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ABSTRACT OF THE DISSERTATION

A High-Performance Inner-Product Processor 
for Real and Complex Numbers

by

Guoping Wang
Doctor of Philosophy in Electrical and Computer Engineering 

University of Oklahoma, Norman, OK, 2003 
Dr. Monte P. Tull, Chair

A novel, high-performance fixed-point inner-product processor based on a 

redundant binary number system is investigated in this dissertation. This scheme 

deereases the number of partial products to 50%, while achieving better speed and 

area performanee, as well as providing pipeline extension opportunities. When 

modified Booth coding is used, partial products are redueed by almost 75%, thereby 

significantly reducing the multiplier addition depth. The design is applieable for 

digital signal and image processing applications that require real and/or complex 

numbers inner-product arithmetic, such as digital filters, correlation and convolution. 

This design is well suited for VLSI implementation and can also be embedded as an 

inner-product core inside a general purpose or DSP FPGA-based processor. Dynamic 

control of the computing structure permits different computations, such as a variety of 

inner-product real and complex number computations, parallel multiplication for real 

and complex numbers, and real and complex number division. The same strueture ean 

also be controlled to accept redundant binary number inputs for multiplication and 

inner-product computations. An improved 2’s-complement to redundant binary 

converter is also presented.
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Chapter 1 Introduction

Consider the definition of the inner-product. For two 

vectors A = and B = ,5^_j), the inner-produet of

A  and B  is defined as:

M-l
< A ,B >  = A {B *)  = J ] 4 B ;  (1.1)

>=0

In general, A. andB. may be real or complex numbers. A B *  denotes matrix

multiplication with the row vectors A and B considered as IxM  matrices, and (B*)^ 

denotes the conjugate transpose of B. In the traditional method, all of the multiplications 

are processed independently of one another, thereby requiring M  multiplications and M-1 

additions. To obtain high-performance circuit implementations of the inner-product, 

several salient features of Equation (1.1) can be utilized; namely, carry-free addition, 

high-speed multiplication, and parallel or pipelined multiplication and addition.

The application of redundant binary (RB) numbers was previously investigated 

for carry-free addition and fast multiplication. These techniques have proven to be easily 

laid out in VLSI and result in high-speed circuit implementations [l]-[4]. In this 

dissertation, high-performance and easily pipelined implementations of an inner-product 

processor are presented. The designs utilize RB numbers for achieving the carry-free 

addition of partial products. Redundant binary schemes are less viable in applications that 

require persistent conversion back to 2’s-complement [5]-[7], since this process is 

relatively slow due to an unavoidable carry propagation requirement. The overall 

motivation for this work is the design of a high-performance Complex Arithmetic Signal 

Processor (GASP) capable of offering novel extended inner-product operations. The



CASP design relies on the high-speed multiplication afforded by redundant binary 

techniques, while avoiding the relatively slow conversion back to 2’s-complement 

numbers until a final 2’s-complement result is necessary. Inherently, the CASP device 

provides intermediate register storage for redundant binary, as well as 2’s-complement 

numbers. The methods for implementing the core inner-product structure and general 

extensions are presented in this dissertation.

Inner-product computations play a central role in digital signal processing, most 

often in digital filters, signal correlation, convolution, FFT, etc. Current implementations 

of inner-product computations include the following methods: 1) general purpose 

processors, 2) digital signal processor devices, such as Texas Instruments TMS320C60, 

3) VLSI devices, such as FPGAs or ASICs. Various researchers have investigated the 

implementation of inner-product processors. Implementations include array multipliers 

[8],[9], VLSI Residue Number System architecture [10], serial implementations 

[II],[12], distributed arithmetic [13],[14], carry-save addition [15]-[19], specific DSP 

processor and FPGA [20]-[27], redundant binary implementations [28]-[30].

Complex number arithmetic computation is a key arithmetic feature required in 

modem digital communication and optical systems [31]-[38]. Many algorithms based on 

convolution, correlation, and complex number filters require complex number 

multiplication and high-speed inner-product computation. These applications require 

efficient representation and manipulation of complex numbers together with real 

numbers. Considerable research exists for hardware implementations of complex number 

systems [39]-[54] and representations of complex numbers in different radices [55]-[68].



The redundant binary (RB) representation is one of the signed-digit number 

representations originally introduced by Avizienis [69] for achieving the carry- 

propagation-ffee addition. RB numbers differ from the conventional 2’s-complement 

representation in that the individual digits comprising a number may have negative values 

as well as positive values. High-speed VLSI multiplication algorithms, which are based 

on redundant binary numbers, are proposed in [1],[3],[4]. Since integer numbers in most 

digital systems are represented in 2’s-eomplement form, a converter is needed to convert 

a redundant binary number to a 2 ’s-eomplement number in the last step. Different 

implementations of this converter have been proposed in [5], [7], [12], [70]-[74].

Although division is an infrequent operation, it has been shown [75] that ignoring 

its hardware implementation can result in significant system performance degradation for 

many applications. Extensive literature describes the theory of division [75]-[90]. 

Division algorithms can be generally divided into the following classes: digit recurrence, 

functional iteration, table look-up and variable latency [84]. Choosing an optimal design 

of a divider depends heavily upon its requirements for area and speed.

In the following sections, these hardware implementations and research issues 

will be reviewed and investigated.

1.1 Inner-Product Implementation by the General Purpose 
Processors

General purpose processors, such as Intel Pentium and 80x86, Motorola 68000, 

AMD K6 and K7, etc., ean perform different algorithms using combinations of various 

machine instructions. The systems built with these programmable processors are 

adaptable to different applications and easily upgradeable to changing requirements.



Even with such potential advantages, traditional programmable processors have not been 

widely used for high-speed inner-product computation because of their limited 

performance. For example, in order to find the inner-product of two vectors A  and B, the 

flowchart in Figure 1-1 is usually employed.

IBegin
Sum<=0

Register 1 <= A 
Register 2 <= B 
Register 3 <= Sum

C <= A*B 
Sum<=Sum+C

Yes
Continue?

No

Figure 1-1. Flowchart of Inner-Product Computation by the General Purpose
Processors

In a general purpose (GP) processor, all these computations are sequential and 

each load, multiplication or summation requires one or more clock cycles. Traditional 

multiplication and accumulation methods are generally used. Some GP processors 

provide additional hardware features for inner-product calculations. Among these 

processors, the Pentium MMX processor contains a super scalar architecture, which 

includes; 1) enhanced pipelines 2) two pipelined integer units capable of two instructions



per clock, as well as other features. With the new architecture, the Pentium MMX can 

compute inner-products more efficiently than other general purpose processors. The 

diagram of inner-product implementation by the Pentium MMX processor is shown as 

Figure 1-2 [91];

Vector Dot Product
. a vector

|a5[a4|B3|a2|a1 |aO |
Step 1

|b5|b4|b3|b2[b1 |bO

Step 2

Step 3

Step 4

MMX “ reg is te r

- b v e c to r

MMX™ reg iste r

|b3 |b2 |b1 |bU |b3 b2 b1 bO

a3*b3+a2*b2 a1 *b1 +aO*bO

a3*b3+a2*b2 «1*b1+aO*bO
+

E prev. loops E prev. loops

Figure 1-2. Inner-Product Implementation in Pentium MMX Processor [91]

Sample code [91] for an inner-product implementation using Pentium assembly

language is shown Figure 1-3:

l o o p  :

I  iiiovq  HHO ,  [ H _ve c t  o r  ]

Z  m ovq  H H l, [ b _ v e c t o r ]

3 praaddwd MMO, MMi

4 p a d d d  H H 7, HHO

5 a d d  [ a _ v e c t o r ] ,  8

6 a d d  [ b _ v e c t o r ] ,  8

7 su b  [ c o u n t ] ,  4

8 j n z  l o o p

9 m ovq  HHO, HH7

1 0  p s r l q  HH7, 32

I I  p a d d d  H H 7, HHO

1 2  m ovd  m em _ v d p , HH7

Figure 1-3. Sample Code for an Inner-Product by Pentium MMX [91]



1.2 Inner-Product Implementation by Digital Signal 
Processing Processors

DSP processors are specifically designed for DSP applications. One typical DSP 

processor is the Texas Instruments TMS320C60. It is a highly integrated, multiprocessor, 

single chip device specifically designed for DSP applications. The TMS320C60 

integrates the following components onto a single device [92]:

1. a single 32-bit RISC master processor (MP) with an integral IEEE-754 

floating point unit

2. four 32-bit integer DSP parallel processors (PP)

3. a sophisticated direct memory access (DMA) transfer controller (TC)

4. a video controller (VC)

5. 50K bytes of on-chip SRAM memory

The five processors on the TMS320C60, i.e. the MP and four PPs, can be 

configured for a variety of multiple-instruction, multiple-data, multiple-instruction, 

single-data, or single-instruction, multiple-data modes. The PPs, similar to most DSPs, 

perform all operations, except division, in a single cycle. For example, it can perform the 

parallel operations, A*B =>C and A+I => A in one clock cycle, while in a general 

purpose processor, at least two cycles are required. Sample code of the fixed-point inner- 

product computation is shown Figure 1-4 [92].

ZERO .L1 A7

LDH .01 *A4++,A2 ;load a-, from memory

LDH .01 *A3++,A5 ;load bi from memory

MPY .Ml A2,A5,A6 : 3i * bi

AOO .LI A6,A7,A7 ; sum += (a, * bj

SUB .81 A1,1 ,A1 ; decrement loop counter

B .82 LOOP ; branch to loop[A1]

Figure 1-4. Sample Code of the Fixed-Point Inner-Product by TMS 320C60 [92]



While DSP processors allow flexibility, for some applications that require high 

speed inner-produet computation, FPGAs or ASICs can provide higher performance 

options.

1.3 Other Inner-Product Processor Implementation Methods

Besides the inner-product implementations on general purpose processors and 

DSP processors, other arithmetic and implementations of inner-product processors have 

been investigated. Ahmad and Poomalah [8] proposed an inner-produet implementation 

using array multipliers. Although the array multipliers provide convenient layout for 

VLSI, this method may not be a good option in high-performance requirements for inner- 

product computation because of its high latency. Fahmi, et al., [11] and Haynal and 

Parhami [12] investigated serial implementations of an inner-product processor. The 

designs result in a small area but has a high latency. Inner-produet implementations based 

on distributed arithmetic are proposed by Burleson et al, [13] and Vega, et al, [14]. 

Various inner-product implementations using carry-save adders are investigated by many 

researchers [15]-[19]. Application specific inner-product processors are studied in [21]- 

[25] and redundant binary implementations are proposed in [28],[29]. In this research, 

which is focused upon the high-performance implementation of an inner-product 

processor, only implementations of high-performance inner-product processors will be 

reviewed and compared.

With a carry-save adder structure, Kazakova [15] investigated a fast and low- 

power three-dimensional inner-product processor. This processor consists of Booth 

encoders, a Wallace reduction tree, and a final two-operand adder. Its structure is shown 

in Figure 1-5.



Ax Bx Ay By Az Bz

Booth
Encoder

Booth
Encoder

Booth
Encoder

Partial Product 
Generator

Partial Product 
Generator

Partial Product 
Generator

T w o Operand Adder

Wallace Tree

Dot Product

Figure 1-5, Kazakova’s Inner-Product Processor Architecture [15]

A novel approach for high-performance inner-produet proeessor, which is 

dynamically reconfigurable, was proposed by Lin [24],[25], This processor mainly 

consists of an 8 X 8  or 4 X 4 array of small multipliers plus two or three arrays of adders. 

It requires very simple reconfigurable components. The entire summation network can be 

reconfigured by using a few control bits for the desired computations, where the 

reconfiguration can be done dynamically. The design is regular, modular, and, it can 

easily be pipelined. The diagram is shown in Figure 1-6.

Since the implementation of an array multiplier has a high latency, compared to 

the design of carry-save addition and redundant binary representation, this proposed 

inner-product processor has a high latency.



4 X 4 4 X 4 4 X 4 4 X 4
M ultip lier M u ltip lie r M u ltip lie r M ultip lie r

A rray A rray A rray A rray

7
C Reconfïgurable S w itch

Final Adder

Figure 1-6. Lin’s Reconfigurable Inner-Product Processor [24],[25]

]Vtultiplier 'V'

Y Register

4
Booth

Encoders

TVTultiplier X

X Register

r -
Booth Encoders 

(4 RB Partial Product 
Generations)

1 r y r
Pineline Register

Pineline Register

RB to 2’S-complement 
Converter

Output

Figure 1-7. A RB MAC (Multiply and Accumulate) by Huang [2]

Based upon redundant binary numbers and the Booth eneoding, Huang [2]

proposed a high-performanee, two-stage pipelined MAC (Multiply and Aecumulate) unit,



which is shown in Figure 1-7. Later, Sacristan [29] further developed this structure as a 

reusable inner-product unit for multipliers with different sizes of word length.

Baik et al. [28] proposed a redundant binary implementation of an FIR filter. The 

diagram is shown in Figure 1-8 (See Section 2.1.4. for further discussion);

Out

RB-lo-NB
Converter

Figure 1-8. Baik’s Redundant Binary Filter Implementation [28]

1.4 Multiplier Implementation Review

Multiplication is the key operation in the implementation of inner-product 

computation. Three popular implementations for multipliers are an array multiplier 

[85],[93], a multiplier using a Wallace tree [94] and a multiplier using redundant binary 

number representation [1],[4]. An array multiplier has good repeatability of unit cells and 

is very regular in its structure. It uses only short wires that eonneet one full adder to 

horizontally, vertically, or diagonally adjacent full adders. Thus, it results in a very 

simple and efficient layout in VLSI implementation. However, the A-bit multiplication 

time is linearly proportional to N. This method requires a long computation time for 

larger TV’s. Figure 1-9 [85] is a design of 5x5 unsigned multiplier:

10



Full
A dder

Full
A dder

Full
A dder

Full
A dder

Figure 1-9. Design of a 5 x5  Array Multiplier [85],[93]

The Wallace-tree method is commonly used to realize high-speed multiplication. 

The basic cell in Wallace-tree multiplication is 3-to-2 or 4-to-2 CSA (Carry Save Adder), 

also called 3:2 or 4:2 counter. A 3:2 counter can be realized by a full adder, which 

reduces three numbers to two numbers while a 4:2 counter can be realized by two 3:2 

counters, as shown in Figure 1-10 [85]. Figure 1-11 and Figure 1-12 are 4x4  multipliers, 

using 3:2 counters and 4:2 counters.

3:2 CSA

Figure 1-10. 4:2 Counter Using 3:2 Counter [94]
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Binary Partial Products

3:2 CSA

3:2 CSA 3:2 CSA

3:2 CSA

C arry  LookAhead Adder

P roduct

Figure 1-11. 3:2 Counter Based 4 x 4  Multiplier [85]

Binary Partial Products

Product

4 2  Counter

4 2  Counter

4 2  Counter

Carry LookAhead Adder

Figure 1-12. 4:2 Counter Based 4 x 4  Multiplier [85]

The traditional Wallace-tree method uses a 3:2 counter. This scheme results in a 

complicated interconnection between three-input/two-output counters. This makes the 

VLSI layout difficult and inefficient. The extended layout process increases the design 

complexity. As the multipliers increase in bit length, the interconnection becomes 

exponentially complicated. To solve this problem with conventional Wallace-trees, the 

following two methods have been proposed. One method is to use 4:2 counters [94] 

instead of 3:2 counters [94]. The use of 4:2 counters simplifies the interconnection

12



drastically because the partial produets are added using a binary tree. Another method is 

to use redundant binary representation for the partial products [1], [3], [4], The use of the 

RB simplifies the interconneetion because the RB partial products can be summed using 

an RB adder tree. The A-bit multiplication time of RB multipliers and Wallace-tree 

multipliers is proportional to logiA The physical layout of a RB multiplier has good 

repeatability. The RB multiplier does not require any optional sign bits for adding partial 

products. Makino’s research [3] indicates that a 54x54-bit multiplier using redundant 

binary number representation is faster than the eonventional 4:2 counter-based multiplier 

and has lower power dissipation. The power dissipation of 540 mW is estimated for the 

54x54 RB multiplier operating at 100 MHz. These figures are more than 12% faster 

speed and 38% lower power than the conventional CSA multipliers.

Using redundant binary representation in our research results in an easily 

eontrolled/reconfigurable high-performance eomputing structure capable of handling 

various computations for both real and complex numbers.

