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INVESTIGATION OF MATRIX INTERFERENCES IN QUANTITATIVE LIQUID 

CHROMATOGRAPHY-ELECTROSPARY IONIZATION MASS SPECTROMETRY 

ANALYSIS OF BIOLOGICAL SAMPLES 

 
 
 

ABSTRACT 
 

 Matrix interferences can severely affect the quantitative analysis of biological 

samples when electrospray ionization (ESI) is employed with liquid chromatography- 

tandem mass spectrometry (LC-MS/MS). Before these effects can be eliminated or 

minimized, it is necessary to identify their sources. The role of glycerophosphocholine 

(GPCho) lipids in matrix interferences caused by the endogenous components in human 

plasma was investigated for assays involving representative pharmaceutical compounds. 

Conventional liquid-liquid extraction (LLE) was compared to high turbulent flow liquid 

chromatography (HTLC) online extraction and to ultra performance liquid 

chromatography (UPLC) as far as their abilities to reduce matrix interferences. GPCho 

lipids were found to be a primary source of matrix interferences for assays involving 

human plasma samples. Extraction solvents were unable to completely remove GPCho 

lipids. The efficiency for reducing the lipids by using online HTLC extraction was found 

to be dependent on the organic content of the transfer solvent employed. Turbulent flow 

had no significant effect on removing them. UPLC analysis eliminated lipid interferences 

by means of high resolution chromatographic separation. For the examined analytes, 

UPLC was more effective at removing lipid derived interferences than HTLC online 

extraction, which was more effective than conventional LLE. 



 x

 The mechanisms by which endogenous GPCho lipids interfere with analyte 

electrospray ionization were investigated with the aid of a partition equilibrium 

mathematical model. A linear equation, which was derived by modifying previously 

published models, was used to quantitatively predict analyte MS responses. The 

correlation between analyte MS response and solution concentration was examined for 

four situations: analyte in solvent, analyte in solvent containing an HPLC compatible 

buffer, analyte in solvent containing a co-analyte, and analyte in solvent containing 

GPCho lipids and buffer.  It was found that the experimental results could be explained 

by the linear equation of the new model over a wide concentrations range. The analyte 

behaviors in a salt solution, which could not be explained by the previous model, could 

be elucidated here. Moreover, the new model is easier to use for modeling solutions 

containing multiple species. It was concluded that analyte MS response was determined 

by a competition mechanism that was driven by equilibrium considerations and involved 

analyte and background electrolytes.  
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CHAPTER 1  

INTRODUCTION 

 

1.1 Overview of Biological Sample Matrix Interferences  

 Development of atmospheric pressure ionization techniques (API) has enabled the 

coupling of high performance liquid chromatography with mass spectrometry (HPLC-

MS) [1,2]. The combination of liquid chromatography and tandem mass spectrometry 

(LC-MS/MS) via electrospray ionization (ESI) or atmospheric pressure chemical 

ionization (APCI) is currently considered to be the primary analytical technology for the 

determination of non-volatile trace drug candidates in biological samples [3-8]. 

Compared to conventional spectroscopic and electrochemical detection techniques, LC-

MS/MS analysis provides many advantages, particularly in specificity and sensitivity. 

Due to the inherent mass selectivity of the mass spectrometer, interferences can be 

removed by mass filtration, which has led to the development of high throughput analysis 

methods. Unfortunately, the benefits of MS detection often cause researchers to overlook 

the importance of chromatographic separation and sample preparation. Direct injections 

of unprocessed samples onto LC-MS/MS systems are infrequently reported. Instead, 

many articles focus on assay procedure development and optimization of parameters such 

as: recovery, linearity, precision and limit of quantification [9]. An important issue 

associated with LC-MS/MS applications is related to matrix interferences. It is a 

phenomenon that analyte MS responses are suppressed or enhanced by the presence of 

other compounds, and this generally happens when complicated matrices are analyzed 

[10-16]. This adverse effect normally is not reproducible between various sample batches 
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or even for a single sample source collected at different times. Even though these 

interferences may not be directly observed in the spectrum, their presence can 

dramatically influence the accuracy and precision of analyte quantification. It is generally 

accepted that matrix interferences are associated with the analyte ionization process. ESI 

is more prone to these interferences than APCI [17-20]. However, most applications 

utilize ESI rather than APCI because ESI is sensitive, consumes less solvent, is suitable 

for a wider polarity range of materials, and can be used for thermally labile compounds. 

At present, the reasons for matrix interferences in ESI mass spectrometry are not well 

understood. Interferences are usually attributed to a change in analyte ionization 

efficiency by the presence of co-eluting substances, such as endogenous materials from 

the matrix, mobile phase additives, and other exogenous compounds. Depending on the 

ionization environment, the signal of a target analyte may decrease (majority of the cases) 

or increase. The importance of matrix interferences on the reliability of a quantitative 

assay has been clearly defined in the recently issued "U.S. FDA Guidance for Industry on 

Bioanalytical Method Validation". It states that “In the case of LC-MS and LC-MS/MS 

based procedures, matrix effects should be investigated to ensure that precision, 

selectivity, and sensitivity will not be compromised” [21]. With regard to small molecule 

analysis in biological fluids, previous research has focused on the origin and nature of 

matrix interferences, methodologies for assessing and minimizing these effects, and 

elucidating mechanisms for these phenomena.  

1.2 Origins and Consequences of Matrix Interferences in Bioanalysis 

 The analysis of drugs and metabolites in: plasma, urine, bile, feces, and tissue 

homogenates for the determination of pharmacokinetic parameters and metabolic 
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pathways is a crucial step in the drug development process. When tandem mass 

spectrometry is used for quantification, in most cases, only the desired analyte is 

observed in the MS spectrum when the specificity of selective reaction monitoring is 

employed. Nevertheless, substances that are not detected, but that co-elute with the 

analyte, may adversely affect the analyte ionization process and result in MS signal 

variation. Matrix interferences are typically caused by the presence of endogenous 

components in the sample matrix. Sample pretreatment can effectively remove large 

amounts of matrix components. However, due to the high concentrations of endogenous 

materials such as: salts, amines, fatty acids and triglycerides, the amounts of these species 

in sample extracts may still be sufficient to affect the analysis of drug candidates. 

Because these matrix components typically cause analyte signal suppression and the 

suppression degree depends on the nature of the matrix compounds present and the 

relative concentrations of analyte and matrix components, the consequences of matrix 

effects on quantitative measurements can be reflected in various aspects of the analysis 

method, including: reduced sensitivity, decreased reproducibility, and calibration curve 

deviation from linearity. These problems normally lead to unacceptable precision and 

accuracy for the analysis method. 

 An investigation into the causes of MS signal variations during quantitative 

analysis of a platelet-activating factor receptor antagonist in human plasma was the 

incentive for initiating research into the nature of interferences caused by matrix 

components [22]. Inconsistent analyte ion intensities were obtained for control plasma 

extracts obtained by hexane liquid-liquid extraction (LLE), ethyl acetate back-extraction, 

and mix mode solid phase extraction (SPE), and the analyte signal was found to be 
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inversely related to the intensities of detected matrix peaks found in the full scan mass 

spectra. The effect of endogenous components on analyte analyses has also been 

illustrated by another persuasive case. When human plasma samples were extracted by 

using a generic non-selective or a pH adjusted selective LLE method, and then analyzed 

by using a 90% acetonitrile mobile phase or by using 50% acetonitrile, the peak areas, 

precisions, and accuracies of results were found to be significantly affected. Selective 

extraction combined with chromatographic separation can considerably improve the 

quantitative results [23]. The analyte ionization suppression effects have also been 

observed for human blood [24] and serum [25] analyses. Even though the composition of 

human urine is quite different, its endogenous components have been found to cause an 

ionization suppression effect too. A peak area reduction of about 50% was observed for 

an analyte diluted with urine when compared to mobile phase dilution. Low 

reproducibility was associated with this signal suppression as was indicated by large 

variations among five urine batches. Assay performance was significantly improved 

when LLE was employed [26]. A comparison of matrix interferences in three biofluids: 

human urine, oral fluids, and plasma, processed by direct injection, dilution, protein 

precipitation (PP) and SPE, has additionally confirmed that the presence of these adverse 

matrix effects are not only associated with sample preparation techniques, but also 

depend on the analyzed biofluids [27]. Generally, PP provides the worst analyte 

ionization suppression effects due to its non-selective nature, and SPE and LLE do not 

always guarantee satisfactory performance. Although each biofluid possesses 

characteristic matrix components that may interfere at different points in an assay and to 

varying extents, plasma usually contains more interferences than other biological fluids. 
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 In addition to the influence of matrix components, the ESI signal is also affected 

by several factors: such as mobile phase composition, exogenous materials, and ion 

source configuration. Volatile mobile phase additives and ion-pairing reagents have been 

studied for their ion suppression or enhancement effects. The typical reason for using a 

mobile phase modifier in LC-MS/MS is to increase the buffer capacity in order to achieve 

reproducible retention times or to improve the chromatographic separation of basic 

compounds by forming pseudo-neutral ion pairs. Typical mobile phase additives such as: 

formic acid, ammonium hydroxide and ammonium formate, as well as the fraction of 

organic solvent (methanol or acetonitrile) in the mobile phase, have been evaluated for 

their effects on analyte MS response in both positive and negative ionization modes [28-

31]. Although a wide disparity has been observed among the analytes studied, all MS 

responses decrease when additive concentrations are increased to mM levels regardless of 

the additive type. It was concluded that analyte ESI MS response was compound 

dependent, and that  mobile phase composition affects the formation of ionic species. An 

optimal LC-MS assay must have a balance between LC performance and ESI efficiency. 

Ion-pair reagents are widely used as mobile phase modifiers in HPLC/UV assays to 

improve peak shapes and chromatographic resolution. However, when used for LC-MS 

analysis, ionization suppression effects are observed. Case studies include trifluoroacetic 

acid (TFA) and tetra-alkylammonium salts [31-34].  The strong ionization suppression 

effect of TFA was attributed to the formation of "neutral" ion pairs between the TFA 

anion and the protonated analyte cation, which prevents ion ejection from the 

electrospray droplet. One solution to this problem is to use weaker acids instead of TFA 

or to use post-column addition of mobile phase modifiers such as isopropanol and 
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propionic acid to decrease surface tension [32,33]. The effects of di- and 

trialkylammonium acetates on separation efficiency and ion signal intensity have been 

compared to tetra-ammonium salts and ammonium acetate [34]. A similar strategy that 

utilizes mono- di- or trialkylammonium acetates to replace tetra-ammonium ions while 

retaining chromatographic performance was proposed to overcome the significant ion 

suppression effects of tetra-alkylammonium salts. 

 Exogenous materials employed during the course of sample collection, storage, 

and processing may also cause ionization suppression. In a typical pharmacokinetic 

study, serial blood samples are collected for drug ADME (absorption, distribution, 

metabolism and excretion) profile determination. Anticoagulant tubes containing Na-, K- 

and Li-heparin, and EDTA are used to prevent blood from coagulating during plasma 

sample processing. When the collected samples are stored and analyzed, different plastic 

wares such as pipette tips, tubes, and 96-well plates are used. In addition, during the early 

stages of drug discovery, potential drug candidates are dosed as a solution consisting of 

water and excipients such as: ethanol, polyethylene glycol 400 (PEG 400), propylene 

glycol, hydroxypropyl β-cyclodextrin, and polysorbate 80 (Tween 80) [35]. The potential 

for the anticoagulants, polymeric materials in plastic wares [36-38], and dosing vehicle 

excipients [39,40] to produce matrix effects has been examined. It was demonstrated that 

analytes containing different types of anticoagulant or prepared by using different brands 

of plastic ware generated variable responses [36]. Interferences derived from excipients, 

particularly the polymeric vehicles PEG 400 and Tween 80, significantly suppressed 

signal intensities [39], which resulted in a 2-5 fold increase in plasma clearance values 

[40]. To minimize exogenous matrix effects, a single brand of plastic ware should be 
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used throughout the assay. Enhanced sample purification and chromatographic separation 

were suggested to reduce the effects derived from anticoagulants and excipients. 

 Ion source geometry is another important factor that can affect ionization. The 

general dependence for the degree of ionization suppression on instrumental 

configuration is: Z-spray < orthogonal spray < linear spray [34,41]. Depending on the 

compound, using a mass spectrometer designed by a different vendor may reduce matrix 

interferences [36]. 

1.3 Matrix Interference Characterization 

 The importance of matrix effects in LC-MS applications has been widely 

discussed and it has been concluded that these effects should be evaluated for each newly 

developed LC-MS assay [42,43].  However, there are no standardized experiments or 

evaluation criteria for verifying that matrix effects have been effectively eliminated from 

an assay method. Several approaches, including: blank extract addition, post-column 

infusion, and multiple-batch precision have been proposed as methods to study ionization 

suppression. In the blank extract addition approach, target analyte is spiked with neat 

solvent and with control biofluid extract, which is a blank fluid processed by using the 

sample extraction procedure. The prepared solutions are measured simultaneously by 

either flow injection analysis [44,45] or chromatographic separation [22,23,46,47]. The 

MS signal for the neat standard is employed as a benchmark and the magnitude of the 

matrix effect is determined by the response ratio of analyte in neat solvent to analyte in 

the control extract. Because the prepared solutions are injected without an HPLC column 

in flow injection analysis, results reflect the total effects of extracted matrix components 

on the analyte signal. This approach can be used to compare the effectiveness of different 
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sample extraction techniques for reducing matrix effects. Chromatographic separation 

can be used instead of an extraction to minimize ionization suppression effects. 

 Whereas the blank extract addition method provides quantitative information 

about matrix effects, semi-quantitative post-column infusion offers a dynamic overview 

of this effect [44,45,48,49]. This method uses an infusion pump to deliver a constant flow 

of target analyte into HPLC eluent via a mixing tee located before the mass spectrometer 

ion source. Because the rate of analyte introduction is constant, a steady MS response 

should be observed in the absence of interferences. A variation in the analyte signal 

indicates the existence of matrix interferences. The effect of background material on 

analyte MS response is measured throughout the entire chromatographic run and the 

regions where matrix effects are significant can be detected. 

 Although the blank extract addition and post-column infusion methods are able to 

confirm the presence or absence of matrix effects, they do not provide enough detailed 

information to be useful for examining the mechanisms responsible for the matrix effects. 

In clinical trials, biofluid samples are collected from a large number of patients and 

healthy people, and the matrix composition is highly variable among subjects. Therefore, 

the single batch addition or infusion methods cannot elucidate the matrix issues for all of 

the studied subjects. To address matrix variability, the approach of multiple-batch 

precision is proposed [50,51]. Target analyte is prepared in 5 different batches of control 

extract at concentrations spanning the assay range. A precision (n=5) of less than 10% 

(relative standard variation) and accuracy within 15% for all analyte samples indicates 

acceptable minimization of matrix effects.  

1.4 Solutions to the Matrix Interference Problem  
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  Because the matrix effect is caused by co-eluting interfering components, the 

straight forward strategy to minimize this effect is to reduce the amount of interfering 

materials introduced to the mass spectometer ion source or to separate them from 

analytes before MS analysis. Efficient chromatographic separation, selective sample 

preparation, and combinations of these two approaches have been attempted. The classic 

biological sample preparation techniques are PP, LLE, and SPE [52-54]. Two-

dimensional chromatography (2D-LC) utilizing column switching to isolate and analyze 

samples online is another sample processing method. Because of the advantage of being 

able to automate sample analysis procedures, online extraction is becoming an attractive 

choice for sample processing [4,5]. Although the “dilute and shoot” PP procedure is 

considered to be a relatively dirty method compared to LLE and SPE, this simple and fast 

sample pretreatment technique is still the primary choice for drug discovery due to high 

sample throughputs.  

 The use of ultra-fast gradient (mobile phase changing from 95% aqueous to 95% 

organic solvent in less than 2 min) HPLC has been compared to typical fast isocratic LC 

(more than 70% organic solvent at flow rate of 1 mL/min) for minimizing matrix effects 

after PP sample preparation [55,56]. The use of a rapid gradient is superior to fast 

isocratic LC. Although the best method for reducing matrix effects is by specific 

extraction, this costs more sample handling time and may not always be an acceptable 

option. The advantages of using gradient elution are: first, allowing at least partial 

separation of target analyte from endogenous components, especially non-retained 

inorganic salts or other hydrophilic components; second, preventing run-to-run 

interferences resulting from late eluting compounds by washing the column with a strong 
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solvent at the end of each injection. Utilizing a more selective chromatographic 

separation to reduce the chances for the analyte to co-elute with interferences has been 

used by many researchers. It generally involves decreasing the percentage of strong 

solvent in isocratic LC or reducing the initial content of organic solvent in gradient LC in 

order to enhance the HPLC column resolution. A progressive increase in analyte signals 

for both muscle tissues and organ samples has been detected when mobile phase gradient 

strength is gradually decreased. These results suggest that undesired ionization 

suppression effects were satisfactorily eliminated by chromatographic separation [57,58]. 

Similarly, a crossover comparison has been conducted for 27 pharmaceutical compounds 

derived from microsomal incubation. These analytes were treated with generic PP or SPE 

and subsequently analyzed by flow injection analysis or fast gradient LC. When SPE was 

used, the average matrix effect for these analytes was greatly reduced. Comparable 

results were obtained by using the fast gradient separation, but no further improvement 

was achieved for the combination of SPE and fast gradient LC separation [59]. 

 The improvement of assay performance associated with extraction selectivity has 

demonstrated the importance of specific sample preparation methods for matrix effect 

reduction. When a LLE was conducted prior to SPE to achieve a more selective 

extraction, and a pH adjusted eluting solvent was employed, both the signal to noise ratio 

and assay reproducibility were significantly increased. An additional column wash step to 

remove late eluting interferences has also been found to contribute to a reduction of 

matrix effects [60]. In another case, after serum samples were treated with generic sample 

preparations methods: LLE, mixed mode SPE, PP, and a combination of PP with mixed 

mode SPE, samples prepared by the mixed mode SPE were found to exhibit less 
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ionization suppression for the two compounds tested [61]. It should be noted that the 

choice of SPE sorbents is an important factor that can affect the suppression effect. 

Different plasma suppression effects were detected for analyses with a mixed mode 

cation exchange, anion exchange SPE, and an Oasis HLB (Hydrophilic-Lipophilic-

Balanced copolymer) with different washes [31]. Likewise, polydivinylbenzene (PDVB) 

cartridges demonstrated less ionization suppression than C18 for assay of an illegal 

growth promoter in urine samples. Due to greater hydrophobic character and additional 

π-π interaction possibilities, PDVB permits a more effective cleanup of interfering 

materials and ionization suppression is significantly decreased [62].  

 2D-LC utilizes the separation power of two columns for sample measurements. 

Most online 2D-LC operations involve an extraction column for sample cleanup and an 

analytical column for chromatographic separation. Samples are loaded onto the extraction 

column to remove matrix components; afterwards, the retained analytes are transferred to 

the analytical column for chromatographic separation via back flushing. The extraction 

column can be either a regular small particle packed reversed phase column operated at 

laminar flow or a large particle filled turbulent flow column used under ultra fast flow. 

Online 2D-LC equipped with various lengths of C18 and RAM (restricted access media) 

extraction columns have been used for analyzing water diluted and PP plasma samples. 

For three analytes, application of online 2D-LC sample cleanup significantly reduced the 

signal suppression effect compared to direct injection analysis using a single column 

[63]. A similar reduction in matrix effects has been observed in post-column infusion 

mass spectrometry when an optimized 2D-LC method using a reversed phase extraction 

column was employed for tissue sample analyses [64,65]. Few reports have been 
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published regarding the use of turbulent flow extraction. One article described the use of 

a RAM column, two large particle packed columns, and a monolithic column to extract 

water diluted and PP plasma at fast flow rates. Due to the relatively large column ID, the 

loading rate used may not have been sufficient to achieve turbulent flow or eddy 

formation. Post-column infusion mass spectra indicated that PP processed plasma 

exhibited a substantial decrease in matrix effects relative to water diluted plasma samples 

[66]. However, the characteristics of each extraction column and the optimized extraction 

parameters for the procedure were not given.  

 In addition to enhancing the specificity and selectivity of sample analysis, other 

options for eliminating matrix interferences are: internal standard (ISTD) compensation, 

ion source alteration, and nano-spray utilization. In LC-MS/MS quantification, the most 

common method is using an ISTD to account for matrix interferences [67-72]. If the 

matrix affects the analyte and ISTD equally, the response ratio (analyte/ISTD) would be 

expected to be unaffected even when their absolute responses are greatly impacted. A 

major drawback to using this approach is the requirement that the ISTD must be very 

similar to the analyte. An ideal ISTD should be able to exactly match the ionization 

properties of the analyte under various matrix compositions. A stable isotope labeled 

ISTD normally works better than a structural analogue. However, if the analyte and ISTD 

do not co-elute, the two compounds may be subjected to different ionization 

environments, which mostly likely would result in different ionization suppression effects 

[73,74]. The reported observation of unacceptable matrix effects during analysis of 

human urine samples by using a hepta-deuterated ISTD demonstrates that the stable 

isotope ISTD method may not always guarantee a constant analyte/ISTD response ratio 
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[45]. In addition to difficulties in obtaining isotopic ISTDs, especially during the early 

stages of drug development, an ISTD must have high purity and integrity [75]. Unlabeled 

impurities and incompletely converted materials contribute to analyte concentration and 

significant deviations can be observed, particularly at low analyte concentrations.  The 

use of an ISTD, while highly desirable, is not necessarily the best route for minimizing 

the ionization suppression effect. If ionization suppression significantly reduces the 

analyte signal, assay sensitivity may be compromised and consequently the accuracy and 

precision of the method will be affected [76]. Therefore, ionization suppression effects 

should be investigated even if an ISTD is employed in the assay. As stated previously, a 

suitable ISTD should possess chromatographic and ionizing properties that are 

comparable to the analyte. Thus, when multiple analytes with varying degrees of polarity 

are measured, appropriate ISTDs should be used for each analyte. During routine sample 

analysis, the absolute ISTD responses in unknown samples can be monitored to detect 

matrix effect variability. 

 Another practical approach for removing matrix effects is by changing the 

ionization source. Although matrix effects have potential deleterious impacts on both ESI 

and APCI, the effect appears to be more pronounced with ESI than with APCI [17-20].  

Information regarding APCI ionization suppression mechanisms is very limited. APCI 

ionization occurs through gas phase proton transfer (positive ion mode) [77,78], during 

which analyte molecules collide with reagent ions, which are created by corona discharge 

initiated sequential ion/molecule reactions of vaporized solvents. The mass spectrometer 

signal intensity is determined by the analyte structure and the solvents employed [79]. 

However, it should not be assumed that using APCI removes matrix effects. There are 
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reports of an ionization suppression effect when APCI was employed [80-82]. These 

were attributed to the effects of matrix components on proton transfer efficiencies in 

either liquid or gas phases. Due to the APCI limitation that the analyte must be thermally 

stable and readily ionized, APCI is usually employed only after confirming that ESI 

results in unacceptable matrix interferences [83,84].  

 Nanoelectrospray ionization (nano-ESI), which employs a sprayer with a 

micrometer size tip and is characterized by a flow rate ranging from tens to hundreds of 

nL/min has been shown to increase assay sensitivity and reduce ionization suppression 

[85,86]. The advantages of nano-ESI are attributed to the reduction of the initial droplet 

size during the spraying process [87,88]. The smaller droplets need fewer solvent 

evaporation shrinkage steps and Coulomb fissions before gas phase ions are formed. 

Along with the droplet size, other parameters including: surface to volume ratio, ion 

current, and excess surface charge are also substantially different. Consequently, 

ionization efficiency is increased and the analyte ionization suppression effect is reduced. 

Nano-ESI has been applied to biological sample quantitative analysis. An LC-MS/MS 

method for dialysis samples has been downscaled to nano-dimensions by using a nano-

column (ID: 75 µm) coupled with a nanosprayer ion source. Compared with capillary 

chromatography analysis and microbore column switching methods, the nano-LC-

MS/MS assay was superior in terms of sensitivity, matrix effects, and accuracy and 

precision [89]. Nano-ESI has also been used for direct infusion analysis. In the absence of 

chromatographic separation, sample extracts were directly infused into the mass 

spectrometer via a chip based nano-ESI emitter, which is an array of nozzles with 

diameters in the micrometer range fabricated on a silicon chip [90,91]. Although the 
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analyte was not resolved from matrix components, removal of the ionization suppression 

effect was demonstrated by the fact that reasonable assay variations were obtained. The 

inherent benefit of nano-ESI on MS response and reduction of ionization suppression 

effects has also been demonstrated by reducing the flow rate from 200 to 0.1 µL/min by 

using a post-column nanoflow splitting device [92]. Both the absolute signal and signal 

variation were improved when the nano-splitter was employed. The major barriers to the 

widespread use of nano-ESI are feasibility and reproducibility. Practical difficulties with 

leakage and blockage and difficulties during installation and troubleshooting have 

emerged due to miniaturization. Because the shape and aperture size of the spray tip 

dramatically affect the size of primary droplets, which determines the analyte signal 

intensity and the relative ionization efficiency of droplet components, the main challenge 

for using nano-ESI to conduct quantitative measurements is the requirement for high 

sprayer reproducibility.  

1.5 Understanding the Nature of Matrix Interferences 

 In order to propose an effective solution to matrix effect problems, it is essential 

to understand the nature of ionization suppression in ESI. Because of the complexity of 

transferring molecules from solution to the gas phase, a complete understanding of the 

mechanisms involved in ESI gas phase ion production is not available. Although much 

research has been conducted to investigate ESI processes, it is difficult to obtain a 

fundamental model to use for predicting the mutual influence of solvent and undetected 

components on analyte ionization. The first quantitative explanation of the dependence of 

analyte ion intensity on its solution phase concentration and the presence of other 

electrolytes was proposed by Tang and Kebarle.  It was based on competitive processes 
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during gas phase ion formation [93,94]. It was observed that the analyte ion signal 

decreased as the concentration of other electrolytes increased and the extent of this 

decrease depended on the nature of the electrolyte, which was represented by coefficient 

k. By choosing a buffer with a low coefficient, the adverse effects of the buffer on analyte 

detection could be minimized. A general ion competition process was described in more 

detail in the ion partitioning model [95]. In this model, droplet components compete for a 

fixed amount of surface charge. It was postulated that equilibrium exists between the 

charged surface and the neutral interior phase of the ESI droplets. The equilibrium 

constant for an analyte, which is determined by several parameters, including: solvent 

energy, charge density, and hydrophobicity, determines the surface affinity of a given 

ion. The analyte MS response is proportional to its surface concentration. To verify the 

validity of this model, the following studies were conducted: the effect of salt 

concentration on analyte MS response was measured and compared to the predicted 

effect based on the equilibrium partitioning model [96]; the relationship between the 

analyte surface affinity and its non-polar character, which was measured according to 

chromatographic retention times, was investigated by using small peptides [97,98]; and 

the equilibrium partitioning concept was expanded to include the uneven fission of 

offspring droplets from the initial droplet [99]. A simple method for determining the 

relative equilibrium constant for analyte and electrolyte ions was proposed for this model 

[100], and the effects of electrophoretic mobility, viscosity, ion pairing and ionic strength 

on analyte surface affinity and subsequent ESI response have been examined [101,102]. 

The correlation between measured ESI linear dynamic range and theoretical predictions 

based on the excess charge capacity illustrates the importance of charge competition 
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processes in quantitative assays [103]. Although many analyte MS response properties, 

which were studied in the presence of various electrolytes and co-analytes, have been 

explained, confirming this ESI model will be a challenge because of factors such as: 

stability of the spray current, analyte multiplicities, the formation of cluster ions and 

fragmentation ions, as well as the interdependencies of these parameters.  

 Because abundant protonated ions are produced from basic solutions [104] and 

deprotonated ion are produced from acidic solutions [105], the effects of gas phase proton 

transfer reactions on analyte ESI response has been investigated as another potential 

cause of ionization suppression. It was observed that the introduction of solvent vapor 

with a higher gas phase proton affinity caused more signal suppression than for a solvent 

with a relatively lower proton affinity, and the dominate signal from a mixed solvent was 

derived from the protonated solvent with the higher proton affinity [106]. When weak 

acids were added to solutions, the analyte negative ESI response increased. This 

phenomenon was attributed to the higher gas phase proton affinity for the acid’s anions 

[107]. The studies of the ionization dependence of a weak base on electrospray voltage 

also revealed the importance of gas phase chemical ionization on ESI response [108]. 

However, contradictory results were reported by other researchers. Experiments designed 

to investigate ESI droplet ionization pathways by using biological extracts have shown 

that the reactions that occur after gas phase ion formation do not significantly affect 

analyte MS response. The presence of nonvolatile or less volatile solutes, which changes 

the properties of the sprayed droplets, was cited as the most likely cause of ionization 

suppression [109]. Whether the matrix effect is caused by the competition in solution 

phase for excess charge at the droplet surface or by proton transfer in the gas phase, the 
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chemical nature of the analyte has a significant effect on the magnitude of the matrix 

interferences.  

1.6 Research Objectives 

 Matrix interferences are not directly observed in the analyte chromatograms, but 

they have a deleterious impact on the accuracy and precision of sample analysis, which 

might result in incorrect results. Compared to mobile phase additives and exogenous 

materials added during the sample handling process, the effects from the endogenous 

components are more significant because of the highly heterogeneous nature of the 

samples typically studied for drug analysis. Unfortunately, the current understanding of 

ionization suppression effects caused by endogenous materials and strategies for 

eliminating these effects are inadequate. Human plasma is the most common matrix 

utilized for clinical pharmacokinetic studies and almost all published articles dealing with 

quantitative LC-ESI-MS/MS plasma analysis attribute matrix interferences to 

endogenous components such as salts, amines, and fatty acids in general. Further 

investigation to determine the specific identities of the interfering compounds and to 

elucidate the interfering mechanism for each of these compounds is needed. It is not 

practical to propose a method for reducing matrix interferences without first knowing the 

identities of the interfering materials. Because selective extraction methods are designed 

based on target analyte property considerations, they may not suitable for eliminating 

matrix components. Likewise, mobile phase modifications designed to improve 

chromatographic separation generally require longer analysis times and may not always 

solve the problem. Although the post-column infusion approach provides an opportunity 

to shift the analyte elution time in order to minimize overlap with co-eluting background 
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compounds, adjusting LC conditions involves the same dilemma encountered with 

selective extraction. Modified chromatographic conditions may alter the interfering 

component retention and result in a time shift similar to that for analytes. Because post-

column infusion optimization must be repeated every time the chromatographic 

conditions are modified, it is very tedious and labor intensive. In addition, MS responses 

vary with the changing mobile phase composition, resulting in matrix effect masking. 

