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NOMENCLATURE

A cross-section area

Ct foundation stiffness factor

E elastic modulus

Eo elastic modulus (mean value)

F foundation stiffness

I moment of inertia

10 moment of inertia (mean value)

L beam length

Lp modified beam length

M number of generalized coordinates

N number of imperfection modes

p applied axial load

q generalized coordinates

r inverse geometric stiffness matrix

T change in temperature

To change in temperature (mean value)

V total potential energy function

v non-dimensional total potential energy

W lateral deflection
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CHAPTERl

INTRODUCTION

As the integrated circuit (IC) has revolutionized infonnation technology, micro­

electromechanical systems (MEMS) have opened up numerous ways to affect our

everyday lives. Microengines, microsensors, and micromachines are no larger than the

size of a dust particle. MEMS will one day drive the submarine capsule inside our blood

vessels to unclog blockages and more. Is this science fiction? The miniaturization

revolution has begun.

Microsensors and microengines are not only small but are also fragile. Small

imperfections in shape, materials, and operating conditions could severely limit their use.

Consequently, one of the many goals for MEMS is increasing their durability. How

microsensors behave in less than perfect conditions is of great interest. How will the

stability of these microdevices be affected?

Failure analysis based on strength and stiffness or stability is an important and

integral component of structural design. Tension failure is dependent on strength and

stiffness only, and occurs when normal stress of a member exceeds stress limits (yield or

ultimate) of the material. However, failure of a slender compression member is

dependent on strength, stiffness, and most critically stability; this member can fail before

reaching its stress limits. Material strength consideration alone is not sufficient to predict

structural behavior.

Engineers predict critical buckling load of structures by several methods. Two

predominant classical stability analyses are differential equations and energy method

approaches. In theory these approaches have worked well for conservative structures that

are insensitive to imperfections, but in practice no structure has perfect geometry or shape
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and the applied load may not be concentric. Tolerances account for irregularities and

variabilities in the fabrication and assembly of structural members.

Cylindrical shells and beams on elastic foundations are two structure types that are

sensitive to imperfections [Tennyson, Muggeridge, and Caswell 1971; Almroth, Holmes,

and Brush 1964]. Bifurcation buckling strength of these structure types is sensitive to the

presence of small structural imperfections in material, geometry, and load. Some

researchers have defined structural imperfections as any small and unintended deviations

or variations from the perfect structure [palassopoulos 1993, Yeigh 1995]. Timoshenko

and Gere [1961] showed that equilibrium of a given structure is stable at the critical load

if the structure is insensitive to imperfections. The response of imperfection-insensitive

structures is shown in Figure 1.1.

Load
I~

-------------~---::.::="-"'=-''''''-

Displacement

Figure 1.1. Buckling Response of Imperfection-Insensitive Structure

If the structure is sensitive to imperfections, the neighboring equilibrium position

exists at loads smaller than the critical load; this equilibrium position is unstable

[Sirnitses 1976]. The critical load of an imperfection-sensitive structure may be consid­

erably smaller than that of an idealized perfect model due to the presence of small

imperfections [Simitses 1976]. The load-displacement response of an imperfection­

sensitive structure is shown in Figure 1.2. The nature of structural imperfections is
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generally small and unavoidable. Imperfections considered in this study include

variabilities in initial shape, modulus of elasticity, moment of inertia, foundation

stiffness, and temperature. The combined effects of these imperfections are also

considered in this research.

Load

Displacement

Figure 1.2. Buckling Response of Imperfection-Sensitive Structure

In large structures, engineers frequently use safety factors (SF) to mask structural

imperfections. Although a large SF is used to account for uncertainties in the actual

structure, such an SF will often produce uneconomic and overdesigned structures and

may decrease safety. For example, a structure with excessive stiffness will respond

adversely under high-frequency seismic or wind loads.

The most widely used buckling equation was derived by Leonhard Euler to calculate

the critical load of a concentrically-loaded column in 1744. Commonly known as the

Euler formula, this equation is fundamental for the design and analysis of most buckling

problems. Unfortunately, this equation can be used only for perfect elastic columns.

In the past 50 years, much stability research has been based on the classical method.

In 1945, Koiter showed that imperfection effects on structures caused differences

between theoretical and experimental results [Koiter 1945, Thompson and Hunt 1984].

