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CHAPTER I

ABSTRACT

In eastern Sequoyah County, Oklahoma, natural gas is produced from structuraJ traps

developed on anticlines and fault bJocks. The structural geology of the surface can be

projected into the subsurface and initial estimates of the subsurface orientation of

structures can be mapped. Areal surface geologic maps and subsurface structural

contour maps were employed in an attempt to delineate these structures.

Gas is produced from several zones in this area. The Cromwell Sandstone

(Morrowan) is the most productive reservoir. The Spiro Sandstone (basal Atokan) is also

a significant reservoir in this area. Stratigraphic cross-sections, an isolith map of the

Cromwell Sandstone, and analysis of typical log responses of these reservoirs were

employed in an effort to better understand the facies preserved in this rock unit.

Typically gas fields are developed where reservoirs are distributed on anticlines and

upthrown fault blocks.



CHAPTER II

INTRODUCTION

Objectives

The primary objectives of this study were (]) to construct structural geologic maps of

selected strata of the surface and of selected strata in the subsurface of the area (Plates I

and II), (2) to relate the structural geology of rocks exposed at the surface to that of rocks

in the subsurface, (3) to document better the thickness and extent of sedimentary rocks

of the Morrowan Series and of the lower part of the Atokan Series, (4) to map the

geometry and distribution of the Cromwell Sandstone (Plates III, IV and V), and (5) to

provide other geologic data as well as the author's interpretations of these data relevant

to the accumulation and production of natural gas.

Location of the Study Area

The area of investigation of this report is in the extreme eastern part of Oklahoma.

This area is on the northern shelf of the Arkoma Basin and it includes part of the

southern flanks of the Ozark Uplift. It consists primarily of the eastern half of

Sequoyah County, Oklahoma (Figure 1). Included are approximately 179 square miles,

in 1.11 N., R.25E., 1.11 N., R.26E., T.IIN., R.27E., T12N., R.25E., T.12N., R.26E. and

T.12N., R.27E. Parts of townships adjacent to these were also studied, in order to

understand better the primary area of interest.
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Methods of Investigation

The subsurface stratigraphy and structural geology were interpreted from maps and

cross-sections. These documents were compiled from electric logs, gamma-ray logs,

neutron-density logs, completion tickets, scout tickets, proprietary seismic data and

areal geologic maps.

Areal structural features were interpreted with the aid of topographic maps, aerial

photographs, soil surveys and existing geologic maps. Structural features mapped at the

surface were projected into the subsurface.

Geologic Setting

The area of interest is on the northern margin of the Arkoma Basin (Figure 2). The

Arkoma Basin is in eastern-southeastern Oklahoma and west-central Arkansas. This

arcuate basin extends for approximately 250 miles in an east to west direction and ranges

from approximately 20 miles wide to approximately 50 miles wide. The basin is

bounded on the north by flanks of the Ozark Uplift and on the northwest it grades onto

the Northeast Oklahoma Platfonn (Figure 2). The basin is bounded on the south by the

Ouachita overthrust belt, the northern limit of which is delineated by the Choctaw Fault

in Oklahoma and the Ross Creek Fault in Arkansas (Figure 2). The basin plunges

beneath strata of the Cenozoic Coastal Plain in central Arkansas (Figure 2). On the

southwest, the basin tenninates abruptly against the Arbuckle Mountains of southern

Oklahoma (Figure 2). At the present time, the Arkoma Basin is a collisional orogen that

has been uplifted then complicated by local faulting and folding.

Strata of the Arkoma Basin and the Ouachita fold belt document the history of

4
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gradual collapse and closure of the Ouachita trough and development of a foreland basin,

as a result of the continental collision ofthe Afro-South American Plate (lanoria) and the

North American Plate (Sutherland, 1988a, p. 1787; Meckel, Smith, and Wells, 1992, p.

427). Sedimentary rocks are thinnest on the northern magin of the basin, on the ancient

continental shelf. Here the sedimentary section is approximately 3000 feet

thick (Branan, 1968, p. 1619). Sedimentary rocks are thickest along the southern margin

of the basin, adjacent to the Ouachita overthrust belt. Here the Paleozoic sedimentary

section may be thicker than 30,000 feet as a result of rapid deposition during basin

subsidence, and repetition of strata by thrust faulting (Wylie, 1988, p.63).

The basin is divisible into three distinct structural units: (1) a shallow shelf where

geologic structures principally are nonnal faults, (2) an intennediate shelf, characterized

by normal faults and growth faults, and (3) a deep part of the basin characterized by

growth faults and reverse faults (Haines, 1981, p. 42) (Figure 3). In each of these

provinces, anticlinal and synclinal folds are associated genetically with faults.

Rocks in the Arkoma Basin primarily are ofAtokan age. Most subsidence took place

during the Atokan Epoch, and more than half of the sedimentary section was deposited

during the Atokan (Haines. 1981, p. 47).

Sedimentary rocks of Morrowan and Atokan age, preserved within the basin, were

derived primarily from the northeast and north by way of the Illinois Basin and the Ozark

Dome. An additional secondary source possibly was from the Nemaha Uplift to the

northwest ( Sutherland, 1988a, p. 1800). The strata predominantly are shale, interbedd~d

with sandstones and carbonates. Sedimentation was accompanied by rapid subsidence,

which is manifest in a series of east trending nonnal (growth) faults.

Natural gas was first discovered in the basin in 1902 at Mansfield, in Sebastian

County, Arkansas (Branan, 1968, p. 1619). Since that time the basin has developed into

a major gas-producing province (Figure 4).. Gas has been recovered in profitable

6

L



Figure 3, Regional map of Arkoma Basin showing structural divisions of the basin
(modified from Haines, 1981, p, 44)
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quantities from rocks ranging in age from Ordivician through Desmoinesian (Haines,

1981, p. 42). The basin primarily is a dry-gas province with no significant quantities of

associated liquids. In the Morrowan and lower Atokan rocks natural-gas entrapment is

primarily structurally controlled with a definite closed fold or fault block being required

to trap gas. In rocks of the middle and upper Atokan Series, entrapment is

stratigraphically controlled at some localities.

History of Previous Investigations

Several published reports and maps document parts of the area of interest. These

and reports about adjacent areas contributed greatly to the study. Figure 5 illustrates the

coverage of mapping in and around the study area.

