littoral sources of carbon are less enriched in 15N than organisms that utilize 

pelagic sources of carbon (Vander Zanden and Rasmussen 1999) so we collected 

gastropods and unionid mussels as representatives of littoral and pelagic primary 

consumers, respectively (Post et al. 2000).  We assumed that largemouth bass were 

resident in the habitat in which they were collected.  Thus, 15N values of largemouth bass 
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collected from wetland and open water habitats were corrected for differences in 15N at 

the base of the food web using gastropods and unionid mussels collected from the 

corresponding habitat.  Gastropod δ15N and δ13C was 4.32 ± 0.69‰ and -29.4 ± 1.16‰, 

respectively for the wetland habitat (n= 5) and 2.23‰ and -25.8‰, respectively for the 

open water habitat (n = 1).  Unionid mussel δ15N and δ13C was 6.50 ± 0.66 ‰ and -33.5 

± 0.13‰, respectively for wetland habitat (n = 6) and 4.85 ± 0.22 ‰ and -32.4 ± 0.53‰, 

respectively for open water habitat (n = 5).  We used the corrected δ15N (δ15Ncorrected) 

values of largemouth bass to calculate trophic position (TPbass) as: 

 

                  TPbass = δ15Ncorrected /3.4 + 2                                                      (2) 

 

 We corrected δ13C of each largemouth bass (δ13Cbass) for trophic enrichment 

according to method of Fry (2006) as: 

 

   δ13Ccorrected = δ13Cbass – 0.5 x (TPbass -1)                                        (3) 

 

 Corrected δ13C values of largemouth bass were compared to δ13C of gastropods 

and unionid mussels to determine if largemouth bass were feeding predominately in 

either pelagic or littoral food webs. 

 

Statistical analyses 

 Because age and TL are correlated with mercury concentrations in fish (Wiener 

et al. 2003), we tested for habitat-specific differences in largemouth bass mercury 
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concentrations after controlling for the effects of age and TL.  Specifically, we tested for 

within-group effects (two levels of habitat) on largemouth bass mercury concentrations, 

after removing the effect of a covariate (age or TL).  Some variables were transformed to 

maximize correlation coefficients and increase linearity.  If the slopes of the 

relationships between the covariate and dependent variable were homogeneous between 

habitats (i.e., habitat x covariate = P  > 0.05), we removed the interaction term from the 

model and tested for main effects of habitat and the covariate using analysis of 

covariance (ANCOVA) (SPSS Inc., version 11.5.0, Chicago, IL).  If the slopes of the 

covariate were not homogenous between habitats we tested for an effect of habitat using 

the Wilcox procedure (Quinn and Keough 2002) that determines the range of the 

covariate for which the within-group means are significantly different (WILCOX, 

version 3.2, Constable 1989).   

 We also tested for habitat-specific differences in growth rate, trophic position, 

and δ13C (i.e., horizontal food web position) as additional factors that can affect mercury 

concentrations in fish.  Specifically we tested for within-group effects (two levels of 

habitat) on dependent variables (trophic position, δ13C, or TL) after removing the effect 

of a covariate (age or TL) as described above for mercury analysis.   

 We tested for habitat-specific differences in mercury concentrations of grass 

shrimp with a one-way analysis of variance (ANOVA). Statistical significance was 

determined at P ≤ 0.05.   

 

Results 
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 Largemouth bass collected from wetland habitats had 2.4 times higher mercury 

concentrations than largemouth bass collected from open water habitats (Table 1).  

Largemouth bass collected from wetland habitats were of similar size but 1.5 times older 

than the largemouth bass collected from open water habitats (Table 1). After controlling 

for the effects of TL and age, largemouth bass collected from wetland habitats still had 

significantly higher concentrations of mercury than largemouth bass collected from open 

water habitats (Table 2; Figure 2). 

 Largemouth bass collected from wetland habitats had mean growth rates that 

were 1.4 times slower than largemouth bass from open water habitats (Table 1).  

Largemouth bass collected from wetland habitats were significantly smaller than similar 

aged largemouth bass from open water habitats (Table 2; Figure 3). 

 Largemouth bass collected from wetland habitats had a slightly lower mean 

trophic position than largemouth bass collected from open water habitats (Table 1).  The 

observed habitat specific difference in trophic position was significant after controlling 

for the effect of TL (Table 2; Figure 4A).   

 Mean horizontal food web position (δ13C) in largemouth bass was similar 

between habitats (Table 1) but was dependent on largemouth bass TL (Table 1; Figure 

4B).  Small largemouth bass (< 251 mm) collected from wetland habitats had 

significantly higher δ13C values than largemouth bass from open water habitats.  

Comparison of largemouth bass δ13C values with δ13C values of primary consumers 

indicated that small largemouth bass from wetlands were feeding in food webs based on 

littoral primary production (i.e., δ13C values in largemouth bass were similar to those in 

gastropods), whereas small largemouth bass in open water habitats were feeding in food 
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webs based on pelagic primary production (i.e., δ13C values in largemouth bass were 

similar to those in unionids).  The δ13C values of medium-sized largemouth bass (251-

386 mm) were not significantly different between habitats and were intermediate 

between the δ13C values of unionid mussels and gastropods.  Large largemouth bass (> 

386 mm) collected from wetland habitats had significantly lower δ13C values than 

largemouth collected from open water habitats after controlling for the effects of TL.   

These data indicate that large largemouth bass (> 386 mm) collected from wetland 

habitats were more dependent on pelagic food webs than similar-sized largemouth bass 

collected from open water habitats, however δ13C values of largemouth bass from both 

habitats were intermediate between the δ13C values of unionid mussels and gastropods.   

 Grass shrimp from the wetland and open water habitats had a TL of 29.0 ± 0.9 

and 31.2 ± 1.5 mm, respectively.  Grass shrimp from wetland habitats had significantly 

higher concentrations of mercury than grass shrimp from open water habitats (P = 

0.004).  Grass shrimp collected from wetland habitats had a mean mercury concentration 

of 69.5 ± 6.2 ng/g dry weight corrected while grass shrimp collected from open water habitats 

had a mercury concentration of 57.4 ± 5.0 ng/gdry weight corrected. 

 

Discussion 

 In this study we made the novel observation that largemouth bass collected from 

wetland habitats were more than twice as contaminated with mercury than largemouth 

bass collected from open water habitats.  Spatial and habitat variability in the mercury 

concentrations of fish have been observed in lakes and reservoirs located in temperate 

and tropical regions (Munn and Short 1997; Cizdziel et al. 2002; Campbell et al. 2003a; 
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Burger et al. 2004; Stafford et al. 2004; Simoneau et al. 2005).  However, within lakes, 

fish of a given species, age, and size are generally assumed to have relatively 

homogeneous mercury concentrations.  The diversity of systems in which this 

phenomenon has been reported and the large habitat-specific difference in mercury 

concentration observed in this study, implies that spatial variation in mercury 

contaminations is ubiquitous and may confound efforts to assess bioaccumulation in 

fish.  Thus spatial variation in mercury concentrations of fish should be of concern to 

basic researchers and public and environmental health officials responsible for 

monitoring contaminant levels in fish.   

 In this study we were also interested in determining potential causes of habitat-

specific differences in mercury contamination of largemouth bass.  Although largemouth 

bass biological characteristics differed between the two habitats, our data suggest that 

the primary factor responsible for habitat-specific differences in largemouth bass 

mercury levels was a more contaminated food web in the wetland habitat. 

 Despite differences between habitats, largemouth bass growth rates do not appear 

to explain the pattern of mercury contamination observed in this study.  Consistent with 

the hypothesis that fish with slow growth rates have elevated concentrations of mercury 

(Rodgers 1996; Stafford and Haines 2001; Simoneau et al. 2005), largemouth bass 

collected from wetland habitats had slower growth rates and higher concentrations of 

mercury than largemouth bass collected from open water habitats.  However, scrutiny of 

our data reveals that growth rate is not a sufficient explanation for habitat-specific 

differences in mercury concentrations.  Using a series of models, Rodgers (1996) 

examined the effects of changes in dietary mercury levels and growth rate on mercury 
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concentrations in fish tissue.  Populations of fish with different levels of mercury in their 

diets exhibited size- and age-specific concentrations of mercury that were distinct from 

populations of fish with different growth rates.  Fish with high levels of mercury in their 

diets had higher size- and age-specific concentrations of mercury in their tissues than 

fish with low levels of mercury in their diet.  Fish with slow growth rates had higher 

size-specific concentrations of mercury in their tissues but lower age-specific 

concentrations of mercury in their tissues relative to fish with fast growth rates.  In this 

study, fish from wetland habitats had higher length-specific and age-specific 

concentrations of mercury in their tissues relative to fish from open water habitats.  

Therefore, differences in growth rate can not explain the habitat-specific differences in 

mercury concentration we observed.  Rather, TL- and age-specific patterns in mercury 

contamination of largemouth bass indicate that the mercury concentration of largemouth 

bass diets differed between habitats. 

 Relative to largemouth bass collected from open water habitats, largemouth bass 

collected from wetland habitats would have had diets that were elevated in mercury if 

they were feeding at a higher trophic position, relying more heavily on pelagic food 

webs, or if the entire wetland food web was more contaminated with mercury.  We were 

able to distinguish between these alternative hypotheses by comparing the trophic 

position and horizontal food web position of largemouth bass, and mercury 

concentrations of grass shrimp collected from the two habitat types.   

Variation in mercury concentration was not caused by habitat-specific 

differences in largemouth bass trophic position. Because mercury is a biomagnifying 

contaminant (Cabana and Rasmussen 1994), it would be predicted that largemouth bass 
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with higher trophic positions would also have higher mercury concentrations.  However, 

even though trophic positions were lower, the mercury concentrations of fish from 

wetland habitats were significantly higher than fish from open water habitats. Thus, we 

conclude that some other factor overrode the effect of trophic position on mercury 

concentration in largemouth bass.  

 Variation in mercury concentration was not caused by habitat-specific 

differences in horizontal food web position.  Fish feeding in food webs based 

predominantly on pelagic primary production have elevated concentrations of mercury 

(Lindqvist et al. 1991; Power et al. 2002; Gorski et al. 2003; Kidd et al. 2003).  Despite 

being dependent on food webs based on pelagic primary production, small largemouth 

bass collected from open water habitats had lower concentrations of mercury relative to 

similar-sized individuals collected from wetland habitats.  For small largemouth bass, 

the patterns exhibited by carbon isotopes were opposite of what would be expected if 

differences in reliance on pelagic primary production were driving habitat-specific 

differences in mercury concentration (Power et al. 2002).  It is worth noting, that the 

hypothesized inverse relationship between δ13C values and mercury in fish has only been 

reported in deep lakes with extensive pelagic zones (Power et al. 2002; Gorski et al. 

2003; Kidd et al. 2003).  However in shallow ecosystems, littoral zones are important 

sites of mercury methlyation (Cleckner et al. 1999).  Therefore the relationship between 

δ13C values and mercury in fish may be ecosystem specific.  Regardless of the 

relationship between δ13C values and mercury in fish, the pattern of δ13C values 

exhibited by medium and large largemouth bass indicate that some other factor was 

responsible for habitat-specific differences in mercury concentration.  Medium and large 
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largemouth bass exhibited both the greatest difference in mercury concentration and the 

most similar δ13C values.  Thus, differences in reliance on pelagic primary production 

between the two habitats were not likely responsible for the observed habitat-specific 

differences in mercury concentration in largemouth bass.  

 We suggest that the observed pattern in largemouth bass mercury concentrations 

was due to elevated mercury concentrations in the wetland food web.  Largemouth bass 

stable isotopes analyses revealed that largemouth bass diets do not differ in ways that 

can explain the observed pattern in mercury accumulation.  Thus the food web in 

wetland habitats may be inherently more contaminated with mercury than the food web 

in open water habitats.  The higher concentrations of mercury in grass shrimp collected 

from wetland habitats provide additional evidence that mercury concentrations at the 

base of the food web differed between habitats and implies that there were differences in 

methylmercury availability between habitats (Lindqvist et al. 1991).  