1.5 The Redundant Binary Number System

Redundant binary (RB) representation is one of the signed-digit (SD) number 

systems originally introduced by Avizienis [69], which provides carry-propagation-ffee 

(CPF) addition. In a signed-digit system, the individual digits have negative as well as 

positive values. Given a radix-(r) signed-digit number, each digit of the signed-digit 

number can take one of the following 2a + 1 values:

{—a ,. ..,—1,0,1,...,a} (1.2)

where the magnitude of a positive integer a  must be within the following interval:
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— < a < r - l  (1.3)
_2j

The radix-(2) signed-digit system (Redundant Binary (RB) representation) uses 

the digit set {-1, 0, 1} to represent numbers. The SD number system is also called 

redundant because a given integer number may have more than one representation. For 

example, the radix-(2) integer, (7)io, can be represented in several ways, e.g., [0 1 1 1]r b , 

[10 0 -1]r b , or [1 -1 1 1] RB. Based on the SD redundancy property, addition rules can be 

devised so that carry propagation is limited to only one digit position, thereby eliminating 

the possibility of a carry from the LSD (Least-Significant-Digit) to the MSD (Most- 

Significant-Digit). In a RB adder circuit implementation, the addition time is fixed and 

does not depend on the word length. Also, no explicit mechanism to handle the overall 

sign of a signed-digit number is required since it is determined by the most significant 

non-zero digit. Since the multiplication of two numbers is generally performed by the 

addition of partial produets, the carry-propagation-free (CPF) feature of the RB 

arithmetic can be used to design high-speed multipliers [1], [3], [4] and multiply-and- 

accumulate (MAC) units [2].

The algoritbmie rules for the RB addition are defined by Takagi, et al., [4]. 

Basieally, two steps are required. In the first step, the intermediate carry-out, e {-1, 0, 

I}, and the intermediate sum digit, e (-1, 0, 1}, is generated at each position and 

satisfy the equation:

(1.4)

where a. and /?; are the RB augend and addend digits, respectively. Note that for 

increased speed, the circuit implementation may utilize the next lower order digits.
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and/?, I,to determine the earry-out from that digit position. Table 1-A describes 

these rules of step 1 in detail. In the second step, the final sum digit is obtained at 

each position by adding the intermediate sum digit, < J ., and the intermediate carry, , 

from the next-lower-order position, without generating a carry. That is,

C = 0 - , ( 1 . 5 )

Table 1-A. Computation Rules for the First Step in Carry-Propagation-Free
Addition for RB Numbers [1]

Augend Addend Digits at the next- Intermediate Intermediate
Type digit digit lower-order carry sum digit

a, A position
i-l 5 A-1 )

(%,) ((T,)

<1> 1 1 1 0

<2> 1 0 Both are negative 0 1
0 1 All other cases I -1

<3> 0 0 0 0

<4> 1
-1

-1
1 0 0

<5> 0 -1 Both are negative -1 1
-1 0 All other cases 0 -1

<6> -1 -1 -1 0

In general, throughout this dissertation, RB numbers are expressed using Greek 

symbols.

1.6 The Conversion of 2 ’s-Compiement to Redundant 
Binary

A  limited precision RB number, A , can be derived from the addition of a pair of 

N-hit 2’s-complement numbers A and B [2].
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(A + B)^^ -  A - { - 8 )2̂  

= A — (i? + 1)

= A - B - l
r #-2 \
-aN -

Af-2

i=0 J  \  

" N - 2

(L(%
/=0 j

N - 2  \

V ,2 " - '+ 2 : '5 /2 '
V

= A - \

. 1=0

-1

-1

;=0 y

where (5̂ _, = -a^_, + = a,. -  h, for 0 < / < A/" -  2 , 2c is the 2’s-eomplement

operations, B is the rs-complement operations, b. is the bit-complement, and -1 can be

considered as a -1 carry-in to a subsequent RB addition. For inner-product calculations, 

the -1 correction is applied in the RB partial product adder tree.

The binary-signed digits can be encoded into binary in several ways. In this work, 

the binary signed digits{-1, 0 ,0, 1} are coded as {00, 01, 10, 11}, respectively, as given 

in Table 1-B. Another encoding method is to encode redundant binary number in signed- 

magnitude [28], that is, to encode (-1, 0,0, 1} as (11,00,10,01). It is less efficient to map 

2C to RB for signed-magnitude encoding. See Section 2.1.4 for further discussions.

Table 1-B. Coding Table for Binary Signed Digits

a value Encoded a a*
-1 0 0
0 0 1
0 1 0
1 1 1
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Examining Equation (1.6), beginning with the S, term, the signed digits are 

encoded using the relationship, S. = a- - b -, where S. is a binary signed digit, S. e (-1,0,

1}. The mapping equations for S. and are [2],[49],[50]

S. -  a.

f b r O < ( < # - 2
(1.7)

Similarly, in the Most Significant Digit (MSD) term of Equation (1.6), is encoded 

with the mapping equations

(18 )

The structure of mapping the sum of two 2’s-complement binary numbers to a RB 

number is shown in Figure 1-13:

^N-l^N-2 ^N-2 Qq

s~ s;

Figure 1-13. Mapping from the Sum of Two 2’s-CompIement Numbers to a RB
Number

Note that a single 2’s-complement number. A, is converted directly into a RB 

number A in Equation (1.9):

=a,., (^,r=l ( 0 < ; < # - 2 )
(19 )
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For example, a 2’s-eomplement number (OOOOOlOl)̂ ,̂  is converted directly into a 

RB number (01 01 01 01 01 11 01 1%^.

The subtraction of two jV-bit 2’s-complement numbers can also be represented by 

a redundant binary number;

E = (A-B)2 , = 2̂  ̂ ' -I- ^  a,. 2' -f 2^ ' - ' ^ b .2'
i=o y V i=o y

= (-«A'-l * + X
i=0

’ + '^£ ,2 '
i=0

( 1.10)

where and £■ = a. -b^ for 0 < / < TV -  2 .

The mapping equations for the encoded g., (0 < / < TV-1) in Equation (1.10) are:

s t  =b: for 0 < / < TV -  2
and

—b*7V-1 ~  ^ * - 1

( 1.11)

(1.12)

The structure of mapping the subtraction of two 2’s-eomplement binary numbers 

to a RB number is shown in Figure 1-14.

^A^-l ̂ N-l ^N-2 ̂ N-2

Figure 1-14. Mapping from the Subtraction of Two 2’s-Complement Numbers to a
RB Number
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Based on this coding for RB numbers, the logic functions of a RBFA (RB full 

adder) and RBHA (RB half adder) are obtained [49] and shown in Table 1-C for the sum, 

z,, with inputs x and y. Boolean variables, g  and h, are used as intermediate variables to

simplify the equations for the carry, c, and sum, z. Note, in Table 1-C, the notation used 

is the same as [49] but corrects the RBHA equations found in [49].

Table 1-C. Logic Functions for RBFA and RBHA

RBFA RBHA

g. = (x: @ x+ ) @ (yr @ y / ) z: = (x: © x; ) © y
A, = x :x ; 4-y:y;

z,: =g,. ©c:_,
4̂- +

cT = x: + x/

Z/ - ^  (a'  ® A + (a~ ® x]^)x:x/
c: =(x,: +X.)(y7 +y+)

In this work, a novel, high-performance, fixed-point, inner-product processor 

based upon a redundant binary number system will be investigated. Similar to Balk’s [28] 

methods, this scheme decreases the number of partial products by 50%, while achieving 

better speed and area performance and providing pipeline extension opportunities. When 

modified Booth encoding is used, partial products are reduced by almost 75%, thereby 

significantly reducing the multiplier addition depth. This design is well suited for VLSI 

implementation, and it can also be embedded as an inner-product core inside a general 

purpose DSP FPGA-based processor. This inner-product processor can be easily 

reconfigured for different computations, such as real number inner-product computations, 

parallel real number multipliers, complex number multipliers, complex number inner-
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product processors, redundant binary multipliers, redundant binary inner-product 

processors, etc. Chapter 2 proposes a fixed-point number inner-product processor. 

Computational struetures for both real and complex number inner-products for both 2’s- 

complement and unsigned integers is presented. A new division method using the IP 

structure is investigated in Chapter 3. Two convergence division methods — 

Goldschimdt and Newton-Raphson are compared. Chapter 4 discusses extended 

computations, such as parallel multiplications, inner-product processors using the inner- 

product processor for real, complex and redundant binary numbers. In Chapter 5, an 

improved redundant binary number to 2’s-complement number converter is discussed. 

Chapter 6 provides a summary of contributions and future research directions for this 

work. The implementation of the redundant binary IP processor for real and complex 

number and the Goldschmidt division unit using the IP processor have been implemented 

using VHDL on Xilinx FPGA. The original contributions of this research are:

• IP processor reduces the number of partial products.

• A unified signed/unsigned 2’s-complement/RB multiplier is developed 

using this IP structure.

• With the same IP structure, a novel Goldschmidt high-performance 

division circuit is developed.

• This IP structure can be used to build a multi-purpose dynamical processor 

for real, complex and redundant binary number computations.

• An improved 2’s-complement to RB converter is proposed.
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Chapter 2 Inner-Product Processor of Real, Complex 
and Redundant Binary Numbers

2.1 Real Number inner-Product Computation
Consider an inner-product for anM  dimensional (M=even), Â -bit real vectors {N 

even), A and B, where ^  = (4>, 4 ’^2• • • -^m-\) B = ) with

4  ~ ^ N - 2 , i  ^ N - î , i  ^0,/) 4  ~  ^ N - 2 , i  ""^1,; A)., ) (^-l)

where 4  and B. are real numbers.

The real inner-product is defined as:

< A , B >  = (Aq ■■■ ) •  (^0 4  • • • ^M-2 ^M-\) = X 4 4  (2.2)
/=0

Two basic approaches exist for performing the necessary irmer-product 

multiplications using redundant binary arithmetic. The first method uses inline 

conversion or mapping of 2’s-complement partial products into a redundant binary 

number for each multiplication of A-B.. The second method combines or maps equivalent 

2’s-complement partial products into a redundant binary number across the 4 4  P^irs 

[49]. Both approaches are considered in the following sections.

2.1.1 Inline Partial Product Redundant Binary Inner-Product

Considering the simple case of M = 2 , 4 ) 4  + 4 4  , we first compute the 

redundant binary products for4 ) 4  and 4 4 ’ and then add the RB products together to 

produce the irmer-product. Redundant binary partial products are generated by mapping 

even/odd pairs of 2’s-complement partial product sums. For #-bit numbers, the product 

OÎAB is expanded in the following equations:
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N - 2  N - 2

+ ^a ,2 ')(-6 ^ _ ,2 ^ - ' + %]6,.2')
i=0 i=0

= (-a„_,*„2*-‘ + X a ,6 ,2 ')2 "  è,2"-‘ + |;« A 2 ') 2 ' +
/=0 i=0

(-^N-1^2^^ * + +(~^N-\h'^^ * + 2' )2  ̂+
/•=0 i=0

;=o 1=0

Denote the 2’s-complement partial products as;

+ ^ « A 2 ') 2 \  =(-«^_,2^2^-' -k ^ a A 2 ')2 '
i-O /-O

= (-a ^ _ A 2 ''- '-^ ^ ( ,A 2 ')2 ^  =(-a^_A 2"'-' + ̂ a A 2 ') 2 '
I-O i=0

PP«^2 = (-a„_,i„_;2*-' + ^ „ ,6 , . : 2 ' ) 2 ' - \  = K _ , V , 2 " - '- ^ i 'A _ ,2 ') 2 ' '- '
1=0 1=0

Consider the first N - 2  even/odd partial products, PP2J and PP2J+1, where

J=0,l,2,...,^^^^—^ .  To align the 2’s-complement partial products, the sign of the even 
2

partial products is extended, and a low order zero is appended to the odd partial products:

PP22 =(-!!»-,*,, 2”-' + |;a A y 2 ') 2 " '
1=0

H -^N -A j'^^  + ^N -A j^^  ' + X^'^2y2')2^-'

(2.4)

1=0

= (~^N-Aj+A^ +^N-2hj+A^ ’ + Ÿ j^ i-A j+ A  +0)2^-'
1=1

Combining even/odd 2’s-complement partial product pairs according to Equation 

(1.6), we have:
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i V - 1  __________________ 2j
PP̂ J + P 2̂̂ +, -  + <^N-Aj+\ )2^ + X  ̂ ^A j ~ <̂ ,-Aj+\ )2' + <̂0̂2J -1  - 1}2

/=1

=  +  Yĵ iaA' +  <^0,2;  - 1) 2^-'

where.

^N,2j ^N-Aj ^N-A2+1

o r . 2 . =  a .b ^ . - a , . _ , 6 2 , + ] ,  ! < ( < / / - !  ( 2 . 6 )

Eneoding the redundant binary eoefficients, or., using two binary bits, all but the final RB 

partial product is encoded as:

= 0,1, # - 4
..., 2 ’

— ^N-Aj-> ^N,2j~ ^N-Aj+\->

<22 = ^i,2j = ^i-A  2+1 ’

^0.2; -  ^ A  j ’ ^̂ 0,22 = 0

(2 7)
1 < ; < # - !

Now, consider the last two 2’s-complement partial products, PP,̂ _2 and :

PP,-2+PP«-, = (-«»-,V 22"+a»-,*»-i2* '"
1=0

J "  (2 .8)
= {{-^N-A^2 + %-l l̂V-l )2^ + X  (^A-2 ~ )2' + «0̂ A'-2 -  0}2^ ^

/-]

= f̂ N + X ^ '2 ' +^0
/=1

where,

&  = ^ 2  + (%iv-i V i ,  A = V 2 -  (̂ M̂ Ai-1, (1 ^ ^ -1 ) , ^ 0  = -  0 (2.9)

Encoding the redundant binary eoeffieients, yg., using two binary bits, the final RB 

partial product is:
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N ^ N-\^N-2-’ Pn

, p :  = a,_,è^_i, 1 < z < TV -1

A  “  ^(pN-2 ’ A  ~ ^

(2.10)

Figure 2-1 shows the RB implementation diagram of A^B^+A^B^ for 8-bit

numbers and Figure 2-2 shows the hardware implementation of A^B^+A^B  ̂ with the

inline redundant binary partial produet generation (RBPPG) using 2’s-complement 

even/odd partial products. If the final redundant binary adder (RBA) is bypassed, the 

circuit in Figure 2-2 can also perform the separate multiplications, A^B^ and A^B^.

M ultip licand M uttip licand

M ultiplier

RBPP23 R B PP23

P P 6

P P 7

Figure 2-1. Inline Partial Product RB Implementation of A^Bg + AjBj

Defining the redundant binary number Æ = A^jB^j -f , the general form

of the inline multiplication inner-product is given by;

M
M - \

< A, B>  -  ^  4 4  -  X  + Aj+\^2J+P -  X  4 (2 11)
j= 0 y=o
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Binary Number Partial Product 
Generator for A,)Bq

Binary Number Partial Product 
Generator for A ,

M il i i i i r r “X i
RBPPG

PPo PP| PPo PPl PP\.2 PPn-1 PPo PPl PPo PP| PPn-2 PPn-1

4 /  4 /  4 /  4 /  4 /  4 /
RB

Mapping
RB

Mapping
RB

Mapping
RB

Mapping
RB

Mapping
RB

Mapping

\  / 4 7

2's-Complement 
Partial Products

to RB Mapping

RBA RBA RBA RBA

RBA
V I

RBA

I f

RB Adder 
Tree

A,B1̂ 1

RBA

T
RB Sum of AoBq+AjBI

Figure 2-2. Inline Partial Product Structure of A^Bg + A,Bj

To realize the inner-product, all of the redundant binary numbers, J . ,  are added using a

redundant binary adder tree, and the final sum of the redundant binary numbers can be 

converted into a 2’s-eomplement number using a RB-NB converter [5],[7],[12]. Figure

2-3 depicts the overall architecture of the RB inner-produet circuit showing the RB adder 

tree, a RB accumulator, a RB-to-2 ’ s-complement converter, and additional data paths that 

might exist when the circuit is implemented in a DSP core.

