
L

Ok/aboma State Univ. Library

RED-BLACK TREE ALGORITHM ANIMATION

USING JAVA

By

PENGCHENG CHEN

Bachelor of Science
East China Nonnal University

Shanghai, P. R. China
1986

Master of Science
East China Normal University

Shanghai, P. R. China
1989

Submitted to the Faculty of the
Graduate College of

the Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1999

___ F

RED-BLACK TREE ALGORITHM A IMATIO

USING JAVA

Thesis Approved:

_I J JrI/h1':B .12rJ1.d4
~n of the Graduate College

II

ACKNOWLEDGMENT

I wish to express my sincere appreciation to my advisor Dr. Jacques. Lafrance for his

guidance, patience, kindness and encouragement throughout my studies and finishing my

thesis. I am deeply grateful to Dr. J. P. Chandler and Dr. G. E. Hedrick for their serving

on my graduate committee and providing me invaluable advice and suggestions.

I am greatly indebted to my parents for their unending love and care throughout my

life. Special thanks go to my wife, Jing Yu, for her Jove, understanding encouragement

and support, both spiritual and financial. Without her love and support, I would not have

completed my study today.

111

Chapter

l.INTRODUCTION

TABLE OF CONTENTS

Pag

1

2. RELATED WORKS 3

3. JAVA LANGUAGE 4

4. RED-BLACK TREE 5

5. DESIGN AND IMPLEMENTATION 14
5.1 Development Process.. 14
5.2 Data Type Declaration... 15
5.3 Decomposition Algorithm........ 18
5.4 Visualization Design.......... .. 22
5.5 Component Design 27
5.6 User Interface '" 31
5.7 Sound Display ,. .. 39

6. SYSTEM OVERVIEW... 40

7. SUMMARY AND FUTURE WORK............ 50

8. REFERENCES , "' " . .. 52

iv

Figure

UST OF FIGURES

Page

1. Red-black Tree Color Flip.... 7

2. Variations of Nodes being Inserted... 9

3. Insert Node Into the Tree........ 9

4. Parent is Red and X is Inside Child....... 11

5. Outside Grandchild Lowers its Level 12

6. Inside Grandchild on the Way Down................ 13

7. The Designed System '" . .. 13

8. The System Design Flow Chart...................... 15

9. Storage Structure for A Node of Red Black Tree and its Declaration 16

10. The Decomposition of the Algorithm.......... 23

11. The Designed Image Represent in the Screen....... 24

12. Java Coordinate System.. 24

13. A Portion of the Java .awt Inheritance Hierarchy...... .. 32

J4. The Designed Starting Window 33

15. The Designed Main Window. 36

16. The Designed Help Window in Main Window................ 37

17. The Designed Input Window.... 37

18. Designed Text Field in the Main Window 38

19. Designed Exiting Window... 39

20. The DOS Command to Run The System '" '" 40

21. The Starting Window of the System... 41

22. The Help Window from Starting Window , 42

23. The Main Window of the System............ . .. 43

v

24. The Help Window in the Main Window ,. 44

25. The Scene of the 'Demo' Button was Pressed in Main Window.. 45

26. The Input Window... .. 44

27. The Exiting Window... 45

28. Step 1: The Node 13 Was Inserted Into the Tree 46

29. Step 2: Insert 45 Into the Tree.. 47

30. Step 3: Insert 23. The Tree is Unbalanced.. 47

31. Step 4: the Node Will Rotate With 45 48

32. Step 5: The Action Note Showed Need Color Flip................................ 48

33. Step 6: After Color Flip " 49

34. Step 7: Finally the Tree Was Balanced 49

vi

I. INTRODUCTION

Data structures are ways in which data is arranged in the computer's memory (or

stored on disk). Algorithms are the procedures that a software program uses to

manipulate the data in these structures. Almost every computer program, even a simple

one, uses data structures and algorithms. Data structures include linked lists, stacks,

binary trees, hash tables, and others. Algorithms manipulate the data in these structures

in various ways, such as searching for a particular data item and sorting the data. It is

very important for computer science students to understand thoroughly the concepts and

principles of various basic data structures, and apply them to their work. The red-black

tree is a very important data structure and very efficient. But it is difficult for students

to understand its implementing algorithms. According to Weiss (Weiss, 1997), the red

black tree is an advanced data structure. The goal of this study is to design and

implement an animated presentation of red-black tree animation using the Java language.

It will allow the people to explore visually different scenarios in implementing the

different operations of red-black trees.

"Visualization is a part of our daily lives" (Schroeder, 1996). From weather maps to

the exciting computer graphics of the entertainment industry, examples of visualization

abound. Informally, visualization is the transformation of data or information into

pictures. Visualization engages the primary human sensory apparatus, vision, as well as

the processing power of the human mind. The result is a simple and effective medium

for communicating complex and lor voluminous information. Visualization is the

process of exploring, transfonning, and viewing data as images (or other sensory forms)

to gain understanding and insight into the data. A picture is worth a thousand words.

Visualization transforms the data code into an image, enabling people to observe

simulations and computations. Combined with multimedia, graphics, and graphical user

interfaces, visualization uses carefully designed representations to help people to

understand. In courses dealing with algorithms and data structures, this can be a very

useful tool to demonstrate concepts. Students can exercise with the system by viewing

animations for different input values, which can reveal some special cases that were not

known and understood by the student before.

Animated courseware is also very useful for teachers in explaining to their students

what the algorithm does and what it is supposed to do. For example, a student can very

easily compare the advantages and disadvantages of different sorting methods through

animated images (after entering the same set of values) and they can compare the

underlying algorithms more easily. Animation includes both dynamic display and static

display. The present study aims at dynamically displaying the changes in the red-black

tree data structure. Such displays can lead to a better understanding of algorithms and

data structures.

2

H. RELATED WORK

Visualization as a method to explain the algorithms and programs has been studied

since the 1960s. In the early days, most of the visualization was done with tapes and

films and they were static. The bad part of such a system was that it did not allow users

to explore different situations. In 1966, Knowlton produced the first computer

generated movie (Knowlton, 1966). It showed how an assembly-level list processing

language works. Later other people also made data structure films, such as Hopgood's

film on hashing table algorithms, Booth's on "PQ-tree" (Boot11, 1974).