 All wetland types, including forested wetlands, have features that may make 

them conducive to mercury methylation (Zilloux 1994; Ullrich et al. 2001; Wiener et al. 

2003).  Relative to open water habitats, wetland habitats in Caddo Lake have low pH 

(Hartung 1983; Darville et al. 1998), low dissolved oxygen concentrations (Hartung 

1983; Darville et al. 1998), and high organic carbon concentrations in sediments (Wilson 

2003).  In contrast to open water habitats, wetland habitats in Caddo Lake have direct 

connections to seasonally flooded areas (Van Kley and Hine 1998) and sulfate 

concentrations that are optimal for mercury methylation (i.e., 0.2-0.5 mM SO4
2-) 

(Hartung 1983). 
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 In general, wetlands are sources of methylmercury to lakes and rivers (St. Louis 

et al. 1994; Hurley et al. 1995; Lee et al. 1998; Paller et al. 2004; Warner et al. 2005).  

However, the impact of methylmercury production in wetlands on mercury 

contamination in aquatic organisms has not been well studied (Wiener et al. 2003).  Fish 

from lakes and reservoirs with wetlands in their watershed have elevated concentrations 

of mercury (Greenfield et al. 2001; Warner et al. 2005) and rivers that drain wetlands 

contain invertebrates with elevated concentrations of mercury (Paller et al. 2004).  Based 

on our results we hypothesize that biota in lakes or reservoirs with connections to 

wetlands will exhibit spatial variation in mercury contamination, with organisms living 

in or near wetlands exhibiting elevated levels of mercury contamination.     

 Forested wetlands may be more at risk for containing organisms with elevated 

mercury concentrations than has been appreciated.  There are more than 210,000 km2 of 

forested wetlands in the conterminous United States and forested wetland habitats are 

becoming more common due to succession of other wetlands types and ecosystem 

restoration projects (Dahl 2006).  Because mercury contaminated fish have negative 

health effects on humans and wildlife, forested wetlands should be of special concern to 

public and environmental health officials, especially in the southern United States where 

these habitats are extensive (Conner and Buford 1998) and atmospheric deposition of 

mercury is elevated (NADP 2005). 
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Table 1.  Mean characteristics (± CI) of largemouth bass collected from forested wetland 

and open water habitats in Caddo Lake. 

 

 

 

 

 

 

 

 

 

 

   

Forested wetland habitat 

 

Open water habitat  

 

Mercury (ng/gwet weight) 

  

465 ± 113 

 

193 ± 54 

Total length (mm)  287 ± 37 260 ± 33  

Age (years)  3.9 ± 0.7 2.6 ± 0.5 

Growth rate (mm/year)  101 ± 11 138 ± 13 

Trophic position  3.9 ± 0.1 4.2 ± 0.1 

δ13C (‰)  -29.5 ± 0.4 -30.0 ± 0.3 



Table 2.  Significance values associated with analysis of covariance (ANCOVA) and Wilcox procedure.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dependent variablea 

 

Covariatea 

 

Covariate x habitat P 

 

ANCOVA 

 

Wilcox significance range  

    

Habitat P 

 

Covariate P 

 

 

Log mercury 

 

TLb 

 

0.1 

 

<0.001 

 

<0.001 

 

- 

Mercury Age 0.1 <0.001 <0.001 - 

Trophic position TLb 0.6 <0.001 <0.001 - 

δ13C Ln TLb <0.001 - - < 251 mm, > 386 mm 

TL Ln age 0.6 <0.001 <0.001 - 

a Dependent variables and covariates are characteristics of largemouth bass   

b TL, total length      
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Figure captions 
 
Figure 1.  Map of Caddo Lake.  Caddo lake is located on the border of Texas and 

Louisiana.  The western portion of the lake is a 40 km2  forested wetland with high 

densities of emergent and submerged aquatic vegetation.  The eastern portion of the lake 

is primarily open water habitat.  We collected largemouth bass (circles) and grass shrimp 

(triangles) from both forested wetland (black symbols) and open water habitats (open 

symbols).   

 

Figure 2.  Relationship between (A) largemouth bass total length and (B) largemouth 

bass age and total mercury concentration in largemouth bass epaxial muscle (ng/gwet 

weight) from forested wetland and open water habitats. 

 

Figure 3.  Relationship between largemouth bass total length and largemouth bass age 

from forested wetland and open water habitats. 

 

Figure 4.  Relationship between (A) largemouth bass trophic position and (B) 

largemouth bass δ13C and largemouth bass total length from forested wetland and open 

water habitats. 
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Figure 1. 
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Figure 2.  
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Figure 3.  
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Figure 4.  
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Abstract 

In this paper, we present the results of a survey of mercury contamination in ten species 

of fish from Caddo Lake, a reservoir located on the border of Texas and Louisiana.  We 

also examined how size, age, and food web position (estimated using δ13C and δ15N) 

were related to mercury concentrations in fish.  Concentrations of mercury in the Caddo 

Lake fish assemblage were high enough to pose a threat to human and wildlife health.  

Mercury concentrations in fish were elevated in forested wetland habitats relative to 

open water habitats most likely because there is more mercury entering the base of the 

food web in wetland habitats relative to open water habitats.  Trophic position was the 

best predictor of mercury concentrations between species and the biomagnification 

coefficient (the slope of the relationship between trophic position and mercury) was 

similar to that found in other studies.  Age and size were the best predictors of mercury 

concentration within species.  In contrast to previous studies, we did not find a 

relationship between horizontal food web position and mercury in Caddo Lake fish.  

This study indicates that there are similarities and differences in the processes governing 

mercury accumulation in fish that inhabit shallow lakes and reservoirs (common in 

subtropical regions) relative to large lakes (often found in cold temperate and arctic 

regions) where most previous studies were conducted.   
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Introduction 

 Mercury is a teratogenic neurotoxin that accumulates in food webs and has 

increased in the environment primarily due to anthropogenic activities (NRC 2000, 

Pacyna and Pacyna 2005).  Anthropogenic activities, primarily the burning of coal, 

release inorganic mercury into the atmosphere where it resides until it is deposited onto 

the earth’s surface (Jackson, 1997).  In aquatic ecosystems, bacteria convert inorganic 

mercury, the most common form in the environment, to highly toxic methylmercury 

(Morel et al. 1998, Ullrich et al. 2001).  Wetlands have been identified as mercury 

sensitive ecosystems in which this conversion of inorganic mercury to methylmercury is 

highly efficient (Wiener et al. 2003, Evers et al. 2007).  Organisms at the base of the 

food web such as phytoplankton and periphyton absorb methylmercury directly from the 

water (Miles et al. 2001), while consumers, including fish, are primarily exposed to 

methylmercury through their diet (Hall et al. 1997, Tsui and Wang 2004).   

 Because mercury contaminated fish are the primary source of mercury to humans 

and wildlife there is considerable interest in determining the factors that influence the 

amount of mercury in fish.  There is growing recognition that ecological characteristics 

of fish strongly influence the levels of mercury in their tissues (Stafford et al. 2004).  

Mercury concentrations in fish are positively correlated with fish size, age, and trophic 

position (Johnels et al. 1967, Cabana and Rasmussen 1994, McClain et al. 2006).  In 

addition, current evidence suggests that fish that feed in food webs based on 

phytoplankton primary production are more contaminated with mercury than fish that 

feed in food webs based on periphyton primary production (Power et al. 2002, Gorski et 

al. 2003, Kidd et al. 2003). Finally, fish living in areas in which mercury deposition is 
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high or in mercury sensitive ecosystems have high levels of mercury (Weiner et al. 2003, 

Hammerschmidt and Fitzgerald 2006, Evers et al. 2007).  

 Much of our knowledge concerning mercury contamination in fish has come 

from studies in north temperate ecosystems (e.g. Cabana and Rasmussen 1994, Power et 

al. 2002, but see Bowles et al. 2001).  However the subtropical, southeastern United 

States also experiences high mercury deposition rates (NADP 2005), contains coal-

burning power plants that emit large amounts of mercury into the atmosphere (Miller 

and Van Atten 2004), and has extensive wetland habitats (Conner and Buford 1998, 

Dahl 2006).  Moreover, all states in the region have issued fish consumption advisories 

due to high levels of mercury (USEPA 2005).  Despite the identification of fish with 

high levels of mercury and risk factors correlated with mercury contaminated 

ecosystems, relatively few studies have examined mercury contamination of fish in the 

southeastern United States (Cleckner et al. 1998, Burger et al. 2001, Burger et al. 2004).  

More studies are needed to better understand the risks to humans and wildlife that 

consume fish from this region.   

 In this paper, we present the results of a survey of mercury contamination in fish 

from subtropical Caddo Lake, a reservoir located on the border of Texas and Louisiana.  

Although the lake contains abundant open water habitat, extensive forested wetlands 

(sensu Cowardin et al. 1979) characterized by the presence of bald cypress (Taxodium 

distichum), shallow depths (approximately 1 m), and submerged and emergent aquatic 

vegetation characterize the western half of the lake.  A previous study indicated that 

largemouth bass (Micropterus salmoides) collected from the forested wetland habitat 

have elevated concentrations of mercury relative to largemouth bass from the open water 
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habitats and suggested that mercury availability was higher in the wetland habitats than 

in the open water habitats in the lake (Chumchal et al. in review).  The objectives of this 

study were to examine how fish size, age, and food web position (measured using δ15N 

and δ13C) are related to mercury concentrations in ten species of fish and to determine if 

habitat-specific variation in mercury occurs in the fish assemblage. 

      

Methods 

Study site 

 Caddo Lake is a large (107 km2 in surface area), shallow (average and maximum 

depths of 1.4 m and 8.2 m, respectively) reservoir (Van Kley and Hine 1998, Ensminger 

1999) that supports a recreational and subsistence fishery (Ryan and Brice 2001, 

TXDSHS 2005).  The western portion of the lake (approx. 40 km2, and mostly in Texas) 

is composed primarily of a forested wetland (hereafter wetland) dominated by bald 

cypress, water elm (Planera aquatica), and other submerged and emergent aquatic 

vegetation including fanwort (Cabomba caroliniana), common waterweed (Egeria 

densa), and yellow pond-lily (Nuphar luteum) (Van Kley and Hine 1998).  The eastern 

portion of Caddo Lake (mostly in Louisiana) is primarily open-water habitat, though 

submerged vegetation can be extensive in summer months (M.M. Chumchal, personal 

observation). 

 The primary anthropogenic sources of mercury in the region are coal-burning 

power plants (Crowe 1996, TDH 1999).  Caddo Lake is located within 250 km of five of 

the 20 highest mercury-emitting power plants in North America (Miller and Van Atten 

2004).  Fish consumption advisories have been issued for largemouth bass and 
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freshwater drum (Aplodinotus grunniens) in Caddo Lake by the Texas Department of 

State Health Services (TXDSHS) due to high levels of mercury in their tissues 

(TXDSHS 1995).  The Louisiana Department of Environmental Quality (LADEQ) 

monitors largemouth bass and freshwater drum on the Louisiana side of Caddo Lake but 

they have not issued any advisories (LADEQ 2005).   

Fish collection 

 We collected fish with gill nets and a boat-mounted electrofishing unit with 

assistance from biologists from the Texas Parks and Wildlife Department (TPWD).  Gill 

nets were 38 m long by 2.4 m deep and constructed of monofilament webbing.  Each net 

consisted of 5 panels, 7.6 m in length with bar measures ranging from 25-76 mm.  Eight 

nets (all in open water habitat) were set in the late afternoon on 10 May 2004 and 

retrieved the following morning.  Fish were collected from nine sites (five sites in 

wetland and four sites in open water habitat) during the early evening of 10 May and the 

morning of 12 May using a boat-mounted electrofishing unit.  After collection, fish were 

placed on ice and transported to a lab where total length (TL) was measured and otoliths 

were removed.  Fish were then frozen for subsequent mercury and stable isotope 

analyses.    