25



RBA RBA

RBA

From  RB 
R e g is te r

RBA

i
RBA

T
RB A ccum ula to r

2-1

RBA

RBA

RB A dder T ree

RB To 2 's-C om pIem ent 
C o n v e rte r

To RB R e g is te r  
o r  M em ory

To 2 's-C om pIem en t 
R e g is te r  o r  M em ory

Figure 2-3. Overall Structure of the Redundant Binary Inner-Product

2.1.2 Cross Partial Product Redundant Binary inner-Product

An alternative method for mapping 2’s-eomplement partial products to redundant 

binary partial products is to combine like partial products across the AjBj and

pairs. The method derived here is similar to that provided by Shin and Jeon [50] for 

complex number multiplication. Consider the simple case of M=2, \ B ^  + Â B̂  , and 

expand it as;
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=  ' + X ‘̂ ' .o2 ')(-^a^-i,o2^  ' +  X ^ '.o2') +
/= 0  1=0

N - 2  N - 2

1=0 1=0

= 2 {ô -i,ô 7v-i,o 2 + ^  (~ î,o^N-\,o )2 + ̂ n-\,\^n-\,\ 2 + ^  )2 } +
1=0 /=0

^2'{6.(,(-a^_,o2^ ' + %]Oy.o2^) + 4.1 2"̂  ' + ^^y .i2 ')}
<•=0 y=o y=o

N - 2

~ 2 {(̂ #-1,0^#-!,0 ‘̂ A'-l.l̂ A'-l.l )2 + ^  i~ îfi^N-\,G ~ ̂ i,\^N-\,\ )2 } +
i=0

y i  2 {(~̂ w-i,ô /,o ~ )2 + ^  (̂ y,o4,o ■*■ '̂ y.i4,i )2 }
,=0 7=0

Consider the first term of Equation (2.12),

2  { ( ‘̂ A'-l.O^A'-l.O ■*■ ^ N - \ , \ ^ N - \ , \  ) 2  +  ^  ( ~ ^ i , 0 ^ N - \ , 0  ~  ^ i , \ ^ N - l , l  ) 2  }
i=0

= -2^  ‘{(-«AT-i,ô iv-i,o)2'̂  ' +Ÿ^i^i,oK-\,o)^‘
i=0

+ (~«A'-1,iV i,i)2^ ' +^(^o^Af-u)2'}

(2 12)

N - 2

(213)

— 2 {('̂ //-l.Ô M-l.O '̂ W-1,1̂ A'-1,i)2
N - 2

■ ^  ( o.iobf̂ _̂ Q + <3; |6^_] ] )2 +1} 
(=0

= 2"* 'K _ ,„2”- '+ | ; r „ 2 '+ 0
1=0

where „ is a redundant binary number and ,

^#-1,0 ^N-\,ô N-\,o ^N-\,\^N-\,\ 5 AT. Q ‘̂ ;,ô A'-i,o for 0 < z < 2 (2.14)

Encoding the redundant binary numbers, zr̂ _, „ and xr, ̂ , the Boolean equations are
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( Z . i  J j

yv-1,1

Considering the second term of Equation (2.12), and using Equation (1.6),

2 {(-«^_i ô /,0 “  1̂1,1 )2 + ^  }
1=0 y=o

“ ^ 2  { — (%jv-].o4.o + ^  (^y.o4,o)^  ̂ )2^}
;=0 y=0 7=0

^ ^ 2 '  {(-«A-_i,ô i,o + ̂ yv-1,1̂ /,1 )2^ ' + X  (̂ v.o4.o “  ̂ 7.1̂ 0' )2'' -1}
/■=0 7=0

= g 2 '{ A , _ 2 - + g ^ , 2 ; - l }
f̂ o ŷ o

where À., {Q<i < N  -2 ,  0 < j  < N  - \ )  is a redundant binary number with

(2 16)

^.7 =  «7.0 ,̂.0 -  (^7.i4.i for 0 <  y  < #  -  2, and , fo r; =  Æ -1  .(2.17)

Encoding À.j  as two binary bits, À7. and À ^ j , { 0 < i  < N  - 2 ,  0 < j  < N - \ ) ,

4 . 7  ^  ^ 7 . o 4 . 0  ’  4 , 7  ‘^ 7 , i 4 , 1  ■

The overall inner-product is expressed as:

+4^1
N - 2

—  2  { ( ^ j V - 1 , 0 ^ V - 1 , 0  ^ N - l , l ^ N - l , \  ) 2  +  i ~ ^ i , 0 ^ N - l , 0  ~  ‘̂ i . l ^ V - 1 ,1  ) 2  }  +
1=0

2  { ( " ^ A f - i , o 4 , o  “  ) 2  +  ^  ( ^ 7 , o 4 , o  ■*■ ^ 7 , i 4 . i  ) 2 ' ^ }
;=0 7=0

= 2"'-'{Ar^_,_g2''-^-H^;^,g2'-Hl}-Hg2'{^_^_,2^-'+§^_,2^-l}
i=0 ;=0 7=0

= 2»-' 2»-' + 1 ;  , 2'} + X  2' {7, 2“-‘ + 1 ;  7 ,2 '}
/-O  /-O  y=o

N - 2

+ 2"'“' - ^ 2 '  
i= 0

(2.18)

(2 19)
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N - 2

Since 2^ ‘ ^  2' = 1, Equation (2.19) becomes:

+ + 2 v ,„ 2 '}  + 2 ;2 '^ ,,_ ,2 ''- ' + 2 ^ i , ,2 0  + l (2.20)
(=0

N - 2 N - 2

1=0 y=o

The adjusting term, +1, can be applied as a carry-in to the LSD of the redundant binary 

full adder. Figure 2-4 shows the schematic structure of the A^Bq + hardware 

implementation.

2's-C om plem ent 
Partial Products

RBPPG
2's-C om plem ent 
to RB MappingRB M apping

RB Adders

PPPP, PP PP.

RBA

RBARBA

RB M appingRB M apping

Binary Num ber Partial Product 
Generator io r  A , 8 ,

Binary N um ber Partial Product 
Generator for A„B(,

RB Sum  o f  A(,Bg+A ,B ,

Figure 2-4. Cross Partial Product Structure of A„B  ̂+ AjBj [50]

Defining the redundant binary number CZ>. = A^jB^j + , the general form

of the cross partial product method inner-product is given by:
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M
M - \

- 1
M

{A,B) -  ^  A.B̂  -  'Yj (Aj^ l j  + ^y+lAy+l) -  X  ^ (2 .21)
J=0 J=0 j= 0

Again, all of the redundant binary numbers, (5, are added using a redundant binary adder

tree, and the final sum of the redundant numbers can be converted into a 2’s-complement 

number using a RB-NB converter [5],[7],[12]. The same redundant binary adder tree 

used for the inline inner-product, shown in Figure 2-4, can be applied to the cross partial 

product method.

2.1.3 Booth Encoding Methods

To further reduce the number of partial produets, the modified Booth encoding 

technique is used [96]. The modified Booth algorithm recodes an TV-bit 2’s-complement 

number, B, by the following equation:

N - 2  2

(-0 /=0 (2.22)

1=0

where = 0 and Q. e (-2, -1,0, -fl, +2} is determined according to the bit pattern of the

3-bit string of B as given in Table 2-A.

Table 2-A. Modified Booth Encoding Table [96]

4 4-, a
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 2
1 0 0 -2
1 0 1 -1
1 1 0 -1
1 1 1 0
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For the inline partial product method, we apply Booth coding to find the product

of A and B (assuming TV is even), using Equation (2.22),

-̂1 
V-2 2

k̂O /-o

+ y . . 2 ' ) 2 "  (2.23)
1=0 k= 0

i=0

N - 2

If 6, = 1, C, +22^*2* and g, = 0
A=0

If g, - 2 ,  q  = -o^_ ,2 '' + ^ 0 ,2 * + ' and g, = 0
k=0

If g, = - I , C, = 2""-' + ^  a, 2" and g, = 1 (2.24)
k=0

N - 2

If Q, = - 2 ,  C, = -a,_, 2“ + y  a, 2 " ' and g, = 1
k=0

Notice that C,. is a 2’s-complement number. Mapping the product to redundant binary.

f '
AB = 2 ( C ,+ « ,) 2 ”

/-o

= E  !(C ,+«,)2"'+<C,.,+«„i)2"“ }

= E  {(C ,+4C,.,)2“ + (g ,+ 4j,.,)2" } (2.25)
,=0.2.4....y-2

= E {2?,2“+0?,+4?,.,-l)2“j
/=0.2.4,...y-2

= E (4.,.,+/,+/„,)2"'
,=0.2.4....—2
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where E-is a redundant binary number and Æ”; -1  = C; + 4C,.^,. The correction factors, 

/■ and , depend on the values of g. and , as shown in Table 2-B. Here, the two 

redundant binary Booth correction factors, and , are used since g. and g,.̂ , can not 

be combined. The -1 is encoded into the /,  correction factor.

Table 2-B. Booth Correction Factors for the Inline Multiplication Method

gi gi+\
0 0 -1 (0 0) 0 (0  1)
0 1 -1 (0 0) 1(11)
1 0 0( 0  1) 0 ( 0  1)
1 1 0(0  1) 1(11)

Referring to Booth coding Table 2-A, the Boolean equations for the correction 

factors are,

r : - o  

7Ï = Kxbi 4-1 + 4+14 4-1 + 4+i4 4-1

4+1 44-1 C2.26)

= 4+3 4+24+1 

= 1

Nwhere / = 0 ,2 ,4 ,...-^ -2  . After the redundant binary products of and are

computed, a redundant binary adder is used to compute A^B^ + A^B^.

The general form of the inline Booth encoded inner-produet is.

M - \

< A , B >  -  2 ]  A j B j  -  ^  2 ]  + 7j,x +  7 j,m )2 '̂ (2.27)
y=o /=0,2,4,.. T-2

where the number of partial products is decreased to slightly above 25%, with 

consideration being given to the correction factors.
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Applying Booth encoding for the cross partial product method, we must 

consider . Using Equation (2.22),

f - ' N - 2

A,B„ + A,B, = y  + Z
i = 0 k = 0

+ Z  a , , 2 " ' ' + Z " w 2 ' ) 2 "
/ = 0 k = 0

y-' y-'
= Z C : , . + g , . . ) 2 "  + Z ( C , , + g , , ) 2 "

i = 0 i = 0

fc '
=  X  ((",.0 +  ^/,1 +  S i,I  +  g / ,o )2 ^ '

C2.28)

i =  0

From Equation (1.6), the sum of two 2’s-complcmcnt numbers can be considered 

as a redundant binary number minus 1. Equation (2.28) can be converted to:

4 )^ 0  +  4 ^ 1  -  X !  (A .o +  +  Si,\ +  g,,o)2^'
1=0

Y"'
=  X  +  ^1,1 +  Si,o - 1)2^' 

/=0

Y"'
~ ^  (-̂ 1,01 +U',oi)2

(2.29)

1=0

where U. g, is a redundant binary number tfom the addition of C. g and C,., ,  and the 

redundant binary number y. g, = g, o +^i,i • The correction factor, , depends on the

values of g. g and g -,, as shown in Table 2-C.

Table 2-C. Booth Correction Factors for the Cross Partial Product Method

Si,0 &.1 y.,oi -  Si,0 +Si,i - 1 Yi.oi Yi.oi

0 0 -1 0 0
0 1 0 0 1
1 0 0 1 0
1 1 1 1 1
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From the Booth coding Table 2-A, the bit encoding Boolean equations are;

,0

_  _  (2,30)
y,!oi = &i =4n,i4,i 4 - 1 . 1 4-i.i+4+i.i4.i 4-n

“ 4 + 1 , 1  4 , i 4 - i . i

Using Booth coding, the cross partial product inner-product method is given by

M M N
M-i y - ’ y - 'y - '

< A ,B  > ^  AjBj ^  + ^2y+i-̂ 2y+i ) ^  (̂ i,(2j,2j+i) +/,,(2;.2y+i))  ̂ (2-31)
J=0 j = 0  J=0 i=0

Again, the number of partial products is decreased to slightly above 25%, with 

consideration being given to the correction factors.

2.1.4 Implementation Comparison of Iniine and Cross Inner- 
Product Methods

An 8-tap digital filter implementation in [28] uses a signed-amplitude system to 

encode a redundant binary number. The signed-amplitude method requires two gate 

delays for the conversion from 2’s-complement to redundant binary. Examining 

Equations (1.7) and (1.8), only inverters are necessary for the inline partial product 

redundant binary mapping.

In [49], the cross partial product implementations of Â B^^+A^B  ̂and A^B^-A^B^

are discussed for complex number multiplication. An equivalent derivation was provided 

in Section 2.1.2. The inline method, presented in Section 2.1.1, combines partial products 

within the partial products of 4)^0 A^B^, respectively. Figure 2-2 and Figure 2-4 

depict these methods. For a qualitative comparison of these two designs, note that as 

feature sizes shrink in deep submicron VLSI technology, interconnection wires contribute
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a large portion of the total delay [49],[50]. The inline implementation provides more 

direct routing for vertical (horizontal) wires, while the cross partial product method 

[49],[50] will need crossing horizontal (vertical) wiring paths for partial product 

mapping, with the routing distance proportional to the word width. Therefore, the inline 

partial product method will result in improved performance, compared to the cross partial 

product method. In addition, the inline method offers more extended operational 

capahility than the cross partial product scheme (see Chapter 4). The inline method 

requires more horizontal gates, primarily due to the overhead of the partial product 

alignment. Table 2-D and Table 2-E show comparisons for Xilinx FPGA 

implementations for , with and without Booth encoding. The Xilinx Virtex2

2V6000FF1517 device was targeted for the implementations using VHDL and Xilinx 

Foundation software. For this word length, the higher performance and area savings of 

the Booth encoded designs are evident (See Appendix for VHDL code availability).

Table 2-D. 16-Bit FPGA Implementations of + AjB^ Without Booth Encoding

Cross PP Method Inline PP Method
Number of Slices 1094 1094
Number of LUTs 1992 2002
Equivalent Gate Count 11952 12012
Maximum Delay 30.014ns 28.084ns

Table 2-E. 16-Bit FPGA Implementations of A^B  ̂+ AjBj  With Booth Encoding

Cross PP Method Inline PP Method
Number of Slices 846 905
Number of LUTs 1603 1717
Equivalent Gate Count 9618 10302
Maximum Delay 29.460ns 27.970ns

35



2.2 Complex Number Inner-Product Computation

2.2.1 Review of Complex Number Arithmetic
Complex number arithmetic computation is a key arithmetic feature in modem 

digital communication, radar systems and optical systems. Many algorithms based on 

convolutions, correlations, and complex filters require complex number multiplication, 

complex number division, and high-speed inner-products. These applications require 

efficient representation and manipulation of complex numbers together with real 

numbers. Among these computations, high-performance complex number multipliers and 

complex number inner-products are desirable in modem digital communication, optical 

systems, and radar systems. Recent research in hardware implementation of complex 

number arithmetic circuits is focused on utilization of radix-(2), as well as altemative 

radices, for the representation of complex numbers.

In this chapter, different complex radices are investigated and compared. It is 

found that the complex radices have no advantage in hardware implementations. 

Traditional radix-(2) redundant binary numbers are used to implement complex-number 

multiplication and inner-product processing. The investigated inline inner-product 

processor can be reconfigured/controlled to perform complex-number computations. The 

computational structures of and A^B^ -  Â B̂  are developed for performing

complex number inner-products. The implementation of \Bç^ + Â B̂  can be easily

controlled to perform the computation of A^B^ -  AjBj. A complex number inner-product

processor is realized, based upon a unified structure for A^Bg ± AjB^.

To represent a complex number other than radix-(2), several representations have 

been proposed. Knuth [63],[64] described a “quater-imaginary” number system with

36



radix-(2j). Dao [58] further analyzed this quater-imaginary system for eomplex-radix 

arithmetic. Penney [66] proposed a complex number representation with the base of j- \ .  

Slekys [67] defined arithmetic operations on radix- (7V2) . Recently, further 

investigations examined the arithmetic algorithms and hardware implementation of these 

representations. Aoki [31],[97],[98], and Mcllhenny [99],[100] investigated complex 

number arithmetic in a redundant radix-(2y) number system. Jamil [62] and Blest [55] 

further analyzed the complex number computations in the radix-( 7 -1  ) number system 

and included proposed arithmetic methods for addition, subtraction, multiplication and 

division. Frougny [60] and Koren [65] provided a theoretic investigation of complex 

number arithmetic for complex numbers in the bases yVè and -b  + j . Stepanenko [68]

also investigated the complex number arithmetic in radix-(7'V2 ).

Multiplication is an essential operation for high-speed hardware implementation 

of complex number computations. It can be used to compare the complexity of complex 

number arithmetic with different complex radices. The analysis of complex number 

multiplication in these various radices will provide one metric for comparison.

To compute the product of two complex numbers, the conventional method is to 

use four binary multiplications, one addition, and one subtraction, as shown in Figure 

2-5. Define two complex numbers as:

where j= 4 ^ ,  and , R,, and R. are the real and imaginary parts of the complex 

numbers, A and B . Multiplication of A and B is given by;

A x B  = (Â . + jA .)X(B̂ . + jB.) = Â .B̂ . -  A.B. + j{A^.B. + Â B̂ .) (2.33)
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Figure 2-5. Basic Diagram of Complex Number Multiplication

In this direct implementation method, four multiplications plus two additions are 

required. To reduce the arithmetic complexity of the complex number multiplication, an 

algebraic transform, given in Equation (2.34), is proposed by Blahut [101]. This method 

saves one real number multiplication at the expense of three more additions:

C2 34)

B:

Figure 2-6. Blahut’s Complex Number Multiplier [101]
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As shown in Figure 2-6, this method requires pre-addition of B̂ . + B. and pre­

subtractions, Â . -  and 5, -  B. , before the binary multiplications, resulting in an 

increase of critical path delay. Although addition is generally less expensive in area than 

multiplication, the overall savings in hardware does not offset the non-trivial critical path 

delay. Therefore, the complex multiplication scheme given in Equation (2.33) will be 

utilized in this research.

