
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

A HIGH-PERFORMANCE INNER-PRODUCT PROCESSOR
FOR REAL AND COMPLEX NUMBERS

A Dissertation

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

By

GUOPING WANG

Norman, Oklahoma

2003

UMI Number: 3260769

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 3260769

Copyright 2007 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Copyright by Guoping Wang 2003

All Rights Reserved.

A HIGH-PERFORMANCE INNER-PRODUCT PROCESSOR
FOR REAL AND COMPLEX NUMBERS

A Dissertation APPROVED FOR THE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY

Df. Monte P. TuU

Dr. Geralti Crain

^tÆ inda DeBranner

oe HavHcek

Dr. Murad Ozaydin

To my family
who have lovingly supported my years of study.

IV

ACKNOWLEDGMENTS

In the years leading to this dissertation, I have had the great pleasure o f
working for and with an advisor who provided an environm ent conducive to
learning. 1 would like to take this opportunity to thank my advisor, Dr. M onte P.
TuU for his consistent guidance.

1 would also like to thank Dr. Gerald Crain, Dr. Linda DeBrunner, Dr. Joe
Havlicek and Dr. M urad Ozaydin for serving on my supervisory committee.

1 appreciate many others w ho have been helpful at the University o f
Oklahoma. They make my years at the university a unique and m em orable
experience.

1 am especiaUy indebted to my family for their support. Guanglan Zhang,
my wife, has been invaluable for her patience and love during my research. My
daughter, Ying, and my son, Christopher always give me great joy and peace.

“This is w hat the Lord says ...
‘Call to me and 1 will answer you and
tell you great and unsearchable things
you do not know.’ ”

Jeremiah 33:2-3

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION.. 1

1.1 Inner-Product Implementation by the General Purpose Processors.................. 3

1.2 Inner-Product Implementation by Digital Signal Processing Processors 6

1.3 Other Inner-Product Processor Implementation Methods....................................7

1.4 Multiplier Implementation Review...10

1.5 The Redundant Binary Number System.. 13

1.6 The Conversion of 2 ’s-Complement to Redundant Binary..................................15

CHAPTER 2 INNER-PRODUCT PROCESSOR OF REAL, COMPLEX AND
REDUNDANT BINARY NUMBERS.. 21

2.1 Real Number Inner-Product Computation.. 21
2.1.1 Inline Partial Product Redundant Binary Inner-Product.................................. 21
2.1.2 Cross Partial Product Redundant Binary Inner-Product.................................. 26
2.1.3 Booth Encoding Methods...30
2.1.4 Implementation Comparison of Inline and Cross Inner-Product Methods... 34

2.2 Complex Number Inner-Product Computation...36
2.2.1 Review of Complex Number Arithmetic.. 36
2.2.2 Comparison of Different Complex Radices..39
2.2.3 Complex Number Multiplier and Inner-Product Computation........................51

2.3 Inner-Product Computation Comparison...58

2.4 Implementation of Unified Signed/Unsigned Multiplier......................................62
2.4.1 Unified Signed/Unsigned Multiplier Without Booth Coding..........................62
2.4.2 Unified Signed/Unsigned Multiplier With Booth Coding...............................68

2.5 The Implementation of a Unified Signed/Unsigned Inner-Product Processor
for A B ± C D .. 69

2.6 The Implementation of a Redundant Binary Multiplier......................................71
2.6.1 Direct Implementation of Redundant Binary Multiplier.................................72
2.6.2 Redundant Binary Multiplier Implementation

Using Inner-Product Processor...73

2.7 Redundant Binary Inner-Product Computation.. 75

VI

CHAPTER 3 IMPLEMENTATIONS OF DIVISION METHOD..........................76

3.1 Division Algorithm Review ... 76

3.2 Further Studies of the Goldschmidt and Newtou-Raphsou Methods............... 80
3.2.1 Comparison of the Goldschmidt and Newton-Raphson Methods...................80
3.2.2 Further Discussion of the Goldschmidt Method...83
3.2.3 Implementation of the Goldschmidt Division... 84

3.3 Real Number Division Implementation..85

3.4 Comparison of the Implementations of Division..87

3.5 Complex Number Division Implementation..88

CHAPTER 4 COMPUTATIONAL EXTENSIONS.. 90

4.1 Real-Number Computational Extensions..92
4.1.1 8-Element Real Number Inner-Product Computation..................................... 92
4.1.2 Dual 4-Element Real Number Inner-Product...92
4.1.3 Quad 2-Element Real Inner-Product

Using Four Redundant Binary Accumulators..93
4.1.4 Eight Parallel Multipliers Using 8 Redundant Binary Accumulators............. 93

4.2 Complex-Number Computational Extensions...94
4.2.1 Single 2-Element Complex Number Inner-Product Computation Using One

Real/Imaginary Redundant Binary Accumulator.. 94
4.2.2 Dual Single-element Complex Number Inner-Product Computation Using

Four Redundant Binary Accumulators.. 94
4.2.3 Two Parallel Complex Number Multipliers...95

4.3 Redundant Binary Number Computational Extensions......................................95
4.3.1 Single Element Redundant Binary Number Inner-Product Computation 95
4.3.2 Dual 2-Element RB Inner-Product plus

Two Redundant Binary Accumulators... 96
4.3.3 Four Parallel Redundant Binary Multipliers Using

Four Redundant Binary Accumulators.. 97

4.4 Pipeline Extensions...97

CHAPTER 5 REDUNDANT BINARY TO 2’S-COMPLEMENT NUMBER
CONVERSION... 102

5.1 An Improved Redundant Binary to 2’s-Complement Converter.................... 102

5.2 Comparison Result..108

Vll

CHAPTER 6 SUMMARY AND CONCLUSIONS... 109

APPENDIX: VHDL HARDWARE IMPLEMENTATION.......................................113

REFERENCES.. 114

Vlll

LIST OF FIGURES

Figure 1-1. Flowchart of Inner-Product Computation by the General Purpose
Processors...4

Figure 1-2. Inner-Product Implementation in Pentium MMX Processor..................... 5
Figure 1-3. Sample Code for an Inner-Product by Pentium M M X 5
Figure 1-4. Sample Code of the Fixed-Point Inner-Product by TMS 320C60............. 6
Figure 1-5. Kazakova’s Inner-Product Processor Architecture.......................................8
Figure 1-6. Lin’s Reconfigurable Inner-Product Processor... 9
Figure 1-7. A RB MAC (Multiply and Accumulate) by Huang..9
Figure 1-8. Baik’s Redundant Binary Filter Implementation.. 10
Figure 1-9. Design of a 5x 5 Array Multiplier... 11
Figure 1-10. 4:2 Counter Using 3:2 Counter...11
Figure 1-11. 3:2 Counter Based 4x 4 M ultiplier...12
Figure 1-12. 4:2 Counter Based 4x 4 M ultiplier...12
Figure 1-13. Mapping from the Sum of Two 2 ’s-Complement Numbers to a RB

Num ber... 17
Figure 1-14. Mapping from the Subtraction of Two 2’s-Complement Numbers to a

