
A LANGUAGE TO LEARN

PROGRAMMING

CONCEPTS

By

VIRGINIE COCHARD

Software Engineer Diploma

ENSEEIHT Toulouse, France

1990

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

December 1999

A LANGUAGE TO LEARN

PROGRAMMING

CONCEPTS

Thesis approved:

kr;h::'~

WCt:;r t 13 (JC5?J..Jf.R ~
Dea of the Graduate College

ii

Chapter

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

1. Growing need for skilled software professionals 1

2. Problems when learning a high-level programming language 1

3. Concerns for Computer Science Education 2

4. New approach 2

5. Outline of thesis 3

II. BACKGROUND., 4

1. Computer Science Education concerns " 4

2. Existing approaches 12

III. THE NEW AN'TFARM 26

1. Concerns addressed " 26

2. The New Antfarm environment 33

3. Details of new contribution and examples ' 34

IV. CONCLUSION 39

V. BIBLIOGRAPHY 42

VI. APPENDICES 44

AI. Karel syntax description 45

A2. Karel++ syntax description 47

A3. Joseph syntax description 49

A4. Anttium syntax description 52

A5. New Antfarm syntax description 54

A6. Logo syntax description 55

A7. New Antfarm user manual 57

iii

I. INTRODUCTION

1. Growing need for skilled software professionals

With the fast pace the computer and software industry has taken on, with the cost

of the software going up and with the increasing complexity of the systems, there is and

undoubtedly will continue to be a need for adequately trained software programmers.

Programs need to be well designed and written to limit the 'bugs' in them and to lower

the cost of maintenance. Programs nowadays rarely involve only writing lines of code in

a specific language. Programs are now becoming complex systems that link several

applications together such as networking, databases, tying to industrial machines, etc. So

the programmers have to spend more time mastering those applications, and should thus

be well versed in programming into a high-level language.

2. Problems when learning a high-level programming language

Learning a programming language fiTst as an adult can be an intimidating task.

Children usually do not have this 'fear' of the computer, but high-level languages such as

Basic, Pascal, Fortran or C are not appropriate languages to teach to children, because

they are too complicated and not very exciting.

Mastering a high-level language involves learning many concepts such as variable

declaration, assignment operation, data types, procedures, functions, input/output

parameters, top-down design, etc., as well as dealing with syntax errors, in order to write

even fairly easy programs. Teaching programming languages at the Community College,

[see the difficulty some students experience in grasping so many new abstract concepts

at once. And, by today's standards with the Windows-like interfaces, the results of the

1

execution of such programs are not very spectacular nor thrilling, displayed usually in a

plain DOS window.

3. Concerns for Computer Science Education

The goal of this thesis is to provide an easily assimilable introduction to

programming languages containing key concepts common to most standard programming

languages as well as good programming techniques, accessible to children, college

students and adults. Basic concepts a future programmer ought to know are problem

solving, structure programming constructs, modularity, top-down design and basic data

concepts. In order not to put a burden on the user, the learning process ought to be

facilitated, for example by creating an efficient user-interface and an entertaining tool,

and by using as simple a syntax as possible.

4. New approach

The project of this thesis is to address the above concerns by creating a

programming language which children and adults can learn and use easily. The idea of a

language designed to teach programming is not new. The study of such existing

languages shows however that they do not address all the concerns mentioned. Data

manipulation is taught in the first lessons of a programming language class. However,

none of the existing languages I found introduce the concepts of data in a satisfying way,

if at all. Part of the new approach is to use a good metaphor for teaching data concepts. It

is necessary to learn the syntax of a language to program in that language. In the new

language, I seek to use a syntax which is as close as possible to English. This moves the

2

user's attention away from learning a formal language to focus on problem solving, basic

control issues and data manipulation.

5. Outline of thesis

Chapter II lists the concepts that a student should learn in order to be an effective

programmer, and problems encountered in the learning process. It then reviews the

existing tools that teach programming. Chapter III presents the new language created, and

explains how it addresses the concepts we seek to teach. The appendices provide a

detailed description of the languages studied, and include the New Antfarm manual.

3

II. BACKGROUND

1. Computer Science Education concerns

According to Jacques LaFrance [10], in 1982 many people were becoming

"programmers" without any awareness ofthe modern concept of proper design or of

program quality level, having no conception of programming style, documentation or

maintainability. Still now, at the horizon ofthe year 2000, it is essential that we focus on

teaching good programming practices. Learning how to program is more than just

learning the syntax of a language. It is learning a methodology and acquiring good

practices to create programs that are well designed, easy to read, and to maintain.

A huge literature exists on software engineering concepts and effective

programming techniques. Research has also been conducted on the difficulties that

student programmers encounter (see for example [5, 6, 15, 17]).

Problem solving concepts

A key to programming is to be able to conceive a solution for a problem.

Programming requires thinking, solving, planning, and organizing. Pseudo-code and flow

charts are often used to help students in formulating the solution to the problem, without

worrying about the targeted programming language.

Research confirms that problem solving skills are critical. Bonar and Cunningham

state that " ... success with programming seems to be tied to a novice's ability to

recognize general goals in the description of a task, and to translate those goals into

actual program code" [4]. In a study by Spomer and Soloway [20] it appears that

" ...many bugs arise as a result ofplan composition problems - difficulties in putting the

4

-

"pieces" of a problem together - and not as a result of construct-basedproblems, which

are misconceptions about language constructs." An example of plan composition problem

is the tax program. Depending on the marital status entered by the user, the tax

computation for single or married will be called and the results are then printed. The bug

occurs when the results are printed even when the value entered is not 'm (for married),

or's' (for single). The buggy program looks like (in Pascal):

IF (Marital_Status = Om')
THEN MARRIED(Income, Tax)
ELSE IF (Marital_Status = 's')

THEN SINGLE(Income, Tax)
ELSE WRITELN('Bad input: Try again!');

WRITELN('Status =', Marital_Status);
WRITELN('Income =', Income:0:2);
WRITELN('Tax =',Tax:0:2);

Examples of construct-based problems are the "natural-language problem" where

"novices become confused about the semantics of the constructs", and the "human

interpreter problem" where novices assume that the computer will interpret the construct

the way they intend it to be interpreted [20].

In her paper on Computer Programming in High School vs College [16]

Schollmeyer concludes: "To best prepare high school students for CS courses in college,

the emphasis on the high school level should not be the instruction of the syntax of a

programming language, as commonly observed. Instead, students' problem solving skills

should be addressed. This includes the emphasis on program specification and design, in

particular the solving of subproblems rather than attacking the problem as a whole. A

structured programming language usually provides students with better problem skills,

which in addition to the programming concepts, are the skills deemed essential for

success at the college level."

5

Problem solving can be taught independently of a language and can then be

applied to any language. And if the students do not end up being programmers,

programming can help transfer problem solving and thinking skills to other areas such as

writing. Dennies made three studies on the usefulness ofteaching programming. "In two

of th.em, ninth graders who learned structured programming methods using the Karel the

Robot teaching language performed considerably better on a series of expository writing

tasks than did students in the studies' control groups. In the third study, students who

began their introductory programming methods course with Karel performed

substantially better on difficult structured programming tasks using Pascal" [8].

Structured programming constructs

"Bohm and Jacopini [3] (...) proved that any logical system can be reduced to a

combination of three basic logic forms. These forms are called sequence, selection, and

iteration. A sequence is one operation after another; a selection is the making of a choice

between two or more alternatives; and an iteration is the repetition of something until

some terminating condition is met. Limiting ourselves to those basic structures is called

structured programming." [11]. The trend has been to omit the GoTo statement

(unconditional branching) to prevent the students from writing unstructured programs.

Even though it has been stated that bugs arise more due to poor problem solving

skills [4, 16, 20], students encounter many problems when using control structures, even

the most simple construct: the sequential control structure. "What sometimes gets

forgotten is that each instruction operates in the environment created by the previous

instructions. Some beginners seem to imagine that the effects of each instruction are

somehow saved up until the end of the program, at which point they all happen." Some

6

students think. 'the system will of itself jump around and ignore sections of code which

are not wanted under some circumstances" [5].

Several errors with the iteration control structure involve incorrectly determining

when loops begin and end, and which statements are repeated. As an example given in a

study of errors by high school students using Pascal [17], a WRITELN statement adjacent

to the loop was included into the loop by some students. Also some students thought that

a BEGIN/END block defined a loop despite the absence of a FOR or WHILE statement.

"FOR loops are troublesome because beginners often fail to understand that behind the

scenes the loop control variable is being incremented on each cycle of the loop".

Modularity and top-down design

Another major consideration in good programming is the modularity of programs,

that is, to divide the initial problem into subproblems, which themselves can be divided

into subproblems. Programs made out of such modules are more readable, easier to test

and to maintain. Schollmeyer states [16J that "if students keep approaching problem by

immediately attacking them rather than breaking them down into manageable chunks.

they may never be able to write good, readable, and correct programs." Perkins et al. also

state that "students do not always recognize that breaking problems down will aid in the

solution of programming problems. (...) Students face trouble in breaking problems

down because they often try to deal with decomposition issues in the middle of coding,

instead of planning deliberately in advance." [15]

Top-down design is about breaking problems down into subproblems. Tomek

[14] thinks it is important for the student to be able to write a program in the order it is

designed, that is. starting with the main program, and then progressing to the more and

7

-

more detailed subprograms. Thus the student must be able to call subprograms that have

not yet been defmed. A program written this way will be easier to read, understand and

modify.

Modularity is created through the use of procedures. In a study of Pascal and high

school students [17], the authors found the tollowing problems when students used

procedures: "All statements including those in procedure bodies were executed in the

order they appeared (a frequent error); and procedures are executed when they are

encountered, in a top-to-bottom scan of the program text (...) and again when they are

called (a fairly frequent error)."

Basic data concepts

Computer science is about manipulating information. In fact the French word for

.computer science' is 'informatique'. The students need to be aware of basic data

concepts, such as data storage, data access, and input/output.

Problems with data are numerous. Problems with assignment statement include:

"A:=B was interpreted as switching the values in the variables", "the assignment

statement had no effect", and "A:=B was interpreted as A=B" (comparison operator)

[17].

The INPUT statement is often not understood. "Some people find it very hard to

grasp the idea of what goes on when a program reads in data, say from the keyboard (i.e.,

INPUT in Basic). In most languages the syntax disguises that a kind of assignment is

involved and that the variable mentioned in the statement has its value changed (or

initialized) by the statement." Also students "do not appreciate that execution ofthe

8

-

READ stops further execution of the program at that point and that it cannot continue

until something is typed in by the user".[5]

Fleury discusses parameter passing and explains how students construct their own

rules, leading to misconceptions in the use of parameters and global variables [6]. An

example of student-constructed rule is: "When the value of a VAR parameter is changed,

that new value is available throughout the program." The student does not encounter any

problem with this rule when all the procedures are called from the main program. The

students derive it from the following correct rule: "When a procedure makes an

assignment to one of its VAR parameters, that new value is also known outside the

procedure that changes the value." Fleury notes that "parameter passing is not likely to be

the only topic for which student-constructed rules are prevalent."

Language learning

The concern of this thesis is not to teach a specific programming language. We do

not know what the languages of the future will look like. Some studies, and personal

experience as well, show that once one knows a language, it is much easier to learn

another one [8]. Although students need to be aware that the rules of the syntax of the

target language have to be respected in order for their programs to run, our goal is to

minimize the energy the user will have to spend on learning the syntax of the language.

In Pascal many errors are made due to the semicolon. For example a FOR loop

with a misplaced semicolon after the DO keyword can make "novices despair of ever

learning to communicate with the computer" [5].

Syntax set aside, many problems arise because students attribute to the computer

a certain intelligence. A study by Sleeman et al. shows that "the students attribute to the

9

computer the reasoning power of an average person" [17]. They found out that "several

students had difficulty understanding how a READLN statement assigned values to a

variable." For example some students believed that a READLN statement used with a

meaningful variable name caused the program to select a value based on the name's

meaning. Ifthe program encounters a READLN(Odd, Event) statement and the user input

is '2 3', then the students would say that 2 is stored into the Even variable and 3 into the

Odd variable. A program finding the biggest value of a set of numbers, but using a

variable named "smallest" was declared as finding the smallest value instead [17].

Students also had problem with the WRITELN statement. They thought for example that

WRITELN('Enter a number:') caused a number to be read.