2.2.2 Comparison of Different Complex Radices

Representing complex numbers with a complex radix implies that the complex 

numbers can be manipulated without separating the real and the imaginary part. It is 

supposed that in these complex radices, the complex-numher computational arithmetic 

will be simplified. For example, complex number multiplication may only need one 

complex radix multiplication and hence provide a major performance improvement. Can 

a complex radix system really achieve such improvement? In the analysis, the various 

complex radices are compared, although it is interesting that no significant improvement 

is achieved compared to the traditional 2’s-complement binary representation of complex 

numbers with the real and imaginary parts treated separately. Further, many of the 

alternative complex radix representations are unbalanced or fractal, thereby providing, in 

limited precision hardware, a significant representation issue for the range of the real and 

imaginary number components as well as the positive and negative fixed-point values. A 

review of these alternative complex radices follows.
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2.2.2.1 Radix-(2j)

As early as 1960, Knuth [63],[64] proposed radix-(2y) which leads to an 

interesting system called “quater-imaginary” (by analogy with “quaternary” or base-4). In 

this system every complex number is represented with the digits 0, 1,2, and 3 without a 

sign. For example;

( 1 1 2 1 0 . 3 % - 1 6  + ( -8y)  + 2 x ( - 4 )  + ( 2 ; ) - k 3 x ( - l y )  + ( - l ) ^ 7 ^ - 7 l ;  (2.35)

Here the number (u^^L )zy is equal to

(<22ajL ^-2K^-4 ^  .U ] L )_̂  (2.36)

Conversion to and from quater-imaginary radix reduces to the conversion to and 

from negative quaternary representation of the real and imaginary parts. In his book [64], 

Knuth proposed that the interesting property of this system is that it allows the 

multiplication and division of complex numbers to be done in a fairly unified manner 

without treating real and imaginary parts separately. For example, we can multiply two 

numbers in this system, much as we may do with any radix, by merely using a different 

carry rule. Whenever a sum digit exceeds 4, we subtract 4 from the sum digit and carry 

-1 two columns to the left; when a sum digit is negative, we add four to it and carry +1 

two columns to the left.

Representing complex numbers in radix-(2y) is the same as representing the real 

and imaginary parts in radix-(-4). Although there is no sign to deal with in radix-(-4), the 

number system is imbalanced. The imbalance of the negative-base number system in 

Zohar’s work [102] isn’t correct. Zohar’s results [102] are shown in Equations (2.37) and 

(2.38):
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For radix g<0, the maximum positive number is given by

2[(fl+l)/2] 1

and the minimum negative number is given by

#  = (2.38)
M+1

Here are the eorreet results. Consider a system that uses D digits to represent

numbers in the base '̂<0. When D is even, the largest representable integer is the positive

number P, whose representation is:

^  ,0,1^1-1,0,1^1-1). (2.39)

Its value is given by,

= = ^  (2.40)

Similarly, the smallest integer {N) is:

Â  = (|^|-1,L ,0 ,|g |- l ,0 ,|^ |- l ,0 ) . (2.41)
Its value is given by,

IÛ -1  I |2

(2.42)

The number of integers eontained in the elosed interval defined this way is 

P - N  + X. That is:

p  + Ar-l  = p  = lT - Z l  + M M - d l + i , | g | ' ’ (2.43)
1 + k l  1 + H  ' '

The result is very similar when D is odd. The largest representable integer is the 

positive number P  whose representation is
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,0 ,|^ |-1 ,0 ,|^ |-1). (2.44)

Its value is given by:

,  = = ^  (2.45)

and the smallest integer (TV) is

TV =  (0 ,|gr |_ l,L  ,0 , |^ |- l ,0 , |g r |- l ,0 ) .  (2 .46)

Its value is given by:

1-M  i+ k l
(2.47)

The number of integers contained in the closed interval defined this way is 

F-TV + 1. That is:

f  + = f  = ‘ M<H  * T l^ |^ |°  (2.48)
1+M 1+kl

This, however, is the number of different configurations of the D digits. We 

conclude, therefore, that D  digits span all the integers from TV to P\ regardless of D being 

even or odd. A troubling result is that the closed interval {N,P) is quite asymmetrical. A 

simple example will illustrate these statements.

Assume

q -  -10 and Z) = 3

Then the largest number is (909)_,o = 909 , and the smallest is (90)_,g = -90.

Assume

q = -10 and Z) = 4

Then the largest number is (0909) jq = 909 , and the smallest is (9090)^,„ = -9090.
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2.2.2.1.1 Complex Number Addition in Radix-(2y)

Dao [58] proposed a hardware implementation for the radix-(2y) addition. The 

adding of two numbers X and Y in the quater-imaginary system, as in any positional 

representation, consists of adding digits of the same weight. The modulo-(-4) result 

produces a sum digit and a carry digit. In this radix, the carry is -1 and has a weight equal 

to that of the digit two digit positions to the left:

=(% ,+x)(2y)'
where

(2.49)
4<(x.4-_y.)<6

For example:

5 + 10j 1 1 3  3 1 1
+ 8 + 2 j  0 1 0 2 1 0

1 2  3 1 2  1
-1

13 + 12j 1 1 3  1 2  1

Figure 2-7. An Example of Addition in Radix-(2/) [58]

Actually, the radix-(2y) adder is a radix-(-4) adder in the separate even and odd 

digit positions. The negative radix addition for real numbers is further investigated in 

[103],[104]. We conclude that the radix-(2y) addition reduces to the radix-(-4) addition in 

the even and odd positions separately.

2.2.2.1.2 Complex Number Subtraction in Radlx-(2/)

In negative bases like (-4), no explicit sign digit is required in the representation. 

The negation of a number is obtained by taking the 4’s-complement of each non-zero 

digit together with a positive carry digit of 1 two positions ahead:
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= ( - 4  +  x J ( 2 y )  w ith  = 4 -% ^

= ( 2 ; r ' + ^ ( 2 ; y

The subtraction of a number X  is reduced to adding its 4’s-complement with 

proper carry propagation:

Similar to addition, the implementation of radix-(2y) subtraction is radix-(-4) 

subtraction in the even and odd positions separately.

5 + 10j 1 1 3  3 1 1
- ( 8 + 2j ) 0 3 0 2 3 0

1 1 carry from 4'S-complement
+ _i _i carry from radix-(-4) addition

- 3 + 8j 1 0  3 1 0  1

Figure 2-8. An Example of Subtraction in Radix-(2/) [58]

2.2.2.1.3 Complex Number Multiplication in Rad\x-(2j):

Serial multiplication, i.e., one digit of the multiplier at a time, proceeds as in the 

binary case. Given,

X  =  X o (2 y f - fL  + x ^ _ ,(2 y y - '

the product is:

z = A T = Y L y y A ( . v n < . v f  (2-si)
/t=0 /=0

The digit product can generate a carry (0,-1,-2), which must be added to the 

digit position two places ahead in the partial sum:

Jkh
 ̂ (2.52)
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The terms inside the braeket represent the partial produet from the lower digit of 

the multiplier.

Notiee that shifting a number X  one position to the left is equivalent to rotating 

the vector v by 90 degrees and doubling its length, while shifting to the right one position 

results in a -90 degree rotation and halving the length.

5 + 10j 1 1 3  3 1 1
X 8 + 2 j  0 1 0 2 1 0

20 + 90j 1 1 3  3 1 1 0  Partial Product
2 2 2 2 2 2 Partial Product
-1 -1_____________________
1 1 2  1 1 3  1 0

1 1 3  3 1 1  Partial Product
-1 -1

3 2 1 3  1 0

Figure 2-9. An Example of Multiplication in Radix-(2/) [58]

The implementation of radix-(2y) multiplication results in a radix-(2y) partial 

product generator with even and odd positions separately followed by a radix-(-4) 

addition tree to generate the final product (see example in Figure 2-9).

An analysis of Knuth’s “quater-imaginary” radix shows that there are several 

disadvantages of this imaginary number system:

• Since the numbers obtained from sensors and digital systems are normally 

2’s-complement binary numbers, a conversion from 2’s-complement to radix- 

(2j) must be conducted. Our research [105] shows that the implementation of 

this conversion procedure will require a delay on the order of a earry- 

lookahead adder and will add an additional computational delay in the critical 

path.
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• A key computation for complex numbers in radix-(2y) will invariably be 

multiplication. Without further developments, radix-(2y) is slow, compared to 

2's-complement binary multiplication that uses Wallace trees, redundant 

binary number addition. Booth encoding, or array multipliers.

• Representing complex numbers in radix-(2y) is the same as representing the 

real and imaginary parts in radix-(-4). As previously shown in Equations 

(2.40), (2.42), (2.45) and (2.47), the radix-(-4) is an imbalanced system while 

a traditional positive radix system is a balanced number system.

Recently, Aoki [31],[97],[98] and Mcllhenny [99],[100] investigated the 

redundant complex radix-(2y) arithmetie for high-speed signal processing with emphasis 

on complex number addition and multiplication. The addition of two numbers, 

A  = (Xĵ _jL X;L x_^) and 7  = (y^_, L >’,.L ) in the redundant complex number system

(2/3), where e {-3,-2,-l,...l,2 ,3}, is performed by the following three steps for 

each digit:

Step 1 : Z; = X- + y.
Step 2: - 4c. 4- w. = z. (2.53)

Step 3: s .= w .+ c ._2

Here z. is the linear sum, w. is called the intermediate sum, and c. is the carry. This so-

called radix-(2y) redundant number system is actually a radix-(4) redundant number 

system with the real and imaginary parts treated separately.

In summary, this analysis shows that the non-redundant radix-(2y) number system 

has several disadvantages and the redundant radix-(2y) complex number system is a 

radix-(4) redundant binary system, with real and imaginary parts treated separately.
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Therefore, radix-(2y) offers no overall hardware implementation advantage over a 

conventional binary number system.

2.2.2.2 R a d ix -( j4 2 )

A system similar to radix-(2y) that uses only the digits 0 and 1 is based on j 4 l . 

This scheme, however, requires an infinite non-repeating expansion for the simple 

number 0+\j. Slekys [67] defined arithmetic operations on a modified bi-imaginary

number system based on radix-(/V2). If a modified bi-imaginary complex system is used 

to encode each complex number a-\-jb as a + jy flc  , then the number 

o,ûto.a_,L üf_2̂ )^ .is  equal to:

) - 2  ^  ^ - 2 A T + l) - 2

The conversion to and from radix- (y V2) notation reduces to the conversion to and fi-om 

a negative-2 representation of the real and imaginary parts separately. Slekys defined 

algorithms for complex number addition, subtraction, multiplication and division. 

However, since Slekys's radix- (7V2) system is not redundant, the computational 

arithmetic requires additional operations comparable to the conventional 2’s-complement 

representation of complex numbers. To see this, multiplication in this system is 

considered.

Define the multiplier and multiplicand as the complex numbers Z; and Z2 

respectively, where:

Z, = Z + jB  
Z2 = C  + jD

Using a modified bi-imaginary representation let,
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Z , '- ^  + ;V 25

Zj = C + j-J ^ D

Then the multiplication of Zj  and Z2 will be:

Zj «Z2 =Zj « Z j + 5 » Z )  (2.54)

Equation (2.54) shows that in the bi-imaginary complex-radix system the 

multiplication of two complex numbers will be composed of one complex number 

multiplication requiring four multiplications and two additions, plus one real number 

multiplication and one complex number addition.

For complex radix-(jV2), we can also use a redundant binary system for the 

computational arithmetic. Similar to the case of radix-(2y), this redundant complex radix- 

( j y f l )  is just a radix-(2) redundant binary system with the real and imaginary parts 

treated separately.

2.2.2J Radix-(j-1)

A binary complex number system is also obtained by using the base (/-I), as first 

suggested by Penney [66]. Further studies of this radix were conducted by Jamil [62] and 

Blest [55]. Jamil shows that the conversion from 2’s-complement to radix-(/’-l) is 

actually the conversion from radix-(2) to radix-(-4) for the real and imaginary parts 

separately, with a (/-I)-based addition needed to complete the conversion procedure. The 

multiplication and division of complex numbers based on this radix are also presented in 

Jamil's [62] and Blest’s work [55]. Hardware implementations were not specifically 

addressed. In fact, it appears that the hardware for this radix will possess considerable
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latency and gate count due the necessary carry detection logic requirement for the 

addition operation.

In radix-(/-l), there exists a carry propagation problem in complex number 

addition that further exacerbates the partial product additions in the multiplication 

hardware. To deal with this carry propagation problem for high-speed parallel hardware, 

a zero-detector is required for eaeh digit. The zero-detector adds additional latency and 

gate complexity.

The value of an #-bit binary number A = with radix-(/-l) can

be written in the form of a power series as follows:

^  ' + û̂ -2 (-1 + -̂-I-----  ̂ (~1 + y) + ̂ 0 (2.55)

where the coefficients  ̂ ‘ ^ {0,1} • As an example, if #  is a 16 bit number,

the powers of -1 + j  associated with the coefficients will be (from bottom to top, right to 

left, in groups of four):

[Row 4] (-128-jl28), (0+jl28), (64-j64), (-64+jO)
[Row 3] (32 + ;32), (0-y32), (-16 + y 16), (16 + yO)
[Row 2] (-8-y 8), (0 + y8), (4 -y 4), (-4 + yO)
[Row I] (2 + y2), (0-y2), (-1 + yl), (1 + yO)

To describe the hardware implementation difficulties for this system, we need 

only consider the addition operation. In radix- (-1 + y), we have:

(l)_,+y +(!)_,+;=(2)_,+,=(1100)_,+, (2.56)

In radix-(-1 + y) there are two earries from one bit position. The addition truth table for 

one bit position is shown in the Table 2-F.
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From the truth table, it is seen that there is a carry propagation problem in the 

addition of numbers in radix- ( - l - t  j )  . Figure 2-10 shows an example for

= 1, y, = 1, ĉ  2 — 1 ^rid c. 3 = 1.

In this example, x, = y, = c,_2 = = 1, from Table 2-F and Equation (2.56), the

carry-out and c.̂ 3 to the 2 and 3 digit positions to the left are c,̂ 2 = <̂,+3 = 2 ■ Then 

carry = 2 will further propagate to = 1 and carry c .̂ 3 = 2 will further

propagate to = c,3_g = 1. Thus, carry =1 + 1 = 2 will propagate to = 1.

Table 2-F. Truth Table for Radix-(-1 + j )  One-Bit Addition

X, y, 4-2 4-3 4 4+2 4+3
0 0 0 0 0 0 0

0 0 1 1 0 1 1

0 1 1 1 1 1 1

1 1 1 1 0 2 2

1 1 1 2 1 2 2

1 1 2 2 0 3 3

1 1 3 3 0 4 4

Sum0

^ '4 8  4 + 7  4 h 6  4 + 5  4 + 4  4 + 3  4 + 2

Figure 2-10. An Example for Radix-(/-I) Carry Propagation
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A possible hardware method to work around this problem is a zero-detector based 

on the equality:

(!!)_ ,,,- k ( l l l )_ , , , - (0 ^ , ,  (2.57)

However, the zero-deteetor is expensive, serial in nature, and produces high latency. 

From this analysis, the radix- (-1 + j )  has no advantage in the complex number 

computational hardware for addition and multiplication.

In summary, different complex radices such as radix-(2y), radix-(-Hy) and radix-

( 7V2 ) are studied. It is shown that these complex radices have no advantage over 

traditional binary number systems in hardware implementation. Chang’s research 

[56],[57] also supports this conclusion. In Chang’s research, a RIA (Real Imaginary 

Alternate) complex number system is proposed. In essence, his system represents 

complex numbers in 2’s-eomplement binary form with interleaved real and imaginary 

parts. Therefore, based upon traditional binary number representation and the previously 

discussed real-number inner-produet processor, a high-performance complex multiplier 

and complex number inner-produet processor is developed in the following sections.

2.2.3 Complex Number Multiplier and Inner-Product 
Computation

2.2.3.1 RB C om plex  N u m ber M ultiplier

Applying the inline multiplication method to the complex inner-produet requires 

no modification to Figure 2-2 to produce the redundant binary imaginary part, 

+A,Bj^). However, the real part, Â B̂,̂  -A^B j, requires a final redundant binary

subtraction, rather than an addition. The subtraction is easily implemented by modifying 

the redundant binary adder (RBA) to add the complement of the redundant binary
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number , since )gg = {A,B,)^g, where -1 = 1, 1 = -1, and 0 ^ 0. In the

actual hardware implementation of Figure 2-2, the addend or its RB eomplement are 

multiplexed into the RBA, thereby converting it to an adder/subtracter. Defining the 

control signal Real lmg as Real_Img=l, for the A^^B^ -̂A^B  ̂ computation and

Real_lmg=0 for the A^B  ̂+ Â B̂  computation, and then the inline implementation for 

\ B q ± Â B̂  is shown in Figure 2-11. For Booth encoding of the inline method, no further 

modification is required.