Taff(1905, Areal Geology of the Tahlequah Quadrangle) originally mapped the area

in the northern part of the present study area, in his report on geology of the Tahlequah

Quadrangle. Taff documented the Salt Hollow anticline in Section 13, T.l3N., R.25E.,

to the northeast of the present study area, but he recognized neither the existence of a

fault through this anticline nor evidence of the southeastward extension of this anticline

into the present area of investigation. Taff also mapped the Akins Fault in the northern

part ofT.] 2N., R.25E., (Plate I), but did not recognize the extent of this fault to the

northeast. Evidence of smaller structures within the area of this report seem either to

have escaped Taft's detection, or he elected to not record them.

Purdue (1907, Areal Geology of the Winslow Quadrangle) mapped the areal geology

of rocks included within the northeastern part of this report -- in the northern half of

T.12N., R.27E., (Plate I) -- in his report on the geology of the Winslow Quadrangle. All

8
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strata was mapped as the Atoka Formation and no faults or folds were recognized.

Crumpley ( 1949, Areal Geologic Map of part of Sequoyah County) mapped the area]

geology of the southern half of the present study area. He documented the major

structures south of the Mulberry Fault. Crumpley also recognized numerous small faults

and flexures north of the Mulberry Fault. These structures were too small to warrant

representation on his map and were beyond the main focus of his report.

White (t 955, Geologic Map of the Brushy Mountain Structure) mapped the areal

geology of the northwestern part of the present study area, He recognized the extent of

the Greasy Creek Fault from the northwest through the Salt Hollow Anticline, previously

mapped by Taff However, he did not find evidence to support the southeast extension of

this fault into the area of this report. White extended the Akins Fault northeastward to

intersect the Greasy Creek Fault (plate I).

Huffman and others (1958) mapped the area to the north and northwest of the present

study area. This report was very helpful with the understanding of stratigraphic

nomenclature as well as with knowledge of the regional geologic setting of the area,

Haley (1972, Plate 1) mapped the areal geology of the southeastern part of the study

area. His work included the southern half ofT.12N., R.27E., and all ofT.ll N., R.27E.

Jefferies' (1982) thesis, "The Stratigraphy and Depositional Patterns of the Union

Valley, Wapanucka and Lower Atoka Formations," provided helpful information

regarding the stratigraphy of these rock-stratigraphic units.

Abolla's (1995) "Geometry and Depositional Systems of the Cromwell Sandstone .. ,"

included much of the southern portion of the study area; it was helpful in the

understanding of the depositional environment of the Cromwell Sandstone.

11
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CHAPTER III

STRATIGRAPHY

Introduction

Rocks that range in age from early Atokan through Desmoinesian are exposed in the

study area. Quaternary alluvium covers a small portion of the area along the Arkansas

River floodplain. Wells have penetrated rocks ranging from Desmoinesian through lower

Ordovician.

In this study emphasis was placed primarily on rocks of the Morrowan Series and the

lower part of the Atokan Series. However some older fonnations were identified and

correlated in the cross-sections (Plates III and IV). Nomenclature from both Arkansas

and Oklahoma is used to refer to the same rocks -- a practical matter of necessity. (See

Figure 6.) An attempt was made to consistently use nomenclature that is common in

description of the geology of northwestern Arkansas. This nomenclature concerns rock­

stratigraphic units that are more easily correlated with outcrops in the region to the north

of the study area. However, nomenclature of subsurface strata of the Arkoma Basin is

used in numerous instances -- also a matter of practical necessity. (See Figure 7.)

Upper Part, Mississipian System

Chesterian Series

The Chesterian Series consists of the Hindsville Limestone, the Fayetteville Shale, and

the Pitkin Limestone (Figure 7). Huffman (1951, p. 118) recognized that these strata

]2
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compose a confonnable sequence of beds characterized by Chesterian fauna. The

Chesterian is bounded by unconfonnities (Figure 6).

Hindsville Limestone

The Hindsville Limestone unconfonnably overlies the Moorefield Fonnation and is

overlain by the Fayetteville Shale (Figure 7). It ranges from 2 to 34 feet thick, in the

study area. It is thinnest in the northeastern part of the study area. The Hindsville is

dark gray crinoidallimestone (White, 1955, p. 10). It is recognizable on wireline logs by

a characteristic spiky, low gamma - ray curve and as the first developed limestone below

the Fayetteville Shale (Figure 7). The Hindsville was named by Purdue and Miser (1916)

for exposures near the town of Hindsville, Arkansas.

In the Arkoma Basin of Oklahoma, the Hindsville Limestone and the Moorefield

Fonnation are mapped in combination as the Mayes fonnation, an infonnal rock

stratigraphic unit (Figure 6).

Fayetteville Shale

The Fayetteville Shale overlies the Hindsville Limestone and is overlain by the Pitkin

Limestone (Figure 7). It ranges from 8 to 50 feet thick and is thickest in the northeastern

part of the study area. The Fayetteville is dark gray to blackish gray shale. On wireline

logs, it is recognized easily by a characteristic low resistivity and high gamma-ray curves;

thus it is a reliable marker in the subsurface. Near the top of the Fayetteville Shale is a

set of sandy strata, generally less than 10 feet thick in the study area. These beds

probably could be correlated with the Wedington Sandstone Member of northern

Arkansas (Figure 6). The Wedington Member commonly is shown as a "spike" on
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gamma ray and resistivity logs. However, in some places it is absent The Fayetteville

Shale was named by Simonds (1891) in reference to outcrops exposed in the town of

Fayetteville, Arkansas.

The Fayetteville Shale ofArkansas has been correlated with the Caney Shale of

Oklahoma (Branan, 1968, p. 1625). In the Arkoma Basin of Oklahoma, it is commonly

called the "Mississippian Caney" (Figure 6).

Pitkin Formation

The Pitkin Formation overlies the Fayetteville Shale and in the study area, is overlain

by the Hale Fonnation (Figure 6). The Pitkin is separated from the overlying

Pennsylvanian strata by a regional unconformity (Huffman, 1951, p. 118). The formation

ranges from 40 to ]30 feet thick in the study area. The rock is light to medium gray,

oolitic, fossiliferous limestone. The Pitkin was originally called the "Archimides

Limestone," and was named by Ulrich (1904) after the town of Pitkin, Washington

County, Arkansas. The formation crops out in the southern part of the Ozarks. CI upper

(] 978, p. 69) described the Pitkin as having been deposited in oolite shoals, inter-shoal

areas, and anoxic reducing environments.