Since the mid-1970s there has been more and more research on animation of data

structures. Several systems were built that automatically produced a static graphical

display of a program's data structures (Thomas, 1985; Yarwood, 1974; Stasko, 1990,

etc). These systems gave a static picture of the data structure. But they could not

represent what operation was being peIfonned and how the data structure changed.

They only showed the image of the data structure before and after the operation.

In recent years more and more wol:k has been done in visualizing the data structure

through various tools and environments. Shen (Shen, 1994) designed a visual sy tern

for learning of tree-based data structures; Lin (Lin, 1997) implemented an object

oriented graphic user interface for visualization of B-trees' animation; Harvick designed

rule based data structure animation (Barvick, 1997). An animated construction of a B

tree was created using Macromedia Director. This has also been done using C++ (Lin,

1997). Work were also done on stacks, queues and lists (Xu, 1997), and binary search

trees (Shen, 1997). All the above research show the data structure more clearly and

directly and some of them include multimedia techniques.

3

The future of computer visualization and graphic appears to explosive. fu a

few decades ago, the field of data visualization did not exist; more and more computer

graphics was viewed as an offshoot of the more formal discipline of computer cience.

As techniques were created and computer power increased, scientists and other

researchers began to use graphics to understand and communicate information. At the

same time, user interface tools were developed. These forces have now converged to

the point where we expect computers to adapt to humans rather than the other way

around. Now using tbe visualization window, we can extract information from data.

analyze. understand, and manage more complex systems than ever before.

III. JAVA LANGUAGE

Java is a new language. In 1991, Sun Microsystems funded an internal corporate

research project code-named Green in 1991. The project resulted in the development of a

C and c++ based language that its creator, James Gosling, called Oak after an Oak tree

outside his window at Sun. It was later discovered that there was already a computer

language called Oak. When a group of Sun people visited a local coffee place, the name

Java was suggested and it stuck. In May 1995. Sun formally announced Java.

Java allows programmers to create applets, programs that may be "embedded" inside

Web pages; On the other hand, it is a full-fledged object-oriented language which lets

you implement object-oriented applications very efficiently. The Java Development Kit

provides a wealth of APls to help one develop applications quickly. These APIs support

developing networking applications, building platfonn-independent Gills,

multithreading for efficient use of system resources, implementing applets to launch

4

from Web browsers, handling input and output streams, and many others that will help

you build applets as well as stand-alone applications.

An applet is a custom intedace component object, similar in concept to a windows

custom control, or a X-window widget. Applet-aware applications can load and

construct applet objects from URLs pointing to CLASS ftles anywhere on a network.

Using the graphical capabilities of Java, applets are visually executing multimedia

elements. Through objects of the class Java.awl, Graphics applets can create graphical

content on screen. Because of all these features, applets have become the good method

for computer graphics animation and dist~butinginteractive content on the World Wide

Web. I'

IV. RED-BLACK TREE

A red-black tree is a balanced binary search tree; It is a binary search tree with an

additional field---color. Ordinary binary search trees offer important advantages as data

storage devices: you can quickly search for an item with a given key, and you can also

quickly insert or delete an item. Other data storage structures, such as arrays, sorted

arrays, and linked lists, pedonn one or the other of these activities slowly. Thus binary

search trees might appear to be the ideal data storage structure. Unfortunately, ordinary

binary search trees suffer from a troublesome problem. They work well if the data is

inserted into the tree in random order. However, they become much slower if data is

inserted in already sorted order. When the values to be inserted are already ordered, a

binary tree becomes unbalanced. At this situation, the search becomes slow. The

advantage of the red-black tree structure is that it can keep the tree balanced.

The characteristics of red-black tree:

5

• Every node in a red-black tree is either black or red

• Every null leaf is black

• No path from a leaf to a root can have two consecutive red nodes - i. e. the children

of a red node must be black

• Every path from a node, x, to a descendant leaf contains the same number of black

node - the "black height" of node x..

Characteristics third and fourth guarantee that a red-black tree is efficient. Since

every path to a leaf contains the same number of black nodes, and any red node has black

children, the longest possible path is composed of [2IgN]+1 nodes that alternate red and

black. Since the smallest possible height for a binary tree with N nodes is [lgN], red

black trees offer performance that is twice optimal in the worst case.

Algorithms for red-black tree construction:

The construction of a red-black tree is more complicated than the construction of an

ordinary binary search tree. The tree must follow the red-black rule. There are more

cases that must be followed. In the discussion that follows, X, P, G are used to

designate a pattern of related nodes. X is the node that has caused a rule violation; P is

the parent of X. G is the grandparent of X (the parent of P). The insertion routine in a

red-black tree starts off doing essentially the same thing that it does in an ordinary binary

search tree: It follows a path from the root to the place where the node should be

inserted, going left or right at each node depending on the relative size of the node's key

and the search keys .

However, in a red-black tree, getting to the insertion point is complicated by color

flips and rotations. To make sure the color rules are not broken, it needs to perform

6

color flips when necessary. The rule is: every time after inserting a new nod th t

encounters a black node that has two red children, it must change tbe children to bla

and the parent to red (unless the parent is the root. which always remains black). This

can help to keep the black height unchanged. Figure 1 shows the nodes after the color

flip. The flip leaves unchanged the number of black nodes on the path from the root on

down through P to the leaf or null nodes. All such paths go through P, and then through

either Xl or Xl. Before the flip, only P is black, so the triangle (consisting of P, Xl,

Xl) adds one black node to each of these paths. Mter the flip, P is no longer black, but

both Land R are, so again the triangle contributes one black node to every path that

passes through it. So a color flip won't cause rule fourth to be violated.

Color flips are helpful because they make red leaf nodes into black leaf nodes. This

makes it easier to attach new red node without violating Rule 3.

Xl Xl

(b)

Fig 1 Red-black tree color flips

The insertion of a new node may cause the red-black rules to be violated. Therefore,

following the insertion, we must check for rule violations and take appropriate steps.

A node X is an outside grandchild if it's on the same side of its parent P that P is of

its parent G. Conversely, X is an inside grandchild if it's on the opposite side of its

7

parent P that P is of its parent G. If X is an outside grandchild, it may be either th left

or right child of P, depending on whether P is the left or right child of G. Two similar

possibilities exist if X is an inside grandchild (Fig 2.).