Mercury analysis 

 Fillets were dissected from each fish and a small subsample of epaxial muscle 

was collected from the center of each fillet using a scalpel and forceps and weighed to 

the nearest 0.1 mg.  Total mercury concentrations in fish were analyzed with a direct 

mercury analyzer (DMA-80, Milestone Inc. Monroe, CT) that uses thermal 

decomposition, gold amalgamation, and atomic absorption spectrometry (USEPA 1998) 
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and are reported as ng total mercury/g wet weight of fish.  We used total mercury as a proxy 

for methylmercury, the predominant form of mercury in fish (Bloom 1992).   

 For mercury analyses, a calibration curve was generated using three reference 

materials from the National Research Council of Canada Institute for National 

Measurement Standards: MESS-3 (marine sediment, certified value = 91 ± 9 ng/gdry weight 

total mercury (average ± 95% C.I.)), PACS-2 (marine sediment, certified value = 3040 ± 

200 ng/gdry weight total mercury) and DORM-2 (dogfish muscle, certified value = 4,640 ± 

260 ng/gdry weight total mercury).  Quality assurance included reference and duplicate 

samples.  Reference samples of MESS-3 or DORM-2 were analyzed approximately 

every 10 samples and the mean percent recovery was 100 ± 1% (range = 92–107%; n = 

41) and 100 ± 2% (range = 95–104%; n = 11), respectively.  Duplicate samples were 

analyzed approximately every 20 samples and the mean relative percent difference was 

3.6 ± 1.3% (range = 0.3–11.4%; n = 28).   

Age analyses 

 We counted otolith annuli to estimate the age of each fish using the methods of 

Boxrucker (1986) for bluegill (Lepomis macrochirus) and redear sunfish (L. 

microlophus), Buckmeier et al. (2002) for channel catfish (Ictalurus punctatus), 

Buckmeier and Howells (2003) for largemouth bass, white bass (Morone chrysops), 

yellow bass (M. mississippiensis), chain pickerel (Exos niger), and gizzard shad 

(Dorosoma cepedianum), Ferrara (2001) for spotted gar (Lepisosteus osseous), and 

FWRI (2007) for freshwater drum.  We examined otolith annuli to estimate the age of a 

subset of largemouth bass (33 from wetland and 32 from open water habitats).  Two 

readers independently estimated the ages of fish without knowledge of fish length, and 
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disagreements were resolved by reexamining otoliths and mutually agreeing on age.  

Growth rates were determined as TL divided by age.   

Trophic position and diet analyses 

 Stable isotopes of nitrogen and carbon in fish and primary consumers (unionid 

clams and gastropods) were used to estimate the trophic position of fish (i.e., the vertical 

trophic level at which fish feed) (Post et al. 2000) and determine whether fish were 

feeding in pelagic (i.e., those based on phytoplankton production) or littoral/benthic food 

webs (i.e., those based on periphyton production) (sometimes referred to as horizontal 

food web position, Leibold et al. 1997).   

 Stable nitrogen isotopes are used differentially in cellular processes (Fry 2006) 

resulting in a predictable increase in the heavy isotope, 15N, relative to 14N with each 

increase in vertical trophic level (Minagawa and Wada 1984).  Horizontal food web 

position can be determined using stable carbon isotopes (13C and 12C) because benthic 

and pelagic primary producers have distinct carbon isotope signatures (Hecky and 

Hesslein 1995).   

 Subsamples of fish fillets and foot muscle from gastropods and unionid clams 

were dried in a 60°C oven and homogenized using a ball-mill grinder (Dentsply, Inc, 

York, PA).  Sixty-one largemouth bass (31 from wetland and 30 from open-water 

habitats) were analyzed at Louisiana State University (LSU) for isotopic composition 

using a Thermoquest Finnigan Delta Plus isotope ratio mass spectrometer (IRMS).  The 

remaining largemouth bass (13 from wetland and 17 from open-water habitats) and all 

other fish and primary consumers were analyzed at the University of California-Davis 

(UC-Davis) stable isotope facility using a Europa Hydra 20/20 continuous flow IRMS.  
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Tank nitrogen and carbon dioxide gases calibrated with known standards were used as 

working reference materials in daily laboratory operation.  Carbon and nitrogen isotope 

results are given as: 

 

(1)     δ13C or δ15N = (Rsample/Rstandard -1) x 1000 

 

where R is δ13C/ δ12C for δ13C and  15N/ 14N for δ15N.  Standards for δ13C and δ15N are 

Vienna Pee Dee Belemnite (VPDB) and air N2, respectively.  Analysis of replicate 

samples of dried bovine liver (National Institute of Standards and Technology) indicated 

good agreement between the results from each lab (mean δ15N and δ13C differed by 

0.5‰ and 0.2‰, respectively).   

 To calculate trophic position, δ15N values in fish were first corrected for habitat-

specific differences in basal δ15N using δ15N and δ13C of primary consumers according 

the method of Vander Zanden and Rasmussen (1999).  Primary consumers that utilize 

littoral sources of carbon are less enriched in 15N than organisms that utilize pelagic 

sources of carbon (Vander Zanden and Rasmussen 1999) so we collected gastropods and 

unionid mussels as representatives of littoral and pelagic primary consumers, 

respectively (Post et al. 2000).  We assumed that fish were resident in the habitat in 

which they were collected.  Thus, 15N values of fish collected from wetland and open-

water habitats were corrected for differences in 15N at the base of the food web using 

gastropods and unionid mussels collected from the corresponding habitat.  Gastropod 

δ15N and δ13C was 4.32 ± 0.69‰ and -29.4 ± 1.16‰, respectively for the wetland habitat 

(n=5) and 2.23‰ and -25.8‰, respectively for the open-water habitat (n = 1).  Unionid 
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mussel δ15N and δ13C was 6.50 ± 0.66 ‰ and -33.5 ± 0.13‰, respectively for wetland 

habitat (n = 6) and 4.85 ± 0.22 ‰ and -32.4 ± 0.53‰, respectively for open-water 

habitat (n = 5).  We used the corrected δ15N (δ15Ncorrected) values of fish to calculate 

trophic position (TPfish) as: 

 

(2)    TPfish = δ15Ncorrected/3.4 + 2 

 

 We corrected δ13C of each fish (δ13Cfish) for trophic enrichment according to 

method of Fry (2006) as: 

 

(3)   δ13Ccorrected = δ13Cfish – 0.5 x (TPfish -1) 

 

 Corrected δ13C values of fish were compared to δ13C of gastropods and unionid 

mussels to determine if fish were feeding predominately in either pelagic or littoral food 

webs. 

Statistical analyses 

 To estimate the risk of fish in Caddo Lake to human health we compared mean 

mercury concentrations of fish collected in this study to the TXDSHS and USEPA 

screening values.  Screening values (SVs) are derived from a Reference Dose (RfD) 

determined from epidemiological studies and are predicted to be the level of mercury 

that can be safely consumed over a lifetime.  Screening values are used by states to help 

make decisions about the issuance of fish consumption advisories.  Although USEPA 

recommends a SV of 300 ng/gwet weight (USEPA 2001), each state determines their own 
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SV to be used when issuing fish consumption advisories.  In Texas, TXDSHS uses a 

screening value of 700 ng/g wet weight (TXDSHS 2006). 

 To estimate the risk posed by mercury contaminated fish in Caddo Lake to 

piscivorous wildlife we compared mean mercury concentration in fish collected in this 

study to the USEPA wildlife criterion (WC).  Similar to the SV, the WC is predicted to 

represent a safe lifetime dose of mercury for piscivorous wildlife.  The WC criterion 

corresponds to 77 ng/g wet weight and 346 ng/g wet weight of mercury for fish that occupy 

trophic levels 3 and 4, respectively (USEPA 1997).  We used these values to construct a 

linear relationship between mercury and trophic level which is described by the 

following equation:  

 

(4)   Total mercury (ng/gwet weight) = 269 * trophic position - 730   

 

We considered species of fish whose mean mercury concentration and trophic position 

corresponded to a point that fell above the line described by the equation (4) to be of 

potential risk to the health of piscivorous wildlife.  

Between species comparisons 

 To determine which ecological factors were related to mercury contamination in 

the Caddo Lake fish assemblage (i.e., between species variation) we used a general 

linear model (GLM) to test for main effects of habitat and a covariate (mean TL, age, 

trophic position and δ13C) on mean log-transformed mercury concentrations (Quinn and 

Keough 2002).  If the slopes of the relationships between the covariate and dependent 

variable were homogeneous between habitats (i.e., habitat x covariate = p > 0.05), we 
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removed the interaction term from the model and tested for main effects of habitat and 

the covariate using analysis of covariance (ANCOVA) (SPSS Inc., version 11.5.0, 

Chicago, IL).  

 To further explore habitat-specific differences in mercury contamination we 

compared mercury concentration and ecological factors that could influence mercury 

concentration (TL, age, trophic position and δ13C) in fish species that were collected 

from both habitats for which fish sample size ≥ 5.  We do not compare largemouth bass 

between habitats because similar analyses appear elsewhere (Chumchal et al. in review).  

Because age and TL are correlated with mercury concentrations in fish (Wiener et al. 

2003), we tested for habitat-specific differences in mercury concentrations after 

controlling for the effects of age and TL using GLM and ANCOVA as described above.  

If slopes were not homogenous (an assumption of ANCOVA) we tested for an effect of 

habitat using the Wilcox procedure (Quinn and Keough 2002) that determines the range 

of the covariate for which the within-group means are significantly different (WILCOX, 

version 3.2, Constable 1989).  We also tested for habitat-specific differences in trophic 

position and δ13C (i.e. horizontal food web position) as additional factors that can affect 

mercury concentrations in fish.  Specifically we tested for within-group effects (two 

levels of habitat) on dependent variables (trophic position or δ13C) after removing the 

effect of TL as described above for mercury analysis.   

Within species comparisons 

 We used linear regression to determine which factors were correlated with 

mercury concentration for each fish species (SPSS Inc., version 11.5.0, Chicago, IL).  To 

help explain patterns in mercury bioaccumulation we also used linear regression to 
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examine the relationships between fish trophic position and TL and between fish δ13C 

and TL.      

Results 

 Fish in Caddo Lake exhibited almost 30-fold variation in mean mercury 

concentration (Fig. 1, Table 1).  Spotted gar, freshwater drum, white bass, chain pickerel 

and largemouth bass had the highest mercury concentrations with individuals collected 

from both habitats exceeding TXDSHS and EPA SVs for mercury.  Bluegill, yellow 

bass, and gizzard shad had the lowest mercury concentrations with no individuals 

exceeding the TXDSHS or EPA SVs for mercury.  

 In general, fish collected from wetland habitats had higher concentrations of 

mercury and were more likely to exceed EPA and TXDSHS SVs than fish collected 

from open water habitats (Fig. 1, Table 1).  Fifty-one percent and twenty-four percent of 

fish collected from wetland habitats exceeded the EPA and TXDSHS’ SVs for mercury, 

respectively.  While only 20% and 3% of fish collected from open water habitats 

exceeded the EPA and TXDSHS SVs for mercury, respectively.   

 In addition to posing risks to human health, fish from the wetland habitats may 

pose a risk to piscivorous wildlife (Table 1).  All fish from the wetland habitats except 

channel catfish, yellow bass and bluegill exceeded EPA’s WC.  In the open water 

habitat, spotted gar was the only species that exceeded EPA’s WC.   

 Ecological variables that are known to affect mercury concentrations in fish 

exhibited substantial variation within the fish assemblage (Table 1).  Mean TL of fish 

examined in the study ranged from 141 (yellow bass collected from wetland habitats) to 

603 mm (spotted gar collected from open water habitats).  Mean age ranged from 1.8 
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(yellow bass collected from wetland habitats) to 8 years (freshwater drum collected from 

wetland habitats).  Fish spanned one trophic level from secondary to tertiary consumers 

(trophic level 3 and 4 respectively).  Most fish had δ13C values that were similar to those 

of gastropods or intermediate between gastropods and unionid clams, indicating that 

they fed in food webs based on littoral primary production or fed on both littoral and 

pelagic production, respectively. 

Between species comparisons 

 Mean log-transformed mercury concentrations in Caddo Lake fish were 

significantly and positively related to mean trophic position but not significantly related 

to mean TL, age, or δ13C (Table 2).  Fish collected from wetland habitats had 

significantly higher concentrations of mercury than fish collected from open water 

habitats even after controlling for the effect of trophic position (Figure 2, Table 2).   