Pennsylvanian System

Morrowan Series

The Morrowan Series is the oldest record of the Pennsylvanian System in the study

area. The Morrowan was deposited on the irregular unconformity surface that is the

Mississippian - Pennsylvanian boundary in the area of this report. The lower Morrowan
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represents the transgression of the Arkoma seavvay, from the Ouachita trough onto the

Arkoma shelf The dominant sediment-source direction was from the northeast by way

of the Illinois basin. A secondary sediment source direction was from the Nemaha Uplift

to the northwest. The Morrowan Series presents a depositional pattern marked by lateral

changes in facies and thickness. Much of the above infonnation was taken from

(Sutherland, 1988a, p. 1792).

In the area of this report, the Morrowan overlies the Pitkin Limestone of the Upper

Mississippian Chester Series and is, overlain by the Atoka Fonnation of the Atoka Series.

It is composed of the Hale Fonnation and the Bloyd Fonnation (Figure 7).

In the study area, the Morrow thickens southward, basinward, reflecting a greater

degree of subsidence in that area; it ranges from 270 feet thick in the northwest to 430

feet thick in the southeast.

Hale Fonnation

The Hale Fonnation overlies the Pitkin Limestone unconfonnably and is overlain by

the Bloyd Formation (Figures 6 and 7). The Hale is divided into the Cane Hill Shale

Member and Prairie Grove Sandstone Member. In the study area, the Hale ranges from

96 to 200 feet thick; it is mostly shale and calcareous sandstone. The Hale was named

by Adams and Ulrich (1905) from outcrops on Hale Mountai n, near the town of Morrow,

Arkansas. Henbest (1953, pp. 1938-1942) divided the Hale Fonnation into the Cane Hill

Shale Member and the Prairie Grove Sandstone Member.

White (1955, Geologic Map of the Brushy Mountain Structure) mapped outcrops of

Morrowan rocks just to the northwest of the study area, but did not divide the Morrow

into the Hale and Bloyd. Huffman and others (1958, Geologic Map of the Stilwell Area)

mapped outcrops of the Hale Fonnation approximately ten miles to the to the north and
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northwest of the study area.

In the Arkoma Basin of Oklahoma the Hale Formation is regarded as being equivalent

to the informal "Union Valley Cromwell" (Figure 6). Often, workers of subsurface

geology in Oklahoma informally divide the Cromwell into upper, middle, and lower

parts. Likewise, workers in Arkansas informally divide the Hale into upper, middle and

lower parts.

Cane Hill Member-

The Cane Hill Shale Member of northwestern Arkansas overlies the Pitkin Limestone

unconformably and is overlain by the Prairie Grove Sandstone Member (Figure 6). The

Cane Hill Member consists of shale and silty shale. A set of shaly strata between the

Pitkin and the Prairie Grove Sandstone Member -- which is recorded on wireline logs in

some wells in the area of this report -- could be equivalent to the Cane Hill of northwest

Arkansas. It is as thick as 30 feet at some localities. In many wells it is absent or very

thin. The Cane Hill Shale Member laps out at approximately the state line between

Arkansas and Oklahoma.

Prairie Grove Member-

The Prairie Grove Sandstone Member overlies the Cane Hill Shale Member. It is

overlain by the Bloyd Formation (Figures 6 and 7). The Prairie Grove consists primarily

of shale and calcareous sandstone. Typically it grades vertically into sandy limestone. In

the area of this report the Prarie Grove Member ranges from 85 to 187 feet thick.

In the subsurface of Arkansas, the Prairie Grove Member is called the "upper and

middle Hale." As described above, in the subsurface of the Arkoma Basin in Oklahoma,
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the Hale is mapped as the equivalent of the "Union Valley-Cromwell," which can be

divided into "Cromwell" and "Cromwell Sandstone" respectively (Figure 7). The entire

interval is referred to as the Cromwell, whereas the lower part, is called the Cromwell

Sandstone. Therefore, in the area of this report the Prarie Grove Sandstone Member

would be called the "Cromwell." The lower sandstone unit of this interval would be

called the "Cromwell Sandstone." In Arkansas these strata would be called the "middle

Hale."

In the area of this report, the Cromwell Sandstone has a characteristic box-shaped log

signature where the rock is well developed and thickness of the Cromwell Sandstone

ranges from 15 to 105 feet. This zone is a prolific source of natural gas in the Arkoma

Basin.

Bloyd Formation

The Bloyd Formation overlies the Prairie Grove Sandstone Member of the Hale

Formation and is overlain by the Atoka Formation of the Atoka Series (Figure 6). In the

study area the Bloyd consists of the Brentwood Limestone Member below and the

Kessler Limestone Member above (Figure 6). The interval primarily is shale and

limestone; it is 160 to 220 feet thick in the study area. The Bloyd was named by Purdue

(1907) from exposures in the vicinity of Bloyd Mountain, Washington County, Arkansas.

Brentwood Member-

The Brentwood Limestone Member overlies the Prairie Grove Sandstone Member of

the Hale Formation and is overlain by the Kessler Limestone Member of the Bloyd

Formation (Figure 6). The Brentwood Limestone Member ranges from 70 to 140 feet
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thick in the area of this report. The Brentwood consists of shale overlain by arenaceous

limestone. The Brentwood crops out near the town of Brentwood in Washington County,

in northwestern Arkansas.

In the subsurface of the Arkoma Basin in Oklahoma, the Brentwood can probably be

correlated with the upper part of the Union Valley Fonnation.

Kessler Member-

The Kessler Limestone Member of the Bloyd Fonnation overlies the Brentwood

Member and is overlain unconfonnably by the Atoka Fonnation of the Atoka Series

(Figure 6). It ranges from 63 to 134 feet thick in the study area. The Kessler is

composed of shale overlain by limestone. The member thickens basinward. The upper

limestone unit extends throughout much of the Arkoma Basin, where it fonns a

distinctive stratigraphic marker (Figure 7) that is correlative with the Wapanucka

Fonnation.

Atoka Fonnation

In the area of this report, the Atoka Fonnation of the Atokan Series (Zachry, 1984)

unconformably overlies the Kessler Limestone Member of the Bloyd Formation, of the

Morrowan Series. It is unconformably overlain by the Desmoinesian Hartshorne

Formation (Figure 8). In this area, the Atoka Formation is composed primarily of

sandstone and shale.