Koiter also examined the interaction of various buckling modes that occur at the same
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load and analyzed imperfection sensitivity of various structures; however, this investiga­

tion was limited to shape imperfection only [Yeigh 1995]. Palassopoulos [1992] stated

that the analysis in Koiter's method was based on dominance of the classical buckling

mode, but this dominance was valid only asymptotically close to the bifurcation buckling

load for the perfect structure. For medium and high imperfection-sensitive structures, the

buckling load for the perfect structure extends below the bifurcation load by as much as

70%. Palassopoulos concluded that Koiter's analysis was fundamentally inadequate for

cases ofmedium and high imperfection sensitivity.

A breakthrough in stability research by Palassopoulos [1993] proposed the critical

imperfection magnitude (elM) method. His theory was based on the expansion of

potential energy without any limitations to shape imperfection. elM overcame the

limitation of Koiter's theory by placing no restrictions on the type of imperfections.

Palassopoulos analyzed imperfection effects for modulus of elasticity, moment of inertia.,

shape and foundation stiffuess, and effects for combined imperfections on the same

structure.

Imperfections stemming from changes or variabilities in temperature and their

effects on beams (applicable for both large- and microstructures) are the focus of this

research. Temperature changes cause material expansion and contraction, and a

subsequent increase or decrease in thermal strains and stresses. Even a small temperature

decrease can cause warping and cracking in thin films, fibers, microelectromechanical

systems, and other thin small structures. In this study, structures are assumed to include

no change in elastic and thennal expansion coefficients for low heat and small deflection

before buckling occurs. A comprehensive literature search revealed no investigation on

the effects of thenna! imperfection in buckling analysis. This study will focus on

stability behavior of beams on elastic foundations due to the presence of thermal

imperfection.
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CHAPTER 2

CRITICAL IMPERFECTION MAGNITUDE METHOD

The critical imperfection magnitude (CIM) method is used to determine the effects

of imperfections on beams. elM is chosen for this study because of its simplicity, its

versatility, and its ability to consider any sources of structural imperfections. Multiple

imperfection types can be considered as long as potential energy for the structures can be

written; furthermore, elM has produced good results [Palassopoulos 1993, Veigh 1995,

Hoffman 1996].

Palassopoulos first introduced this regular perturbation expansion method in 1993.

CIM is based on the second-order expansion of the potential energy and the fourth-order

expansion of a kinematically admissible set of generalized coordinates. For the present

nonlinear problem, the second-order expansion of potential energy has given good results

for the inextensional beam on elastic foundation (BEF) [Palassopoulos 1993, Yeigh

1995]. The order of expansion can be unlimited but a higher order expansion leads to

increased complexity in both analytical and numerical solutions

A "perfect" structure represents those beams with zero imperfections, while "actual"

structures contain imperfections of varying degrees. First, the potential energy of the

"perfect" structure, V0, is expanded in terms of the kinematically admissible set of

generalized coordinates <Ii, j = 1, 2, ... , M.

(2.1)

The subscript, 0, in variables and coefficients denotes a perfect structure. For the "actual"

structure its potential energy, V, is expended about Vo, which is the potential energy for

the corresponding "perfect" structure.
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VI = VI + alj'li + b1jkCJjql.; + Cljld!liqkC}1 + d1jk1m'liqkqIQm + .

V2 = V2 + a2j'li + ~jk!liqk + C2jldq;qkC}1 + d2jk1m'liQkQlqm + .

(2.2)

(2.3)

(2.4)

The universal perturbation parameter is denoted by E, which must be sufficiently

small for the convergence ofpower series expansion ofV. The same parameter, E, is also

used in the expansion of the material, load, and geometric parameters. For example, any

geometric or material parameters, Sex), can always be expanded about its mean value, So,

and an imperfection pattern, sex), as Sex) = So [1 + ES(X)]. If there is no imperfection,

either Eor sex) is zero, and the resulting structure is deemed "perfect".

The coefficients Ci(), bO' co' and do in Equations 2.1-2.4 are chosen to be symmetric

with respect to pennutation of their indices. The application of symmetry helps to

increase the computational efficiency for elM. Substituting Equations 2.3 and 2.4 into

Equation 2.2 and rearranging the terms, the potential energy is cast in the following form:

V = (vQ + eVI + E2V2 + ...)

+ (aoj + Ealj + E?a2j + ...)q;

+ (bojk + Ebljk + E2~jk + ...)'liQk

+ (COjld + EC Ijlcl + e2C2jkl + ...)q;Qkql

+ (dojlcJm + Ed1jklm + E2d2jklm + ...)q;Qkqlqm + ... (2.5)

The fIrst and second variations eV and e2V of the potential energy yield equilibrium

and stability equations [Bazant 1991, Langhaar 1989, Thompson and Hunt 1984).