The use of ISTDs may compensate for matrix interferences, but assay sensitivity will still 

be affected due to analyte signal suppression.  

 To eliminate or minimize the matrix effect, the source of the interfering 

components must be considered regardless of whether the interfering species are from the 

current sample matrix or from late eluting substances from previously injected samples. 

Because phospholipids are abundant in plasma and vary considerably between 

individuals, there is interest in testing these substances to see if they are responsible for 

matrix interferences. Soon after a report that phosphatidylcholine lipids can affect analyte 

ionization [110,111], approaches to minimize this effect by sample pretreatment and to 

monitor the behavior of these materials during assay development were described 

[112,113]. It was found that cation exchange SPE was significantly better than mixed 

mode SPE for phospholipid removal although the reason for choosing the m/z of 522 → 

184 transition to represent phospholipids in plasma was not specified [112]. An in-source 

MRM (multiple reaction monitoring) method has been suggested as a means of detecting 

the elution of phosphatidylcholine lipids by generating a common fragment ion (m/z 184) 

in the mass spectrometer ion source and monitoring the 184 → 184 MRM transition 

[113]. It is very likely that phospholipids are a major source of matrix interferences 
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encountered in plasma analysis because of their abundance, polarity, and sample-to-

sample concentration variability. Inorganic salts are well known to suppress the 

intensities of analyte ions, but they are not retained on reversed phase HPLC columns and 

should be separated from the analytes. Macromolecules such as proteins have a tendency 

to accumulate on the stationary phase and result in column deterioration. If they were the 

main source of matrix effects, distorted chromatographic peaks and increased column 

back pressure would be associated with the ionization suppression. However, when matix 

effects are detected, no abnormal analysis conditions are observed. Phospholipids with a 

polar head and non-polar fatty acids are difficult to remove by sample treatment or 

chromatographic separation because they can partition between polar and non-polar 

phases like the analyte and their polarity varies with their fatty acid chain length. In 

addition, they are typically present at concentrations that are much higher than those of 

target analytes. Thus, even the amounts remaining after extraction procedures might be 

sufficient to cause matrix interferences.  

 The aim of this research is to provide insight into the origin, removal, and 

mechanism of matrix interferences in clinical laboratory biofluid assays and to propose 

approaches for overcoming matrix effect problems in quantitative LC-ESI-MS/MS 

methodologies. Human plasma was selected as the biological fluid for this research 

because it is widely used in clinical studies. The role of phospholipids in ionization 

suppression will be examined and the primary interfering lipids will be identified. Novel 

sample handling techniques including high turbulent flow liquid chromatography 

(HTLC) and online extraction coupled with ultra high performance liquid 

chromatography (UPLC) will be compared to conventional LLE in terms of their abilities 
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to reduce observed matrix effects. SPE was not examined because this approach is 

normally used as a replacement for LLE. Characterized by high separation efficiency at 

fast flow rates, turbulent flow LC possesses a performance profile beyond the description 

of the van Deemter plot, where the reduced plate height decreases with increasing flow 

rate. The HTLC technique was recently employed for extracting biological samples by 

utilizing its unique mass transfer features to rapidly separate macromolecules from 

desired analytes. UPLC employs small particle packed columns to shorten the diffusion 

path lengths of molecules in order to achieve improved resolution. After many years of 

pioneering work, a commercial instrument (Waters) is now available which can tolerate a 

back pressure up to 15000 psi with a column filled with 1.7 µm particles. Because both of 

the selected techniques have the capability to reduce sample handling time and to 

increase assay throughput, they both will likely become valuable tools for quantitative 

analysis. In this research, the capabilities of these two techniques for reducing bioassay 

matrix effects derived from endogenous materials will be explored in detail. In addition, 

the influence of mobile phase additives, co-analytes, and the identified endogenous 

components responsible for interferences on analyte ionization during ESI will be 

investigated. Results obtained by these experiments will help elucidate matrix 

interference mechanisms. This information may also be helpful for modifying the 

existing ESI ionization models, which are currently not able to explain the MS responses 

obtained from complicated clinical samples. The practical goals of this research are to 

learn how matrix interferences occur in clinical assays and to develop improved LC-ESI-

MS/MS assay methods for biological sample analysis.  
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CHAPTER 2 

EXPERIMENTAL 

 

2.1 Chemicals and Reagents 

 Trimethoprim (free base, > 99 % purity), propanolol (HCl salt, > 99 % purity), 

Terfenadine (free base, > 99% purity), and niflumic acid (> 98% purity) were purchased 

from Sigma-Aldrich (St. Louis, MO, USA). n-Phenyl-succinamic acid (> 98% purity) 

was obtained from TimTec Corporation (Newark, DE, USA). All 

glycerophosphocholines (GPCho) (> 99 % purity), including: 1-palmitoyl-2-hydroxy-sn-

glycero-3-phosphocholine, 1- stearoyl-2-hydroxy-sn-glycero-3-phosphocholine, 1-oleoyl-

2-hydroxy-sn-glycero-3-phosphocholine, and 1-palmitoyl-2-linoleoyl-sn-glycero-3-phos-

phocholine, were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL, USA). The 

chemical structures, properties and abbreviations for these substances are shown in 

Tables 2-1 and 2-2. Human control sodium heparin plasma was obtained from the 

Biological Specialty Corporation (Colmar, PA, USA). All other chemicals, such as HPLC 

grade acetonitrile, methanol, tetrahydrofuran, acetone, methyl t-butyl ether, hexene, and 

ethyl acetate, as well as Certified A.C.S. Plus grade acetic acid, formic acid, ammonium 

hydroxide, ammonium acetate and sodium carbonate were obtained from Fisher 

Scientific (Pittsburgh, PA, USA).  The water used was deionized water purified with a 

Milli-Q water purifying system (Millipore Corporation, Bedford, MA, USA).  

 Substances listed in Table 2-1 were stored in a 5oC refrigerator with desiccants; 

human control plasma and GPCho lipids (Table 2-2) were stored at -20oC in a freezer. 

The organic solvents, acids, and bases were separately stored in ambient fume cabinets.   
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Table 2-1. Chemical structures and physical properties of compounds used in this study 
 

 Name Structure Property 

 
B1 

Trimethoprim 
 
5-(3,4,5-
trimethoxybenzyl) 
pyrimidine-2,4-
diamine 
 

 

N

N

NH2

NH2

O

O

O

 

Formula: C14H18N4O3 
M.W.: 290.32 
 
Exact Mass: 290.138 
 
Log P: 1.43 

 
B2 

Propanolol 
 
1-(isopropylamino)-3-
(1-naphthyloxy)propan-
2-ol 
 

 

O
OH

N
H

 

Formula: C16H21NO2 
M.W.: 259.35 
 
Exact Mass: 259.157 
 
Log P: 3.35 

 
B3 

Terfenadine 
 
1-(4-tert-butylphenyl)-4-
{4-[hydroxyl 
(diphenyl)methyl] 
piperidin-1-yl}butan-1   -
ol 
 

 

HO

N
OH

 

Formula: C32H41NO2 
M.W.: 471.68 
 
Exact Mass: 471.314  
 
Log P: 6.96 

 
A1 

n-Phenyl-succinamic 
acid  
 
4-anilino-4-
oxobutanoic acid 

H
N

OH

O

O

 

 

Formula: C10H11NO3 
M.W.: 193.20 
 
Exact Mass: 193.074 
 
Log P: 0.61 
 

 
A2 

Niflumic acid 
 
2-{[4-(trifluoromethyl) 
phenyl]amino}nicotinic 
acid 
 

 

N N
H

OH

O

CF3

 
 

Formula: C13H9N2O2F3 
M.W.: 282.22 
 
Exact Mass: 282.062 
 
Log P: 3.36 
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Table 2-2. Chemical structures and physical properties of GPCho lipids 
 

 Name, Properties and Structure 

 
1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine 
Formula: C24H50NO7P  M.W.: 495.64 
Exact Mass: 495.332 
 16:0 

LPC  

N+
O

P
O O

O

O- H OH

O
 

 
1-stearoyl-2-hydroxy-sn-glycero-3-phosphocholine  
Formula: C26H54NO7P  M.W.: 523.69 
Exact Mass: 523.364 
 18:0 

LPC  

N+
O

P
O O

O

O- H OH

O
 

 
1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine 
Formula: C26H52NO7P  M.W.: 521.68 
Exact Mass: 521.348 
 18:1  

LPC  

N+
O

P
O O

O

O- H OH

O
 

 
1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine 
Formula: C42H80NO8P  M.W.: 758.07 
Exact Mass: 757.562 
 16:0-

18:2 
PC 

 

N+
O

P
O O

O

O- H O

O

O
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2.2 Equipment 

2.2.1 Analytical Balance 

 A Sartorius MC 5 Microbalance (Data Weighing Systems, Inc., Elk Grove, IL, 

USA) was utilized to weigh all of the compounds for solution preparation.  With a fully 

automatic calibration function, the microbalance was able to accurately weigh small 

amounts of samples (1 – 10 mg) with a precision of 3 significant figures. 

2.2.2 Automatic Pipette 

 Liquid transfer was achieved by using an Eppendorf ® EDOS 5222 Electronic 

Dispensing System (Eppendorf North America Inc., New York, NY, USA). By changing 

the pipette adapter and Combi tip, the pipette was used for single dispensing and multiple 

dispensing with various aspirating and dispensing speeds. Volumes from 10 µL to 1000 

µL for single liquids and up to 1/125 of the volume of Combi tip for multiple liquids 

could be dispensed by this apparatus. 

2.2.3 Syringe Infusion Pump 

 An “11” Plus mode single syringe pump (Harvard Apparatus Inc., Holliston, MA, 

USA) with a 1 mL or 10 mL Hamilton Microliter syringe was employed to introduce 

sample solutions to the mass spectrometer. The flow rate, which depended on the inner 

diameter of the syringe, could be manually changed from the keyboard. Fluid with a 

constant flow rate could be accurately delivered from the syringe.  

2.2.4 AB Sciex API 4000 Mass Spectrometer 

 A mass spectrometer is an instrument that measures the mass to charge (m/z) ratio 

of electrically charged gas phase ions. Mass spectrometry (MS) is an analytical technique 

that can be used for identification of unknown compounds, quantification of known 
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compounds, and elucidation of molecular structure features. LC-MS/MS is a combined 

analytical technique consisting of liquid chromatography separation and triple quadrupole 

mass spectrometric determination. The Applied Biosystems MDS SCIEX API 4000 

(Ontario, Canada) mass spectrometer with Analyst 1.4 software was used for the research 

described here (Fig. 2-1) [1]. 

Figure 2-1. Schematic of the API 4000 mass spectrometer 

 

(Reprinted from the API 4000 hardware manual) 

 The ion source of the mass spectrometer is where gas phase ions are produced; the 

ions formed there are then subjected to mass analysis. The ion source of the API 4000 

employs a Turbo V source housing and a removable probe which is inserted into the top 

of the source housing. Liquid samples are introduced to the ion source from either the 

TurboIonSpray (TIS) or the atmospheric pressure chemical ionization (APCI) probe by 

using an external LC pump or a syringe pump. The TIS probe is located between two 

turbo heaters that are placed at 45o angles relative to each side. The probe jet output and 

the heated dry gas from the turbo heaters are perpendicular to the direction of the orifice 

  Probe 

Curtain Plate

Orifice Plate
Skimmer Cone
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plate. This orthogonal arrangement increases the rate of droplet evaporation and 

minimizes contamination. A high ion spray voltage is applied to the probe to produce the 

charged droplets. The probe temperature (TEM) is monitored and is maintained to within 

5oC of the turbo heater temperature. Gas, high voltage, and electrical connections to the 

probe enter through the front plate of the interface and connect internally through the 

source housing. The probe can be positioned vertically or horizontally for optimal 

performance.  

 The vacuum system consists of the vacuum interface, vacuum control system and 

the vacuum chamber. The vacuum interface includes a curtain plate, orifice plate, and 

skimmer cone. The atmospheric pressure inside the ion source is separated from the low 

pressure vacuum chamber by the orifice plate. The function of the vacuum interface is to 

allow the transfer of gas phase ions from the ion source to the vacuum chamber while 

restricting the transfer of liquid phase droplets and ambient air. A pure, inert curtain gas 

is flushed between the curtain plate and the orifice plate, and solvated ions collide with 

gas molecules to assist in breaking up ion clusters. Ions are drawn from the curtain gas 

interface into a roughing pump maintained low pressure region by the pressure 

differential and transferred to the vacuum chamber by the voltage difference between the 

orifice plate and the skimmer cone.  

 The vacuum control system maintains and monitors the system pressure and gas 

flow. The roughing pumps maintain a pressure (< 2 torr) low enough to facilitate the 

operation of the high vacuum turbo pumps. The two turbo pumps maintain low pressures 

for the Q0 region (10-3 torr) and for the mass analyzer region (10-5 torr), respectively. The 

system pressure is monitored by a triode vacuum gauge. The gas system of the instrument 
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includes the TIS nebulizer gas (Gas 1), TIS heater gas (Gas 2), sheath gas, curtain gas, 

and collision activated dissociation (CAD) gas. Compressed air was used for Gas 1, Gas 

2, and the sheath gas; the curtain gas and CAD gas were 99.999 % pure nitrogen. Gas 1 

and Gas 2 flow co-axially with the probe inlet to accelerate solvent evaporation and 

therefore assist in the conversion of liquid samples into small droplets. The sheath gas 

was used to cool the nebulizer assembly and the curtain gas was used to prevent neutral 

molecules from entering the vacuum chamber. Ions are fragmented by colliding with the 

CAD gas in the collision cell located in the Q2 region. 

 The vacuum chamber includes quadrupole rod sets, ion optics, the collision cell, 

and a channel electron multiplier (CEM) detector. A mass analyzer quadrupole, which 

defines the ion path, consists of four cylindrical rods mounted in a ceramic collar. 

Changing the radio frequency (RF) and direct current (DC) voltages applied to the 

quadrupole rods allows ions with a particular mass to charge ratio to be selected [2, 3]. 

Ions with a certain m/z ratio pass through the quadrupole while all other ions collide with 

the quadrupole rods and are removed from the ion stream. An RF-only quadrupole, which 

transmits ions without mass filtering is similar in construction to a mass analyzer 

quadrupole, but is only operated with an RF voltage. In a triple quadrupole mass 

spectrometer, Q1 and Q3 are identical mass analyzer quadrupoles and Q0 and Q2 are RF-

only quadrupoles. Q0, located in front of the mass filter, focuses and transfers ions from 

the vacuum interface to the high vacuum mass analyzer region. Q1 and Q3 are separated 

by the ceramic collision cell, where Q2 is located. Ions passing through Q1 are 

fragmented by collisions with neutral gas molecules in the collision cell, a process 

referred to as CAD.  All of the ions in the collision cell are then transferred to Q3. Ions 
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selected by Q1 are called precursor ions and the collision products are called fragment or 

product ions. The product ions are selectively filtered by Q3 before they are collected by 

the detector. The ion optics are designed to help guide and focus the ions in the mass 

filters and deliver the selected ions to the CEM. The CEM is a continuous dynode device. 

When struck by an ion, it emits an electron pulse. The electron pulses are collected and 

converted to a digital signal, called ion intensity, which is measured as a function of mass 

to charge ratio. In this research, the API 4000 mass spectrometer was operated as both a 

single quadrupole (MS) and a triple quadrupole (MS/MS) in four scan modes. 

Q1 scan (MS): In single quadrupole operation, Q1 is used. All of the ions formed in the 

source are separated and counted according to their mass to charge ratios. A full scan 

mass spectrum shows the intensities of all the detected ions acquired over a certain scan 

range. Multichannel accumulation (MCA) is normally applied to sum successive scans to 

produce better signal-to-noise ratio.  

Product ion scan (MS/MS): In this mode, the first mass analyzer, Q1, separates ions 

according to their m/z ratios and allows only the desired ion (precursor ion M+) to enter 

the collision cell (Q2). That ion then collides with neutral N2 molecules and fragments 

through CAD, and the generated fragment ions (product ions) are passed into Q3 for 

mass analysis. Scanning Q3 over a specified mass range produces a product ion spectrum 

of M+.  

Precursor ion scan (MS/MS): In this mode, a specified product ion (T+) is selected by the 

second mass analyzer, Q3, and Q1 is scanned over a range. All of the precursor ions that 

produce T+ are displayed in the resulting spectrum.  

Multiple reaction monitoring (MRM) (MS/MS): In this mode, Q1 is used to select the 
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desired precursor ion (M+); it is dissociated in Q2; and then Q3 is used to detect a 

specific product ion (F+). This operation, which allows a particular fragment reaction (M+ 

→ F+ + N) to be monitored, is called selected reaction monitoring (SRM). When a set of 

SRM fragmentation reactions are monitored, it is called MRM. This mode of operation is 

extensively used in quantitative analysis due to its increased sensitivity and selectivity 

compared to other modes. 

2.2.5 AriaTM High Turbulence Liquid Chromatography System 

 The Cohesive Technologies (Franklin, MA, USA) High Turbulence Liquid 

Chromatography (HTLC) system is designed for online biological sample extraction and 

analysis. The system consists of the following components: a loading pump, an eluting 

pump, a CTC Analytics PAL autosampler, and a valve interface module. The loading 

pump, which delivers mobile phases to the extraction column via the autosampler, is 

connected with the eluting pump through the valve interface module. The interface 

includes two automatic six-port valves controlled by the AriaTM 1.4 operating software. 

Data acquisition and processing are conducted by using the software (Analyst 1.4) for the 

mass spectrometer. The communication between the AriaTM and the Analyst is 

established by AriaLinkTM.  

 The loading and eluting pumps were Shimadzu LC-10ADVP Micro-volume 

double plunger pumps. The low pressure gradient loading pump [6] was able to deliver 

four solvents, and these degassed multiple solvents were mixed before transferring them 

to the autosampler. The binary eluting pump provided a high pressure gradient [6] which 

delivered a stable flow with small void volume. These pumps could be operated with a 

flow rate ranging from 0.1 to 9.9 mL/min and with a 0.1% solvent mixing ratio.  
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 The CTC Analytics PAL autosampler was used for sample storage and injection. 

It could hold up to six sample plates and the storage temperature could be varied from 5 

to 45oC. Individual samples in 96-well or 54-well format were randomly accessed 

according to the programmed injection sequence. Samples were aspirated with a 

conventional glass syringe and injected directly into a sample loop without the need for 

transfer lines. The injector and syringe were coordinated by adjusting the x, y, z position 

of the syringe., The sample was delivered to the column by using a six-port injection 

valve. After each injection, the syringe was rinsed both inside and outside by a wash 

station containing two different cleaning solvents to minimize carryover (Fig. 2-2). 

Figure 2-2. Operation of the CTC autosampler  

 

 

 

 

 

 

 

 

 

 

   

 The valve interface manages the source and destination of the multiple solvents 

delivered by the loading and eluting pumps. The two valves, where solvents reservoirs 
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and columns were connected, could be selectively switched according to the LC method. 

The mobile phase and flow direction on the column could thus be changed during sample 

analysis. Sample extraction was conducted on the HTLC extraction column by using 

turbulent flow chromatography. The narrow-bore (ID: 0.5 mm) extraction column packed 

with 50 or 60 µm particles generated a moderate backpressure at high flow rates. 

Depending on the analytes, various extraction columns such as: Cylcone, C18, and Polar 

plus were employed. Sample analysis, which was conducted immediately after sample 

extraction, was performed by regular HPLC. 

2.2.6 ACQUITY Ultra Performance LC™  

 The ACQUITY Ultra Performance LC™ (UPLC) system from Waters 

Corporation (Milford, MA, USA) was employed to achieve high resolution separations 

[5,7]. This system included a binary solvent manager, a sample manager, a column 

manager, a detector, and sub-2µm columns. 

 The binary solvent manager was a high pressure pump [6] that delivered mobile 

phases for the system. It included two independent pumps: A and B, and each pump 

contained two linear-drive actuators which separately delivered a precise flow of a single 

solvent. The two solvents transferred by the pumps were combined at a filter/tee mixer, 

and then the mixed solvent flowed to the sample manager. The mixing ratio of the two 

solvents was controlled by varying the flow rate of pump A relative to that of pump B. A 

steady (pulse free) solvent flow of up to 1 mL/min with maximum pressure of 1034 bar 

(15000 psi) was provided.   

 The sample manager injected samples from 96-well plates or 1.5 mL HPLC vials 

into the solvent flow stream. When an injection was requested, the injection needle 
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moved diagonally to the specified well location. A stainless steel puncture needle pierced 

the well cover and the sampling needle, which resides inside the puncture needle, 

extended into the sample. After drawing the sample, the needle assembly was cleaned in 

a wash block to remove any sample trapped between the two needles, and then the 

sample was injected into a sample loop by using a metering syringe (Fig. 2-3). The 

sample plates were placed in the sample manager via the front door, or the sample 

organizer. Sample plates were stored at temperatures between 4 and 40º C. 

Figure 2-3. The UPLC sample manager 

 

 

 

 

 

 

 

 

 

  

 The column manager, which is a U-shaped tray that swivels outward, 

accommodates columns up to 4.6 mm ID and 150 mm long. The column compartment 

temperature can be varied from 5 to 65º C to facilitate chromatographic separation needs. 

A passive column stabilizer is placed in front of the column to minimize temperature 

fluctuations. The column tray swings outward from 0 to 180° to minimize the length of 
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tubing needed between instruments, which reduces dead volume and associated band 

spreading.  

 The UPLC system contained a built-in photodiode array (PDA) optical detector. 

The system, including the PDA detector, was managed by MassLynx software, which 

executed the commands in a batch sequence. When the instrument was connected to the 

mass spectrometer, data acquisition and processing were performed by the Analyst 

software. 

 ACQUITY UPLC columns were packed with 1.7 µm, bridged, ethane-silicon, 

hybrid particles. The column hardware and matched outlet tubing could tolerate a high 

pressure of up to 1034 bar (15000 psi). A 2.1 mm column ID allowed mass spectrometer 

compatible flow rates. Each column also included an information chip, called an eCord, 

which tracked the column usage history.  

 

 

 

 

 

2.3 Sample Preparation for Chapter 4: Procedures for Reducing Matrix Effects and 

Investigation of the Role of Glycerophosphocholine Lipid Endogenous Interferences 

2.3.1 Primary Standard Stock Solutions 

   About 5.0 mg of the compounds listed in Table 2-1 were individually weighed 

and transferred to 10 mL volumetric flasks.  Actual weights were recorded.  Compounds 

were dissolved in 5 mL of acetonitrile (ACN) and then diluted to the mark with water.    
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Solutions were mixed well with a vortex.  

  About 5.0 mg of the lipids listed in Table 2-2 were individually weighed and 

transferred to 5 mL volumetric flasks.  Actual weights were recorded. Lipids were 

dissolved in 3 mL of tetrahydrofuran (THF) and then diluted to the mark with water. 

Solutions were mixed well with a vortex.  

2.3.2 Secondary Standard Stock Solutions  

 Molar concentrations of the primary stock standards were calculated, taking into 

account the purity and salt content of the starting materials. Depending on the calculated 

concentrations, appropriate volumes of the primary standards were pipetted into 10 mL 

volumetric flasks to prepare 100.0 µM secondary stock standards for each compound. 

Standards for the compounds listed in Table 2-1 were diluted with 50:50 ACN:H2O and 

standards for the lipids listed in Table 2-2 were diluted with 50:50 MeOH:H2O. Solutions 

were well mixed with a vortex.  

 The stock standards (2.3.1 and 2.3.2) were stored in 13 mL polypropylene tubes 

with screw caps (Sarstedt AG & Co., Newton, NC, USA) at -20°C in a freezer. Frozen 

standards were thawed, sonicated and vortexed thoroughly before further dilution. 

2.3.3 Buffer Solutions 

  Sodium carbonate (2.6 g) was weighed and dissolved in 25 mL of water to obtain 

a 1.0 M solution. About 0.77 g of ammonium acetate was weighed and dissolved in 10 

mL of water to obtain a 1.0 M solution. Formic acid (FA, 0.43 mL) and 1.36 mL of 

ammonium hydroxide were separately diluted to 10 mL with water to prepare 1 M 

solutions. All solutions were mixed well.  

2.3.4 Infusion Solutions 
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2.3.4-A Plasma supernatant 

 Human control plasma from five lots were pooled. To a 13 mL polypropylene 

tube, a 2 mL aliquot of plasma was placed.  Then, 6 mL of ACN was added to precipitate 

proteins.  The solution was then vortexed and centrifuged. The supernatant was removed 

and diluted with water in 1 to 1 ratio. 

2.3.4-B Analyte tuning solutions 

 For acidic compounds, 100 µL of the secondary stock standard (2.3.2) for A1 and 

A2 analytes were mixed in a 10 mL volumetric flask and then diluted to the mark with 

50:50 ACN:H2O. For basic compounds, 100 µL of the secondary stock standard for B1, 

B2 and B3 analytes were mixed in a 10 mL volumetric flask and diluted to the mark with 

50:50 ACN:H2O. 

2.3.4-C Post-column infusion solutions 

 A solution that was 5 µM in the five analytes was prepared by pipetting 500 µL of 

the secondary stock standards (2.3.2) for the compounds listed in Table 2-1 into a 10 mL 

volumetric flask, and then diluting with 50:50 ACN:H2O.  

 Based on the calculated concentrations of the GPCho lipid primary standards 

(2.3.1), a 50 µM solution containing the four lipids in Table 2-2 was prepared by 

pipetting an appropriate volume of each primary standard into a 10 mL volumetric flask 

and then diluting with 50:50 MeOH:H2O. These solutions were stored in 13 mL 

polypropylene tubes at -20°C in a freezer.  

2.3.5 Working Standards 

 Standards with concentrations of 100.0 µM for the acidic compounds (A1 and 

A2) and the basic compounds (B1, B2 and B3) were prepared by transferring the 
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appropriate volumes of the corresponding primary standards (2.3.1) to 10 mL volumetric 

flasks and diluting with 15:85 ACN:H2O. The 100.0 µM standards were further diluted 

according to Table 2-3 with 15:85 ACN:H2O to obtain the working standards. The 

working standards were stored in 13 mL polypropylene tubes at 5oC in a refrigerator. 

Table 2-3. Working standards 
  
 Working Std. Vol. of  Transf. Conc. of  Transf. Dil. Vol.  
 Conc. (µM)  Std. (µL) Std. (µM) (mL) 

I-1 a 10.0 1000 100.0 10 
I-1 b 8.0 800 100.0 10 
I-1 c 2.0 200 100.0 10 
I-1 d 0.50 50 100.0 10 
I-1 e 0.20 200 10.0 10 
I-1 f 0.040 40 10.0 10 
I-1 g 0.020 20 10.0 10 

 

2.3.6 Liquid-liquid Extraction Solutions 

2.3.6-A Recovery solutions 

 Extraction solvents including: methyl t-butyl ether (MtBE), hexene (Hex) and 

ethyl acetate (EA) as well as the combinations: 50:50 MtBE:Hex, 70:30 MtBE:EA and 

70:30 Hex:EA were examined at three pHs: 4, 7 and 10. Ten µL aliquots of 12.5% FA, 

H2O, and 1 M Na2CO3 were added to 5 mL glass centrifuge tubes, respectively, which 

contained 250 µL of 50 µM GPCho lipids (2.3.4-C). After pH adjustment, 1mL of the 

extraction solvent was added. Then, the solutions were vortexed for 30 sec, and 

centrifuged at 3000 rpm for 2 min. The upper layer (800 µL) was transferred to a 96-well 

plate. The plate was dried under flowing N2 at 35oC and the residue was reconstituted in 

200 µL of 50:50 MeOH:H2O. The analytes were extracted with the same procedure by 

using the 200 nM solutions (2.3.5). For acidic compounds, the pH was adjusted to 4 and 
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7; for basic compounds, the pH was adjusted to 7 and 10. The analytes were reconstituted 

in 15:85 ACN:H2O. All of the recovery solutions were prepared in triplicate. 

2.3.6-B Matrix effect solutions 

For each of the five different human control plasma lots, 225 µL was dispensed 

into a 5 mL glass centrifuge tube containing 25 µL of 15:85 ACN:H2O.  Then, 10 µL of 

12.5% FA and 1 M Na2CO3 were added to adjust the pH to 4 and 10, respectively. After 

adding 1 mL of MtBE, the solutions were vortexed for 30 sec, and centrifuged at 3000 

rpm for 2 min. The upper 800 µL of each solution was transferred to a 96-well plate and 

the plate was dried under flowing N2 at 35oC. Separately, 25 µL of the acidic and basic 

compound working standards at concentrations of 0.04, 0.5 and 8.0 µM (2.3.5) were 

pipetted into the corresponding wells containing acidified plasma residue and basified 

plasma residue. The standards were diluted with 225 µL of 15:85 ACN:H2O. A neat 

standard set was prepared in clean wells by mixing 25 µL of the same working standards 

with 225 µL of 15:85 ACN: H2O. Solutions were prepared in triplicate. 

2.3.6-C Plasma calibration curve standards 

  Five sets of calibration curve standards, made from the five lots of human control 

plasma used in 2.3.6-B, were prepared for acidic and basic compounds, respectively. 

Twenty-five µL of the working standards (2.3.5) were pipetted along with 225 µL of 

human control plasma to obtain calibration standards at: 2, 4, 20, 50, 200, 800 and 1000 

nM. Ten µL of 12.5% FA was added to plasma standards containing acidic compounds 

and 10 µL of 1 M Na2CO3 was added to standards containing basic compounds. Then, the 

standards were mixed with 1 mL of MtBE. After vortexing for 30 sec and centrifuging at 

3000 rpm for 2 min, the upper 800 µL of each solution was transferred to a 96-well plate. 
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The plate was dried under flowing N2 at 35oC, and the residue was reconstituted in 250 

µL of 15:85 ACN:H2O.                                                                                                  

2.3.6-D Plasma GPCho lipid quantification samples 

 For the five lots of control plasma used for the matrix effect solutions in 2.3.6-B, 

200 µL of plasma from each lot was dispensed, 600 µL of ACN was added, and then the 

solutions were diluted with 1.2 mL of 25:75 ACN:H2O. These solutions were vortexed, 

centrifuged, and then 0.5 mL of the supernatant was transferred to a 96-well plate. 