Benedict DuBoulay notes that "the use of English words in programming

languages can mislead in further ways than just suggesting more intelligence than the

system possesses." She cites the example of "THEN" that is sometimes used "in the

sense of what next: "I went to the shop and then bought a paper"". Another example is

the "REPEAT" which "misleads beginners who expect that there must be something

already in existence to be repeated." [5]

Facilitating the learning process

Perkins et al. [15] distinguish between two kinds of students: the movers who will

go on trying programs and the stoppers who will stop at the first problem they encounter.

The latter "appear to view bugs more as reflecting on the value of their performance. For

them, programming mistakes can be devastating because the mistakes are so obvious."

Computer work "can become a threat to self-esteem and one's standing with peers and

10

teachers." So it is crucial to make the learning process as easy as possible. An

entertaining language will be more accessible for children as well as adults.

An interpreted language instead of a compiled language facilitates the

understanding of the execution of a program. With a compiled language, a full program

has to be written and compiled before it can be run. As DuBoulay [5] notes, "much

technical detail has to be mastered, both to do with the language itself and the system for

managing programs before even a simple first program can be run". A compiled language

does not allow the user to experiment easily with single commands. "In general, only

complete programs can be run, making it impossible to find out easily what a single

command, procedure or function will do on its own. This makes it hard for the novice to

learn how to build programs out of smaller parts that he has become familiar with." [5]

A visualization of the effects of the program will help students in understanding

the program. According to Perkins et a1. [15), "a vital skill for any programmer is what

we call "close tracking."(...) As the student proceeds through the code, the student must

map its effects onto changes in what might be called a "status representation", specific to

the problem. For instance, in LOGO graphics problems, the turtle signals the status in

large part; the student must read with precision how each piece of code alters the position

and orientation of the turtle, and whether the pen is currently up or down."

Another way of facilitating the learning process is to use an English-based

language [g]. We can also help the learning process further by creating language

constructs that are "closer to how people "naturally" specify problem solutions." [19].

Soloway et a!. [19] found that students overwhelmingly preferred a READ/PROCESS

strategy inside a loop over a PROCESS/READ strategy as the former is closer to the way

11

one thinks. They also found out that "students write programs correctly more often using

a construct that permits them to exit from the middle of the loop", even though it is

considered bad programming technique!

2. Existing approaches

The Turtle ofLogo

The Logo language was developed in the late 1970s by Seymour Papert, Daniel

Bobrow and Wallace Feurzeig at MIT. Their aim was to produce a graphical

programming environment that was both powerful and simple to use. The Logo language

is based on the Lisp language and is quite complex. A subset of Logo, called the Turtle of

Logo provides children a way of playing and at the same time learning mathematical and

geometry concepts, and developing problem solving skills. The Turtle of Logo is a very

popular language, and many different versions of Logo have been developed and are still

being developed. It has mainly been used for the purpose of teaching programming

languages to children. The version of Logo described in this document is MSWLogo,

developed by George Mills [7]. A free version of MSWLogo can be downloaded from

the Internet [13]. The description of the Turtle of Logo language can be found in

Appendix A6.

In Logo, a turtle moves around under the control of a computer, drawing as it

goes. The user can command the turtle to move forward or backward and tum a certain

angle to the left or right, drawing shapes such as lines, rectangles, and triangles as it

moves.

12

Structured programming constructs

Logo includes the three basic constructs: sequence, selection, and iteration and

allows the nesting of any of those constructs. A feature of the selection construct which is

not present in the other languages is the TEST instruction. It evaluates and stores the

Boolean value of the tested expression. The ISTRUE and IS FALSE instructions can then

be used and will be executed dep~nd.ing on the result of the last TEST instruction. It is to

be noted that this is close to the way one may reason: 'I first check if this is true. If it is

true then I will. .. ' .

Logo provides the user with a 'For loop' instruction, and with the 'Repeat. .. Until'

and 'Do ... While' instructions with pre- or post-condition (the test on the condition is

made before or after the set of instructions is executed). In the 'For loop' instruction the

user can specify the increment. One can for example loop for index equal to 2 up to I 0 by

increment of 1.5.

Logo has a branching instruction (GOTO) that is used in conjunction with the

TAG instruction. None of the other languages studied here provide a GOTO instruction

for the reason that using GOTO instructions is considered a bad programming practice,

leading to unstructured programs.

Logo supports arithmetic predicates (such as less than, equal to, etc.), the AND,

OR and NOT logical operators, and a number of predicates for lists and arrays.

Modularity and top-down design

Logo allows the user to define subprograms to create modular programs. An

undefined instruction can be used to define another instruction. However, when the latter

instruction is run, the former instruction must have been defined. This allows the user to

13

write his program just as he designs it, that is from the top down with the main goal first

and then the subgoals.

Basic data concepts

Logo supports the concept ofvariables, but it does not teach about variable type

concept. Also, the syntax for creating and using variables is awkward. The MAKE

instruction is used to create and initialize a variable. When referenced, the variable name

must be preceded by a double-quote ("myvar for example). The value ofa variable is

accessed by preceding its name with a colon (:myvar for example). Subprograms can

have input parameters.

Logo also supports input/output functionalities. In MSWLogo, the user can output

to the drawing area or to the communication area, using LABEL or PRINT. The user can

use Windows graphical interface objects such as dialog boxes, check boxes, radio

buttons, lists, etc., in his program to get user input.

Facilitating the learning process

The user can program the turtle by typing one command at a time and running it.

The effect of the command, if any, is visible on the screen, providing immediate

feedback. The drawing of geometrical patterns on the screen gives an entertaining

purpose to the programming task.

Language Learning

The major drawback of Logo is its awkward syntax, originating from the Lisp

language. For example, it uses square brackets as block constructs. The syntax of its

control structures looks like mathematical formulas, and the declaration and use of

variables require the user to memorize when to use a colon or a double-quote character.

14

Josef

In the early 1980s, Ivan Tomek created a language in which Josef, a robot, can

understand and execute simple commands. Josef can travel on the screen following a map

of streets. He can move forward and tum left or right. He can communicate; he can say

things and listen or more precisely get messages. Marks are symbols that Josef can place

on the map to leave a trace, and he can erase a previously set mark. Josef is also able to

pick up or get objects, carry those objects, and leave them in a different place. Josef can

see objects if they are in his present location, and can tell whether he has an object in his

possession. A complete description of syntax of the language can be found in Appendix

A3.

Structured programming constructs

Josef supports the three basic control structures, and allows the user to nest those

structures. When using a repetition instruction, the user has the choice between either a

'Repeat. .. Until' instruction using a post-condition, or a 'While ... ' instruction u ing a

pre-condition. A conditional expression can be the Boolean constants TRUE or FALS E,

predicates on the state of the robot, such as BLOCKED, CORNER, HA VE(object), etc., a

Boolean variable, a Boolean function call, or an arithmetic or string relational expression.

More complex conditional expressions can be built with the AND, OR, and NOT

operators as well as the use of parentheses to prioritize the evaluation of the expressions.

Modularity and top-down design

Joseph supports subprograms. At the difference of the other languages, it supports

functions. As in Logo, the fact that one can use an undefined instruction to define another

instruction allows the user to write his program at the same time he designs it from the

top down.

15

Basic data concepts

losers language supports variables. This concept is explained in losers manual

as follows [21]: a variable is like a paper card with a label on it (the variable name), and

something can be written on the card (the variable value). But this meaning is not carried

by the syntax. Variables do not need to be declared. Josef does not introduce the user to

the concept of data type. String, integer and Boolean values can be stored in a variable.

Variables can be used in arithmetic expressions, and assigned values using the

assigrunent operator (:=), the same way as in Pascal.

Josef introduces the concept of input/output. Text can be output to the

communication area on the screen with the SAY instruction (for example SAYCI can

communicate')). Text can be read from the keyboard and stored into a variable with the

LISTEN instruction (for example LISTEN(GREETING)).

Subprograms in Josef can have input and/or output parameters, unlike the other

languages which support no parameter or input parameter only.

Facilitating the learning process

Like Logo, it is easy to 'play' with Josef, because the user can type one

instruction at a time, execute it, and watch its effect on the screen.

Language Learning

Although Josers language is friendlier than the Logo language, it uses keywords

such as BEGIN and END for block constructs that are used in selection and repetition

control structures, and in the definition of new instructions. It uses the assigrunent (' :=')

and the equality comparison ('= ') operators of Pascal. Incrementing an integer is done by

using the following instruction: COUNT := COUNT + I, which is far from obvious and

requires some explanation from a teacher.

16

Karel

Richard E. Pattis designed in the early 1980s another robot named Karel very

similar to Josef. Karel is a robot that can travel along a grid of streets displayed on the

screen. He can move forward and turn in place. There are wall sections on the map, and

Karel must navigate around them. Karel has some capabilities to see, hear, touch, and he

knows about direction. Beepers are small objects that emit a quiet beeping noise. Karel

can pick them up, carry them to another comer, and put them down. A complete

description of syntax of the language can be found in Appendix AI.

Structured programming constructs

As in Logo and Josef, Karel supports the three basic control structures, as well as

the nesting of those structures. Apart from the 'For loop' instruction, the only repetition

instruction allowed with Karel is a 'While loop' with pre-condition.

Only a well-defined set oftest conditions is available. Each condition is available

in both its positive and negative forms (for example front-is-clear and front-is-blocked),

removing the need for a negation operator. There are no Boolean operators such as AND

and OR to build conditions such as "front-is-clear AND facing-east".

Modularity and top-down design

Karel supports the concept of subprograms. However, as in Pascal, an undefined

instruction cannot be used in the definition of another instruction. Thus the user must

write the subprograms from the bottom up, creating a program harder to read.

Basic data concepts

Karel does not support the concept of variables, subprogram parameters nor

input/output functions.

17

Facilitating the learning process

The user must write a full program and then run it, as opposed to rwming an

instruction at a time. After the program has been run, the environment of Karel is reset

and Karel's new instructions are erased from the memory. The feedback process is not as

good as in the other languages.

Language Learning

Although Karel is the simplest language in terms of the number of instructions, I

find Karel's language syntax awkward to learn. It makes use of many keywords to be

used when defining new instructions or block constructs. Instructions have to be

separated with a semi-colon as in Pascal. And a program must end with the 'turnoff

instruction to avoid an error shutoff.

Karel++

In the late 1990s Pattis added a new dimension to Karel's language by creating

Karel++ in order to teach object-oriented programming. The environment of Karel++ is

similar to Karel's except that one can have several robots. Karel++ teaches the user how

to create a new class of robots based on an already existing class, and how to define new

instructions for this class of robots. Object-oriented programming concepts taught are

class hierarchy, inheritance, polymorphism and definition of an instance (a robot) of a

class. A class of robots can have local robots. The base class ur_Robot has a predefined

constructor. However the user cannot define his own constructors. Other concepts taught

are Boolean functions to allow the user to define his own predicates, and also pointers (or

aliases) to robots.

Karel++ syntax is more complex that Karel's. The data concept is introduced in

Karel++ by the definition of an instance of a class of robots. However Karel++ does not

18

teach the basic concepts of variables. A complete description of syntax of the language

can be found in Appendix A2.

Antfarm

Jacques LaFrance created the original Antfann language in 1981. In Antfann, an

ant can move in a field, plant seeds, eat plants, smell and see things ahead. Each ant starts

with a certain amount of energy and this energy decreases as time goes by. An ant will

starve if not fed enough and explode if fed too much, and it is the responsibility of the

uscr to keep his ants alive. A complete description of syntax of the language can be found

in Appendices A4.

Structured programming constructs

As in the other languages, Antfarm supports the three basic control structures and

the nesting of those structures. It is to be noted that only one instruction can be specified

in the IF and IF ... ELS E selection instructions. This was done to avoid the use of block

constructs to simplify the language syntax. However if one wishes to specify a set of

instructions, one can define a new instruction for this set of instructions and use this

newly defined instruction in the selection instruction.

Apart from the 'For loop' instruction, Antfarm supports only a 'Do ... Until'

instruction with post-condition. Again here no block structure is needed since the

keywords Do and Until delimit the set of instructions to be repeated.

Antfarm provides a set of predicates such as SEE object direction, STARVED,

BEYOND row, to be used as conditional expressions. The AND, OR and NOT operators

allow the user to build more complex conditions. The user must define a new test (using

19

---------

the same syntax as the one to define a new instruction) to prioritize the evaluation of the

conditions.

Modularity and top-down design

Antfann supports subprograms, and just as Josef and Logo allows the user to

type his instructions from the top down. Antfarm limits, on purpose, the length of an

instruction in order to force the user to create subprograms.

Basic data concepts

As in Karel, Antfarm does not support the concept of data, input/output functions,

nor subprogram parameters.