Coefficients in the variational equations are grouped in tenns of the order of their

corresponding generalized coordinates:

~V = V(q; + 0'li,qk + O<}k) - V(q;,qk)

~V = (aoj + ealj + E2a2j + ...)(~q;)

+ (bOjk + Eb1jk + e2~jk + )(~('liqk»

+ (COjkl + ECljkl + EC2jkl + )(~(Qjqkql»

+ (dojldm + Edljklm + E2d2jldm + ...)(~(Qjqkqlqm»

6
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where

.1(Cliqk) = [(<Ii + OCJj)(qk + Oqk)] - (q;qk)

= CJj(oql.J + qk(OCJj) + (OCJj)(Oqk)

.1(Cliq~l) = [CJj(cSCJi)][qk(Oqk)][ql(Oql») - (q;qkql)

= q;qk(Oql) + qICJj(Oqk) + qkql(OCJj) + '!i(Oqk)(Oq.l)

+ ql(OCli)(Oqk) + qk(Oql)(OCli) + (0'!i)(Oqk)(OqI)

.1(q;q~lqm) = ['Ii + (8'!i)][qk+ (Oqk)][ql + (8ql)][qm + (oqm») - (Cliq~lqm)

+ q;qk(Oq,)(oqm) + Cliqlqm(Oqk) + q;ql(Oqk)(Oqm)

+ CJjqm(Oqk)(Oql) + Cij(Oqk)(Oql)(Oqm)

+ q~lqm(0'!i) + q~I(8q;)(oqm) + qkqm(8'!i)(OqI)

+ qk(8q;)(8ql)(Oqm) + qlqm(cSqj)(8qk)

+ ql(O'!i)(Oqk)(Oqm) +qm(0'!i)(Oqk)(OqI)

+ (0'li)(Oqk)(Oql)(Oqm) - '!iqkqlqm

(2.8)

(2.9)

(2.10)

(2.11 )

The frrst and second variation oV and 02y equations can be fonned by combining

Equations 2.6-2.11:

OY = {(aoj + ealj + e2a2j + ...)

+ 4 (dojklm + ed1jklm + e2d2jldm + ...) q~lqm}(0'!i)

oly = {2(bojk + gb1jk + g2b2jk + ...)

7
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eIM requires two independent expansions. The first expansion is the potential

energy expansion of the "actual" structures in Equations 2.12 and 2.13. In the second

expansion, the prebuckling equilibrium state ~ of the actual structure is expanded around

the prebuckling equilibrium state qOj ofthe perfect structure:

£Ii =qOj+ eqlj + E
2
q2j + ... (2.14)

£IiqlcQl = qOjkJ + eqljkl + e
2
q2jld + ...

~qkqlqm = qOjklm + Eqljklm + E
2
q2jklm + ...

(2.15)

(2.16)

(2.17)

Palassopoulos [1993] noted that the above expansion introduces only a mild effect

on the prebuckling response of the "actual" structure if the imperfections are small.

Substituting Equations 2.14-2.17 into Equations 2.12 and 2.13 produce the prebuckling

equilibrium path for the perfect structure, which is indicated by a solid line in Figure 2.1.

Along the solid line, the structw'e is stable until the bifurcation point at point B. At this

bifurcation point the second variation, flv, goes from positive definite to positive

semidefinite for the first time.

Load

Pd _--
B------" ------~ -----

P r----------------.

Displacement

Figure 2.1. Load Displacement Diagram
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The traditional approach to solving buckling problems with imperfections is the

first to set the level of imperfection at E and then determine the corresponding buckling

load. ClM uses an approach that is directly opposite to the traditional one. In ClM the

applied load (below buckling -load) is forced to detennine the level of imperfections

necessary to initiate instability. Although elM may appear to be illogical at first glance,

it is actually more logical than the traditional method. The traditional method requires a

designer to assume structural imperfections that cannot be determined prior to

construction. On the other hand, ClM requires a designer to assume a design load that

can be determined after load calculation. Furthermore, elM provides a guideline for the

maximum level of imperfections a structural member can have during the manufacturing

or fabrication process. In addition, ClM can be reformulated to work with the traditional

approach [Yeigh 1995] where p is calculated from the known values of imperfections.