Quantification standards at 0.5, 1, 5, 10, 25 and 50 µM were prepared by diluting the 50 

µM GPCho lipid solutions (2.3.4-C) with 50:50 MeOH:H2O. 

2.3.6-E Chromatography solutions 

The 50 µM GPCho lipid solutions (2.3.4-C) were mixed with equal volumes of 2 

µM acidic and basic compound working standards (2.3.5), respectively. Mixtures were 

transferred to 1.5 mL HPLC vials. 

2.3.7 HTLC Online Extraction Solutions 

2.3.7-A Acidified plasma standards 

 Appropriate volumes of the primary standards (2.3.1) for A1 and A2 analytes 

were mixed and diluted with 15:85 ACN:H2O to obtain a 200 ng/mL neat standard. 

Similarly, a 200 ng/mL standard containing B1, B2 and B3 analytes was prepared by 

pipetting the appropriate volumes of the corresponding primary standards and diluting 

with 15:85 ACN:H2O. 

Plasma standards were prepared by mixing 25 µL of the 200 ng/mL neat 

standards with 225 µL of pooled human control plasma. For acidic compounds, 10 µL of 

12.5% FA, 12.5% acetic acid (HOAc), or 50% HOAc were added to the plasma standards 
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to obtain acidified standards containing 0.5% FA, 0.5% HOAc, or 2% HOAc. The plasma 

standards for basic compounds containing 0% acid, 0.5% HOAc, or 2% HOAc were 

prepared similarly by adding 10 µL of H2O, 12.5% HOAc or 50% HOAc. Five replicates 

of each plasma standard were prepared. 

2.3.7-B Plasma calibration curve standards 

 A plasma calibration curve was derived from standards at the following 

concentrations: 2, 4, 20, 50, 200, 800 and 1000 nM.  These standards were prepared by 

adding 25 µL of the working standards (2.3.5) to 225 µL of the human control plasma. 

Five sets of calibration curve standards, made from the five different lots of human 

control plasma (2.3.6-B), were prepared for acidic and basic compounds, respectively. 

Ten µL of 12.5% HOAc were added to the plasma standards containing acidic 

compounds. The solutions were mixed by vortex. 

2.3.8 AQUITY UPLC Analysis Solutions 

2.3.8-A Neat A1 standards 

The 100 µM analyte A1 secondary standard (2.3.2) was diluted with 15:85 

ACN:H2O to prepare neat A1 standards at 2, 4, 20, 50, 200, 800 and 1000 nM.  

2.3.8-B Flow rate effect solutions  

The 100 µM A1 and B3 secondary standards (2.3.2) were diluted with 35:65 

ACN:0.5% HOAc and 75:25 ACN:10 mM NH4OAc, respectively, to prepare neat A1 and 

B3 standards at 1 µM. 

2.3.8-C Matrix effect solutions 

 For each of the five human control plasma lots (same as 2.3.6-B), 225 µL were 

dispensed into 5 mL glass centrifuge tubes containing 25 µL of 15:85 ACN:H2O. After 
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adding 750 µL of ACN, the solutions were vortexed and centrifuged at 3000 rpm for 5 

min. Then, the upper 800 µL of the supernatants were transferred to a 96-well plate and 

the plate was dried under flowing N2 flow at 35oC. Separately, 25 µL of acidic and basic 

compound working standards at 0.04, 0.5 and 8.0 µM (2.3.5) were pipetted into the dry 

wells. The standards were diluted with 225 µL with 15:85 ACN:H2O. A neat standard set 

was prepared in clean wells by pipetting 25 µL of same working standards along with 

225 µL of 15:85 ACN:H2O. The solutions were prepared in triplicate. 

2.3.8-D Plasma calibration curves standards 

 Five sets of calibration curve standards, made from the five human control plasma 

lots used in 2.3.6-B, were prepared for the acidic and basic compounds, respectively. 

Twenty-five µL of the working standards (2.3.5) and 225 µL of human control plasma 

were pipetted to obtain calibration standards at: 2, 4, 20, 50, 200, 800 and 1000 nM. To 

these plasma standards, 750 µL of ACN was added. Then, the solutions were vortexed 

and centrifuged at 3000 rpm for 5 min. The upper 800 µL of the supernatants were 

transferred to a 96-well plate. The plate was dried under flowing N2 at 35oC and the 

residue was reconstituted in 250 µL of 15:85 ACN:H2O.  

 

2.4 Sample Preparation for Chapter 5: Elucidation of Analyte Ionization 

Suppression Effects  

2.4.1 Single Analyte Solutions 

 Appropriate volumes of the B1, B2, B3, and 16:0 LPC secondary stock solution 

standards (2.3.2) were pipetted into 10 mL volumetric flasks and a series of dilutions was 

performed as indicated in Table 2-4. Solutions were diluted to the mark with 50:50     
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ACN:H2O and mixed well.  

Table 2-4. Single analyte solutions 
   
 Analyte Vol. of  Transf. Conc. of  Transf. Dil. Vol.  
 Conc. (M)  Std. (µL) Std. (M) (mL) 

  II-1 a 1.0E-05 1000 1.0E-04 (2.3.2) 10 
  II-1 b 2.0E-06 200 1.0E-04 (2.3.2) 10 
  II-1 c 5.0E-07 500 1.0E-05 (II-1 a) 10 
  II-1 d 1.0E-07 100 1.0E-05 (II-1 a) 10 
  II-1 e 2.0E-08 20 1.0E-05 (II-1 a) 10 
  II-1 f 5.0E-09 500 1.0E-07 (II-1 d) 10 
  II-1 g 1.0E-09 100 1.0E-07 (II-1 d) 10 

 

2.4.2 Single Analyte with Buffer Solutions 

 A series of 10-fold dilutions were performed using water for each of the 1 M 

buffers (2.3.3): ammonium acetate, formic acid, and ammonium hydroxide, to prepare 

buffer solutions ranging from 1.0 x 10-1 to 1.0 x 10-5 M.  Crossover preparations, for 

which each compound (B1, B2, B3, and 16:0 LPC) was sequentially mixed with the three 

buffers in 5 mL volumetric flasks, were prepared according to Table 2-5. Solutions were 

diluted to the mark with 50:50 ACN:H2O and mixed well. 

2.4.3 Binary Analyte Solutions 

 Binary solutions were designated as containing an analyte and a co-analyte.  The 

concentration of analyte remained constant and the co-analyte concentration varied. B1, 

B2 and B3 were used as analytes, and B1, B2, B3 and 16:0 LPC were used as co-

analytes. The analytes were separately mixed with each co-analyte in 5 mL volumetric 

flasks, as indicated in Table 2-6. For example, analyte B1 was mixed with co-analyte B2, 

B3 and 16:0 LPC, respectively. Solutions were diluted to the mark with 50:50 ACN:H2O 

and mixed well. 
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Table 2-5. Single analyte with buffer solutions 
   
 Buf. Vol. of  Transf. Conc. of  Transf. Dil. Vol.  
 Conc. (M)  Buf. (µL) Buf. (M) (mL) 

  II-2 a 1.0E-01 1000 1.0E-00 (2.3.3) 10 
  II-2 b 1.0E-02 1000 1.0E-01 (II-2 a) 10 
  II-2 c 1.0E-03 1000 1.0E-02 (II-2 b) 10 
  II-2 d 1.0E-04 1000 1.0E-03 (II-2 c) 10 
  II-2 e 1.0E-05 1000 1.0E-04 (II-2 d) 10 

 
 

 Analyte_Buf. Vol. of  Conc. of  Vol. of  Conc. of  Dil.Vol. 
 Conc. (M) Anal. (µL) Anal. (M)  Buf. (µL) Buf. (M) (mL) 

1.0E-07_1.0E-02 250 2.0E-06 (II-1 b) 50 2.3.3 5 
II-2 h 1.0E-07_1.0E-03 250 2.0E-06 (II-1 b) 50 II-2 a 5 
II-2 i 1.0E-07_1.0E-04 250 2.0E-06 (II-1 b) 50 II-2 b 5 
II-2 j 1.0E-07_1.0E-05 250 2.0E-06 (II-1 b) 50 II-2 c 5 
II-2 k 1.0E-07_1.0E-06 250 2.0E-06 (II-1 b) 50 II-2 d 5 
II-2 l 1.0E-07_1.0E-07 250 2.0E-06 (II-1 b) 50 II-2 e 5 
II-2 m 1.0E-07_0 250 2.0E-06 (II-1 b) 5 ־־־ ־־־ 

 

Table 2-6. Two analyte solutions  
   

 Analyte_Co-Anal. Vol. of  Conc. of  Vol. of Conc. of   
 Conc. (M) Anal. (µL) Anal. (M) Co-Anal. (µL) Co-Anal. (M) 

 1.0E-07_1.0E-04 250 2.0E-06 (II-1 b) to be calc. (2.3.1) 
II-3 a 1.0E-07_1.0E-05 250 2.0E-06 (II-1 b) 500 1.0E-04 (2.3.2) 
II-3 b 1.0E-07_1.0E-06 250 2.0E-06 (II-1 b) 500 1.0E-05 (II-1 a) 
II-3 c 1.0E-07_1.0E-07 250 2.0E-06 (II-1 b) 50 1.0E-05 (II-1 a) 
II-3 d 1.0E-07_1.0E-08 250 2.0E-06 (II-1 b) 500 1.0E-07 (II-1 d) 
II-3 e 1.0E-07_1.0E-09 250 2.0E-06 (II-1 b) 50 1.0E-07 (II-1 d) 
II-3 f 1.0E-07_0 250 2.0E-06 (II-1 b) ־־־ ־־־ 

 

2.4.4 Single Analyte with 16:0 LPC and Buffer Solutions 

 B1, B2 and B3 analytes were separately mixed with 16:0 LPC and the mixture 

was diluted with buffered and non-buffered solutions, respectively. Aliquots (250 µL) of 
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analyte at 2.0 x 10-6 M (II-1 b) were mixed with appropriate volumes of the 16:0 LPC 

standard solution in 5 mL volumetric flasks as indicated in Table 2-7. The three buffers 

(ammonium acetate, formic acid, and ammonium hydroxide) at 0.1 M were separately 

added (50 µL) to prepare solutions designated as series II-4 a to II-4 g. A similar series 

(II-4 h to II-4 n) without buffer was also prepared. Solutions were diluted to the mark 

with 50:50 ACN:H2O and mixed well.  

Table 2-7. Single analyte with 16:0 LPC and buffer solutions  
 

 Analyte_Buf._LPC Vol. of  Conc. of  Vol. of   Conc. of   
 Conc. (M) Buf. (µL) Buf. (M)  LPC (µL) LPC (M) 

II-4 a 1.0E-07_1.0E-03_1.0E-04 50 1.0E-01 (II-2 a) to be calc. (2.3.1) 
II-4 b 1.0E-07_1.0E-03_5.0E-05 50 1.0E-01 (II-2 a) 2500 1.0E-04 (2.3.2) 
II-4 c 1.0E-07_1.0E-03_2.0E-05 50 1.0E-01 (II-2 a) 1000 1.0E-04 (2.3.2) 
II-4 d 1.0E-07_1.0E-03_1.0E-05 50 1.0E-01 (II-2 a) 500 1.0E-04 (2.3.2) 
II-4 e 1.0E-07_1.0E-03_5.0E-06 50 1.0E-01 (II-2 a) 250 1.0E-04 (2.3.2) 
II-4 f 1.0E-07_1.0E-03_2.5E-06 50 1.0E-01 (II-2 a) 125 1.0E-04 (2.3.2) 
II-4 g 1.0E-07_1.0E-03_1.0E-06 50 1.0E-01 (II-2 a) 50 1.0E-04 (2.3.2) 
II-4 h 1.0E-07_0_1.0E-04 ־־־ ־־־ to be calc. (2.3.1) 
II-4 i 1.0E-07_0_5.0E-05 1.0 2500 ־־־ ־־־E-04 (2.3.2) 
II-4 j 1.0E-07_0_2.0E-05 1.0 1000 ־־־ ־־־E-04 (2.3.2) 
II-4 k 1.0E-07_0_1.0E-05 1.0 500 ־־־ ־־־E-04 (2.3.2) 
II-4 l 1.0E-07_0_5.0E-06 1.0 250 ־־־ ־־־E-04 (2.3.2) 
II-4 m 1.0E-07_0_2.5E-06 1.0 125 ־־־ ־־־E-04 (2.3.2) 
II-4 n 1.0E-07_0_1.0E-06 1.0 50 ־־־ ־־־E-04 (2.3.2) 
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CHAPTER 3 

 EXPERIMENTAL CONDITIONS AND RESULTS 

 

3.1 Procedures for Reducing Matrix Effects and Investigation of the Role of 

Glycerophosphocholine Lipid Endogenous Interferences    

3.1.1 Mass Spectrometry Measurements  

3.1.1-A Plasma supernatant 

 The control plasma supernatant (2.3.4-A) was directly infused into the TIS source 

at 100 µL/min to obtain a Q1 scan spectrum. The full scan was conducted over a mass 

range of 150 to 1000 amu with a step of 1 amu under the following source parameters: 

Gas 1 and Gas 2: 55, curtain gas: 30, ion spray voltage: 5500, source temperature: 600, 

declustering potential: 140, and entrance potential: 10. The parameters units are arbitrary 

numbers. The predominant signals at m/z values of 519, 543, 782 and 805 were scanned 

with a step of 0.1 amu (Q1 center scan) to obtain accurate masses under the same 

operating conditions (Fig. 4-3). The Q1 center scan identified ions were individually 

scanned for fragmentation patterns with collision gas at 7, collision energy at about 40 

and collision cell exit potential at 12. The product ion spectra for the ions at m/z 518.2, 

542.3, 544.3 and 546.3 are shown in Figure 4-4 and product ion spectra for ions at m/z 

780.6, 804.7 and 806.7 are shown in Figure 4-5. A precursor ion scan for the common 

product ion at m/z 147.1 was also conducted and that spectrum is shown in Figure 4-5. 

3.1.1-B Glycerophosphocline (GPCho) lipids 

 The GPCho lipid secondary standards (2.3.2) were separately introduced into the 

TIS source at 20 µL/min through a tee with 65:35 ACN:H2O solvent flowing at 0.2 
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mL/min to obtain Q1 full scans, Q1 center scans and product ion scans. The resulting 

spectra are shown in Figures 4-6 to 4-9 for 16:0, 18:1, 18:0 LPC and 16:0-18:2 PC, 

respectively. The corresponding acquisition parameters were optimized for each lipid and 

the optimized conditions and MRM transitions for quantification are listed in Table 3-1. 

Table 3-1. Optimized mass spectrometer acquisition parameters for GPCho lipids 
       
   16:0 LPC 18:1 LPC 18:0 LPC 16:0-18:2 PC

Gas 1:             60 60 60 60 
Gas 2:             40 40 40 40 
Curtain gas (CUR):                30 30 30 30 
Collision gas (CAD):              7 7 7 7 
Ion spray voltage (IS):              5500 5500 5500 5500 
Temperature (TEM):                         600 600 600 600 
Declustering potential (DP):             160 170 180 250 
Entrance potential (EP):                    10 10 10 10 
Collision energy (CE):                      35 35 35 43 
Collision cell exit potential (CXP):   12 12 12 12 
Interface heater:                                 on on on on 
Precursor ion monitored:  496.2 522.3 524.3 758.6 
Product ion monitored: 184.2 184.2 184.2 184.2 
Dwell time:   150 ms 150 ms 150 ms 150 ms 
Resolution of Q1:  Unit    
Resolution of Q3:  Unit    
Pause time:   5 ms    
Deflector (DF):                           -200    
Channel electron multiplier (CEM): 2000    

 

3.1.1-C Analytes 

 The mass spectrometer was operated with the electrospray ionization TIS source 

in the positive ionization mode. The 1 µM tuning solutions (2.3.4-B) for acidic and basic 

compounds were separately infused into the TIS source at 200 µL/min. Q1 scans and 

product ion scans were performed in order to identify the proper ion transition channel 
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for quantification. The resulting full scan Q1 spectra and product ion scan spectra are 

shown in Figures 4-10 and 4-11 for acidic and basic compounds, respectively. The Q1 

scan parameters including Gas 1, Gas 2, curtain gas, ion spray voltage, source 

temperature, declustering potential, and entrance potential were optimized to favor the 

formation of protonated ions. Under unit resolution for both Q1 and Q3, product ion 

scans were performed for each protonated ion, and collision gas, collision energy, and 

collision cell exit potential were appropriately optimized to attain sensitive and stable 

detection conditions. The optimized parameters and MRM transitions for quantification 

are listed in Table 3-2. 

Table 3-2. Optimized mass spectrometer acquisition parameters for analytes 
   
  A1 A2 B1 B2 B3 

Gas 1:            55 55 55 55 55 
Gas 2:            50 50 50 50 50 
Curtain gas (CUR):                25 25 25 25 25 
Collision gas (CAD):              7 7 7 7 7 
Ion spray voltage (IS):              5500 5500 5500 5500 5500 
Temperature (TEM):                         650 650 600 600 600 
Declustering potential (DP):              36 70 80 65 100 
Entrance potential (EP):                    9 9 8 8 8 
Collision energy (CE):                      17 31 32 25 38 
Collision cell exit potential (CXP):   12 12 10 12 12 
Interface heater:                                 on on on on on 
Precursor ion monitored:  194.3 283.1 291.3 260.2 472.2 
Product ion monitored: 176.2 265.2 230.2 183.2 436.4 
Dwell time:  200 ms 200 ms 200 ms 200 ms 200 ms
Resolution of Q1: Unit     
Resolution of Q3: Unit     
Pause time:  5 ms     
Deflector (DF):                           -200     
Channel electron multiplier (CEM):  2000     
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3.1.2 Post-column Infusion 

  Post-column infusion was performed with the apparatus shown below (Fig. 3-1). 

The AriaTM HTLC system was reconfigured to bypass the two six-port valves (Fig. 3-2, 

position 1). By connecting the outlet of the eluting pump to the autosampler, the injected 

sample was directly transferred to the analytical column. GPCho lipid separations were 

performed by using an XTerra® RP18 (2.1 x 50 mm, 5 µm) analytical column from 

Waters Corporation with the LC conditions listed in Table 3-3. The GPCho lipid solution 

(2.3.4-C) was injected onto the column with the syringe pump off, and the MRM 

transitions for the GPCho lipids were monitored by using the parameters listed in Table 

3-1. The resulting chromatograms are shown in Figure 4-12. Afterwards, the mass 

spectrometer acquisition parameters were changed to the Table 3-2 conditions in order to 

monitor the MRM transitions for the analytes. Solution containing analytes (2.3.4-C) was 

infused with the syringe pump at 20 µL/min. The GPCho lipid solution was injected 

again with the same chromatographic conditions. As a comparison, a solvent (50:50 

ACN:H2O) was also injected. The infusion spectra of the analytes after injection of the 

GPCho lipids and solvent are shown in Figures 4-13 and 4-14, respectively. 

Figure 3-1. Schematic of the post-column infusion apparatus  
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Table 3-3. LC method for GPCho lipid analysis  
      

Step Time  Flow Gradient %A %B 
 (sec) (mL/min)    
1 180 0.3 step 50 50 
2 180 0.3 step 5 95 
3 60 0.4 step 50 50 
4 40 0.3 step 50 50 

A: 10 mM NH4OAc in H2O; B: 100% ACN     
 

3.1.3 Liquid-liquid Extraction (LLE) 

3.1.3-A Chromatography and detection conditions 

 The AriaTM HTLC system was reconfigured for HPLC analysis by connecting the 

outlet of the eluting pump to the autosampler (Fig. 3-2, position 1). Analyte separations 

were performed at ambient temperature by using a BDS Hypersil C18 (2.1 x 30 mm, 3 

µm) analytical column from ThermoElectron (Bellefonte, PA, USA). The LC method for 

determining LLE processed analytes is listed in Table 3-4. The GPCho lipid samples 

were analyzed by using the chromatographic conditions listed in Table 3-3. The 

autosampler compartment was set at 5oC and the injection volume was 5 µL. The 

analytes and GPCho lipids were detected by using the acquisition parameters listed in 

Tables 3-2 and 3-1, respectively. 

3.13-B Recovery of analytes and GPCho lipids  

  Extracted analyte and GPCho lipid standards (2.3.6-A) were analyzed along with 

the original un-extracted standards and the percentage of extraction (% Recovery) was 

calculated based on the mean peak area of the extracted standard relative to the directly 

injected standard. Because the original 250 µL of standard was reconstituted in 200 µL of 

solvent, the material loss during the LLE transfer step (transfer 800 µL of extraction 
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solvent from 1 mL) was accounted for. The extraction recoveries for acidic and basic 

compounds and GPCho lipids are given in Figures 4-15, 4-16 and 4-19, respectively. 

Table 3-4. LC method for analyte analysis  
      

Step Time  Flow Gradient %A %B 
 (sec) (mL/min)    
1 50 0.2 step 70 30 
2 20 0.2 ramp 65 35 
3 16 0.2 ramp 60 40 
4 40 0.2 ramp 50 50 
5 32 0.2 ramp 30 70 
6 32 0.2 ramp 5 95 
7 15 0.2 step 5 95 
8 40 0.2 ramp 50 50 
9 15 0.2 ramp 70 30 
10 115 0.2 step 70 30 

Acidic compounds: A: 0.5% HOAc in H2O; B: 100% ACN   
Basic compounds: A: 10 mM NH4OAc in H2O; B: 100% ACN    

 

3.1.3-C Absolute matrix effects                                                                                

 Analyte standards prepared with the plasma extract residue and clean solvent 

(2.3.6-B) were analyzed by using the corresponding conditions for acidic and basic 

compounds. The peak areas of the two types of standards were compared and the 

variations of the five lots of control plasma were calculated (Tables 4-2 and 4-3). 

3.1.3-D Plasma standard curves 

 Plasma standard curve samples prepared by LLE (2.3.6-C) were analyzed on the 

reconfigured system by using the same conditions for absolute matrix effects experiments 

(3.1.3-C). The analyte chromatographic peaks were integrated by using the Analyst 

software. Calibration curve linear regressions and relative standard deviation (%RSD) 

calculations were accomplished by using Microsoft Excel. The regression results and the 
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RSD (%) values for the slopes are shown in Figures 4-17 and 4-18 for acidic and basic 

compounds, respectively.  

3.1.3-E Plasma GPCho lipid quantification 

 The plasma samples and quantification standards (2.3.6-D) were analyzed by 

using the chromatographic and detection conditions specified for GPCho lipids. The 

quantification data are shown in Table 4-4. 

3.1.3-F Chromatograms  

 Solutions containing analytes and GPCho lipids (2.3.6-E) were separated by using 

the analyte analysis LC conditions specified in Table 3-4. The MRM transitions for 

analytes and GPCho lipids were simultaneously monitored and the chromatograms are 

shown in Figure 4-20. 

3.1.4 HTLC Online Extraction 

3.1.4-A Columns and mobile phases 

 A turbulent flow HTLC extraction column, Cyclone (0.5 x 50 mm, 60 µm) from 

Cohesive Technology Inc., was used to isolate compounds from injected samples. 

Analyte separations were performed at ambient temperature by using the BDS Hypersil 

C18 (2.1 x 30 mm, 3 µm) analytical column and the XTerra® RP18 column (2.1 x 50 mm, 

5 µm) was used for GPCho lipid separations. The autosampler compartment was set at 

5oC and the injection volume was 5 µL. The mobile phases delivered to the extraction 

column by the loading pump consisted of A (0.5% HOAc in H2O), B (0.5% HOAc in 

ACN), C (15% HOAc in H2O) and D (100% Acetone). The mobile phases that were 

delivered to the analytical column by the eluting pump were 0.5% HOAc in H2O (A) and 

100% ACN (B) for acidic compounds, and 10 mM NH4OAc in H2O (A) and 100% ACN  
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(B) for basic compounds and GPCho lipids.  

3.1.4-B Procedures  

 Flow diagrams for the quick elute online extraction mode are shown in Figure 3-

2. Samples were injected by the autosampler and immediately loaded onto the extraction 

column via the flow provided by the loading pump (loading position). The loaded sample 

was washed with aqueous loading solvents A and C in the sequential order of A-C-A 

under turbulent flow conditions. During this period, analytes were retained on the 

narrow-bore extraction column while macromolecules in the matrix were rapidly washed 

away to waste. The two six-port switching valves (A and B) were then activated at the 

same time, causing the mobile phase from the eluting pump to be diverted to the 

extraction column and the mobile phase from loading pump to be switched to waste 

(transfer position). The analytes were transferred from the extraction column onto the 

analytical column via the eluting mobile phase. After analyte transfer, valve (B) was 

switched back and the eluting mobile phase was directed to the analytical column in order 

to perform the chromatographic separation (position 3). The extraction column was 

washed in both directions with a combination of loading mobile phases by switching the 

loading valve (A). Prior to the next injection, the extraction and analytical columns were 

equilibrated to the initial loading conditions.  

3.1.4-C Analyte loading and transfer 

 The acidified plasma standards (0.5% HOAc) containing acidic and basic 

compounds (2.3.7-A) were separately injected onto the HTLC/LC-MS/MS system. The 

columns, mobile phases, and the acquisition conditions for the mass spectrometer were 

correspondingly set for acidic and basic compounds. While keeping constant transfer  
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Figure 3-2. Flow diagrams for the HTLC/LC-MS/MS system quick elute mode 
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conditions (elution with 70:30 A:B for 25 sec at 0.2 mL/min), loading conditions of 30-5,   

45-5, 45-10, 60-5, 60-10 and 60-15 second were separately tested; where 30-5 second 

represents a total of 30 sec loading for sequential wash using mobile phases A-C-A and 

the mobile phase C wash time was 5 sec.  The other loading condition designations had 

the same meaning as that for the 30-5 sec designation. Then, for the same loading 

conditions (30-5 sec), transfer conditions with various compositions of eluting mobile 

phases (A:B from 85:15 to 60:40) were assessed by using the same plasma standards. The 

subsequent elution programs were same as for the LC method used in LLE (Table 3-4) in 

order to reproduce the separation conditions. The mobile phase composition, flow rate 

and valve switching for the HTLC system were controlled by the LC method. The 

analysis method is listed in Table 3-5 with conditions for the 30-5 sec loading and 70:30 

A:B transfer. The step 1 time determined the total loading time and the step 14 time 

controlled the mobile phase C wash time. Loading conditions were varied by changing 

the durations of these steps. The ratio of the two eluting solvents could be varied for both 

steps 1 - 2 and steps 12 - 15 to test various transfer conditions (A:B 85:15, 80:20, 70:30 

and 60:40). The effects of loading and transfer conditions on acidified plasma standards 

are summarized by Figure 4-21. 

3.1.4-D Acid effects  

 The acidic and basic compound plasma standards (2.3.7-A) were separately 

analyzed by using the LC method listed in Table 3-5 and the acquisition conditions listed 

in Table 3-2. With the 30-5 sec loading condition, transfer conditions for different eluting 

solvent ratios (A:B of 85:15, 80:20, 70:30 and 60:40) were used to examine the effects of 

acid content on assay performance. The results are summarized in Table 4-5. 
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Table 3-5. LC method for analysis by using the HTLC system 
            
     Loading Pump                Eluting Pump 

Stepa Time  Flow %A %B %C %D Pos.b CDc Flow Grad. %A %B 
 sec mL/min       mL/min    
1 30 1.5 100 − − − 1 ← 0.2 step 70 30 
2 25 1.2 − − − 100 2 → 0.2 step 70 30 
3 20 1.5 100 − − − 3 → 0.2 step 70 30 
4 20 1.5 100 − − − 3 → 0.2 ramp 65 35 
5 16 1.5 − 100 − − 3 → 0.2 ramp 60 40 
6 20 1.5 − − − 100 3 → 0.2 ramp 55 45 
7 20 1.5 − − 100 − 3 → 0.2 ramp 50 50 
8 32 1.5 100 − − − 3 → 0.2 ramp 30 70 
9 32 1.5 − − − 100 3 → 0.2 ramp 5 95 
10 15 0.2 100 − − − 1 ← 0.2 step 5 95 
11 40 1.5 − − − 100 1 ← 0.2 ramp 50 50 
12 15 0.2 − 100 − − 1 ← 0.2 ramp 70 30 
13 80 1.5 100 − − − 1 ← 0.2 step 70 30 
14 5 1.5 − − 100 − 1 ← 0.2 step 70 30 
15 30 1.5 100 − − − 1 ← 0.2 step 70 30 

Loading: A: 0.5% HOAc in H2O; B: 0.5% HOAc in ACN; C: 15% HOAc in H2O; D: 100% Acetone  
Eluting: A: 0.5% HOAc in H2O ; B: 100% ACN  for acidic compounds   
Eluting: A: 10 mM NH4OAc in H2O; B: 100% ACN  for basic compounds 
a The loading mobile phase was changed by step gradient at each step. 
b Positions of the two six-port valves shown in Figure 3-2. 
c Direction of extraction column flow. 
 

3.1.4-E Plasma standard curves                                                                                               

 The acidic and basic compound plasma curve standards (2.3.7-B) were separately 

injected onto the HTLC/LC-MS/MS system and analyzed by the corresponding LC 

method indicated in Table 3-5 and MS operating conditions listed in Table 3-2. 

Representative chromatograms are shown in Figure 4-22. The regressed plasma standard 

curves with the corresponding RSD (%) for the slopes are shown in Figures 4-23 and 4-

24 for the acidic and basic compounds, respectively.  
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3.1.4-F Loading and transfer of GPCho lipids 

 The 50 µM GPCho lipid solution (2.3.4-C) was injected in triplicate onto the 

HTLC/LC-MS/MS system equipped with the mobile phases and columns specified for 

GPCho lipids. The mass spectrometer was set to the parameters listed in Table 3-1. For 

the same transfer conditions (elution with 50:50 A:B at 0.3 mL/min for 25 second), 

loading conditions of 30-5, 45-5, 45-10, 60-5, 60-10 and 60-15 second were examined. 