 Comparisons of mercury concentrations and ecological variables that influence 

mercury between habitats were possible for spotted gar, freshwater drum, yellow bass, 

bluegill, and redear.  Mercury concentrations were significantly higher in fish from the 

wetland habitat after controlling for TL and age for all species except redear sunfish 

(Figure 3, Table 3).  For all fish species, trophic position and δ13C values were either 

lower in fish collected from wetland habitats or not significantly different across habitat 

type after controlling for TL (Figure 3, Table 3). 

Within species comparisons 

 In many cases, within species variation in mercury concentration was best 

explained by age or TL, however we also found significant correlations between 

mercury and trophic position and mercury and δ13C (Table 4).  A positive relationship 
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between δ13C and mercury indicates that fish that fed in littoral-based food webs were 

more contaminated with mercury than fish that fed in pelagic food webs, while a 

negative relationship indicates that fish that fed in pelagic food webs were more 

contaminated than fish that fed in littoral food webs.  For most species and independent 

variables, when the relationship between the independent variable and mercury was 

significant, the independent variable was positively correlated with mercury.  Two 

exceptions were the relationship between mercury and trophic position in gizzard shad 

and the relationship between mercury and δ13C in spotted gar collected from wetland 

habitats. 

 Trophic position and δ13C were positively and significantly correlated with TL in 

several species and δ13C and TL were negatively and significantly correlated with TL in 

largemouth bass from wetland habitats.  A positive relationship between δ13C and TL 

indicates that as fish increased in size their diet became more heavily based on 

organisms that were part of littoral food webs, while a negative relationship indicates 

that as fish increased in size their diet became more heavily based on organisms that 

were part of pelagic food webs.  

 

Discussion 

 Concentrations of mercury in the Caddo Lake fish assemblage were high enough 

to pose a threat to human health.  This is especially true of fish collected from the 

wetland habitats. These data should be of concern to public health officials because 

Caddo Lake is utilized by both recreational and subsistence anglers (Ryan and Brice 

2002, TXDSHS 2005).  Of particular concern are mercury levels in chain pickerel and 



 48

spotted gar.  Neither of these species currently have fish consumption advisories yet they 

have levels of mercury that are similar to freshwater drum and largemouth bass, two 

species which currently have fish consumption advisories. 

 In addition to potential negative impacts on human health, elevated mercury 

concentrations in wetland habitats could be negatively impacting fish and wildlife 

health.  In the wetland habitat most species exceeded EPA’s WC for piscivorous wildlife 

health.  Previous studies at Caddo Lake have found that piscivorous snakes captured 

near wetland habitats had mercury concentrations as high as 8,610 ng/gwet weight 

(Rainwater et al. 2005), confirming that mercury is bioaccumulating to high levels in 

piscivorous wildlife.  In addition to posing a risk to piscivorous wildlife, mercury levels 

in some Caddo fish are high enough that the fish themselves might be at risk.  In 

laboratory experiments, fish with whole body concentrations of mercury between 440 – 

864 ng/gwet weight have reduced hormone levels (Drevnick and Sandheinrich 2003), 

reduced reproductive success (Drevnick and Sandheinrich 2003), reduced weight of 

offspring (Matta et al. 2001) and altered predator avoidance behavior (Webber and 

Haines 2003).  Therefore, many tertiary consumers (i.e., fish feeding at trophic level 

four), especially those collected from wetland habitats, could already be suffering from 

such effects.  Piscivorous fish and wildlife that utilize the Caddo Lake wetland should be 

monitored to determine if they are being negatively impacted by mercury contamination.   

 This study adds to a growing body of evidence that mercury contamination 

exhibits habitat and spatial variation in lakes (Munn and Short 1997, Cizdziel et al. 2002, 

Campbell et al. 2003, Burger et al. 2004, Stafford et al. 2004, Simoneau et al. 2005, 

Chumchal et al. in review).  We found habitat-specific differences in mercury 
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contamination throughout the fish assemblage, with fish collected from wetland habitats 

having higher concentrations of mercury than those collected from open water habitats.  

Relative to the number of studies that have examined mercury contamination of fish in 

lakes (Drenner et al. 2007) there have been relatively few reports of spatial or habitat 

variation (refer to references above).  It is not clear if spatial or habitat-specific variation 

in mercury is an uncommon phenomenon or if researchers have simply overlooked it.  

Future studies should be conducted in a way that would allow for the identification of 

spatial or habitat variation in mercury contamination of fish.    

 Several factors could lead to spatial or habitat specific differences in mercury 

contamination.  Ecosystems with high methylmercury availability contain food webs that 

are highly contaminated with mercury (Wiener et al. 2003); therefore, habitat specific 

differences in mercury contamination could be caused by differences in methylmercury 

availability between habitats.  However, because fish size, age, and food web position all 

influence mercury contamination, differences in these ecological factors between 

habitats could lead to habitat-specific differences in fish mercury contamination.  Below 

we discuss how our data on fish size, age, and food web position can be used to 

distinguish between these alternative hypotheses.   

 Using two approaches we conclude that the habitat-specific differences observed 

in this study were caused by a more contaminated food web in the wetland habitat and 

not by differences in the ecological characteristics of fish between habitats.  First, the 

relationship between mean trophic position and mean log-transformed mercury 

concentration in wetland and open water habitats indicates that the wetland food web is 

more contaminated with mercury.  Comparing the slopes of the relationships between 
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mean log-transformed mercury and trophic position between the two habitats revealed 

that biomagnification was similar between habitats (i.e., the slopes were not significantly 

different) (Jardine et al. 2006).  However, the y-intercepts of the mean log-transformed 

mercury-mean trophic position relationships were significantly different between 

habitats, which indicates that the level of mercury at the base of the food web was 

elevated in the wetland habitat (Campbell et al. 2003, Jardine et al. 2006).    

 Second, habitat-specific differences in ecological characteristics known to 

influence mercury contamination in fish could not explain the habitat-specific pattern in 

mercury.  All species of fish (for those species in which habitat comparisons were 

possible), except redear sunfish, collected from wetland habitats had significantly higher 

concentrations of mercury after correcting for TL and age.  Further, the trophic positions 

of all species of fish collected from the wetland habitats were lower or not significantly 

different from the trophic positions of fish collected from the open water habitats after 

correcting for TL.  Because mercury is a biomagnifying contaminant (Cabana and 

Rasmussen 1994) it would be expected that the fish with the higher trophic positions (the 

fish from the open water habitat) would be more contaminated with mercury if 

differences in trophic position between habitats could explain the pattern in mercury 

contamination.  Therefore, some other factor must have overridden the effect of trophic 

position.  Finally, for all species except bluegill, δ13C values were not significantly 

different between habitats, thus differences in horizontal food web position can not 

explain the differences in mercury between habitats.  These results are similar to those 

previously reported for largemouth bass in Caddo Lake (Chumchal et al. in review).  
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 The wetlands in Caddo Lake have features that may make them conducive to 

mercury methylation (Zilloux 1994, Ullrich et al. 2001, Wiener et al. 2003).  Relative to 

open water habitats, wetland habitats in Caddo Lake have low pH (Hartung 1983, 

Darville et al. 1998), low dissolved oxygen concentrations (Hartung 1983, Darville et al. 

1998), and high organic carbon concentrations in sediments (Wilson 2003).  In contrast 

to open water habitats, wetland habitats in Caddo Lake have direct connections to 

seasonally flooded areas (Van Kley and Hine 1998) and sulfate concentrations that are 

optimal for mercury methylation (i.e., 0.2-0.5 mM SO4
2-) (Hartung 1983).  In addition, 

in a previous study we found higher levels of mercury in grass shrimp (Palaemonetes 

kadiakensis), a primary consumer, collected from wetland habitats relative to open water 

habitats (Chumchal et al. in review).  Therefore we conclude that there is more mercury 

entering the base of the food web in the wetland habitats than in the open water habitats.  

 The strong relationship between mercury and TL and mercury and age observed 

in this study reinforces the importance of taking age or length of fish into account when 

issuing fish consumption advisories (McClain et al. 2006).   Despite the large number of 

studies that have found positive relationships between mercury and TL and mercury and 

age (e.g., Johnels et al. 1967, McClain et al. 2006), many states still do not consider 

these factors when issuing fish consumption advisories (AFS 1999).   

 We observed biomagnification within the Caddo Lake fish assemblage.  Tertiary 

consumers (e.g., spotted gar) had average mercury concentrations that were three times 

higher than secondary consumers (e.g., bluegill).  The slope of the relationship between 

mean mercury and mean trophic position (measured using δ15N) is a measure of 

biomagnification and can be used to compare transfer efficiencies between mercury and 
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biomass in food webs (Rolff et al. 1993, Campbell et al. 2003, Jardine et al. 2006).  A 

slope greater than 0 indicates that mercury is transferred more efficiently than biomass 

through the food web, in other words that biomagnification is occurring (Rolff et al. 

1993).  In this study the biomagnification coefficients for the wetland and open water 

habitat were 0.82 and 0.68 which are equivalent to 0.24 and 0.2 if δ15N values are 

substituted for trophic position (refer to equation 2).  These slopes are similar to those 

observed in other studies conducted in marine and freshwater ecosystems (Table 5).  

This is the only study that has examined biomagnification coefficients in the subtropical 

US and one of the few studies that have examined biomagnification coefficients outside 

of the temperate or subarctic.  The similarities between the biomagnification coefficients 

observed in this study and those observed in other studies suggest that biomagnification 

coefficients are similar across all regions and aquatic ecosystems.      

 We did not always detect biomagnification within species.  Trophic position was 

significantly and positively correlated with mercury concentration in only four of the ten 

species examined.  Similarly, Power et al. (2002) found that within species, δ15N was a 

significant predictor of mercury for only three of eight species examined.  Our results 

and previous studies indicate that trophic position can be used to successfully predict 

which species within a community will have high concentrations of mercury (Table 5) 

but that it is less successful at predicting the mercury concentrations of individuals 

within a species.   

 These results imply that biomagnification is not the primary process responsible 

for mercury contamination in all fish species or at all life stages; rather the commonly 

observed increase in mercury concentration with fish TL and age may be due simply to 
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time-related bioaccumulation (Fagerstrom 1991).  Once assimilated mercury is slowly 

excreted (Trudel and Rasmussen 1998) and can result in positive mercury-TL 

relationships and mercury-age relationships (Fagerstrom 1991).  We collected several 

fish species whose trophic position did not increase with TL, yet they exhibited a 

significant mercury-TL relationship.  Because age, TL, and trophic position are 

intercorrelated an experimental and/or modeling approach would be necessary to fully 

assess the role that time-related bioaccumulation and biomagnification play in the 

mercury contamination of Caddo Lake fish.  However, we believe it is logical to assume 

that if, for a given species, mercury concentration but not trophic position increases with 

TL that biomagnification is not occurring.     

 Unlike previous studies (Power et al. 2002, Gorski et al. 2003, Kidd et al. 2003) 

we found no relationship between δ13C and mercury within the fish assemblage.  The 

lack of a relationship between δ13C and mercury in this study was surprising and may 

result from the lack of variation in δ13C.  The fish assemblage of Caddo Lake was 

relatively homogenous in terms δ13C (Table 1) and intermediate between primary 

consumers of littoral and pelagic carbon, indicating a high degree of omnivory.  

Vegetation-dominated shallow lakes are characterized by high levels of omnivory (Gu et 

al. 1996, Jones and Waldron 2003, Herwig et al. 2004) and the horizontal food web 

structure exhibited in large, deep lakes (Vanderzanden and Rasmussen 1999) is less 

apparent.  Our data may indicate that unlike in deep lakes, horizontal food web structure 

is not an important predictor of mercury in fish assemblages in shallow lakes and 

reservoirs that are common in subtropical and tropical regions.     
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 Within species, the δ13C-mercury relationships observed in this study were also 

different than those found in previous studies.  For all species except spotted gar 

collected from wetland habitats, we found positive relationships between δ13C and 

mercury in fish, indicating that individuals of a given species that were more connected 

to littoral food webs were more contaminated with mercury than fish connected to 

pelagic food webs.  These findings are in contrast to previous studies that have found 

negative relationships between δ13C and mercury levels in fish (i.e., fish connected to 

pelagic food webs were more contaminated with mercury).  However previous studies 

were conducted in large deep lakes with extensive pelagic zones (Power et al. 2002, 

Gorski et al. 2003, Kidd et al. 2003).  In shallow ecosystems, littoral zones are important 

sites of mercury methlyation (Cleckner et al. 1999); therefore fish that are dependent on 

periphtyon-based food webs may be more contaminated with mercury.   