Facilitating the learning process

Antfarm facilitates the learning process by allowing the user to type one

command at a time, run it, and see the effect of this command on the screen.

Language Learning

One of the objectives of Antfarm has been to minimize any effort due to the

language syntax. Among all the languages studied here, Antfarm is the language do est

to English. It minimizes the use of keywords and any keyword used has a meaning, such

as the DO and UNTIL keywords in the 'Do ... Until' instruction.

Another approach: ToonTalk

I did not find any papers indicating that other languages such as the ones studied

above had been created recently. With the advance in computer technology, in particular

in graphical interfaces, new ideas have emerged such as ToonTalk [9]. The idea was that

since the programming language itself is a problem, we could simply get rid of it [18].

This language is like a video game where the user "writes" a program by manipulating

objects on the screen with the mouse.

20

Ken Kahn developed ToonTalk in 1995. It is an animated programming

environment designed for children. In ToonTalk, programs are not made up of text, and

they are more than pictures. They are animated programs, just as video games. "Writing'

a program is made by manipulating numbers, robots, birds, toolboxes, hand-held vacuum

cleaners ... on the screen using a mouse, like you would use a video game. Conventional

programs such as factorial and parallel quick sort or games can be constructed without

writing a line of text. A great deal of effort has been spent to find easily understandable

concrete metaphors for abstract concepts. For example, communication is illustrated by

birds, who, when given something, fly to their nest, leave the item there and return. In

ToonTalk, several objects can 'run' at the same time. According to its author,

concurrency is appropriate to children because they "expect that each object is rurming all

the time".

In ToonTalk the data types available are numbers, characters, and boxes. A data

can be concatenated with another one by clicking and dragging one next to the other.

Boxes can contain numbers, characters and boxes: simply click the data on the screen and

drag and drop it onto the box. Arithmetic can be performed with ToonTalk. For example,

to add 2 numbers, click and drag one number on top of the other. A hammer will appear

and hit the numbers and replace the target number with the sum. Operations on strings

can also be made. Dragging a 1 on top ofthe letter A will produce a B. A data can be

duplicated by using the magician's wand. Data can be erased and a box can be emptied

by using the hand-held vacuum cleaner. One can swap the values of 2 locations by

moving one from its location to a temporary place on the screen, then move the second

21

value into the first location, and then dragging the first value into the freed econd

location.

ToonTalk helps the student understand data manipulation in a concrete and visual

way. It also introduces him to the concept of compound data, similar to the Pascal

'records' and the C 'structures'. Procedures are represented by robots. We first have to

train a robot to do something by giving him a box (parameter). We are led into its thought

bubble and we teach him what to do with the data. After we are done training the robot,

we press the escape key and return to the real world. To have the robot perform what he

has just learned (that is call the procedure) we simply give him a box similar to the one

we gave him for the training. Comparison tests are made through the scale object. A line

of robots provides something like an "if then else" capability. First In - First Out queues

can be created by using birds and nests. A loop with a counter can be created by using a

scale. Notebooks are stored for pennanent storage of everything the user builds.

"Programming" with ToonTalk is more like using a calculator than programming

with a high-level language. The concept of giving instructions to the computer gets 10 t

with the removal of the language. The difference between ToonTalk and a high-level

language is similar to the difference between a graphical user interface and a command

interface: learning how to use the former does not provide knowledge on how to use the

latter. Also ToonTalk does not teach concurrency, the concurrency mechanism being

buried in the interpreter. So, although ToonTalk approaches the concepts of structured

programming, modularity, data, and obviously solved the problem oflearning the syntax

of a language, I find it is too far from the high-level languages. And it is to be proven that

22

",.

-

children and adults will be able to transfer this knowledge to a programming task with a

high-level language.

Examples

Following are examples of syntax for each language. Refer to the appendixes Al

through A6 for a more complete comparison.

General form ofa program

These examples have the robots or the animals learn how to turn to face the

opposite direction, and then have them move one step forward and then turn around.

Note: An ant turns 45 degrees, Karel and Josef turn 90 degrees at a time. In Logo, you

specify the angle of rotation.

Karel: BEGINNING-OF-PROGRAM
DEFINE-NEW-INSTRUCTION turnaround AS

BEGIN
tumleft;
turnleft

END
BEGINNING-OF-EXECUTION

move;
turnaround;
turnoff

END-Of-EXECUTION
END-Of-PROGRAM

Josef: NEW TURNAROUND
BEGIN

LEFT LEFT
END

MOVE
TURNAROUND

Antfarm:LEARN TURNAROUND DO TURN LEFT 4 TIMES

MOVE TURNAROUND

23

--

Logo: TO TURNAROUND
RT 180

END

FD 1 TURNAROUND

Block constructs

All the languages, except Antfarm, use keywords to delimit a set of instructions.

Antfarm uses the LEARN instruction instead.

Subprograms:

Here are examples of subprogram definitions and subprogram calls

Karel: DEFINE-NEW-INSTRUCTION stepback AS
BEGIN

turnleft;
tumleft;
move;
turnleft;
turnleft

END

Karel:

Josef:

Antfarm:

Logo:

IF front-is-blocked
THEN

BEGIN
tumleft;
turnleft

END

IF BLOCKED THEN
BEGIN

LEFT LEFT
END

LEARN TURNAROUND DO TURN LEFT 4 TIMES
IF ROW 22 TURNAROUND

IF :myvalue<3 [RT 90 FD 10]

stepback;

24

--

Josef: NEW STEPBACK
BEGIN

LEFT LEFT MOVE LEFT LEFT
END

STEPBACK

Antfann: LEARN STEPBACK DO TURN LEFT 4 TIMES MOVE TURN LEFT 4
TIMES

STEPBACK

Logo: TO STEPBACK
RT 180 FD 1 RT 180

END

STEPBACK

Data concepts

Only Josef and Logo support the concept of variables.

Josef: REPORT := 'I told them'
SAW TRUCK:= TRUE
COUNT :=5
DO COUNT + 3 TIMES MOVE
COUNT := COUNT + 1

Logo: MAKE "MYVAR "HELLO
LABEL: MYVAR
MAKE "MYVAR 10
LABEL :MYVAR*2

25

III. THE NEW ANTFARM

1. Concerns addressed

The original Antfarrn language addresses many of the concerns listed in the

second chapter. It includes the three structured programming constructs. It allows the user

(and actually forces him) to build modular programs. The syntax is very close to English,

making it easier for children and adults to use. Its topic is also entertaining: caring for an

ant, not letting it starve to death, nor overfeeding it, brought much enthusiasm among the

children [10]. However, the original Antfarm has several drawbacks: its interface is not

very user-friendly; it is not implemented to run on Windows, the system of choice for

teaching novices how to use computers; and it does not teach data concepts, procedure

parameters, or input/output functions, The following lists the features of the New

Antfarm that address the concerns seen in chapter two.

Problem-solving concepts

The New Antfarrn stimulates the thinking process. Having the ant move and plant

to create patterns on the field, making sure the ant w1ll not die of starvation or of

overfeeding, checking how much energy left it has, are all ways of improving the user's

problem-solving skills. There are just enough features to stimulate the imagination of

children, and at the same time keeping the problems simple to solve. As a comparison,

the Turtle of Logo provides only graphics to enhance those skills, which, I think, is not as

stimulating. And although one can create complex graphics, there is not much variety

offered to enhance problem-solving skills. Josef and Karel provide, as in Antfarm, a more

complex and interesting setting. The vocabulary and syntax of the New Antfarrn being

26

",.
':'.

close to English allows a user to think in his native language, further helping the thinking,

planning and solving process. The drawback of Josef, Karel and Logo is the syntax,

which is an obstacle to learning problem-solving skills.

Structured programming constructs

Being able to run one command at a time as in the New Antfarm enables the user

to apprehend the sequential aspect of a program. By comparison, in Karel, the user has to

type in the whole program before running it. Seeing the immediate effect of the command

on the New Antfarm screen helps the user understand that each instruction operates in the

environment created by the previous instructions.

Unless there is only one command in an iteration or selection command, there is a

need to delimit the set of commands included. A problem whil:h students encounter is in

determining when a loop begins or ends. The syntax of the New Antfarm seeks to prevent

this problem. Only one command is allowed in the selection command, removing the

need for delimiting keywords. There is no "THEN" keyword following the condition.

This simplifies the language, and also removes any ambiguity about the meaning of the

word "THEN". Indeed we have seen in chapter II that some students understand "THEN"

i.n the sense "I do this, and THEN I do that". The form of the selection command is very

simple in the New Antfarm. Examples of IF commands in the New Antfarm are:

IF SMELL FOOD EAT, and

IF SMELL FOOD EAT ELSE MOVE.

Several commands can be included in a repetition command. A repetition command starts

with the keyword DO. The commands repeated are delimited at the end by the condition,

again removing the need for block-construct keywords. For example,

27

DO MOVE TURN LEFT UNTIL FACING EAST

is not likely to create confusion about which commands are repeated. In comparison,

Josef, Karel and Logo use block-construct keywords to delimit the instructions. A Karel

example is:

WHILE not_facing_east DO
BEGIN

move;
turnleft

END

In the Josef example, Josef moves until he is blocked, leaving a mark at each place.

REPEAT
BEGIN

MARK('*')
MOVE

END
UNTIL BLOCKED

The Logo example prints the numbers 1, 2 and 3 as the turtle draws a line of 90 steps:

MAKE "I 0
DO.WHILE [MAKE "[:1+1 LABEL:I FD 30] [:1<3]

The QUIT instruction has been included because exiting from the middle of a

loop is an intuitive strategy, as we have seen in chapter II [19]. Also the QUIT instruction

can be used in the following example where the ant turns in place, no more than one full

tum, until it finds food:

DO IF SMELL FOOD QUIT TURN LEFT 8 TIMES.

Without the QUIT instruction the user could use the following instruction:

DO IF NOT SMELL FOOD TURN LEFT 8 TIMES,

but it is not as clear and efficient as the previous one.

28

Modularity and top-down design

Neither Karel, Josef, nor Logo forces the user to create modular programs. In

Antfarm and the New Antfarm, the length of a list of commands that can be entered at

one time is intentionally limited to 80 characters. The user must define new commands to

write more complex programs.

The terminology 'LEARN' used to define a new command prevents the mistake

where students think the command is executed at the same time as it is defined. And the

fact that no commands can precede or follow the definition of a new command also will

remove the above ambiguity. An example of the definition of a new command in the New

Antfarm is:

LEARN STEPBACK IS DO TURN LEFT 4 TIMES MOVE DO TURN LEFT 4
TIMES

The new command is run as follows:

STEPBACK

As a comparison, following are examples for respectively Karel, Josef and Logo.

DEFINE-NEW-INSTRUCTION stepback AS
BEGIN

turnleft;
tumleft;
move;
tumleft;
tumleft

END
stepback;

NEW STEPBACK
BEGIN

LEFT LEFT MOVE LEFT LEFT
END

STEPBACK

29

--

TO STEPBACK
RT 180 FD 1 RT 180

END
STEPBACK

Although those programs appear to be very similar to the eyes of a programmer, the New

Antfarm has fewer syntax-specific complexities to confuse a novice programmer than the

other languages.

The student can write his modules in a top-down fashion because he can use

undefined commands in the definition of other commands, defining those undefined

commands later, something the Karel language does not allow. In the following example

the problem of drawing a square is using a command drawing a side.

LEARN DRAW_SQUARE IS DO DRAW_SIDE TURN LEFT 4 TIMES
LEARN ORAW SIDE IS DO MOVE 10 TIMES
DRAW_SQUARE

Basic data concepts

Although Josef and Logo's languages include variables, nothing is done in their

syntax to help the user visualize concretely what a variable repre ents. The new Antfarm

uses the metaphor of baskets in which items can be stored, just like a space in memory

where numbers are stored. The data concepts introduced through this metaphor are the

concepts of variable, variable name, variable type, variable declaration and initialization,

and variable manipulation and deaUocation. No "weird" symbol such as ':=' (in Josef) or

, " , (in Logo) is used to perform an assignment operation. The English words PUT and

PICK are used instead. The assignment operation defined in the New Antfarm is a

cumulative operation: the value is added to the previous value contained in the variable.

An example of assignment operation in the New Antfarm is:

PUT 10 SPROUT FROM THE BLUE BASKET INTO THE RED BASKET

30

:1

::)
::s
,.J
L.)