The CIM approach will lead to fonnulation of a generalized eigenvalue problem in

terms of E. There are M eigenvalues in the solution, one for each buckling mode. The

smallest eigenvalue is termed the critical imperfection magnitude, Ecr. which is the

smallest imperfection magnitude pennissib1e prior to bifurcation.

The computation efficiency for the critical imperfection magnitude method can be

improved by using incremental coordinates and orthogonal displacement modes. First,

the potential energy can be simplified by letting the generalized coordinates be measured

incrementally from a reference state of the corresponding perfect structure, q: = qj - qOj'

where qOj (j = 1, 2, ... , M) is the prebuckling equilibrium state of the perfect structure. A

reference coordinate, <IQj, is set to zero, measured from this new reference point; the

potential energy expansion can be cast in the following form:

VOjk = 2bojk

9
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Although it is not required, the coefficients Cl(.), bO, co' and dO are transformed

symmetrically with respect to any permutation of their indices (bjle = blcj, Cjkl = Cjlk = Ckjl =

CkJj, etc.). The geometric stiffness matrix of the perfect structure, bOjle, in Equation 2.1 is

always positive definite up to the classical buckling load and for the prebuckling range of

the imperfection-sensitive structure. The inverse, fjk, always exists (rjkbojk = Ojle), where

Ojk denotes Kronecker's delta (ali = 1, Ojle = 0 if j *" k) fOf the stiffness matrix. Through fjk,

the stiffness matrix bOjk can be diagonalized. The transformed generalized coordinates

become 'Ii* = fjlql** These new generalized coordinates---<u", j = 1,2, ... , M, where M

represents the number of buckling modes-will produce a Hermitian form of the

eigenvalue problem. The new eigenvalue equation is presented as:

(2.22)

(2.23)

(2.24)

Further simplification of potential energy can be achieved by usmg orthogonal­

displacement modes. Equation 2.22 is the general form of the generalized eigenvalue

problem, which includes symmetric and asymmetric bifurcation problems. FOf symmetric

bifurcation problems, the third-order coefficient, COjle)' vanishes identically to zero.

The matrix equivalent for Equation 2.22 is written as the following:

(2.25)

where I and 0 represent identity and zero submatrices. If Y2 is zero, the resulting

eigenvalue problem reduces to MxM. A full solution requires a 2Mx2M eigenvalue

problem.
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CHAPTER 3

BEAM ON ELASTIC FOUNDATION

A simple model, beam on elastic foundation (BEF), is often used to describe spread

footings, grade beams, highway pavements, bridge piers, and sheet pilings. (Note: Some

modifications must be made in this research for use in soil foundation problems.)

Imperfection sensitivity of BEF can also be extended to describe even the smallest of

known structures such as microsensors and microbeams. In this study, BEF is chosen for

several reasons. First, the model is simple yet sensitive enough to demonstrate the effects

of smallest imperfections. The model has also been examined thoroughly in both

deterministic and stochastic analyses. Consequently, much is known about the

prototypical model. Finally, the model problem exhibits features readily found in many

microdevices such as sensors and actuators on various fixtures and supports.

Five independent imperfections will be considered herein, namely variabilities in

initial shape, modulus of elasticity, foundation stiffness, moment of inertia, and

temperature.

Consider a simply supported beam on elastic foundation in Figure 3-1. The beam is

oriented in the standard right-hand system with the positive X-axis pointing to the right,

the positive Y-axis pointing down. The beam has length (L), applied load (P), modulus

of elasticity (E), moment of inertia (1), and elastic foundation stiffness (F). The

temperature change is denoted by T, and the change exerts thennal loads on the beam.

Applied loads cause the beam to deflect in the lateral direction; this deflection is

represented by W.
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------------_.....

I---X*~

I'"

----------..---------

L

Figure 3.1. Beam on Elastic Foundation

For convenience, dimensional variables have been transfonned to dimensionless

coordinates. Lengths have been nonnalized by the modified span length, Lp = L / n.

Other variables such as <p and Y have been normalized by their corresponding base

values.