RB Number...18
Figure 2-1. Inline Partial Product RB Implementation of + AjB^...................... 24
Figure 2-2. Inline Partial Product Structure of A^B ̂+ AjB^..25
Figure 2-3. Overall Structure of the Redundant Binary Inner-Product..................... 26
Figure 2-4. Cross Partial Product Structure of A^B ̂+ A jB j ..29
Figure 2-5. Basic Diagram of Complex Number Multiplication................................... 38
Figure 2-6. Blahut’s Complex Number M ultiplier... 38
Figure 2-7. An Example of Addition in Radix-(2/).. 43
Figure 2-8. An Example of Subtraction in Radix-(2/)..44
Figure 2-9. An Example of Multiplication in Radix-(2/)... 45
Figure 2-10. An Example for Radix-(/-l) Carry Propagation..50
Figure 2-11. Inline Implementation of A„B„ -A jB j ... 52
Figure 2-12. The Real Part of the Complex Number Inner-Product............................56
Figure 2-13. The Imaginary Part of Complex-Number Inner-Product....................... 56
Figure 2-14. Unified RB IP Processor for AB ± C D .. 57
Figure 2-15. An Example Code of Fixed-Point Inner-Product.......................................58
Figure 2-16. Dependency Graph of Fixed-Point Inner-Product.................................... 59
Figure 2-17. RB Inner-Product Implementation.. 61
Figure 2-18. Unsigned Multiplier with Partial Product Generation.............................62
Figure 2-19. Mapping of and PPyy-/ for Signed Multiplier into a RB D ig it.... 63
Figure 2-20. Mapping of and , for Signed Multiplier into a RB Digit... 64

Figure 2-21. Circuit Realization of the Last Partial Product PPy .̂, for
Signed/Unsigned M ultiplier...64

Figure 2-22. First Partial Product PQO for Unsigned Multiplier.................................. 65

IX

Figure 2-23. Circuit of the First Partial Product PPg
for Signed/Unsigned M ultiplier..67

Figure 2-24. Circuit of the Partial Products from to PP]̂ _2 for Signed/Unsigned
Multiplier... 67

Figure 2-25. A Unified Sign/Unsigned Multiplier... 68
Figure 2-26. Unified Signed/Unsigned IP Processor for AB ± CD70
Figure 2-27. A RB Multiplier Diagram..71
Figure 2-28. An Example of RB M ultiplication.. 72
Figure 2-29. Implementation of RB Multiplier 75
Figure 2-30. IP Implementation for RB Number AB + X A ..75
Figure 3-1. Goldschmidt Divisor Implementation.. 82
Figure 3-2. Newton-Raphson Divider Implementation... 82
Figure 3-3. Implementation of 2 - A r b ...85
Figure 3-4. First Iteration Implementation of the Goldschmidt D ivision...................86
Figure 3-5. Implementation of Successive Iteration Computation for Z and D 86
Figure 3-6. Overall Structure of Divider Using RB IP Processor.................................87
Figure 3-7. Complex-Number Division Implementation Initial Process.....................88
Figure 4-1. An Example of a Redundant Number Adder T ree..................................... 90
Figure 4-2. Dual 4-Element Real Number Inner-Product..92
Figure 4-3. Quad 2-Element Real Number Inner-Product...93
Figure 4-4. Eight Parallel Multipliers Using 8 RB Accumulators.................................93
Figure 4-5. Single 2-Element Complex Number IP Using One Real/Imaginary RB

Accumulator..94
Figure 4-6. Dual 2-Element Complex Number Inner-Products Using Four RB

Accumulators...95
Figure 4-7. Two Parallel Complex Number M ultipliers... 95
Figure 4-8. 4-Element Redundant Binary Inner-Product...96
Figure 4-9. Dual 2-Element RB Inner-Product... 96
Figure 4-10. Four Parallel RB Multipliers Using 4 RB Accumulators........................ 97
Figure 4-11. 8-Word 8-Bit RB IP Processor...98
Figure 4-12. Two-Stage Pipelined RB IP Processor...99
Figure 4-13. Three-Stage Pipelined RB IP Processor...100
Figure 5-1. Four-Bit Carry-Lookahead RB NB Converter..106
Figure 5-2. Diagram of a 4 Bit Carry-Lookahead RB NB Carry Generator 107
Figure 5-3. Two-Level 16-bit RB NB Converter... 108

LIST OF TABLES

Table 1-A. Computation Rules for the First Step in Carry-Propagation-Free
Addition for RB Numbers.. 15

Table 1-B. Coding Table for Binary Signed Digits... 16
Table 1-C. Logic Functions for RBFA and RBH A... 19
Table 2-A. Modified Booth Encoding Table..30
Table 2-B. Booth Correction Factors for the Inline Multiplication Method...............32
Table 2-C. Booth Correction Factors for the Cross Partial Product Method............ 33
Table 2-D. 16-Bit FPGA Implementations of A„Bi, + AjBj

Without Booth Encoding.. 35
Table 2-E. 16-Bit FPGA Implementations of + A,B, With Booth Encoding... 35
Table 2-F. Truth Table for Radix-(-1 + J) One-Bit Addition...50
Table 2-G. Booth Correction Factors for Redundant Binary Partial Product

Generation of AgBg - A , B j .. 55
Table 2-H. Comparison of IP Computation between TMS320C62X and RB Inner-

Produet Processor.. 61
Table 2-1. Partial Product PQO„ to PQOĵ _̂ for Unsigned Multiplier..............................65

Table 2-J. Partial Product for Unsigned Multiplier...65
Table 2-K. Partial Product for Unsigned Multiplier...66

Table 2-L. Partial Product PQO^ and PQOj^ ĵ for Unsigned Multiplier...................... 66
Table 2-M. RB Partial Product Generation... 72
Table 2-N. Encoded RB Partial Product Generation...73
Table 4-A. Time Delay Model of RB Multiplier.. 97
Table 5-A. Conversion Rules in Stage / ...103
Table 5-B. Conversion Truth Table for RB N B...104

XI

ABSTRACT OF THE DISSERTATION

A High-Performance Inner-Product Processor
for Real and Complex Numbers

by

Guoping Wang
Doctor of Philosophy in Electrical and Computer Engineering

University of Oklahoma, Norman, OK, 2003
Dr. Monte P. Tull, Chair

A novel, high-performance fixed-point inner-product processor based on a

redundant binary number system is investigated in this dissertation. This scheme

deereases the number of partial products to 50%, while achieving better speed and

area performanee, as well as providing pipeline extension opportunities. When

modified Booth coding is used, partial products are redueed by almost 75%, thereby

significantly reducing the multiplier addition depth. The design is applieable for

digital signal and image processing applications that require real and/or complex

numbers inner-product arithmetic, such as digital filters, correlation and convolution.

This design is well suited for VLSI implementation and can also be embedded as an

inner-product core inside a general purpose or DSP FPGA-based processor. Dynamic

control of the computing structure permits different computations, such as a variety of

inner-product real and complex number computations, parallel multiplication for real

and complex numbers, and real and complex number division. The same strueture ean

also be controlled to accept redundant binary number inputs for multiplication and

inner-product computations. An improved 2’s-complement to redundant binary

converter is also presented.

Xll

Chapter 1 Introduction

Consider the definition of the inner-product. For two

vectors A = and B = ,5^_j), the inner-produet of

A and B is defined as:

M-l
< A ,B > = A {B *) = J] 4 B ; (1.1)

>=0

In general, A. andB. may be real or complex numbers. A B * denotes matrix

multiplication with the row vectors A and B considered as IxM matrices, and (B*)^

denotes the conjugate transpose of B. In the traditional method, all of the multiplications

are processed independently of one another, thereby requiring M multiplications and M-1

additions. To obtain high-performance circuit implementations of the inner-product,

several salient features of Equation (1.1) can be utilized; namely, carry-free addition,

high-speed multiplication, and parallel or pipelined multiplication and addition.