Binary N um ber Partial Product 
G enerator for AnB„

Binary N um ber Partial Product 
Generator for A  ,

PP, PP PP, PP PP, PPPP, PP

RBPPG

RB
Mapping

RB
Mapping

RB
Mapping

RBARBA RBARBA

V/
RBA

w
R BA

f  r
N O T

RBA

RB Adder 
Tree

TR B  Sum  o f  AgBg  -  A j B j

Figure 2-11. Inline Implementation oïA„B„ -A jB j 

The cross partial product method is slightly more difficult and requires mapping 

the difference of two 2’s-complement numbers into a redundant binary number to
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compute the real part of the complex product, -A iB ,.  The result given here is 

similar to that provided in [49] and is derived much the same as given in Section 2.1.1 for

AqBq + A^Bj.

V-2 V-2

A^Bq-A ^B ^-  (-«^-1,02^ ' + X  a. Q2' q 2^ ‘ ^  b. ,̂ 2' ) -
/=0 !=0

+EX ,.,2 ')
;=0 ;=0

= 2^ '(<^A'-i.o^v-i.o2  ̂ ' + 2]("^'.o^v-i.o)2' “  2^ ' + %](^o^v-u)2') +
;=o !=o

Î ;  2 ' , 2 “-' + E " , . .2 ') + 4 , ,W - u 2 " - '- Z V ,2 ') }  (2.58)
/■=0 j=Q j= 0

N - 2

~  2  { ( a ^ _ ,  q Z 2 ^ _ j  Q —  , ) 2  + ^ ( “ ‘2 , - , o ^ a '- i , o  " * " ^ i , i ^ v - i , i ) 2  }  +

(=0

^  2 {(~<2at_i_ô ;,0 ‘̂ V-1,1̂1,1 )2 + ^  (^;,o4,0 ~ )2  ̂}
i=0 j= 0

Considering the first term of Equation (2.58),

N - 2

2  l(^;v-i,o^v-i,o '^v-i,i^v-i,t)2  +  ^  (  ‘̂ i,o^A -̂i,o ■*"‘̂ (,i^v-i,i)2 }
(=0

1=0

= 2 " - ' , „2" - ' + | ; / / , . 2 ' }

1=0 (=0

N - 2

i=0

where /i,.  ̂ (0 < i < TV -1) is a redundant binary number with

B n - \ . o ~ ^ n - \ , ( P n - \ , o ~  ^ N - \ 2 p N - \ , \  Bifi ~ ~ ^ i , ( p N - \ f i  ^ i ^ N - x i  forO<i<A^ —2. (2.60)

Encoding as two binary hits for 0< i<  N - 2 :

B n - \ , o ^ n - \ ’0 ^ n - \ , 0 ’ B n - 1,0 ^ N - i n ^ N - [ , i ’   ̂ (2.61)
Bi,o ~ î,o^N-i,o’ Bifi ~
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Converting the last term of Equation (2.58) to redundant binary,

^  2  o^,-.o +  ^  ( ^ y , o 4 . 0  ~  }

(2-«2)

i=0 y=0

where v. . (0 <i < N -2 ,  0 < y < # - 1 )  is a redundant binary number and

(2.63)

Encoding v. j (0 < i< N -2 ,  0 < y < TV -1) as a redundant binary number using 

two binary bits:

^ i , N - \  ^V-l,o4.0 ’ ^
  (2.64)

The general redundant binary equation for the summation of is:

A B „ - A A  = 2 « - y ^ „ _ ,„ 2 » - '+ |; / i ,„ 2 ‘) + |;2 'K _ , ,„ 2 '* - ‘ + |;v ,„ 2 ') .(2 .6 5 )  

Now consider the inner-produet, A^B^ -  A^B ,̂ using modified Booth encoding:

"-12 V-2 2i-  A,B, = X  + Z  « » 2 ' ) 2
/=0 k = 0

y -'
“  Z i 6z,i(-<3^_i ,2^  ' + ^  0^ ,2 ' ' )2

1 = 0 k = 0
y - '  y - 1

- Z ( C , . + & , . ) 2 " - Z ( V , , + g u ) 2 '
1 =  0 /  =  0

a '
= X  (^'.0 “  + Si,o ~

(2.66)

/=o
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From Equation (1.10), the subtraction of two 2’s-complement numbers can be considered 

as a redundant binary number. So Equation (2.66) becomes

4)^0 “  4 4  -  X  (^',0 “  Q.i +  Si,o ~  Si,i)2^' 
1=0

J - '

= +gz.o (2.67)
(=0

N

= Z ( n o ,+ r , , . , ) 2 ”
;=0

where V. g, is a redundant binary number from the subtraction of 

C.Q and C., with K-m =C.g-C,., and • The correction factor, y.g, ,

depends upon the value g. g and g. ^, as shown in Table 2-G.

Table 2-G. Booth Correction Factors for Redundant Binary Partial Product
Generation of AgBg - A jBj

Sifi &,1 y,.oi =& .o“ &,i T '/.o i / / , o i
0 0 0 0 1
0 1 -1 0 0
1 0 1 1 1
1 1 0 1 0

From the Booth coding Table 2-A,

y i,m S i,o  4 + 1 , 0 4 .0  4 - 1 ,0  ■ * " 4 + i ,o 4 ,o  4 - 1 ,0  4 + i , o 4 , o  4 - i , o

“ 4 + 1 ,0  4 , o 4 - i , o

/;,oi= &;.i =4+i.i4.i 4_].i +4+i,i4,i 4-1,1 +4+i.i4,i 4-
(2 .68)

1,1

“ 4+ 1 ,1  4 , i 4 - i , i

Again, the “+” in the equations above is the Boolean OR operation.

2.2.3.2 RB Complex Number Inner-Product Processor

The inner-produet of complex numbers Cg, C,, • • • and Z)g, Z),, • • • ,,
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Q  — A  + 7 ^ ’ Q “  ^2 “  ^2M-2 ~^J^2M-I
■̂0 ~ ^0 ■*■ J^I’ A  ~ A  ~ ^2M-2 +7Aa/-1

(2.69)

is
A / - 1 M-1

( c , o )  = X  CjA  = z  ( 4 y  + 2 4 , . ,  ) ( 4 ,  + 2 4 , . ,  )
y-0 7=0
M - l  M - \

~  % ]  ( ^ 2  2 A  2 "  A  2+1A  2+1 )  +  7  ^  ( ^ 2 ;  A  2+1 ■*‘ ^ 2 2 + i A y )
2=0 2=0

The real part of the complex number inner-produet is shown as Figure 2-12.

(2.70)

RBA RBA RBA

RBARBA

RBA

T
RB A dder Tree

Figure 2-12. The Real Part of the Complex Number Inner-Product

The imaginary part of the complex number inner-produet is shown as Figure 2-13:

‘M  2-2

RBA RBARBA

RBA RBA

RBA

:
RB Adder Tree

Figure 2-13. The Imaginary Part of Complex-Number Inner-Product
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Defining a control signal Real_lmg=l/0 for A B -C D /A B  + CD computation, 

then the overall structure of a unified inner-produet processor for AB ± CD is shown in 

Figure 2-14:

1 2's-Complement 
A  and B i

RBPPG

u  u y n  1 r 1r

PPo PP, PPo PP, PP n-2 PP N-l

RB
M apping

RB
M apping

RB
M apping

W
RBA

I
RBA

w
RBA

RBA

T

2's-Complement 
C and D JL

Binary Number Partial Product Binary Number Partial Product
Generator for A B Generator for C D

PPo PPi PPo PPi -  P P n-2 P P n-1

RB
M apping

RB RB
M apping M apping

RBA RBA

w
Real Img

RBA

?
2:1

CD

i M
U
X

RB Adder 
Tree

RB Sum o f  AB + CD

Figure 2-14. Unified RB IP Processor for ± CD

Using the above structures, the real and imaginary parts of the complex number 

inner-produets are computed in redundant binary form. Finally, a RB to 2’s-complement 

converter is needed to convert the redundant binary inner-produet real and imaginary 

parts to 2’s-complement form, if required.
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2.3 Inner-Product Computation Comparison

In this section, the computation time for real number inner-produet processing is 

compared between the Texas Instruments TMS320C6000 series and the RB inner- 

produet processor. The sample irmer-produet assembly code using TMS320C6000 [92] is 

shown in Figure 2-15:

MVK .SI 100, A1 ; set up loop counter
ZERO .LI A7 ; zero out accumulator

LOOP:
LDH .D1 *A4++,A2 
LDH .D1 *A3++,A5 
NOP 4
MPY .Ml A2,A5,A6 
NOP
ADD .LI A6,A7,A7 
SUB .SI Al,1,A1 

[Al] B .S2 LOOP 
NOP 5
; Branch occurs here

load ai from memory 
load bi from memory 
delay slots for LDH 
ai * bi
delay slot for MPY 
sum += (ai * bi) 
decrement loop counter 
branch to loop 
delay slots for branch

Figure 2-15. An Example Code of Fixed-Point Inner-Product [92]

To analyze the execution clock cycles of this sample, a dependency graph is very 

useful. Dependency graphs can help analyze loops by showing the flow of instructions 

and data in an algorithm. These graphs also show how instructions depend on one 

another. The following terms are used in defining a dependency graph:

• A node is a point on a dependency graph with one or more data paths flowing in 

and/or out.

• The path shows the flow of data between nodes. The numbers beside each path 

represent the number of cycles required to eomplete the instruetion.

• An instruction that writes to a variable is referred to as a parent instruction and 

defines a parent node.

58



• An instruction that reads a variable written by a parent instruction is referred to as 

its child and defines a child node.

Use the following steps to draw a dependency graph:

1) Define the nodes based on the variables accessed by the instructions.

2) Define the data paths that show the flow of data between nodes.

3) Add the instructions and latencies.

4) Add the functional units.

Figure 2-16 shows the dependency graph for the fixed-point inner-produet 

assembly instructions, shown in Figure 2-15 and their corresponding register allocations;

LDH LDH

D1 D1
(A5)(A2)

MPY SUB

cntr
(Al)Ml

.S I

ADD

sum
(A7) LI LOOP.S I

Figure 2-16. Dependency Graph of Fixed-Point Inner-Product [92]

Figure 2-16 provides the following observations:

• The two LDH instructions, which write the values of a. and b-, are parents 

of the MPY instruction. Five cycles for the parent (LDH) instruction are
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needed. Therefore, if the LDH is scheduled on cycle i, then its child 

(MPY) cannot be scheduled until cycle i + 5.

• The MPY instruction, which writes the product p., is the parent of the 

ADD instruction. The MPY instruction takes two cycles to complete.

• The ADD instruction adds p. (the result of the MPY) to the sum. The

output of the ADD instruction feeds back to become an input on the next 

iteration and, thus, creates a loop carry path.

The dependency graph for this inner-produet algorithm has two separate parts 

since the decrement of the loop counter and the branch do not read or write any variables 

from the other part. The loop counter graph shows the following:

• The SUB instruction writes to the loop counter, cntr. The output of the 

SUB instruction feeds back and creates a loop carry path.

• The branch (B) instruction is a child of the loop counter.

Executing this inner-produet code serially requires 16 cycles for each iteration 

plus two cycles to set up the loop counter and initialize the accumulator, thus 100 

iterations require 1602 cycles. For the fixed-point TMS320C62X (‘C62X) devices, which 

are operated typically at a 200 MHz clock (5 ns) frequency, 100 iterations require:

1602x5  = 8010 /»  (2.71)

For the RB inner-produet processor, Figure 2-17 shows the structure to implement 

the real number iimer-product computation. For an accurate and fair comparison, we use 

only one RB multiplier and RB accumulator.
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RB
A ccum ulator

R B-to-2's-com plem ent 
Converter

Figure 2-17. RB Inner-Product Implementation

A CMOS implementation of the RB multiplier [3] with 0.5 jum fabrication shows 

that a 54x54 bit multiplier achieves 8.8 ns delay, which includes 2.4 ns delay for the 

RB-to-2’s-eomplement converter. The actual delay of the RB multiplier is only 7.2 ns. 

Compared to the implementation of TMS320C62X processor, if two-stage pipelines are 

used for the multiplication and the RB multiplier is employed in the TMS320C62X, then 

the clock cycle can be reduced to 6.4/2=3.2ns. Assuming that all the other instruction 

operations (LDH, ADD, SUB, etc) take the same time in the RB IP processor, then for 

100 iterations of inner-produet computations, the total time required is

1602x3.2-5126.4M.Y (2.72)

Table 2-H shows the comparison result using TMS320C62X and the RB inner- 

produet processor for 100 iterations of inner-produet computations:

Table 2-H. Comparison of IP Computation between TMS320C62X and RB Inner-
Produet Processor

100 Iterations
TMS320C62X 8010 ns
RB Inner-Product 5126.4 ns
Processor

61



2.4 Implementation of Unified Signed/Unsigned Multiplier

In this section, a unified signed/unsigned multiplier is developed using the RB 

inner-produet core without and with Booth encoding. An unsigned binary number can be 

considered as a 2’s-eomplement number with an extra sign bit 'O’ padded before the 

MSB (Most Significant Bit). For example, an unsigned binary number 10001111 can be 

considered as a signed binary number 010001111 with an extra sign bit ‘O’.

2.4.1 Unified Signed/Unsigned Muitipiier Without Booth Coding

From Equation (1.6), a RB number, A , can be derived from the addition of a pair 

of 2’s-complement numbers. Thus for an unsigned N x N  multiplier of A x B  , N  

unsigned partial products are generated. These N  unsigned partial products are converted 

to N+\ signed partial products with extra bit 0 padded before MSB and are mapped to 

N/2 RB partial products with correction factors as shown in Figure 2-18.

sign extension
0 0 
0 •  

0 0 . * 
0 .  .  .

Redundant binary 
Partial Products

0 -1 0 -1 correction factors a,

Figure 2-18. Unsigned Multiplier with Partial Product Generation

Consider the partial products of and for signed multiplier of A and B

as:
N - 2

N - l
PPn-2 -  i~ ‘̂ N-\^N-2 2^ + ‘̂ N-l^N-l 2*̂  ’ + X  P^V-2 2' )2

(=0

= 1

(2.73)
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Where PPf _̂2 and are 2’s-complement binary numbers, the sum of

PPf _̂2 and f a r e  mapped into a RB number according to Equations (1.10), (1.11), 

(1.12) and Figure 1-14. The mapping structure is shown in Figure 2-19.