The Atoka was named by Taff and Adams (1900) for exposures near the town of

Atoka, Oklahoma. No type section was designated. Purdue (1907) mapped the

Winslow Formation (Atokan) in the Winslow Quadrangle, which is directly northeast
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Figure 8. Stratigraphic succession of informally named subdivisions of the Atoka
Formation, Arkoma Basin, Arkansas. (From Zachry, 1983, p. 40)
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of the study area described herein. Croneis (1930) suggested that the Winslow Formation

of northern Arkansas is continuous with the earlier-named Atoka Formation of south­

central Oklahoma, and proposed that the name Atoka be applied to the succession in

Arkansas (Zachry, 1984, p. 10).

The Atoka has not been subdivided into formal members. An informal nomenclature

has been adopted that divides the Atoka into several parts, and upper, middle and lower

intervals. This system is based on key correlation markers and has no paleontological

basis (Figure 8).

The Atoka Formation ranges from 300 feet thick along the northern margin of the

Arkoma Basin to more than 15,000 feet along the southern margin of the basin (Zachry,

1984, p. 9). In the area described by the present report, the Atoka Formation is

approximately 5000 feet thick on the downthrown side of the Mulberry Fault (Plate Il)

and approximately 1500 feet thick on the upthrown side of the Mulberry Fault. The

entire interval can be seen on well logs in the region south of the Mulberry Fault, where

the Atoka is overlain unconformably by the Hartshorne Formation of the Desmoinesian

Series (Haley and Hendricks, 1972, Plate 6).

Middle Atoka-

Tn the study area, rocks from the middle Atoka crop out north of the Mulberry Fault.

These rocks primarily are shales, sandstones, and intervals of interbedded sandstone and

shale. Several distinct lithologies (for example, see Figure 9) were observed in the field

but separation or definitive mapping of single beds was not feasible and was not

attempted. Correlation of outcropping rocks with strata in the subsurface can be made,

but that degree of mapping detail was beyond the scope of this study.
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Lower Atoka-

In the area of this report, shales of the lower Atoka include the informal rock-

stratigraphic units, "Sprio Sandstone" and "Cecil Series." Lower Atokan rocks are

overlain by the "Casey zone" of the middle Atoka (Figure 7). The Spiro ranges from] 0

to 90 feet thick in the study area. The sandstone is a prolific reservoir of natural gas in

many parts of the Arkoma Basin. The Cecil Series is above the Spiro and below the

"Casey zone." In the study area, it consists of five informally designated units of

sandstone: Cecil Spiro, Paul Barton, Dunn C, Ralph Barton and Dunn A (Figure 7). All

of the sands of the Cecil zone are productive at localities in the Arkoma Basin. In the

area of this report the Ralph Barton sand is the most productive.

Figure 9. Burrows (7) in middle Atoka sandstone (NW Y4, Section 18, T.] 2N.,
R.27E.)
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CHAPTER IV

STRUCTURAL GEOLOGY

Regional Tectonic History

Evolution of the Arkoma Basin and Ouachita orogenic belt reflects the opening and

closing of a Paleozoic ocean basin (Houseknecht, 1983, p. 3). The series of tectonic

events that defonned the basin into its present configuration are swnmarized below. This

information was extracted from Houseknecht (1983, pp. 16-33).

During the Late Cambrian, a major episode of rifting resulted in the opening of a

proto-Atlantic ocean basin. From the late Cambrian into the Devonian the southern

margin of North America evolved into a passive, Atlantic-type margin that persisted

throughout the early and middle Paleozoic. During the Devonian or Mississippian

Period, the ocean basin began to close, acconunodated by southward subduction of

oceanic lithosphere beneath Uanoria (South American plate). Through Morrowan time,

the Ouachita remnant ocean basin remained the major sediment trough for the region.

By early Atokan time the Ouachita remnant basin had been consumed by subduction and

the northward-advancing subduction complex was being pushed upon the rifted

continental margin of North America. As a result of subduction and because of vertical

loading, the southern margin of the North American continental crust was subjected to

flexural bending, this flexure induced normal faults. By late Atokan time, the subduction

complex had collided with the North American continent and the most severe structural

deformation had ceased. Minor compressional defonnation continued into the Permian.

The tectonic history of the Arkoma basin was controlled primarily by the Ouachita

orogeny and accompanying rise of the Ozark uplift. As mentioned by (Branan, 1968,

24



SOUTH
OUACHITA

MOUNTAINS
BASINARKOMA

NORTH

25

......... --
<J .. .. .. .. .. .. .. .. .. .. ~~~~•••••••••••••••........ + .......... + • ----------------_.

• .. + .. .. .. .. .. + .. .. •.. .. .. .. .. . . .. .. .. .. ... .. .. .. .. .. .. .. .. .. .. .... .. .. .. . .. .. .. .. .. ... .. .. .. .. .. ..

...... . .
<J

.,..... . C>.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .... .. .. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ...·.·.·.·+++·.·.·t·.+~ ~.........•.

margin of North America during (A) late Precambrian-earliest Cambrian,

(B) Late Cambrian-earliest Mississippian, (C) Early Mississippian-

earliest Atokan, (D) early-middle Atokan, (E) late Atokan-Desmojnesian
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Figure 10. Hypothetical cross sections depicting tectonic evolution of southern



orogeny and accompanying rise of the Ozark Uplift. As mentioned by (Branan, 1968,

p. 1623), the basin is dominated by two basic structural patterns: (I) block faults

generated with subsidence, while the Ozark Dome remained positive, and (2) folds

and northward-overthrust belts generated by the Ouachita orogenic complex on the

south (Figure 11).

Local Structural Geology

The area of this report is located on the southern flank of the Ozark Uplift and the

northern shelf of the Arkoma Basin.

The area north of the Mulberry Fault (Plate I), is complicated by numerous anticlinal

and synclinal flexures and normal faults. Most of the folds and faults trend

northeastward.

The area south of the Mulberry Fault is within the Arkansas Valley Province. The

structure within this area is composed of anticlinal and synclinal flexures as well as by

nonnal faults and growth faults (Figure II). Most of these structures trend in a

northeasterly to easterly direction.

Defonnation within the study area is thought to be a result of tensional forces

generated during the deposition of the middle Atoka sediments and slight compressional

forces generated during the Ouachita Orogeny.