The application of redundant binary (RB) numbers was previously investigated

for carry-free addition and fast multiplication. These techniques have proven to be easily

laid out in VLSI and result in high-speed circuit implementations [l]-[4]. In this

dissertation, high-performance and easily pipelined implementations of an inner-product

processor are presented. The designs utilize RB numbers for achieving the carry-free

addition of partial products. Redundant binary schemes are less viable in applications that

require persistent conversion back to 2’s-complement [5]-[7], since this process is

relatively slow due to an unavoidable carry propagation requirement. The overall

motivation for this work is the design of a high-performance Complex Arithmetic Signal

Processor (GASP) capable of offering novel extended inner-product operations. The

CASP design relies on the high-speed multiplication afforded by redundant binary

techniques, while avoiding the relatively slow conversion back to 2’s-complement

numbers until a final 2’s-complement result is necessary. Inherently, the CASP device

provides intermediate register storage for redundant binary, as well as 2’s-complement

numbers. The methods for implementing the core inner-product structure and general

extensions are presented in this dissertation.

Inner-product computations play a central role in digital signal processing, most

often in digital filters, signal correlation, convolution, FFT, etc. Current implementations

of inner-product computations include the following methods: 1) general purpose

processors, 2) digital signal processor devices, such as Texas Instruments TMS320C60,

3) VLSI devices, such as FPGAs or ASICs. Various researchers have investigated the

implementation of inner-product processors. Implementations include array multipliers

[8],[9], VLSI Residue Number System architecture [10], serial implementations

[II],[12], distributed arithmetic [13],[14], carry-save addition [15]-[19], specific DSP

processor and FPGA [20]-[27], redundant binary implementations [28]-[30].

Complex number arithmetic computation is a key arithmetic feature required in

modem digital communication and optical systems [31]-[38]. Many algorithms based on

convolution, correlation, and complex number filters require complex number

multiplication and high-speed inner-product computation. These applications require

efficient representation and manipulation of complex numbers together with real

numbers. Considerable research exists for hardware implementations of complex number

systems [39]-[54] and representations of complex numbers in different radices [55]-[68].

The redundant binary (RB) representation is one of the signed-digit number

representations originally introduced by Avizienis [69] for achieving the carry-

propagation-ffee addition. RB numbers differ from the conventional 2’s-complement

representation in that the individual digits comprising a number may have negative values

as well as positive values. High-speed VLSI multiplication algorithms, which are based

on redundant binary numbers, are proposed in [1],[3],[4]. Since integer numbers in most

digital systems are represented in 2’s-eomplement form, a converter is needed to convert

a redundant binary number to a 2 ’s-eomplement number in the last step. Different

implementations of this converter have been proposed in [5], [7], [12], [70]-[74].

Although division is an infrequent operation, it has been shown [75] that ignoring

its hardware implementation can result in significant system performance degradation for

many applications. Extensive literature describes the theory of division [75]-[90].

Division algorithms can be generally divided into the following classes: digit recurrence,

functional iteration, table look-up and variable latency [84]. Choosing an optimal design

of a divider depends heavily upon its requirements for area and speed.

In the following sections, these hardware implementations and research issues

will be reviewed and investigated.

1.1 Inner-Product Implementation by the General Purpose
Processors

General purpose processors, such as Intel Pentium and 80x86, Motorola 68000,

AMD K6 and K7, etc., ean perform different algorithms using combinations of various

machine instructions. The systems built with these programmable processors are

adaptable to different applications and easily upgradeable to changing requirements.

Even with such potential advantages, traditional programmable processors have not been

widely used for high-speed inner-product computation because of their limited

performance. For example, in order to find the inner-product of two vectors A and B, the

flowchart in Figure 1-1 is usually employed.

IBegin
Sum<=0

Register 1 <= A
Register 2 <= B
Register 3 <= Sum

C <= A*B
Sum<=Sum+C

Yes
Continue?

No

Figure 1-1. Flowchart of Inner-Product Computation by the General Purpose
Processors

In a general purpose (GP) processor, all these computations are sequential and

each load, multiplication or summation requires one or more clock cycles. Traditional

multiplication and accumulation methods are generally used. Some GP processors

provide additional hardware features for inner-product calculations. Among these

processors, the Pentium MMX processor contains a super scalar architecture, which

includes; 1) enhanced pipelines 2) two pipelined integer units capable of two instructions

per clock, as well as other features. With the new architecture, the Pentium MMX can

compute inner-products more efficiently than other general purpose processors. The

diagram of inner-product implementation by the Pentium MMX processor is shown as

Figure 1-2 [91];

Vector Dot Product
. a vector

|a5[a4|B3|a2|a1 |aO |
Step 1

|b5|b4|b3|b2[b1 |bO

Step 2

Step 3

Step 4

MMX “ reg is te r

- b v e c to r

MMX™ reg iste r

|b3 |b2 |b1 |bU |b3 b2 b1 bO

a3*b3+a2*b2 a1 *b1 +aO*bO

a3*b3+a2*b2 «1*b1+aO*bO
+

E prev. loops E prev. loops

Figure 1-2. Inner-Product Implementation in Pentium MMX Processor [91]

Sample code [91] for an inner-product implementation using Pentium assembly

language is shown Figure 1-3:

l o o p :

I iiiovq HHO , [H _ve c t o r]

Z m ovq H H l, [b _ v e c t o r]

3 praaddwd MMO, MMi

4 p a d d d H H 7, HHO

5 a d d [a _ v e c t o r] , 8

6 a d d [b _ v e c t o r] , 8

7 su b [c o u n t] , 4

8 j n z l o o p

9 m ovq HHO, HH7

1 0 p s r l q HH7, 32

I I p a d d d H H 7, HHO

1 2 m ovd m em _ v d p , HH7

Figure 1-3. Sample Code for an Inner-Product by Pentium MMX [91]

1.2 Inner-Product Implementation by Digital Signal
Processing Processors

DSP processors are specifically designed for DSP applications. One typical DSP

processor is the Texas Instruments TMS320C60. It is a highly integrated, multiprocessor,

single chip device specifically designed for DSP applications. The TMS320C60

integrates the following components onto a single device [92]:

1. a single 32-bit RISC master processor (MP) with an integral IEEE-754

floating point unit

2. four 32-bit integer DSP parallel processors (PP)

3. a sophisticated direct memory access (DMA) transfer controller (TC)

4. a video controller (VC)

5. 50K bytes of on-chip SRAM memory

The five processors on the TMS320C60, i.e. the MP and four PPs, can be

configured for a variety of multiple-instruction, multiple-data, multiple-instruction,

single-data, or single-instruction, multiple-data modes. The PPs, similar to most DSPs,

perform all operations, except division, in a single cycle. For example, it can perform the

parallel operations, A*B =>C and A+I => A in one clock cycle, while in a general

purpose processor, at least two cycles are required. Sample code of the fixed-point inner-

product computation is shown Figure 1-4 [92].

ZERO .L1 A7

LDH .01 *A4++,A2 ;load a-, from memory

LDH .01 *A3++,A5 ;load bi from memory

MPY .Ml A2,A5,A6 : 3i * bi

AOO .LI A6,A7,A7 ; sum += (a, * bj

SUB .81 A1,1 ,A1 ; decrement loop counter

B .82 LOOP ; branch to loop[A1]

Figure 1-4. Sample Code of the Fixed-Point Inner-Product by TMS 320C60 [92]

While DSP processors allow flexibility, for some applications that require high

speed inner-produet computation, FPGAs or ASICs can provide higher performance

options.

1.3 Other Inner-Product Processor Implementation Methods

Besides the inner-product implementations on general purpose processors and

DSP processors, other arithmetic and implementations of inner-product processors have

been investigated. Ahmad and Poomalah [8] proposed an inner-produet implementation

using array multipliers. Although the array multipliers provide convenient layout for

VLSI, this method may not be a good option in high-performance requirements for inner-

product computation because of its high latency. Fahmi, et al., [11] and Haynal and

Parhami [12] investigated serial implementations of an inner-product processor. The

designs result in a small area but has a high latency. Inner-produet implementations based

on distributed arithmetic are proposed by Burleson et al, [13] and Vega, et al, [14].