X= X =1tX
L p L

W= W = 1tW
L p L

(3.1 )

(:1.2)

(3.3)

(3.4)

(3.5)v=-.!::LY= L Y
Eol o 1tEol o

Imperfections also fluctuate about their base values. Such a reference value is the

mean value. Shape imperfections deviate from the zero mean since the perfect beam is
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straight and rests on the zero-axis. Unlike Type I (shape) imperfections, Type II

imperfections fluctuate about some value other than zero. Mean values for Type II

imperfections are determined by physical and geometric properties. Mathematically,

imperfections can be expressed in the following equations:

E(x) = Eo[1 + ee(x)]

I(x) = 10[1 + eg(x)]

<p(x) = <Po[1 + d(x) + eCtTot(x)]

Wo = eh(x)

E(x)A(x) = E(x)l(x) = £010[1 + ee(x)][1 +eg(x)]
L2 L2

T(x) = To[I + m(x)]

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11 )

(3.12)

In Equations 3.6-3.12, E(x), l(x), <p(x), A(x), and T(x) represent elastic modulus,

moment of inertia, foundation stiffness, cross section area, and temperature, respectively.

Within the imperfection expressions, lowercase letters e(x), g(x), f(x), and t(x) represent

deterministic imperfection patterns in elastic modulus, moment of inertia, foundation

stiffness, and temperature change~ mean values are represented by variables with zero

subscripts.

The expression has three components: strain energy, VB, results from curvature

change; potential energy for the applied load and temperature gradient is contained in Vp;

the elastic foundation provides support in the lateral direction and its energy is contained

in VF:

V=VB+VF+Vp

L L ( J2V = 1. JEIW"(X')2 dX =.L JEI W" dX
B 2 0 2 0 .,)1- W,2 '

13
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r
(3.15)

(3.16)

where first and second derivatives are denoted by single and double primes. The

quantity, X"', denotes the fixed spatial coordinate which remains in the horizontal

direction after the beam bend. Dividing Equation 3.13 and its components by (7tEoloIL)

yield the dimensionless fonn of the potential energy. For the nonnalized beam, all

integrals are evaluated for XE [0, 7t]:

7t
v F = ~ f<J>o(l+Ef+EC t TotXw-Eh)2dx

o

V p ; -{~-l'h-W"dxJ

- :' (j(l WXl HgXl Ht}uTodxn~l-W"dx J

+ ~(j(IHeX1HgX1Ht}uTodxJ

(3.17)

(3.18)

(3.19)

Displacements and their derivatives are expanded in Taylor series that are shown in

Equations 3.20-3.21 and substituted into Equations 3.17-3.19. Since the elM method is

based on fourth-order expansion of the generalized coordinates, displacements and their

fourth-order derivatives of are collected and rearranged:

(3.20)

14
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VB =~ J[ch"2 -2(e+g)h"w"-(e+g)h"w"w'2 +eg(w"Y +eg(w·Y(W'Y~2
o

+ (-2h"w" -h"W"W'2 + (e + gXw·y +(e + gXw·y(W'y)E

(
T.

J1t 1( }x2 -a. 0 1 ,2 1 ,4
+E -2- fet+gt+egdx l--w --w .

1t 0 a 2 8

(
a.T J1t+ E

2
-;- Jet + gt + egdx

(3.21)

(3.22)

(3.23)

(3.24)

Terms in the dimensionless potential energy are grouped into g8 and wb
, and

expressed as Va,b.

V o•o =a

Xl ,,2 1 2 (1 a.ToJ ,2]V ::;: -w +-q> W - -p-- w dx
0,2 2 2 0 2 21t

o '

15
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R1 ,,2 ,2 (1 aTo) '4]dxvo = -w w - -p--- W
,4 0 2 8 81t

1t

V 1,1 =E n- h"w· - 'Pohw}ix
o

7t

V 2.1 =g2 n- (e + g)h·w· -'Pohw(f + C. Tot)}ix
o

v" ~ E'(:~O )[J<et + gt + eg) dxn(~)' dxJ

+<'[1eg
(;")' dX)

(3.28)

(3.29)

(3,30)

(3.31)

(3.32)

(3.33)

(3.34)

It was noted in Chapter 2 that Cojld vanishes identically to zero for symmetric

bifurcation problems. The third-order coefficient in Va,3 also vanishes, which verifies that

the BEF is indeed a symmetric bifurcation problem.

Before proceeding to the development of the coefficients of ct<.), b(.), c(.), and <1<.), the

potential energy and imperfection patterns should be appropriately discretized. Since the

modulus of elasticity, foundation stiffness, moment of inertia, and change in temperature

imperfections have no forced boundary conditions, a cosine series can be used to simulate

imperfection patterns:

16
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N

e(x) =Le j cos(jx)
j=)

N

g(x) = Lg j cos(jx)
j=1

N

f(x) =Lfj cos(jx)
j=1

N

t(x) =L t j cos(jx)
.i=1

(3.35)

(3.36)

(3.37)

(3.38)

Shape imperfections, on the other hand, are forced to be zero at the boundaries.