The color and configuration of X and its relatives determine the action we take to

restore the red-black rules.

case 1: P is black. If P is black, we don't need to do anything else, just insert the node

to the tree as a red node.

a)

x

b)

p

Outside grandchild (left child)

8

Inside grandchild (right child)

c) G

x

d) G

a)

x

Inside grandchild(Left Child) Outside grandchild (right child)

Fig 2 Variations ofnodes being inserted

Color Change

b)

6

Fig 3. Insert node into the tree. P is red, X is Outside Child. a) before rotation. b)

after rotation.

9

Case 2: P is red and X is an outside grandchild, we need a ingle rotation and some

color changes. Fig 3. shows how to complete this operation. The steps:

1. Switch the color of X's grandparent G (25 in this ex.ample).

2. Switch the color of X's parent P (12).

3. Rotate with X's grandparent G (25) at the top, in the direction that raises X(6).

This is a right rotation in the ex.ample.

Case 3: P is red and X is inside: If P is red and X is an inside grandchild, we need two

rotations and some color changes. (Fig. 4).

a) 50

Q 25

P 12

ROQtiOnl~
X 18

~ ColorChange

b)

12

18

25

Rotation 2

10

---"5

c)

12

Fig 4. Parent is red and X is inside Child.

Rotation on the way down:

This operations to make rotations on the way down to the insertion point. It is possible

for a color flip to cause a violation of Rule 3 (a parent and child can not both be red). A

rotation can fix this problem.

Case 1: The Grandchild is in outside. (Fig. 5).

Steps:

1. Switch the color of X's grandparent G. Ignore the message that the root must be

black.

2. Switch the color of X' s parent P (25).

3. Rotate with X's grandparent at the top, in the direction that raises X .

a) G

P 25

X 12

Rotate

Change color

11

75

b)

3

Fig 5. Outside grandchild lowers its level. a) Original tree. b) Final tree.

a) G 50

12

/:....,

31

- Change color

12

12

c)

25

12~
50

Fig. 6 Inside grandchild on the way down. a) original tree. b) changing tree. c)
final tree.

Case 2: The Grandchild is in inside (Fig 6, insert 28).

1. Change the color of G.

2. Change the color of X.

3. Rotate with P as the top, in the direction that raises X. (Fig 6. b).

4. Rotate with G as the top in the direction that raises X.

Designed System

Fig 7. The designed system

13

v. DESIGN AND IMPLEMENTATION

This chapter examines the design and implementation issues involved in

developing the data structure animation program of red-black tree including the class

hierarchies, the application framework, inserting and deleting strategy, dynamic display,

and other related issues. The program was implemented using Java programming

language, following Java and object-oriented programrnin.g and design conventions.

v.1. Development Process

The algorithm animation system is designed by following the process model. This

process model includes the activities shown below:

1. Data type declaration: the data type and storage structure for the Red-Black tree

simulation system was defined clearly.

2. Visualization design: several classes were specified for visualization, and they were

used to achieve Red-Black tree's algorithm visualization.

3. Algorithm decomposition: In order to show the algorithm to the user in a step by step

mode, it is necessary to decompose the algorithms (both insertion and deletion) into a

set of different parts that best represents the tree's behaviors during insertion and

deletion operations. This is the key designing step for the system.

4. Component design: This part designs the services by this system. As figure 7 has

shown, those are the services for the tree.

14

5. User interface design: The user interface will rely on windows,. buttons cho'ce and

mouse. This design is characterized by support for graphical as well as for textual

information display.

6. Sound display: Sound is an important part of the system. This system use sound to

explain some important information and use background music while the user

operating the system.

The above activities are correlated to each other. In figure 8, we illustrate their

designed relationship.

Figure. 8 The system design flow chart (bottom up).

v.2. Data Type Declaration

Java language type declarations are used to specify the storage structures. This

structure is very important for the whole program. First, the algorithm coding based on

them, also the well-defined data structures have the fundamental information for

15

showing the images of the Red-black tree. Figure 9 shows the data type declaration for

nodes in the tree.

Class Treenode {
Private int nodekey;
Private Treenode nodelefcchild;
Private Treenode noderighcchild;
Private Treenode node_parent;
Private int Color;
Private int Black=!;
Private int Red=2;
Private int X, Y;

}

nodekey nodeparent nodeleft noderigbt color X Y

Fig. 9. Storage structure for a node ofRed Black tree and its declaration.

In Fig 9, nodekey means the key value of the node. In this design, we use non-

negative integer as input key value. Nodelefcchild was used to represent its left child;

Noderighcchild was used to represent its right child; Color was used to represent its

color; X, Y was used to represent its location in the screen (X, Y). There are also some

necessary initializations and node operations (such as set color, get color, set location,

get location...) in this class as below.

16

class Treenode(
public final static int L_flag=O;
public final static iot R..-flag=l;
public final static int P_flag=2;
public final static int Black=l;
public final static int Red=2;
private int Color;

private int nodekey;
private Treenode nodeleft;
private Treenode noderight;
private Treenode nodeparent;
private int X, Y;

public Treenode()
(

Color=Black;
}

/* This function used to initialize the node */

public Treenode(int key) (
Color=Red;
nodekey=key;

}

/* This function used to set the node to the tree */

public void node_seting(int keynode, Treenode node)
(
if (keynode==O)

nodeleft=node;
else if(keynode==l)

noderight=nodei
else

nodeparent=nodei

/* This function used to find the related node */

public Treenode Findnod(int keynode)
(

if (keynode==O)
return nodeleft;

else if (keynode==1)
return noderight;

else
return nodeparent;

/* This function used to get the color. */

public int getColor() (
if (Color==Black)

return 1;
else

return 2;

/* This function used to set the color of the node. */

public void setColor(int color)

17

(
if(color==l)

Color=Black;
else

Color=Red;

/* This function used to get the key value of the node */

public int getKey()
(

return nodekey;

/* This function used to set the key value of the node. */

public void setKey(int key) {
nodekey=;key;

/* This function used to set the X and Y positions of the node */

public void setx(int x)
{

X =x;
}

public void sety(int y)
{

Y =y;
}

1* The function used to get the X and Y positions of the node. */

public int getx()
{

return x;
}

public int gety()
{

return y;
}

v.3. Decomposition of the algorithm

The red-black tree operation in this simulation including insertion and deletion. The

basic algorithms we used are according to Cormen (Cormen, H. T., 1997). The detailed

algorithms are below:

Inseration:

Tree-Insert(T,x)

18

color[x]~ Red

WillIe x != root[T] and color[p[x]]= Red

Do if p[x] = left[p[p[x]]

Then y~right[p[p[x]]]

If color[y]=red

Then color[p[p[x]] ~Black

color[y] ~ Black

• color[p[p[x]]] ~ Red

X ~ p[p[x]]

Else if x = right[p[x]]

Then x ~ p[x]

Left-Rotate(T,x)

color[p[x]] ~ Black

color[p[p[x]] ~ Red

Right-Rotate(T, p[p[x]])

Else (same as then clause with" right" and "left 1/ exchanged)

Color[root[T]] ~ Black.