Various inner-product implementations using carry-save adders are investigated by many

researchers [15]-[19]. Application specific inner-product processors are studied in [21]-

[25] and redundant binary implementations are proposed in [28],[29]. In this research,

which is focused upon the high-performance implementation of an inner-product

processor, only implementations of high-performance inner-product processors will be

reviewed and compared.

With a carry-save adder structure, Kazakova [15] investigated a fast and low-

power three-dimensional inner-product processor. This processor consists of Booth

encoders, a Wallace reduction tree, and a final two-operand adder. Its structure is shown

in Figure 1-5.

Ax Bx Ay By Az Bz

Booth
Encoder

Booth
Encoder

Booth
Encoder

Partial Product
Generator

Partial Product
Generator

Partial Product
Generator

T w o Operand Adder

Wallace Tree

Dot Product

Figure 1-5, Kazakova’s Inner-Product Processor Architecture [15]

A novel approach for high-performance inner-produet proeessor, which is

dynamically reconfigurable, was proposed by Lin [24],[25], This processor mainly

consists of an 8 X 8 or 4 X 4 array of small multipliers plus two or three arrays of adders.

It requires very simple reconfigurable components. The entire summation network can be

reconfigured by using a few control bits for the desired computations, where the

reconfiguration can be done dynamically. The design is regular, modular, and, it can

easily be pipelined. The diagram is shown in Figure 1-6.

Since the implementation of an array multiplier has a high latency, compared to

the design of carry-save addition and redundant binary representation, this proposed

inner-product processor has a high latency.

4 X 4 4 X 4 4 X 4 4 X 4
M ultip lier M u ltip lie r M u ltip lie r M ultip lie r

A rray A rray A rray A rray

7
C Reconfïgurable S w itch

Final Adder

Figure 1-6. Lin’s Reconfigurable Inner-Product Processor [24],[25]

]Vtultiplier 'V'

Y Register

4
Booth

Encoders

TVTultiplier X

X Register

r -
Booth Encoders

(4 RB Partial Product
Generations)

1 r y r
Pineline Register

Pineline Register

RB to 2’S-complement
Converter

Output

Figure 1-7. A RB MAC (Multiply and Accumulate) by Huang [2]

Based upon redundant binary numbers and the Booth eneoding, Huang [2]

proposed a high-performanee, two-stage pipelined MAC (Multiply and Aecumulate) unit,

which is shown in Figure 1-7. Later, Sacristan [29] further developed this structure as a

reusable inner-product unit for multipliers with different sizes of word length.

Baik et al. [28] proposed a redundant binary implementation of an FIR filter. The

diagram is shown in Figure 1-8 (See Section 2.1.4. for further discussion);

Out

RB-lo-NB
Converter

Figure 1-8. Baik’s Redundant Binary Filter Implementation [28]

1.4 Multiplier Implementation Review

Multiplication is the key operation in the implementation of inner-product

computation. Three popular implementations for multipliers are an array multiplier

[85],[93], a multiplier using a Wallace tree [94] and a multiplier using redundant binary

number representation [1],[4]. An array multiplier has good repeatability of unit cells and

is very regular in its structure. It uses only short wires that eonneet one full adder to

horizontally, vertically, or diagonally adjacent full adders. Thus, it results in a very

simple and efficient layout in VLSI implementation. However, the A-bit multiplication

time is linearly proportional to N. This method requires a long computation time for

larger TV’s. Figure 1-9 [85] is a design of 5x5 unsigned multiplier:

10

Full
A dder

Full
A dder

Full
A dder

Full
A dder

Figure 1-9. Design of a 5 x5 Array Multiplier [85],[93]

The Wallace-tree method is commonly used to realize high-speed multiplication.

The basic cell in Wallace-tree multiplication is 3-to-2 or 4-to-2 CSA (Carry Save Adder),

also called 3:2 or 4:2 counter. A 3:2 counter can be realized by a full adder, which

reduces three numbers to two numbers while a 4:2 counter can be realized by two 3:2

counters, as shown in Figure 1-10 [85]. Figure 1-11 and Figure 1-12 are 4x4 multipliers,

using 3:2 counters and 4:2 counters.

3:2 CSA

Figure 1-10. 4:2 Counter Using 3:2 Counter [94]

11

Binary Partial Products

3:2 CSA

3:2 CSA 3:2 CSA

3:2 CSA

C arry LookAhead Adder

P roduct

Figure 1-11. 3:2 Counter Based 4 x 4 Multiplier [85]

Binary Partial Products

Product

4 2 Counter

4 2 Counter

4 2 Counter

Carry LookAhead Adder

Figure 1-12. 4:2 Counter Based 4 x 4 Multiplier [85]

The traditional Wallace-tree method uses a 3:2 counter. This scheme results in a

complicated interconnection between three-input/two-output counters. This makes the

VLSI layout difficult and inefficient. The extended layout process increases the design

complexity. As the multipliers increase in bit length, the interconnection becomes

exponentially complicated. To solve this problem with conventional Wallace-trees, the

following two methods have been proposed. One method is to use 4:2 counters [94]

instead of 3:2 counters [94]. The use of 4:2 counters simplifies the interconnection

12

drastically because the partial produets are added using a binary tree. Another method is

to use redundant binary representation for the partial products [1], [3], [4], The use of the

RB simplifies the interconneetion because the RB partial products can be summed using

an RB adder tree. The A-bit multiplication time of RB multipliers and Wallace-tree

multipliers is proportional to logiA The physical layout of a RB multiplier has good

repeatability. The RB multiplier does not require any optional sign bits for adding partial

products. Makino’s research [3] indicates that a 54x54-bit multiplier using redundant

binary number representation is faster than the eonventional 4:2 counter-based multiplier

and has lower power dissipation. The power dissipation of 540 mW is estimated for the

54x54 RB multiplier operating at 100 MHz. These figures are more than 12% faster

speed and 38% lower power than the conventional CSA multipliers.

Using redundant binary representation in our research results in an easily

eontrolled/reconfigurable high-performance eomputing structure capable of handling

various computations for both real and complex numbers.

1.5 The Redundant Binary Number System

Redundant binary (RB) representation is one of the signed-digit (SD) number

systems originally introduced by Avizienis [69], which provides carry-propagation-ffee

(CPF) addition. In a signed-digit system, the individual digits have negative as well as

positive values. Given a radix-(r) signed-digit number, each digit of the signed-digit

number can take one of the following 2a + 1 values:

{—a ,. ..,—1,0,1,...,a} (1.2)

where the magnitude of a positive integer a must be within the following interval:

13

— < a < r - l (1.3)
_2j

The radix-(2) signed-digit system (Redundant Binary (RB) representation) uses

the digit set {-1, 0, 1} to represent numbers. The SD number system is also called

redundant because a given integer number may have more than one representation. For

example, the radix-(2) integer, (7)io, can be represented in several ways, e.g., [0 1 1 1]r b ,

[10 0 -1]r b , or [1 -1 1 1] RB. Based on the SD redundancy property, addition rules can be

devised so that carry propagation is limited to only one digit position, thereby eliminating

the possibility of a carry from the LSD (Least-Significant-Digit) to the MSD (Most-

Significant-Digit). In a RB adder circuit implementation, the addition time is fixed and

does not depend on the word length. Also, no explicit mechanism to handle the overall

sign of a signed-digit number is required since it is determined by the most significant

non-zero digit. Since the multiplication of two numbers is generally performed by the

addition of partial produets, the carry-propagation-free (CPF) feature of the RB

arithmetic can be used to design high-speed multipliers [1], [3], [4] and multiply-and-

accumulate (MAC) units [2].