Examples in Josef are:

REPORT:= 'I told them'
COUNT:= 100

Examples in Logo are:

MAKE "MYVAR "HELLO
MAKE "MYNUMBER 10

The New Antfarm seeks to promote good programming practices. Declaring

variables before using them is mandatory in the New Antfarm. The user has to use the

GET A BASKET command and the type of the variable has to be specified at that time,

thus promoting good programming practices. None of the other languages contain those

features. Also, in the New Antfarm, variables can be initialized when declared.

Additional features include variable reset and deallocation. Following is an example of

variable declaration and assignment in the New Antfarm.

GET A BLUE SPROUT BASKET WITH 30 SPROUTS
GET A RED SPROUT BASKET
PUT 10 SPROUTS FROM THE BLUE BASKET INTO THE RED BASKET

When teaching a high-level language, I have noticed students being confused

about the relationship between an input/output function call in a program, and the user

interaction when the program is run. Thus I added input/output functions to Antfarm. The

SAY command displays a message. The LISTEN FOR INPUT gets input from the user.

The tenninology "LISTEN" should help make it clear to the user that the program will

stop the execution and wait for something to be entered (or listen for something to be

said).

The last concept added to make this introduction to programming languages

complete is the concept of subprogram parameters, presented as a substitution. Josef and

31

-I'

J)

Logo include this concept too. The syntax in those languages makes use of par ntheses or

colon to specify the parameters. The more natural way of the New Antfann does not use

any parentheses, and also allows the user to use "template" words to make the commands

more like English. In the following example of the New Antfarm, NUMBER is a

parameter and BIG, MOVE and OF are template words:

LEARN MAKE BIG MOVE OF NUMBER IS DO MOVE NUMBER TIMES
MAKE BIG MOVE OF 10

An example of Josef's use of parameters is:

NEW MAKE_BIG_MOVE_OF(NUMBER)
BEGIN

DO NUMBER TIMES MOVE
END
MAKE_BIG_MOVE_OF(l 0)

An example of Logo is:

TO MAKE BIG MOVE OF :NUMBER- - -
REPEAT NUMBER [FD I]

END
MAKE BIG MOVE OF 10

Language learning

As we have seen all throughout this thesis, the syntax in Antfarm and New

Antfarm is much more straightforward than in any of the other languages. The use of

keywords has been reduced to a bare minimum. The predefined command names have

been chosen so that they have a concrete meaning, avoiding computer jargon. Because

they do not fully apprehend the task of programming, some students assume that the

computer will act differently than what it has been instructed to do. The New Antfarm

language is straightforward enough that it will hopefully prevent students from attributing

32

.3

a certain intelligence to the computer. A language like that used in the New Antfann may

help demystify programming languages.

Facilitating the learning process

To prevent the user from having feelings of failure, friendly messages are

displayed when an error occurs. Those error messages also seek to help the user "fix' his

problem by reminding him of the syntax of the command used. The fact that the New

Antfann is an interpreted language also helps the learning process. It allows the user to

experiment with single commands. Karel is not an interpreted language, which makes it

hard to distinguish what each procedure does. The New Antfarm gives immediate visual

feedback, as do any of the other languages. The New Antfarm should help students

specify problem solutions naturally because it is not about manipulating abstract data but

about giving instructions to an ant-robot to do certain things in a simplified English

language. 1 implemented the new Antfarm to run under Windows NT and Windows 95,

thus greatly improving the interface compared to the original Antfarm, and making it

easier and more enjoyable to use.

2. The New Antfarm environment

The New Antfarm program draws a field on the screen with an ant on it as well as

two rows of food in the upper left part of the field. The ant is initially well fed, but every

action the ant performs consumes one unit of its energy. The ant can plant seeds. Those

seeds grow, becoming sprouts, stalks, branching pLants, flowers, and eventually grow

fruits or "atples". The ant can eat the products of its garden to gain energy back. If the ant

Loses all its energy or if it eats too much, it dies, becoming a skeleton. The remains of a

dead ant have some food value. New ants can be obtained by the NEW command. The

33

"

:)
",r... i
.)

,,'

]

'I
to)
:,
"',

ANT command will direct commands to a different ant. The ant can perform basic

actions such as move, turn left or right (basic commands), repeat given commands

several times (repeating commands) or perfonn a certain action only if some given

condition is met (selection commands). One can teach new commands to the ant colony

(subprograms). The ant can possess baskets (variables) of different colors to carry items

such as seeds, sprouts or fruits. It can store items into these baskets, and later eat or plant

items from these baskets.

3. Details of new contribution and examples

Tlte interface

The interface consists of the field window where the ants live and the command

window where the user types his instructions to the ant. The status bar at the bottom of

the command window displays the active ant number, its energy level and its position on

the field. Double-clicking on an ant will bring up a window with the following

information: ant number, energy, position on the field, and possessed baskets and their

contents. The TELL command brings up a window containing all the new commands the

ant colony has learned. In order to help the user in the task of programming, messages are

displayed when a problem occurs, such as executing an unknown or misspelled command

or moving an ant outside of the field.

Data Concepts

A variable is represented by a basket. A color, acting as a variable name,

identifies a basket. Those baskets can contain items such as seeds, sprouts, or flowers. A

basket has a type, for example SEED, SPROUT, or FLOWER. A basket of a certain type

can contain only items of that same type. Before a variable can be used, it has to be

34

declared. The metaphor for declaring a variable is to get a basket. The syntax for the GET

command is:

GET [THE IA] <color> <type> BASKET

For example GET BLUE SPROUT BASKET declares the variable BLUE of type

SPROUT. A variable can be initialized at the time it is declared. The syntax of the

modified GET command is:

GET [THE IA] <color> <type> BASKET WITH <number> <type>[S]

For example GET BLUE SPROUT BASKET WITH 30 SPROUTS declares the variable

BLUE of type SPROUT and initializes it with the value 30.

Four operations can alter the content of a variable. The PICK command places the

item (if any) under the ant's head into a basket. The syntax of the PICK command is:

PICK INTO [THE] <color> BASKET

The basket of the specified color must exist, and the item type must match the basket

type. The PUT command transfers items from one basket into another basket. The syntax

of the PUT command is:

PUT <number> <type>[S] FROM [THE] <color!> BASKET INTO [THE]

<color2> BASKET

The two specified baskets must exist and have the same type. The specified number is

subtracted from the first basket and added to the second basket. If the first basket has less

than the specified number of items, its whole content is transferred to the second basket.

For example PUT 10 SEEDS FROM THE BLUE BASKET INTO THE RED BASKET.

The EAT command removes one item from a basket and uses it to feed the ant. The

syntax of the EAT command is:

35

.:~
')
"T.
:),\

:'~
&

EAT FROM (THE] <color> BASKET

For example, EAT FROM THE BLUE BASKET. The PLANT command is similar to the

EAT command except that the item is planted under the ant's head instead of fed to the

ant. The syntax of the PLANT command is:

PLANT FROM [THE] <color> BASKET

A typical assignment operation replaces the old value of a variable with a new one. Those

four operations are special assignment operations. The PICK command adds the constant

1 to the variable, the EAT and PLANT commands subtract the constant 1 from the

variahle. The PUT command is similar to an assignment of one variable to another

variable with one exception: the specified number is subtracted from the content of the

first variable, and it is added to the content of the second variable.

A variable can be reset with the EMPTY command. The syntax of the EMPTY

command is

EMPTY [THE] <color> BASKET

This is equivalent to assigning a null value to a variable. When a variable is not needed

anymore, it can be deallocated with the THROW AWAY command. The yntax of this

command is:

THROW AWAY [THE] <color> BASKET

Input/Output Functions

I added input/output functions to the original Antfarm language to bring the

awareness that a program can, and usually does, interact with its user. The SAY

command outputs the data on the screen. The LISTEN command will store the data

entered by the user into a special variable called the INPUT basket. The INPUT basket is

36

:~

not a 'typed' variable. It can contain either strings or integers. The previous value of the

INPUT basket is replaced by the new value. The assignment operation on the INPUT

basket works like the standard assignment operation of most programming languages.

The syntax of the SAY and LISTEN commands are:

SAY <string>

LISTEN FOR INPUT

where <string> is any sequence of characters enclosed in double-quotes. Here are some

examples using the SAY and LISTEN commands.

SAY "Please, give me a number of seeds."
LISTEN FOR INPUT
PUT INPUT FRUIT FROM RED BASKET INTO BLUE BASKET

SAY "Which basket shall I use? (give me a color)"
LISTEN FOR INPUT
DO PICK INTO INPUT BASKET MOVE 10 TIMES

Subprograms and subprogram parameters

The syntax for defining subprograms differs from the original Antfarm. First I

removed the END keyword, present in the original Antfarm, that was necessary at the end

of the definition of a new instruction when it was followed by another instruction. In the

New Antfarm, no instruction can follow the definition of a new instruction. Then I

introduced the keyword IS to separate the new instruction definition heading from the

body to determine the list of parameters, if any.

The New Antfarm also introduces subprogram parameters. Josef and Logo make

use of special characters to specify the parameters in the subprogram heading, and the

body is enclosed in their block construct. The main issue being to keep the syntax close

to English, no such keywords are used to isolate parameters. The first word after the

LEARN keyword is the subprogram name. If a word is used in the subprogram heading

37

(after the subprogram name and before the IS keyword) and in the body of the

subprogram (after the IS keyword), and if this word is not a keyword, then it is a

parameter. When the subprogram is called, the value entered in place of the parameter is

substituted in the body of the subprogram. If this word is not a parameter, then it is a

template word. The purpose oftemplate words is to let the user create meaningful

command names. The syntax for defining a new command is:

LEARN <name> { <parameter or template word> } IS <list of commands>

The following is an example of a subprogram definition and call.

LEARN STEPBACK IS DO TURN LEFT 4 TIMES MOVE DO TURN LEFT 4
TIMES

STEPBACK

The next examph.: shows the definition of a subprogram with parameters and how it is

called.

LEARN MAKE NUMBER STEPS IS DO MOVE NUMBER TIMES

MAKE 10 STEPS

Note that NUMBER is the parameter because it is not a keyword and it appears in the

body of the definition. STEPS is a template word because it does not appear in the body

of the definition.

38

.....

".

, .
"'.

'"

'....•
'.

'..,

IV. CONCLUSION

The goal of this thesis was to create a better tool to teach good programming

practices to adults and children. The concepts considered were structured programming

and basic data concepts. This tool had also to facilitate the leaming process. Ultimately,

this demanded a comparative analysis of the existing programming literature and tools for

education. The original Antfarm language addresses part of those concerns, and its syntax

is close to English. Thus I chose to improve and extend the original Antfarm. It now runs

under Windows 95 and Windows NT with an interface more user-friendly than the

original one. I extended the language to include the missing concepts of data,

input/output, and subprogram parameters.

There are several advantages ofthe New Antfarm over the other languages. It

helps users enhance their problem-solving skills by reducing the effort spent in

translating the solution into the New Antfarm language. The structured programming

constructs are introduced in a natural language with as few keywords as possible. It

forces the user to create modular programs as he solves more complicated problems. It

introduces the user to the concepts of data in an intuitive way. Josef and Logo include

variables, but the syntax is not self-explanatory about the nature of variables. Neither the

old Antfarm nor Karel support data concepts. Variable declaration, initialization and

manipulation concepts are introduced in the New Antfarm. The New Antfarm includes

input/output functions, which are not present in the old Antfarm or Karel. It also includes

subprogram parameters, which neither the old Antfarm nor Josef do. The last but not least

advantage is that the syntax of Antfarm is very close to English in order to facilitate the

39

.
",

" o

:l.•

:i
:....

.....
:~.,
':,
"

learning process. In contrast, Josef and Karel are based on Pascal Logo on Lisp and their

syntaxes reflect their less friendly origins.

There are several ways the New Antfann can be improved or extended. The

usefulness of the following improvements and extensions will depend on the type of

population using the language, adults, high-school students, children, future programmers

or people using the program just for the fun of it. First of all, the user interface can be

made more attractive, for example by drawing a more real-looking ant. Sound could be

added to the program. For example, the ant could make a sound when it eats, tries to get

out of the field, or is about to die. Debugging tools could be provided. Or simply the

program could highlight in the command line the words where an error occurred. The

concept of data is introduced, hut not the concept of data structure. For example, arrays,

records and enumerations could be introduced. A metaphor for arrays could be baskets

with several compartments. Assignment operations are demonstrated, but we have seen

that those assignment commands differ from the usual assignment operation. They add or

subtract the assigned value from the content of the variable, instead of replacing the

content of the variable with the new value. A metaphor would have to be found to

introduce the concept of real assignment. Test conditions for variables could be

introduced. For example, arithmetic comparisons based on the content of a basket and

comparisons based on the type of a basket could be added to the language. Comments are

not essential in the New Antfarm since the language is already self-explanatory. However

the user could make use of comments at the beginning of his programs to explain what

they are doing. A tutorial and a list of exercises might help certain students, most likely

adults, to start working with the New Antfarm.