Consequently, a sine series appears to be more appropriate. The foHowing is the shape

imperfection field:

N

hex) = L:h j sin(jx)
j=1

(3.39)

In Equations 3.35-3.39, ej, gj, fj, tj, and hj are the deterministic imperfection

amplitudes and N is the number of imperfection modes which are taken into account in

the numerical computations. Similar to shape imperfections, lateral displacement modes

are expanded in a sine series to meet the boundary conditions:

M

w(x) = L:qj sin(jx)
j=1

(3.40)

where M is the number of displacement modes in the discretized computation.

Substituting imperfection patterns described in Equations 3.35-3.40 into Equations

3.25-3.34 and removing the displacements, 8qj, coefficients ~.), bO, co' and dO for the

generalized eigenvalue problem are obtained:

b n['4 ( UTO)'2 ]Ojk ="4 J - P----;- J +q> (3.41)
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where

7t ('4 \...a1j=-2J +<PO.,uj

b 1jk =.!.f (<Po (f, + <PoC. To t)+ /k 2 (e + 4g))Y3jld
2 1=1

7t
Yjjklm = fcos(jx) cos(kx) cos(lx) cos(mx)dx

o
= ![sin(j - k + 1+ m)1t + sin(j - k + 1- m)n

8 j-k+l+m j-k+l-m

sinO - k -1 + m)1t sinO - k -1- m)1t
+ +

j-k-1+m j-k-l-m

sinO + k + 1+ m)n sinO + k + 1- m)1t
+ +

j+k+l+m j+k+l-m

sin(j + k -1 + m)1t sin(j + k -1 - m)1t]
+ +

j+k-l+m j+k-l-m

n
Y2jklm = fsin(jx)sin(kx)cos(1x)cos(rnx)dx

o
= ![sinO -k+l+m)7t + sin(j-k+l-m)1t

8 j-k+l+m j-k+l-m

sin(j - k -1 + m)1t sinO - k -1- m)1t
+ +

j-k-1+m j-k-l-m

sin(j + k + 1+ m)1t sinO + k + 1- m)1t

j+k+1+m j+k+l-m

_ sinO + k -1 + m)1t _ sin(j + k -1- m)7t l
j+k-l+m j+k-l-m J
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1t

Y3jkl = Jsin(jx)sin(kx)cos(lx)dx
a

= .!.[Sin(j - k -1)1t + sinO - k + 1)1t
4 j-k-l j+k+l

_ sin(j + k -1)1t _ sin(j + k + 1)1t]
j+k-l j+k+l

1t

Y3jk = Icos(jx)cos(kx)dx
o

=.!.[Sin(j-k)1t + SiD(j+k)1t]
2 j-k j+k

(3.49)

(3.50)

As mentioned in Chapter 2, all variables are now dimensionless. In Equations 3.47­

3.50, the closed-fonn expressions for integrals take the following:

1.· sin 1ta I" cos 1ta -1 0un = 1C or 1m = .
a-+O ex. a-+O·a
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CHAPTER 4

COMPUTATION METHODS AND RESULTS

A numerical solution of the nonlinear eigenvalue problem discussed in Chapter 2 is

time-conswning. This complication stems from a full coefficient matrix, which can be as

large as 2M by 2M, where M is the number of buckling modes. Some modifications have

been made to the eigenvalue problem to allow a more efficient computation. First, the

generalized coordinates have been forced to be measured from the same reference states

of the perfect structure. The coefficient matrix was transformed to a symmetric matrix

and was then diagonalized. Although these modifications were not necessary for the

solution, they optimized the solution process.

A deterministic eigenvalue solver for ClM [Yeigh 1995] was modified to include

thermal imperfections. The base program, STABILl, includes imperfections in shape,

foundation stiffness, moment of inertia, and elastic modulus. As a Type II imperfection,

temperature variability was modeled with a cosine function. Imperfection patterns in

thermal instability were prescribed a priori as were all other imperfection patterns

examined in this study.

As described earlier, the coefficient matrix can be divided into four quadrants. The

first quadrant contains the coefficients associated with Type I imperfections (Y2jk), and the

second quadrant contains Type II (Yljk) coefficients. The third and fourth sectors contain

identity and zero matrices, respectively. Solving combined imperfection types yields a

full coefficient matrix. All imperfections were considered individually and collectively.