Deletion:

RB-Delete(T, z)

If left[z]=nil[T] or right[z]=nil[T]

Then y ~ z

Else y ~ Tree-Successor(z)

If left[y] != nil[T]

19

Then x ~ left[y)

Else x ~ right [y)

P[x] ~ pry]

If pry] =nil[T]

Then root[T] ~ x

Else if y = left[p[y)]

Then left [pry]] ~ x

Else right [p[y]] ~ x

Ify!=z

Then key[z] ~ key[y)

If color[y] =Black

Then

While x != root [T] and color =Black

Do if x = left[p[x]]

Then w ~ right[p[x]]

If color[w] :;: Red

Then color[w] ~ Black

color[p[x]] ~ Red

Lefe Rotate (T, p[x])

W ~ right[p[x]]

If color[left[w]] =Black and color[right[wll = Black

Then color[w] ~ Red

X ~ p[x]

20

El e if color[right[w]] = Black

Then color[left[w]] ~ Black

color[w]~ Red

Right-Rotate(T, w)

W ~ right[p[x]]

color[w] ~ color[p[x]]

color[p[x]] ~ Black

color[right[w] ~ Black

LefcRotate(T, p[xl)

X~ root[T]

Else (same as then clause with 'right' and 'left'

exchange)

color[x] ~ Black

According to above algorithms, we write insertion and deletion modules. Those

basic operations include the functions of insertion and deletion. But for the reasons that

the tree behaviors are to be visualized, the above operations must be sub-divided into a

set of parts according to the tree attributes in order to make the user understand the

algorithm step by step. We decomposed insertion and deletion into four parts:

• Insert or delete key.

• Check the balance of the tree.

• Rotation

• Recolor.

21

In this program, in each point of the program meet above conditions we will break the

operation and show a command to the user what's the next operation (Ex... need color

flip or need rotate..") should be. User can push a button to operate next step. Fig 10

showed the decomposition procedure of the algorithms.

In this java program we use a specify button to operate this step by step operation,

the screen will prompt user each step he should go and what the next step will be (Ex.

Rotate, color flip, ..).

VA. Visualization design

The most important and difficult designing activities in this animation system are the

visualization design. It will detennine whether this animation is success or not in terms

of its usage.

This system aims at animating the red-black tree algorithm. We are basically dealing

with the nodes' movement to achieve the animation. With this, user could obtain a

graphical picture of the data structure of the tree. As operations are being perfonned on a

data structure the changes in the data structure are shown as movements and transitions

of graphical objects that represent the data structure. The transitions

22

Insert or delete a key

1Insert into the tree

Check the balance of the tree

Balan.ced
1

Rotate

Unbalanced

Recolor

Finish

Fig. 10 The decomposition ofthe algorithms.

include changes in node location, color, etc. The operation will cause the tree nodes to

rearrange and move to new locations or change color (red or black).

There are four major parts of visualization-graphical image, the locations of images,

the images' transitions, and the paths that modify those transitions. An image is a

graphical object that undergoes changing in location, color, etc. throughout the frames of

the animation. In this system, the image includes lines, rectangles, and texts. Composite

images are collections of primary images with geometric relationships to one another in

a Java applet (Fig 11). A location is a position identified by an (x, y) coordinate pair in

the Java coordinate system. (Fig. 12). The ability to save and reference particular

locations is an important part for animation design. Location (x, y) is stored in Treenode

23

class; A path designates t.he magnitude of change in image attributes from one frame to

the next. A path is formally defined as a finite ordered sequence of real-valued (x., y)

coordinate pairs. where each pair designates a relative offset from the previous position;

A

Fig 11. The designed image represent in the screen.

o
o +x. X axis
F----------..;.;~-_1.

+y

"

Yaxis

Fig.12 Java coordinate system. Units are measured in pixels.

transition uses a path parameter to modify an image's position or appearance, and to give

an animation action. Typical transition types include move, resize, color, delay, alter

visible. We can create animations of algorithms by assembling collections of image,

24

location, path, transition, and association operafons that accomplish desired animation

actions.

In the tree images, the rectangles show the nodes in the tree, and the lines coming out

of the nodes indicate the relationship between nodes. Color is used to represent the color

of the node (red or black). The text includes the key value in the nodes and the next step

instruction. The following example Java code will draw the tree image (including node

rectangular, line and node color):

m - diameter of rectangular, wide-width of the screen, verticle - verticle of the tree.

public void Node_drawing(Treenode node,int x,int y}

wide = wide I 2;
if (node.Findnod(Treenode.L_flag) != nullnode)
(

offGraphic.setColor(Color.green) ;
offGraphic.drawLine(x,y,Math.round(x

wide) ,Math.round(y+viticle»;
1* Used to draw line between two nodes. *1

Node_drawing(node.Findnod(Treenode.L_flag),
Math. round (x-wide) ,Math.round(y+viticle»;

1* recursively drawing the nodes on the
screen*1

}
if (node.getColor() == Treenode.Black)
(

offGraphic.setColor(Color.black);
offGraphic.fillRect(x-m,y-m,2m,2m) ;

1* used to draw rectangular as a node *1
offGraphic.setColor(Color.red);

1* used to set the node's color *1

if (node .getKey() < 10)
offGraphic.drawString(Integer.toString(node.getKey(}},x-a,y+b);
1* used to draw key value(key <10) in the node *1

else
offGraphic.drawString(Integer.toString(node.getKey(» ,x-

a,y+b) ;
vertical = 2*vertical;
node.setx(x); II update the node location.
node. sety (y) ;

}

25

The paths are set up for the use of transitions. Once the locations are determined, the

paths are set. For some path operations, such as insertion---receive locations from the

root node down to the leaf node, and deletion-- receive two locations and create a path

between them. In animation, the location of the node to be deleted is the motion's ending

point and the location of the deleted node's successor is the motion's starting point.