Methods of Investigation

To describe the structural geology of the study area, a structural geologic map of the

surface (Plate I) as well as a structural contour map of the subsurface (Plate II) were

constructed.
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Figure 11. Principal structural features of eastern Oklahoma (from Chenowith, 1983).
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Figure 12. Diagrammatic cross-section showing typical faults in the region of the
study area (from Haines, 1981, p. 45).
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Topographic maps, a digital elevation model (Figure 13), aerial photographs, soil

surveys, seismic data, and existing geologic maps were analyzed in order to compile the

structural geologic map of the surface. Geomorphic features were used to aid in the

delineation of possible faults. Suspected faults were field-checked to verifY their

existence.

Initial interpretations were compiled from geomorphic evidence. Analysis of the

terrain suggested that drainage patterns were directly related to faulting and folding.

Rectangular-dendritic drainage was observed, with many tributaries intersecting main

streams at "right" angles. In some synclinal folds, streams flow near the axes (for

example, Little Skin Syncline, Plate I, Section 7, T.I1N., R.26E.). In some anticlinal

folds, streams flow away from the axial area (for example, Liberty Anticline, Plate I,

Section 26, T.12N., R.26E.). Initially all suspected faults and folds were mapped by

geomorphic evidence, then additional work was done to verifY or disprove

interpretations. After initial interpretations were mapped, soil surveys and aerial

photographs were analyzed to aid in determining the probability of these interpretations.

Next, proprietary seismic data, on loan, was analyzed to aid in the determination of the

probability of these interpretations. Finally, field work was conducted, in an attempt to

positively verifY mapped interpretations.

In the numerous areas where field work was undertaken, rocks of the middle Atoka

cropout. Lithologies are very similar and at many places, beds are not laterally

continuous, thus making identification offaults difficult. Also, exposures are limited and

most strata are covered. Evidence of drag and of dip reversal were the primary evidence

available to verifY the existence of faults interpreted from geomorphic evidence.

Slickensides, vein-cements, and uncommonly abundant joints and fractures aided in

verification of faults. A system that ranks interpreted faults, in accordance with the

degree of supporting evidence that was observed, was implemented. Faults were ranked
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Figure 13. Digital elevation model of study area (modified from Rea and
Becker, 1997)
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as "identifiable," as "probable," and as "questionable" (Table 1).

Table 1. Fault-Interpretation Criteria

Fault Geomorphic Geological Subsurface Symbol
Classification Evidence Evidence Geological Evidence

Identifiable drainage patterns displacement of strata offset of strata in

~
differential weathering drag along fault wellbores
soil types dip reversal
shapes of landforms 'ointing unbalanced contours

slickensides
increased cementation

Probable drainage patterns drag along fault offset of reflectors
differential weathering dip reversal on seismic

I
soil types jointing cross-sections I
shapes of landforms slickensides

Iincreased cementation unbalanced contours
I

decrease in porosity
near faults .

'{"

Questionable drainage patterns dip reversal unbalanced contours ' .

"Ishape of landforms fracturing /'

Tn the area where field investigations were conducted the terrain is rugged and the

area is densely vegetated. A global positioning system was employed to aid in the

veri fication of locations of outcrops.

A structural contour map (Plate II) was constructed of the top of the Kessler

Limestone (Wapanucka). Uncommonly close spacing of contour lines as well as the

absence of reliable marker-beds on certain wirel ine logs were used to map possible

faults. These data were compared with infonnation mapped at the surface. Where

possible and relevant, folds and faults observed in rocks at the surface were projected

into the subsurface.

Analysis of the two maps (Plates I and II) suggests that block faulting was the major
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process of defonnation. The region has been dissected into horst-and-graben features,

typically associated with extensional tectonics. Grabens form synclinal flexures due to

dovrowarping by drag against associated faults. Limbs of such synclines typically fonn

ridges (for example, see the Cowlington Syncline, Plates I and II). Horst blocks are

associated with anticlinal flexures. Anticlinal flexures tend to be associated with the

upthrown boundaries of tilted fault blocks (for example, see Plate I, Section 15, T.II N.,

R.26E.).

Faults

The Mulberry, Akins, Greasy Creek, and Pine Mountain faults are the major faults in

the area (Plate I). Numerous smaller faults and fractures were interpreted and mapped

on the structural maps. Many of these faults lack definitive evidence, but display

geomorphic recognizable evidence; the faults are ranked accordingly.

Mulberry Fault

The Mulberry Fault is the largest structural feature in the study area. Middle Atokan

rocks are against the rocks of the Savanna Formation of the Desmoinesian Series along

the trace of the fault (Plate I). The Mulberry Fault coincides with the approximate hinge

line of the Arkoma Basin (Woncik, 1968, p.1641) and the area just to the north of the

fault is considered to be the northern margin of the basin. The Mulberry Fault separates

the Arkansas River Valley Province from the flanks of the Ozark Uplift.

The Mulberry Fault is a normal fault, dovrothrown to the south (Plate I). It crosses

through the study area from Section 9, T.I IN., R. 27E., in a southwesterly direction.

The fault turns abruptly southward in Section 34, T.IIN., R.25E., and continues in this
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general direction beyond the bounds of this report. In the eastern part of the study area,

throw is estimated to exceed 5500 feet (Plate II). In the western part of the report, near

the Gans anticline, throw diminishes to approximately 3500 feet (Plate II).

Several drag folds fanned against the fault on the upthrown side. In Section IS, T

liN., R. 26E., one of these structures is mapped (Plate I).

Along the trace of the fault, significant drag folding can be seen at some localities

(Figure 14). Strata on the downthrown side of the fault dip as much as 30 degrees.

Strata on the upthrown side, adjoining the main fault trace, show a wide range of dips,

most of which are less than 12 degrees.

Camp Creek Fault

A small fault was mapped in the valley of Camp Creek (Plate I, Section 16, TIIN.,

R.26E.). In the southeast quarter of Section 17, T11N., R.26E., where this fault

intersects the Mulberry Fault, drag folding and dip reversal were observed (Figure L5).

These beds are significantly deformed (Figure 16). This fault can be projected northward

to the Muldrow Lake Dam, in Section 9, TI1N., R.26E; on the evidence of reversal of

regional dip, most probably attributable to drag folding on the downthrown limb. North

of the lake exposures are covered and the fault is not traceable.