Imperfection modes, N, describe the number of discretizations necessary to capture

essential modal patterns in the imperfection field. For example, N = I implies one cosine

wave in Type II imperfections, while N = 64 considers 64 individual cosine functions to
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describe the actual imperfection pattern. Veigh [1995] has shown that 128 imperfection

modes were necessary to describe stochastic patterns. For the present study, Figure 4.1

shows that only 64 modes are sufficient to provide an accurate description of

imperfection patterns (input).

Buckling modes, M, are the eigenvector and provide the output, while imperfection

patterns describe the input. For example, in the Euler column, the :first mode is the

dominant form. Depending on input parameters described as well as load configurations,

higher-order modes can influence the eigenvalue problem significantly. Yeigh [1995]

showed that for BEF, 16 modes were sufficient for convergence. In the present study, 16

modes were also sufficient for convergence (Figure 4.2).

The soil parameter, <Po, prescribes foundation stiffnesses where small numbers are

describe soft foundations and large numbers describe firm foundations. A value of 225

represents moderate stiffness and is used in this study. The soil parameter significantly

influences imperfection sensitivity. A reduction in <Po decreases imperfection sensitivity.

This result is reasonable since <Po = 0 is an Euler column, which is insensitive to

imperfections (Figure 4.3). Based on earlier studies [Palassopoulos 1993, Veigh 1995,

Hoffman 1996], a <PO value of 225 is chosen for this study.

The classical buckling load, Pel, refers to the applied load which causes the structure

to buckle in the absence of imperfections. For actual structures the applied load, P, should

be lower than the classical buckling load. Other researchers [Timoshenko and Gere 1961,

Palassopoulos 1993, Veigh 1995] have shown that the classical load for BEF is obtained

by minimizing the expression of (j4 + <po)/p where j = 1, 2, 3, ... , M. The dominant

buckling mode minimizes the corresponding classical load expression. In this study, 99,

97,95, and 90% of the classical load were used to examine load factor effects.

As for all imperfections, temperature imperfections vary about their mean value, To,

described as the normalized average change in temperature. This normalization can be

determined by dividing the mean change in temperature by the room temperature (which

has been set at 30°C in this study). After analyzing the program output and considering

its physical meaning, To is set at -0.167, where a negative sign for To means a reduction
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in temperature. Temperature reduction is important because it introduces the internal

compression load to the BEF, which increases the applied load. Furthermore, a reduction

in To causes an increase in the foundation stiffness. As mentioned before, an increase in

the foundation stiffness causes an increase in imperfection sensitivity. A To of 0.167

means a temperature change of 5°C from room temperature. lbis is a reasonable change

in temperature for many real structures and especially for microelectromechanical

systems (MEMS). The coefficient of thennal expansion, a, is a parameter that is used to

define the amount of material expansion or contraction under temperature change, and

has been normalized by the thenna! expansion parameter for steel. In this study, steel is

chosen because it is a material that is widely used; thus, a is set as 1.

A reduction in temperature causes an increase in fOWldation stiffness. The foundation

stiffness factor, Cr, prescribes the percent increase in foundation stiffness when the

temperature is reduced. Ct is normalized by the foundation stiffness, <Po, and is chosen to

be -0.0024. This value represents about a 0.04% increase in foundation stiffness per

degree decrease in temperature. After analyzing experimental results from Guyer and

Brownell [1989] this is a reasonable value for steel members.

In this study, imperfection patterns are taken to be deterministic. In other words, the

nature of imperfection patterns is known a priori. Although a specific functional form of

imperfections is not required, a sine function is used for Type I (shape) imperfections and

a cosine function is used for Type II (nonshape) imperfections. The use of a sine function

is influenced by boundary conditions, where two ends of the beam must meet zero lateral

displacement.

Different deterministic imperfection amplitude shapes have been tried to determine

their relative importance. These imperfection amplitudes include shapes that are linearly

increasing, constant, sine and cosine waves, square and square root functions. A cosine

function is selected for all detenninistic imperfection amplitude shapes because analysis

has shown it is the most sensitive imperfection amplitude for all imperfections considered

in this study. The magnitude of the imperfection is chosen as 0.002, but imperfection
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magnitude does not affect the root mean square imperfection magnitude, &RMS. The RMS

for imperfection magnitude c(i)RMS can be solved from Equations 4.1-4.5:

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

where i = 1, 2, ... , M. The product of the imperfection magnitude 8cr and RMS

imperfection patterns should not be greater than 0.35 since it violates the nature of the

perturbation approximation (Yeigh 1995). The imperfection amplitude shapes will affect

the cRMS and not the imperfection magnitude.