40

....

Anyone who wishes to add features to the New Antfann should keep in mind that

a tool that seeks to introduce a subject should not be complex. Thus, users should be able

to use only the basic features of the New Antfann. More advanced users can then make

use of more features as they get more familiar with the product and with the task of

programming. I believe that after learning the New Antfarm, the user will be more

confident and ready to learn a high-level programming language.

41

'.,
....

,'0

:l..

..-
:,;
',','."
~;:-

"

v. BIBLIOGRAPHY

[1] Appleby D., VandeKopple 1., Programming Languages Paradigm and Practice,
McGraw-Hills, 1997, pp.16-17

[2] Bergin J., Stehlik M., Roberts J., Pattis R., Karel++ - A gentle introduction to the
art ofobject-orientedprogramming, John Wiley & Son, 1997

[3] Bohm c., Jacopini G., "Flow diagrams, Turing machines and languages with only
two formation rules", Communications ofthe ACM, vol. 9, n.5 (May 1966), pp.
366-371.

[4] Bonar 1., Cunningham R., ridge: Tutoring the Progran1ffiing Process, in Intelligent
Tutoring Systems, Lessons Learned, Lawrence Erlbaum Associates Publishers,
1988,p.410

[5]

[6]

[7]

[8]

[9J

Du Boulay R, Some Difficulties of Learning to Program, Journal ofEducational
Computing Research, VoI2(l), pp. 57-73, 1986

Fleury A., Parameter Passing: The Rules the Students Construct, SIGCSE '91 pp
283-286, 1991

Fuller 1., An Introduction to MSWLogo,
http://www.southwest.com.au/-jfuller/logotut/menu.htm. 1999

Goldenson D., Why Teach Computer Programming? Some Evidence about
Generalization and Transfer, Call of the North, NECC 1996, Proceedings ofthe
Annual National Educational Computing Conference, pp.144-158

Kahn K., ToonTalk - An animated Programming Environment for Children,
Journal of Visual Languages and Computing, Vol 7 Nb 2, 1996, pp.197-217. Also
under http://www.toontalk.com/english/papers.htm

......
'

:.)
'-.

...
II...

,.
'I:"

..
llOJ LaFrance 1., "Reorienting students to structured programming with Antfarm",

Proceedings ofthe 1982 Western Educational Computing Conference, San Diego,
California, pp. 35-42

[11] LaFrance J., "Crisis in programming or history repeats itself', Proceedings ofthe
1983 National Educational Computing Conference, Baltimore, Maryland, pp.
126-130

[12] LaFrance J., Antfarm, a language for learning programming concepts, Wims
Computer Consulting, 198 J

[13] Mills G., MSWLogo Kits, http://www.softronix.comllogo.html.

42

[14] Pattis R., Karel the Robot, John Wiley & Son, 1981

[15] Perkins D., Hancock., Hobbs R., Martin F., Simmons R., Conditions of Learning
in Novice Programmers, Journal ofEducational Computing Research Vol 2(1),
pp. 37-55, 1986

[16] Schollmeyer M., Computer Programming in High School vs College, SIGCSE '96
2/96 pp 378-382, 1996

[17] Sleeman D., Putnam R., Baxter J., Kuspa L., Pascal and High School Students: A
Study of Errors, Journal ofEducational Computing Research, Vol 2(1), pp. 5-23,
1986

[18] Smith D., Cypher A. & Spohrer 1., KIDSIM: Programming Agents Without a
Programming Language, In Communications of the ACM, 37(7), July 1994, pp.
54 - 67.

[19] Soloway E., Bonar 1., Ehrlich K., Cognitive Strategies and Looping Constructs:
An Empirical Study, Communications ofthe ACM, Vol 26, Nb 11, pp. 853-860,
1983

[20] Spohrer 1., Soloway E., Novice Mistakes: Are the Folk Wisdoms Correct?,
Communications ofthe ACM, Vol 29, Number 7 pp. 624-632, 1986

[21] Tomek 1., The first book ofJosef, Prentice-Hall, 1983

43

)
" ...
' ...
...

...
'.',.
'.
,II

..1.:-

'.~
'\•

VI. APPENDICES

Appendices Al to A6 describe the following languages: Karel, Karel++, Josef,

Antfarm, New Antfarm and Logo. The Extended Backus Naur Form, or EBNF is used to

describe the syntax of the languages. FoBowing is the list ofEBNF symbols used and

their meaning [1].

S bol

I
<something>
something

[something]
{something}
(this I that)

Meanin
is defined to be
alternatively, or
<something> is to be replaced by its definition
a word in boldface is called a terminal, indicating an
indivisible language element allowing no further
replacements
oor 1 occurrence of something, i.e. optional
oor more occurrences of something
grouping; either of this or that

-.

The languages are described here in the goal of comparing them. The descriptions

might not be complete. For a full description, refer to the following references: [14] for

Karel, [2] for Karel++, [21] for Josef, [12] for Antfarm, and [7] for Logo.

44

'..

.
~

"I.,
So
...

At. Karel syntax description

-

<program> :: = BEGINNING-OF-PROGRAM
{ <new instruction defini,tion> ; }
BEGINNING-OF-EXECUTION

{ <instruction>; }
turnoff

END-OF-EXECUTION
END-OF-PROGRAM

The semi-colon is used as in the PASCAL language, i.e. it is used to separate

instructions. The turnoff instruction is required at the end of the program execution to

avoid an error shutoff.

<instruction> ::= <basic instruction> I
<block structure instruction>
<selection instruction> I
<repetition instruction> I
<subprogram call>

~.".-.
-.

<selection instruction> ::= IF <condition>
THEN <instruction>
I ELSE <instruction>]

<basic instruction> ::=
move I
turnleft I
pickbeeper I
putbeeper I
turnoff

<block structure instruction> ::=

Karel moves one block forward
Karel pivots 90 degrees to the left
Karel puts a beeper in his beeper bag
Karel places a beeper on the corner
Karel turns himself off

BEGIN
{<instruction> ;}
<instruction>

END

'"
-u.

.
~I'

'..
~:
I

•I,
-,

<repetition instruction> ::= <iterate instruction> I <while instruction>
<iterate instruction> ::= ITERATE <positive number> TIMES
<while instruction> ::= WHILE <condition> DO

<instruction>

<condition> ::= front-is-clear I front-is-blocked
left-is-clear Ileft-is-blocked I
right-is-clear I right-is-blocked I
facing-north I not-facing-north I
facing-south Inot-facing-south I
facing-east I not-facing-east I
facing-west I not-facing-west I
next-to-a-beeper I not-next-to-a-beeper I
any-beepers-in-beeper-bag I no-beepers-in-beeper-bag

45

<new instruction definition> ::= DEFINE-NEW-INSTRUCTION < identifier> AS
<instruction>

<subprogram call> ::= <identifier>
where identifier is the name of a new instruction.

<identifier> ::= any word made of letters, numbers and the dash ("-").
<positive number> ::= any positive integer.

46

.~'.
",

'.

' ..

.,'.
',.

A2. Karel++ syntax description

This description is taken out of the reference [2].

{ <robotlnitialization> }
{ <instruction> }

<program> ::= { <newClassDefinition> }
{ <newlnstructionDefinition> }
task
{

}

<newClassDefinition> ::= class <newClassName> : <oldClassName>
{ { <robotlnitialization>} /1 Local robots

/1 New instructions
{ <returns> <newlnstructionName> ();}

}

<newlnstructionDefinition> ::= <returns> <c1assName> :: <instructionName> (
({ <instruction> }
}

If <returns> is Boolean, then one or more of the <instruction> should be return <BooleanValue>

<robotlnitialization> := <className> <robotName> (street, avenue, facing, beepers);

<instruction> ::= < instructionName > ();
<robotName>. <instructionName> ();
<aliasName> -> <instructionName> ();
<conditionallnstruction>
<repetitionlnstruction>

<primitivelnstruction> of the ur_Robot and Robot classes:
class ur_Robot
{ void moveO;

void turnOff();
void turnLeftO;
void pickBeeper();
void putBeeper();

};
class Robot: ur_Robot
{

Boolean frontlsClear();
Boolean nextToABeeperO;
Boolean nextToARobotO;
Boolean facingNorthO;
Boolean facingSouth();
Boolean facingEastO;
Boolean facingWestO;
Boolean anyBeeperslnBeeperBag();

};

47

'.
"

'"

"'"

'"..
'"

<conditionallnstruction> ::=
if (<test>)
{ { <instruction> }
}
[else
{ { <instruction> }
}1

<repetitionlnstruction> ::=
loop (<positiveNumber>)
{ <instruction> }
}

while (<test>)
{ <instruction> }
}

<test> ::= <BooIFunctionName> () I
<robotName>. <BooIFunctionName> () I
<aliasName> -> <BooIFunctionName> () I
! <BooIFunctionName> () I
! <robotName>. <BooIFunctionName> () I
I <aliasName> -> <BooIFunctionName> ()

<... Name> ::= Any new word in letters, numbers and ,,_u that begins with a letter.
<BooleanValue> ::= true I false
<positiveNumber> ::= Any positive integer
<returns> ::= void I Boolean

48

....

....

A3. Joseph syntax description

Josef is an interpreted language) that is, each instruction is read syntactically

checked, and run one by one. The environment is not reset until one exits Josers program

completely, and starts it again. The user programs Josef by typing and running a list of

instructions or by defining a new instruction. The instructions are separated by a blank

space or a carriage return.

<program> ::= {<instruction> } I <new instruction definition>

.......

<instruction> ::= <basic instruction> I
<block structure instruction>
<selection instruction> I
<repetition instruction> I
<subprogram call>

<basic instruction> ::= <primitive instruction> I <non-primitive instruction>

A primitive instruction takes one unit of time to execute, while a non-primitive

instruction takes zero time to execute.

<primitive instruction>
MOVE I

LEFT I
RIGHT I
ERASE I

PAUSE [«arithmetic expression»]

GET «string expression» I
LEAVE «string expression» I
MARK «string expression» I

CONSUME «string expression>)

<non-primitive instruction> : =
<identifier> := <expression>
MAP «string expression» I
ENABLE «string expression» I
DISABLE «string expression>) I
LOCATION «identifier>, <identifier>) I

Josef moves to the next location in the direction
he is facing.
Josef turns left by 90 degrees.
Josef turns right by 90 degrees.
Replaces the mark placed by Josef by the
original map symbol.
With a parameter, Josef pauses for the specified
number of time units. Without parameter, Josef
pauses until the user presses the Return key.
Josef gets the object specified.
Josef leaves the object specified.
Josef marks its present location with the first
character of the specified string.
One object of the type specified disappears.

Assigns <expression> to the variable <identifier>.
Changes the map where Josef is.
Enables the specified interrupt procedure.
Disables the specified interrupt procedure.
Returns the street name and number of Josefs
current location in the two specified parameters.

49

··
·..

XY «identifier>, <identifier>) I Returns the column and row numbers of Josefs
current location in the two specified parameters.

LISTEN «identifier> { ,<identifier>}) I Josef reads a list of inputs (separated by semi
colons or carriage returns) from the keyboard
and save it in the specified variable(s).

SAY «expression> { l <expression>}) I Josef displays the specified text parameters in
the communication area.

SPEED «arithmetic expression>) 1 Sets the speed at which Josef execute MOVE
instructions.

TIME «arithmetic expression» 1 Starts Josefs clock at the specified value.
IMAGE (<string expression>,<string expression>,<string expression>,<string expression>)

Changes the representation of Josef on the
map. Can be used to make Josef transparent,
and thus see what's in his location.

EXIT [«string expression»]1 Without parameter, Josef quits the execution of
the present instruction. Meaningful only inside a
repetition or block structure instruction. With a
parameter Josef exits the specified subprogram.

QUIT Quits execution of the current program and
returns to direct command mode. Useful in
interrupt programming.

<block structure instruction> ::= BEGIN
{ <instruction>

END

<selection instruction> ::= IF <condition> THEN <instruction>
[ELSE <instruction>]

<repetition instruction> ::= REPEAT <instruction> UNTIL <condition> 1

WHILE <condition> DO <instruction> 1

DO <arithmetic expression> TIMES <instruction>

......