Akins Fault

The Akins Fault extends through the study area from Section 18, TI2N., R.25E., on

the west to Section I, TI2N., R.25E., on the east. It fonns the southern boundary of the

so-called Brushy Mountain Structure. It is a normal faUlt, downthrown to the south.

According to White (1955, p. 20), on the northern block south dip is increased by drag
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near the fault; at these places dips are as high as 38 degrees. In the subsurface, data were

not sufficient for detennination of throw.

Figure 14. Drag folding in strata near the trace of the Mulberry Fault
(NW/4, Section 18, T.IIN., R.26E.).
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Figure 15. Drag folding in strata near the trace of the Camp Creek Fault
(Section 17, T. llN., R. 26E.).

Figure 16. Deformed strata near Camp Creek Fault (Section 17, T. ]] N.,
R.26E.).
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Greasy Creek Fault

The Greasy Creek Fault extends southward through the study area from Section 3, T

12N., R.26E., to Section 21, TIIN., R.27E and beyond. It is the most prominent

structural feature in the northeastern part of the study area. The Greasy Creek Fault was

mapped by Branson (1954). White (1955) also mapped the fault in his report on the

Brushy Mountain Structure (1955). However, neither author found significant evidence

to support the eastward extension of the fault into the area of this report. White (1955,

p.20) stated that neither the Greasy Creek Fault nor drag associated with it were found

east of the area of intersection of the Akins and Greasy Creek Faults, in Section 19, T

l3N., R.26E. White (1955) described the fault as having a surface expression of a fault

line scarp passing into folding.

The Greasy Creek Fault is a normal fault downthrown to the north. In the area of this

report the fault is manifest by local anticlinal flexures along the fault trace (Plate I). Dip

reversal was the primary form ofevidence used in the identification of this fault. In

Strata on the downthrown side of the fault dip locally as much as 21 degrees (Figure 17).

In strata on the upthrown side of the fault, dip is highly varied, but most beds dip less

than 12 degrees (Figure 18). Data were not sufficient for determination of throw.

However, from subsurface mapping and balancing of contours, displacement along the

fault is estimated to be less than 200 feet. Throw probably diminishes in a short distance

eastward.

Pine Mountain Fault

A nonnal fault, downthrown to the east, was mapped from Section 2, TI2N., R.26E.,

to the NW ~ of Section 30, TI2N., R.26E. (Plate 1). This fault is interpreted as
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Figure 17. Northeast-dipping strata on downthrown block of Greasy Creek Fault
(Plate I, NE i4, Section 18, T.12N., R.27E.).
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Figure 18. Southwest dipping strata along upthrown block of Greasy Creek Fault
(Plate I, SE ~ , Section 12, T.12N., R.26E.).
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intersecting the Greasy Creek Fault in Section 2, T.12N., R.26E. (Plate I). Along the

trace of the fault, drag folds can be seen in outcrops. Drag folding on the downthrown

side of the fault is shown by dips as much as 15 degrees (Figure 19). Exposures are onJy

several, and it is difficult to detennine whetherrocks are in place. Locally, strata on the

upthrOVill side of the fault dip from 5 to 12 degrees to the southwest.

Folds and Flexures

Liberty Anticline

A small anticlinal flexure that extends from Section 27, T12N., R.26E., through

Section 25, T12N., R.26E., can be mapped on aerial photographs and topographic maps.

The anticline trends northeastward, but it appears to be tilted to the northwest. In the

field, most strata are covered; this fold is difficult to map. Interpretations are based

largely on geomorphic evidence.

In the subsurface, a nonnal fault with approximately 150 feet of throw is discernible

in wireline logs of the Quapaw Oil and Gas [nc., O'neal No.1, in Section 26, T. 12N., R.

26E. The wellbore cut the fault at 1180 feet measured depth. When projected to the

surface at a 45 degree angle, the fault approximately coincides with the axis of the

anticline, as mapped at the surface.

Little Skin Syncline

Two small synclinal flexures were mapped along Little Skin Bayou in Sections 28 and

29, TI2N., R.26E., and in Section 12, T.l1N., R.25E., through Sections 7 and 6, T.

liN., R.26E. (Plate I). Dips as great as 12 degrees were recorded on the eastern side of
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Figure 19. Drag folds in sandstone near trace of the Pine Mountain Fault
(Plate I, Section 18, T.12N., R.26E.)

Figure 20. Sandstone dike (?) in defonncd shale ( NE, NE, SE, Section, 29
T.12 N., R.26E.)
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the structure (Figure 21). On the western limb, dip toward the axis does not exceed 4

degrees. These flexures probably are a result of minor defonnation along small

northeast-trending nonnal faults with small vertical displacement.

Long Anticline

A small anticlinal flexure was mapped from Section 29, T12N., R.26E., to Section

21, T 12N., R.26E. (Plate I). This flexure coincides with the approximate traces of small

displacement-nonnal faults mapped northeastward from Section 15, TIIN., R.25E., to

Section 36, TIIN., R.26E., on the south, and from Section 2, T.12N., R.26E., to Section

15, T.12N., R.26E., on the north (Plate I). The Long Anticline may have fonned in

response to movement on a system of deep-seated faults that extend northeastward

Gans Anticline

The northeastern nose of the is just west of the community of Gans, in

Section 32, Til N., R.25E. It extends northeastward to Section 26, TIl N., R.25E.

(Plate I). Strata dip northwestward and southeastward from the axis of this flexure.

Cowlington Syncline

The Cowlington Syncline trends from Section 35, TIIN., R.25E., northeastward

across the area of investigation (Plate II). The syncline is bounded by the Mulberry Fault

on the north and an unnamed nonnal fault on the south (Plate II). The Cowlington

Syncline plunges beneath Quaternary alluvium of the Arkansas River floodplain in

Section 17, TIlN., R.27E. (Plate I).
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Figure 21. Dipping strata on eastern limb of Little Skin Syncline. rn upper
photograph, view is north-northwest; in lower photograph strata
dip northwestward (Plate I, E. Yl, Section 28, T 12 N, R. 26 E.)
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Milton Anticline

The Milton Anticline is associated with a large upthrown fault block complicated by

localized faulting (Plate II). The axis of the Milton Anticline extends northeastward

from Section 31, T.II N., R.26E., across the southern part of the report to Section 34, T.