Below is the Java code to operate the node transition:

startX = startnode.getx()j
startY = startnode.gety();
endX = endnode.getx();
endY = endnode.gety();

LY = startY;
LX = startX;

1* Starting point x
1* Starting point y

1* Ending point x *1
1* Ending point y *1

*1
ttl

offGraphic. fillReet(LX-m,LY-m, 2m, 2m) ;

Graphie.drawString(Integer.toString(startnode.getKey() ,LX-
a,LY+b) ;

update (g) ;
for (eX= startX+i ; (eX*i) <= (desternationX*i) ; cX+=il
{ 1* This for loop will move the node

from starting point to ending point *1
eY = Math.round((eX-startX)*n) + startY;
if (shape == F)
(

offGraphie.fillReet(LX-m,LY-m,2m,2m)j
offGraphie.fillRect(cX-m,eY-m,2m,2m);

}

else
(

offGraphie.fillReet(LX-m,LY-m,2m,2m)j

offGraphic. drawString (Integer. toString(startnode.getKey()) ,LX-a,LY+a);
offGraphic. fillReet (eX-m, eY-m, 2m, 2m) ;

offGraphie.drawString(Integer.toString(startnode.getKey(»,eX-a,eY+a)i
}
update(g) ; 1* used to clear the screen for next

drawing *1
LX eX;
LY eY;

26

if (status == Finish)
offGraphic.fillRect(LX-m,LY-m,2m,2m) ;

else
{

offGraphic.fillRect(LX-m,LY-m,2m,2m);

offGraphic.drawString (Integer. toString(startnode.getKey ()),LX-a,LY+a);
}

update (g) ;
}

Continuous transition means the display of the node's motions which are shown in a

smooth way. In contrast to smooth motion, the discrete transition is obtained by an

abrupt erase-and-repaint method. This way can be used for the efficient displays for the

user. In this system, the insertion motion uses this method; the deletion motion uses

smooth motion.

v.5. Component Design

In this project, we are basically dealing with the tree nodes' movement to achieve

the animation. In order to get this goal, several components are designed in the system.

All these components are controlled by button.

Input Window: The input window provides input data for the algorithm to manipulate

the operations of insertion and deletion. In order for the user to control what data is

provided, the input window is designed in a pop up window mode in order for the user to

use it easily, and feel in control of the process of algorithm animation. The input window

is the important driver that makes the tree work. The user must first input a data then the

system will implement its operation. The selection of input data has a great impact on

the implementation of tree algorithm animation.

27

In this system, we use the input window to input a non-negative integer for further

use. If the number is entered, you can choose enter or cancel in case something

wrong. The following Java code creates input window:

class input_window extends Dialog

private TextField
private Button
private int
private String
private Label

insertion.");

public key_in ()
(

data;
ok, cancel;
Inputflag;
header;
message = new Label ("Enter an integer for

super(p,true) ;
data = new TextField(6);
ok = new Button ("Enter") ;
cancel = new Button("Cancel");

Font f new Font("TimesRoman",Font.BOLD,16);
ok.setFont(f);
cancel.setFont(f) ;
message.setFont(f) ;
data.setFont(f) ;
ok.setForeground(Color.yellow) ;
cancel.setForeground(Color.red) ;

add (message) ;
add (data) ;
add (ok) ;
add(cancel};
setLayout(null)i
message.reshape(20, 30, 280,60}:
data.reshape(120, 100, 70,40);
ok.reshape(50, 160, 60,40);
cancel.reshape(160, 160, 60,40};

resize(300,220};

2.Exit Window: Exit window used to exit from the simulation area. This window

includes two buttons. "Exit" and "Cancel".

class exit_Window extends Dialog

Button yes,noi
public exitWin(String title}
(

super(title,true);

28

yes = new Button("Yes");.
no = new Button("No");
Label l=new Label(" Are you really want to exit?");
add (1) ;
Font f = new Font("TimesRomn",Font.BOLD,18);
Font f1 = new Font("TimesRomn",Font.BOLD,14);
yes.setFont(f1);
nO.setFont(f1);
yes.setForegroundIColor.yellow) ;
no.setForegroundIColor.red);

add(yes);

add(no);
setLayout(null);

1.reshape(40, 20, 200, 30);
yes.reshape(50, 70, 50, 30);
no.reshape(140, 70, 50, 30);

resize(220,140) ;

3. Display Area: This class defines the display area on which the tree is drawn, and how

the tree will be drawn. All nodes will be drawn in this field. Following Java code will be

define this class:

class showarea extends Canvas

private Image offIrnage; II for double buffering use
private Graphics offGraphic;
private float H,V; II use for the Redblacktree drawing, tell

the horizontal & vertical gaps between the nodes.

public synchronized void paint(Graphics g)

tree_drawing() ;

public void update(Graphics g)
{

g.drawIrnage(offIrnage,O,O,this);

3. Main Window: This is the main window class. It includes the control panel,

information panel and display panel. It also contains the tree object. It is used as a

29

container of the display area and control panel. It is a mean for the object

communication. The following Java code create this main window:

class mWindow extends Frame

private RedBlack P_flag;
showarea showarea;
Redblacktree Redblacktree;
Controlbutton Controlbutton;
infoarea infoareai

public mWindow(RedBlack p)
(

P_flag = Pi
Redblacktree new Redblacktree(this) i

showarea = new showarea(this)i
Controlbutton = new Controlbutton(this) ;
infoarea = new infoarea(this)i

add("North",Controlbutton)i
add("Center",showarea)i
add("South",infoarea)i

}

public void dispose()
(

P_flag.start.enable() i

Controlbutton.DisposeWin() ;
super.dispose() i

public void ClearTree()
(

Redblacktree = new Redblacktree(this);
showarea.tree_drawing()i
infoarea.setmsg("")i

}

}

5. Help Window: This kind of window used to present the help infonnation to help the

user to get some useful knowledge for algorithm or how to use this system. The help

window of the system gives the user a quick reference to the useage or purpose of every

function in this system. The following Java code defined the help window.

class HelpDlg extends Dialog

mWindow
Button
Label

BUTTONS:") ;

P_flagi
yes,Exit;
message = new Label("

30

THE FUNCTION OF VARIOUS

Label
value for

Label
value for

Label
color flip

Label
Label
Label

value."):