Returns TRUE if Josef cannot move.
Returns TRUE if Josefs current location is a corner of 2
or more streets.
Returns TRUE if the specified map can be entered from
Josefs current location.
Returns TRUE if the specified object is in Josefs current
location.
Returns TRUE if Josef has the specified object.

ENTRY (<string expression>)

SEE «string expression» I

HAVE «string expression>)
(<condition» I
NOT <condition> 1

<condition> (AND I OR) <condition> 1

<arithmetic expression> (= I <> 1<= I >= I > I <) <arithmetic expression>
<string expression> (= I<» <string expression>

<condition> ::=
TRUE 1

FALSE I
<identifier> I
<function call>
BLOCKED I
CORNER 1

<new instruction definition> ::=
NEW <identifier> [(<identifier> {, <identifier> }) 1

[USE INTERRUPT < subprogram call> [WHEN <string expression>] I
<block structure instruction>

50

If the block structure instruction in the new instruction definition contains a

<return instruction> then a function is defined, else a subprogram is defined.

<subprogram call> ::= <identifier> [(<expression> {, <expression> })
<function call> ::= <identifier> [(<expression> {, <expression>})]
where <identifier is the name of a new instruction.

<return instruction> ::= RETURN <expression>

<expression> ::= <string expression> I <arithmetic expression> I <condition>

<strin9 expression> ::=
<string constant> I
<identifier> I
<function call>
DIRECTION I
ENTRY I

HAVE
KEY I

MARK

SEE I

Returns one of the letters U, D, R, L depending on Josefs direction.
Returns the list of maps that can be entered from this location. To be
used repeatedly to obtain each map one by one. The last name returned
is NONE.
Returns the list of objects in Josefs possession. Works like ENTRY.
Returns the character of the currently depressed key, null character if no
key is depressed.
Returns the character by which Josef marked the current location, null
character if the mark was not created by Josef.
Returns the list of objects in Josefs current location. Works like ENTRY.

<arithmetic expression> ::=
<integer> I
<identifier> I
<function call> I
RANDOM (<arithmetic expression>)

SPEED I
TIME I
VOC «identifier»

Returns a random number between 0 and the
specified value.
Returns the current speed of Josef.
Returns the time elapsed since time zero.
Returns the decimal equivalent of the voe code
of the specified map.

..

- <arithmetic expression> I
(<arithmetic expression» I
<arithmetic expression> (+ I - I * I I) <arithmetic expression>

<identifier> ::= string that starts with a letter, can include letters, digits and the underscore and
has up to 15 characters.

<string constant> ::= string delimited by single quotes, such as 'Hello'.
<integer> ::= a positive integer.

51

A4. Antfarm syntax description

The user programs an ant by typing a line of up to 80 characters, containing either

a list of instructions, or the definition of a new instruction. The instructions are separated

by one or several blank spaces or tabs.

<program> ::= { <instruction>} I <new instruction definition>

<instruction> ::= <basic instruction> I
<simulator instruction> I
<selection instruction> I
<repetition instruction> I
<subprogram call>

A basic instruction, executed by the ant, takes one unit of time to execute. Any

other instruction takes zero time to execute.

<basic instruction> ::=
MOVE I
BACKUP I
TURN LEFT I
TURN RIGHT
EAT I
PLANT I
REST I
WAIT I
NOTHING

Take one step (column, row or both) forward
Take one step (column, row or both) backward
Turn 45 degrees (1Iath turn) to the left
Turn 45 degrees (1/S th turn) to the right
Eat whatever is under its head,
Plant under its head a seed
Do nothing
Do nothing
Do nothing

<simulator instruction> ::=
NAME <string> I Change the ant colony name to a new name
ANT <nb> I Change the ant responding to the commands to another
NEW <nb> I Start a new ant for that number
HELP I List all the built-in commands
QUIT I End a loop or the program
DONE I End a loop
STOP I End a loop
OFF I Turn off the consuming of energy
ON I Turn on the consuming of energy
TELL I Print all the new commands the ant colony has learned
FORGET «identifier>IALL) I Forget the specified command or all the commands the

colony has learned
RENAME <identifier> TO <identifier> I Renames a learned command
CHANGE <identifier> Changes the content of the specified learned command

<selection instruction> ::=
IF <condition> <instruction> [ELSE I OTHERWISE <instruction»

52

....

<iteration instruction> ::=
DO <instruction> <nb> TIMES I
DO <instruction> (TO I UNTIL) <condition>

<condition> ::=
ROW <nb> I
(COLUMN I COL) <nb> I
(BEYONDIPAST) (ROWICOLUMNICOL) <nb>1
FACING <facing direction> I
SEE <object> <direction> I
SMELL <object> I
STARVED I HUNGRY I FED I FULL I STUFFED I
NOT <condition> I
<condition> AND <condition> I
<condition> OR <condition> I
<identifier>

where <identifier> must be the name of a new condition defined with the LEARN instruction.

<object> ::= DIRT IJUNK I PLANT IFOOD ISPROUT I FLOWER I MARKER
<direction> ::= AHEAD I LEFT I RIGHT
<facing direction> ::= NINE I ElSE I S I SW IW I NW

<new instruction definition> ::= LEARN <identifier> {<instruction>}
<subprogram call> ::= <identifier>

<identifier> ::= any string made up of characters, excluding blanks, tabs and carriage returns.
Letters. digits, hyphen, underline, dash ... are allowed.

<nb> ::= any positive integer.
<string> ::= string with no tabs or blank spaces
<string expression> ::= string in between double quotes such as "Hello, world!"

53

--

EMPTY [THE] <color> BASKET I
THROW AWAY [THE] <color> BASKET
SAY <string expression> I
LISTEN FOR INPUT I

AS. New Antfarm syntax description

This is what has been added to the original Antfarm language in this thesis:

<basic instruction> :=
All the basic instructions of the original Antfarm I
EAT [FROM [THE] <color> BASKET]I I Eat whatever is under its head, or one item from

the specified basket
PLANT [FROM [THE] <color> BASKET] I Plant under its head a seed, or one item from

the specified basket
GET [THEIA) <color> <basket type> BASKET

[WITH <nb> SEEDSISEEDISPROUTSISPROUTIFRUITSIFRUITj I
Receive a basket of the specified type, empty or
with a certain number of items in it

PICK INTO [TH E] <color> BASKET I
Pick what is under its head and put it into the
specified basket

PUT [<nb> FROM] [THE] <color> BASKET INTO [THE) <color> BASKET I
Put all or a certain number of items from the first
basket into the second basket
Empty the specified basket
Get rid of the specified basket
Print the message on the screen
Get a message from the keyboard and puts into
the INPUT basket

WHAT IS IN {[THE) <color> BASKET IALL BASKETS}
Print on the screen the list of the contents of the
specified basket or of all the baskets

<basket type> ::= SEED I SPROUT I FLOWER I FRUIT I JUNK
<color> ::= BLUE I GREEN I YELLOW I RED

<new instruction definition> ::=
LEARN <identifier> [{ < identifier> }] IS {<instruction>}

In the Extended Antfarm language, the' IS' keyword is required when defining a

new instruction.

If an identifier in the list of identifiers is not in any instruction listed after IS, then

it is a template word. This is to allow the user to write in a more natural language.

<subprogram call> =<identifier> [{<arguments>}]

<argument> := <string> I <nb>

54

-

A6. Logo syntax description

To program the turtle, the user types instructions in the Input box, or defines a

new instruction.

<program> ::= {<instruction>} I <new instruction definition>

<instruction> ::= <basic instruction> I
<selection instruction> I
<repetition instruction> I
<subprogram call>

TAG tag I
GOTOtag

BYE I
LABEL <value>

<basic instruction> ::=
FORWARD <nb> I Turtle moves forward the specified number of steps (or FD)
BACK <nb> I Turtle moves backward the specified number of steps (or BK)
RIGHT <nb> I Turtle turns clockwise the number of degrees specified (or RT)
LEFT <nb> I Turtle turn counterclockwise the number of degrees specified (or LT)
PENUP I Turtle's pen is up (doesn't draw as it moves) (or PU)
PENDOWN I Turtle's pen is in the down position (or PO)
PENERA5E I Turtle erases as it moves (or PEl
HIDETURTLE I Removes the turtle 'triangle' from the screen (or HT)
5HOWTURTLE I Makes the turtle visible again (or 5T)
CLEAR5CREEN I Erases the screen and returns the turtle to its home position (or C5)
HOME I Returns the turtle to home position in the center of the drawing screen
5ETPENCOLOR [<nb> <nb> <nb>] I

Determines pen color, each number for red, green and blue
being between 0 and 255

5ETPEN51ZE [width height] I
Sets width and height of the draWing pen
Exits MSWLogo
Takes a word (preceded by double-quote ("Hello for example), or a list
([Hello to the world] for example), and prints the input on the graphics
window, starting at the turtle's position, and with the same the same
orientation as the turtle's

MAKE "<string> <value> I
Assigns the specified value to the variable varname, which must be a
word. If a variable with the same name exists, the value of that variable
is changed, If not, a new global variable is created, Value can be a
string, an integer, a real, or a list

NAME <value> "<string> I
Same as MAKE but with the inputs in reverse order

LOCAL "<string> I Accepts as input one or more words, or a list of words, A variable is
created for each of the inputs, Those variables are local to the
command in which they are created,
Defines a tag in a procedure. Use with GOTO
Jumps to the corresponding tag inside the current procedure

<repetition instruction> ::= <repeat instruction> I <for instruction> I <condition instruction>

<repeat instruction> ::= REPEAT <nb> [{ <instruction> } J
Will repeat the instruction list the specified number of times

55

<for instruction> ::= FOR [<nb> <nb> <nb> <nb>] [{ <instruction> }]
Will repeat the instruction list for the index (first number) going from
second number to third number by increment of fourth number

-

<condition instruction> ::=
DO.WHILE [{ <instruction> }] <condition> I
WHILE <condition> [{ <instruction> }] I
DO.UNTIL [{ <instruction> }] <condition> I
UNTIL <condition> [{ <instruction> }]

While loop with post-condition
While loop with pre-condition
Until loop with post-condition
Until loop with pre-condition

<selection instruction> ::= <if instruction> I <ifelse instruction> I
<test instruction> I<iftrue instruction> I <iffalse instruction>

<if instruction> ::= IF <condition> [{ <instruction> }]
It the condition is true, execute the instruction list

<ifelse instruction> ::= IFELSE condition [{ <instruction> }] [{ <instruction> }]
If the condition is true, execute the first instruction list, else execute the
second one

<test instruction> ::= TEST condition
Evaluate the condition to true or false and memorize the result for the
next IFTRUE or IFFALSE commands

<iftrue instruction> ::= IFTRUE [{ <instruction> }]
Execute the instruction list if the last TEST command evaluated to true

<iffalse instruction> ::=IFFALSE [{ <instruction> }]
Execute the instruction list if the last TEST command evaluated to false

<variable value> ::=
THING "< string>
:<string>

Returns the value stored in the variable varname
Same as THING

<value> ::= "<string> I <string list> I <nb> I <variable value>
<string> ::= string made up of characters, digits, dash, underline, ... with no blank spaces
<string list> := [{<string> }]
<nb> ::= integer I real I - <nb> I <nb> (+ I - I * II) <nb>

<condition> ::= <comparison condition> I <logical condition>
<comparison condition> ::= <nb> « I > 1=) <nb> I <value> = <value>
<logical condition> :.= (AND I OR) <condition> <condition> I NOT <condition>

<new instruction definition> ::=
TO procname [{ :<string> }]

{<instruction>}
END

<subprogram call> ::= <string> [{ :<value>} 1

56

A7. New Antfarm user manual

1. ANTFARM PROGRAM PHILOSOPHY

The Antfann program is a tool for teaching fundamental programming concepts

to children. It is designed to lead the learner naturally into the commonly accepted best

programming style. The author hopes that by making this the learner's first experience

with programming he or she will carry these principles over into other languages such as

BASIC which do not naturally encourage good programming style, or PASCAL or C.

The principles which Antfann promotes are structured programming and top-down

design with small subprogram units. Antfarm also introduces the concepts of variables,

input/output procedures and subprogram parameters. These principles are currently used

by the larger professional program development organizations and are known to make

programming more straightforward and less time-consuming. Following these

programming principles yields programs that are easier to understand, document, change,

and maintain. These principles are based on the following ideas:

that programming consists of many small steps put together to make a working

program that accomplishes a larger task,

that a program is sequential, with the steps proceeding orderly from one to the next,

that programming consists of sequencing steps that are themselves sequences of

smaller steps, that in tum are sequences of even smaller steps, and so on until the last

steps are the basic commands understood by the machine,

that complex programs can be made up by this method (called "top-down design") in

such a way that no part is ever logically complex itself,

57

that in addition to the basic steps there are the control steps of selection, (choosing to

do something or not, or choosing between alternatives), and iteration (repeating a set

of steps until a certain condition is met.