11 N., R.27E., where it extends beyond the bounds of the study area into Arkansas

(Plate II). This broad asymmetrical fold is bounded by normal faults on the north and

south. On the north it abuts the Cowlington Syncline. .

General Conclusions

Faults and folds in the study are results of several kinds of events. Extensional forces

generated during the opening and filling of the Arkoma Basin developed an overall horst­

and-graben pattern. Compressional forces that accompanied the Ouachita orogeny and

subsequent closing of the Arkoma Basin complicated these features.
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CHAPTER V

PETROLEUM GEOLOGY

Introduction

All commercial gas fields are in the eastern and southeastern parts of Sequoyah

County (Figure 22). To date, approximately 147 Bcf of natural gas has been recovered.

Several fonnations and groups produce: Arbuckle, Simpson, Hunton, Penters Chert,

Boone, Cromwell, Brentwood, Spiro, Cecil Series, Alma, and the Brent. Production

primarily is dry methane gas, but condensate is produced from some zones. Also, oil has

been produced from the Brent.

The Cromwell Sandstone is the most productive formation in the study area. The

Spiro Sandstone and the Hunton are also significant producers.

Trapping Mechanisms

Each gas fiel d studied is structurally controlled; definite closed structure seems to be

required for the entrapment of gas. Areal distribution ofreservoir rocks is important but

secondary.

Natural Gas Reservoirs

Gas has been recovered in profitable quantities from rocks of Ordovician through

Atokan age in the area of this report. Most gas has been obtained from sandstone

reservoirs of Morrowan age. However, rocks of the Hunton and Atokan (Figure 7) also
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Figure 22, Sequoyah County gas fields and cumulative production,
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have produced in commercial quantities. The Cromwell Sandstone and Spiro Sandstone

(Figure 7) were briefly studied in an effort to understand the stratigraphy of these

reservoIrs.

Cromwell Sandstone

The Cromwell Sandstone is the most prolific reservoir on the northern shelf of the

Arkoma Basin and in the area of this report. The Cromwell was deposited within a

transgressive systems tract (Manger and Zachry, 1998, p. 6). Figure 23 illustrates the

paleogeography of the area during the early Morrowan. In the study area the Cromwell

Sandstone is light gray, fine grained, calcareous sandstone.

An isolith map (Plate V) as well as Stratigraphic Cross Sections (Plates III and IV)

were constructed in order to illustrate the geometry and extent of the Cromwell. In this

report, the Cromwell is interpreted as having been deposited in a high destructive, tide

dominated-deltaic setting. The cross-sections (Plates III and [V) and the isolith map,

(Plate V) provide evidence of thick channel-fill deposits as well as tidal-flat deposits.

Figure 24 illustrates typical well log responses associated with the Cromwell Sandstone

in this area. The characteristic box-shaped log signature is suggestive of a channel-fill

facies whereas the serrated, low gamma ray and low spontaneous potential curves are

suggestive of a delta plain or other low-energy environment.

An in-depth study of depositional environments was not performed. Previous

investigations (Abollo, 1995~ Jefferies, 1982) covered this subject..

Spiro Sandstone

The Spiro Sandstone is very productive of natural gas in the Arkoma Basin. It is
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Figure 23. Early Morrowan paleogeograpy (from Sutherland, 1988a, p. 1793).
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better developed to the south of this study area.

The basal Atoka Spiro Sandstone was deposited on the erosional surface of the post­

Morrowan unconformity. These sands were deposited in pre-transgressive channel

systems (Foster Channel sands) and in widespread coastal sand complexes (Zachry, 1984,

p. 16). As Atokan seas transgressed ooto the Arkoma shelf sedimentation was dominated

by wave-dominated prograding delta complexes. Paleogeography of the early Atokan is

illustrated in Figure 25.

Two distinctive facies were recognized within the Spiro interval (Figure 26). A fining

upward sequence of the Spi ro is recognizable in logs of several wells. These sequences

were interpreted as being a Foster-channel type facies. Coarsening-upward sequences,

were interpreted as having been deposited in a prograding delta setting.

Gas Fields

Redland Field

The Redland Field (Figure 22) has produced 80 BCF of natural gas; it is the largest

field in the county. Its northern extent is in the southern part ofT. 1IN., R.26E. The field

was developed on the Milton Anticline and most of the production is from the Cromwell

Sandstone and the Spiro Sandstone (Figure 7).

Peno Field

The Peno Field (Paw-Paw) (Figure 22) has produced 57 BCF of natural gas; it is the

second-largest field in the county. It is on the northern end of the Milton Anticlme in T

11 N., R.27E. Primary production is from the Cromwell Sandstone. The Hunton, Cecil
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Figure 25. Early Atokan paleogeography (From Sutherland, 1988a, p. 1795).
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Series (Figure 7) and the Alma produce in the field.

The discovery well of the field was the Mobil Oil No.1 Miriam Rogers, drilled in

February, 1968. It is located in SE SW NE of Section 32, TIl N, R.27 E. The well was

completed in the Cromwell from perforations at 5234-5306 feet and in the Hunton from

perforations at 5761-5789 feet and 5835-5844 feet. Initial production was gauged at

2157 Mcfgd on a 14/64 choke. Flowing tubing pressure was gauged at 788 psi. As of

April, 1998, the well had produced 6.55 RCF and was still producing 484 Mcfgd.

Greasy Creek Field

The Greasy Creek Field (Figure 22) is in the northeastern part ofTI2N., R.26E., and

in the central part of TI2N., R.27E. The discovery well of the field was the Hoover &

Wilson No.1 Pine Mountain, completed in January, 1996.

The Pine Mountain No. 1 is in the SE SE SE of Section 11, T 12N, R.26E. The well

encountered overpressured Cromwell Sandstone at 1800 feet and caught on fire; the

drilling rig was destroyed. When the well was completed, from perforations at 1822­

1852 feet, in the Cromwell, initial production was gauged at 6600 Mcfgpd on a 48/64

inch choke. Flowing tubing pressure was gauged at 440 psi. As of April 1998, the well

had produced 111 MMcfg and was producing 595 Mcfgd.

The Greasy Creek Field is defined by the intersection of the Pine Mountain Fault and

the intersection of the Liberty "Anticline fault" with the Greasy Creek Fault (Plate I).

Closure against faults is fonned at these intersections, creating two small gas fields

(Plate II).