 This study indicates that there are important similarities and differences in the 

processes governing mercury accumulation in fish inhabiting shallow lakes and 

reservoirs common in subtropical climates of the southeastern US relative to large lakes, 

often found in cold temperate and arctic regions where most previous studies were 

conducted.  The biomagnification coefficients observed in this study are similar to those 

observed in similar studies.  Important differences include habitat and spatial variation 

caused by prominent wetland habitats associated with southern lakes and reservoirs and 

differences in the relationship between δ13C and mercury in fish.  More studies are 

needed to understand the mechanisms underlying the δ13C-mercury relationship 

observed in this study and to understand if sampling programs designed for the issuance 
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of fish advisories should place a larger emphasis on sampling multiple habitats in 

southern lakes and reservoirs.   
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Table 1.  Descriptive statistics for species examined in this study including mean and 95% CI for independent variables and mercury 

concentration.  N = total number of fish collected.   

 

Species N
Total Length 

(mm) Age (years) 
Trophic 
position δ13C 

Hg (ng/g wet 

weight) 
Forested wetland   

          
Spotted gar 5 542 ± 70  5.2 ± 1.1  4.3 ± 0.1  -29.7 ± 0.5 833 ± 136 

Chain pickerel 6 403 ± 79  2.7 ± 1.1  3.9 ± 0.2  -29.6 ± 0.8 500 ± 216 

Channel catfish 3 352 ± 59  4.3 ± 1.7  3.2 ± 0.5  -29.1 ± 0.4 105 ± 27 

Freshwater drum 6 439 ± 24 8.0 ± 0 3.8 ± 0.2  -29.5 ± 0.9 600 ± 177 

Yellow bass 5 141 ± 29 1.8 ± 1.1 3.3 ± 0.2  -30.5 ± 0.5 61.5 ± 36 

Largemouth bass 44a 287 ± 37  3.9 ± 0.7  3.9 ± 0.1 -29.5 ± 0.4 465 ± 113 

Bluegill 6 164 ± 17 3.7 ± 0.7  3.8 ± 0.2  -30.8 ± 1.2 180 ± 52 

Redear sunfish 5 193 ± 15 4.2 ± 0.7 3.2 ± 0.2 -30.6 ± 0.7 234 ± 54 

Open water             

Spotted gar  19 603 ± 48  5.6 ± 0.6 4.4 ± 0.1 -29.7 ± 0.2 474 ± 91 
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Gizzard shad 29 345 ± 19 5.1 ± 0.5 3.3 ± 0.1 -29.6 ± 0.5 30.7 ± 3.7 

Channel catfish  27 385 ± 35  4.4 ± 0.5 3.5 ± 0.1  -29.7 ± 0.3 139 ± 40 

Freshwater drum 18 409 ± 25  7.1 ± 1.2  4.0 ± 0.2 -29.4 ± 0.4 319 ± 120 

White bass  21 347 ± 23 3.2 ± 0.7 4.1 ± 0.1 -28.7 ± 0.3 262 ± 78 

Yellow bass 39 217 ± 11  3.2 ± 0.2  3.7 ± 0.0  -29.8 ± 0.2 104 ± 15 

Largemouth bass 47a 260 ± 33 2.6 ± 0.5 4.2 ± 0.1 -30.0 ± 0.3 193 ± 54 

Bluegill 14 150 ± 11 2.6 ± 0.4  3.6 ± 0.2  -29.4 ± 0.3 81.4 ± 20 

Redear sunfish 5 170 ± 34  2.6 ± 0.5  3.2 ± 0.2 -30.1 ± 0.2 127 ± 76 

 
a Age was determined for a subset of largemouth bass (33 from wetland and 32 from open water habitats).  
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Table 2.  Significance values associated with analysis of covariance (ANCOVA).  

Dependent variable was mean log-transformed mercury concentration.  

Covariatea Covariate x habitat p ANCOVA 
  Habitat p Covariate p 

Total length 0.54 0.07 0.006 
Age 0.62 0.17 0.09 
Trophic position 0.62 0.009 <0.001 
δ13C 0.84 0.11 0.31 
a Covariates are species averages   



 

Table 3.  Significance values associated with analysis of covariance (ANCOVA) used to compare mercury and other ecological 

factors in species of fish collected from both habitats after collecting for TL or age.   

Species Total mercury  

vs TL 

Total mercury  

vs age 

Trophic position  

vs TL 

δ13C vs TL 

 Habitat p Covariate p Habitat p Covariate p Habitat p Covariate p Habitat p Covariate p

Spotted gar <0.001 <0.001 <0.001 0.02 0.9 0.006 0.7 0.6 

Freshwater 

drum 

0.03 <0.001 - - 0.01 <0.001 0.9 0.6 

Yellow bass 0.007 <0.001 a  0.001 0.04 0.07 <0.001 

Redear 0.2 0.008 0.9 <0.001 0.8 0.8 0.3 0.2 

Bluegill <0.001 0.01 0.007 <0.001 0.2 0.4 0.002 0.2 

 

a The assumption of homogeneity of slopes was violated therefore we looked for habitat specific differences in mercury after 

accounting for age using the Wilcox procedure and found no significant differences (p > 0.05) between habitats.   
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Table 4.  Pearson’s correlation coefficients (r).  Bold text indicates a significant correlation (P ≤ 0.05).    

Species Hg vs. 
Total length

Hg vs. 
age 

Hg vs. trophic 
position 

Hg vs. 
δ13C 

Trophic position 
vs. total length 

δ13C vs. total 
length 

Forested wetland             

Spotted gar 0.43  -0.11 0.18  -0.99 -0.50 -0.36 

Chain pickerel 0.87  0.94  0.19  0.84 0.59 0.69 

Channel catfish 0.44  -0.05 0.91  -0.98 0.02 -0.61 

Freshwater drum 0.37 - 0.78 0.30 0.61 0.16 

Yellow bass 0.97 0.91 0.20  0.90 0.34 0.91 

Largemouth bass 0.87  0.89 0.54 -0.23 0.60 -0.40 

Bluegill 0.69 0.74  0.59  0.11 0.55 0.40 

Redear sunfish 0.56 0.89 -0.03 -0.17 0.04 0.34 

Open water             

Spotted gar  0.71 0.59 0.76 0.13  0.66 0.06 

67 



 68

Gizzard shad -0.25 -0.32 -0.37 -0.36 0.73 0.72 

Channel catfish  0.66  0.67 0.38  0.28 0.21 0.57 

Freshwater drum 0.92  0.65  0.84 -0.01 0.80 -0.12 

White bass  0.68 0.93 0.50 0.31 0.90 0.67 

Yellow bass 0.81  0.91  0.22  0.45 0.31 0.76 

Largemouth bass  0.74 0.85 0.74 0.36 0.78 0.63 

Bluegill 0.52 0.92  0.18  0.13 0.30 0.34 

Redear sunfish 0.83 0.83  0.15 0.88 0.14 0.70 68 
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Table 5.  Biomagnification coefficients from studies that used δ15N to estimate trophic 

position.   

Study  Region Ecosystem Biomagnification 
coefficient 

Yoshinga et al. 1992   Subtropical Lake/estuary 0.21 

Kidd et al. 1995 - Orange  Temperate Lake 0.29 

Kidd et al. 1995 - Linge  Temperate Lake 0.23 

Kidd et al. 1995 - Sydney  Temperate Lake 0.17 

Kidd et al. 1995 - Trout  Temperate Lake 0.21 

Kidd et al. 1995 - Musclow  Temperate Lake 0.21 

Kidd et al. 1995 - Green  Temperate Lake 0.48 

Jarman et al. 1996 Temperate Marine 0.32a 

Atwell et al. 1998  Arctic Marine 0.20 

Bowles et al. 2001  Subtropical  Lake 0.28 

Power et al. 2002  Subarctic Lake  0.19 

Campbell et al. 2003 – 

Napoleon Gulf 

 Tropical Lake 0.16 

Campbell et al. 2003 – Winam 

Gulf 

 Tropical Lake 0.17 

Kidd et al. 2003  Tropical Lake 0.20 

Campbell et al. 2004  Tropical Lake 0.28 

Campbell et al. 2005  Arctic Marine 0.20 

Garcia and Carignan 2005 – 

Reference lakes 

 Temperate Lake 0.20 

Garcia and Carignan 2005 – 

Cut lakes 

 Temperate Lake 0.22 

Garcia and Carignan 2005 – 

Burnt lakes 

 Temperate Lake 0.26 

Sampaio Da Silva et al. 2005  Tropical Lake 0.24b 

Campbell et al. 2006 – Saka 

 

 Tropical 
  

Lake 
 

0.14 
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aCalculated using data from their Tables 1 and 2 

bCalculated using data from their Tables 1 and 3, all lakes and seasons combined. 

cCalculated using Data from their Table 1  

Campbell et al. 2006 - Nkuruba Tropical Lake 0.14 

McIntyre and Beauchamp 2007Temperate Lake 0.19c 

This study – open water  Subtropical Reservoir 0.20 

This study – forested wetland  Subtropical Reservoir 0.24 
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Figure captions 

5Fig 1. Mercury contamination in Caddo Lake fish.  Boxes, whiskers, and dark horizontal 

bars signify the 1st and 3rd quartile, range, and median mercury concentration of each 

fish species, respectively.    

 

6Fig 2.  Relationship between mean log-transformed mercury and mean trophic position. 

Markers with square borders and a solid trend line represent fish collected from wetland 

habitats.  Markers with oval borders and dashed trend line represent fish collected from 

open water habitats. SG = spotted gar, GS = gizzard shad, CP = chain pickerel, CC = 

channel catfish, FD = freshwater drum, WB = white bass, YB = yellow bass, LMB = 

largemouth bass, BG = bluegill, RE = redear sunfish  

 

7Fig 3.  Relationships between total length (TL) and total mercury, age and total mercury, 

and trophic position and TL in spotted gar, freshwater drum, yellow bass, bluegill, and 

redear sunfish collected from forested wetland (black points and solid line) and open 

water (open points and dashed line) habitats. 
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Figure 1.  
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Figure 2.  
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Figure 3.  
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Abstract 

We conducted a survey of mercury contamination in three species of planktivorous fish, 

brook silverside (Labidesthes sicculus), threadfin shad (Dorosoma petenense) and 

gizzard shad (Dorosoma cepedianum), from Caddo Lake, Texas and identified species-

specific differences in mercury contamination. We also examined trophic position 

(determined using δ15N), growth rate, and horizontal food web position (determined 

using δ13C) of planktivorous fish as factors that could have led to species-specific 

differences in mercury contamination.  Mean trophic position differed by less than one 

trophic level between planktivorous fish species but this difference was likely 

responsible for species-specific differences in mercury concentration.  We observed 

biomagnification between the species and the biomagnification coefficient (the slope of 

the relationship between trophic position and mercury) was similar to a previous study 

that examined the biomagnification in the Caddo Lake fish assemblage.  Species-specific 

differences in growth rate and horizontal food web position could not explain differences 

in mercury concentrations between planktivorous fish.  This implies that trophic position 

is one of the most important predictors of interspecific mercury concentration in fish, 

even among species within a trophic guild that only exhibit fine scale differences in 

trophic position. 
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Introduction 

 Mercury is a toxic metal that accumulates in food webs and has increased in the 

environment primarily due to anthropogenic activities (NRC 2000, Pacyna and Pacyna 

2005).  The burning of coal releases inorganic mercury into the atmosphere where it 

resides until it is deposited onto the earth’s surface (Jackson, 1997).  In aquatic 

ecosystems, bacteria convert inorganic mercury, the most common form in the 

environment, to highly toxic methylmercury (Morel et al. 1998; Ullrich et al. 2001).  