The algoritbmie rules for the RB addition are defined by Takagi, et al., [4].

Basieally, two steps are required. In the first step, the intermediate carry-out, e {-1, 0,

I}, and the intermediate sum digit, e (-1, 0, 1}, is generated at each position and

satisfy the equation:

(1.4)

where a. and /?; are the RB augend and addend digits, respectively. Note that for

increased speed, the circuit implementation may utilize the next lower order digits.

14

and/?, I,to determine the earry-out from that digit position. Table 1-A describes

these rules of step 1 in detail. In the second step, the final sum digit is obtained at

each position by adding the intermediate sum digit, < J ., and the intermediate carry, ,

from the next-lower-order position, without generating a carry. That is,

C = 0 - , (1 . 5)

Table 1-A. Computation Rules for the First Step in Carry-Propagation-Free
Addition for RB Numbers [1]

Augend Addend Digits at the next- Intermediate Intermediate
Type digit digit lower-order carry sum digit

a, A position
i-l 5 A-1)

(%,) ((T,)

<1> 1 1 1 0

<2> 1 0 Both are negative 0 1
0 1 All other cases I -1

<3> 0 0 0 0

<4> 1
-1

-1
1 0 0

<5> 0 -1 Both are negative -1 1
-1 0 All other cases 0 -1

<6> -1 -1 -1 0

In general, throughout this dissertation, RB numbers are expressed using Greek

symbols.

1.6 The Conversion of 2 ’s-Compiement to Redundant
Binary

A limited precision RB number, A , can be derived from the addition of a pair of

N-hit 2’s-complement numbers A and B [2].

15

(A + B)^^ - A - { - 8)2̂

= A — (i? + 1)

= A - B - l
r #-2 \
-aN -

Af-2

i=0 J \

" N - 2

(L(%
/=0 j

N - 2 \

V ,2 " - '+ 2 : '5 /2 '
V

= A - \

. 1=0

-1

-1

;=0 y

where (5̂ _, = -a^_, + = a,. - h, for 0 < / < A/" - 2 , 2c is the 2’s-eomplement

operations, B is the rs-complement operations, b. is the bit-complement, and -1 can be

considered as a -1 carry-in to a subsequent RB addition. For inner-product calculations,

the -1 correction is applied in the RB partial product adder tree.

The binary-signed digits can be encoded into binary in several ways. In this work,

the binary signed digits{-1, 0 ,0, 1} are coded as {00, 01, 10, 11}, respectively, as given

in Table 1-B. Another encoding method is to encode redundant binary number in signed-

magnitude [28], that is, to encode (-1, 0,0, 1} as (11,00,10,01). It is less efficient to map

2C to RB for signed-magnitude encoding. See Section 2.1.4 for further discussions.

Table 1-B. Coding Table for Binary Signed Digits

a value Encoded a a*
-1 0 0
0 0 1
0 1 0
1 1 1

16

Examining Equation (1.6), beginning with the S, term, the signed digits are

encoded using the relationship, S. = a- - b -, where S. is a binary signed digit, S. e (-1,0,

1}. The mapping equations for S. and are [2],[49],[50]

S. - a.

f b r O < (< # - 2
(1.7)

Similarly, in the Most Significant Digit (MSD) term of Equation (1.6), is encoded

with the mapping equations

(18)

The structure of mapping the sum of two 2’s-complement binary numbers to a RB

number is shown in Figure 1-13:

^N-l^N-2 ^N-2 Qq

s~ s;

Figure 1-13. Mapping from the Sum of Two 2’s-CompIement Numbers to a RB
Number

Note that a single 2’s-complement number. A, is converted directly into a RB

number A in Equation (1.9):

=a,., (^,r=l (0 < ; < # - 2)
(19)

17

For example, a 2’s-eomplement number (OOOOOlOl)̂ ,̂ is converted directly into a

RB number (01 01 01 01 01 11 01 1%^.

The subtraction of two jV-bit 2’s-complement numbers can also be represented by

a redundant binary number;

E = (A-B)2 , = 2̂ ̂ ' -I- ^ a,. 2' -f 2^ ' - ' ^ b .2'
i=o y V i=o y

= (-«A'-l * + X
i=0

’ + '^£ ,2 '
i=0

(1.10)

where and £■ = a. -b^ for 0 < / < TV - 2 .

The mapping equations for the encoded g., (0 < / < TV-1) in Equation (1.10) are:

s t =b: for 0 < / < TV - 2
and

—b*7V-1 ~ ^ * - 1

(1.11)

(1.12)

The structure of mapping the subtraction of two 2’s-eomplement binary numbers

to a RB number is shown in Figure 1-14.

^A^-l ̂ N-l ^N-2 ̂ N-2

Figure 1-14. Mapping from the Subtraction of Two 2’s-Complement Numbers to a
RB Number

18

Based on this coding for RB numbers, the logic functions of a RBFA (RB full

adder) and RBHA (RB half adder) are obtained [49] and shown in Table 1-C for the sum,

z,, with inputs x and y. Boolean variables, g and h, are used as intermediate variables to

simplify the equations for the carry, c, and sum, z. Note, in Table 1-C, the notation used

is the same as [49] but corrects the RBHA equations found in [49].

Table 1-C. Logic Functions for RBFA and RBHA

RBFA RBHA

g. = (x: @ x+) @ (yr @ y /) z: = (x: © x;) © y
A, = x :x ; 4-y:y;

z,: =g,. ©c:_,
4̂- +

cT = x: + x/

Z/ - ^ (a' ® A + (a~ ® x]^)x:x/
c: =(x,: +X.)(y7 +y+)

In this work, a novel, high-performance, fixed-point, inner-product processor

based upon a redundant binary number system will be investigated. Similar to Balk’s [28]

methods, this scheme decreases the number of partial products by 50%, while achieving

better speed and area performance and providing pipeline extension opportunities. When

modified Booth encoding is used, partial products are reduced by almost 75%, thereby

significantly reducing the multiplier addition depth. This design is well suited for VLSI

implementation, and it can also be embedded as an inner-product core inside a general

purpose DSP FPGA-based processor. This inner-product processor can be easily

reconfigured for different computations, such as real number inner-product computations,

parallel real number multipliers, complex number multipliers, complex number inner-

19

product processors, redundant binary multipliers, redundant binary inner-product

processors, etc. Chapter 2 proposes a fixed-point number inner-product processor.

Computational struetures for both real and complex number inner-products for both 2’s-

complement and unsigned integers is presented. A new division method using the IP

structure is investigated in Chapter 3. Two convergence division methods —

Goldschimdt and Newton-Raphson are compared. Chapter 4 discusses extended

computations, such as parallel multiplications, inner-product processors using the inner-

product processor for real, complex and redundant binary numbers. In Chapter 5, an

improved redundant binary number to 2’s-complement number converter is discussed.

Chapter 6 provides a summary of contributions and future research directions for this

work. The implementation of the redundant binary IP processor for real and complex

number and the Goldschmidt division unit using the IP processor have been implemented

using VHDL on Xilinx FPGA. The original contributions of this research are:

• IP processor reduces the number of partial products.

• A unified signed/unsigned 2’s-complement/RB multiplier is developed

using this IP structure.

• With the same IP structure, a novel Goldschmidt high-performance

division circuit is developed.

• This IP structure can be used to build a multi-purpose dynamical processor

for real, complex and redundant binary number computations.

• An improved 2’s-complement to RB converter is proposed.