Primary production is from the Cromwell Sandstone; other zones include the Boone,

and the Cecil Series (Figure 7).

At the time of the compilation of this report, the Greasy Creek field had produced
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approximately 2 BCF. Ultimate recovery from the field is estimated to be greater than 5

BCF.

Gans Field

Gas was discovered on the flanks of the Gans Anticline in 1924. The field is in

Sections 32 and 33, TIIN., R.25E., and Section 6, T.ION., R.25E. (Figure 22).

Production is primarily from Atokan Sandstones. The field has produced approximately

1BCF of natural gas.

Sallisaw SE

The Sallisaw Southeast field is on the Hickorynut Ridge Anticline in Sections 18 and 19,

TIIN., R.25E., and Sections 13,24 and 25, TIl N., R.24E. (Figure 22). Production is

from middle Atokan sandstones, from the Spiro and the Hunton.

Greenwood Junction Field

Gas was discovered in the Greenwood Junction Field (Figure 22) by the Citizens Gas

Company in 1928. The field is located in Sections 4 and 5, TIl N., R.27E.and Sections

28 and 33, TI2N., R.27E. Accurate data concerning daily or monthly production are not

available; only infonnation about cumulative production was obtained. Correlation of

lithologic descriptions, from completion reports, compared to typical wireIine logs;

revealed that production probably was from the Ralph Barton zone of the Cecil Series in

the lower Atoka (Figure 7).

An accurate interpretation of the factors responsible for entrapment of gas in this field
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was difficult to obtain. The field seems to be either an anticlinal fold fonned in response

to the Mulberry Fault or an upthrown block fonned by intersection of the Greasy Creek

Fault and the Mulberry Fault. Yale Oil recently made a discovery in this field, but

production infonnation has not yet been released.

Roland Northwest Field

The Roland Northwest Field was discovered by Citizens Gas Company in 1926. The

field is located in Section 15, T.Il N., R.26E. Only data about cumulative production

was available. The field produces from an anticlinal trap on the upthrown side of the

Mulberry Fault.

Opportunities for Development of Gas Fields

Most future opportunity exists in the exploitation of deeper reservoirs within

established fields. Detailed subsurface mapping as well as the acquisition of modem

seismic data may aid In the mapping ofanticlinaJ closure in these reservoirs. Also, infill

drilling in these fields may bring about the maximal recovery of reservt:s in established

reservoirs. Other opportunities exist in the testing of smaller anticlines and fault blocks

expressed at the surface. Proper imaging of these structures may require the acquisition

of modem seismic data. Opportunity also exists in the development of small reservoirs

in Sandstones of the Atoka, some traps in which seem to be stratigraphically controlled.

Most of these reservoirs are noncommercial, but increase in natural-gas prices, coupled

with more economical dnlJing procedures, may warrant their development.
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CHAPTER VI

DISCOVERIES AND CONCLUSIONS

Discoveries

Faults

Several faults not mentioned in previous publications were mapped. Greasy Creek

Fault was interpreted to extend southeastward from Section 19, TI3N., R.26E., (White,

1955, Geologic Map) into the study area in Section 3, T12N., 26E., through Section 21,

T 12N., R.27E, and beyond. A fault was interpreted along Camp Creek. This fault was

mapped from Section 20, T lIN., R.26E., northeastward to Section 9, T11N., R.26E. A

fault was interpreted along Wilson Branch. This fault was mapped from Section IS,

Til N., R.25E., northeastward to Section 36, T 12N., R.25E. A small fault was

interpreted and mapped from Section 1J, TIl N., R.25E., northeastward to Section 3 J,

T.IIN., R.25E. A small fault was interpreted along Briar Creek and mapped from

Section 15, T 12N., R.26E., northeastward to Section 2, T 12N., R.26E.

Flexures

Several small folds not mentioned in previous publications were mapped. Liberty

Anticline was interpreted and mapped from Section 27, T12N., R.26E through Section

25, T 12N., R.26E. A syncline was interpreted and mapped along the approximate

drainage of LittJe Skin Bayou from Section 12, TI1N., R.25E., northeastward to Section

6, TIl N., R.26E., and Section 29, T J 2N., R.26E., northeastward to Section 28, T 12N.,
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R.26E. Long Anticline was interpreted and mapped from Section 29, T.12N., R.26E.,

northeastward to Section 21, T.12N., R.26E.

Conclusions

1. Some folds and faults expressed at the surface can be projected into the subsurface

and mapped effectively. In this study, only prominent features were mapped; more

detailed surface mapping would provide a better understanding of the structural

geology.

2. Most outcrops are covered, and data obtained from them is often uncertain. It is

difficult to determine whether strata are in place. At most localities dips are less than

five degrees: comparatively few exceed ten degrees. Strata of the middle Atoka,

which is exposed in most of the study area, are very similar in lithology throughout the

interval; thus differentiation among units is difficult. Dip reversal is the most

definitive criterion for mapping faults at the surface. Steepened dip generally is on the

downthrown blocks of faults, probably as a result of drag.

3. Several potential reservoirs are distributed within this area. The Cromwell Sandstone

and the Spiro Sandstone are the most significant, although deeper reservoirs exist.

The Cromwell Sandstone is unevenly distributed in the study area. Evidence suggests

that at many places the Cromwell is a channel-fill facies. Two distinct facies were

recognized within the Spiro interval. The upper zone is well distributed and forms a

"blanket sand" throughout the study area. The lower zone (Foster Channel Sands) are

sparsely distributed in the study area. This Interval consists of a fining upward

sequence; the rocks are interpreted as having been deposited in a fluvial deltaic

setting.

4. Production of natural gas primarily is from traps developed on anticlinal flexures and
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upthrown fault blocks.
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Arkansas, Fayetteville, Arkansas in December 1995. Completed the
Requirements for the Master of Science degree with a major in Geology at
Oklahoma State University in May, 1999.

Experience: Employed by University of Arkansas, Department of Geology as an
undergraduate. Employed by Oklahoma State University as a graduate research.
assistant and as a graduate teaching assistant. Employed by Marathon Oil
Company as an Intern Geologist. Employed by Barrett Resources Corporation
as an Associate GeologisL. Employed by Stephens Production Company as a
Geologist.

Professional Memberships: American Association of Petroleum Geologists, Tulsa
Geological Society, Ft. Smith Geological Society
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