^N-Pn~2^N-Pn-\ ^N-iK-2 <̂ N-2̂ N-\ ^o4v-2 ôAv-1

Figure 2-19. Mapping of and for Signed Multiplier into a RB Digit

Consider the partial products of PQ^̂ 2 and PQ ĵ_i for unsigned multiplier of A

and B as:

N - 2

=(002"'+'
i=0

PQ„_, = ( (0 ™  +a„_,b,_a" +a,_,b„_,2"-' + 2 ')2

N - 2

(2 74)
N - 2

1=1

Where PQfç_2 andPg^ , are 2’s-complement binary numbers, the sum of 

PQf _̂2 and PQf̂ _x are mapped into a RB number according to Equations (1.6), (1.7), (1.8) 

and Figure 1-13 with an extra correction factor -1. The mapping structure is shown in 

Figure 2-20.
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0  0  ^7V-1̂ 7V-2 ̂ N-2^N-\ ^ (P n -2 ^(P n -\

Figure 2-20. Mapping of PQ _̂2 and PQj^.j for Signed Multiplier into a RB Digit

Define a eontrol signal, SIGN, where SIGN=l for signed multiplieation and

SIGN=0 for unsigned multiplication, then the combined partial product is realized 

in Figure 2-21.

i PPn-io i

x iSIGN

2 to 1 MUX

pH,N -\,N

2  to 1 MUX

PP to PP

Figure 2-21. Circuit Realization of the Last Partial Product  ̂ for 
Signed/Unsigned Multiplier

Thus, for the implementation of #-bit unsigned multiplier, the correction factors 

are {0, -1, 0, -1, 0, -1 ,..... -1}. That is:

(̂ N-2 = = • • • = «2 = «0 = -1
~ ̂ N-3 = • ■ ■ = <̂3 = =0

(2 75)
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For unsigned multiplication, all the correction factors except = -1 can be 

added in the RB addition tree. Here the factor is combined with the first partial 

product, 2 ' "PP^\ PP^o, which is shown in Figure 2-22;

sign extension • • • • • • • •
0 0  • • • • • • • •  partial product PPO

 ^-1__________________________

•  • • • • • • • • •  partial product PQ O
for unsigned multiplier

Figure 2-22. First Partial Product PQO for Unsigned Multiplier

Table 2-1 to Table 2-L are the truth tables for the first partial product PQO of the 

unsigned multiplier:

Table 2-1. Partial Product fgOg to PQO^_j for Unsigned Multiplier

First Partial Products PPo First Partial Products PQo
PPOq to PPO^ ^ P G O o to P % _ ,

0 1 1 0 1 1

Table 2-J. Partial Product f   ̂ for Unsigned Multiplier

First Partial Products PPq First Partial Products PQo

0 1 1 1 0
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Table 2-K. Partial Product f  y for Unsigned Multiplier

First Partial Products PQo

0 0 1
0 1 0
1 0 0
1

e 2-L. Partial ;

f̂O)V_2

1

Product PQO^

1

and PQOj^ ĵ for Unsigned Multiplier

First Partial Products PQo 
PQ^n and

0 0 1
0 1 0
1 0 0
1 1 0

The logic equation of the partial product PQO for unsigned multiplier is as

follows:

~  P P ^ N  3 (2.76)

Figure 2-23 shows the circuit realization of the combined partial product PP^.
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PP■' O.A'-l PP

SIG N
2 to  1 M UX2 to 1 M UX 2 to  1 M U X

PP.0,«-2 / ’/ ’oo toP/’ô _3

Figure 2-23. Circuit of the First Partial Product PP  ̂ for Signed/Unsigned Multiplier

For the partial products of PQ  ̂ and PQ^-2 for unsigned multiplier, an extra bit 0

is padded before the MSB. Figure 2-24 shows the circuit realization of the combined 

partial products from PP[ to PPh_2 ■

\ fo

SIG N

2 to  I M UX

PP,, pp:,toPp;,_,

Figure 2-24. Circuit of the Partial Products fromPP, to PF%  ̂ for Signed/Unsigned
Multiplier

Figure 2-25 shows a unified signed/unsigned multiplier with the eontrol signal

67



i Signed/Unsigned 
A and B

Binary Number Partial Product 
Generator for AB

PQo PPr
a

2:1 MUX 2:1 MUX

P Q n -1

5
PPN -l

SIGN
2:1 MUX

RBPPG
RB RB RB

M o p in g M apping M apping

V  /  4 f
RBA RBA

W
RBA

T
Figure 2-25. A Unified Sign/Unsigned Multiplier

Both the signed and unsigned multiplier have the same structure of the RB adder 

tree. The partial products are controlled to switch between signed and unsigned 

multiplication. Then the combined binary partial products are mapped to RB partial 

products and added using the RB adder tree to compute the signed/unsigned RB product.

2.4.2 Unified Signed/Unsigned Muitiplier With Booth Coding

For the unsigned multiplier for A and B,
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^ = %]a,.2' =-0x2*+ajv_,2"-' + ^a,.2' =,4'

(2^^)
5  = 1;(.,2' =* ,.,2»  - i„ . ,2 " - ‘ + Y,b ,2‘ = i,_ ,2 * -+ 5 '

(=0

where A' and 5 ' are 2’s-complement binary numbers. 

Thus, the product of AB is calculated as:

=24'6^_,2""-H.4'.8' (2.78)
Â-1

=^a,6^_,2'2^+v4'^'
/•=o

The product of A 'B '  using Booth encoding was previously discussed in Section

N - l

2.1.3. The extra ^a,6^_i2'2^ value can be combined with the correction factors y .. The
i=0

new correction factors are

r ! - o  

r î  = 4+14 4-1 +4+14 4-i + 4+i4 4-i

= 4+1 44-1 (2.79)

y 1+1 4+3 4+24+1

r,;. = 1

Nwhere / = 0,2,4,...— - 2  and

7i —^Pn-\ 7i =1 (2.80)

where N ,N  + \ , . . . ,2 N - \ .

2.5 The Implementation of a Unified Signed/Unsigned Inner- 
Product Processor for A B  ± CD

The overall structure of a unified signed/unsigned inner-product processor is 

described for the computations of ^15 + CD and A B -C D  . In Section 2.2.3.1 and Figure
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2-11. The -  CD implementation is developed using the structure for AB + CD with 

inverters added in the RBA tree and a unified structure for AB±CD  is developed. In 

Section 2.4, a unified sign/unsigned multiplier was developed using RB representations. 

Define two control signals, SIGN=l/0 for signed/unsigned multiplieation, and 

Real_Img=l/0 for the A B -C D  I AB + CD computation. Then the overall structure of a 

unified signed/unsigned inner-product processor for AB±CD  is shown in Figure 2-26, 

where the PQ^ to of AB and CD refers to the unsigned partial products discussed in

Section 2.4.

Signed/Unsigned 
A  and B

Binary Number Partial Product 
Generator for A B

r T
PQc pp.

i
Signed/Unsigjied 
C and D

Binary Number Partial Product Generator for 
CD

W  W    PQn-1 PPnu

 1 % _ Z : , ______  S r '
2.1 2.1 MUX I 2:1 MUX | 2:1 M u F | | 2:1 M U x ] | %  m 1 ^

RBPp\  /  1 /  y  I  /
I RB RB RB

_ M a p ^  M apping M app.ng M apping M apping

PPn.

z
£
PQc PP,

2

£

SIGN

RBPPG

4  ^
2:1 MUX 2:1 MUX

RBA RBA RBA

i
RBA

RBA
R ea llm g

RBA

,4 5
t

CD
2:1
M

< ------------

1 r 1 r

U
X

RB Adder 
Tree

RBA

J RB Sum o f  AB + CD

Figure 2-26. Unified Signed/Unsigned IP Processor for AB ± CD

70



2.6 The Implementation of a Redundant Binary Multiplier
Currently, numerous floating-point unit designs incorporating a fast multiplier 

make iterative use of the multiplier for implementing fast algorithms for division, square 

root, and/or transcendental function computations by extended polynomial approximation 

[107]-[112], If multipliers are to be used iteratively for RB computations, it is 

advantageous for the multiplier to accept redundant binary coded input directly, in 

addition to the initial 2’s-eomplement numbers. A multiplier capable of accepting both 

2’s-complement and RB inputs avoids the excessive RB to 2’s-eomplement delay. To our 

knowledge, no prior multiplier design exists with this capability. Recently a new floating 

point arithmetic unit was proposed [113]. A redundant number system is used to achieve 

IEEE compliant results. All operations in the arithmetic units are carried in redundant 

form with conversion back to the standard IEEE format performed only when an operand 

is written to memory. In [113], it is argued that the proposed floating point unit could 

achieve better performance across all of the required functions. In all these eases, a fast 

multiplier that can accept either 2’s-complement or RB inputs is advantageous, i.e., the 

multiplicand and multiplier are both redundant binary numbers with the product produced 

in redundant binary form, as shown in Figure 2-27:

X 2 c o r  Xi^fj Y 2 c o r  Yj^

Figure 2-27. A RB Multiplier Diagram
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2.6.1 Direct Implementation of Redundant Binary Multiplier

To implement the dual input multiplier, we first consider a RB multiplier. Figure 

2-28 shows an example of RB multiplication.

Let Aj^g={\ -1 0 \},B^g=[-\ 1 0 -1] . Then, the product of A,^ and is 

computed as:

-1
1

0
0

-1

0
-1

0

-1

0

0
-1

1 0 
0 0 

1

-1

-1  -1 -1

Figure 2-28. An Example of RB Multiplication

The RB partial product is generated according to Table 2-M, where a. and p. are 

the RB signed digits of and , respectively.

Table 2-M. RB Partial Product Generation

or,. A or,/7.

-1 -1 1
-1 0 0
-1 1 -1
0 -1 0
0 0 0
0 1 0
1 -1 -1
1 0 0
1 1 1

Encoding the RB digits 1=(11), 0=(01)=(10), -1=(00), Table 2-N shows the 

encoded RB partial products.
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Table 2-N. Encoded RB Partial Product Generation

a,. A Pi ~ ^ ip i
-1 (0,0) -1 (0,0) 1 (1,1)
-1 (0,0) 0 (0,1) (1,0) 0 (0,1)(1,0)
-I (0,0) 1 (1,1) -1 (0,0)
0 (0,1) (1,0) -1 (0,0) 0 (0,1)(1,0)
0 (0,1) (1,0) 0 (0,1)(1,0) 0 (0,1)(1,0)
0 (0,1) (1,0) 1 (1,1) 0 (0,1)(1,0)
1 (1,1) -1 (0,0) -1 (0,0)
1 (1,1) 0 (0,1) (1,0) 0 (0,1) (1,0)
1 (1,1) 1 (1,1) 1 (1,1)

From Table 2-N, Equation (2.81) is derived to find the encoded RB partial

product:

p r  or; or; #+
(281)

=orr yg: +crr y?/

Another way to implement a RB multiplier is to use the RB inline inner-product 

processor core. In Section 2.4, and Section 2.5, the implementation of Â B̂Q+AyB̂  and

AqBq-A^B^ for both 2’s-complement and unsigned numbers was discussed. Here the 

reuse of these cores is investigated to implement the RB multiplier.

2.6.2 Redundant Binary Multiplier Implementation Using Inner- 
Product Processor

N-l
Let = , where Z^g is a RB number and ^.is encoded as two binary

i=0

bits (refer to Table 1-B). In this research, the RB encoding is .

Therefore,
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Â -1 N - \

/-O (-0
N - \  N - l ____

= £ c 2 ' - £ c 2'

(2.82)

1=0 i=0

LetZ+ = X C 2 ' and Z  = then
1=0 1=0

Z ^ g = Z + - Z -  (2.83)

where Z^ and Z  are unsigned binary numbers.

For two RB numbers, and , we bave:

N - l  N - l  N - l

■̂RB ~ %]^i^ ’ ^  — %]( î 2 and v4 — 2

2Î„ = E  A  2', B* = y  A* 2' md 2?" = Z  /̂ r 2'

(2.84)

1=0 1=0 1=0

Here a. and p. are encoded as (a,^ ) and (y9̂  p. ) , with a. = -  a. and

From Equation (2.83),

(2.85)

so becomes

\ b^ rb = ){B^ - B  )

={A^B^ -A~B^)+{A^ B - - A ^ B ~ )
Where A^ ,A~ ,B^  and i?“are all unsigned binary numbers, so the product of RB

v4gg and B ^  can be realized, using two unsigned binary numbers computations with 

A^B* -A ~ B ^  and A~ B  -  A^ B~̂  . The diagram is shown in Figure 2-29:
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u nsigned

R B A  (R e d u n d a n t B inary A d d er)

P ro d u c t o f

Figure 2-29. Implementation of RB Multiplier

Using this method to split the RB eneoding bits and utilizing the unsigned feature 

of the multiplier (see Figure 2-26), the basie IP computing core will generate RB 

products with RB multiplicand and multiplier inputs.

2.7 Redundant Binary Inner-Product Computation

With the development of a RB multiplier in Section 2.6, an inner-product 

processor which can accept RB numbers input is easily designed. For example. Figure

2-30 shows the implementation structure to find the inner-product of A B + X A , where 

A, B, X  and A are RB numbers.

RBA

RB
A c c u m u la to r

RB m ultiplier

Figure 2-30. IP Implementation for RB Number AB  + XA
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Chapter 3 Implementations of Division Method

3.1 Division Aigorithm Review
The notation is used in the discussion here of division algorithms:

^  Dividend 2̂ v-i "̂2v-2 ' ' '̂ 1

D Divisor d,^_2.. .<i,

6  Quotient

S Remainder [Z -  (£) x Q)] ...s Ŝq

Division algorithms can generally be divided into the following classes: digit 

recurrence (restoring or non-restoring), functional iteration, table look-up and variable 

latency. The basis for these classes is the difference in the hardware operations used in 

their implementations, such as multiplication, subtraction, and table look-up. Many 

practical division algorithms are not pure forms of a particular class but rather are 

combinations of multiple classes. For example, a high performance algorithm may use 

table look-up to gain an initial approximation of the reciprocal, then use a function 

iteration algorithm to converge quadratically to the quotient. Table look-up may be 

impractical for general applications. The division method of table look-up requires a 

large RAM size for longer divisor size. The size of RAM increases exponentially with the 

word length of the divisor. The variable latency method results in a complex design for 

the control circuit and requires an asynchronous design method. The latency of variable 

latency division method depends on the value of the divisor. For different values of 

divisor, the latency is different. The two most popular division methods are digital 

recurrence and functional iteration.
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Digit recurrence is the oldest class of high-speed division algorithms and, as a 

result, a significant quantity of literature exists proposing digit recurrence algorithms, 

implementations, and techniques. The most common implementation of digit recurrence 

division in modem processors was named SRT division by Freiman [81], taking its name 

fi'om the initials of Sweeney, Robertson, and Tocher, who developed the algorithm 

independently at approximately the same time. Atkins [78] did fundamental research on 

division by digit recurrence, which was the first major analysis of SRT algorithms. Tan 

[89] derived and presented the theory of high-radix SRT division and an analytic method 

of implementing SRT look-up tables. Ercegovac and Lang [79] presented a 

comprehensive treatment of division by digit recurrence. Kuninobu [83], Aoki [77], and 

Srinivas [88] investigated the digit-recurrence division method with the redundant binary 

representation of the remainders. Basically the equation of the digit-recurrence division 

method in radix-(r) is:

(3.1)

Digit recurrence algorithms deal with how to represent the remainder and 

quotient, how to choose the quotient, and choice of radix. Convergence of digit- 

recurrence is linear and has order N. A  high performance quadratically convergent 

method, function iteration, was proposed which included the Goldschmidt [82] and 

Newton-Raphson [85] methods. Both methods first find the reciprocal and then use 

multiplication to compute the quotient. The functional iteration method is discussed 

below.

To compute the radio Q = Z !D  , one can repeatedly multiply Z and D by a 

sequence of M  multipliers Xq , X ,..., :
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n  -  P  2)

If this is done in such a way that the denominator Z)Xo,Xi...,X^_j converges to 1, the 

numerator will converge to Q. This process does not yield a remainder,

but the remainder S (if needed) can be computed, via an additional multiplieation and a 

subtraction, using S = Z -  QD .

To perform division based on the preceding idea, we face two questions:

1. How should we select the multipliers so that the denominator does in fact 

converge to 1 ?

2. Given a selection rule for the multipliers X. how many iterations are needed?

In the following discussion, we answer these questions in turn, but first, we 

formulate this process as a convergence computation.

Assume a bit-normalized fractional divisor, D, and dividend, Z, in [1/2 1). If this 

condition is not satisfied initially, it can be made to hold by appropriately shifting Z  

and/or Z). The corresponding convergence computation is formulated as follows [82]:

= D.X. Set Dq = Z); make converge to 1
Z. ,̂ = Z.X. Set Zq = Z; obtainZ /D  = g  %Z^ (3 3)

We now answer the first question posed above by selecting,

W ,= 2 -D , (3.4)

This choice transforms the reeurrenee equations into:

A + i= A  (2 ~ A ) SetZ>Q=Z); iterate until Z)^ « 1
Z;+, = Z .(2- D.) SetZq = Z; obtainZ ID  = Q ^ Z ^

(3 5)
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Thus, computing the functions/and g  consists of determining the 2’s-complement 

of D. and two multiplications by the result 2 - D . .

Now to address the second question: How quickly does D. converge to 1? In 

other words, how many multiplications are required to perform division? Noting that

= D,(2 -  D,) = ! - ( ! -  D,)' (3.6)

It is concluded that [82]:

1 -D ,+ ,= (1 -D ,) ' (3.7)

Thus, if D. is already close to 1 (i.e. \ - D .  < s),  will be even closer to I (i.e. 

1 -  ). This property is known as quadratic convergence and leads to a

logarithmic number, M, of iterations to complete the process.

Another way to compute Q - Z  ! D  is to first find HD and then multiply the result 

by Z  If several divisions by the same divisor D need to be performed, this method [85] is 

particularly efficient. One method for computing HD is based on the Newton-Raphson 

iteration to determine a root off(x)=0. We start with some initial estimate X q for the root 

and then iteratively refine the estimate using the recurrence:

where f  (X.) is the derivative of f(x). To apply the Newton-Raphson method to

reciprocation, we use f(x)=l/x-d which has a root at x=l/d. Then /  (x) = -1/x^, leading

to the recurrence.

y ^ ,,,= y f,(2 -^ ,D ) (3.9)
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Computationally, two multiplications and a 2’s-complement step are required per 

iteration.