11=new Label("INSERT:
inseration.") ;

l2=new Label(nDELETE:
deletion.") ;

l3=new Label ("NEXT/RB/ROT:
and Rotation."):

l4=new Label ("CLEAR:
15=new Label ("EXIT:
l6=new Label ("HELP:

Open input window to enter a

Open input window to enter a

Implementing actual ins/del,

Clear the exist treetree .");
Exit the window."):
Open Help window to enter a

public HelpDlg(rnWindow p,String title)
{

super(p,title,true):
P_flag = p;

yes = new Button ("Yes") ;
Exit= new Button("Exit"):

Font £ = new Font("TimesRornn",Font.BOLD,16);
Font £1= new Font ("TimesRornn" ,Font.BOLD,20) ;
Exit.setFont(£):
message.setFont(f1) :
message.setForeground(Color.red) ;
yes. setForeground(Color. red) ;
Exit.setForeground(Color.red) ;
setBackground(Color.yellow);

add (message) ;
add{ll) ;
add(l2) ;
add(13);
add(14) ;
add(l5) ;
add(l6) ;
add (Exit) ;
setLayout(null) ;
Exit.reshape(250, 300, 70, 40);
message. reshape (10, 30, 600, 20);
11.reshape(lO,70, 600, 20);
l2.reshape(10,100, 550, 20);
13.reshape(10,130, 550, 20);
14.reshape(10,160, 550, 20);
lS.reshape(10,190, 550, 20);
16.reshape(10,220, 550, 20);
11. setFont (£) :
12.setFont(f);
13.setFont(f) :
14.setFont(f) :
lS.setFont(f) ;
l6.setFont(f) ;
resize(600, 400);

v.6. User Interface Design

A graphical user interface (GUl) presents a pictorial interface to a program. A

Gill gives a program a distinctive 'look' and 'feel'. The user interface design for this

31

system is based on Java .awt (Abstract Window Toolkit) package. In ord r to effectively

use GUI components, the awt inheritance hierarchy includes component class and

container class. Much of each component's functionality is derived from one or both of

these classes (Fig. 13)

extcomponent1---- TextField

I
Event Checkbox

Vonlainer-- Panel1--- Applet

Object1---- Component ...- Label

~Button

\ ~lst
Choice

Fig. 13 A portion ofthe Java .awl inheritance hierarchy.

The Graphical User Interface of this system uses direct manipulation and uses

buttons to control the operations. The advantage of this user system is obvious: users

who are in command of the system can use it easily; User can get immediate feedback

and the time for user to learn to implement this system is short. There are two main

window in the designed system: one is the main window refereed above, it is derived

from Java Frame; The other is a starting window, it a derived from Java applet. From

here, user can enter the main window to operate the red-black tree algorithms, enter help

window or play sound. The designed starting window and Java code is as below:

public class RedBlack extends Java.applet.Applet
{

public AudioClip sound;

Button start, help, play;
private Image treeimage, oimage, bufl, buf2;
private Graphics gContextl, gContext2;
mWindow main1;
Font fontl, font2, font3, x;

32

helpWin f;

OSU PICTURE

TREE PICTURE

Start Help Play

Fig. 14 The designed starting window. Start Button-Start into the main
window. Help Button-Enter the help window; Play Button-Play sound.

private Label 11, 12, 13, 14, 15, 16;
private String sl, s2, s3, s4, ~5, s6;

public void init ()
{

sound = getAudioC1ip(getDocumentBase(), "s.AU");
sound.p1ay() ;
treeimage= getlmage(getDocumentBase(), "fig157.gif") i

oimage= getlmage(getDocumentBase(), "o.jpg") i

buf1=createlmage(700, 500);
buf2=createlmage(40, 1) i

gContext1=buf1.getGraphics() i

gContext1.setCo1or(Co1or.green) ;
gContext1.fil1Rect(0,0, 700, 500) i

gContext2=buf2.getGraphics();
gContext2.setCo1or(Co1or.green) i

gContext2.fillRect(O, 2, 600, 100);

font1=new Font ("TimesRoman", Font. BOLD, 24);
x=new Font ("TirnesRornan", Font. BOLD, 14);
setBackground(Color.green) ;
start = new Button("Start");
start.setForeground(Color.black);
start.setBackground(Color.red) ;
start. setFont (new Font ("TimesRornan", Font. BOLD, 30)) ;
setLayout(nu11);
add(start);
start. reshape (200, 435,80,40) i

help = new Button("He1p");
help.setForeground(Color.blackJ;
he1p.setBackground(Color.red) ;
he1p.setFont(new Font("TirnesRornan",Font.BOLD,30));
add(he1p) ;
he1p.reshape(340, 435,80,40);
play = new Button("Play") i

33

play. setForeground(Color. black) ;
play. setBackground(Color. red) ;
play. setFont (new Font ("TimesRoman" , Font. BOLD, 30)) ;
add (play) ;
play.reshape(4BO, 435,BO,40);
sl= " The Rules of Red Black tree:";
s2= " 1. Every node is either red or black.";
s3= " 2. The Root is always black. "';
s4= " 3. If a node is red, its children must black.";
s5= " 4. Every path from the root to a leaf, must";
s6=" contain the same number of black node.";

}

public void start (Graphics g)
{

gContext1.drawString("Welcome to Redblack tree simulation", 160,
100) ;

gContext1.drawString("If you want know more about red black tree,
press Help.", 100, 400);

gContext1.drawString("If you want to enter the simulation, press
Start", 100, 520);

/*gContext1.drawImage(treeimage, 140, 120, this);
gContext1.drawlmage(oimage, BO, 1, this) ;*/

public void paint (Graphics g) {
g.drawlrnage(buf1, 0,0, this);
gContext1.fillRect(0,0, 700, SOD);
gContext1.drawlmage(treeirnage, 140, 120, this);
gContextl.drawlmage(oimage, BO, 1, this);

public boolean action(Event e, Object 0)
{

Object target = e.target;

if (target -- start)
(

rnainl = new mWindow(this);
rnainl.resize(800,600) ;
rnainl.setResizable(false);
mainl. show () j

start.disable() ;
sound. play () ;

}
if (target == help) {

if (f ! = null) (
f .hide () ;
f.dispose() ;

f= new helpWin (" Red black Redblacktree help ");
11= new Label(sl);
11.setFont(font1);
12= new Label(s2);
12.setFont(x) ;

34

13= new Label(s3);
13. setFont (x) ;
14= new Label(s4);
14. setFont (x) ;
15= new Label (s5) ;
15. setFont (x) ;
16= new Label(s6);
16. setFont (x) ;

f.setLayout(new GridLayout(8, 1»);

f .add(ll) ;
f.add(12) ;
f. add (13) ;
f .add(14);
f .add(15) ;
f.add(16) ;
f.resize(400, 300);
f. show () ;

return true;

The major graphical user interface contents are included in the main window. (Fig.