Applied loads have been nonnalized by the classical (perfect) buckling load. AU

length variables have been nonnalized by the modified beam length, Lp = Lin which help

to ease evaluation of trigonometric functions (i.e. at 0 and n). Imperfection patterns e(x),

f(x) , g(x), hex), and t(x) represent variabilities in modulus of elasticity, foundation

stiffness, moment of inertia, initial shape, and temperature.

In Figures 4.4-4.9. all CRMS have been truncated at 0.35, for which the power series

does not converge with an tRMS greater than 0.35. Therefore, an cRMS value greater than

0.35 is physically meaningless.

From Figure 4.4, five imperfection patterns were analyzed individually and

compared to assess the relative importance to each other. Shape appears to be the most
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sensitive followed by temperature, foundation stiffness, moment of inertia, and modulus

of elasticity. All Type II imperfections had tRMS similar in shape, orientation, and

location. This result was anticipated since only )'ljk in the potential energy was influenced

by Type II imperfections.

A second observation from Figure 4.4 is that BEF was detennined to be the most

sensitive to shape imperfections and the least sensitive to change in temperature

imperfections (when the average change in temperature is -0.033°). The third observation

is that the imperfection sensitivity for change in temperature imperfection increases when

the magnitude increases of the mean value for change in temperature increases. This

imperfection sensitivity can range from most sensitive to least sensitive in Type II

imperfection.

In Figure 4.5, ERMS values for temperature are shown. The mean value for change in

temperature is chosen as -0.167 to demonstrate its effects. This figure shows that t(x) is

the least sensitive by itself. The buckling strength of BEF is reduced when in the presence

of other Type II imperfections. When all Type n imperfections are present together, ERMS

can be reduced as much as 70%.

Figure 4.6 represents piper plotted as a function of thRMS and ttRMS for temperature

and shape imperfections. The purpose of these two figures is to determine additive effects

of Type II imperfections on the existing temperature and shape imperfections. As shown

in these two figures, there are no significant effects for the presence of other

imperfections. All lines are essentially the same. This figure also shows that shape is the

most dominant imperfection pattern.

Figures 4.7-4.9 represent piper plotted as a function of teRMS, tfRMS, and EgRMS. The

presence of any Type II imperfections can reduce the tRMS, and the reduction can vary

from 10 to 57%. The presence of Type I imperfections introduced a remarkable

seventyfold increase in sensitivity.
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CHAPTERS

CONCLUSIONS

Today, everything has been pushed to its extreme limits. Mechanical devices have

been miniaturized to micro/nano-scale levels. Metal sheetwalls of a building can be as

thin as a few millimeters while maintaining its strength. Therefore, imperfections have

become increasingly vital in stability analysis. TIlls study has considered imperfection

effects on a beam on elastic foundation (BEF). The critical imperfection magnitude

method has been used to analyze the significance of imperfections and their imperfection

interactions on BEF.

Small, uncontrolled deviations m temperature from the mean value, To, have a

negligible effect on the stability of BEF. In fact, temperature has the least impact when

nonnalized average change in temperature is less than -0.033. If the mean value or

amplitude of imperfections is large, temperature imperfections can have adverse effects.

Normalized average change in temperature of -004, -0.233, -0.167, and -0.067 will reduce

the effective buckling load to 90, 95,97, and 99% of the classical value.

Even though the effects of temperature imperfection alone are insignificant, thennal

imperfections can stimulate other material and geometric imperfections. When

foundation stiffness imperfections are coupled with -0.167 variability in temperature, the

load factor could be reduced to 71 % of the classical value. Thermal imperfections

behave in the same manner as other Type II imperfections, while shape imperfections

appear to be most sensitive to BEF. When thermal and shape imperfections were

combined, all other imperfections were shown to have diminished effects.

The critical imperfection magnitude method used in this study was strongly

influenced by shape imperfection patterns. If all imperfection patterns for real structures
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are known, this detenninistic study can be used to accurately detennine the effects of

those imperfections. If imperfection patterns are not known, stochastic methods can be

used to accurately simulate imperfection patterns [Veigh 1995, Hoffman 1996].
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