2 0

Chapter 2 Inner-Product Processor of Real, Complex
and Redundant Binary Numbers

2.1 Real Number inner-Product Computation
Consider an inner-product for anM dimensional (M=even), Â -bit real vectors {N

even), A and B, where ^ = (4>, 4 ’^2• • • -^m-\) B =) with

4 ~ ^ N - 2 , i ^ N - î , i ^0,/) 4 ~ ^ N - 2 , i ""^1,; A).,) (^-l)

where 4 and B. are real numbers.

The real inner-product is defined as:

< A , B > = (Aq ■■■) • (^0 4 • • • ^M-2 ^M-\) = X 4 4 (2.2)
/=0

Two basic approaches exist for performing the necessary irmer-product

multiplications using redundant binary arithmetic. The first method uses inline

conversion or mapping of 2’s-complement partial products into a redundant binary

number for each multiplication of A-B.. The second method combines or maps equivalent

2’s-complement partial products into a redundant binary number across the 4 4 P^irs

[49]. Both approaches are considered in the following sections.

2.1.1 Inline Partial Product Redundant Binary Inner-Product

Considering the simple case of M = 2 , 4) 4 + 4 4 , we first compute the

redundant binary products for4) 4 and 4 4 ’ and then add the RB products together to

produce the irmer-product. Redundant binary partial products are generated by mapping

even/odd pairs of 2’s-complement partial product sums. For #-bit numbers, the product

OÎAB is expanded in the following equations:

2 1

N - 2 N - 2

+ ^a ,2 ')(-6 ^ _ ,2 ^ - ' + %]6,.2')
i=0 i=0

= (-a„_,*„2*-‘ + X a ,6 ,2 ')2 " è,2"-‘ + |;« A 2 ') 2 ' +
/=0 i=0

(-^N-1^2^^ * + +(~^N-\h'^^ * + 2')2 ̂+
/•=0 i=0

;=o 1=0

Denote the 2’s-complement partial products as;

+ ^ « A 2 ') 2 \ =(-«^_,2^2^-' -k ^ a A 2 ')2 '
i-O /-O

= (-a ^ _ A 2 ''- '-^ ^ (,A 2 ')2 ^ =(-a^_A 2"'-' + ̂ a A 2 ') 2 '
I-O i=0

PP«^2 = (-a„_,i„_;2*-' + ^ „ ,6 , . : 2 ') 2 ' - \ = K _ , V , 2 " - '- ^ i 'A _ ,2 ') 2 ' '- '
1=0 1=0

Consider the first N - 2 even/odd partial products, PP2J and PP2J+1, where

J=0,l,2,...,^^^^—^ . To align the 2’s-complement partial products, the sign of the even
2

partial products is extended, and a low order zero is appended to the odd partial products:

PP22 =(-!!»-,*,, 2”-' + |;a A y 2 ') 2 " '
1=0

H -^N -A j'^^ + ^N -A j^^ ' + X^'^2y2')2^-'

(2.4)

1=0

= (~^N-Aj+A^ +^N-2hj+A^ ’ + Ÿ j^ i-A j+ A +0)2^-'
1=1

Combining even/odd 2’s-complement partial product pairs according to Equation

(1.6), we have:

2 2

i V - 1 __________________ 2j
PP̂ J + P 2̂̂ +, - + <^N-Aj+\)2^ + X ̂ ^A j ~ <̂ ,-Aj+\)2' + <̂0̂2J -1 - 1}2

/=1

= + Yĵ iaA' + <^0,2; - 1) 2^-'

where.

^N,2j ^N-Aj ^N-A2+1

o r . 2 . = a .b ^ . - a , . _ , 6 2 , +] , ! < (< / / - ! (2 . 6)

Eneoding the redundant binary eoefficients, or., using two binary bits, all but the final RB

partial product is encoded as:

= 0,1, # - 4
..., 2 ’

— ^N-Aj-> ^N,2j~ ^N-Aj+\->

<22 = ^i,2j = ^i-A 2+1 ’

^0.2; - ^ A j ’ ^̂ 0,22 = 0

(2 7)
1 < ; < # - !

Now, consider the last two 2’s-complement partial products, PP,̂ _2 and :

PP,-2+PP«-, = (-«»-,V 22"+a»-,*»-i2* '"
1=0

J " (2 .8)
= {{-^N-A^2 + %-l l̂V-l)2^ + X (^A-2 ~)2' + «0̂ A'-2 - 0}2^ ^

/-]

= f̂ N + X ^ '2 ' +^0
/=1

where,

& = ^ 2 + (%iv-i V i , A = V 2 - (̂ M̂ Ai-1, (1 ^ ^ -1) , ^ 0 = - 0 (2.9)

Encoding the redundant binary eoeffieients, yg., using two binary bits, the final RB

partial product is:

23

N ^ N-\^N-2-’ Pn

, p : = a,_,è^_i, 1 < z < TV -1

A “ ^(pN-2 ’ A ~ ^

(2.10)

Figure 2-1 shows the RB implementation diagram of A^B^+A^B^ for 8-bit

numbers and Figure 2-2 shows the hardware implementation of A^B^+A^B ̂ with the

inline redundant binary partial produet generation (RBPPG) using 2’s-complement

even/odd partial products. If the final redundant binary adder (RBA) is bypassed, the

circuit in Figure 2-2 can also perform the separate multiplications, A^B^ and A^B^.

M ultip licand M uttip licand

M ultiplier

RBPP23 R B PP23

P P 6

P P 7

Figure 2-1. Inline Partial Product RB Implementation of A^Bg + AjBj

Defining the redundant binary number Æ = A^jB^j -f , the general form

of the inline multiplication inner-product is given by;

M
M - \

< A, B> - ^ 4 4 - X + Aj+\^2J+P - X 4 (2 11)
j= 0 y=o

24

Binary Number Partial Product
Generator for A,)Bq

Binary Number Partial Product
Generator for A ,

M il i i i i r r “X i
RBPPG

PPo PP| PPo PPl PP\.2 PPn-1 PPo PPl PPo PP| PPn-2 PPn-1

4 / 4 / 4 / 4 / 4 / 4 /
RB

Mapping
RB

Mapping
RB

Mapping
RB

Mapping
RB

Mapping
RB

Mapping

\ / 4 7

2's-Complement
Partial Products

to RB Mapping

RBA RBA RBA RBA

RBA
V I

RBA

I f

RB Adder
Tree

A,B1̂ 1

RBA

T
RB Sum of AoBq+AjBI

Figure 2-2. Inline Partial Product Structure of A^Bg + A,Bj

To realize the inner-product, all of the redundant binary numbers, J . , are added using a

redundant binary adder tree, and the final sum of the redundant binary numbers can be

converted into a 2’s-eomplement number using a RB-NB converter [5],[7],[12]. Figure

2-3 depicts the overall architecture of the RB inner-produet circuit showing the RB adder

tree, a RB accumulator, a RB-to-2 ’ s-complement converter, and additional data paths that

might exist when the circuit is implemented in a DSP core.