15). It includes various buttons. Through these buttons, the user can control the

animation and implement the red-black tree algorithms.

• Help Button: This button is used to open the help window. (Fig. 16). This window

will show the various functions of different buttons in main window.

• Input Button: This button is used to open the input window. Through this window,

the user can input a non-negative integer for insertion or deletion into/from the tree.

Fig. 17 shows the designed input window.

• Demo: if the user push this button, a red-black tree will constructed automatically.

Through this button, user will have a direct knowledge what the red-black tree looks

like and how the insertion and deletion algorithm implementation. In the program,

35

we use a array to contain a serious integer, and use a for loop to input thi int e

continuously.

~~ I Demo II NextIRBlROT

o
I PLEASE PUSH NextJRB/ROT BUTTON FOR NEXT STEP.

Fig. 15 The designed main window.

private void Demobutton()
{

int c[l= {50,45,32,23,76,97,88,11, 64,45,45,65, 47,3,32,45};

Eor(int i=O; i<c.length; i++l {
if((i==9lll (i==14lll (i==15l)

P_flag.Redblacktree.Delete(c[illi
else

P_flag.Redblacktree.insert(c[il};

36

Various function of the window:

Help: This button .

Demo: This button .

Input: This button .

NextIRBIROT: This button .

Exit: This button use .

Exit

Fig. 16 The designed help window in main window. Exit button-Exit from
this window.

Please input a non negative integer:

Enter Cancel

Fig. 17 The designed input window. 20 - input integer; Enter button - enter
the value; Cancel-cancel the key-in value.

37

demo.disable();
deletet.enable();
clear.enable();

• NextIRBfROT Button: This button implements 'next' step operation. The algorithm

was decomposed into step by step mode. Every time you insert or delete a node from

the tree. The balance of the red-black tree will be destroyed. The tree will need to

restore this balance. This restore course is step by step. Whenever you press this

button for next step, a sentence will be shown on the window prompting user what

the next step will be , for example: 'color flip', 'rotate right with ... ' or 'rotate left

with ... ' .

• Exit Button: This button used to exit from the main window and return to the starting

window. Because the main window is a Java frame, it need a specified procedure to

exit (the starting window is a Java applet, it include exit function.). Fig. 19 showed

the designed exiting window.

ACTION NOTE: I NODE 5 NEED ROTATE LEFr WITH NODE 10

Fig.18 Designed text field in the main field.

• Action note Field: This is a Java Text Field, in this field there will be a sentence

showing what the next step will be. (Fig. 18).

38

Do you really want to exit =

YES

Fig. 19. Designed Exiting window.

V.? Sound Display

NO

Java program can manipulate and play audio clips. It is easy for users to capture their

own audio clips. In this system, we used sound to explain some important features of this

design and add some background sound. At present time the ability to load and use

sound of Java is quite limited--- you can only load sounds in the .au fonnat. We use

Cool Edit 96 to make the sound dips. Cool Edit 96 (Cool Edit™ 96) is a digital audio

editor for Windows 95 and Windows NT.

39

VI. SYSTEM OVERVIEW

In last chapter, we described the designing details of this red-black tree animation

system. In, this chapter we give some snapshots from this system running in Java

Developing Kit 1.1.7. These snapshot will show you what the running results are and

how the visualization pictures look like.

The designed system can running under all kinds of Sun Java Development Kit and

Microsoft Visual J++ environment. We implement it in JDK 1.1.7 under DOS system.

Fig. 20 shows the DOS command of this program. Fig. 21, Fig. 23 shows the two main

window structure of the system. Fig. 21 showed the starting window, it includes three

buttons. H we press the 'Start' button, the main window will be open. It includes most

Gill components and user can implement red-black tree algorithms.

Fig. 20 The DOS command to run this system.

40

Fig. 21 The starting window ofthe system. Start Button - enter the main
Window; Help Button - open the help window; Play Button - sound
display.

Fig. 21 shows the starting window of the system. When you first run this Java

program injdk: 1.1.7, you will see this window. There are two pictures and three buttons

on it. If 'Help' button is pushed, user will see Fig. 22, it will show the four rules of red-

black tree for the user; 'Play' button is used for sound display. If you push this button,

there will be a sound to explain basic knowledge of red-black tree and how to use this

system. Sound is an important part of this system, it can attract the user's attention; If

user push 'Start' button, the main window will be open and user can began his exercise

about red-black tree algorithms.

41

~ Help Wmdow III

The Rules of Red Black tree.:
L EYery node is either red or black.

2. The Root is always bla£k.

3. Ifa node is red, its children most black.

4. Every path from tbe root to a leaf, must

contain the same number ofblack node.

Fig. 22 The help window from Starting window.

Fig. 23 shows the main window of the system. Whenever the 'Start' button on the

starting window is pushed, the system will enter this window. All the interactive buttons

about the tree algorithms are in this window. If you push these buttons, there will be

various events happen.

Fig. 24 shows when the help button is pushed during tree's implementation, there

will be a brief explanation of every button function's usage and purpose. There are seven

buttons for the tree implementation in this system, they include the basic functions like

insertion, deletion and some additional functions such as demo, clear, exit, etc. When the

basic functions are chosen, the input data must also be chosen to make those basic

functions operate.

42

Fig. 23. The main window ofthe system. Help button - open the help window;
Exit button - open the exit window; Insert or delete button - open the
window for insert/delete; NEXIIRBIROT - next step,' Demo button
implement a demo tree,' Clear button - clear the exist tree from the
screen.

Fig. 25 shows that when the demo button is pushed during tree implementation.

there will a continuous operations to construct a red-black tree (include insertion and

deletion). This function is used to demonstrate every kind of operations and templates to

the users who have no direct knowledge of red-black tree.

If the user press insertion or deletion button, the input window (Fig. 26) will show

up. and you can enter a non negative integer into the system for operation through the

key board. There are two buttons in this window: "enter"- enter the integer into the

system; "cance'" - cancel the input integer for some reasons.