Learning these principles from the beginning of a study of programming concepts

will enable the students to learn good habits as their skills improve. These good habits

will enable them to progress in programming more easily and become better

programmers than students not well grounded in these basic concepts.

2. PROGRAM OPERATION

This program is designed to run under Windows NT and Windows 95. Double

click the Antfarm icon to start the program. A message box will ask for the name of the

Ant Colony. This name will be used when the user saves or restores the new commands

that the ant has learned as well as the field the colony lives on. It can be changed with the

RENAME command. When the Colony Name is typed, and the OK button is clicked, the

ant farm's field is displayed with an ant on it (Ant number 1). The field also contains in

the upper left comer two rows of 10 mature plants.

To instruct the ant to execute commands, the user types the commands in the

command line window, and then clicks the RUN button or presses the ENTER key. The

size of a command is limited to 80 characters. Error and warning messages will be

displayed in the message window. The communication window is used for passing

messages from and to the ant colony.

58

3. OVERVIEW OF THE ANTFARM PROGRAM

The program draws a "field" on the screen with an ant on it as well as two rows of

food in the upper left part of the field. The ant is initially well fed, but every action the

ant performs consumes one unit of its energy. The ant can plant seeds. Those seeds grow,

becoming sprouts, stalks, branching plants, flower, and eventually become mature plants,

growing a fruit or "atple". The ant can then eat the products of its garden to gain energy

back. If the ant loses all its energy or if it eats too much, it dies, becoming a skeleton. The

remains of an old ant have some food value. The ant can perform basic actions such as

move, tum left or right (basic commands), repeat given commands several times

(repeating commands) or perform a certain action only if some given condition is met

(selection commands). The ant can possess baskets of different colors to carry items such

as seeds, sprouts, fruits, or junk. The ant colony has the ability to learn new commands.

New ants can be obtained by the NEW command. The ANT command will direct

commands to a different ant.

59

--

4. BASIC COMMANDS

The basic actions the ant can perform are moving, turning, eating and planting

new seeds. Each of these actions consumes one unit of the ant's energy and takes one unit

of time to execute. The command words to be typed to instruct the ant to perform these

actions are the following:

MOVE
BACKUP
TURN LEFT
TURN RIGHT
EAT

PLANT
REST
WAIT
NOTHING

5. TIME UNITS

The ant takes one step (column, row or both) forward.
The ant takes one step (column, row or both) backward.
The ant turns 45 degrees (l/8th turn) to the left.
The ant turns 45 degrees (l/8th turn) to the right.
The ant eats whatever is under its head. The energy of the ant will
increase by the value of the food eaten, after one unit of energy is
consumed due to the action of eating.
The ant plants a seed under its head.
Do nothing.
Do nothing.
Do nothing.

A time unit is defined as the time it takes for the ant to interpret and perform a

single basic command. Simulator commands do not take any time, as well as the selection

and iteration commands, although any basic command performed inside a selection or

iteration command does. For example, if the ant repeats 4 times the command MOVE, 4

units of time will be spent (and 4 units of its energy will be consumed).

60

6. ENERGY LEVELS

The ant is initially fully fed with 400 units of energy. Every action consumes one

unit of its energy. The possible energy levels for an ant are from 0 to 400. 0 means the ant

died of starvation, 1 that it is almost dead: one more action would kill it. If fed past 400,

the ant explodes. When it dies, it turns into a skeleton. The remains of a dead ant stay on

the screen and have some food value. The student must tell the ant what to do to plant a

garden and to eat food to stay alive. Here are some keywords we will be using to qualify

the state of energy the ant is in:

STARVED
HUNGRY
FED
FULL
STUFFED

The ant has 100 units of energy or less.
The ant has 200 units of energy or less.
The ant has strictly more than 200 units.
The ant has strictly more that 300 units.
The ant has strictly more that 375 units.

o 100 200 300 375 400

I

STARVED I ISTUFFED I
.__,_HUN__G_R_y I F_U_LL _

FED

The consuming of energy can be turned off with the OFF command and back on

with the ON command. The OFF mode can be used for such things as programming the

ant to follow a large maze.

61

7. GROWTH OF PLANTS

Seeds and sprouts planted by the ant on the field will grow with time as follows:

· Seeds grow into germinated seeds in 60 time units.

· Germinated seeds grow into sprouts in 40 time units.

· Sprouts will grow into stalks in 40 time units.

· Stalks grow into branching plant in 140 time units

· Branching plants will grow a flower in 60 time units

· Plants with flower will become a mature plant and grow a fruit called "atple" in 60

time units.

The whole process from seed to mature plant takes 400 time units. Plants in

baskets do not grow nor do they perish.

8. FOOD VALUES

The following table gives the food values for different things the ant can eat. This

value gets added to the ant's energy level after the one unit it takes to do the eating i

subtracted off.

Mature food
Flowering plant
Branching plant
Stalk
Sprout
Germinated Seed
Seed
Skull
Bone
Head
Leg or Tail
Fat body
Field marker

25 units
]9
15
11
7
5
3
9
7
13
] 1
30
two times the marker's number (row or column)

62

9. REPEATING COMMANDS

One will soon discover that it takes a lot of repetitious typing to move the ant

somewhere that is very far away. It would be desirable to tell the ant to do something

over and over several times. The commands to control repetition, called iteration in

computer science, are the DO commands. Iteration involves two main parts. One is that

which is to be repeated, the "body" of the iteration or loop. The other is the termination

condition, the test that determines when the loop is finished looping. The word DO is the

signal of the beginning of an iteration. All the command words from there up to the

specification of the ending test constitute the body of the loop, that which is repeated.

The following are the variations of the DO commands:

DO commands number TIMES

This form tells the ant to repeat the specified commands the specified number of

times. For example, the command

DO EAT PLANT MOVE 10 TIMES

tells the ant to eat what is under his head, plant a new seed there, and then move one

step forward. It is to do this over and over 10 times.

DO commands TO test

DO commands UNTIL test

where 'test' is one of the following forms:

ROW number
COLUMN number
COL number
SEE object direction

(objects are DIRT, JUNK, PLANT, or FOOD)
(directions are AHEAD, LEFT, or RIGHT)

SMELL object

63

...

STARVED, HUNGRY, FED, FULL, or STUFFED
BEYOND ROW Dumber
PAST ROW number
BEYOND COLUMN number
BEYOND COL number
PAST COLUMN number
PAST COL number
FACING facin~direction

(facing_directions are N, NE, E, SE, S, SW, W, or NW)
NOT test
test AND test
test OR test

These two fonns tell the ant to keep repeating the commands until the indicated

test is satisfied or True.

The rows and columns are numbered along the left side and the top of the screen

for convenience. The 'ROW number' or 'COLUMN number' condition is satisfied

whenever the ant's head is on that row or colwnn at the time the test condition is

checked. If the ant is never going to reach the specified row or column it will repeat the

commands until it reaches the end of the field.

Two tests are based on the ant's senses. 'SEE object direction' and 'SMELL

object'. The ant can see any of the three squares in front of it, the one directly ahead, the

one ahead and to the left, and the one ahead and to the right. In each case this is the

square the ant would reach by either moving once or moving once and turning once. The

ant can smell the square directly under its head.

The object 'DIRT' is a blank square; the object 'JUNK' is any part ofa dead ant;

the object 'PLANT' is any of the plant symbols above the ground (this does not include

seeds and sprouts); and 'FOOD' is the mature plant.

The ant has five tests of its appetite. Refer to the chapter 6 on Energy Levels.

64

-

The 'BEYOND' and 'PAST tests allow the ant to check whether it is located

beyond a particular point. The ant is beyond column x if the ant's head is in a column

with a number greater that x. For example, the ant is beyond column 10 if its head is in

column 11, 12, 13, etc. 'NOT BEYOND ROW 7' would be a test for the ant's head being

located at or before row 7.

The 'FACrNG direction' command allows the ant to check its orientation; for

example, FACING E is true when the ant is horizontal, pointing to the right.

Tests can be combined to create more complex tests using the AND, OR, and

NOT words. For example you can create tests such as:

ROW 5 OR COLUMN 10
HUNGRY AND SMELL FOOD
SEE FOOD AHEAD AND NOT STUFFED

The tests are evaluated from left to right. To prioritize the evaluations of a test, one can

use the LEARN command (see DEFrNING NEW COMMANDS).

Some examples of DO commands are:

DO MOVE TO ROW 2

This causes the ant to move forward until its head reaches row 2. If the ant is not headed

in the direction ofrow 2, it will move a long way, probably off the field, before giving

up. If it has not starved by then, it can be turned around and headed back onto the field.

DO MOVE EAT UNTIL NOT SEE FOOD AHEAD

This will cause the ant to cat a row of food if it is positioned heading into the row in front

of the first plant. However, if the row is long or the ant is already reasonably well fed, it

may eat too much and explode before it reaches the end of the row of food plants.

65

Suggested exercises:

1. Make the ant tum completely around.

2. Tell the ant to make a row of 20 plants.

3. Move the ant from its starting position to row 2, tum left twice and move to

the first food.

4. Tell the ant to eat every other plant in the row of food.

66

10. SELECTION COMMANDS

There are three basic logic structures that make programs possible. The first two

have already been covered. They are that of a sequence, which is progressing logically

from one thing to another in order, and that of an iteration, which is repeating something

until some condition is met. The third logic structure is the selection, which is choosing

between two or more alternative courses of action. The ant can choose to do something or

not to do something by the use of the IF command which has the following form:

IF test command

The test can be any of the forms given above in the discussion of the iteration, the

DO command. If the test specified is true, the command is performed; otherwise, the

command is skipped over and not done. The command can be any single command,

including the repetition command. For example,

IF SMELL DIRT PLANT

causes the ant to plant a seed in the space under its head only if that space is empty. Only

the command word immediately after the test is affected. This means that if multiple

commands are to be performed when the test is true, they must be made into a new

command for the ant to LEARN so that a single command name can follow the test. HoVv

to define new commands is explained in the following chapter.

Using the selection command inside a DO command with the selected command

being STOP 0r QUIT causes the DO command to be stopped. For example,

DO MOVE IF ROW 2 STOP IF COLUMN 10 STOP 50 TIMES

67

causes the ant to move forward 50 times or lll1til reaching row 2 or column 10, whichever

of these three conditions happens first.

Here are some more examples of the IF command:

DO MOVE IF SMELL FOOD EAT 20 TIMES

would cause the ant to go forward 20 times and at each spot if there is a mature food

there, he eats it.

LEARN EATLEFT IS MOVELEFT EAT
LEARN MOVELEFT IS TURN LEFT MOVE TURN RIGHT
IF SEE FOOD LEFT EATLEFT

would cause the ant to eat any food it sees ahead on the left by moving over there and

eating.

IF SEE FOOD LEFT EATLEFT IF NOT SEE FOOD LEFT MOVE

would cause the ant to move over to the next row (or column) to the left and eat if it saw

food over there; but if it did not see food, it would simply move one step straight ahead.

Sometimes, we want an alternative for when a test is true, and a different one for

when the test is false. Here are similar forms to help you do that:

IF test command ELSE command
IF test command OTHERWISE command

If the test is true, then the first command is performed and the second command i

skipped. If the test is false then the first command is skipped and the second command is

performed.

IF SMELL FOOD EAT ELSE MOVE

causes the ant to eat if there is any food under its head, else to move one step forward.

68

The commands may be any single command including repetition but may not be

another selection command. Sequences and selections can be used for the commands by

defining them with LEARN and using their names as the single commands.

Suggested exercises:

1. Tell the ant to eat food if it is there but not eat anything else.

2. Tell the ant to plant a seed where there is dirt in the place where the seed

would be planted, i.e. under the ant's nose.

69

11. DEFINING NEW COMMA DS

In order to write bigger programs, it is necessary to build them up out of smaller

pieces. This is done by having the ant learn definitions for new command words. These

new words aU have to be defined in terms of other words, either other defined words or

basic commands. The words used in the definition do not themselves have to be defined

at the time they are used in a definition, only when the ant is given a program to perfonn

involving them. When learning something, the ant is unable to do something else. So no

command can follow a LEARN command in the command line. A command learned by

an ant is also learned by any ant of the colony. The command to make the ant learn a new

command is:

LEARN name IS commands

The name given is remembered by the ant as the sequence of commands given.