Afterwards, for the same loading condition (30-5 sec), transfer conditions with various 

compositions of eluting mobile phases (A:B from 80:20 to 30:70) were tested. The effects 

of loading and transfer conditions on GPCho lipids are shown in Figure 4-25. The LC 

method for lipids analysis is listed in Table 3-6. This method employed a 30-5 sec 

loading and transfer with 50:50 A:B mobile phase. The total loading time and mobile 

phase C wash time were changed by varying the durations for steps 1 and 13, 

respectively. The transfer conditions were modified by changing the eluting A:B ratio in 

both steps 1 - 2 and steps 12 - 14 to 80:20, 70:30, 60:40, 50:50, 40:60 and 30:70, 

respectively. 

3.1.4-G Direct observation of eluted GPCho lipids      

 The loading diagram of the HTLC system (Fig. 3-2, position 1) was reconfigured. 

Instead of connecting to the waste, the outlet of the extraction column was connected to 

the mass spectrometer. Following the injection of 50 µM GPCho lipids (2.3.4-C), the 

extraction column was sequentially washed with 0.5% HOAc in H2O and 100% ACN for 

60 second at a flow rate of 1.5 mL/min. The MRM transitions of the GPCho lipids were 

monitored and the direct wash spectra for GPCho lipids eluting the extraction column are 

shown in Figure 4-26. 
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Table 3-6. LC method for GPCho lipid analysis by using the HTLC system  
            
       Loading Pump      Eluting Pump 

Stepa Time  Flow %A %B %C %D Pos.b CDc Flow %A %B 
 sec mL/min       mL/min   
1 30 1.5 100 − − − 1 ← 0.3 50 50 
2 25 1.2 − − − 100 2 → 0.3 50 50 
3 40 1.5 100 − − − 3 → 0.3 50 50 
4 76 1.5 − 100 − − 3 → 0.3 50 50 
5 20 1.5 − − − 100 3 → 0.3 50 50 
6 20 1.5 − − 100 − 3 → 0.3 5 95 
7 32 1.5 100 − − − 3 → 0.3 5 95 
8 32 1.5 − − − 100 3 → 0.3 5 95 
9 15 1.5 100 − − − 1 ← 0.3 5 95 
10 40 1.5 − − − 100 1 ← 0.3 5 95 
11 15 1.5 − 100 − − 1 ← 0.3 5 95 
12 80 1.5 100 − − − 1 ← 0.3 50 50 
13 5 1.5 − − 100 − 1 ← 0.3 50 50 
14 30 1.5 100 − − − 1 ← 0.3 50 50 

Loading: A: 0.5% HOAc in H2O; B: 0.5% HOAc in ACN; C: 15% HOAc in H2O; D: 100% Acetone 
Eluting: A: 10 mM NH4OAc; B: 100% ACN        
a The loading and eluting mobile phases were changed by step gradient at each step. 
b Positions of the two six-port valves shown in Figure 3-2.  
c Direction of extraction column flow. 
 

3.1.5 AQUITY UPLC Analysis 

3.1.5-A Mass scan rate 

 The A1 neat standards (2.3.8-A) were injected in 5 replicates onto the UPLC 

system equipped with a BEH Shield RP18 (2.1 x 50 mm, 1.7 µm) UPLC column from 

Waters.  An isocratic elution with mobile phase (35:65 ACN:0.5% HOAc) flowing at 0.6 

mL/min was employed for analysis. The mass spectrometer was set with the parameters 

specified for A1 in Table 3-2 except that the dwell time for the MRM channel was 

changed from 200 ms to 50 ms and then 100 ms. Two MRM transitions (one for A1 and 
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one for a blank) were monitored for each dwell time. By using the same integration 

parameters, the peak areas and peak widths at 50% peak height were obtained with the 

Analyst software and the data are listed in Table 4-6.                                             

3.1.5-B MS responses at different flow rates 

 The 1 µM A1 and B3 solutions (2.3.8-B) were separately infused into the TIS 

source at infusion rates of 50, 100, 300, 600 and 1000 µL/min. The MS parameters were 

optimized for each flow rate to obtain favored conditions for formation of protonated ions 

and product ions. The acquisition conditions for the various flow rates are listed in Table 

3-7.  

 Flow analysis was conducted by replacing the UPLC column with 2 meters of 

peek tubing (ID: 125 µm) and separately injecting 20 µL of the A1 and B3 standards 

(2.3.8-B) onto the UPLC system. The mobile phases were 35:65 ACN:0.5% HOAc and 

75:25 ACN:10 mM NH4OAc for the A1 and B3 samples, respectively. The MS responses 

for A1 and B3 at flow rates of 50, 100, 300, 600 and 1000 µL/min were monitored by 

using the corresponding optimized acquisition parameters (Table 3-7). The effects of 

flow rate on analyte MS response are shown in Figures 4-27 and 4-28 for A1 and B3 

analytes, respectively. 

3.1.5-C Chromatography and detection  

 Chromatographic separations were performed at ambient temperature by using the 

BEH Shield RP18 (2.1 x 50 mm, 1.7 µm) UPLC column. The elution conditions are 

listed in Table 3-8. The autosampler compartment was set at 5oC and the injection 

volume was 2 µL. Analyte and lipid combined solutions (2.3.6-E) were separated by 

using the corresponding UPLC conditions for acidic and basic compounds. The  
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Table 3-7. Optimized mass spectrometer acquisition parameters at various flow rates 

            
A1 Flow rate (µL/min):     50 100 300 600 1000 
 Gas 1:               50 50 60 75 85 
 Gas 2:               50 50 55 75 85 
 Curtain gas (CUR):                 30 30 30 30 30 
 Collision gas (CAD):               6 6 6 6 6 
 Ion spray voltage (IS):              5500 5500 4500 4000 4000 
 Temperature (TEM):                         700 700 700 700 700 
 Declustering potential (DP):             36 36 36 36 36 
 Entrance potential (EP):                    8 8 8 8 8 
 Collision energy (CE):                      17 17 17 17 17 
 Collision cell exit potential (CXP):   14 14 14 14 14 
 Interface heater:                                 on on on on on 
 Transition monitored:      m/z 194.3 → 176.2   
 Resolution of Q1: Unit     
 Resolution of Q3: Unit     
 Pause time:  1 ms     
 Deflector (DF):                           -200     
  Channel electron multiplier (CEM): 2000     
         
B3 Flow rate (µL/min):     50 100 300 600 1000 
 Gas 1:               30 50 55 65 75 
 Gas 2:               30 50 55 65 85 
 Curtain gas (CUR):                 30 30 30 30 30 
 Collision gas (CAD):               7 7 7 7 7 
 Ion spray voltage (IS):              5500 5500 5000 4500 4500 
 Temperature (TEM):                         550 550 550 600 600 
 Declustering potential (DP):             100 100 100 100 100 
 Entrance potential (EP):                    8 8 8 8 8 
 Collision energy (CE):                      38 38 38 38 38 
 Collision cell exit potential (CXP):   15 15 15 15 15 
 Interface heater:                                 on on on on on 
 Transition monitored:      m/z 472.2 → 436.4   
 Resolution of Q1: Unit     
 Resolution of Q3: Unit     
 Pause time:  1 ms     
 Deflector (DF):                           -200     
  Channel electron multiplier (CEM): 2000     
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acquisition parameters listed in Table 3-2 were modified to account for the effects of flow 

rate (Table 3-7). The Gas 1, Gas 2 and TEM values were set at 75, 75 and 700 and 65, 65 

and 600, for acidic and basic compounds, respectively. The MRM transitions for the 

analytes and GPCho lipids were simultaneously monitored and the chromatograms are 

shown in Figure 4-29. 

Table 3-8. LC method for analyte analysis by using the UPLC system 
      

Time  Flow %A %B Gradient 
(min) (mL/min)       

0 0.6 80 20  
2.0 0.6 30 70 ramp 
2.2 0.8 1 99 step 
2.5 1 1 99 step 
3.0 0.6 80 20 ramp 

Acidic compounds: A: 0.5% HOAc in H2O; B: 100% ACN  
Basic compounds: A: 10 mM NH4OAc in H2O; B: 100% ACN   

 

3.1.5-D Absolute matrix effects  

 Analyte standards prepared in plasma supernatant and solvent (2.3.8-C) were 

analyzed by using the specified UPLC conditions for acidic and basic compounds, 

respectively (Table 3-8). MS detection employed the modified conditions from Table 3-2. 

The peak areas of the two types of standards were compared and variations between the 

five lots of control plasma were calculated. The results for acidic and basic compounds 

are listed in Tables 4-7 and 4-8, respectively. 

3.1.5-E Plasma standard curves 

 Plasma standard curve samples for acidic and basic compounds prepared by 

protein precipitation (2.3.8-D) were separately injected onto the UPLC system and 

separated by using the same conditions as were used for the absolute matrix effect 
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experiments (3.1.5-D). The linear regression results and slope RSD (%) values are shown 

in Figures 4-30 and 4-31 for acidic and basic compounds, respectively.  

 

3.2 Elucidation of Analyte Ionization Suppression Effects 

3.2.1 Mass Spectrometry Conditions 

 The API 4000 mass spectrometer was operated in positive electrospray ionization 

(ESI) mode with the TIS source set at unit mass resolution. Q1 scans were performed by 

using the same parameters for all measurements. The scan range was from m/z: 150 to 

550 and 10 MCA were acquired with a step of 0.5 amu and scan time of 0.2 sec. The 

Gas1, Gas 2, CUR, DP, EP and TEM values were set at 30, 50, 50, 80, 8 and 600 

arbitrary units, respectively. The ion spray voltage employed three conditions: 3000, 

4000, or 5000 V. The CEM was set at 2200 and the deflector was at -200. Solutions were 

infused at 60 µL/min into the TIS source with a syringe pump to obtain Q1 full scan mass 

spectra. Protonated positive ions [M+H]+ at m/z values of 291.5, 260.5, 472.5, and 496.5 

were monitored for B1, B2, B3, and 16:0 LPC, respectively. All of the results were the 

average of five measurements. 

3.2.2 Simulated Results in Microsoft Excel 

 Figure 5-2 shows the simulated logarithm surface concentration for a single 

analyte as a function of concentration. The equations used to calculate the plotted values 

as well as the individual data are included. Assuming that the concentration of 

background electrolyte (CE) was constant at 1.0 x 10-5 M, when the partition coefficient 

ratio of the analyte relative to electrolyte (KA/KE) was varied from 0.1, 1 and 10, the 

corresponding analyte surface concentrations ([A+]s) were calculated over a concentration    
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(CA) range of 1.0 x 10-10 M to 1.0 x 10-4 M.  

 Figure 5-3 shows the simulated surface concentrations for two analytes in the 

same solution at equal concentrations. Assuming that analytes (A and B) have different 

partition coefficients, KA/KE = 1 and KB/KE = 10, and CE was constant at 1.0 x 10-5 M, 

the surface concentrations of [A+]s and [B+]s were calculated over a concentration range 

of 1.0 x 10-10 M to 1.0 x 10-4 M.  

3.2.3 MS Response for a Single Analyte as a Function of Concentration 

 The series of single analyte solutions prepared in 2.4.1 were infused into the mass 

spectrometer. A Q1 scan was performed to measure the analyte ion intensities at different 

concentrations and the logarithm of the results are shown in Figure 5-4. 

3.2.4 MS Response for a Single Analyte in a Buffered Solution 

 Single analyte solutions prepared in three types of buffers over a wide buffer 

concentration range (2.4.2) were sequentially infused to compare the ion intensities under 

different buffer conditions. The data for B1, B2, B3, and 16:0 LPC, are shown in Figures 

5-5 to 5-8, respectively. 

3.2.5 MS Response for Binary Analyte Solutions 

 Solutions containing two analytes, prepared as described in 2.4.3, were separately 

infused to measure the effects of co-analytes on analyte ionization. The results for B1 

containing co-analyte B2, B3, and 16:0 LPC, respectively are shown in Figure 5-10; B2 

with B1, B3, and 16:0 LPC, respectively are shown in Figure 5-11; and B3 with B1, B2, 

and 16:0 LPC, respectively are shown in Figure 5-12. 

3.2.6 Total Ion Current for a Single Analyte as a Function of Concentration                      

 Single analyte solutions were diluted with 50:50 ACN:H2O to form solutions with 
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a concentration ranging between 1.0 x 10-9 M to 1.0 x 10-4 M following a procedure 

similar to 2.4.1. The total ion current (TIC), which is the summed intensities of detected 

ions, was measured during infusion. The TIC results for B3 and 16:0 LPC are shown in 

Figure 5-13. 

3.2.7 MS Response for a Single Analyte in Buffered GPCho Lipid Solutions 

 A series of solutions prepared as described in 2.4.4 were sequentially infused and 

analyte ion intensities were measured by Q1 scans. The MS responses for analytes in 

buffered and un-buffered solutions containing 16:0 LPC are shown in Figures 5-14 to 5-

16 for B1, B2, and B3, respectively. 

3.2.8 TIC for 16:0 LPC in Buffered and Un-buffered Solutions 

 A series of 16:0 LPC solutions were prepared by following the procedure outlined 

in Table 2-7 (II-4 a to II-4 g) in 2.4.4 except that no analyte was added. These solutions 

were infused to obtain the TIC spectra and the results are shown in Figure 5-17. 
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CHAPTER 4 
 

PROCEDURES FOR REDUCING MATRIX EFFECTS AND INVESTIGATION 
OF THE ROLE OF GLYCEROPHOSPHOCHOLINE LIPID           

ENDOGENOUS INTERFERENCES 
 

 

4.1 Theory and Background 

4.1.1 Theory of Turbulent Flow Chromatography 

 High turbulent flow liquid chromatography (HTLC), which is characterized by 

high separation efficiency at high flow rate, has been demonstrated to be useful for fast 

and automated sample pretreatment [1-6]. It has been verified that at ultra high flow rate 

(linear flow rate > 12 cm/s), the reduced plate height decreases with increasing flow rate 

[7], which is inconsistent with van Deemter equation predictions. Currently, a 

quantitative theory describing peak spreading for turbulent flow in a packed column is 

not available because the flow profile is more complicated than laminar flow and 

therefore more difficult to model. Based on what is known about conventional packed 

column LC and exploratory investigations into turbulent flow in open-tubular 

chromatography [2,3,8,9], the high separation efficiency of turbulent flow 

chromatography might be attributed to the increased mass transfer inherent in the 

complex flow pattern, where eddy convection is considerably increased compared to 

laminar flow. 

 Chromatographic peak spreading is due to solute velocity inequalities as 

molecules move through the column [10-12]. Due to the complicated geometry of a 

packed column, the flow rates of molecules in interstitial channels between particles can 

be different. The adsorption and desorption processes for molecules at the mobile 
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phase/stationary phase boundary as well as the diffusion of molecules into different flow-

paths and along (up and down) the flow axis cause band broadening. In addition, the 

parabolic profile of laminar flow causes molecules at the front of the band to exhibit a 

mass transfer rate that is different from those at the tailing edges. As a consequence, peak 

broadening arises due to the flow gradient and molecular diffusion. The column 

efficiency in conventional LC, which is carried out under laminar flow conditions, can be 

modeled by the van Deemter equation.  For a packed column [13]: 

 uCuBA
D

udC
u
DC

DudCdC

H
m

psmmd

mpmpe

⋅++=++

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

= /

/)(
11

1 2

2

                (I-1) 

where H: plate height; dp: particle diameter; u: linear velocity of the mobile phase; Dm: 

analyte diffusion coefficient; Ce, Cm, Cd, and Csm are coefficients for eddy diffusion, 

mobile phase mass transfer, longitudinal diffusion, and mass transfer within a particle, 

respectively. Term A in the above equation represents the dispersive contribution from 

the flow profile, and it is considered to be independent of the flow velocity when flow 

terminates the velocity bias; term B is related to axial molecular diffusion; the mass 

transfer term, C, is determined by stationary phase adsorption and desorption processes.  

 In contrast to laminar flow, turbulent flow exhibits a profile with a plug character 

and yields reduced concentration gradients across the flow-paths. Moreover, the 

combination of large particles and high flow rates results in the formation of eddies, 

which greatly enhance mass transfer via convection. Because concentration gradients are 

quickly eliminated by cross channel mass transfer, peak broadening caused by flow 

inequalities within interstitial channels is reduced [8,14-16]. The absence of eddy 

diffusion effects indicates that molecular diffusion within and between eddies is not an 
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important factor for band spreading in turbulent flow [17]. It would be expected that the 

partitioning of molecules between stationary and mobile phases would substantially 

contribute to the separation efficiency in turbulent flow LC whereas the flow and 

diffusion effects, which are represented by terms A and B in the van Deemter equation 

for conventional LC, would be reduced [8,10].  

 In liquid chromatography, separation is achieved by differential adsorption of 

molecules at the surface of packing materials. Adsorption to and desorption from the 

surface of the stationary phase requires molecules to cross a stagnant film of mobile 

phase at the outer surface of the packing material and then pass through mobile phase 

pools inside the pores that contain reverse phase materials. In conventional LC, these 

processes are diffusion controlled [18-19]. Although they contribute to peak broadening, 

the pores must exist in order to ensure sufficient surface area for adequate column 

capacity. In HTLC, two factors dominate molecular transport. The large particles (50 – 

60 µm) employed in turbulent flow columns increase the stagnant mobile phase mass 

transfer effect due to increased diffusion path lengths in the stagnant films on particle 

surfaces.  Even under turbulent flow conditions, mass transfer in these stagnant zones is 

speculated to depend mainly on molecular diffusion. On the other hand, mass transfer in 

turbulent flow chromatography is predominantly achieved by mobile phase convection. 

Eddies also facilitate molecular transport into and out of the pores. The interplay of these 

factors determines the efficiency of adsorption/desorption processes in turbulent flow 

chromatography. 

 The onset Reynolds number, defined as when the flow changes from laminar to 

turbulent in a packed column, can vary from 1 to 100 [20-22]. The transition zone 
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between completely laminar and completely turbulent should be large as indicated by the 

smooth curve of reduced plate height vs reduced velocity as a function of Reynolds 

number [7,8]. The Reynolds numbers for turbulent flow columns used in a patent (100 x 

4.6 mm, 500 µm) and commercially available (50 x 0.5 mm, 50 µm) were calculated by 

using a mobile phase density ρ = 0.9 g/cm3, viscosity η = 1.6 g/m·s, and analyte diffusion 

coefficient Dm = 1.5 x 10-5 cm2/s. Because the particle size of the former column was ten 

times larger than that of the other column, the corresponding Reynolds number and 

reduced velocity were 10-fold higher at comparable linear flow rates. There is a debate 

regarding whether the flow at Reynolds numbers below 10 should be claimed as turbulent 

flow or not [4,23-25], but it is generally agreed that even if the flow profile is not 

completely turbulent, mass transfer is effectively increased and velocity differences are 

reduced through eddy diffusion. 

Table 4-1. Reynolds numbers and reduced velocities for turbulent flow packed columns 
 
Column ID Particle size Flow rate Linear flow rate Reduced velocity Reynolds number 

(mm) dp (µm) (mL/min) µ (cm/s) ν = µ dp/ Dm Re = µ ρ dp/ η 
100 x 4.6 500 80 11.4 3.8E+04 32.1 

  100 14.3 4.8E+04 40.2 
  120 17.2 5.7E+04 48.4 
  140 20.0 6.7E+04 56.3 
      

50 x 0.5 50 1.5 12.7 4.2E+03 3.6 

(Re for the 100 x 4.6 mm column was calculated based on Fig. 14 in Ref. 7)  
 

 A unique feature of turbulent flow LC is that proteins and other endogenous 

macromolecules can be rapidly washed away while analytes are retained by reverse phase 

materials [26,27]. The ability of molecules to enter the interior of particles is determined 

by the sizes of the pores within the particles. When the diameter of a molecule is smaller 
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than the pore diameter, the molecule can access the particle interior. Among the primary 

human plasma proteins: serum albumins, globulins and fibrinogen; the serum albumins 

are the smallest and most abundant [28]. Based on a solid sphere model, serum albumins 

possess an estimated sphere radius of approximately 40 Å [29]. This size increases about 

2-fold when these molecules are denatured [30,31]. The use of small pores (60Å) as well 

as large particles (50 - 60 µm) coupled with porous end-column frits (~ 20 µm) allows for 

the separation of small molecules from endogenous macromolecules through a size 

exclusion mechanism. In addition, the degree to which a molecule follows turbulent 

fluctuations depends on its size and density.  Large molecules would not be expected to 

behave in the same way as small molecules [17]. Small molecules with high diffusivities 

are quickly transferred into the particle pores via convection whereas large molecules 

with relatively low diffusivities require more time to diffuse into the pore areas and are 

more quickly eluted from the column.  

4.1.2 Theory of Liquid-liquid Extraction 

 Liquid-liquid extraction (LLE) is a common approach for removing analytes from 

biological samples by selective partitioning between two immiscible phases: aqueous and 

organic solvent [32-36]. A hydrophobic compound tends to reside in the non-polar 

organic phase whereas a more hydrophilic compound favors the polar aqueous phase. 

Thus, sample components are separated according to their polarity preference. The 

partition coefficient (K), which is equal to the concentration of an analyte in the organic 

phase divided by its concentration in the aqueous phase, is normally used as a measure of 

distribution of a species between the two phases [37-39]. The separation efficiency of two 

components in LLE is quantified by the separation factor (α), which is the distribution 
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ratio of one species divided by the other. K is directly related to the chemical potentials 

(µi) of an analyte (i) in the two partitioning phases (K = exp(-∆µi
0/ RT)) and µi depends 

on the intrinsic thermodynamic energy of the analyte in a certain solvent and the dilution 

effects of that solvent. When the chemical potentials of the analyte in the two phases are 

equal, the partitioning process reaches equilibrium. 

4.1.3 Theory of Ultra Performance Liquid Chromatography 

 The separation process in chromatography can be modeled as a repeated 

distribution/equilibration. The goal of separation optimization is to achieve a sufficient 

number of theoretical plates (N) in a reasonable analysis time. The plate number is an 

approximation of the number of distribution/equilibration events that a given analyte 

undergoes when eluting from the column (N ≈ tR/ τeq); where tR is the analyte retention 

time and τeq is the time for a single equilibrium in the distribution process [40]. The most 

important factors that affect the value of τeq are the diffusion coefficient (Dm) and 

diffusion path length (l). For a spherical particle packed column, τeq ≈ dp
2/ 30Dm and       

N ≈ 30Dm tR / dp
2 (dp: particle diameter) [40]. Although these equations only take into 

account the separation impedance of mass transfer within the particle, they explain the 

fundamental aspects of the chromatographic separation: resolution and analysis time 

tradeoff. With a particular mobile phase and stationary phase, decreasing the diffusion 

path length, which is proportional to the particle diameter, is one of the most effective 

means of improving column performance. The use of a small particle column to perform 

fast analyses with better resolution is indicated by the effect of the mass transfer C term 

in the van Deemter equation. The equilibrium time is a function of the square of the 

particle size. Reducing the particle size leads to a decrease in the mass transfer resistance  
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and consequently a large decrease in the plate height.   

 Decreasing the particle size to improve resolving power is limited by the pressure 

that equipment can withstand. According to Darcy’s law, the dependence of back 

pressure (∆P) for a solvent on a column with resistance factor (Ø) is ∆P = u L η Ø/ dp
 2; 

where u: flow rate, η: solvent viscosity and L: column length. The tradeoff between 

separation time, resolution, and back pressure was pointed out by Knox in 1969 [41,42] 

and subsequently discussed by many other researchers [40,43-45]. The theoretical 

performance of a column with various particle sizes can be shown by a Knox curve, 

which is a plot of plate height versus linear velocity (Fig. 4-1). This plot illustrates that 

when the particle size is below 2 µm, in addition to an efficiency increase, optimal 

separation can be maintained for a wider velocity range, which implies that faster 

separation can be made without significantly compromising resolution. Frontiers in ultra 

high pressure LC have been investigated in academic research laboratories [46-51]. With 

high pressure and flow rate, frictional heating of the mobile phase produces uneven  

Figure 4-1. Theoretical plate height curves for different particle sizes 
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temperatures across the column and parameters such as solvent density, viscosity and 

diffusion coefficient are dependent on the pressure drop [43,44,52,53]. These issues, as 

well as instrumental requirements for sample introduction and pumping at high pressure, 

and uniform porous particles capable of withstanding high pressure, have been described 

in review articles [54,55]. In this research, a recently commercialized UPLC system and a 

bridged ethylsiloxane/silica hybrid (BEH) 1.7 µm particle column with a pressure limit of 

up to 15000 psi were employed. 

4.1.4 Phospholipids Background 

 Lipids are present in all organisms and are essential for the functioning of 

membrane related processes, including energy storage, building structural components of 

cellular membranes, and serving as precursors for numerous secondary messengers. 

Phospholipids are a class of lipid formed from four components: fatty acids, a phosphate 

group, a nitrogen containing alcohol, and a backbone. Phospholipids with a glycerol 

backbone are known as glycerophosphocholines (GPCho), and are the most abundant 

phospholipids in plasma [56-58]. The general structure of GPCho lipids is a three carbon 

backbone molecule with fatty acids esterified at sn-1 and sn-2 positions and a polar head 

containing a phosphate ester at the sn-3 position (Fig. 4-2). Variations in the head group 

lead to different GPCho lipid classes, such as phosphatidic acid (PA), 

phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), 

phosphatidylglycerol (PG) and phosphatidylinositol (PI)  [59]. The type of bonding, ester 

or ether (alkyl ether or vinyl ether), between the fatty acid chain and glycerol at the sn-1 

position determines whether the subclass of the phospholipid is phosphatidyl or 

plasmalogen. The linkage at the sn-2 position is always an ester bond. The ester group 
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chain may vary from 14 to 22 carbons in length and contain 0 to 6 double bonds [60]. 

Numerous extraction procedures for separating phospholipids from biological materials 

and chromatographic methods for qualitative and quantitative determination of these 

substances have been described and are summarized in a recent review [61]. The 

application of mass spectrometry to phospholipid analysis has been investigated by using 

various ionization methods, including fast atom bombardment (FAB), matrix assisted 

laser desorption ionization (MALDI), and electrospray ionization (ESI), and the 

mechanisms for product ion formation have been summarized in an article [62]. 

Figure 4-2. Structures of glycerophosphocholine lipids 
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 Matrix effects caused by plasma sample endogenous species are known to affect 

quantitative analysis and the reliability of an assay is determined to a large extent by the 

specifics of the extraction and chromatographic separation processes. The techniques 

described previously represent three different approaches used for achieving analysis 

specificity. The HTLC method utilizes the high efficiency of turbulent flow mass transfer 

to separate target analytes from sample matrix whereas LLE separation is based on 

compound polarity. The UPLC approach isolates analytes from matrix components by 
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using high resolution chromatographic separation. The capabilities of these three methods 

for eliminating matrix effects in biological sample analysis will be compared. In addition, 

in order to effectively resolve matrix effect problems, it will be necessary to identify the 

source of the endogenous species that interfere during analysis. Identifying the main 

interfering components will be helpful for designing suitable analysis procedures that 

avoid matrix effect interferences.  

 

4.2 Discussion 

4.2.1 MS Detectable Components in Human Plasma 

4.2.1-A MS results for protein precipitated plasma samples 

 The supernatant of pooled human plasma was directly infused into a mass 

spectrometer to identify the main endogenous components. If the detected components 

affect analyte analyses, they most likely contribute to matrix effect interferences. The ESI 

positive ion full scan Q1 mass spectrum for a protein precipitated human plasma sample 

is shown in Figure 4-3(a).  Several abundant signals were observed at m/z 305, 519, 543, 

782 and 805. These major signals were examined with a higher resolution Q1 center scan 

to obtain their accurate masses. The ion at m/z 305 does not derive from GPCho lipids 

and was not examined further. The Q1 center scan spectrum for m/z 519 indicates that 

this signal has a single peak with an accurate mass of 518.3. A shoulder peak at 519.3 is 

due to isotopic effects (Fig. 4-3(b)). The Q1 center scan spectrum for m/z 543 shows 

three peaks with comparable heights at m/z 542.3, 544.3 and 546.3. It appears that these 

peaks originate from endogenous components with similar structures, except for the 

number of double bonds. The Q1 center scan spectrum for m/z 782 and 805 demonstrates 
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that the former ion is due to a single peak with an accurate mass of 780.6 and the latter 

ion appears to consist of peaks at m/z 804.7 and 806.7 (Fig. 4-3(c)). 

 

Figure 4-3. Full scan Q1 spectrum (a) and Q1 center scan spectra (b and c) for a protein 
precipitated human plasma sample 
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 The Q1 center scan identified ions were subjected to product ion scans to 

investigate their fragmentation pathways, which should be closely associated with their 

structures. The product ion scan spectra for ions at m/z 518.3, 542.3, 544.3 and 546.3 

exhibit a similar dissociation pattern where abundant product ions corresponding to m/z 

147, [M-205]+ and [M-59]+ were formed and the most intense ion was [M-59]+ (Fig. 4-4). 

The spectra of ions at m/z 780.6, 804.7 and 806.7 exhibit abundant fragment ions at m/z 

147, [M-205]+, [M-183]+ and [M-59]+ with signal intensities distributed in a similar 

pattern (Fig. 4-5). The base signal was [M-183]+, which was barely observed in the 

product ion spectra of m/z 518.3, 542.3, 544.3 and 546.3 under the specified collision 

induced dissociation conditions. Since all of the identified ions yielded a common ion at 

m/z 147, the precursor ion scan was utilized to confirm the above results obtained from 

the Q1 scans (Fig. 4-5(d)). The obtained spectrum is very similar to Figure 4-3(a), except 

for the disappearance of the ion at m/z 305, which indicates that: (1) the endogenous 

components of human plasma that can produce a relatively intense m/z 147 moiety during 

fragmentation are included in the Q1 scan identified ions; and (2) the ion at m/z 305 does 

not fit in the category to which the identified ions belong.  