43

Fig. 24 The help window in main window.

Fig. 26 The input window.

44

.' u

Fig. 25 The .scene ofthe 'Demo' button w.as pressed in main window.

Fig. 27 The exiting window.

45

Fig. 27 shows the exit window. If you push exit button this window will show up

and system will return to starting window.

The most important button is NEXTIRBIROT button. Users can ope.rate the tree

algorithm step by step with it. The next series pictures will explain its usage and how the

system works in an interactive mode with users. We will explain the operation procedure

under each step.

Fig. 28 Step 1: The node 13 was inserted into the tree. (first node).

46

------------------------------ ----

Fig. 29 Step 2: Insert 45 into the tree. the node initialize is red. The tree is
Balanced and no further action needed.

Fig. 30 Step 3: Insert 23. The tree is unbalanced now. The action note showed 'THE NODE
NEED ROTATE WITH 45'. At that time, the user need to press the 'NEXTIRBIROT'
hutton/or next step according to the red-black tree algorithm.

47

Fig, 31 Step 4: After press the 'NEXT.. J button the node will rotate with 45,
But the tree still unbalanced. We still need to press this button.

Fig. 32 Step5: The action note shows need color flip. So press "NEXT.. '
button.

48

Fig. 33 Step 6: After color flip. The tree still unbalanced. The action showed" THE NODE
NEED ROTATE LEFT WITH 13 ", so we need press 'NEXT button' again.

Fig. 34 Step 7: Finally the tree was balanced. The action note showed
nothing.

49

VII. SUMMARY AND FUTURE WORK

Dynamic data structure animation is a very interesting and rewarding subject. Due to

the advance of technology in computer graphics and the development of windowing

technology, visualization is applied immensely in every area of science and engineering.

In this thesis, a visualized animation system was designed for students. Chapter I

discussed the usefulness of a graphical tool for visualization of data structure; Chapter n

showed the related work in this area; Chapter ill and IV represented the Java language

and red-black tree; Chapter V discussed the designing and implementation issue;

Chapter VI overview the designed system and explained how to use this tool.

The algorithm animation system will make data structure program easy to

understand. In view of the fact that teaching and learning of data structures and

algorithms for a student is a process that take much time and is very difficult sometimes,

many systems for data structures and algorithms visualization have been created.

In this study, using Java language (Java applet) we have implemented a

visualization system that animated red-black tree algorithms focusing on insertion and

deletion. For the sake of convenience and ease of representation and visualization, only

the nonnegative integers are considered as input value. The whole system includes Java

applet, frame, dialog, sound, and etc.

The system is easy to use and very user friendly. We decompose the algorithms in

order to make it operate step by step. User could very easily to understand how the

algorithm works and how the red-black tree structure changes during the insertion or

deletion operation.

50

Due to the limited of time, this system focused on the visualization of red-black tree.

There are still many kinds of tree based algorithms that can be visualized such as: AVL

tree, B tree, Splay tree, and etc. We can put all these data structure's visualization in one

system. In this design, we make choice list for further use. We can very easily add new

contents of other tree algorithms. Visualizing other algorithms in this system are

considered future work.

51

VIII. REFERENCES

Venners. B., Inside the Java Virtual Machine, McGraw-Hill, New York, 1998.

Connen, H. T., Leiserson, E. c., Rivest L. R., Introduction To Algorithms. The MIT

Press, Cambridge, Massachusettes, 1997.

Deitel, H. M. , Deitel P. 1. , Java: How to Program, Prentice Hall, Upper Saddle River,

NI, 1997.

Harvick, L. H. , Rule Based Data Structures Animation. M. S. Thesis, Dept.

Computer Science. Oklahoma State University, 1996.

Knowlton, K. C. ,L6: Bell Telephone Laboratories Low Level Linked List Language,

Two Black and White Films, Bell Labs, Murray Hill, NJ, 1966.

Laurence, V. Master Java 1. 1, Second Edition, SYBEX, Alameda, California, 1997.

Lin, B. H., An Object-Oriented Graphic User Interface for Visualization ofB-Trees'

Animator. M. S. Thesis, Dept. Computer Science. Oklahoma State

University, 1997.

Nataraj, N., Arvind S., Java Networking and AWI' API Superbible. Waite Group Press,

Corte Madera, California, 1996.

Schroeder, W, Lorensen. B., Visualization Toolkit, Simon & Schuster,

Upper Saddle River, New Jersey, 1996.

Shen, H. ,A Visual Aidfor the Language ofTree Based Data Structures. M. S.

Thesis, Dept. Computer Science. Oklahoma State University, 1994.

Stasko, J. T. ,A PracticaL Animation Language for Software Development. Proc. of

52

IEEE 1990 Intl Con! On Computer Languages. 8, 1990, 1-10.

Thomas, M. G., PROVIDE: A Process Visualization a.nd Debugging Environment

Technical Report. Department of Computer Science, University of lllinois at

Chicago, Chicago, n.., July 1985.

Weiss, M. A., Data Structure a.ndAlgorithmAllalysis In C, Addison-Wesley, Menlo

Park, CA. 1997.

Weiss, M. A., Data Structure and Algorithm Analysis In C++, Addison-Wesley,

Menlo Park, CA. 1997.

Xu, C. ,Multimedia Visualization ofAbstract Data Type, M. S. Thesis,

Dept. Computer Science. Oklahoma State University, 1997.

Yarwood, E. , Towards Program mustration. M. S. Thesis, Department of Computer

Science, University of Toronto, Toronto, ON, 1974.

53

VITA

Pengcheng chen

Candidate for the Degree of

Master of Science

Thesis: RED-BLACK TREE ALGORITHM ANIMATION USING JAVA

Major Field: Computer Science

Biographical:

Personal Date: Born in Yantai, Shandong, P. R. China, Married to Jing Yu.

Education: Received Bachelor of Science degree in Biology from East China Nonnal
University, Shanghai, P. R. China, in July 1986; received Master of Science
degree in Biology from East China Nonnal University, Shanghai, P. R. China, in
July 1989. Completed the requirements for the Master of Science degree with a
major in computer Science at Oklahoma State University in July, 1999.

Experience: Employed by Environment Protection Agency of Shandong Province,
Jinan, P. R. China from September 1986 to August 1992; employed by the
Shanghai Fishery University, P. R. China, assistant professor from July 1995 to
November 1996.