Organisms at the base of the food web such as phytoplankton and periphyton absorb 

methylmercury directly from the water (Miles et al. 2001), while consumers, including 

fish, are exposed to methylmercury primarily through their diet (Hall et al. 1997; Tsui 

and Wang 2004).   

 Mercury is a biomagnifying contaminant (i.e., it is found at higher concentrations 

at each successive vertical trophic level in a food web) and trophic position (a 

continuous measure of vertical food web position) is consistently identified as the best 

interspecific predictor of mercury levels within fish assemblages (Cabana and 

Rasmussen 1994, Power et al. 2002, Chumchal and Hambright in review).  Most studies 

that have quantified biomagnification have examined mercury concentration in fish 

assemblages composed of species that represent more than one trophic level (i.e., whose 

mean trophic positions differ by more than one trophic level) (Cabana and Rasmussen 

1994, Power et al. 2002, Chumchal and Hambright in review).  Swanson et al. (2003, 

2006) hypothesized that fine-scale trophic differences (i.e., a difference of one-fourth to 

one trophic level) among species, particularly species within a trophic guild, do not 

result in differences in mercury contamination.  Rather, within a trophic guild, a fish’s 
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mean growth rate is the best predictor of mercury concentrations between species, with 

higher growth rates leading to lower mercury concentrations.   

 We conducted a survey of mercury contamination in three species of fish, brook 

silverside (Labidesthes sicculus), threadfin shad (Dorosoma petenense) and gizzard shad 

(Dorosoma cepedianum), belonging to a single trophic guild, in Caddo Lake, Texas and 

identified species-specific differences in mercury contamination.  All three species are 

planktivorous, although gizzard shad become increasingly dependent on detritus and 

sediment-associated organisms as they age (Robnson and Buchanan 1988).  We tested 

Swanson et al.’s (2003, 2006) hypotheses that differences in growth rate and not trophic 

position between species within a trophic guild explain differences in mercury 

concentration by examining trophic position (determined using δ15N) and growth rate in 

these species.  We also examined horizontal food web position (determined using δ13C) 

of the planktivores in this study as an alternative explanation for the observed species-

specific differences in mercury.   

 

Methods 

Study site 

 Caddo Lake is located on the Texas-Louisiana border within Jefferson and 

Marion counties in Texas and Caddo Parish in Louisiana.  Caddo Lake is a large (107 

km2 in surface area), shallow (mean and maximum depths of 1.4 m and 8.2 m, 

respectively) reservoir (Van Kley and Hine 1998, Ensminger 1999) that supports a 

recreational and subsistence fishery (Ryan and Brice 2001, TXDSHS 2005).  Caddo 

Lake contains organisms with high levels of mercury (as shown in recent survey of 
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fishes and snakes (Rainwater et al. 2004, Chumchal et al. in review, Chumchal and 

Hambright in review).  There are no point-sources of mercury to Caddo Lake and the 

most important regional sources of mercury are coal burning power plants (Crowe 1996; 

TDH 1999, Miller and Van Atten 2004, Slattery et al. in review). 

Fish collection  

 We collected fish along four transects (approximately 0.8-2.8 km in length) on 

28 and 29 June 2005 using a boat-mounted electrofishing unit in the eastern portion of 

Caddo Lake.  This area is primarily open water habitat, though submerged vegetation 

can be extensive in summer months (Chumchal et al. in review).  We targeted brook 

silversides (n = 20), threadfin shad (n = 33), and gizzard shad (n = 35) because they are 

the most abundant species in open water areas of Caddo Lake (M.M. Chumchal personal 

observation) and feed primarily on plankton (throughout life for brook silversides and 

threadfin shad, up to ~ 10 cm TL for gizzard shad after which they can become heavily 

dependent on detritus and sediment-associated organisms; Robison and Buchanan 1988). 

After collection, we placed fish on ice and transported them to a lab where we measured 

total length (TL) and removed otoliths.  We then froze fish for subsequent mercury and 

stable isotope analyses.  

Mercury analysis 

 We dissected fillets from each fish and collected a small subsample of epaxial 

muscle from the center of each fillet using a scalpel and forceps.  We analyzed 

concentrations of total mercury (ng g wet weight
-1), a proxy for methylmercury, the 

predominant form of mercury in fish (Bloom 1992) with a direct mercury analyzer 
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(DMA-80, Milestone Inc. Monroe, CT) that uses thermal decomposition, gold 

amalgamation, and atomic absorption spectrometry (USEPA 1998).  

 For mercury analyses, we generated a calibration curve using three reference 

materials from the National Research Council of Canada Institute for National 

Measurement Standards: MESS-3 (marine sediment, certified value = 91 ± 9 ng g dry 

weight
-1 total mercury (mean ± 95% C.I.)), PACS-2 (marine sediment, certified value = 

3040 ± 200 ng g dry weight
-1 total mercury) and DORM-2 (dogfish muscle, certified value = 

4,640 ± 260 ng g dry weight
-1 total mercury).  Quality assurance included reference and 

duplicate samples.  We analyzed reference samples of MESS-3 approximately every 10 

samples and the mean percent recovery was 101 ± 0.96% (range = 93–107%; n = 34).  

We analyzed duplicate samples approximately every 20 samples and the mean relative 

percent difference was 3.8 ± 1.4% (range = 0.1–9.2%; n = 13).  

Planktivore trophic position and diet 

 We used stable isotopes of nitrogen in fish and primary consumers (unionid 

clams and gastropods) to estimate the trophic position of fish (i.e., the vertical trophic 

level at which fish feed).  Some studies have concluded that fish that feed in food webs 

based on phytoplankton primary production are more contaminated with mercury than 

fish that feed in food webs based on periphyton primary production (Power et al. 2002; 

Gorski et al. 2003; Kidd et al. 2003; but see, Chumchal et al. in review, Chumchal and 

Hambright in review).  Therefore we used stable isotopes of carbon to determine 

whether fish were feeding in pelagic (i.e., those based on phytoplankton production) or 

littoral/benthic food webs (i.e., those based on periphyton production) (sometimes 

referred to as horizontal food web position, Leibold et al. 1997).   
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 Stable nitrogen isotopes are used differentially in cellular processes (Fry 2006) 

resulting in a predictable increase in the heavy isotope, 15N, relative to 14N with each 

increase in vertical trophic level (Minagawa and Wada 1984).  Horizontal food web 

position can be determined using stable carbon isotopes (13C and 12C) because benthic 

and pelagic primary producers have distinct carbon isotope signatures (Hecky and 

Hesslein 1995).   

 We dried planktivorous fish epaxial muscle subsamples and foot muscle from 

gastropods and unionid clams in a 60°C oven and then homogenized them using a ball-

mill grinder (Dentsply, Inc, York, PA).  Samples were analyzed at the University of 

California-Davis (UC-Davis) stable isotope facility using a Europa Hydra 20/20 

continuous flow IRMS.  Tank nitrogen and carbon dioxide gases calibrated with known 

standards were used as working reference materials in daily laboratory operation.  

Carbon and nitrogen isotope results are given as: 

 

    δ13C or δ15N = (Rsample/Rstandard -1) x 1000                       (1) 

 

where R is δ13C/ δ12C for δ13C and  15N/ 14N for δ15N.  Standards for δ13C and δ15N are 

Vienna Pee Dee Belemnite (VPDB) and air N2, respectively.   

 To calculate trophic position,  we first corrected δ15N values in planktivores for 

differences in basal δ15N using δ15N and δ13C of primary consumers according to the 

method of Vander Zanden and Rasmussen (1999).  Primary consumers that utilize 

littoral sources of carbon are less enriched in 15N than organisms that utilize pelagic 

sources of carbon (Vander Zanden and Rasmussen 1999) so we collected gastropods and 
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unionid mussels as representatives of littoral and pelagic primary consumers, 

respectively (Post et al. 2000).  Gastropod δ15N and δ13C was 1.94 ‰ and -25.12‰, 

respectively (n = 1).  Unionid mussel δ15N and δ13C was 5.67 ± 0.04 ‰ and -33.2 ± 

0.18‰, respectively (n = 6).  We used the corrected δ15N (δ15Ncorrected) values of 

planktivorous fish to calculate trophic position (TPfish) as: 

 

                  TPfish = δ15Ncorrected /3.4 + 2                                                      (2) 

 

 We corrected δ13C of each planktivorous fish (δ13Cbass) for trophic enrichment 

according to method of Fry (2006) as: 

 

   δ13Ccorrected = δ13Cfish – 0.5 x (TPfish -1)                                         (3) 

 

 We compared corrected δ13C values of planktivorous fish to δ13C of gastropods 

and unionid mussels to determine if planktivorous fish were feeding predominately in 

pelagic or littoral food webs. 

Planktivore age and growth rates 

 We used otolith annuli to estimate the age of each planktivorous fish.  We broke 

otoliths from large gizzard shad perpendicular to their longest axis through the nucleus 

and then polished them using 400 and 600-grit sandpaper (Buckmeier and Howells 2003, 

Clayton and Maceina 1999).  We examined annuli on whole otoliths from small gizzard 

shad and other planktivores.  We counted annuli at 8-40× magnification under a 

dissecting microscope.  Two independent readers estimated the ages of fish without 
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knowledge of fish length, and resolved disagreements by reexamining otoliths and 

mutually agreeing on age.  To account for growth that occurred prior to the formation of 

annuli, we added one year to the number of visible annuli.  We determined growth rate 

as TL divided by age. 

Statistical analyses 

 Because age and TL are correlated with mercury concentrations in fish (McClain 

et al. 2006), we tested for species-specific differences in planktivorous fish mercury 

concentrations after controlling for the effects of age and TL.  Specifically, we tested for 

within-group effects (three levels of species) on planktivorous fish mercury 

concentrations, after removing the effect of a covariate (age or TL).  We also tested for 

species-specific differences in growth rate, trophic position, and δ13C (i.e. horizontal 

food web position) as additional factors that can affect mercury concentrations in fish.  

Specifically, we tested for within-group effects on dependent variables (trophic position, 

δ13C, TL, or mercury concentrations) after removing the effect of a covariate (age, TL, 

trophic position, or δ13C).  We used a general linear model to determine if the slopes of 

the relationships between the covariate and dependent variable were homogeneous 

between species.  If the slopes were homogeneous between species (i.e., habitat x 

covariate = P  > 0.05), we removed the interaction term from the model and tested for 

main effects of habitat and the covariate using analysis of covariance (ANCOVA) (SPSS 

Inc., version 11.5.0, Chicago, IL).  When we detected a significant within-group effect, 

we used SPSS’ Compare Means procedure to test for pairwise differences in least 

squares means after applying a Bonferroni adjustment.   If slopes were not homogenous 

(an assumption of ANCOVA) we tested for species differences using the Wilcox 



 84

procedure (Quinn and Keough 2002) that determines the range of the covariate for which 

the within-group means are significantly different (WILCOX, version 3.2, Constable 

1989).  We transformed some variables to increase linearity.  Finally we used linear 

regression to determine the relationship between mean log-mercury and trophic position.   

 

Results   

 Mercury concentrations were highest in brook silversides and lowest in gizzard 

shad (Table 1).  Within species, both age and TL were significantly and positively 

correlated to mercury concentration (Table 2; Figure 1). However, after controlling for 

TL and age, brook silversides still had significantly higher concentrations of mercury 

than both threadfin and gizzard shad and threadfin shad had significantly higher 

concentrations of mercury than gizzard shad (Table 2; Figure 1). 

 Brook silversides had the highest mean trophic position while gizzard shad had 

the lowest mean trophic position (Table 1), but it is worth noting that mean trophic 

positions differed by less than one trophic level. Within species trophic position was 

positively correlated with TL (Table 2; Figure 2A).  After controlling for TL brook 

silversides had the highest trophic position followed by threadfin shad followed by 

gizzard shad (Table 2; Figure 2A).   