Let S - = \ I D -  X. be the error at the /th iteration. Then:

= (3.10)

Since D<\, we have ô^^^<{S.Ÿ , thus this functional iteration based upon 

Newton-Raphson converges quadratically.

3.2 Further Studies of the Goldschmidt and Newton- 
Raphson Methods

In this section the algorithm of the Goldschmidt and the Newton-Raphson method 

are compared and studied. We show that these two methods are theoretically equivalent, 

but are often treated separately in the literature. Further studies of the Goldschmidt 

method are presented. Next, the RB inner-product processor core is investigated for 

performing the division computations for both real and complex numbers. We show how 

to control and/or reconfigure the RB inner-product processor to provide high- 

performance division.

3.2.1 Comparison of the Goldschmidt and Newton-Raphson 
Methods

For the initial divisor, D, and dividend, Z, the Goldschmidt iteration equations are:

A.i = A (2 -  A ), Set Z)„ = D; iterate until 
Z,,, = Z  (2-D ,), Set Z , = Z; obtain Z /D  = g  «

where D. is the iterated divisor, Z. is the iterated dividend, and Q is the quotient.

For the Newton-Raphson method, the iteration equations are:
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% , = Z , ( 2 - ^ , D )  (3 .12)

where X.  is the approximate reciprocal of D.

Multiplying Z  on Equation (3.12) on both sides, we have:

=  ZY, (2  -  ylT,D) (3 .13)

Comparing Equations (3 .13) with (3.11), we notice that in Equation (3.13), ZX^ is 

the approximate quotient which is gradually close to Z/D after each iteration. Therefore,

Z ,- Z Y , .  (3 .14)

Then Equation (3.13) becomes:

Z ,,, = Z Y ,( 2 - J i r ,D )  =  Z , ( 2 - . i r ,D )  (3 .15)

If we define D. = X^D , then Equation (3.15) is:

Z ,,, = Z , ( 2 - ^ , D )  =  Z , ( 2 - D , )  (3 .16)

Note that.

and

= y r , , ,D  =  J i r ,D ( 2 - ^ ,D )  =  D , ( 2 - D , )  (3 .17)

(3.18)
Letting X q=1, then

= X^D = D Zq = ZXg = Z (3.19)

Under the condition of X q=1, Equations (3.12) and (3.13) are equivalent to 

Equation (3.11). However, from the standpoint of implementation, Goldschmidt and 

Newton-Raphson methods are different. For the Goldschmidt method, as shown in Figure

3-1, two parallel multiplications plus two complement operations are required. For the 

Newton-Raphson method, as shown in Figure 3-2, two sequential multiplications and one 

complement operation are required. Therefore, the critical time delay in the Newton-
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Raphson method is two multiplications plus one addition, while for the Goldschmidt 

method, only one multiplication step (parallel multiplications) and one addition are 

necessary. As far as the implementation area is concerned, the Goldschmidt method 

needs only one extra complement operation to implement. From this, we conclude that 

there are performance advantages for using the Goldschmidt method rather than Newton- 

Raphson method.

2-D,

2-D,

MultiplierMultiplier

A .

Figure 3-1. Goldschmidt Divisor Implementation [82]

Multiplier

Multiplier

Figure 3-2. Newton-Raphson Divider Implementation [85]
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3.2.2 Further Discussion of the Goidschmidt Method

In [85], it is claimed that the number of elock cycles for the Goldschmidt division 

method is log27V, where N  is the word length for dividend and divisor. Further study of 

our circuit implementations show that the actual number of eloek cyeles to aehieve 

precise aceuraey in the LSB of the quotient is log27V+l. In the implementation of the 

Goldschidmt method, two additional guard bits are required to get the quotient preeision 

of bits.

After M  = logz N  iterations,

= 1 - 2 ' '  (3.20)

so,

V ,  0.21)

and,

= ^ ( 1 - 2  "') = g ( l - 2 -^ )  (3.22)

The error between the aetual quotient and untruneated quotient is

g, = |6  -  Z^ I = |G -  6(1 -  2-'' )| = 62-^ (3.23)

For Z < D , we have g < l, so £•, < .

The approximate quotient is taken by truncating Z^ to Whits as (Z^ )^ , so

g ,= |Z ^ - (Z ^ ) , |< 2 - ' '  (3.24)

The error between the actual quotient and the computed one is;
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^ \ Q - ^ m \ + \Zm (3 25) 
=2'^+2"^ = 2"^""

i.e. g < 2-"̂ +̂

After M  = logj N  iterations, the precision of the quotient found from the 

Goldschimdt method is N-l bits. In order to reach the precision of N  hits, log; Â  + 1 

iterations are needed.

If we want to achieve the computation error of the division using the RB IP 

processor to satisfy ér < 2~^ , from Equations (3.23)(3.24) and (3.25), the following 

conditions must be satisfied as:

g, < 2"^ ' and g; < 2"^ ' (3.26)

That is, the dividend z, and divisor d. during the iteration must be truncated to

# + I  bits instead of TV bits, so one extra guard bit is required for the iteration.

In the same way, if the computation error of the division is required to meet 

s  < 2“^ , then two guard bits are required to compute the quotient using the RB IP 

processor.

3.2.3 Implementation of the Goldschmidt Division

Here we will explore how to implement the Goldschmidt division method using 

the RB inner-product structure. From Equation (3.5) in order to implement the high-speed 

divisor, all the intermediate dividend, divisor are in RB forms. Therefore, a RB- 

complement operation, 2-v4^ , similar to 2’s-complement operation, and a RB 

multiplier must be developed. In Section 2.6, the RB multiplier is studied using the RB IP 

structure, so only the RB-complement operation requires development.
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i = - L i=0 i=~L

Let a real number A with precision N  be represented in RB form, that is:

N - L - \  N - L - \  -1

^ = g  ^  «,2' + or,2' (3.27)

where a. = {-1,0,1} , then

2 - ^  = 2-("^^ 'or,2 ' + %;or,2') = (0010),+ ^  (-or,)2' + %](-or,)2' (3.28)
/=0 i=—L i=0 i——L

Using the RB coding system, 1=(1 1), 0=(1,0)=(0,1) and -1=(0,0), notice that if 

a ,is  encoded as (a^ or:), then -a ,w ill be encoded as (or/ or/). The implementation of 

2 - A r b Î s  shown in Figure 3-3:

Fractional PartInteger Part(0010)2

NOT Gates

RB Adder

Figure 3-3. Implementation of 2 - A r b

3.3 Real Number Division Implementation

First, the dividend Z and the divider D are normalized to satisfy Z and D e[0.5 1). 

For the normalization circuit, see references [116]-[118].

Then for the first iteration equation,

D ,= D ,( 2 -D J
Z ,= Z o (2 -D J

Set Dq = D 
Set Zg = Z

(3.29)
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where Zg and Dg are both 2’s-complement numbers. From Equation (1.9), Zg and Dg can 

be mapped into RB digit numbers (Zg)^g and (Dg)gg directly. Thus a RB multiplier which 

can accept the inputs (Dg)^^, (Zg)^^, and (2-Dg)gg can realize the first iteration, as is 

shown in Figure 3-4.

( ^ o ) rB 2 - ( Z ) g ) g g  ( ^ o ) r B 2 - ( Z ) g )O /R S

4 ( 2 “ A )

1r

m )\̂ RB

4 ( 2 “ 4 )

1r

(■̂ i)rr

Figure 3-4. First Iteration Implementation of the Goldschmidt Division

Notice that the output Z, andD, of the first iteration are redundant binary 

numbers. Thus the successive iterations can be implemented as shown in Figure 3-5.

2-Di

2-D,

RB  M u lt ip lie rR B  M u lt ip lie r

RB R e g is te rs RB  R eg is te rs

Figure 3-5. Implementation of Successive Iteration Computation for Z  and D

After log2 A-t-1 iterations are carried out, where TV is the number of bit precision, 

a RB-to-2’s-eomplement converter is required to convert the quotient back to 2’s- 

complement, if required. Four unified structures of AB ± CD are required to realize the
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real number division. Figure 3-6 shows the overall structure of the divider using RB IP 

processor.

RB Multiplier

Normalization

2 to 1 MUX2 to 1 MUX

RB Multiplier

Normalization
Registers to store 
number o f  shifts 

and sign

Figure 3-6. Overall Structure of Divider Using RB IP Processor

3.4 Comparison of the implementations of Division
The implementation time required for division is compared between the Pentium 

Processor and the division implementation using a RB processor. Division implemented 

on the Pentium processor uses the SRT method. The 8-bit unsigned division implemented 

on the Pentium requires 17 clock cycles [85],[114],[115]. If the VLSI fabrication in [3] is 

implemented to realize the RB inner-product processor, then one iteration for the RB 

multiplication requires 8.8-2.4=6.4ns [3]. For 8-bit division, 4 iterations are required. The 

total time required for 8-bit division using the RB IP processor is:

(log; 8 -1-1) X 6.4 = 25.6»^' (3.30)

If this division implementation result is compared to the Pentium processor, the 

equivalent clock cycle will b e25.6/17 = 1.505^6', and is equivalent to 660Mhz clock 

frequency of Pentium processor.
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3.5 Complex Number Division implementation

To find the quotient of the complex number

.4 + jB  _ {A + jB ) { C - jP )  _ AC + BD . B C -A D
^  / - I  . * 7 -^  /  ^  . '  r ^ \  '  r \ \  ^ 2  r \2  ^  , r ^ 2

(3^1)
C + y'D (C + yD X C -yD ) C^+D" " C ' + D"

For the implementation of a complex number divisor, AC + BD, BC -  AD and +D^ 

need to be computed. These computations can be realized by the unified signed/unsigned 

AB ± CD IP structure. For +D% let A = B and C = D . Notice that the outputs are in 

RB form for AC + BD, B C -A D  and C ^+ D ^. For the Goldschmidt division method, 

both the dividend and the divisor need to be normalized. To normalize a RB digit, a RB- 

to-2’s-complement converter is required to convert it back to 2’s-complement. A 

normalization circuit is required to normalize J C  + RZ), BC -  AD and C^ +D^ into [0.5 

1). The diagram is shown in Figure 3-7.

Normalized AC+BD, 
BC-AD, d+ D ^

Normalization

BC-AD

NormalizationNormalization

AC+BD

R B  to 
2's-Com plem ent 

Converter

RB to 
2 's-C om plem ent 

Converter

RB  to 
2 's-C om plem ent 

Converter

registers to store 
sign and shift

Figure 3-7. Complex-Number Division Implementation Initial Process
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Following the derivation of the normalized 2’s-complement values of AC+BD, 

BC-AD and +D^ in the first iteration, the real-number division implementation 

procedure is utilized to develop the quotient.. Six blocks of unified IP structure 

AB ± CD are needed to compute the complex number division since the implementation

of divisors for both and can share the same computing structure for

C^ +D^. For normalization circuits, see [116]-[118].
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Chapter 4 Computational Extensions
The inner-product structures described in Chapter 2 can be extended to provide a 

rich set of real, complex, RB and mixed real, complex and RB number computations. The 

inline partial product method [39] allows more extensions than the cross partial product 

scheme and will be used for illustrating added capabilities. Together with the basic 

inner-product operation, the computational capabilities afforded can be implemented 

using control signals or accomplished with circuit reconfiguration if configurable 

hardware is used. All of these extended computational capabilities are targeted for 

implementation in a Complex Aritbmetie Signal Processor (CAST).

Referring to Figure 4-1, up to eight accumulator segments are required to support 

the following operations for M  = 8.

RB Adder Tree
RBA

AfBj+Â B<

R B
Accum ulator

RBARB A

Figure 4-1. An Example of a Redundant Number Adder Tree

The structure in Figure 4-1 can support the following real number computations:

1. 8-element real number inner-produet computation using a single RB 

accumulator segment.
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2. Dual 4-element real number inner-product using two RB accumulator 

segments.

3. Quad 2-element real inner-product using four RB accumulator segments.

4. Eight parallel multipliers with or without eight accumulator segments.

The structure in Figure 4-1 can support the following complex number

computations:

1. Single 2-element complex number inner-produets using one RB 

accumulator segment.

2. Dual single complex number inner-produets using four RB accumulator 

segments.

3. Two parallel complex number multipliers with or without two real and 

imaginary accumulator segments.

The structure in Figure 4-1 can support the following redundant binary number 

computations:

1. Single element redundant binary number inner-produet computation using 

one accumulator segment.

2. Dual 2-element RB inner-produet using two RB accumulator segments.

3. Four parallel RB multipliers using 4 RB accumulator segments.

Mixed real and complex number operations and mixed real/complex, 2’s- 

eomplement/RB operations are also possible using the same 8-element IP structure. All 

of the extended computations are performed by bypassing some or all of the RB adder 

tree shown in Figure 4-1. The basic inner-produet structure has the highest latency since 

the entire RB adder tree is utilized. When implementing one or more of the extended
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operations using control signals, design choices should be carefully considered since 

additional multiplexers are necessary for a multiple operation capability.

For a general purpose complex number DSP core, a key element of the design is 

the segmented accumulator and the ability to provide both overflow and saturation 

aritbmetie. The design of the segmented accumulator and its associated final RBA for 

implementing the extended operations in a CASP device is beyond the scope of this 

dissertation and is the subject of continuing research.

4.1 Real-Number Computational Extensions

4.1.1 8-Element Real Number Inner-Product Computation

This structure is developed in Chapter 2 and provides the basic computational 

foundation for extended calculations. Refer to Figure 2-2 and Figure 4-1.

4.1.2 Dual 4-Element Real Number Inner-Product

Figure 4-2 shows the structure to perform dual 4-element real number inner- 

product using two RB accumulator segments. This calculation requires two accumulators, 

one for each inner-product.

RBARBA

RB
Accumulator

RB
Accumulator

Figure 4-2. Dual 4-Element Real Number Inner-Product
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4.1.3 Quad 2-Element Real Inner-Product Using Four Redundant
Binary Accumulators

For this computation, the RB adder tree requires reconfiguration as shown in 

Figure 4-3. Here four RB accumulators are required:

R B
Accumulator

RB
Accumulator

RB
Accumulator

RB
Accumulator

Figure 4-3. Quad 2-Element Real Number Inner-Product

4.1.4 Eight Parallel Multipliers Using 8 Redundant Binary 
Accumulators

For this computation, the RB adder tree needs to be controlled as shown in Figure

4-4. Here eight RB accumulators are required, if the structure is used for computing eight 

inner-produets; otherwise, the accumulators are bypassed.

accumulator
bypats

A ccum ulator A ccum ulatorA ccum ulator A ccum ulatorA ccum ulatorA ccum ulator

Figure 4-4. Eight Parallel Multipliers Using 8 RB Accumulators
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4.2 Complex-Number Computational Extensions
Defining four complex numbers as: Q  =  ^  + jB^, C^=A^+ jB ,̂ € 2 = A2 + ’

C3 = + jB^, the computational extensions for complex number computations are 

depicted as follows.

4.2.1 Single 2-Element Complex Number Inner-Product
Computation Using One Reai/lmaginary Redundant Binary 
Accumulator

Figure 4-5 shows the structure of a single 2-element complex number inner- 

produet using a RB accumulator segment for the real and imaginary parts separately.

RBARBA

A yB A :tB

R B
Accumulator

R B
Accumulator

R e a l P a r t Im a g in a ry  P a r t

Figure 4-5. Single 2-Element Complex Number IP Using One Real/Imaginary RB
Accumulator

4.2.2 Dual Single-element Complex Number Inner-Product
Computation Using Four Redundant Binary Accumulators

Figure 4-6 shows the structure of dual 2-element complex number inner-produets 

using four RB accumulators.
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RB
Accumulator

RB
Accumulator

^  ^  I

RB
Accumulator

RB
Accumulator

R eal P a r ts Im a g in a ry  P a r ts

Figure 4-6. Dual 2-Element Complex Number Inner-Products Using Four RB
Accumulators

4.2.3 Two Parallel Complex Number Multipliers
Figure 4-7 shows the structure of two parallel complex number multipliers using 

four RB accumulators.

RB
Accumulator

RB
Accumulator

A2B2-A2B} A2B2+A2B2

R B
Accumulator

a c c u m u la to r
bypass

RB
Accumulator

{A2+\B2){A3+\B3)

Figure 4-7. Two Parallel Complex Number Multipliers

4.3 Redundant Binary Number Computational Extensions

4.3.1 Single Element Redundant Binary Number inner-Product 
Computation

95



Figure 4-8 shows the structure of a 4-element redundant binary inner-product 

computation, where 0g to 0^ and to F  ̂are redundant binary numbers. The structure of

the RB multiplier for (Pgfg to is discussed in Section 2.6.

R B  A d d e r  T r e e
R B A

RB
A c c u m u la to r

R BAR B A

Figure 4-8. 4-Element Redundant Binary Inner-Product

4.3.2 Dual 2-Element RB Inner-Product plus Two Redundant 
Binary Accumulators

Figure 4-9 shows the structure of dual 2-element RB inner-product computation 

using two RB accumulators.