25

RBA RBA

RBA

From RB
R e g is te r

RBA

i
RBA

T
RB A ccum ula to r

2-1

RBA

RBA

RB A dder T ree

RB To 2 's-C om pIem ent
C o n v e rte r

To RB R e g is te r
o r M em ory

To 2 's-C om pIem en t
R e g is te r o r M em ory

Figure 2-3. Overall Structure of the Redundant Binary Inner-Product

2.1.2 Cross Partial Product Redundant Binary inner-Product

An alternative method for mapping 2’s-eomplement partial products to redundant

binary partial products is to combine like partial products across the AjBj and

pairs. The method derived here is similar to that provided by Shin and Jeon [50] for

complex number multiplication. Consider the simple case of M=2, \ B ^ + Â B̂ , and

expand it as;

26

= ' + X ‘̂ ' .o2 ')(-^a^-i,o2^ ' + X ^ '.o2') +
/= 0 1=0

N - 2 N - 2

1=0 1=0

= 2 {ô -i,ô 7v-i,o 2 + ^ (~ î,o^N-\,o)2 + ̂ n-\,\^n-\,\ 2 + ^)2 } +
1=0 /=0

^2'{6.(,(-a^_,o2^ ' + %]Oy.o2^) + 4.1 2"̂ ' + ^^y .i2 ')}
<•=0 y=o y=o

N - 2

~ 2 {(̂ #-1,0^#-!,0 ‘̂ A'-l.l̂ A'-l.l)2 + ^ i~ îfi^N-\,G ~ ̂ i,\^N-\,\)2 } +
i=0

y i 2 {(~̂ w-i,ô /,o ~)2 + ^ (̂ y,o4,o ■*■ '̂ y.i4,i)2 }
,=0 7=0

Consider the first term of Equation (2.12),

2 { (‘̂ A'-l.O^A'-l.O ■*■ ^ N - \ , \ ^ N - \ , \) 2 + ^ (~ ^ i , 0 ^ N - \ , 0 ~ ^ i , \ ^ N - l , l) 2 }
i=0

= -2^ ‘{(-«AT-i,ô iv-i,o)2'̂ ' +Ÿ^i^i,oK-\,o)^‘
i=0

+ (~«A'-1,iV i,i)2^ ' +^(^o^Af-u)2'}

(2 12)

N - 2

(213)

— 2 {('̂ //-l.Ô M-l.O '̂ W-1,1̂ A'-1,i)2
N - 2

■ ^ (o.iobf̂ _̂ Q + <3; |6^_]])2 +1}
(=0

= 2"* 'K _ ,„2”- '+ | ; r „ 2 '+ 0
1=0

where „ is a redundant binary number and ,

^#-1,0 ^N-\,ô N-\,o ^N-\,\^N-\,\ 5 AT. Q ‘̂ ;,ô A'-i,o for 0 < z < 2 (2.14)

Encoding the redundant binary numbers, zr̂ _, „ and xr, ̂ , the Boolean equations are

27

(Z . i J j

yv-1,1

Considering the second term of Equation (2.12), and using Equation (1.6),

2 {(-«^_i ô /,0 “ 1̂1,1)2 + ^ }
1=0 y=o

“ ^ 2 { — (%jv-].o4.o + ^ (^y.o4,o)^ ̂)2^}
;=0 y=0 7=0

^ ^ 2 ' {(-«A-_i,ô i,o + ̂ yv-1,1̂ /,1)2^ ' + X (̂ v.o4.o “ ̂ 7.1̂ 0')2'' -1}
/■=0 7=0

= g 2 '{ A , _ 2 - + g ^ , 2 ; - l }
f̂ o ŷ o

where À., {Q<i < N -2 , 0 < j < N - \) is a redundant binary number with

(2 16)

^.7 = «7.0 ,̂.0 - (^7.i4.i for 0 < y < # - 2, and , fo r; = Æ -1 .(2.17)

Encoding À.j as two binary bits, À7. and À ^ j , { 0 < i < N - 2 , 0 < j < N - \) ,

4 . 7 ^ ^ 7 . o 4 . 0 ’ 4 , 7 ‘^ 7 , i 4 , 1 ■

The overall inner-product is expressed as:

+4^1
N - 2

— 2 { (^ j V - 1 , 0 ^ V - 1 , 0 ^ N - l , l ^ N - l , \) 2 + i ~ ^ i , 0 ^ N - l , 0 ~ ‘̂ i . l ^ V - 1 ,1) 2 } +
1=0

2 { (" ^ A f - i , o 4 , o “) 2 + ^ (^ 7 , o 4 , o ■*■ ^ 7 , i 4 . i) 2 ' ^ }
;=0 7=0

= 2"'-'{Ar^_,_g2''-^-H^;^,g2'-Hl}-Hg2'{^_^_,2^-'+§^_,2^-l}
i=0 ;=0 7=0

= 2»-' 2»-' + 1 ; , 2'} + X 2' {7, 2“-‘ + 1 ; 7 ,2 '}
/-O /-O y=o

N - 2

+ 2"'“' - ^ 2 '
i= 0

(2.18)

(2 19)

28

N - 2

Since 2^ ‘ ^ 2' = 1, Equation (2.19) becomes:

+ + 2 v ,„ 2 '} + 2 ;2 '^ ,,_ ,2 ''- ' + 2 ^ i , ,2 0 + l (2.20)
(=0

N - 2 N - 2

1=0 y=o

The adjusting term, +1, can be applied as a carry-in to the LSD of the redundant binary

full adder. Figure 2-4 shows the schematic structure of the A^Bq + hardware

implementation.

2's-C om plem ent
Partial Products

RBPPG
2's-C om plem ent
to RB MappingRB M apping

RB Adders

PPPP, PP PP.

RBA

RBARBA

RB M appingRB M apping

Binary Num ber Partial Product
Generator io r A , 8 ,

Binary N um ber Partial Product
Generator for A„B(,

RB Sum o f A(,Bg+A ,B ,

Figure 2-4. Cross Partial Product Structure of A„B ̂+ AjBj [50]

Defining the redundant binary number CZ>. = A^jB^j + , the general form

of the cross partial product method inner-product is given by:

29

M
M - \

- 1
M

{A,B) - ^ A.B̂ - 'Yj (Aj^ l j + ^y+lAy+l) - X ^ (2 .21)
J=0 J=0 j= 0

Again, all of the redundant binary numbers, (5, are added using a redundant binary adder

tree, and the final sum of the redundant numbers can be converted into a 2’s-complement

number using a RB-NB converter [5],[7],[12]. The same redundant binary adder tree

used for the inline inner-product, shown in Figure 2-4, can be applied to the cross partial

product method.

2.1.3 Booth Encoding Methods

To further reduce the number of partial produets, the modified Booth encoding

technique is used [96]. The modified Booth algorithm recodes an TV-bit 2’s-complement

number, B, by the following equation:

N - 2 2

(-0 /=0 (2.22)

1=0

where = 0 and Q. e (-2, -1,0, -fl, +2} is determined according to the bit pattern of the

3-bit string of B as given in Table 2-A.

Table 2-A. Modified Booth Encoding Table [96]

4 4-, a
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 2
1 0 0 -2
1 0 1 -1
1 1 0 -1
1 1 1 0

30

For the inline partial product method, we apply Booth coding to find the product

of A and B (assuming TV is even), using Equation (2.22),

-̂1
V-2 2

k̂O /-o

+ y . . 2 ') 2 " (2.23)
1=0 k= 0

i=0

N - 2

If 6, = 1, C, +22^*2* and g, = 0
A=0

If g, - 2 , q = -o^_ ,2 '' + ^ 0 ,2 * + ' and g, = 0
k=0

If g, = - I , C, = 2""-' + ^ a, 2" and g, = 1 (2.24)
k=0

N - 2

If Q, = - 2 , C, = -a,_, 2“ + y a, 2 " ' and g, = 1
k=0

Notice that C,. is a 2’s-complement number. Mapping the product to redundant binary.

f '
AB = 2 (C ,+ « ,) 2 ”

/-o

= E !(C ,+«,)2"'+<C,.,+«„i)2"“ }

= E {(C ,+4C,.,)2“ + (g ,+ 4j,.,)2" } (2.25)
,=0.2.4....y-2

= E {2?,2“+0?,+4?,.,-l)2“j
/=0.2.4,...y-2

= E (4.,.,+/,+/„,)2"'
,=0.2.4....—2

31

where E-is a redundant binary number and Æ”; -1 = C; + 4C,.^,. The correction factors,

/■ and , depend on the values of g. and , as shown in Table 2-B. Here, the two

redundant binary Booth correction factors, and , are used since g. and g,.̂ , can not

be combined. The -1 is encoded into the /, correction factor.