 For each species the relationship between trophic position and log-transformed 

mercury was positive, indicating that biomagnification was occurring within each 

species (Table 2, Fig 2B).  After controlling for the effect of trophic position we found 

no difference in mercury concentrations between species, which indicates that 

differences in mercury concentrations between species were caused by differences in 
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trophic position between species (Table 2, Fig 2B).  We also found a significant and 

positive relationship between mean log-transformed mercury and mean trophic position 

(P = 0.008, y = 0.63x – 0.41) which indicates that biomagnification was occurring 

between species.    

 Brook silverside mean growth rate was 1.3 times slower than threadfin shad 

mean growth rate and 2.3 times slower than gizzard shad mean growth rate (Table 1).  

Brook silversides were significantly smaller than similar-aged threadfin and gizzard shad 

and threadfin shad were significantly smaller than similar-aged gizzard shad (Table 2; 

Figure 3). 

 Mean horizontal food web position (δ13C) exhibited species-specific differences 

with brook silversides being the least enriched in 13C followed by threadfin shad and 

gizzard shad (Table 1).  However, after controlling for TL there was not a significant 

difference in the δ13C values of brook silversides and threadfin shad or threadfin shad 

and gizzard shad (Table 1; Figure 4A).  There were significant differences in δ13C values 

between brook silversides and gizzard shad even after controlling for TL.  Comparison 

of planktivorous fish δ13C values with δ13C values of primary consumers indicated that 

brook silversides and threadfin shad were likely feeding in food webs based more on 

littoral primary production (i.e., δ13C values in these species were more similar to those 

in the gastropod) than gizzard shad (i.e., δ13C values in gizzard shad were more similar 

to those in unionids).  However most brook silversides and threadfin shad had δ13C 

values between the δ13C values of unionid mussels and the gastropod indicating that they 

likely relied on both littoral and pelagic primary production.  In addition, as each species 
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of planktivorous fish increased in size they became more dependent on pelagic primary 

production (i.e. their δ13C values were inversely related to length). 

 Within each species, individuals exhibited an inverse relationship between δ13C 

and log-transformed mercury indicating that fish feeding in pelagic food webs were 

more enriched in mercury than those feeding in littoral food webs (Table 2, Fig 4B).  We 

also found a significant main effect of species on log total mercury after controlling for 

δ13C values.  Pairwise comparisons indicated that brook silversides had significantly 

higher concentrations of mercury than threadfin shad (P < 0.001) and gizzard shad (P 

<0.001) and that threadfin shad had significantly higher concentrations of mercury than 

gizzard shad (P = 0.015).  The detection of species-specific differences in log-mercury 

concentration even after correcting for δ13C indicates that differences in horizontal food 

web position between species can not explain differences in mercury concentration. 

 

Discussion   

 The primary objective of this study was to test Swanson et al.’s (2003, 2006) 

hypotheses that differences in mercury concentrations between species within a trophic 

guild are caused by differences in growth rate and not trophic position.  Although both 

growth rate and trophic position differed between species our data suggest that, in 

contrast to Swanson et al.’s (2003, 2006) predictions, the primary factor responsible for 

species-specific differences in planktivorous fish mercury levels were differences in 

trophic position. 

Two lines of evidence support the conclusion that variation in planktivorous fish 

mercury concentration was likely caused by differences in trophic position.  First, we 
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found no species-specific differences after mercury concentrations were corrected for 

trophic position.  This indicates that the relationship between mercury and trophic 

position was similar in each species and that differences in mercury concentration can be 

explained by differences in mean trophic position.  Second, we found a positive 

relationship between mean mercury concentration and mean trophic position.  The slope 

of the relationship between mean mercury and mean trophic position (measured using 

δ15N) is a measure of biomagnification and can be used to compare transfer efficiencies 

between mercury and biomass in food webs (Rolff et al. 1993, Campbell et al. 2003, 

Jardine et al. 2006).  A slope greater than 0 indicates that mercury is transferred more 

efficiently than biomass through the food web, in other words that biomagnification is 

occurring (Rolff et al. 1993).  The biomagnification coefficient found in this study (0.63) 

was remarkably similar to the biomagnification coefficient found in a previous study that 

examined 9 species of Caddo Lake fish whose mean trophic positions varied by >1 

trophic level (0.68, Chumchal and Hambright in review). These slopes are similar to 

those observed in other studies conducted in both marine and freshwater ecosystems 

(Chumchal and Hambright in review). 

 Despite differences between species, growth rates do not appear to explain the 

pattern of mercury contamination observed in this study.  Consistent with the hypothesis 

that fish with slow growth rates have elevated concentrations of mercury (Rodgers 1996; 

Stafford and Haines 2001; Simoneau et al. 2005), brook silversides had slower growth 

rates and higher concentrations of mercury than threadfin shad and threadfin shad had 

slower growth rates and higher concentrations of mercury than gizzard shad.  However, 

scrutiny of our data reveals that growth rate is not a sufficient explanation for species-
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specific differences in mercury concentrations.  Using a series of models, Rodgers 

(1996) examined the effects of changes in dietary mercury levels and growth rate on 

mercury concentrations in fish tissue.  Populations of fish with different levels of 

mercury in their diets exhibited size- and age-specific concentrations of mercury that 

were distinct from populations of fish with different growth rates.  Fish with high levels 

of mercury in their diets had higher size- and age-specific concentrations of mercury in 

their tissues than fish with low levels of mercury in their diet.  Fish with slow growth 

rates had higher size-specific concentrations of mercury in their tissues but lower age-

specific concentrations of mercury in their tissues relative to fish with fast growth rates.  

In this study, brook silversides had higher length-specific and age-specific 

concentrations of mercury in their tissues relative to threadfin shad and threadfin shad 

had higher length-specific and age-specific concentrations of mercury in their tissues 

relative to gizzard shad.  Therefore, differences in growth rate can not explain the 

species-specific differences in mercury concentration we observed.  Rather, TL- and 

age-specific patterns in mercury contamination of planktivorous fish indicate that their 

diets differed in mercury concentration. 

 Variation in mercury concentration does not appear to be related to horizontal 

food web position which we examined as an alternative explanation for species-specific 

differences in mercury.  Fish feeding in food webs based predominantly on pelagic 

primary production have elevated concentrations of mercury (Lindqvist et al. 1991; 

Power et al. 2002; Gorski et al. 2003; Kidd et al. 2003).  In this study we found a similar 

pattern with individuals that relied more heavily on pelagic food webs having higher 

concentrations of mercury.  However after correcting δ13C values for TL, we found no 
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differences in δ13C values between brook silversides and threadfin shad or threadfin shad 

and gizzard shad. 

 In this study we present evidence that even small differences in mean trophic 

position (< 1 trophic level) can lead to differences in mercury concentration.  These 

results are in contrast to the conclusions of Swanson et al. (2003, 2006) who state that 

trophic position will not be important in determining mercury concentrations within 

guilds.  Swanson et al. (2003) present convincing evidence that differences in mass-

adjusted mercury concentration between spottail shiner and three other “forage” fish 

species (which did not have significantly different mass-adjusted mercury 

concentrations) were not caused by trophic position. They later present evidence that 

spottail shiner likely had elevated mercury concentrations due to slow growth rates 

(Swanson et al. 2006).  In light of our data and previous studies by Swanson et al. (2003, 

2006) we feel that the most logical conclusion is that differences in either growth rate or 

trophic position can lead to differences in mercury concentrations even within trophic 

guilds.  Which factor is more important will be species-specific and dependent on the 

magnitude of differences in trophic position and growth rate between species under 

consideration.  

 This is one of the few studies to examine ecological factors that affect mercury 

concentrations in planktivorous fish (Swanson et al. 2003, 2006).  These studies are 

critical because fish in this trophic guild are important prey items and therefore 

important sources of mercury to piscivorous fish, which often contain levels of mercury 

that are dangerous to fish and wildlife health.  In this study we identified species-specific 

differences in mercury concentrations but mean mercury concentrations of all three 
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species were below the USEPA wildlife criterion (WC).  The WC is predicted to 

represent a safe lifetime dose of mercury for piscivorous wildlife and corresponds to 77 

ng/g ww of mercury for fish that occupy trophic level 3 (USEPA 1997).  These data 

corroborate previous research from Caddo Lake that indicates that most species of fish 

from open water habitats, the habitats from which the fish in this study were collected, 

do not pose a health risk to piscivorous wildlife (Chumchal and Hambright in review).   

 In this study, we found that differences in mercury concentrations between 

planktivorous fish species were related to differences in trophic position.  

Biomagnification of mercury has been consistently reported at multiple scales of 

ecological organization (within species, trophic guilds, communities, ecosystems) 

(Cabana and Rasmussen 1994, Atwell et al. 1998, Bowles et al. 2001, Power et al. 2002, 

Chumchal and Hambright in review, this study).  Further trophic position predicts 

mercury levels between species when other variables related to mercury concentrations 

(e.g. age or size) do not (Chumchal and Hambright in review, this study).  This implies 

that, although not all differences in mercury concentration can be explained by trophic 

position (i.e. Swanson et al. 2003, 2006), trophic position is one of the most important 

predictors of interspecific mercury concentration in fish, even among species within a 

trophic guild that only exhibit fine-scale differences in trophic position.     
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Table 1.–Mean (± CI) characteristics of planktivorous fish collected from Caddo Lake. 

 

 

   

Brook Silverside

 

Threadfin Shad 

 

Gizzard Shad 

 

Mercury (ng gwet weight
-1) 

  

63.0 ± 25.8 

 

40.4 ± 13.8 

 

26.4 ± 4.2 

Total length (mm)  5.3 ± 0.6 7.3 ± 0.8 23.0 ± 2.9 

Age (years)  1.3 ± 0.2 1.3 ± 0.3 2.5 ± 0.5 

Growth rate (mm/year)  4.4 ± 0.3 5.6 ± 0.3 10.3 ± 1.4 

Trophic position  3.5 ± 0.1 3.2 ± 0.1 2.9 ± 0.1 

δ13C (‰)  -28.6 ± 0.6 -29.8 ± 0.6 -31.2 ± 0.6 



Table 3.  Significance values associated with analysis of covariance (ANCOVA) used to compare mercury and other 

ecological factors in different species of planktivorous fish after correcting for TL or age.   

 
Dependent 

variablea 

Covariatea Covariate x 

speciesa P 

ANCOVA Wilcox procedure results   

   Species P Covariate P  

Mercury TLb <0.001 - - All pairwise comparisons P <0.05  

Mercury Age <0.001 - - All pairwise comparisons P <0.05 

Trophic position TLb 0.04 - - All pairwise comparisons P <0.05 

Log-Mercury Trophic position 0.32 0.15 <0.001 - 

TLb ln age <0.001 - - All pairwise comparisons P <0.05 

δ13C TLb 0.001 - - BS vs GS P <0.05; BS vs TS & TS 

vs GS P >0.05c  

Log-Mercury δ13C 0.58 <0.001 <0.001 - 

a Fixed factor in the ANCOVA model was species (three levels: brook silverside, threadfin shad and gizzard shad) 

b TL, total length      
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c BS = brook silverside, TS = threadfin shad, GS = gizzard shad 
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Figure captions 
 
Figure 1 – Relationship between (A) planktivorous fish total length and (B) 

planktivorous fish age and total mercury concentration in epaxial muscle (ng gwet weight
-1). 

 

Figure 2 – Relationship between (A) planktivorous fish trophic position and total length 

and (B) and planktivorous fish trophic position and total mercury concentration in 

epaxial muscle (ng gwet weight
-1). 

 

Figure 3 – Relationship between planktivorous fish total length and planktivorous fish 

age. 