 Phospholipids are one of the major components of human plasma and mass 

spectrometry studies for lipids indicate that in positive ionization, sodiated GPCho lipid 

ions produce fragment ions at m/z 147, [M+Na-205]+, [M+Na-183]+ and [M+Na-59]+ 

[66-68]. Further characterization of the subclasses of GPCho lipids indicated that 

lysophosphatidylcholine (LPC), plasmanyl-PC, and plasmenyl-PC yielded the most 

abundant [M+Na-59]+ product ion, which can be used to distinguish them from PC, 

which produces a prominent ion for [M+Na-183]+ [69-71]. The fragmentations of 
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Figure 4-4. Product ion scan spectra for ions at m/z 518.3 (a), 542.3 (b), 544.3 (c) and 
546.3 (d) from a protein precipitated human plasma sample   
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Figure 4-5. Product ion scan spectra for m/z 780.6 (a), 804.7 (b) and 806.7 (c) as well as a 
precursor ion spectrum of m/z 147.1 (d) from a protein precipitated human plasma sample 
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plasmanyl-PC and plasmenyl-PC are analogous to that of LPC except for an additional 

loss of R2COOH from the [M+Na-205]+ ion. Differentiation of LPC regioisomers is 

based on the relative abundance of the product ions; sn-1-LPC forms an abundant ion at 

m/z 147 whereas the base signal for sn-2-LPC corresponds to [M+Na-59]+ [72]. The 

observed dissociation pattern for ions at m/z 518.3, 542.3, 544.3 and 546.3 is consistent 

with the fragmentation features of sn-2-LPC, therefore, these ions are suspected to be 

sodiated sn-2-LPC. The identity of these ions was confirmed by analysis of synthetic 

LPC standards. Based on the mass of each molecule, which is calculated as the mass of 

the detected ion minus the mass of sodium, 16:0, 18:1 and 18:0 LPC standards were 

selected. The ion at m/z 542.3, which was probably due to 18:2 LPC, was not examined 

because a standard was unavailable. The ions at m/z 780.6, 804.7 and 806.7 exhibit 

dissociations similar to PC, but to determine their identities (e.g. carbon number of each 

acyl chain and location of double bonds) and the positions of the fatty acid substituents, 

deuterium labeled analogues and CAD mass spectrometry would be needed. Because of 

the structural and polarity similarities of the PC type lipids, the synthetic 16:0-18:2 PC 

standard, which forms sodium adduct ions at m/z 780.6, was used to represent the PC 

lipids detected in human plasma samples. 

4.2.1-B MS results for synthetic LPC and PC standards 

 To confirm the identity of the Q1 scan signals in the protein precipitated plasma 

sample, 16:0, 18:1 and 18:0 LPC and 16:0-18:2 PC standards were separately infused 

into the mass spectrometer under conditions that were identical to those used for the 

plasma supernatant. Corresponding spectra for Q1 full scan, Q1 center scan, and product 

ion scans are shown in Figures 4-6 to 4-9. The full scan Q1 spectra indicate that each 
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GPCho lipid standard yielded a protonated ion [M+H]+ and a sodium adduct [M+Na]+. 

The [M+H]+ peak assignment was justified by the correspondence of the calculated exact 

mass of the molecule to the accurate mass of the protonated ion in the Q1 center scan. 

The [M+H]+ ions, with accurate masses of 496.2, 522.2, 524.2 and 758.6, produced 

predominately a single fragment ion at m/z 184. This dissociation is a characteristic 

fragmentation of protonated GPCho lipids and the m/z 184 ion is the protonated 

phosphocholine moiety (                            ) from the polar head. The corresponding 

sodium adducts for 16:0, 18:1 and 18:0 LPC standards, with accurate masses at m/z of 

518.3, 544.3 and 546.3, produced major fragment ions at m/z 147, [M+Na-205]+ and 

[M+Na-59]+ with the base peak at [M+Na-59]+. The [M+Na]+ for 16:0-18:2 PC at m/z 

780.7 yielded an additional fragment ion at m/z [M+Na-183]+, which was the base peak. 

These sodium adducts yielded identical fragmentation patterns to those for plasma 

endogenous species with the same masses. The fragment ion at m/z 147 corresponds to ( 

) a sodiated, five-membered cyclophosphane ring. The [M+Na-59]+ ion was 

due to a neutral loss of trimethylamine, and the [M+Na-183]+ and [M+Na-205]+ ions 

resulted from the loss of non-sodium and sodium phosphocholine, respectively. 

Preliminary results for the synthetic LPC and PC standards have verified that the Q1 scan 

signals at m/z 518.3, 544.3, 546.3 and 780.7 for the plasma supernatant were from the 

sodium adduct ions of endogenous GPCho lipids. This confirmation also supports the 

conclusion that ions at m/z 542.3, 804.7 and 806.7 were also formed by endogenous 

GPCho lipids. The reason why GPCho lipids in plasma only form sodium adducts 

whereas the synthetic lipids yielded principally protonated ions was due to the fact that 

the sodium content in plasma is much higher than in a solvent. Detailed fragmentation 
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Figure 4-6. MS spectra for the 16:0 LPC standard: Q1 scan (a), Q1 center scan (b) and 
product ion scans (c and d)  
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Figure 4-7. MS spectra for the 18:1 LPC standard: Q1 scan (a), Q1 center scan (b) and 
product ion scans (c and d)  
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Figure 4-8. MS spectra for the 18:0 LPC standard: Q1 scan (a), Q1 center scan (b) and 
product ion scans (c and d)  
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Figure 4-9. MS spectra for the 16:0-18:2 PC standard: Q1 scan (a), Q1 center scan (b) 
and product ion scans (c and d)  
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pathways for sodiated GPCho lipids in positive ionization mode have been proposed [66-

67,72] and the dramatic differences in fragmentation patterns for [M+H]+ and [M+Na]+ 

ions were attributed to a cationization change. Sodium seems to stabilize the phosphate 

group and inhibits proton transfer in the rearrangement that leads to the formation of the 

phosphocholine moiety (m/z 184). Thus, the dissociation reaction prefers to initiate at the 

amine group and results in the formation of the [M+Na-59]+ ion [67].  

4.2.1-C Analyte monitoring 

 To investigate the effects of endogenous GPCho lipids on analyte ionization, a 

group of acidic and basic compounds with a wide polarity range were selected for study. 

Because these analytes possess various properties, different analysis conditions were 

needed. Therefore, matrix effects could be studied under different conditions and the 

influence of mobile phase composition and solvent pH on matrix effects was also 

examined. Analytes were tuned in positive ESI mode and the spectra for the acidic and 

basic compounds are shown in Figures 4-10 and 4-11, respectively. For A1 and A2 

analytes, in addition to formation of protonated ions [M+H]+, relatively intense sodium 

adduct ions [M+Na]+ were produced. Because the abundance of sodium adduct ions 

varied with the sodium content in ionizing solution, and the content of sodium that 

originates from methanol and glass containers cannot be controlled, the [M+Na]+ ion was 

not employed to monitor the target analytes [63-65]. Thus, the protonated A1 and A2 

ions, with corresponding m/z values at 194 and 283, were selected as precursor ions for 

product ion scans. Moreover, to enhance the formation of protonated ions, a solvent 

containing less sodium was used for the mobile phase. It was observed that the intensities 

of sodium adduct ions were significantly reduced when acetonitrile rather than methanol 
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was used for infusion. The precursor ions for both A1 and A2 yielded predominantly the 

[M+H-H2O]+ ion, which is a common product ion for acidic compounds. The MRM 

transitions of m/z 194 → 176 and m/z 283 → 265 were utilized for quantitative 

determinations of A1 and A2, respectively. 

 The basic compounds were tuned similarly. The predominate signals in the Q1 

spectrum were at m/z  291, 260 and 472, which corresponded to the protonated ions of 

analytes B1, B2 and B3, respectively. When these [M+H]+ ions were scanned for product 

ions, multiple fragment ions were observed. Parameters for the major fragment ions were 

separately optimized in order to obtain the most abundant product ion for analyte 

quantification. Fragment ions at m/z 230, 183 and 436, which correspond to [B1+H-

OCH2OCH3]+, [B2+H-H2O-NH2CHCH3CH3]+ and [B3+H-2H2O]+, were the most intense 

product ions for B1, B2 and B3 analytes, respectively. The corresponding MRM 

transitions used for quantitative determinations were m/z 192 → 230, m/z 260 → 183, and 

m/z 472 → 436.  

4.2.1-D Effects of GPCho lipids on analyte ionization 

 The influence of GPCho lipids on analyte ionization was explored by using the 

widely accepted post-column infusion method. A constant amount of analyte was 

delivered to the ion source of the mass spectrometer by using a mixing tee with one inlet 

connected to an HPLC column. When the extracted control sample was injected onto the 

HPLC column, any endogenous components that affect the ionization of the infused 

analyte caused a variation of analyte response at their elution times. Standards of 

synthetic lipids were examined in order to determine the influence of specific endogenous 

components.  
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Figure 4-10. Full scan Q1 spectrum (a) and product ion scan spectra for A1 (b) and A2 
(c) analytes in positive ionization mode 
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Figure 4-11. Full scan Q1 spectrum (a) and product ion scan spectra for B1 (b), B2 (c) 
and B3 (d) analytes in positive ionization mode 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

m/z, amu

+Q1: 10 MCA scans

150 250 350 450 550

2.0e7

4.0e7

5.7e7 474.0
292.0

261.0

+Q1: 10 MCA scans

150 250 350 450 550

2.0e7

4.0e7

5.7e7 474.0
292.0

261.0

+MS2 (291.30): 10 MCA scans  

100 150 200 250 300 350
m/z, amu

2.0e7

4.0e7

5.4e7 230.2

261.0
123.0

275.3

257.2

110.2

291.3

+MS2 (291.30): 10 MCA scans  

100 150 200 250 300 350
m/z, amu

2.0e7

4.0e7

5.4e7 230.2

261.0
123.0

275.3

257.2

110.2

291.3

100 150 200 250 300 350
m/z, amu

2.0e7

4.0e7

5.4e7 230.2

261.0
123.0

275.3

257.2

110.2

291.3

+MS2 (260.20): 10 MCA scans 

100 150 200 250 300
m/z, amu

1.0e7

2.0e7

3.0e7

4.0e7
183.2

116.3

157.2

260.2

+MS2 (260.20): 10 MCA scans 

100 150 200 250 300
m/z, amu

1.0e7

2.0e7

3.0e7

4.0e7
183.2

116.3

157.2

260.2

+MS2 (472.20): 10 MCA scans

100 200 300 400 500
m/z, amu

2.0e7

4.0e7

6.0e7

436.4

454.3

262.3 472.2129.0

+MS2 (472.20): 10 MCA scans

100 200 300 400 500
m/z, amu

2.0e7

4.0e7

6.0e7

436.4

454.3

262.3 472.2129.0

In
te

ns
ity

, c
ps

[B1 + H]+

[B2 + H]+

[B3 + H]+

[B1 + H - OCH2OCH3]+

[B2 + H - H2O - NH2CHCH3CH3]+

[B3 + H - 2H2O]+

(a)

(b)

(c)

(d)



 96

 To increase the reliability of post-column infusion experiments and minimize 

variations from other sources, such as co-eluting components and mobile phase gradients, 

the chromatographic conditions for the synthetic LPC and PC were extensively examined 

with respect to peak shape, MS response, and elution time. GPCho lipids are hydrophobic 

compounds and it was expected that they would require relatively long elution times with 

reversed phase HPLC. Organic solvent, acetonitrile, methanol and their combinations in 

different ratios as well as aqueous solvent at pH ranging from 3 to 7 containing 0.1% 

formic acid, 0.1% acetic acid and 10 mM ammonium acetate were assessed in various 

compositions. Several HPLC columns: BDS Hypersil C18 from ThermoElectron, Luna 

C18 and Synergi Fusion RP C18 from Phenomenex, and XTerra RP18 from Waters were 

tested with the various mobile phases. Varying the pH had no obvious effect on the 

retention times of the LPC and PC standards. Changing the composition of the organic 

solvent affected the retention time and symmetry of the three LPC peaks but not the 16:0-

18:2 PC peak, which had a peak shape and retention time that appeared to depend 

primarily on the properties of the column stationary phase. Although all of the columns 

were reversed phase C18, the behavior of  the 16:0-18:2 PC standard on these columns 

was significantly different. Only the XTerra RP18 column yielded an acceptable peak 

shape. The other columns exhibited either a hump or a broadened peak. The reason for 

these different behaviors requires further investigation, but that issue is not addressed 

here. 

 Representative chromatograms for the GPCho lipid standards were obtained by 

using the optimized chromatographic conditions and are shown in Figure 4-12. The 

retention times for 16:0, 18:1, 18:0 LPC and 16:0-18:2 PC were about 1.9, 2.4, 3.7 and 
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5.5 min, respectively. While the target analytes were infused and constant MRM signals 

were acquired, the GPCho lipid standards were injected to examine their ionization  

suppression effects. Four dips at the corresponding elution times for 16:0, 18:1, 18:0 LPC 

and 16:0-18:2 PC were observed in all of the MRM transitions for the target analytes 

(Fig. 4-13). The first dip at 0.4 min was due to column void. The other dips were caused 

by the GPCho lipids. When the lipid standards eluted from the column, they suppressed 

analyte ionization, which reduced the detected signal. To verify this hypothesis, the same 

experiment was repeated with an injection of solvent for comparison (Fig. 4-14). As 

expected, the spectra with solvent injection exhibit steady analyte signals. The variation 

at about 3.3 min was caused by changing the mobile phase composition via a step 

gradient. Since the only difference between these experiments was the material injected 

and the times associated with the dips corresponded to the elution times of the GPCho 

lipid standards, it was concluded that analyte signal suppression was caused by the 

GPCho lipids. Because the suppression affected all analytes, it appears that this effect is 

not restricted to a specific compound, but can affect a wide variety of analytes.  

 The infusion spectra show that analyte MS responses were highly matrix 

dependent. Undetected but co-eluting endogenous molecules alter the ionization 

environments for analytes of interest and result in a variation of the MS response. In 

clinical studies, biological samples come from a large number of subjects and even the 

same subject may exhibit sample variations due to food effects or drug interactions, etc.  

The composition of the endogenous components in the biofluids (e.g. plasma) can change 

dramatically. Therefore, when different subjects are analyzed by methods that present 

matrix effects, the signal intensity of an analyte does not necessarily reflect the amount of  
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Figure 4-12. MRM chromatograms for 16:0, 18:1 and 18:0 LPC and 16:0-18:2 PC 
standards 
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Figure 4-13. Post-column infusion spectra for five analytes after injection of GPCho lipid 
standards 
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Figure 4-14. Post-column infusion spectra for five analytes after injection of solvent 
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that analyte in the sample. Elimination of these interferences is important for developing 

a reproducible and accurate quantitative assay for biological samples. The novel HTLC 

online sample preparation and UPLC analysis were compared with the classic LLE 

method with regard to their efficiencies for reducing matrix effects caused by endogenous 

species in biological samples. The GPCho lipids identified by the Q1 scan were also 

studied by these methods to verify that they were a major source of matrix effect 

interferences.   

4.2.2 Matrix Interference Reduction by using LLE 

4.2.2-A Optimization of LLE conditions 

 To ensure an accurate assessment of matrix effect interferences, sample analysis 

conditions for using LLE were optimized. The chromatographic conditions were selected 

based on the principles of reversed phase HPLC. A suitable analytical column should be 

able to balance the needs of various compound properties and perform separations for all 

of the analytes. The hydrophilic A1 and B1 analytes need to have reasonable retention 

times with an ESI acceptable mobile phase, in which a certain amount of organic solvent 

is needed to improve ionization efficiency. The basic B1, B2 and B3 analytes should 

yield relatively symmetric peaks. Since peak tailing for basic compounds in most cases is 

due to interactions with silanol groups inside the column, polar endcapped LC/MS 

columns such as Aquasil C18 and BDS Hypersil C18 from ThermoElectron, Synergi 

Hydro-RP 18 from Phenomenex, and SymmetryShield RP 18 from Waters were 

evaluated. It was found that the BDS Hypersil C18 column yielded the best performance 

in terms of interday reproducibility, analyte response, peak shape and retention times. 

The mobile phase was programmed with a gradient elution in order to elute the 
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hydrophobic A2 and B3 analytes in a reasonable time while still providing adequate 

separation for all of the analytes.  

 Extraction conditions were selected based on analyte recovery studies, in which 

various extraction solvents and solvent combinations at different pH values were 

examined (Fig. 4-15 and 4-16).  

 

Figure 4-15. Recovery of A1 and A2 by using LLE with various solvent and pH 
conditions 
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Figure 4-16. Recovery of B1, B2 and B3 by using LLE with various solvent and pH 
conditions 
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 The extraction percentage was calculated as the peak area ratio of LLE processed 

standard to original (without extraction) standard. The results indicated that acidified 

conditions generally yielded higher recovery for the acidic compounds and basified 

conditions were more suitable for the basic compounds, which is a typical situation for 

LLE experiments. MtBE was selected for extracting analytes because it gave acceptable 

extraction recovery for all of the analytes at the proper pHs.  

4.2.2-B Matrix effect measurements for LLE 

 A widely accepted method for studying matrix effect interferences is by 

computing the absolute matrix effect, which is defined as the peak area ratio for an 

analyte prepared from a control biofluid extract to the same analyte contained in neat 

solvent [77,78]. A ratio of 100% indicates that the responses for the analyte in the control 

extract and in the neat solvent are the same. Because the control extract is obtained by 

using a real sample extraction procedure, a value of 100% suggests an absence of matrix 

effects. The absolute matrix effects for LLE were obtained by extracting control plasma 

with MtBE in a 1 to 4 ratio with the pH adjusted to 4 or 10 depending on whether the 

analytes were acidic or basic. The measurements were conducted at three concentrations 

in five different plasma lots and the results are shown in Tables 4-2 and 4-3. The average 

absolute matrix effects for the three concentrations were 103% and 94% for A1 and A2, 

and 101%, 95% and 45% for B1, B2 and B3, respectively. The corresponding average 

precision (%RSD) for the A1, A2, B1, B2 and B3 analyses for the five plasma lots were 

2.9%, 6.5%, 2.7%, 4.3% and 33%. The B3 analyte, which exhibited significant absolute 

matrix effects, produced the largest inter-batch variation whereas A2, and A1, B1 and B2, 

which exhibited moderate to small ionization suppressions, respectively, yielded much 
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better precisions. These results indicate that matrix effects significantly affect the analyte 

analysis. A compound analysis method may have a large deviation with less sensitivity 

due to this adverse effect. In addition, the extent of ionization suppression was correlated 

with batch-to-batch variations. This correlation is logical because the absolute matrix 

effect is derived from the influences of co-eluting endogenous components.  Therefore, 

endogenous component differences lead to variations in the absolute matrix effect. 

 

Table 4-2. Absolute matrix effects for A1 and A2 by using LLE analysis 
        

        Peak area and matrix effectsa  
Analyte         4 nM        50 nM         800 nM 

A1 PL Lot1 4.98E+03 92.0 6.34E+04 105.4 1.03E+06 101.0 
 PL Lot2 5.07E+03 93.8 6.31E+04 105.0 1.05E+06 102.6 
 PL Lot3 4.92E+03 91.0 6.47E+04 107.5 1.02E+06 100.0 
 PL Lot4 5.11E+03 94.5 6.60E+04 109.8 1.03E+06 100.3 
 PL Lot5 5.62E+03 103.9 6.47E+04 107.6 1.01E+06 98.7 
 Neat Std 5.41E+03  6.01E+04  1.02E+06  
 Mean  95.0  107.1  100.5 
 %RSDb   5.4  1.8  1.4 
        

A2 PL Lot1 2.12E+04 92.4 2.35E+05 83.6 3.94E+06 83.5 
 PL Lot2 2.34E+04 102.0 2.75E+05 97.6 4.51E+06 95.6 
 PL Lot3 2.23E+04 97.2 2.69E+05 95.5 4.34E+06 92.0 
 PL Lot4 2.52E+04 109.7 2.49E+05 88.5 3.94E+06 83.5 
 PL Lot5 2.23E+04 97.0 2.66E+05 94.6 4.48E+06 94.9 
 Neat Std 2.29E+04  2.82E+05  4.72E+06  
 Mean  99.6  92.0  89.9 
 %RSDb   6.6  6.3  6.7 

a Calculated as (peak area in plasma extract/ peak area of neat std) x 100%.  
b Relative standard deviation of peak areas for five lots of plasma extract.  
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Table 4-3. Absolute matrix effects for B1, B2 and B3 by using LLE analysis 
        

   Peak area and matrix effectsa  
Analyte      4 nM       50 nM        800 nM 

B1 PL Lot1 2.56E+04 97.8 3.32E+05 100.6 4.96E+06 98.8 
 PL Lot2 2.68E+04 102.4 3.33E+05 100.9 4.95E+06 98.7 
 PL Lot3 2.77E+04 105.8 3.47E+05 105.1 4.92E+06 98.1 
 PL Lot4 2.71E+04 103.7 3.45E+05 104.5 5.17E+06 103.0 
 PL Lot5 2.56E+04 97.8 3.28E+05 99.3 4.99E+06 99.5 
 Neat Std 2.61E+04  3.30E+05  5.01E+06  
 Mean  101.5  102.1  99.7 
 %RSDb   3.6  2.5  2.0 
        

B2 PL Lot1 1.61E+04 92.9 2.04E+05 86.0 3.60E+06 96.1 
 PL Lot2 1.69E+04 97.5 2.16E+05 91.0 3.59E+06 95.7 
 PL Lot3 1.75E+04 101.0 2.29E+05 96.5 3.57E+06 95.3 
 PL Lot4 1.78E+04 102.4 2.41E+05 101.5 3.65E+06 97.4 
 PL Lot5 1.58E+04 90.9 2.17E+05 91.2 3.52E+06 93.8 
 Neat Std 1.73E+04  2.37E+05  3.75E+06  
 Mean  96.9  93.2  95.7 
 %RSDb   5.2  6.4  1.4 
        

B3 PL Lot1 9.27E+04 37.6 1.19E+06 37.8 1.73E+07 38.2 
 PL Lot2 9.27E+04 37.6 1.63E+06 51.7 2.32E+07 51.3 
 PL Lot3 1.34E+05 54.5 1.31E+06 41.4 2.23E+07 49.3 
 PL Lot4 5.34E+04 21.7 6.08E+05 19.3 1.82E+07 40.3 
 PL Lot5 1.48E+05 59.8 1.96E+06 62.1 3.22E+07 71.3 
 Neat Std 2.47E+05  3.16E+06  4.52E+07  
 Mean  42.2  42.5  50.1 
 %RSDb   36.0  37.8  26.2 

a Calculated as (peak area in plasma extract/ peak area of neat std) x 100%.  
b Relative standard deviation of peak areas for five lots of plasma extract.  
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 Matrix interferences for the LLE method were also evaluated by examining the 

relative matrix effect, which is based on the variation of matrix effect. Because of 

difficulties in conducting the absolute matrix effect measurements with HTLC online 

extraction (i.e. the control biofluid extract after loading must be directly transferred to the 

analytical column), an alternative approach was needed in order to have a way to directly 

compare the analytical techniques. The relative matrix effect was determined by the 

precision of slopes for five calibration curves derived from five different control plasma 

lots [73]. Using the slope rather than individual measurements was preferred because 

contributions from random variations in sample preparation, chromatographic separation, 

and MS response were considerably reduced by computing linear regressions. Moreover, 

in order to demonstrate the influence of the matrix, calculations were based on peak area 

rather than the peak area ratio of analyte to an internal standard.  The purpose of an 

internal standard is to account for variations in analyte concentration during various steps 

in the sample analysis process and to compensate for matrix effects, which was not 

desired for these studies.  

 Five plasma calibration curves were obtained by using the same procedure as was 

used for studies of the absolute matrix effect. The only difference was that analytes were 

spiked with control plasma before conducting LLE whereas for the absolute matrix effect 

studies, analytes were spiked with the LLE processed control plasma extract. The LLE 

relative matrix effects for target analytes are presented in Figures 4-17 and 4-18 for acidic 

and basic compounds, respectively. The %RSD of the five slopes was 2.9%, 5.5%, 4.3%, 

4.5% and 16.8% for A1, A2, B1, B2 and B3, respectively. The trend in these data was 

consistent with the absolute matrix effect results. The A1, A2, B1, and B2 analytes,   
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Figure 4-17. Plasma calibration curves for A1 and A2 determined by using LLE 
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Figure 4-18. Plasma calibration curves for B1, B2 and B3 determined by using LLE 
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which exhibited relatively small absolute matrix effects, exhibited small slope variations. 

Results for B3, which exhibited a serious analyte ionization suppression problem, 

exhibited a much larger relative deviation.  

 It should be pointed out that the five slope precision calculations reflected 

contributions from matrix effects and recovery. Compared to a directly analyzed neat 

standard, results for extracted plasma standards exhibited not only the impact of 

endogenous components on analyte ionization, but also the impact of material loss during 

extraction. However, the effects of recovery on slope variations should not be an issue 

because the primary factor that determined recovery was the polarity similarity between 

the analytes and extraction solvent, which was dictated by analyte properties. In addition, 

the good correlation between the relative matrix effect and the absolute matrix effect 

results indicated that the influence of recovery on batch-to-batch variability was not 

significant.   

4.2.2-C Removal of GPCho lipids by LLE 

 To assess the relationship between the observed matrix effect and the endogenous 

GPCho lipids detected by the Q1 scan, the LLE efficiency for removing GPCho lipids 

was examined by using the LPC and PC standards. Although the post-column infusion 

experiment had verified the suppression effects of the GPCho lipids on analyte 

ionization, if these lipids were eliminated during the extraction step, the observed matrix 

effects would have to be attributed to other factors. The extraction recoveries for GPCho 

lipid standards under various extraction solvents and pH conditions are shown in Figure 

4-19. Generally, these lipids did not favor hexene but preferred ethyl acetate; the 

universal extraction solvent, MtBE, yielded more than 50% recovery for them. Changing  
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Figure 4-19. Recovery of GPCho lipid standards by using LLE with various solvents and 
pH conditions 
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the pH conditions had no significant effect on the extractions of LPC and PC, which was 

likely due to the opposite charges on N+ and P- in the polar head of the GPCho lipids. 

Under the LLE conditions used for plasma samples, considerable amounts of endogenous 

GPCho lipids were extracted along with the analytes. It therefore appears that the 

observed matrix effects might be related to the presence of these GPCho lipids. 

 In order to investigate the role of GPCho lipids in the plasma matrix effects 

observed during analyte determinations, the concentrations of endogenous GPCho lipids 

were quantified for the five control plasma lots used in this research. The concentration 

of endogenous 16:0, 18:1, 18:0 LPC and 16:0-18:2 PC were about 115, 20, 32, and 233 

µg/mL, respectively and the corresponding lot-to-lot variation (%RSD) was about 30% 

for LPC and 14% for PC (Table 4-4). The concentrations of endogenous lipids were 

much higher than analyte concentrations and the batch-to-batch variation was significant, 

thus endogenous GPCho lipids have the potential to be major contributors to the observed 

matrix interferences.   

 
Table 4-4. Quantification results for endogenous GPCho lipids in human plasma 
     
                        Concentration (µM)a  
 16:0 LPC 18:1 LPC 18:0 LPC 16:0-18:2 PC 

PL Lot1 155 27 49 263 
PL Lot2 91 16 24 209 
PL Lot3 102 17 33 215 
PL Lot4 151 24 38 271 
PL Lot5 75 14 19 206 

     
Mean  115 20 32 233 

%RSDb  31.5 28.4 36.2 13.6 
a Obtained from 3 replicate protein precipitated control plasma samples. 
b Relative standard deviation of peak areas in five lots of plasma. 
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 Another prerequisite for causing a matrix interference is that the interfering 

components co-elute with the analytes, thus, the MRM transitions for the LPC and PC 

standards were simultaneously monitored along with those for the analytes in order to 

assess the behavior of endogenous GPCho lipids under specific chromatographic 

conditions. The chromatograms for LPC and PC standards obtained by using the HPLC 

conditions for the acidic and basic compounds are shown in Figure 4-20. The elution 

results for the GPCho lipids are consistent with the matrix effect study results. The A1, 

B1 and B2 analytes were completely separated from the GPCho lipid standards, thus, 

variations in their plasma calibration curve slopes were the smallest of all the analytes. 

A2 was not quite separated from the lipid standards, consequently the influence of the 

matrix on the variations of the plasma calibration curve slopes for A2 was slightly higher 

than for A1, B1 and B2. The worst case was for the B3 analyte. Because 16:0 and 18:1 

LPC eluted at its retention time, this compound exhibited the largest ionization 

suppression and greatest inter-batch variations. Based on the facts that the GPCho lipids 

suppress analyte ionization; concentrations of endogenous GPCho lipids are relatively 

high and inter-batch variations were large; and that the analyte exhibited serious matrix 

interferences when it co-eluted with lipids; it was concluded that the GPCho lipids 

detected by the Q1 scan were likely a major factor affecting plasma sample quantification 

measurements. However, one possibility that should not be ignored is the influence of 

other endogenous components. Undetected endogenous species may also be extracted 

and affect analyte determinations. To verify that GPCho lipids were the primary cause of 

the observed matrix effects, and to assess the ability of turbulent flow separations to 

eliminate this adverse effect, the HTLC online extraction method was employed. 
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Figure 4-20. Representative Chromatograms for analytes and GPCho lipids by using LLE 
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4.2.3 Matrix Interference Reduction by using HTLC Online Extraction 

4.2.3-A Optimization of the HTLC online extraction conditions 

 For online HTLC, extraction steps involving analyte loading, transfer, washing, 

and equilibration determine the analysis reproducibility. A reliable extraction is essential 

because problems with the extraction process might be incorrectly attributed to matrix 

interferences. An optimized loading step sufficiently removes matrix materials from the 

extraction column and limits interferences without compromising analyte recovery. To 

avoid build up of macromolecules on the extraction column, a solvent that is capable of 

denaturing proteins in reversed phase separations was selected for loading plasma 

samples. Acidified aqueous solvent was used here. Sometimes the aqueous loading 

solvent is not sufficient to completely wash away all of the human plasma matrix 

components [6,74]. The remaining matrix residue might be transferred to the analytical 

column and would gradually accumulate on the surface of the stationary phase. 