This name can then be used as a new command. For example

LEARN TURNAROUND IS DO TURN LEFT 4 TIMES

can be used to tell the ant how to turnaround so that TURNAROUND can subsequently

be used as a command to the ant.

Here is an example of using LEARN to create a large program. The program is

named PLANT-A-FIELD and it has the ant plant four rows side by side often plants

each. The program is designed top-down by thinking of the natural way of looking at the

problem. Assuming the ant is facing right we can imagine it planting one row, turning the

corner, and planting another row back to the left. It turns that corner and repeats these

steps for the next two rows. This is:

70

LEARN PLANT-A-FIELD IS PAIR-OF-ROWS PAIR-OF-ROWS

After having expressed the logic for the whole problem, we can now concentrate on just

the part PAIR-Of-ROWS. Following the discussion above, it would be:

LEARN PAIR-OF-ROWS IS PLANT-A-ROW RIGHT-END
PLANT-A-ROW LEFT-END

Similarly, we would continue designing each part until all new words have ultimately

been defined in terms of the basic commands. The rest of the defined commands for

PLANT-A-FIELD would be:

LEARN PLANT-A-ROW IS DO PLANT MOVE 10 TIMES
LEARN RIGHT-END IS TURN RIGHT MOVE DO TURN RIGHT 3
TIMES
LEARN LEFT-END IS TURN LEFT MOVE DO TURN LEFT 3 TIMES

Suggested exercises:

1. Enter TURNAROUND and PLANT-A-FIELD as commands and try them.

2. Teach the ant to understand BOX as meaning go around in a square. Do this

by defining SIDE, TOP, BOTTOM, and CORNER.

J. Define a command EATJUSTFOOD that will eat food if it is there but not eat

anything else.

4. Define a command PLANTSEED that will plant a seed when there is dirt in

the place where the seed would be planted, i.e. under the ant's nose.

5. Define a set of commands to use to FINDFOOD, searching left, right and

ahead. It should move over the food ready to eat and then stop.

Additional practice exercises:

5. Program the ant to plant a triangle.

71

-

6. Program the ant to do a dance.

7. Program the ant to go around a square eating (but not too much) and planting

in the open spaces. Note that this program could be used to make the ant

survive automatically for a long time.

8. Program the ant to plant a pyramid.

9. Teach the ant the command GARBAGE-TRUCK which will travel 10 spaces

(rows or columns, depending on direction) picking up (eating) any junk that is

ahead, left, or right of its path.

Test commands

The ant can learn tests, just like it learns commands. For example we can teach

the ant how to check if it has reached the edge of the field:

LEARN BORDER IS ROW 2 OR ROW 22 OR COLUMN 2 OR COLUMN 35

Or those two other examples:

LEARN READY-TO-EAT IS NOT STUFFED AND SMELL FOOD OR
STARVED
LEARN OK-TO-PLANT IS SMELL DIRT OR SMELL JUNK

could be used in programs such as:

DO IF READY-TO-EAT EAT IF OK-TO-PLANT PLANT MOVE 20 TIMES
DO IF OK-TO-PLANT AND NOT BORDER PLANT MOVE 10 TIMES

Commands with parameters

Sometimes, we want the ant to perform some commands like moving forward 20

steps, and sometimes moving 40 steps. We can teach the ant to move a certain number of

steps that will be specified only when we will ask the ant to execute the new command.

The syntax of the LEARN command with parameters is:

72

LEARN name parameters-or-template-words IS commands

The name given along with its parameters and template words is remembered by

the ant as the sequence of commands given. A parameter cannot be an Antfarm keyword,

or a new command word. A template word can be any keyword, or any word that does

not appear in the sequence of commands after the IS keyword. When we ask the ant to

execute the 'name' command, we tell it what parameters to use. Those parameters will be

substituted in the commands before the ant starts the execution. For example:

LEARN MAKEBIGMOVEOF NUMBER IS DO MOVE NUMBER TIMES

tells the ant how to move NUMBER steps forward. To have the ant move 20 steps

forward, we only need to type:

MAKEBIGMOVEOF 20

and to move 40 steps forward:

MAKEBIGMOVEOF 40

Template words can be used to make the program more readable.

LEARN MAKE MOVE OF NUMBER STEPS IS DO MOVE NUMBER
TIMES
MAKE MOVE OF 20 STEPS
MAKE MOVE OF 40 STEPS

The noisy words 'THE' and 'A' can also be added. They will simply be ignored. For

example, the last command could also be written: MAKE A MOVE OF 40 STEPS.

TELL and FORGET commands

The TELL and FORGET commands allow us to know what the ant colony has

learned, and tell it which commands to forget. They have the following forms:

73

TELL

This command lists all the new commands the ant colony has learned so tar.

FORGET name

FORGET ALL

The first command erases the given name from the list of new commands the ant

colony has learned. After this, that name will be an undefined command. Using the word

'ALL' in place of a name causes the ant colony to forget all the commands it has learned.

74

12. ANTS AND BASKETS

An ant can possess baskets in which it can store things to be used later. The ant

colony is very picky about order so that a basket can hold only one type of items. The

available types of basket are the SEED, SPROUT, FLOWER, FRUIT and JUNK basket

types. The baskets are distinguished from one another by their color. The available colors

are RED, GREEN, BLUE and YELLOW. Because the ants could (and would) be

confused, the ant cannot possess 2 baskets of the same color, even if they are of different

types. To get a basket, the ant has to request one using the GET command. The GET

command takes one unit of time to execute and consumes one unit of the ant's energy.

GET THE color type BASKET

GET A color type BASKET

GET color type BASKET

The ant will receive an empty basket of the specified color that can contains only

the specified type of items. 'Color' must be RED, GREEN, BLUE or YELLOW. 'Type'

must be SEED, SPROUT, FLOWER, FRUIT, or JUNK.

GET THE color type BASKET WITH number itemtype

GET A color type BASKET WITH number itemtype

GET color type BASKET WITH number itemtype

This is the same as above, except that the basket will be filled with the specified

number of items. 'Type' and 'itemtype' must be identical, and must be one of the

following: SEED, SPROUT, FLOWER, or FRUIT. It is possible to add an'S' at the end

75

of itemtype for better English. 'Number' must be a positive integer. For example:

GET A RED SPROUT BASKET WITH 10 SPROUTS

13. MORE BASIC COMMANDS USING BASKETS

Items can be moved into baskets with the PUT and PICK commands. PUT moves

items from one basket to another, while PICK moves items from the field into a basket.

The EMPTY command allows the ant to empty a basket, and the THROW AWAY

command to get rid of a basket. We have seen how the ant can PLANT a seed that is

stored in its mouth, and how it can EAT something on the field. The PLANT and EAT

commands can also be used to plant and eat from a basket.

PICK INTO THE color BASKET

PICK INTO color BASKET

The ant picks what is under its head and puts it into the specified basket

PUT THE color BASKET INTO THE color BASKET

PUT color BASKET INTO color BASKET

The ant will transfer the whole content of the first basket into the second. The two

baskets must be of the same type.

PUT number itemtype FROM THE color BASKET INTO THE color BASKET

PUT number itemtype FROM color BASKET INTO color BASKET

The ant will transfer the specified number of items from the first basket into the

second. The two baskets must be of the same type. 'Itemtype' is defined as in the GET

command. If the first basket has less than the specified number of items, then the entire

first basket's content is transferred.

76

EMPTY THE color BASKET

EMPTY color BASKET

The ant will empty the specified basket.

THROW AWAY THE color BASKET

THROW AWAY color BASKET

The ant gets rid of the specified basket.

EAT FROM THE color BASKET

EAT FROM color BASKET

The ant will eat one item from the specified basket. There will be one less item in

this basket, and the ant's energy will be increased by the food value of this item, after it

has been decreased by one unit for the action of eating.

PLANT FROM THE color BASKET

PLANT FROM color BASKET

The ant will plant one item from the specified basket. The ant can plant only from

SEED or SPROUT baskets.

77

14. COMMUNICATING WITH THE ANT: INPUT/OUTPUT

Ants have the capability to communicate with any specie that can type on a

keyboard and decipher text on the screen, such as most human beings. They can say

things by writing messages in the communication area of the screen, and listen to what is

typed on the keyboard.

SAY "some message"

The ant will display the message "some message" in the communication area of

the screen. This command takes one unit of time.

LISTEN FOR INPUT

The ant will wait for the user to enter a message in the communication area and to

click the SEND MESSAGE button. The INPUT basket is then emptied, and the entered

message stored in it. This command takes one unit of time.

In this next example, the ant asks the user for a number, listens to it, and stores th

number into its input basket. It then transfers as many fruits as the user said from the red

basket into the blue basket.

SAY "Please, give me a number of seeds"
LISTEN FOR INPUT
PUT INPUT FRUIT FROM RED BASKET INTO BLUE BASKET

In this example, the ant asks the user for the basket color, and then picks what is

under its head, places it into that basket, and moves, and repeats the PICK and MOVE

commands 10 times.

SAY "Which basket shall I use? (give me a color)"
LISTEN FOR INPUT
DO PICK INTO INPUT BASKET MOVE 10 TIMES

78

--

An ant can say what is in its baskets, including the INPUT basket.

SAY WHAT IS IN THE color BASKET

SAY WHAT IS IN color BASKET

SAY WHAT IS IN THE INPUT BASKET

SAY WHAT IS IN INPUT BASKET

SAY WHAT IS IN ALL BASKETS

This will cause the ant to list everything that is in the specified basket(s).

79

RENAME name

15. SIMULATOR COMMANDS

The following simulator commands take zero time to execute and thus do not

have any effect on the ant's energy:

CHANGE oldname TO newname

Change the name of a learned command (oldname) to newname.

Change the Ant Colony name.

NEW number

ON

OFF

ANT number

QUIT

STOP

DONE

Create a new ant with the given number. The new ant becomes the

active ant. The previous active ant becomes inactive. If an alive ant

with this number already exists, it is destroyed.

Set the Energy Mode to ON. Ants' energy will be decreased with

time, and increased as they eat.

Set the Energy Mode of OFF. The ants' energy will not changed.

If there is an alive ant with that number, then deactivate the current

active ant if any, and activate the ant with the number specified.

End a loop if inside a loop, end the command line else.

Same as above.

Same as above.

80

16. FILE HANDLING

Ant Commands File

The commands an ant colony learns can be saved or retrieved as an ASCII file

through the submenus: "Save Ant Commands", "Save Ant Commands As., ." and "Open

Ant Commands ... " provided under the File menu. The default name for an Ant

Commands file is the colony name followed by the extension "ANT",

Field File

Storing and retrieving a field is achieved with the "Save Field", "Save Field

As..." and "Open Field ... " submenus under the File menu. Saved fields include

everything about the field except the ants that are alive. The default name for a Field file

is the colony name followed by the extension "FLD",

If you wish to change the default name for the Ant Commands and Field file , use

the RENAME command to change the colony name,

To start a new session, (new colony on a new field), use the "New Field"

submenu under the File menu,

81

17. List of Keywords and Noisy Words

Keywords

AHEAD
ALL
AND
ANT
AWAY
BACKUP
BASKET
BEYOND
CHANGE
COL
COLUMN
DIRT
DO
E
EAT
ELSE
EMPTY
FACING
FED
FLOWER
FOOD
FOR
FORGET
FROM
FRUIT
FULL
GET
HELP
HUNGRY
IF
IS
INPUT
INTO
JUNK
LEARN
LEFT
LISTEN
MOVE
N
NE
NEAT
NEW
NOT
NW
NOTHING
OFF
ON
OR
OTHERWISE
PAST

82

PICK
PLANT
PUT
QUIT
RENAME
REST
RIGHT
ROW
S
SAY
SE
SW
SEE
SEED
SMELL
SPROUT
STARVED
STUFFED
TELL
THROW
TIMES
TO
TURN
UNTIL
W
WAIT
WITH

Noisy Words:

A
THE

VITA

Virginie Cochard

Candidate for the Degree of

Master of Science

Thesis: A LANGUAGE TO LEARN COMPUTER CONCEPTS

Major Field: Computer Science

Biographical:

Education: Graduated from the Superior and Special Mathematics,
preparatory years for the Engineer Schools in 1987.
Admitted to the National Superior Engineer School of Electronic,
Electrotechnic, Computer Science and Hydraulic of Toulouse, France
(ENSEEIHT) in the Computer Science and Applied Mathematics
Department and graduated in 1990. Completed the Requirements for
the Master of Science degree with a Major in Computer Science at
Oklahoma State University in December, 1999.