 

Figure 4 – Relationship between (A) planktivorous fish δ13C and total length and (B) 

planktivorous fish δ13C values and total mercury concentration in epaxial muscle (ng gwet 

weight
-1). 
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Abstract 

United States Environmental Protection Agency protocols for analyzing total mercury 

concentration in fish tissue recommend using wet tissues, but in many cases, it would be 

advantageous to use dried tissues. This study compared total mercury concentration from 

wet and dry tissues, using 30 individual fish representing 11 freshwater and estuarine 

species.  After correcting for water content, estimates of mercury concentrations from 

dry tissue were not significantly different from estimates of mercury concentrations from 

wet tissue.  Variation in estimates of mercury concentration from wet and dry tissues 

was random and was not related to the level of contamination of the tissue.  Our data 

indicate that dried fish tissues are suitable for estimating mercury concentration, and 

give results equivalent to those of wet tissues.   
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Introduction 

 Methylmercury is a highly toxic pollutant (NRC, 2001) that bioaccumulates in 

fish (Bowles et al., 2001; Power et al., 2002).  Total mercury concentration is used as a 

proxy for methylmercury concentration in fish because 95-99% of mercury in fish tissue 

is in the form methylmercury (Bloom, 1992).  The United States Environmental 

Protection Agency (USEPA) recommends using wet tissue to determine total mercury 

concentration in fish (USEPA, 2000).  Cizdziel et al. (2002) hypothesized that that 

deviating from USEPA recommendations by drying tissues may lead to a loss of total 

mercury and therefore to an underestimation of mercury concentration.  However, the 

analysis of total mercury concentration in dried tissues may be more desirable because 

water content of wet tissues can be variable due to excess external water or dehydration 

(Busacker et al., 1990).  In addition, unlike wet tissue, dry tissue samples can be stored 

for long periods of time without decomposition or weight changes.  The purpose of this 

study was to compare the estimated mercury concentration of fish using wet and dry 

tissues and to determine if dry tissues can be used to accurately estimate mercury 

concentration in fish.   

Materials and methods 

Fish collection and analyses 

 Freshwater and estuarine fish were collected with a boat-mounted electrofishing 

unit on 10-12 April 2005 from three sites within the Mississippi River and adjacent 

drainages near New Orleans, LA.  We collected 30 individual fish representing 11 

species (Table 1).  Fish total length was measured to the nearest mm in the field.   
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 Muscle tissue was dissected in the field with a clean stainless-steel knife.  A 

sample of epaxial muscle tissue was dissected from the right and left side of each fish.  

One sample was used for the wet tissue analysis and the other sample was used for the 

dry tissue analysis.  Tissue samples were placed individually into plastic bags and stored 

on ice until being transported to the lab and frozen.  Tissue samples used in the dry 

tissue analysis were dried to a constant weight in a 60° C oven (48 hours) and 

homogenized with a ball-mill grinder (Dentsply International, York, PA).   

   Total mercury analyses were performed with a direct mercury analyzer (DMA-

80, Milestone Inc. Monroe, CT USA) that uses thermal decomposition, gold 

amalgamation and atomic absorption spectrometry (USEPA, 1998).  A calibration curve 

was generated using three reference materials from the National Research Council of 

Canada (MESS-3, PACS-2 and DORM-2).  Reference samples (National Research 

Council of Canada, TORT-2) were analyzed each time the mercury analyzer processed 

10 consecutive samples (percent recovery =100.4 ± 0.05% (mean ± 95% C.I.)), n = 5).  

We analyzed 111.9 – 198.5 mg (wet weight [ww]) and 33.3 – 41.4 mg (dry weight [dw]) 

of wet and dry tissues, respectively.    

 Estimates of mercury concentrations from dry tissues were corrected for loss of 

water (i.e., made equivalent to estimates from wet tissues) by multiplying by the dw:ww 

ratio.  The ww of each tissue was determined by immediately weighing the tissue after it 

was removed from its plastic bag.  Water-weight of each tissue was estimated by 

subtracting dw from ww.   

Statistical analyses 
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 To determine whether differences between estimates of mercury concentration 

from wet and dry tissues ([Hg]wet and [Hg]dry, respectively) could be explained by loss of 

water upon drying, we compared the mercury concentration of water-weight corrected 

dry tissues ([Hg]dry-corrected) to [Hg]wet.  We used linear regression analysis to test the null 

hypothesis that [Hg]wet and [Hg]dry-corrected were not statistically different (i.e., the 

relationship between [Hg]wet and [Hg]dry-corrected would be a line with slope and y-

intercept equal to 1 and 0, respectively) (SPSS Inc., version 11.5.0, Chicago, IL).    

 To determine if the variation between the [Hg]wet and [Hg]dry-corrected was higher 

than would be expected based on laboratory analytical error, we compared the average 

level of disagreement found between [Hg]wet and [Hg]dry-corrected to the average level of 

disagreement found between laboratory replicates.  Level of disagreement was 

quantified by taking the absolute difference between two paired replicate samples and 

dividing by the mean of the pair to obtain a normalized difference or relative percent 

difference (RPD), where RPD = |([Hg]wet – [Hg]dry-corrected)|/(([Hg]wet + [Hg]dry-

corrected)/2)*100.  We used mean RPDs to compare differences among groups.  

Specifically, we compared the mean RPD from paired wet and dry-corrected samples to 

the mean RPD from 30 paired replicate samples of wet tissues and 30 paired replicate 

samples of dry tissue using independent samples t-tests.  These comparisons were made 

after averaging absolute values of the RPDs in each group.  The 60 replicate samples (30 

wet and 30 dry) were analyzed as part of routine quality assurance protocols in our lab 

and are not the same individual fish examined in the other analyses described in this 

study (i.e., the fish in Table 1).  For both wet and dry tissues we chose the 30 most 

recently analyzed replicate samples.  These tissues were collected as part of other studies 
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but were handled as described above.  Mercury concentrations in laboratory replicates 

ranged from 21.2-1,413 ng·g ww-1 for wet tissues and 34.5-2,307 ng·g dw-1 for dry 

tissues. 

 Finally we tested the null hypothesis that variation between [Hg]dry-corrected and 

[Hg]wet was related to the level of mercury contamination of the tissue.  To test this 

hypothesis we regressed the residuals from the relationship between [Hg]dry-corrected and 

[Hg]wet against [Hg]wet.  We used linear regression to test the hypothesis that the slope 

and y-intercept were equal to 0. 

Results and discussion 

Estimated mercury concentrations from wet and dry tissues 

 Estimates of total mercury concentration in muscle tissue ranged from 9.52-568 

ng·g ww-1 in wet tissues and 41.7-2,698 ng·g dw-1 in dry tissues, with 4.78 ± 0.36 times 

higher concentrations observed in dry tissues.  This difference was expected because 

drying reduces the weight of the tissue through water loss, effectively concentrating the 

mercury per unit remaining weight.  The water content of fish tissues, as estimated from 

water loss upon drying, was 78.6 ± 0.56% and was relatively uniform between samples 

(Table 1).  To compare estimates of total mercury concentration from wet and dry 

tissues, we corrected the mercury concentration of dry tissue for loss of water.  When we 

corrected for differences in water weight, estimates of mercury from wet and dry tissues 

showed 1-to-1 correspondence (Fig. 1) (i.e,. the slope was not significantly different than 

1, t = 0.42, p = 0.68 and the y-intercept was not significantly different than 0, t = -0.24, p 

= 0.81).  These data indicate that dried fish tissues are suitable for estimating mercury 

concentration, and give results equivalent to wet tissues.  
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Disagreement between [Hg]dry-corrected and [Hg]wet 

 Despite of the good overall agreement between estimates of mercury 

concentration from wet and dry tissues, there was considerable residual variation around 

the regression line (Fig. 1).  The RPD between [Hg]dry-corrected and [Hg]wet was 

approximately 7 times higher than the RPD between wet tissue and dry tissue laboratory 

replicates (Table 2, t = 4.79, p < 0.001 and t = 4.88, p < 0.001, respectively).  The RPD 

between replicate wet tissue samples was not significantly different from the RPD 

between replicate dry tissue samples (Table II, t = -0.57, p = 0.51).   These data indicate 

that the variation between [Hg]dry-corrected and [Hg]wet is greater than the variation that 

would be expected due to laboratory error alone.   

Effect of level of mercury contamination on estimation of mercury concentration 

 We determined if the residual variation from Fig 1 (residuals from [Hg]dry-corrected 

vs [Hg]wet) was related to the level of contamination of the sample measured as [Hg]wet.  

The slope and y-intercept of the relationship between the residual variation from Fig 1 

and [Hg]wet  were not statistically different from 0 (slope: t ≤0.001, p = 1; y-intercept: t ≤ 

0.001, p = 1).  On a percentage basis, with [Hg]wet set at 100%, the [Hg]dry-corrected was 

both higher and lower than the [Hg]wet in a random fashion (Table I).  These data 

indicate that the disagreement between [Hg]dry-corrected and [Hg]wet was not related to the 

concentration of total mercury in the samples.   

 The random disagreement between estimates of mercury concentration from wet 

and dry tissues may be due to variability in mercury concentrations within individual 

fish.  Cizdziel et al. (2002) found relatively high levels of within-fillet variation in 

mercury concentration with relative standard deviations (RSD = [Standard deviation / 
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mean] *100) of 7.2, 7.6, 11 and 6.3 from samples of striped bass, largemouth bass, 

bluegill, and rainbow trout, respectively (data from their Table I).  Our samples were 

dissected from different sides of the same fish, and disagreements between [Hg]dry-corrected 

and [Hg]wet (RSD = 8.56 ± 3.23) were similar to those found by Cizdziel et al. (2002) 

and may reflect fillet-to-fillet variation in fish mercury concentrations.  These findings 

suggest that in future studies estimates of fillet mercury concentrations could be 

improved by combining tissues from several pieces of fillet tissue, rather than just 

sampling a small amount of tissue from a large fillet. 
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Table 1. Mercury (Hg) concentration (expressed as ng·g-1), % water weight of wet tissues, and % difference between mercury 

concentrations estimated from wet and water corrected dry tissues (wet tissue set as 100%). TL = total length of fish   

Species TL(mm) 

% water 

weight 

[Hg] wet 

tissue 

Water corrected 

[Hg] in dry tissue 

% 

difference 

Bigmouth buffalo (Ictiobus 

cyprinellus) 

660 79.1 128 164 -28.1 

Blue catfish (Ictalurus furcatus) 740 77.5 18.7 19.5 -4.28 

 845 79.6 70.6 70.9 -0.42 

Bluegill (Lepomis macrochirus)  157 78.9 101 107 -5.94 

 181 77.4 231 211 8.66 

Common carp (Cyprinus carpio) 436 77.8 26.3 23.7 9.89 

 595 77.5 30.0 30.8 -2.67 

 618 80.1 41.0 32.5 20.7 

Freshwater drum (Aplodinotus  356 80.0 38.9 71.5 -83.8 

grunniens) 468 81.5 79.9 96.3 -20.5 
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Gizzard shad (Dorosoma 

cepedianum) 

368 72.9 22.5 15.7 30.2 

Largemouth bass (Micropterus  197 78.9 227 164 27.8 

salmoides) 207 78.6 178 169 5.06 

 229 78.4 199 175 12.1 

 238 76.7 192 173 9.90 

 283 78.4 414 394 4.83 

 292 80.2 280 283 -1.07 

 314 78.7 396 442 -11.6 

 322 79.2 378 451 -19.3 

Striped mullet (Mugil cephalus) 186 79.5 10.1 9.02 10.7 

 350 76.7 9.52 11.0 -15.5 

Red drum  (Sciaenops ocellatus) 585 77.5 158 157 0.63 

 592 80.2 273 285 -4.40 

Smallmouth buffalo (Ictiobus 510 80.5 30.2 33.9 -12.3 

114 

 



 115

bubalus) 

Spotted gar (Lepisosteus 

oculatus) 

380 79.2 122 126 -3.28 

 503 79.1 314 263 16.2 

 504 79.7 326 306 6.13 

 554 78.3 373 383 -2.68 

 579 78.3 378 378 0 

 808 78.1 568 586 -3.17 
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Table 2. Relative percent difference (RPD) between mercury analyses.  CI = 95% 

confidence interval, * denotes values that were not statistically different.   

Comparison RPD ± CI 

[Hg]dry-corrected vs [Hg]wet 21.9 ± 7.89  

[Hg] lab replicatesdry 2.91 ± 3.25* 

[Hg]lab replicateswet 3.21 ± 3.01* 
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Figure captions 

Figure 1. Relationship between estimates of mercury concentration from wet tissue and 

water weight corrected dry tissues. 
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Figure 1. 
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