RB
Accumulator

RB
Accumulator

RBARBA

Figure 4-9. Dual 2-Element RB Inner-Product
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4.3.3 Four Parallel Redundant Binary Multipliers Using Four
Redundant Binary Accumulators

Figure 4-10 shows the structure of four parallel RB multipliers using 4 RB 

accumulators:

accum ulator
b yp ass

R B
A c c u m u la to r

RB
A c c u m u la to r

RB
A c cu m u la to r

RB
A c cu m u la to r

Figure 4-10. Four Parallel RB Multipliers Using 4 RB Accumulators

4.4 Pipeline Extensions

In this section, the possible pipeline design alternatives of the RB inner-product 

processor are investigated. The 0.5 //m CMOS time delay model from [3] for an 8-bit 

RB multiplier is used for the discussion and is shown as Table 4-A:

Table 4-A. Time Delay Model of RB Multiplier [3]

Time Delay
2’s-complement to RB Mapping 2-Nand gate^200ps=0.2ns
RBA (RB adder) 0.9 ns
RB to 2’s-eomplement converter 1.6ns

Consider the 8-word 8-bit RB IP processor in Figure 4-1 and re-draw it as shown 

in Figure 4-11:
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B inan  N um ber Partial P roduc t 
G enerator f o r d  A

E M erT mRBPPG

U

11

Accum ulator

Figure 4-11. 8-Word 8-Bit RB IP Processor
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The implementation of consists of 2’s-complement to RB mapping

and 4 RB adders. If a two-stage pipeline structure is used, the resulting pipeline RB IP 

processor is depicted in Figure 4-12.

AoBo+AiBi

Pipeline Registers XIZ
RBARBA

RB Adder Tree
RBA

RB
Accumulator

RB to 2's-complement 
Converter

Stage 1

Stage 2

Figure 4-12. Two-Stage Pipelined RB IP Processor

The structure for stage 1 consists of the 2’s-complement to RB mapping and 4 RB 

adders. The time delay is for the first stage is

0 . 2 4 - 4 x 0 . 9  =  3 .8 /w  ( 4 .1 )

The structure for stage 2 consists of 3 RB adders and one RB to 2’s-complement 

converter. The latency for the second stage is

3 x 0 .9 4 - 1 .6  =  4 .3 /w  (4 .2 )

The difference of the time delay between these two stages is
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4.3-3.8 -  0.5ns 

and can be considered as a balanced pipelined structure.

If a three-stage pipeline structure is employed, then the resulting structure is 

shown as Figure 4-13.

(4 3)

Stage 1

Figure 4-13. Three-Stage Pipelined RB IF Processor

The time delay for each stage is:

0.2-H 3 X 0.9 = 2.9ns

AoBo+AiBi

RBA

AoBo AiBi

RBA RBA RBA

RBA

RB
Accumulator

RBA

RBA

RB to 2's-complement 
Converter

Pipeline Registers

Pipeline Registers

stage 1

stage 2

stage 3

(4 4)
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Stage 2

3x0.9 = 2.7%; (4.5)
Stage 3

0.94-1.6 = 2.5%; (4.6)

The maximum difference in time delay among the three stages is 0.4 ns. This 

pipeline structure can be considered to be balanced.
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Chapter 5 Redundant Binary to 2’s-Complement 
Number Conversion

Since the inner-product processor produces results in a redundant binary form, a 

RB-NB (redundant binary to normal binary) converter may be required to provide a 2’s- 

complement representation. Ruiz [5] proposed a carry-look-abead RB-to-2’s- 

complement converter which is similar to the structure of a carry-look-abead adder. 

Rajasbekbara [71] proposed a similar converter that is based upon a borrow-look-abead 

structure. In bis paper [7], Yen gave a novel definition of carry in the proposed RB to 2’s- 

complement converter. An on-tbe-fly converter was discussed in [72] which converts 

serial RB inputs to a 2’s-complement number. Cboo [74] claimed a breakthrough of a 

new converter which has no latency proportional to the word length. However, according 

to the proof in [70], it is equivalent of 2’s-complement addition in the conversion of 

redundant binary to 2’s-complement. Cboo’s converter never works correctly. Ling [106] 

proposed a high-speed adder which is currently the fastest known binary adder. In this 

chapter, based on Yen’s method [7] and Ling’s adder scheme [106], we propose an 

improved RB-NB converter.

5.1 An Improved Redundant Binary to 2’s-Complement 
Converter

Define a new variable carry c,. [7] as follows:

1) c,. =1 means that, for the current RB digit position i, there is at least one -1 to 

the right of the current hit position and no + ls  between the -1 and the current position.

2) c- =0 otherwise.
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Table 5-A shows the conversion rules at stage /, where %, is the redundant binary 

bit, c,. is the carry-in from next lower order position, 5, is the 2’s-complement binary bit 

output, and c,.̂ , is the earry-out to the next higher bit position. Example 1 shows a 

conversion from RB to 2’s-eomplement based on the foregoing rules.

Table 5-A. Conversion Rules in Stage /  [7]

Input Output
Redundancy bit x, Carry in c- Binary bit s- Carry out

0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0

-1 0 1 1
-1 -1 0 1

Example 1: Letting the RB number =[-1 1 0 - 1  0 - 1  1 0 - 1  0 0  0], then

= [-1 1 0 -1 0 -1 1 0 -1 0 0 0] = -1320
C = [ 0 1 1  1 1  0 0 1  0 0 0  0]
and
5 = [ 1  1 0  1 0  1 1 0 1  1 0 0  0] = -1320

For example, at bit position 0, = 0 and Cq = 0 ; then according to Table 5-A,

5Q = 0 and c, = 0. For bit position 3, Xg = -1, Cg = 0 ; then according to Table 5-A,

Sj = 1 and C4 = 1.

Using the encoding provided in Table 1-B to encode Table 5-A, the RB-NB 

conversion is shown in Table 5-B.
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Table 5-B. Conversion Truth Table for RB-NB

Input Output
Redundancy bit Carry in c,. Binary hit s. Carry out c,.̂ ,
X,. = (x: x^)
0(0 1)(1 0) 0 0 0
0(0 1)(1 0) 1 1 1
1(1 1) 0 1 0
1(1 1) 1 0 0
-1 (0 0) 0 1 1
-1 (0 0) 1 0 1

According to this conversion truth table, we derive the following equation:

5,. =C-®{x. © x/)

c,+] = 4  +c,x,:x;
(5.1)

For the c.̂  ̂ equation above, define the signals, carry propagate, p. = x. x^ , and

carry generate, g. = x. + x^ . Then:

Unrolling the carry equations, we get:

(5.2)

C3 -  &2 + gi;'2 + go;̂ ,;'2 + co.Po;̂ ,;̂ 2
C2 =gi+goA+Co;?(,;2, 

c, =go+CoPo

(5.3)

Based on the Ling adder [106], a more efficient RB-NB converter can be 

designed.

Define the signal, carry transfer, t. = p. 4- g. , (carry is not annihilated) and 

h. = c. , then
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‘'z ~  S i A  ~ § i - \

~  8i-\ î-A^i-Ah-ih-lh-\ (5-4)

Ling’s modification consists of propagating A. = c,. + c._, instead of c. . To 

understand the following derivations, we note that g,._, implies c, (c. if g,._, =1), which in 

turn implies A,.

■ xT X. =x7 +xl =g.

= gi-Â  + gi-i + = g,_i )
= gi-A  + + Pi-igi-i (Pi-igi-i =gi-i ) +Ci-xPi-\Pi-i (repeated term)
= gi.A+P-iP,
= gi-xhi+c,_,p^
= g,-,A,+A-i(4-i+c,.)

= g,._,A,.+p,._,/i,. = V m

\+CiPi-x

4  = 4  + C,._, = (g._i + c , + C ._ , 

= g , _ i + c , _ ,

=&-] + Vih-2 

Unrolling the recurrenee for h., we get;

=gH+^,-2(g/-2+A,_2(_3)
=g,_,+g,_2+A,_2(_2L3 {Sincet,_2g,_2 =g,_2 )

~ g i - \  g i ~ 2  g i - i h - l h - l  ^ /-3 ^ / - 4 h - 3 ^ i - 2

~ g i - l  ~ ^ g i - 2  g i - 3 ^ i - 2  g i - 4 ^ i ~ 3 ^ - 2  + ̂ /_4̂ /-)h-4̂ Z-3̂ Z-2

K =go+^-A  
/h = & + & 0 + W -l
^  = ^ 2 + ^ 1  + ^ 0 ^ 1 + V - l V l

4̂ = &3 + ̂ 2 + g^2 +goh^2 +

(5.5)

Now, the expression for the converter output is:
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Si =c,. ©(x,. ® xl)  

-(A/,_;)@(xr ©xj")
(5.6)

where,

h = Pi + gi = 4-^/ + 4  + = (4  + xl) + (x: x l )

= x ;+ x l = x;xl = Pi

Here, and are the 4-bit converter’s and , respectively. A carry network based 

on the preceding equations can be used in conjunction with 2-input NANDs, producing 

the ti signals, 2-input NORs, producing g . , and 3-input XNORs, producing the sum bits,

to build a 4-bit binary RB-NB converter. Note that since does not affect the 

computation of the sum bits, it can be derived based on the simpler equation;

4̂ = ^ 3 + ^ 4 ,  (5.7)

with a slight speed penalty. The resulting carry network is depicted in Figure 5-1.

g2.
ti ■
g i -

to-

i o

F=̂>—D-̂

■hi

Figure 5-1. Four-Bit Carry-Lookahead RB-NB Converter (Similar to [85])
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Compared to Equation (5.3), Equation (5.5) for contains only 12 terms, while 

in Equation (5.3), c^has 15 terms. The cost is that the sum is obtained by a slightly more 

complex expression in (5.6), as compared to Equation (5.1).

Given the design represented in Equations (5.5), the group “block generate” and 

“block propagate” signals can be derived as follows:

M u + a ]- g /+ 3  + Si+2 +&,+l(+2 +  g/,+1 ,̂+2

~ h-\hh+\h+2

Figure 5-2 shows a schematic diagram of a 4-bit carry-lookahead block carry 

generator based on Ling’s design.

hj+4 î+3 î+2 î+1
k  g,-3Ph3 k  g,i2P, 2 k  gi^lPi I À g iP i

(5.8)

U u 1  1 u
4-Bit Carry-Lookahead Generator

1 r

3̂]

Figure 5-2. Diagram of a 4-Bit Carry-Lookahead RB-NB Carry Generator
(Similar to [85])

Given the 4-bit carry-lookahead generator from Figure 5-1 and Figure 5-2, the 

construction of a multilevel-lookahead circuit is straightforward. For example, to 

construct a two-level 16-bit carry-lookahead RB-NB converter, we need four 4-bit RB- 

NB converters and a 4-bit carry-lookahead generator, connected together as shown in 

Figure 5-3.
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4-bit
RB-NB
Convert

44,7]
g[4,7]
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4-bit
RB-NB
Convert

40,3]
# ,3 ]

4-Bit Lookahead RB-NB Converter Block Carry Generator

Figure 5-3. Two-Level 16-bit RB-NB Converter (Similar to [85])

5.2 Comparison Result
In this section, the novel converter is compared to a traditional carry-look-ahead 

based converter. A 4-bit converter is used for comparison. Assume only 2-inputs OR or 

AND gates can be used to build such a converter. For a traditional carry-look-ahead 

converter, the longest latency is defined by Equation (5.3). That is,

C4 =  ^3 + g o A 172.P3 +C0I70A.P2.P3

If only two-input gates are allowed, then it requires 14 gates to the realized c^.

The critical path delay is six gates level.

For the converter investigated here, the critical path delay is defined by Equation 

(5.5). That is,

A4 " &3 + ̂ 2  + g / 2  + goh4 + AoL/oĥ 2 

If only two-input gates are allowed, then this requires 10 gates to the realized 

and the critical path delay is only five gates level.
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Chapter 6 Summary and Conclusions

Inner-product computations play a central role in digital signal processing, 

especially in the areas of digital filters, signal correlation, convolution, FFT, etc. 

Complex number arithmetic computation is a key arithmetic feature required in modem 

digital communication, radar systems and optical systems. Many algorithms based on 

convolutions, correlations, and complex number filters require complex number 

multiplication and high-speed inner-product computation. The overall motivation for this 

work is the design of a high-performance complex arithmetic processor (CASP) capable 

of offering novel extended inner-produet operations.

The CASP design relies on the high-speed multiplication afforded by redundant 

binary techniques, while avoiding the relatively slow conversion back to 2’s-complement 

numbers until a final 2’s-complement result is necessary. Inherently, the CASP device 

provides intermediate register storage for redundant binary, as well as 2’s-complement 

numbers. A new high-performance inner-product processor using redundant binary 

number representation is presented in this dissertation.

When the Booth coding technique is used, our proposed RB inner-product 

processor can significantly reduce the number of partial product to 25%. Also, it can be 

dynamically reconfigured/controlled to perform real, complex and redundant binary 

number computations such as parallel multiplications and inner-product computations. 

The extended computational capabilities of the RB IP processor are developed for real, 

complex, and redundant binary number or mixed computations. In Chapter 2, the 

structure of for IP computation is studied. Two possible implementations ,
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the inline and the cross partial product methods, are compared, with our inline method 

provides several advantages in speed and flexibility.

Complex number representations and arithmetic are also studied. Different

complex radices such as radix-(2y), radix-(/-l) and radix- (V2y) are investigated and 

compared. It is found that the complex radices have no advantage in hardware 

implementations. The traditional redundant binary number representation is used to 

implement complex-number multiplication and inner-product processing. The new RB 

inline inner-product processor can be reconfigured/controlled to perform complex- 

number computations. The structures for Aç̂Bq -f yfjR, and is developed and

compared. The implementation of A^B^+A^B^ can be easily controlled to perform the 

computation of A^B  ̂-  A-̂ B̂ . The complex number inner-product processor is investigated 

based upon this unified structure for Â B̂̂  ±A^B^. The implementation using the RB IP

processor is compared with the TMS320C6XXX processor. This comparison shows there 

is some speed improvement for the RB IP core. Next, a unified signed/unsigned 

multiplier without and with Booth encoding is presented. Based upon the unified 

multiplier, the RB IP processor is further extended to realize a redundant binary 

multiplier that can accept both 2’s-complement or RB inputs. The ability to accept RB 

inputs is essential for iterative calculations such as real and complex number division.

In Chapter 3, different division methods are reviewed. Two function iteration 

division methods, Newton-Raphson and Goldschimdt, are compared in detail. The 

theoretical equivalence of these two methods is shown. Further studies show that the 

Goldschmidt method is preferred over the Newton-Raphson method for efficient 

hardware implementation. Extension to the RB IP core are provided for performing
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Goldschmidt division. The division implementation structure for both real and complex 

numbers is discussed using the same IP processor.

In Chapter 4, together with the basic inner-product operations, the computational 

capabilities afforded ean be implemented using control signals or circuit reconfiguration 

if configurable hardware is used. These extended operations provide a rich set of 

computational capabilities targeted for implementation in a eomplex arithmetic signal 

processor (CASP). Various extensions such as IP computations, parallel multiplication of 

real, complex and redundant binary numbers are studied. Possible pipeline 

implementations of the RB IP core are investigated. A two-stage and three-stage pipeline 

structures are presented and the time delay model of these stages is studied. An improved 

RB to 2’s-complement number converter is investigated in Chapter 5. This converter 

shows improvement in speed with a small increase in area.

Several areas of research are suggested. Further development of the IP core is 

required for the extended caleulation capabilities, primarily dealing with the segmented 

accumulator and the requirements for flag setting based on arithmetic results for both 

saturation and overflow arithmetic. In addition, the IP processor can be developed to 

provide computational capabilities for square root, CORDIC, and other iterative 

functions.

Since the IP processor developed here serves as a core DSP computing 

capability, the overall architecture of the Complex Arithmetic Signal Processor (CASP) 

device requires extensive research to provide a dual numeric representation, i.e., 2’s- 

complement and redundant binary. The CASP device should have a rich instruction set 

architecture that leverages the IP core for performing calculations for signed/unsigned.
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real/complex binary numbers, as well as intermediate calculations on redundant binary 

numbers. The CASP device will significantly enhance future applications requiring high- 

performance inner-product calculations.
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APPENDIX 
VHDL HARDWARE IMPLEMENTATION

For the information regarding VHDL hardware implementations, please

contact the Office of Technology Development, University of Oklahoma.

660 Farrington Oval 
Evans Hall, Room 201 
Norman, Oklahoma 73019 
Tel: (405) 325-3800 
F ax:(405)325-7162
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