Consequently, the loading efficiency of the extraction column and separation efficiency 

of analytical column would both decrease. Acids, such as trifluoroacetic acid, acetic acid, 

and phosphoric acid, are commonly used in reversed phase protein separations to 

improve solubility [75,76]. Taking into account that the mobile phase must be compatible 

with mass spectrometry, a 15% HOAc solution was used to dissolve matrix residues.  A 

combination of loading solvent and acid was used to clean the extraction column 

following each loading. Various loading conditions were evaluated and the results are 

shown in Figure 4-21(a). The effect of loading solvent on the acidic compounds was not 

significant. When the total loading time increased from 30 to 60 sec, no obvious peak 

area decrease was observed. However, increasing the washing time with 15% HOAc 
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from 5 to 15 second resulted in a peak area decrease. For the basic compounds, a 

decreasing trend in peak area was observed when the washing time of either the loading 

solvent or the 15% HOAc was increased. Although the additional wash with 15% HOAc 

extends the extraction and analytical column lifetimes, analyte recovery is compromised. 

A loading program of 30-5 sec was thus employed for subsequent studies. 

 The transfer step involves moving analytes from the extraction column to the 

analytical column for chromatographic separation. A transfer time of 25 second was 

suitable because the flow volume corresponding to 25 sec at 0.2 mL/min was about 9 

times the extraction column void volume (ID: 0.5 x 50 mm), which should be sufficient 

to transfer the partitioned analytes. A longer transfer time did not significantly improve 

analyte recovery, but did cause peak shape broadening. The subsequent eluting 

conditions were the same as those described for the LLE chromatographic conditions in 

order to ensure retention time consistency. Under the selected loading conditions, various 

transfer conditions were assessed and the results are shown in Figure 4-21(b). The 

manner in which the solvent composition affects transfer is consistent with the retention 

mechanism in reversed phase chromatography. With increasing organic content, more 

analyte species are moved from the extraction column to analytical column. The 

decreased peak areas for B1 and B2 might have been caused by column break-through. 

Due to the strong hydrophobicity of the transfer solvent, hydrophilic analytes were not 

well focused at the head of the analytical column. Because increasing the organic content 

may also favor the transfer of endogenous interferences and enhances the potential of 

matrix interferences, a transfer solvent containing 30% acetonitrile was used as a 

compromise between acceptable recovery and minimal interference. 
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Figure 4-21. Effects of loading and transfer conditions on analyte MS response for HTLC 
online extraction  
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 After analyte transfer, the extraction column was extensively cleaned with various 

combinations of the loading solvents in order to minimize carryover effects. It has been 

found that alternating washes using high organic and low organic content solvent is 

helpful for reducing carryover [77]. The reason for this may be that a sequential change 

between hydrophobic and hydrophilic solvent causes a stretching out and drawing back 

of stationary phase materials and these movements assist in the diffusion of analyte 

molecules within stagnant regions. 

 A critical factor for conducting HTLC online extractions is to ensure that the 

desired solvents are delivered to the extraction column during each step. A delivery delay 

caused by the void volume of the loading pump must be accurately measured. The void 

volume of the system used in this study was about 1.2 mL and the delay time was about 

50 sec at a flow rate of 1.5 mL/min. Representative chromatograms for the acidic and 

basic compounds obtained by using optimized HTLC online extraction conditions are 

shown in Figure 4-22. 

 Because plasma sample pH may also affect the measurement reliability, the 

influence of acid content on analysis reproducibility was examined. Plasma standards 

were prepared containing 0.5% FA, 0.5% HOAc or 2% HOAc and measured by using a 

30-5 second loading with different transfer solvents. The effects of sample acidifying 

conditions on analyte MS response are summarized in Table 4-5. The precisions of A1 

and A2 measurements in 0.5% HOAc were better than in 0.5% FA and 2% HOAc 

whereas the peak areas for the three acidifying conditions were comparable. Analytes B1 

and B2 were not affected by the acid content, but B3 demonstrated a relatively poor 

response in acidified plasma compared to neutral plasma. Therefore, acidic compounds  
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Figure 4-22. Representative Chromatograms for the analytes obtained under optimized 
HTLC online extraction conditions 
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Table 4-5. Acid effects on analyte MS response and precision for HTLC online extraction 
   

 Acid         Response (peak area) and precision [%RSD, n=5] 
Analytes in plasma                Organic content of transfer solvent 

 (% v/v) 15% ACN  20% ACN  30% ACN  40% ACN  
A1 0.5%FA 6.44E+04 9.26E+04 1.22E+05 1.77E+05 

  [6.6] [7.7] [4.7] [2.8] 
 0.5%HOAc 7.43E+04 9.76E+04 1.26E+05 2.03E+05 
  [1.2] [1.9] [1.9] [3.7] 
 2%HOAc 6.80E+04 9.13E+04 1.16E+05 1.79E+05 
  [9.3] [3.5] [2.2] [3.0] 
      

A2 0.5%FA 3.51E+04 7.88E+04 1.82E+05 4.80E+05 
  [7.6] [8.3] [3.8] [2.7] 
 0.5%HOAc 3.29E+04 6.07E+04 1.47E+05 4.11E+05 
  [3.9] [5.6] [3.2] [2.7] 
 2%HOAc 3.34E+04 6.25E+04 1.44E+05 4.53E+05 
  [9.4] [7.1] [3.5] [4.1] 
      

B1 0%HOAc 1.23E+05 1.31E+05 1.49E+05 5.55E+04 
  [1.7] [3.7] [2.9] [2.2] 
 0.5%HOAc 1.29E+05 1.32E+05 1.60E+05 6.60E+04 
  [0.8] [4.8] [2.2] [2.3] 
 2%HOAc 1.07E+05 1.23E+05 1.07E+05 6.23E+04 
  [2.4] [5.2] [1.2] [1.5] 
      

B2 0%HOAc 7.52E+04 1.25E+05 2.94E+05 2.24E+05 
  [1.1] [1.8] [1.2] [2.6] 
 0.5%HOAc 7.12E+04 1.15E+05 2.61E+05 2.15E+05 
  [3.3] [2.3] [1.9] [3.2] 
 2%HOAc 5.78E+04 1.17E+05 1.91E+05 2.24E+05 
  [2.2] [6.4] [1.0] [1.1] 
      

B3 0%HOAc 5.58E+04 8.78E+04 3.10E+05 7.35E+05 
  [2.6] [3.0] [3.0] [4.1] 
 0.5%HOAc 4.25E+04 5.89E+04 2.30E+05 5.24E+05 
  [3.5] [5.7] [2.5] [2.0] 
 2%HOAc 3.98E+04 7.15E+04 2.11E+05 6.65E+05 
  [2.9] [4.7] [2.2] [1.4] 
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were prepared in plasma containing 0.5% HOAc and basic compound samples contained 

no acid. The precision results of less than 5% RSD for five replicate samples indicated 

that the analytical procedure was reliable with the selected conditions. 

4.2.3-B Matrix effect measurements for HTLC online extraction 

 Due to the inherent difficulties in calculating the absolute matrix effect for the 

online HTLC system, relative matrix effect measurements were made. Analyte plasma 

curve samples prepared with the five control plasma lots were measured by using the 

optimized HTLC online extraction conditions and results are shown in Figures 4-23 and 

4-24 for the acidic and basic compounds, respectively. The slope %RSD values for A1, 

A2, B1, B2 and B3 measurements were 2.1%, 3.7%, 4.0%, 2.2% and 8.0%, respectively. 

Compared to the other analytes, B3 exhibited a relatively large slope variation. The 

previous analysis results during procedure optimization indicated that an RSD value of 

less than 5% for five replicates plasma standards should be obtained, and the results for 

A1, A2, B1 and B2 were comparable and precise. Therefore, the relatively large variation 

among the five B3 curves was attributed to the effects of endogenous components. 

Although this variation included the influence of recovery, that effect should have been 

minimal because recovery is determined by the interactions between analytes and the 

stationary phase of extraction column. Compared to the relative matrix effect results for 

LLE, the slope precisions for the five analytes were better, especially for A2 and B3. 

Because the chromatographic elution conditions for the two approaches were the same, 

the improved precision indicated that online HTLC extraction was more efficient for 

reducing endogenous interfering components than LLE. If the GPCho lipids were indeed 

a major cause of matrix interferences, these effects should be more effectively reduced by 
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Figure 4-23. Plasma calibration curves for A1 and A2 determined by using HTLC online 
extraction  
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Figure 4-24. Plasma calibration curves for B1, B2 and B3 determined by using HTLC 
online extraction    
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using online HTLC extraction than LLE.  

4.2.3-C Removal of GPCho lipids by HTLC online extraction 

 To prove that the B3 measurement variation was caused by the endogenous 

GPCho lipids, the efficiency of turbulent flow extraction for eliminating GPCho lipids 

was examined by using the same conditions that were used for analyte analysis. Effects 

of loading conditions on removal of GPCho lipid standards (Fig. 4-25(a)) indicated that 

the analyte loading step had no obvious influence on these lipids. Changing the flow time 

of either aqueous solvent or acid did not affect the lipid peak areas significantly. In 

contrast, the transfer conditions significantly affected the lipid extraction efficiency (Fig. 

4-25(b)). When the organic content of the transfer solvent was increased, the amount of 

transferred lipids increased dramatically. The 16:0, 18:1 and 18:0 LPC lipids reached 

their highest extraction yields of 90%, 90% and 65%, respectively with 50% acetonitrile, 

whereas the maximum extraction yield for 16:0-18:2 PC required at least 70% 

acetonitrile. To confirm that turbulent flow loading, during which macromolecules are 

effectively flushed, is not very effective for eliminating small molecules such as GPCho 

lipids, the eluates from extraction column were directly measured after a wash with 

aqueous loading solvent and with 100% acetonitrile under turbulent flow conditions (Fig. 

4-26). Comparing the peak areas measured for the aqueous eluate (0.07 min) to the 

acetonitrile eluate (1.29 min), it was concluded that the removal of the GPCho lipids 

during the loading step is very limited and that the efficiency of lipid reduction is heavily 

dependent on the organic content of the transfer solvent. This comparison is not quite 

accurate because ionization efficiencies in aqueous and organic solvents are different, but 

clearly there are large amounts of LPC and PC lipids that remain after aqueous loading.  
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Figure 4-25. Effects of loading and transfer conditions on GPCho lipids during HTLC 
online extraction 
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Figure 4-26. MRM spectra of directly eluted GPCho lipids after turbulent flow extraction  
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Under the extraction conditions used for analyte analysis (30-5 sec loading and 30% 

acetonitrile transfer), about 10% of the endogenous GPCho lipids were transferred to the 

analytical column along with the analytes. Due to the large amount of endogenous 

GPCho lipids in plasma, 10% of the initial concentration is still much higher than the 

analyte concentrations.  

 Comparing HTLC extraction to LLE, the efficiency of these two methods for 

removing GPCho lipids is represented by the precisions of the results obtained by using 

the corresponding approaches. With optimized HTLC extraction conditions, about 90% 

of the LPC and PC standards were separated from analytes, whereas under optimized 

LLE conditions, the separation efficiency was about 50%. When plasma calibration 

curves were generated by using both methods, the slope precision for A2 and B3, which 

slightly and completely co-eluted with the GPCho lipids, respectively, changed from 

5.5% and 16.8% when using LLE to 3.7% and 8.0% when using HTLC extraction. For 

A1, B1 and B2, which were chromatographically separated from the lipids, the relative 

matrix effects were not significantly affected by the extraction conditions, even though 

the mechanisms of the two approaches were quite different. The correlation between the 

efficiency for GPCho lipid removal and plasma calibration curve variability is persuasive 

evidence that GPCho lipids are major sources of the observed matrix interferences.  

4.2.4 Matrix Interference Reduction by using UPLC Analysis 

4.2.4-A Characterization of UPLC analysis 

 To confirm that the reason that the analyses of samples containing A2 and B3 

exhibited more variation than the other analytes was because they co-eluted with GPCho 

lipids, UPLC analysis, which is characterized by greater chromatographic resolution than 
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conventional HPLC, was an ideal approach to employ. Assuming that the GPCho lipids 

were the major cause of the matrix effects, if they are separated from the target analytes 

by chromatography, the matrix effect should be greatly reduced. A protein precipitation 

method was used in combination with UPLC analysis because it allowed retention of the 

endogenous materials to the greatest extent. When GPCho lipids are chromatographically 

separated from analytes, the results of matrix effect measurements should reflect the 

influence of all interfering endogenous components except for the GPCho lipids. An 

acceptable measurement precision under such conditions would not only confirm that the 

GPCho lipids are major sources of the matrix effects, but would also provide information 

regarding the extent to which they contribute to these adverse effects. 

 Prior to using this method, it was necessary to evaluate the reliability of UPLC-

MS/MS for quantitative analysis. One of the features of fast UPLC is that narrow 

chromatographic peaks are obtained (baseline peak width < 0.1 min). The mass 

spectrometer scan rate must be fast enough to acquire a sufficient number of data points 

during the short elution time of each analyte. If an insufficient number of data points are 

measured for LC peaks, the peak shape will be distorted and peak area quantification will 

be unreliable. The effects of mass spectrometer scan rate on chromatographic peak 

shapes were evaluated by using A1 solutions. The maximum scan rate of the API 4000 

for MRM monitoring was 50 ms per channel. If multiple analytes are simultaneous 

measured, the data acquisition rate will be the number of analytes multiplied by 50 ms 

per analyte plus the delay time involved in switching between channels. Neat A1 standard 

solutions were analyzed by using two-channel MS/MS monitoring with scan times of 50 

and 100 ms, respectively. The precision of five replicate injections and the average 
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number of data points above 50% peak height are listed in Table 4-6. The peak area 

precisions for scan rates of 50 and 100 ms were comparable for the same analyte 

concentration, ranging from 1.1% to 6.7%. The deviation at low concentration was 

relatively larger than at high concentration due to lower signal-to-noise. At the faster scan 

rate, the peaks were acquired with less filtering, which yielded higher noise. The number 

of data points at or above 50% peak height was 16 and 7 for scan times of 100 and 200 

ms, respectively. The manufacturer suggested minimum number of data points for a 

chromatographic peak is 13.  Thus, the 200 ms scan time was sufficient to maintain 

chromatographic peak shapes. 

 Another concern for UPLC analysis is the higher flow rate employed (> 0.6 

mL/min), because a high flow rate is not favorable for ESI ionization. The relationship 

between flow rate, mobile phase composition and analyte sensitivity has been explored. 

A1 and B3 were separately prepared in solvents with high aqueous content and high 

organic content in order to simulate mobile phase compositions that were used to elute 

them from the analytical column. Flow injection was conducted by using a 2-meter length 

of peek tubing (ID: 125 µm), which was able to store an injection volume of 20 µL. The 

solution cylinder formed by the tubing was pushed into the mass spectrometer by mobile 

phase at different flow rates. Due to the long length of the solution cylinder, mobile phase 

dilution caused by molecular diffusion at each end of the cylinder was minimized. The 

MS responses for A1 and B3 at flow rates of 50, 100, 300, 600 and 1000 µL/min are 

shown in Figures 4-27 and 4-28, respectively. When the solution contained less organic 

phase (35% acetonitrile for A1), a decrease in MS response with increasing flow rate was 

observed. A decrease of 20% was considered to be tolerable when the flow rate increased 
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Table 4-6. The effects of data acquisition rate on A1 MS response 
        
                          Peak area (counts)   

Scan rate 2 nM 4 nM 20 nM 50 nM 200 nM 800 nM 1000 nM 
50 ms 2.96E+03 5.29E+03 2.63E+04 6.16E+04 2.56E+05 1.02E+06 1.28E+06 

 2.81E+03 5.94E+03 2.66E+04 6.23E+04 2.58E+05 1.06E+06 1.33E+06 
 2.55E+03 5.60E+03 2.57E+04 6.34E+04 2.55E+05 1.05E+06 1.36E+06 
 2.66E+03 5.76E+03 2.66E+04 6.45E+04 2.60E+05 1.04E+06 1.37E+06 
 2.86E+03 5.98E+03 2.60E+04 6.26E+04 2.63E+05 1.05E+06 1.34E+06 
   

Mean  2.77E+03 5.71E+03 2.62E+04 6.29E+04 2.59E+05 1.04E+06 1.34E+06 
%RSD 5.8 4.9 1.4 1.8 1.2 1.5 2.6 

        
100 ms 3.78E+03 7.14E+03 2.68E+04 6.32E+04 2.58E+05 1.02E+06 1.28E+06 

 3.91E+03 7.21E+03 2.70E+04 6.36E+04 2.62E+05 1.05E+06 1.31E+06 
 3.51E+03 7.00E+03 2.63E+04 6.52E+04 2.65E+05 1.07E+06 1.37E+06 
 3.28E+03 6.65E+03 2.67E+04 6.57E+04 2.75E+05 1.07E+06 1.35E+06 
 3.65E+03 6.09E+03 2.69E+04 6.40E+04 2.69E+05 1.08E+06 1.37E+06 
   

Mean  3.63E+03 6.82E+03 2.67E+04 6.44E+04 2.66E+05 1.06E+06 1.34E+06 
%RSD  6.7 6.7 1.1 1.7 2.5 2.1 3.0 

        
        

                 Peak width at 50% peak height (min) 
Scan rate 2 nM 4 nM 20 nM 50 nM 200 nM 800 nM 1000 nM 

50 ms 0.021 0.025 0.027 0.027 0.027 0.027 0.027 
 0.028 0.028 0.026 0.027 0.028 0.028 0.028 
 0.028 0.024 0.027 0.027 0.027 0.027 0.027 
 0.032 0.030 0.029 0.028 0.027 0.027 0.028 
 0.028 0.026 0.028 0.028 0.027 0.027 0.028 
   

Mean  0.027 0.027 0.027 0.027 0.027 0.027 0.028 
Pointsa 16 16 16 16 16 16 17 

        
100 ms 0.022 0.022 0.023 0.023 0.023 0.023 0.023 

 0.022 0.023 0.023 0.023 0.022 0.023 0.023 
 0.025 0.022 0.022 0.022 0.023 0.023 0.023 
 0.022 0.023 0.022 0.022 0.023 0.023 0.022 
 0.024 0.022 0.023 0.023 0.023 0.023 0.023 
   

Mean  0.023 0.023 0.023 0.023 0.023 0.023 0.023 
Pointsb 7 7 7 7 7 7 7 

a Calculated as: mean peak width * 60/ 0.1 (sum of two scan channels) 
b Calculated as: mean peak width * 60/ 0.2 (sum of two scan channels) 
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Figure 4-27. MRM spectra for A1 at different flow rates with optimized MS acquisition 
conditions 
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Figure 4-28. MRM spectra for B3 at different flow rates with optimized MS acquisition 
conditions 
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from 100 to 600 µL/min.  In the case of higher organic content solutions (75% 

acetonitrile for B3), the MS response was not significantly affected by the flow rate.  

4.2.4-B Optimization of UPLC analysis conditions 

 Chromatographic peak shape, peak area, precision, and flow rate evaluations 

suggested that UPLC-MS/MS was a reliable technique and could be utilized to quantify 

the target analytes for matrix effect studies. To attain separations for solutions containing 

analytes and LPC and PC standards, the BEH C18 and Shield RP 18, 1.7 µm, UPLC 

columns were tested with various mobile phase gradient programs. The optimized 

chromatographic conditions not only separated all analytes from the GPCho lipids, but 

also produced acceptable analyte peak shapes (Fig. 4-29). The MS acquisition parameters 

were also optimized for the increased flow rate at 0.6 mL/min. 

 4.2.4-C Matrix effect measurements for UPLC analysis 

 Analyte solutions prepared by using protein precipitated control plasma and neat 

solvent were analyzed at three different concentrations by using the optimized separation 

conditions. The absolute matrix effect and precision for the five plasma lots are 

summarized in Tables 4-7 and 4-8 for the acidic and basic compounds, respectively. The 

average absolute matrix effect and precision (%RSD) for the three concentrations were 

101% (6.3%) and 101% (5.8%) for A1 and A2, respectively. The corresponding results 

for the B1, B2 and B3 measurements were 94% (1.4%), 94% (5.0%) and 81% (4.5%). 

There was no obvious matrix effect for A1 and A2, because peak areas obtained from 

measurements of solutions derived from protein precipitated plasma and solvent were 

comparable. However, despite the absence of matrix effects, the more than 5% batch-to-

batch variation seemed to be high. Because of the rapid scan rates required for UPLC-  
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Figure 4-29. Representative Chromatograms for analytes and GPCho lipids by using 
UPLC-MS/MS analysis 
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Table 4-7. Absolute matrix effects for A1 and A2 by using protein precipitation with 
UPLC-MS/MS 
        

    Peak area and matrix effectsa  
Analyte       4 nM       50 nM       800 nM 

A1 PL Lot1 5.47E+03 98.8 7.10E+04 110.6 9.74E+05 104.9 
 PL Lot2 5.05E+03 91.2 7.10E+04 110.6 9.14E+05 98.5 
 PL Lot3 6.01E+03 108.7 6.34E+04 98.8 9.30E+05 100.2 
 PL Lot4 5.73E+03 103.5 6.31E+04 98.4 8.38E+05 90.2 
 PL Lot5 5.97E+03 108.0 6.35E+04 99.0 9.00E+05 97.0 
 Neat Std 5.53E+03  6.42E+04  9.29E+05  
 Mean   102.0  103.5  98.2 
 %RSDb   7.1  6.3  5.4 
        

A2 PL Lot1 8.70E+03 100.7 1.29E+05 107.9 1.96E+06 96.4 
 PL Lot2 8.44E+03 97.7 1.31E+05 109.6 1.83E+06 90.0 
 PL Lot3 1.01E+04 116.9 1.18E+05 98.8 2.04E+06 100.5 
 PL Lot4 9.18E+03 106.3 1.20E+05 100.3 1.99E+06 98.2 
 PL Lot5 8.60E+03 99.5 1.14E+05 95.5 1.94E+06 95.4 
 Neat Std 8.64E+03  1.20E+05  2.03E+06  
 Mean  104.2  102.4  96.1 
 %RSDb   7.5  5.9  4.1 

a Calculated as (peak area in plasma supernatant/ peak area of neat std) x 100%.  
b Relative standard deviation of peak areas in five lots of plasma.  
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Table 4-8. Absolute matrix effects for B1, B2 and B3 by using protein precipitation 
with UPLC-MS/MS 
        

   Peak area and matrix effectsa  
Analyte       4 nM       50 nM       800 nM 

B1 PL Lot1 2.06E+04 97.6 2.45E+05 94.5 3.68E+06 93.2 
 PL Lot2 1.94E+04 91.7 2.39E+05 92.0 3.67E+06 93.0 
 PL Lot3 2.01E+04 95.1 2.38E+05 91.8 3.69E+06 93.4 
 PL Lot4 1.97E+04 93.2 2.43E+05 93.6 3.66E+06 92.6 
 PL Lot5 2.05E+04 96.9 2.43E+05 93.8 3.69E+06 93.4 
 Neat Std 2.11E+04  2.59E+05  3.95E+06  
 Mean   94.9  93.1  93.1 
 %RSDb   2.6  1.3  0.4 
        

B2 PL Lot1 9.03E+03 99.7 9.06E+04 81.6 1.62E+06 92.4 
 PL Lot2 8.75E+03 96.6 1.01E+05 90.8 1.74E+06 99.3 
 PL Lot3 9.87E+03 108.9 1.06E+05 95.4 1.69E+06 96.1 
 PL Lot4 8.86E+03 97.8 9.82E+04 88.5 1.69E+06 96.1 
 PL Lot5 8.26E+03 91.2 9.78E+04 88.1 1.64E+06 93.5 
 Neat Std 9.06E+03  1.11E+05  1.76E+06  
 Mean   98.9  88.9  95.4 
 %RSDb   6.5  5.6  2.8 
        

B3 PL Lot1 8.86E+04 77.9 1.18E+06 81.4 1.60E+07 81.0 
 PL Lot2 9.22E+04 81.1 1.30E+06 89.7 1.65E+07 83.5 
 PL Lot3 9.74E+04 85.6 1.13E+06 77.7 1.70E+07 85.7 
 PL Lot4 8.76E+04 77.1 1.19E+06 82.1 1.60E+07 80.8 
 PL Lot5 8.71E+04 76.6 1.12E+06 77.2 1.59E+07 80.5 
 Neat Std 1.14E+05  1.45E+06  1.98E+07  
 Mean   79.7  81.6  82.3 
 %RSDb   4.7  6.1  2.7 

a Calculated as (peak area in plasma supernatant/ peak area of neat std) x 100%.  
b Relative standard deviation of peak areas in five lots of plasma.  
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MS/MS analysis, the chromatographic baseline noise increased, and this resulted in 

decreased reproducibility, especially when peak areas were less than 104 counts. The 

decreased reproducibility for UPLC peaks was demonstrated by the more than 5% RSD 

for the five replicate injections of A1 measurements (Table 4-6). Results from the  

B1 and B2 samples indicated that they were not significantly influenced by the 

endogenous matrix. Although B3 measurements were affected by matrix components to 

some extent, a more than 80% correlation with the neat solvent results can be considered 

to mean that the analyte was effectively removed from the main sources of interference. 

The slight suppression might have been due to unidentified lipids or other endogenous 

components.  

 The plasma calibration curves for the target analytes were obtained by using the 

same protein precipitation procedure and chromatographic conditions as were used for 

the absolute matrix effect studies. The results are shown in Figures 4-30 and 4-31. The 

6.6% and 5.7% slope variations for A1 and A2 measurements were in accordance with 

their absolute matrix effect precision results. The slope variation among the five plasma 

lots might have been due to the combined effects of UPLC peak reproducibility and 

endogenous matrix. The slope precisions for B1, B2 and B3 measurements were 4.3%, 

4.0% and 6.7%, respectively. This confirms the absolute matrix effect findings. B1 and 

B2, with no obvious matrix effects, exhibited precise inter-batch deviations, whereas B3, 

because of some matrix effects, yielded a slightly larger slope variation.  

4.2.4-D Removal of GPCho lipids by UPLC analysis 

 The GPCho lipids were chromatographically separated from the target analytes by 

virtue of the high resolving power of UPLC. Although the protein precipitated plasma  
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Figure 4-30. Plasma calibration curves for A1 and A2 determined by using UPLC-
MS/MS  
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Figure 4-31. Plasma calibration curves for B1, B2 and B3 determined by using UPLC-
MS/MS  
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samples contained the maximum amounts of endogenous components, the measured 

analyte matrix effects were acceptable, and the results for B3 were significantly better 

when compared to LLE and HTLC extraction analysis. In addition, comparing the basic 

mechanisms involved in the three sample analysis techniques, UPLC separates GPCho 

lipids from the analytes, whereas the LLE and HTLC online extraction methods reduce 

lipid concentration based on polarity and hydrophobility preferences. Although the 

mechanisms for these three approaches are different, the goals are same: to decrease the 

co-eluted endogenous GPCho lipid species and generate a less interfering environment 

for analyte ionization inside the mass spectrometer. The efficiencies for removing GPCho 

lipid interferences were about 100%, 90% and 50% for UPLC analysis, HTLC online 

extraction, and LLE, respectively. The B3 analyte, which exhibited the worst matrix 

effects, yielded slope %RSD values for the five plasma calibration curves of 6.7%, 8.0% 

and 16.8% for UPLC analysis, HTLC online extraction, and LLE, respectively. The 

correlation between plasma calibration curve variations and GPCho lipid removal 

efficiency for these analytical methods confirms that GPCho lipids were a major 

contributor to the matrix interferences. 

 Compared to the other techniques, the analyte samples prepared for UPLC 

analysis contained the largest amount of endogenous components. Even with this high 

endogenous content, the MS responses for A1, A2, B1 and B2 were within 10% of those 

for samples prepared with neat solvent, and B3, which was highly susceptible to matrix 

effects because it has a hydrophobic nature that is similar to the endogenous 

interferences, was within 20%. These results suggest that separation of the GPCho lipids 

from target analytes will significantly reduce the effects of plasma endogenous 
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interferences. Because the selected analytes had substantially different properties, they 

might be useful representatives for general drug candidates, for which assay methods 

could be developed by studies similar to those described here.  

4.2.5 Conclusions 

 Practical approaches for identifying, monitoring and eliminating matrix 

interferences in biological sample assays were investigated by using three analytical 

techniques: classical LLE, novel HTLC online extraction, and UPLC analysis. The large 

MS signals detected for control plasma samples were verified to be GPCho lipids, mainly 

16:0, 18:1, 18:0 LPC and 16:0-18:2 PC lipids. The correlation between the observed 

plasma matrix interferences and the efficiency of removing lipid standards from synthetic 

samples suggested that GPCho lipids were a major source of matrix effect interferences 

that result in plasma sample analysis variations. A dramatic improvement in 

quantification reproducibility was demonstrated when these lipids were separated from 

analytes. Detailed studies of the analyte ionization suppression mechanism, which was 

responsible for the observed matrix interferences, are described in the next chapter. 
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CHAPTER 5 

ELUCIDATION OF ANALYTE IONIZATION SUPPRESSION EFFECTS 

 

5.1 Theory and Simulation 

5.1.1 A Brief Review of the Electrospray Ionization Process 

 Electrospray ionization (ESI) is a technique for creating gas phase ions from 

solution species. The combination of an ESI source with mass spectrometric detection is 

known as electrospray mass spectrometry (ES-MS) [1]. Because analyte molecules 

interact strongly with solvent molecules in solution, the energy required to extract analyte 

ions from the liquid to gas phase is larger than that required to break a C-C bond. 

Compared to other ionization methods, such as fast atom bombardment and plasma 

desorption [2-7], ESI is a softer technique because the degree of fragmentation during the 

ion generation process is minimal. Since the introduction of ES-MS in 1984 [8], the 

technique has revolutionized the field of bioanalytical mass spectrometry. 

 The process of generating gas phase ions by using ESI involves three stages: 

production of a stream of charged droplets at the solution emitter where a high voltage is 

applied; formation of sub-droplets through solvent evaporation and Coulomb fission; 

creation of gas phase ions from the very small and highly charged sub-droplets. 

Typically, samples are introduced into the ESI source through a metal capillary held at a 

high voltage (3 - 6 kV).  A planar counter electrode is located a short distance from the 

capillary. The high electric field between the capillary tip and the counter electrode 

causes electrolytes in the solution to undergo electrophoretic movement to counteract the 

imposed electric field. In the positive ionization mode (the capillary is the positive 



 147

electrode), positive ions migrate away from the capillary tip and concentrate at the liquid 

surface whereas negative ions are driven in the opposite direction. Positive ion repulsion 

and the attractive force due to the electric field are counterbalanced by the surface tension 

of the liquid. At sufficiently high voltage, the liquid at capillary tip is expanded into a 

dynamic cone (Taylor cone) [9]. The least stable point at the tip of the cone elongates 

into a filament, which breaks apart into positively charged droplets [10-16]. The net 

charge results from an excess of positive ions relative to negative ions at the cone surface. 

As charged droplets are emitted from the tip, they become relatively stable because the 

charges are dispersed on a larger surface area through the fission. Due to solvent 

evaporation, these charged droplets shrink. At certain shrinkage, the next fission occurs. 

The electric field (E) at the capillary tip can be represented by: 
)/4ln(

2
cc

c
c

rdr
VE =   [10] 

and the electric field required for the formation of a charged jet is: 2/1

0

)49cos2(
c

on
r

E
ε

γ °
≈  

[11]. The rate at which charges leave the tip in the form of charged droplets is equal to 

the current at the electrospray capillary.  Based on theoretical equations [10], a modified 

form for the capillary current is expressed as: σνκ c
v

f
n EHI =  [15,16]. Based on 

experimental measurements of current, droplet size, and charge, an empirical equation for 

current has also been proposed: 2/1

0

)(
ε
εγκν ffI ≈ . The radius (R) and charge (q) of the 

initially formed droplets are expressed as: 3/1)/( κεν fR ≈  and 2/13
0 )](8[7.0 Rq γεπ≈  

[14]. In the above equations, Vc: applied voltage, rc: radius of the capillary, d: distance 

from capillary tip to counter electrode, ε and ε0: permittivity of solvent and vacuum, γ: 

surface tension of the solution, cos 49°: half-angle of the Taylor cone, H: surface tension 
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and dielectric related constant, κ: conductivity of solution, vf : flow rate,  f: constant, 

exponents in the equation (n, v, and σ): small numbers (~ 0.5) associated with 

experimental conditions. 

 To compensate for the continuous loss of ions of one polarity and to complete the 

electrical circuit for charge flow, an electrochemical reaction must take place. The ESI 

process can therefore be described as a special electrolytic flow cell where part of the 

electrical circuit involves an oxidation reaction at the positive electrode (capillary tip) and 

occurs in the gas phase [17-22]. Evidence for the occurrence of electrochemical reactions 

has been provided by several experiments in which metal ions released from the capillary 

were detected in solution [19]; oxidation reaction sequence was found to be affected by 

the addition of electrolytes with different redox potentials [23-25]; and analyte 

electrolysis was found to change when the metal capillary was replaced with a fused 

silica capillary [26]. Although the solution sprayed from the capillary tip is an 

electrolytically altered solution, in many cases, the discrepancy between gas phase ion 

intensity observed in a mass spectrum and the solution concentration for the same ion has 

been attributed to the droplet formation process occurred in the gas phase [27-30]. 

 After being formed at the capillary tip, charged droplets shrink in size due to 

solvent evaporation assisted by heated air whereas the amount of charge on each drop 

remains constant [31-33]. The charge is expected to remain at the droplet surface because 

the transmission of charge from solution to the gas phase is a highly endoergic process 

and repulsion between like charges causes them to achieve maximum dispersion. A 

decrease in the droplet radius with the charge remaining constant leads to an increase in 

electrostatic repulsion between like charges. When this repulsion force is equal to the 
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droplet cohesive force derived from surface tension, the Rayleigh stability limit is 

reached 2/13
0 )(8 RqR γεπ=  [34]. To relieve the stress caused by continuous shrinkage, 

droplets undergo fragmentation (Coulomb fission) and smaller offspring droplets are 

created. Upon reaching the Rayleigh limit, parent droplets distort from a spherical to a 

raindrop shape and a stream of much smaller droplets is emitted from the small end of 

parent droplets [33]. The process of producing generations of droplets through 

evaporative shrinkage and Coulomb fission continues until the droplets are very small. 

Coulomb fission in a charged droplet is uneven; the relative mass loss of the parent 

droplet is much smaller than its relative charge loss [16,33,35-36]. The time required for 

emission of offspring droplets is short comparing to the parent droplet solvent 

evaporation process. The duration for rapid reduction of droplet size and charge is in the 

range of hundreds of microseconds [16,33,35-36]. 

 Two principle mechanisms have been proposed to explain the formation of gas 

phase ions from the small and highly charged offspring droplets. The charge residue 

model (CRM) suggests that jet fission of droplets continues to a point where extremely 

small offspring droplets, which contain only one ion, are formed and solvent evaporation 

from such ions produces gas phase ions [37-40]. The other mechanism, known as the ion 

evaporation model (IEM), predicts that when solvent evaporation and Coulomb fission 

have reduced the size of the charged droplets to a suitable radius R (10 - 20 nm), solvated 

ions are directly emitted to the gas phase [41-44]. Because the required charge for ion 

evaporation is lower than for Coulomb fission, ion evaporation replaces Coulomb fission 

as a means of overcoming repulsion between charged ions. The threshold for ion 

evaporation depends on opposing electrostatic forces, the repulsion between the escaping 
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ion and the remaining charges on the droplet, and attraction caused by similar 

polarizabilities. The rate constant (kI) for ion evaporation has been proposed to be: 

kTGB
I e

h
Tk

k /≠∆−=  , where kB: Boltzmann's constant, h: Planck's constant, T: temperature 

of the droplet, and ∆G≠: the energy difference of defined transition and initial state [41].   

 Various attempts have been made to examine the way by which gas phase ions are 

formed in light of these different mechanisms [45-52]. From the results of cationized 

polyethylene glycols, Fenn et al concluded that evaporation of molecules with linear 

dimensions significantly larger than the resided droplets was through CRM [47,48]. With 

a different approach, in which the difficulty of direct measuring the radius and charge of 

very small droplets was avoided, the size and charge of solid residues formed after the 

last solvent evaporation were determined by Fernandez de la More. The charge 

determined by this experiment was lower than that required for the Rayleigh stability 

limit. These results were considered as evidence that small ions are formed by IEM [49]. 

Using a further developed methodology, the maximum charge state on several globular 

proteins were investigated by the same researcher and the conclusion that CRM was 

applicable to molecules with mass at least 3300 Da was drawn [50]. Contrary to these 

results, a recently reported phenomenon provides evidence that multiply charged small 

organic ions might be formed by CRM.  These results were obtained by investigating the 

extent of dendrimer charging from solutions with different compositions [51]. The debate 

about the mechanism of ion transition from droplets to the gas phase in ESI will probably 

continue even though it is widely believed that IEM is more likely responsible for the 

formation of small organic ions and CRM is probably for the formation of macro ions.  
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 It is generally agreed that the initially formed gas phase ions are highly solvated 

regardless of the formation mechanism [53-58]. Instead of generating a naked ion (M+), 

ESI produces ions surrounded by a solvent shell, M+(sol)n. These solvent molecules can 

be removed by heating or collision induced dissociation in the ion source [53,54]. As the 

ions proceed to the mass analyzer region, gas phase modification reactions, such as 

proton transfer and rearrangements, may occur. Because the gas phase environment 

differs from that of a liquid phase, the ions can be altered and this modification also 

affects the signal intensity of gas phase ions. For example, the basicity order of 

compounds in solution differs from that in the gas phase [59-62], thus, a competition for 

gas phase protons among analyte ions and electrolytes results in proton transfer from a 

weak gas phase base to a stronger base. Therefore, higher gas phase basicity analytes 

would be expected to suppress the MS response for a co-analyte having a lower gas phase 

basicity [59,62]. The investigation of gas phase modification reactions, which involve 

both solution and the gas phase studies, has attracted the interest of many researchers in 

order to elucidate ionization mechanisms. 

5.1.2 Existing Models for Predicting Analyte ESI MS Response 

 Despite the desire to determine the correlation between the ESI MS response of 

an analyte and its concentration in solution, the dependence of the detected analyte ion 

intensity on its concentration is still not very clear. The gas phase ion signal intensity is 

not directly proportional to solution concentration. It depends on the chemical nature of 

the analyte, the presence of other electrolytes, and the ionization environment. Therefore, 

it is difficult to quantitatively predict the effects of solvent and electrolyte on the signal 

intensity of an analyte in an ESI mass spectrum. The model for describing the 
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relationship between analyte concentration and MS signal intensity was initially proposed 

by Kebarle and Tang [16,44]. Here, ion evaporation was decided as the principle factor 

affecting the ability of an analyte to form gas phase ions. When a droplet is produced 

from a solution containing two components, A+X- and B+Y-, both A+ and B+ ions are the 

excess positive ions that constitute the charges of the droplet. Ion A+ competes with B+ 

for the excess charges on the droplet surface. Depending on the competition mechanism, 

a quantitative equation for predicting analyte MS response was suggested. Because the 

reagents used contain electrolyte impurities, a solution containing a dissolved analyte is 

actually a two components system, analyte (A) and electrolyte impurities (E).  

I
kCkC

kCpfI
EEAA

AA
A

+
=+                                                             (I-1) 

For a solution with two analytes, A and B, 

I
kCkCkC

kCpfI
EEBBAA

AA
A

++
=+                                             (I-2) 

The coefficient k, which represents the efficiency of transferring ions to gas phase, is 

expected to depend on the ion formation mechanism. If the IEM mechanism is 

responsible for ionization, the coefficient will depend on the ion’s surface activity and the 

evaporation rate. If the CRM model is more appropriate, the surface activity constant 

alone will determine the coefficients. In the above equations, IA+ is the measured ion 

current; CA, CB and CE are the molar concentrations of analytes and electrolytes in 

solution; I is the total electrospray current at the metal capillary; f is the fraction of 

charged ions on the droplets that are converted to gas phase ions; and p is a constant 

corresponding to the sampling efficiency of the mass spectrometer for detecting gas 

phase ions. Both p and f depend on the instrumental operating conditions.  



 153

 According to these equations, the MS response ratio for equal concentration of 

analytes A and B should equal the ratio of their coefficients (kA/kB) and this ratio should 

be constant if their concentrations are increased by the same amount. 

   
BB
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I
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+

+  ,      when CA = CB ,        
B
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k
k

I
I
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+                                  (I-3) 

Experimentally measured MS responses for such solutions do not fit equation I-3 over a 

wide concentration range [44]. A good fit with a constant kA/kB was observed only for CA 

= CB > 10-5 M. At low concentrations (CA = CB < 10-5 M), the measured response 

deviated from the predicted response curve; the response ratio IA+/IB+ gradually decreased 

to close to unity. This variable ratio was attributed to a depletion phenomenon. According 

to the ion evaporation model, the sources of gas phase ions were charged ions at the 

droplet surface and the charge balance ions in the droplet interior. Ions evaporated from 

the surface were replaced by those from the droplet interior. When the analyte 

concentration is low, the droplet charges are mainly due to impurity electrolyte ions, and 

almost all analyte ions are at the droplet surface due to their larger coefficients. Thus, the 

analyte concentration in the droplet interior is much smaller than the initial concentration. 

The low analyte concentration and its high surface activity result in a concentration 

difference between the droplet surface and solution. Therefore, the analyte ion intensity 

no longer depends on the coefficient, and instead becomes mass dependent. When the 

available amounts of two analytes are equal, the ion intensity ratio is unity. However, the 

effects of analyte surface activity, which lead to the concentration depletion, were not 

included in the above equations. The response for analytes at low concentration, which is 

the most useful region for quantitative analysis, still cannot be predicted. 
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 Subsequently, an equilibration model was proposed to predict analyte MS 

responses by taking into account the mass balance between the charged surface and 

neutral interior of the ESI droplet [63-67]. This model defines the surface and interior of 

a droplet as two distinct phases and ions partition between these two phases to establish 

equilibrium. It is assumed that there is a fixed amount of excess charges at the surface of 

the droplet. Once an ESI droplet is formed, the partition equilibrium is quickly 

established and the concentration of excess charge remains relatively constant throughout 

the evaporation process. The MS response of an analyte is proportional to the number of 

excess charge carrying ions on the surface. For a solution with a single analyte (A) 

dissolved in electrolyte (E), cations of A+ and E+ rapidly partition between the surface 

and interior phases and reach an equilibrium state.  

(A+X-)i  (A+)s + (X-)i         (E+X-)i  (E+)s + (X-)i                        (II-1) 

The corresponding equilibrium constants are expressed as:  

KA = [A+]s [X-]i / [A+X-]i     KE = [E+]s [X-]i / [E+X-]i                   (II-2) 

Where X- represents the counter ions, and subscripts s and i represent surface and interior 

phases. The initial analyte concentration equals the sum of the surface and interior phase 

concentrations.  

CA =  [A+]s + [A+X-]i    CE =  [E+]s + [E+X-]i                         (II-3) 

A significant advance in the equilibrium model was the introduction of the equivalence of 

excess charge concentration [Q]. Because production of excess charge is directly 

proportional to the ion spray current, the production rate can be expressed as excess 

charge concentration.  

[Q] = I/ Fν                                                                              (II-4) 
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Where I is the electrospray current (C/s); F is the Faraday constant (C/mol); and ν is the 

flow rate (L/s). The excess charge is composed of all charged ions on the droplet surface. 

For a single analyte solution, excess charge concentration is the sum of the surface 

concentrations for A+ and E+. 

[Q] = [A+]s + [E+]s                                                                  (II-5) 

Therefore, 
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By substituting the mass balance and charge balance equations, the analyte surface 

concentration [A+]s can be calculated from CA , CE , KA/KE and [Q] in a quadratic 

equation. For a two analyte solution, sss EBAQ ][][][][ +++ ++= , a cubic equation for 

[A+]s can be deduced using CA, CB, CE,  KA, KB, KE  and [Q]. These quadratic and cubic 

equations can be fit to the experimental MS response curves published by Kebarle and 

Tang [44] by using simulated parameters [63].  

 An experimental result that was in contrast to the equilibrium model prediction 

was the effect of electrolyte concentration on the analyte MS response [64].  In this 

experiment, the concentration of analyte (tetrapentylammonium, TPA) ranged from 10-9 

to 10-3 M and that for the electrolyte (NaCl) varied from 10-3 to 10-6 M. The MS 

responses (RTPA) for a series of CTPA solutions at various CNaCl levels were measured. The 

author predicted that the analyte response should decrease as CNaCl concentration 

increased based on the quadratic equation. However, the experimental results did not 

follow this prediction. The RTPA increased with increasing CNaCl when CNaCl < 10-4 M and 

decreased at CNaCl = 10-3 M. The discrepancy between the measured and predicted 

responses was explained as disproportional distribution of excess charge in the interior of 
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droplet. Instead of having all excess charges at the droplet surface, as the model assumed, 

some of the excess charge was thought to be in the droplet interior. The fraction of 

surface excess charges was related to the ionic strength of the solvent. A higher ionic 

strength solvent (high salt concentration) contained a higher fraction of excess charge at 

the surface and thus, higher analyte MS responses were observed. The simulated 

experimental results are shown in Figure 5-1. Similar observations for the measured 

response have been reported by other researchers [29,68].   

Figure 5-1. Simulated results for the effects of CNaCl on TPA MS response 
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 These explanations for the results are not persuasive because the equilibrium 

model is based on the assumption of charge balance. If some of the excess charges are 

carried by ions in the droplet interior, the charge balance equation would have to be 

modified to be: [Q] = [A+]s + [A+]i + [E+]s + [E+]i. This modification will change all the 

relevant equations.  

5.1.3 Improved Model for Explaining Analyte MS Response 

 The purpose of the research in this section is to modify some of the concepts 

defined in the equilibration model and to derive improved linear equations for 

quantitative prediction of analyte surface concentrations. The derived equations are then 

used to explain measured analyte MS responses under typical ESI conditions. If the 

equations fit experimental results over a wide concentration range with constant 

coefficients, it may be concluded that the proposed approach is valid for quantitatively 

predicting analyte ESI responses. In the experiments, the mutual interactions of analytes, 

buffers, and GPCho lipids during ESI process were investigated. No such research has 

been conducted previously. The B1, B2 and B3 basic compounds were selected to 

represent single protonated analytes. The A1 and A2 acidic compounds were not 

examined due to their formation of sodium adducts, which complicates the ESI process 

model. 16:0 LPC, which was identified in the previous chapter as one of the major 

sources of bioanalysis matrix effects, was used to characterize the effects of GPCho lipid 

on analyte ionization. These works shed a new light on understanding the problem of ion 

suppression effects in biological sample analysis. 

 According to the equilibration model, the major factor determined the analyte MS 

response was analyte surface concentration, which depended on the analyte charge 
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balance process and its partitioning process between the droplet surface and interior 

phases (eq. II-2). However, the process by which counter ions (X-)i  balance the analyte 

charge in the droplet interior should be distinguished from the partitioning of the analyte 

ions between the two phases. The preference of a given ion distributing between these 

two phases primarily depends on its surface affinity. The chemical properties of an 

analyte ion, such as: solvation energy, hydrophobicity, and charge density as well as the 

nature of the solvent determine the surface affinity. The partition equilibrium process is 

analogous to liquid-liquid extraction, where partitioning depends on the molecule's 

intrinsic chemical potential, which includes entropy and solvent interactions. In addition, 

because the partition equilibrium constant represents the degree to which a given ion 

prefers for the two phases, it is reasonable to express the equilibrium coefficient as the 

concentration ratio of surface ions to interior ions. The total ion concentration in the two 

phases equals the initial analyte concentration. The excess charges are carried by ions at 

the droplet surface. Based on these considerations, an improved equation for analyte 

surface concentration is proposed. 

For a single analyte (A) solution with electrolyte (E),  

(A+)i  (A+)s                          (E+)i  (E+)s                                           (III-1) 

CA =  [A+]s + [A+]i                 CE =  [E+]s + [E+]i                    (III-2) 

[Q] = [A+]s + [E+]s                                                                  (III-3) 
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For a solution containing two equally concentrated analytes, A and B,  
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 In the improved equations (III-5 and III-6), element [E+]s is used in order to obtain 

a linear equation. The surface analyte ion concentration is calculated using CA, CE, 

KA/KE, and [E+]s. Because ion concentration on droplet surface is calculated using the 

ratio of coefficients (KA/KE), the equations derived from the equilibrium model are not 

affected by the involving of charge balance process (eq. II-6 is same as III-5).  

 The MS response (R) of an analyte can be expressed as ion intensity, which is the 

rate of ions arriving at the detector (counts per second) and is directly proportional to the 

ion species surface concentration.   

RA = [A+]s Fν p f                                                                     (III-7) 

Where F is Faraday's constant (C/mol); ν is flow rate (L/s); and f and p have the same 

definitions as in equation I-2:  efficiency of converting ions carrying excess charge from 

droplet surface to the gas phase, and efficiency of the mass spectrometer to measure these 

gas phase ions. 

5.1.4 Simulated Analyte MS Response by using Improved Model 

 To verify the effectiveness of improved equations, simulated analyte MS response 

curves calculated by using equations III-5 and III-6 are shown in Figures 5-2 and 5-3, 

respectively. Simulation is based on the following assumptions: the amount of excess 
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charge remains relatively constant; ions on the surface are responsible for the excess 

charge; and the ion partition coefficient determines their probability of residing on the 

droplet surface. In practice, ion current increases very slowly with increasing analyte 

concentration ( σνκ c
v

f
n EHI = , i

i
m C∑= 0λκ ). It has been reported that a 50-fold 

increase in concentration results in about 2-fold enhancement in ion current [44,69]. 

Because increased analyte concentration leads to only a slight [Q] enrichment, it can be 

assumed that [Q] is relatively constant for MS response predictions.   

 For a single analyte solution (Fig. 5-2), the concentration of background 

electrolytes (CE), which was due to solvent impurities, was set at 10-5 M based on 

reference data [44]. When analyte concentration CA is lower than electrolyte 

concentration, 10-10 - 10-6 M, the [Q] should be comprised mainly of surface electrolyte 

ions [E+]s.  The [E+]s was assumed to be 10% of the solution phase concentration. Because 

[Q] remains constant, the ratio of CE / [E+]s is relatively invariable. The analyte surface 

concentration, [A+]s, is proportional to CA regardless of the value of KA/KE.  When CA is 

similar to CE at 10-6 - 10-4 M, analyte ions compete with electrolyte ions as excess charge 

carriers. Due to the consistency of excess charge, [E+]s  decreases with increasing CA. The 

more surface affinity an ion possesses, the more powerful that ion is in competing for the 

excess charge. Therefore, as the coefficients ratio (KA/KE) becomes larger, [E+]s  is 

expected to decrease rapidly when CA increases. As a result of the increasing ratio CE 

/[E+]s, [A+]s deviates from being linearly proportional to CA.  Depending on the ratio of 

KA/KE, the deviation will occur to differing degrees: the larger the KA/KE value, the 

larger the deviation. Ultimately, when analyte ions carry almost all of the excess charges, 

[Q] ≈ [A+]s , saturation will occur.  
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Figure 5-2. Simulated relationship between [A+]s and CA for single analyte with different 
partition coefficients relative to background electrolytes 
 

 
 

Single analyte with different KA/KE 

-13

-12

-11

-10

-9

-8

-7

-6

-5

-11 -10 -9 -8 -7 -6 -5 -4 -3
Log CA

Lo
g 

[A
+ ]s KA/KE=0.1

KA/KE=1
KA/KE=10

 
 

CA Log CA CE KA/KE [E+]S [A+]S  [Q] Log [A+]S 

1.0E-04 -4 1.0E-05 0.1 6.0E-07 6.3E-07 1.2E-06 -6.20 
1.0E-05 -5 1.0E-05 0.1 1.0E-06 1.1E-07 1.1E-06 -6.96 
1.0E-06 -6 1.0E-05 0.1 1.0E-06 1.1E-08 1.0E-06 -7.96 
1.0E-07 -7 1.0E-05 0.1 1.0E-06 1.1E-09 1.0E-06 -8.96 
1.0E-08 -8 1.0E-05 0.1 1.0E-06 1.1E-10 1.0E-06 -9.96 
1.0E-09 -9 1.0E-05 0.1 1.0E-06 1.1E-11 1.0E-06 -10.96 
1.0E-10 -10 1.0E-05 0.1 1.0E-06 1.1E-12 1.0E-06 -11.96 

        
1.0E-04 -4 1.0E-05 1 1.1E-07 1.1E-06 1.2E-06 -5.96 
1.0E-05 -5 1.0E-05 1 5.5E-07 5.5E-07 1.1E-06 -6.26 
1.0E-06 -6 1.0E-05 1 1.0E-06 1.0E-07 1.1E-06 -7.00 
1.0E-07 -7 1.0E-05 1 1.0E-06 1.0E-08 1.0E-06 -8.00 
1.0E-08 -8 1.0E-05 1 1.0E-06 1.0E-09 1.0E-06 -9.00 
1.0E-09 -9 1.0E-05 1 1.0E-06 1.0E-10 1.0E-06 -10.00 
1.0E-10 -10 1.0E-05 1 1.0E-06 1.0E-11 1.0E-06 -11.00 

        
1.0E-04 -4 1.0E-05 10 1.2E-08 1.2E-06 1.2E-06 -5.93 
1.0E-05 -5 1.0E-05 10 1.1E-07 1.0E-06 1.1E-06 -6.00 
1.0E-06 -6 1.0E-05 10 6.5E-07 4.1E-07 1.1E-06 -6.39 
1.0E-07 -7 1.0E-05 10 1.0E-06 5.3E-08 1.1E-06 -7.28 
1.0E-08 -8 1.0E-05 10 1.0E-06 5.3E-09 1.0E-06 -8.28 
1.0E-09 -9 1.0E-05 10 1.0E-06 5.3E-10 1.0E-06 -9.28 
1.0E-10 -10 1.0E-05 10 1.0E-06 5.3E-11 1.0E-06 -10.28 

sEEA

EA
As ECKK

KKLogLogCALog
][1

][ +
+

+−
+=



 162

Figure 5-3. Simulated analyte surface concentration as a function of solution 
concentration for two analytes (A and B) at equal concentrations 
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1.0E-06 -6 1.0E-05 6.0E-07 6.0E-08 3.9E-07 1.05E-06 -7.22 -6.41 
1.0E-07 -7 1.0E-05 1.0E-06 1.0E-08 5.3E-08 1.06E-06 -8.00 -7.28 
1.0E-08 -8 1.0E-05 1.0E-06 1.0E-09 5.3E-09 1.01E-06 -9.00 -8.28 
1.0E-09 -9 1.0E-05 1.0E-06 1.0E-10 5.3E-10 1.00E-06 -10.00 -9.28 
1.0E-10 -10 1.0E-05 1.0E-06 1.0E-11 5.3E-11 1.00E-06 -11.00 -10.28 

 
 

 

 

  

 

]])[1/([]])[1/([][][ sEAEsEBE
B

A
ss EKKCLogEKKCLog

K
KLogBLogALog ++++ −+−−++=−



 163

 For a solution containing two equal concentration analytes (Fig. 5-3), when 

analyte concentrations are low, CA = CB < 10-6 M, CE and [E+]s are relatively constant, as 

in the single analyte system. The analyte MS responses depend on their partition 

coefficients. Since KA, KB and KE are constant, the [A+]s /[B+]s ratio is constant at low 

concentrations. When analyte concentration is similar or greater than that of the 

electrolyte, [E+]s decreases due to competition for excess charge from the analytes. Both 

[A+]s and [B+]s are no longer proportional to their solution phase concentrations due to the 

rising CE /[E+]s ratio. When analyte concentration increases to a certain level, at which the 

surface excess charge is nearly completely carried by [A+]s  and [B+]s, [E+]s becomes very 

small.  Consequently, the ( sEAE EKKC ])[1( +−+ ) and ( sEBE EKKC ])[1( +−+ ) terms 

are approximately equal to CE, and the response ratio for the analytes [A+]s /[B+]s 

approaches the ratio of their coefficients (KA/KB).  

 The simulated MS response curves calculated by using linear equations III-5 and 

III-6 over a wide analyte concentration range are comparable with those generated by 

using the quadratic and cubic equations from the equilibration model. However, with the 

simple linear equations, the analyte MS response can be predicted without complicated 

mathematical calculations. When a solution contains more than one analyte, the 

advantages of using the simplified equations will be more obvious. Because the improved 

equations are easier to use and prove to be reliable for simulation results, they were 

utilized to model measured experimental data.  

 

5.2 Discussion 

5.2.1 MS Response for a Single Analyte in HPLC Compatible Solvent 
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 The effects of partition coefficient on analyte MS response were examined by 

using a single analyte solution. The MS responses for analytes B1, B2, B3 and 16:0 LPC 

dissolved in 50:50 ACN:H2O were separately measured (Fig. 5-4). The concentration 

range was from 1.0 x 10-9 to 1.0 x 10-5 M for B1, B2 and B3 and from 5.0 x 10-9 to 1.0 x 

10-5 M for 16:0 LPC. A higher concentration range was not examined because the lower 

concentration range is used for quantitative analysis by mass spectrometry. A 

concentration below 1.0 x 10-9 M cannot be employed because the analyte signal intensity 

was not substantial higher than the background noise. The MS response signal was 

measured as the ion intensity with units of counts per second (cps). The results indicated 

that all examined analytes exhibited a linear relationship between MS response intensity 

and solution concentration (CA) when CA < 10-6 M. These results are in agreement with 

the prediction of equation III-5 at low analyte concentration. It was also demonstrated 

that analyte B2 yielded a relatively larger MS response than those for the B1and B3 and 

the ion intensities for B1 and B3 analytes were comparable. These three analytes yielded 

considerably more intense MS responses compared to that for 16:0 LPC. Because ions on 

the droplet surface come from ions in solution, the amount of surface electrolyte [E+]s 

should be less than CE  and the CE /[E+]s ratio should be greater than one. Thus, according 

to equation III-5, an analyte with higher KA and subsequently higher KA/KE will have a 

greater [A+]s, which was observed as a larger MS response. Because the ion intensity in 

the linear response region illustrated the effect of relative partition coefficient KA/KE, the 

MS response results of Figure 5-4 indicated that the relative coefficient for the four 

analytes was: KB2/KE > KB1/KE ≈ KB3/KE  KPC/KE. 
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Figure 5-4. ESI response of single analyte B1, B2, B3 and 16:0 LPC in 50:50 ACN: H2O 
as a function of analyte concentration at three different ion spray voltages 
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 When analyte concentration exceeds 10-6 M, the analyte response curves begin to 

deviate from the linearity. This analyte MS response deviation from concentration is 

called saturation. However, the saturation exhibited in Figure 5-4 was different from that 

shown in Figure 5-2. The deviation in Figure 5-2 was caused by the limited increase in 

[Q]. Because of this limitation, the fraction of analyte contributing to the excess surface 

charge was not proportional to the concentration increase. Under such circumstances, the 

magnitude of the response curve deviation depended on the ratio of KA/KE and the 

leveling off effect was expected to occur at analyte concentrations greater than the 

electrolyte concentration, CA > 10-5 M. However, the non-linear MS response shown in 

Figure 5-4 occurred at relatively low concentration (CA < 10-5 M) and was independent of 

the KA/KE ratio. It was suspected that this deviation was the result of saturation caused by 

the mass spectrometer detector. As indicated by equation III-7, the MS response was 

proportional to the efficiency of the instrument measuring these gas phase ions (f). When 

the amount of a given ion is beyond the measuring capability of the detector, the detected 

amount for that ion reaches a constant value even though the gas phase ion concentration 

increased.  

 The effects of ion spray voltage on analyte MS response was evaluated at three 

voltages: 5000, 4000, and 3000 V. The ion intensities of all the analytes increased with 

increasing ion spray voltage, and the slopes of the response curves appeared to be 

unrelated to voltage. These results are consistent with the quantitative prediction for 

[A+]s. Because [Q] is proportional to ion spray voltage, a larger [Q] increases the fraction 

of charged analyte. Moreover, as ion spray voltage decreases, the detector saturation 

occurs at a higher concentration due to decreased ion intensity.  



 167

 Because of the mass spectrometer detector saturation, the approach for 

determining analyte coefficient ratio by measuring response curves for two analytes with 

equal concentration was not successful. The MS response curves for simultaneously 

determined analytes B2 and B3 exhibited saturation when CB2 = CB3 > 10-5 M. The 

expected result that the ion intensity ratio of B2 to B3 reaches a constant (KB2/KB3) at 

high concentration cannot be verified due to detector saturation. The representative 

coefficient ratios for the four analytes were therefore not been obtained.  

5.2.2 Effects of Mass Spectrometer Compatible Buffers on Analyte Ionization 

 The MS responses for B1, B2, B3 and 16:0 LPC analytes dissolved in 50:50 

ACN:H2O containing mass spectrometer compatible buffers are shown in Figures 5-5 to 

5-8, respectively. With analyte concentration fixed at 10-7 M, three buffers: ammonium 

acetate (AA), formic acid (FA), and ammonium hydroxide (AH) were separately 

employed with concentrations varied from 0 M, 10-7 M to 10-2 M. Before discussing the 

results, it is useful to introduce several measured partition coefficients (Table 1 in Ref. 

44). Assuming the value of coefficient Cs+ = 1, coefficients for several analytes were 

deduced by using equation I-3 (IA+/ICs+ = kA/kCs). Although the meaning of k is different 

from that defined for the partition equilibrium model (eq. III-4), a k value determined 

from the MS response ratio for two equally concentrated analytes is still valid. The 

determined k values for Na+, K+ and NH4
+ were 1.6, 1.0 and 1.3, respectively. Codeine, 

heroin and cocaine had relatively higher k values than those of the inorganic ions with 

values of 3.8, 5.5 and 8.3, respectively. These reported coefficients suggest that the 

partition coefficients for buffer ions might be smaller than the coefficients for measured 

analytes and probably even smaller than for background electrolytes.  
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Figure 5-5. Effects of ammonium acetate concentration on ESI response of single analyte 
B1, B2 and B3 at three different ion spray voltages 
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Figure 5-6. Effects of formic acid concentration on ESI response of single analyte B1, B2 
and B3 at three different ion spray voltages 
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Figure 5-7. Effects of ammonium hydroxide concentration on ESI response of single 
analyte B1, B2 and B3 at three different ion spray voltages 
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Figure 5-8. Effects of buffer concentration on ESI response of analyte 16:0 LPC at three 
different ion spray voltages 
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 The effects of buffer concentration, pH value and buffer type on analyte MS 

response were discussed by using the results obtained with a 4000 V ion spray voltage. 

When the buffers were added to the analyte solutions, MS responses of all analytes 

remained relatively constant for buffer concentrations CBuf ≤ 10-6 M. There was no 

significant difference among tested buffers. These observations indicated that these mass 

spectrometer compatible buffers should have comparable small partition coefficients. For 

a low buffer concentration, the main factor determining the analyte MS response should 

be the partition coefficient of buffer. If the buffer possesses a KBuf close to or less than 

the background electrolyte KE value, the competitive impact of the buffer on [A+]s should 

not be substantial because the concentration of buffer is lower than that of background 

electrolyte and [E]s is the primary carriers for excess charge. The surface concentration of 

the analyte can still be expressed as: 
sEEA

EAA
s ECKK

KKCA
][1

][ +

•+

+−
= . When the analyte 

concentration (CA) remains constant, the MS response is relatively invariable.  

 It is shown in the plots that further increases in CBuf led to an analyte MS signal 

increase, followed by a signal decrease at CBuf > 10-3 M. When buffer concentration is 

comparable to background electrolyte concentration (10-6 < CBuf  < 10-4 M), buffer ions 

compete with analyte and electrolyte for excess charge on the droplet surface. If the 

buffer was treated as a portion of the background electrolytes, the corresponding partition 

coefficient, called KM, would be a mixed function of KE and KBuf 

(
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+

= ). Analyte surface concentration in this region was thus 

expressed as: 
sMMA

MAA
s MCKK

KKC
A

][1
][ +
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+−
= . Because KBuf was most likely to be 
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smaller than KE, KM should also be smaller than KE. As CBuf increased, the contribution 

of KBuf to KM was greater, and consequently KM became smaller. The order of coefficient 

ratios for a solution containing 10-4, 10-6  and 0 M buffer were: KA/KM(-4) > KA/KM(-6) > 

KA/KE. Therefore, [A+]s increased with increasing buffer concentration when CBuf ≈ CE. 

The partition process under these conditions might also be described as: buffer ions 

competed for excess droplet surface charge with background electrolytes when their 

concentrations were comparable. Because KBuf was smaller than KE, buffer ions were 

weaker than background electrolyte ions for keeping excess charges. Therefore, analyte 

ions were able to replace surface buffer ions relatively easily when partition equilibrium 

was established. Because the addition of buffer reduced the capability of the electrolyte to 

carry the excess charge, the MS response for analytes increased with increasing buffer 

concentration.   

 When the buffer concentration was much greater than the background electrolyte 

concentration (CBuf > 10-4 M), the [Q] was mainly carried by surface buffer ions [Buf+]s. 

KM was determined primarily by KBuf and the effects of KE was not important. The 

analyte surface concentration was changed to: 
sBufBufA

BufAA
s BufCKK

KKC
A

][1
][ +

•+

+−
= . 

Because available excess charge was limited, the [Buf+]s could not increase 

proportionally with the increasing CBuf. The deviation from sBuf BufC ][ +  became more 

and more significant and turned out to be a principal factor that dominated the analyte 

MS response. As a result of buffer saturation, analyte surface concentration decreased 

with increasing buffer concentration. With the improved linear equation, the effects of 

adding buffer on analyte MS responses, which could not be explained by the partition 
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equilibrium model, were clarified by using constant partition coefficients over a wide 

concentration range.  

 In addition, a non-linear fitting was conducted for FA buffer effects on 16:0 LPC 

MS responses. Because CE = [E+]s + [E+]i                KE = [E+]s / [E+]i        

 thus,  
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Since [M +]s = [E+]s + [Buf +]s ,  CM = CE + CBuf   and RA = [A+]s Fν p f   

Thus, the equation for surface analyte concentration 
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Because CBuf is the only variable in the above equation and all the other parameters 

including CA, CE, KA, KE, KBuf, F, ν,  p,  f  and RA are constants, the measured data were 

simulated by using this equation with a non-linear fitting software KyPlot. The fitted 

curve and the measured data for FA buffer at 5000 V are shown in Figure 5-9. The 

simulated parameters were CA•(Fνpf ) = 9900, CE = 2.2 x 10-5, KA = 0.56, KE = 3.39, and 

KBuf  = 3.75. For the five fitted parameters, CA•(Fνpf ) are difficult to evaluate due to the 

lack of efficiency parameters p and f information. CE, KE and KBuf are reasonably 

compatible with the reported data [44] and KA is lower than the predicted coefficient. 

Considering the fact that seven measured points were simulated by five parameters, these 

results are logically acceptable. 

 

Figure 5-9. Simulated effects of FA concentration on ESI response of analyte 16:0 LPC  
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 Comparing the signal intensity plots for formic acid and ammonium hydroxide 

(Fig. 5-6 and 5-7), differences due to buffer type could be distinguished. The pH 

difference for these two buffers was about 7 units. Such a pH variation can substantially 

change the acid-base equilibrium of analytes in solution, but the observed MS responses 

appeared to be independent on the degree of analyte protonation in solution. The 

production of equally intense protonated analytes ions in acidic and basic solutions 

indicated that it is the nature of the analyte and the ESI process, not the solution phase 

equilibrium, that are responsible for analyte MS intensity. These observations are 

analogous with the so-called “wrong-way-around” electrospray where intense protonated 

ions from strongly basic solutions and deprotonated ions from strongly acidic solutions 

are detected. The proposed mechanisms for the “wrong-way-around” observation imply 

that this type of phenomena can be attributed to a transition process during gas phase ions 

formation [28-30]. For example, a possible process for analyte in ammonia solution is 

that the gas phase adults from electrolyte ions ([M+NH4
+]) are initially formed, and that 

these adult ions undergo evaporation and collision induced dissociation (CID) in the 

declustering interface to yield protonated ions. The explanations for “wrong-way-around” 

electrospray observations are consistent with the quantitative theory of partition 

equilibrium for ESI process. As indicated by equation III-5, the analyte surface 

concentration, which is determined by the relative partitioning capability of compounds, 

is independent of solution phase acid-base equilibra. Under the same concentration and 

instrumental conditions, analytes can exhibit comparable MS response in acidic or basic 

solutions provided that the solution phase background electrolytes posses similar partition 

coefficients. 
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 The most distinct difference in the plots was that analytes B1 and B2 exhibit a 

steeper slope in AA than in FA and AH at high buffer concentration whereas analyte B3 

gave comparable MS responses in the three buffers. The ion intensities for analytes B1 

and B2 in 10-2 M AA were near or below their responses in pure solvent, whereas their 

MS responses in 10-2 M FA and AH were higher than those in pure solvent. The similar 

analyte MS responses for solutions with low buffer concentration indicate that the three 

buffers have comparable small KBuf and plots from Figure 5-4 show that the analytes B1, 

B2 and B3 posses comparable KA. These results are confirmed by the similar signal 

increases for mid-range buffer concentrations. Thus, according to the proposed equations 

for [A+]s at high buffer concentrations, analytes should exhibit similar signal decreases in 

the three buffers. To rationalize the lack of correlation between observed and predicted 

MS responses, the ion evaporation process has to be considered. Based on the current 

knowledge of ESI processes, ions escaping from small droplets are not naked ions, but 

solvated ion clusters [53,54]. These cluster ions undergo subsequent evaporation and CID 

to form the mass analyzer detected ions, M+. Employing the IEM model, the generally 

agreed mechanism for production of small ions, the rate of ion evaporation from the 

charged droplet, should certainly have an effect on the analyte signal intensity. The ion 

evaporation rate (kI) depends on the free energy of activation (∆G≠), which is directly 

related with ∆Gsol[M+(sol)n], the free energy released when an ion (M+) surround by n 

solvent molecules is moved from infinity into an uncharged droplet of the same solvent 

[1]. Ions with small desolvation energies, -∆Gsol[M+(sol)n] will have high ion evaporation 

rates, which will increase the ion intensity in the mass spectrum. Due to difficulties in 

obtaining accurate data for the dissolvation energies, particularly for organic ions, 
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quantitative evaluation the role of dissolvation energy in ionization processes and 

comparisons of predicted results with experimental observations are not possible. It was 

speculated that as the concentration of buffer increases, the escaping cluster ions from 

shrinking droplets might be present in a form of: [M+(sol-buf)n]. If the dissolvation 

energy of [M+(sol-buf)n] depends on the type of buffer, the ion evaporation rate for the 

same analyte in different buffer solutions would be different. Therefore, even if the 

analyte has the same surface concentration in different buffer solutions, differences in ion 

evaporation rates will lead to different MS responses. The ion intensity difference for 

analytes B1 and B2 in the AA modified solution compared to the FA and AH modified 

solutions might be explained by using this argument. If the dissolvation energies for 

analytes B1 and B2 in AA were larger than in FA and AH, the ion evaporation rates for 

B1 and B2 from droplets containing AA would be less than those from droplets 

containing FA and AH. Although the surface concentrations of [B1]s and [B2]s were 

comparable in the three buffers, their relative small ion evaporation rates in the AA 

modified solution caused them to produce fewer B1+ and B2+ ions detected by the mass 

spectrometer. The findings from an interesting amino acid protonation study are 

consistent with this speculation. The author concluded that the degree of ion clustering 

was affected by the type of solvent and solvent additives [45]. 

 By comparing the MS responses of the four analytes at ion spray voltages of 5000 

and 4000 V, it was found that the slope increase for the mid-range buffer concentrations 

at 5000 V was less than that at 4000 V, especially for analyte B2. Theoretically, the MS 

response profile for an analyte should not be dependent on the ion voltage except for the 

measuring sensitivity. The major factor influenced by the voltage was the excess charge 
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and [Q] normally had no effect on the fraction of the analyte at the droplet surface. Thus, 

the variations in MS response profiles were attributed to instrumental saturation effects. 

Analyte ion intensity at 5000 V was truncated to the maximum count limit for the mid-

range buffer concentration solutions. The analyte MS responses at 3000 V exhibited a 

relatively small decrease for high buffer concentration solutions. This subtle difference 

may be due in part to a non-linear variation of capillary current with voltage as buffer 

concentration was increased.  

5.2.3 Effects of Co-analytes on Analyte Ionization 

 Signal intensities for analyte ions from solutions containing a co-analyte, which 

was a compound with similar chemical properties or was a representative interference 

from biological samples, were measured. Ion intensity variations for analyte B1 with B2, 

B3 and 16:0 LPC co-analytes, analyte B2 with B1, B3 and 16:0 LPC co-analytes, and 

analyte B3 with B1, B2 and 16:0 LPC co-analytes are shown in Figures 5-10 to 5-12, 

respectively. The analyte concentration was maintained at 10-7 M whereas the co-analyte 

concentration was varied from 0 M, 10-9 to 10-4 M. The plots show a trend that when the 

concentration of the co-analyte exceeds 10-7 M, the analyte MS response decreases, 

regardless of the ion spray voltage setting. The mutual suppression effects between 

compounds B1, B2 and B3 were not substantially different. The extent of intensity 

decrease caused by 16:0 LPC was greater than that caused by these three compounds, 

especially at high concentration.  

 The principles of partition equilibrium applied to the buffer effects can also be 

utilized for this case. When co-analyte concentrations are low, background electrolyte 

ions are the predominant droplet excess charge carriers. Analyte and co-analyte  
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Figure 5-10. Effects of co-analyte concentration on ESI response of analyte B1 at three 
different ion spray voltages 
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Figure 5-11. Effects of co-analyte concentration on ESI response of analyte B2 at three 
different ion spray voltages 
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Figure 5-12. Effects of co-analyte concentration on ESI response of analyte B3 at three 
different ion spray voltages 
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independently complete with electrolytes for the excess charge, the existence of co-

analyte will not affect the MS response of analyte. When co-analyte ions play a role in 

partitioning, either because of increased concentration or by having a greater coefficient, 

they will carry some of the excess charge previously carried by electrolytes. Under such 

circumstances, the partition environment for analyte ions will be changed and the 

presence of co-analyte affects the ability of the analyte to compete for the excess charge. 

It was expected that a co-analyte having a greater partition coefficient would affect the 

analyte surface concentration at relatively low concentrations. Therefore, Depending on 

the partition coefficient of the co-analyte, the concentration range, where the equation 

sEEA

EAA
s ECKK

KKCA
][1

][ +

•+

+−
=  is valid, may vary. A required condition is that the 

contribution of co-analyte ion to [Q] must be negligible. The results that compounds B1, 

B2 and B3 did not affect the MS response of each other until they reached comparable 

concentration, 10-7 M, indicate that these three analytes possess comparable coefficients. 

Although the results in Figure 5-4 show that KB2 is relatively larger than KB1 and KB3, 

this difference appears not significantly affecting their contributions to [Q].  

 The decreased analyte MS responses at co-analyte concentrations greater than 10-7 

M was consistent with the equation derived for mid-range buffer effects: 

sMMA

MAA
s MCKK

KKCA
][1

][ +

•+

+−
= . When co-analytes contribute considerably to [Q], 

analyte ions must compete with co-analyte ions for excess charge, which is equivalent to 

a change in the value of KE. As the co-analyte concentration increases, the contribution of 

Kco-analyte to KM increases, and consequently KM increases because Kco-analyte should be 

larger than KE. Therefore, [A+]s becomes smaller and a decrease in analyte MS response 
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is observed. An alternative explanation for the effects of co-analytes is to treat the co-

analyte as analyte. Assuming that co-analyte (B) possesses a similar partition coefficient 

as analyte (A), increasing CB is equivalent to increasing the total analyte concentration 

(Ctotal). When CA ≈ Ctotal, the effects of CB are negligible. As Ctotal rises to a concentration 

level, where the surface analyte ions as a function of concentration is no longer linear due 

to [Q] limitation, analyte MS response will decrease. Because the fraction of CA in Ctotal 

proportionally decreases, [A+]s will decrease. A calculation based on above 

considerations is listed in the below table. It shows that the rough estimation by using the 

simulated data in Figure 5-2 provides a reasonable match with experimental results. 

Table 5-1. Calculated co-analyte effects by using the [Q] values from Figure 5-2 

CA 1.0E-07 1.0E-07 1.0E-07 1.0E-07 1.0E-07 1.0E-07 
CB 1.0E-09 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 

Ctotal 1.0E-07 1.1E-07 2.0E-07 1.1E-06 1.0E-05 1.0E-04 
%CA 99.0 90.9 50.0 9.1 1.0 0.1 

[A+]s + [B+]s ** 5.3E-08 5.3E-08 5.3E-08 4.1E-07 1.0E-06 1.2E-06 
[A+]s = %CA ([A+]s + [B+]s) 5.2E-08 4.8E-08 2.6E-08 3.7E-08 9.9E-09 1.2E-09 

Log [A+]S -7.3 -7.3 -7.6 -7.4 -8.0 -8.9 
       

** Copied from the simulated data in Fig. 5-2 for KA/KE = 10.     
 

 One thing that cannot be explained is why 16:0 LPC shows a greater suppression 

for analytes than when B1, B2 and B3 were used as co-analytes. According to the linear 

MS response graphs in Figure 5-4, the partition coefficient for 16:0 LPC should be 

considerably smaller than the coefficients for B1, B2 and B3. Therefore, the KM 

modification extent for 16:0 LPC should be less than for the other compounds, and 

consequently a result of KM(PC) < KM(B) would be obtained. According to the explanations 

for co-analytes B1, B2 and B3, 16:0 LPC would be expected to have the smallest  
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suppression effects. 

 Considering the factors inherent in the equilibrium partitioning process, the 

excess charge provides the principle driving force for the conversion of ions from 

solution to the gas phase, and the charges are distributed among gas phase ions according 

to the analytes partition coefficients. If the significant suppression effects of 16:0 LPC on 

analyte are not due to the partition coefficient, another possibility is that the amount of 

excess charge is decreased as the concentration of 16:0 LPC increases. Total ion current 

(TIC), which is the sum of MS responses for all ions in a certain scan range, should be a 

measure of [Q] because the detected ions were almost certainly excess charge carriers. 

The individual TIC values for the four analytes in various concentrations (10-9 to 10-4 M) 

were measured over a scan range of m/z 150 to 550. Ions with m/z < 150 are mainly from 

solvent impurities and should be fairly constant. Excluding the MS response for these 

ions should not affect relative TIC intensities. Figure 5-13 shows the TIC curves for 

analyte B3 and 16:0 LPC at three ion spray voltages. The TIC spectra for analytes B1 and 

B2 are very similar to that for B3. The TIC spectra for B3 shows that when CB3 < 10-6 M, 

the variation of TIC with the changing CB3 was not significant; when CB3 > 10-6 M, the 

TIC at 5000 V decreased whereas the TIC at 4000 and 3000 V increased.  The amount of 

increase at 3000 V was greater than at 4000 V. These results are similar to the reported 

observations for capillary current I [44,69]. When the concentration of CB3 was less than 

that of the electrolytes, [Q] is mainly contributed by [E+]s and I was relatively constant. A 

fixed TIC signal was detected. When CB3 becomes higher than CE, the increase in CB3 

will lead to an increase of κ and a subsequent increase of I. Therefore, more charged ions 

will be formed and the sum of all charged ion intensities reflected in TIC measurements  
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Figure 5-13. Total ion counts of single analyte B3 and 16:0 LPC in 50:50 
acetonitrile:H2O as a function of analyte concentration at three ion spray voltages 
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will increase. The observed TIC decrease for analyte B3 at 5000 V was caused by the 

detector saturation. After the saturation limit was reached, with the increasing CB3, a 

constant ion intensity was measured for [B3+]s ions, whereas the MS responses for other 

ions decreased due to the fraction of [Q] occupied by [B3+]s ions increased. 

 In contrast, the TIC values for 16:0 LPC exhibit a constant decreasing trend when 

CPC > 10-6 M regardless of the voltage. The TIC signals at CPC < 10-6 M are relatively 

constant and comparable with the TIC responses for B3 in the same concentration range. 

It is clear that other factors besides conductivity dominate the production of capillary 

current for solutions with high concentrations of 16:0 LPC. It is known that addition of 

phospholipids will decrease solution surface tension as a result of the hydrophilic head 

and hydrophobic tail adsorbing to the air-solution interface of the droplet. The 

equation 2/1

0

)(
ε
εγκν ffI ≈ derived from experimental data [14] indicates that surface 

tension (γ) and conductivity (κ) are joint factors that affect capillary current. Since the 

TIC signal decreased with the increasing CPC, it appeared that a decrease in surface 

tension played a more important role than the conductivity increase for capillary currents 

generated with 16:0 LPC solutions. Due to the decrease of current, there was less excess 

charge available for analyte ions, and hence the amount of gas phase ions formed was 

reduced. Therefore, when 16:0 LPC is a co-analyte, besides competing with the analyte 

ion for excess charge, it has an additional effect of causing analyte signal suppression: 

decreasing the amount of excess charge by reducing the solution surface tension.  

5.2.4 Effects of Buffered GPCho Lipid Solutions on Analyte Ionization 

 To elucidate the analyte ion suppression effects observed in Chapter 4, the effects 

of 16:0 LPC on analyte MS response were studied under two conditions: 16:0 LPC 
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solutions containing 1 mM buffer and no buffer (Fig. 5-14 to 5-16). With CPC varying 

from 10-6 to 10-4 M, the MS response for analytes B1, B2 and B3 at 10-7 M was 

separately measured in LPC solution containing AA, FA, or AH. The analyte ionization 

was studied under such conditions because analytes experience severe suppression effects 

from 16:0 LPC in the 10-6 to 10-4 M range and HPLC analysis normally requires 

millimolar level buffers for chromatographic reasons.  

 The three analytes demonstrated comparable responses under the measured 

conditions. The signal intensity in a buffered solution was greater than in non-buffered 

solutions, and buffers AA, FA and AH exhibited similar effects on the signal. The 

deduced equations for buffer effects and co-analyte effects can also be applied to explain 

these observations. All of the compounds in solution except the analyte were treated as 

background electrolytes. For the non-buffered solution, background electrolytes (CE) 

included 16:0 LPC and impurities from solvent whereas the CE in 1 mM buffered 

solutions was mainly composed of the buffer itself due to CBuf > CPC and Cimpurity. 

Accordingly, the KE for the single analyte solution was modified to be KM and KBuf, and 

the analyte surface concentration was calculated as: 
sMMA

MAA
s MCKK

KKCA
][1

][ +

•+

+−
=  

and 
sBufBufA

BufAA
s BufCKK

KKC
A

][1
][ +

•+

+−
= for non-buffered and buffered solutions, 

respectively. Here, KM was expressed as: 
ii

ss
M PCE

PCEK
][][
][][

++

++

+
+

= . A KM value modified 

by 16:0 LPC surface concentration ([PC+]s) was expected to be larger than the 

background electrolyte coefficient (KE) due to the fact that KPC should be larger than KE. 

An approximate order for the partition coefficients is KA > KPC > KM > KE > KBuf.  
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Figure 5-14. Effects of adding buffer on ESI response of analyte B1 mixed with different 
concentration of 16:0 LPC at three ion spray voltages 
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Figure 5-15. Effects of adding buffer on ESI response of analyte B2 mixed with different 
concentration of 16:0 LPC at three ion spray voltages 
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Figure 5-16. Effects of adding buffer on ESI response of analyte B3 mixed with different 
concentration of 16:0 LPC at three ion spray voltages 
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Therefore, [A+]s in a non-buffered solution was smaller than in a buffered solution. Since 

the analytes B1, B2 and B3 had similar partition coefficients and so did the three buffers, 

the measured responses demonstrated comparable results. Because the concentration of 

background electrolytes was not very high (10-3 M for buffered solutions and 10-4 M for 

non-buffered solutions), it was reasonable to consider the analyte competition for excess 

charge occurred in an unsaturated condition where the amount of excess charge was 

sufficient for gas phase ions. Under such circumstances, [A+]s  is more affected by the 

KA/KE coefficient ratio rather than the CE/[E+]s ratio.  

 In addition, with increasing CPC, analyte MS response was reduced in non-

buffered solutions more than in buffered solutions. The two factors: the coefficient ratio 

and amount of excess charge were examined again to elucidate these observations. For 

the non-buffered solution, when CPC was gradually increased to 10-6 , 10-5 and 10-4 M, the 

contribution of KPC to KM increased and the corresponding coefficient order should be: 

KM(-6) < KM(-5) < KM(-4). In contrast, the coefficient for buffered solutions was relatively 

constant when CPC was varied because CBuf was much greater than CPC, and KBuf(-6) ≈ 

KBuf(-5) ≈ KBuf(-4). Therefore, the coefficient ratio for analyte to background electrolyte 

decreased more rapidly in the non-buffered solution than in the buffered solution.  

 The amount of excess charge was evaluated by measuring the TIC over a scan 

range of m/z 150 to 550 for solutions containing only background electrolytes (Figure 5-

17). When CPC increased from 10-6 to 10-4 M, TIC measurements for 16:0 LPC in non-

buffered solutions decreased by 80 - 90% whereas the decrease for buffered solutions 

was 20 - 30%. Buffers FA and AH had similar TIC results to that of AA. Since capillary 

current is determined by the combined effects of conductivity and surface tension, the  
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Figure 5-17. Total ion counts of 16:0 LPC in solution (50:50 acetonitrile:water) and 
solution with 1 mM ammonium acetate at three different ion spray voltages 
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effect of surface tension on current for low conductivity solutions should be more 

substantial than for high conductivity solutions. This was demonstrated by a greater TIC 

decrease in non-buffered solutions (low conductivity) than in buffered solutions (high 

conductivity). Because both the amount of excess charge and the relative coefficient of 

analyte to electrolyte had a greater decrease in non-buffered than buffered solutions, [A+]s 

was more suppressed in non-buffered solutions. The similar MS responses for the three 

analytes under the three buffer conditions suggests that adding a suitable amount of 

buffer reduces the suppression effects of 16:0 LPC on analyte ionization.  

5.2.5 Conclusions: 

 The improved equations driven form the partition equilibrium mode was able to 

explain the analyte MS responses for all studied conditions: single analyte solutions, 

buffered solutions, co-analyte solutions and buffered GPCho lipid solutions. The buffer 

concentration effects, which could not be explained by the partition equilibrium mode, 

were clarified by using the improved equations. The significant ion suppression effects of 

GPCho lipids were proved to be a combined result. Lipids not only competed with 

analyte for excess charge but also decreased the excess charge amount through reducing 

droplet surface tension. This suppression effect can be reduced by adding buffer to a 

concentration higher than that of lipids. Because the improved equation is linear and 

simple, and demonstrated to be valid, it can be applied for predicting analyte MS 

response in biological sample. 

  LC-ESI-MS is by far the predominant technique used for determining drug 

concentrations in biological samples. The inherent selectivity derived from mass 

spectrometry detection reduces the need for completely separating analytes from 
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interfering materials, which simplifies assay methodologies. However, the research 

described here indicates that endogenous lipid interferences, which are not directly 

detected during assays involving MS detection, can significantly affect the reliability of 

plasma sample analyses. GPCho lipids exhibited greater analyte MS response 

suppression than other compounds present in sample matrices because they not only 

competed with target analytes for excess charge during ion formation processes, but also 

reduced the amount of charge available. High GPCho lipid plasma concentrations and 

large inter-batch concentration variations result in poor analyte MS signal reproducibility. 

Unfortunately, LLE and HTLC online extraction methods proved ineffective for removal 

of GPCho lipid interferences. 

 For hydrophobic analyte assays, the key step in the analytical procedure is column 

separation, and 16:0 LPC can be used as a diagnostic probe of separation efficiency. If 

analytes elute prior to 16:0 LPC, they mostly likely will not be affected by endogenous 

lipid interferences. If analytes co-elute or elute after 16:0 LPC, sample preparation 

procedures must be employed to eliminate or greatly reduce these interferences. For 

either hydrophobic or hydrophilic analytes, gradient elution minimizes the possibility of 

interfering species co-elution. A strong solvent at the end of the gradient should be used 

to wash lipids with long retention times out of the column. If this is not done, these lipids 

may elute during subsequent injections. 

 When sample preparation methods are employed to compensate for ineffective 

chromatographic lipid separation, HTLC online extraction or SPE are good choices, 

whereas conventional LLE would not be preferred unless the analyte can be extracted 

with hexane. For a particular assay, transfer conditions for HTLC online extraction and 
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elution conditions for SPE can be determined from results of analyte recovery and lipid 

removal studies. In order to effectively eliminate matrix interferences, analyte recovery 

may have to be sacrificed. UPLC analysis requires high pressure LC and may not always 

be available, but columns with relatively small particles (~2.2 µm columns have recently 

been introduced for use with conventional HPLC systems) are effective for separating 

extracted analytes from interferences.  

 Mobile phase buffer concentrations (1 – 10 mM) should be properly optimized for 

the best assay performance. In addition to improving analyte peak shapes and assay 

reproducibility, the buffer dilutes the suppression effects of GPCho lipids and reduces 

inter-batch variations. Although high buffer concentrations help to reduce matrix 

variations, analyte sensitivity is sacrificed. Mechanistic studies have demonstrated that an 

effective ISTD must co-elute with the target analyte. If the analyte and ISTD are 

subjected to different ionization conditions, a quantitative calculation based on the peak 

area ratio of the analyte to ISTD MS signals would likely be inaccurate. 

 Identification of GPCho lipids as one of the major sources of ESI interferences in 

biological samples was a significant finding. It was determined that matrix interference 

effects can be directly related to the lipid concentration in analyzed samples. These 

adverse matrix interference effects can be minimized by either adjusting LC conditions or 

improving extraction procedures. The ionization suppression mechanism investigations 

described here help to elucidate the relationship between analyte MS response and 

solution phase matrix constituents, which include mobile phase composition, buffers and 

interfering compounds. An understanding of these correlations provides fundamental 

guidance for designing reproducible and accurate assay methods. 
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