Table 2-B. Booth Correction Factors for the Inline Multiplication Method

gi gi+\
0 0 -1 (0 0) 0 (0 1)
0 1 -1 (0 0) 1(11)
1 0 0(0 1) 0 (0 1)
1 1 0(0 1) 1(11)

Referring to Booth coding Table 2-A, the Boolean equations for the correction

factors are,

r : - o

7Ï = Kxbi 4-1 + 4+14 4-1 + 4+i4 4-1

4+1 44-1 C2.26)

= 4+3 4+24+1

= 1

Nwhere / = 0 ,2 ,4 ,...-^ -2 . After the redundant binary products of and are

computed, a redundant binary adder is used to compute A^B^ + A^B^.

The general form of the inline Booth encoded inner-produet is.

M - \

< A , B > - 2] A j B j - ^ 2] + 7j,x + 7 j,m)2 '̂ (2.27)
y=o /=0,2,4,.. T-2

where the number of partial products is decreased to slightly above 25%, with

consideration being given to the correction factors.

32

Applying Booth encoding for the cross partial product method, we must

consider . Using Equation (2.22),

f - ' N - 2

A,B„ + A,B, = y + Z
i = 0 k = 0

+ Z a , , 2 " ' ' + Z " w 2 ') 2 "
/ = 0 k = 0

y-' y-'
= Z C : , . + g , . .) 2 " + Z (C , , + g , ,) 2 "

i = 0 i = 0

fc '
= X ((",.0 + ^/,1 + S i,I + g / ,o)2 ^ '

C2.28)

i = 0

From Equation (1.6), the sum of two 2’s-complcmcnt numbers can be considered

as a redundant binary number minus 1. Equation (2.28) can be converted to:

4)^ 0 + 4 ^ 1 - X ! (A .o + + Si,\ + g,,o)2^'
1=0

Y"'
= X + ^1,1 + Si,o - 1)2^'

/=0

Y"'
~ ^ (-̂ 1,01 +U',oi)2

(2.29)

1=0

where U. g, is a redundant binary number tfom the addition of C. g and C,., , and the

redundant binary number y. g, = g, o +^i,i • The correction factor, , depends on the

values of g. g and g -,, as shown in Table 2-C.

Table 2-C. Booth Correction Factors for the Cross Partial Product Method

Si,0 &.1 y.,oi - Si,0 +Si,i - 1 Yi.oi Yi.oi

0 0 -1 0 0
0 1 0 0 1
1 0 0 1 0
1 1 1 1 1

33

From the Booth coding Table 2-A, the bit encoding Boolean equations are;

,0

_ _ (2,30)
y,!oi = &i =4n,i4,i 4 - 1 . 1 4-i.i+4+i.i4.i 4-n

“ 4 + 1 , 1 4 , i 4 - i . i

Using Booth coding, the cross partial product inner-product method is given by

M M N
M-i y - ’ y - 'y - '

< A ,B > ^ AjBj ^ + ^2y+i-̂ 2y+i) ^ (̂ i,(2j,2j+i) +/,,(2;.2y+i)) ̂ (2-31)
J=0 j = 0 J=0 i=0

Again, the number of partial products is decreased to slightly above 25%, with

consideration being given to the correction factors.

2.1.4 Implementation Comparison of Iniine and Cross Inner-
Product Methods

An 8-tap digital filter implementation in [28] uses a signed-amplitude system to

encode a redundant binary number. The signed-amplitude method requires two gate

delays for the conversion from 2’s-complement to redundant binary. Examining

Equations (1.7) and (1.8), only inverters are necessary for the inline partial product

redundant binary mapping.

In [49], the cross partial product implementations of Â B^^+A^B ̂and A^B^-A^B^

are discussed for complex number multiplication. An equivalent derivation was provided

in Section 2.1.2. The inline method, presented in Section 2.1.1, combines partial products

within the partial products of 4)^0 A^B^, respectively. Figure 2-2 and Figure 2-4

depict these methods. For a qualitative comparison of these two designs, note that as

feature sizes shrink in deep submicron VLSI technology, interconnection wires contribute

34

a large portion of the total delay [49],[50]. The inline implementation provides more

direct routing for vertical (horizontal) wires, while the cross partial product method

[49],[50] will need crossing horizontal (vertical) wiring paths for partial product

mapping, with the routing distance proportional to the word width. Therefore, the inline

partial product method will result in improved performance, compared to the cross partial

product method. In addition, the inline method offers more extended operational

capahility than the cross partial product scheme (see Chapter 4). The inline method

requires more horizontal gates, primarily due to the overhead of the partial product

alignment. Table 2-D and Table 2-E show comparisons for Xilinx FPGA

implementations for , with and without Booth encoding. The Xilinx Virtex2

2V6000FF1517 device was targeted for the implementations using VHDL and Xilinx

Foundation software. For this word length, the higher performance and area savings of

the Booth encoded designs are evident (See Appendix for VHDL code availability).

Table 2-D. 16-Bit FPGA Implementations of + AjB^ Without Booth Encoding

Cross PP Method Inline PP Method
Number of Slices 1094 1094
Number of LUTs 1992 2002
Equivalent Gate Count 11952 12012
Maximum Delay 30.014ns 28.084ns

Table 2-E. 16-Bit FPGA Implementations of A^B ̂+ AjBj With Booth Encoding

Cross PP Method Inline PP Method
Number of Slices 846 905
Number of LUTs 1603 1717
Equivalent Gate Count 9618 10302
Maximum Delay 29.460ns 27.970ns

35

2.2 Complex Number Inner-Product Computation

2.2.1 Review of Complex Number Arithmetic
Complex number arithmetic computation is a key arithmetic feature in modem

digital communication, radar systems and optical systems. Many algorithms based on

convolutions, correlations, and complex filters require complex number multiplication,

complex number division, and high-speed inner-products. These applications require

efficient representation and manipulation of complex numbers together with real

numbers. Among these computations, high-performance complex number multipliers and

complex number inner-products are desirable in modem digital communication, optical

systems, and radar systems. Recent research in hardware implementation of complex

number arithmetic circuits is focused on utilization of radix-(2), as well as altemative

radices, for the representation of complex numbers.

In this chapter, different complex radices are investigated and compared. It is

found that the complex radices have no advantage in hardware implementations.

Traditional radix-(2) redundant binary numbers are used to implement complex-number

multiplication and inner-product processing. The investigated inline inner-product

processor can be reconfigured/controlled to perform complex-number computations. The

computational structures of and A^B^ - Â B̂ are developed for performing

complex number inner-products. The implementation of \Bç^ + Â B̂ can be easily

controlled to perform the computation of A^B^ - AjBj. A complex number inner-product

processor is realized, based upon a unified structure for A^Bg ± AjB^.

To represent a complex number other than radix-(2), several representations have

been proposed. Knuth [63],[64] described a “quater-imaginary” number system with

36

radix-(2j). Dao [58] further analyzed this quater-imaginary system for eomplex-radix

arithmetic. Penney [66] proposed a complex number representation with the base of j- \ .

Slekys [67] defined arithmetic operations on radix- (7V2) . Recently, further

investigations examined the arithmetic algorithms and hardware implementation of these

representations. Aoki [31],[97],[98], and Mcllhenny [99],[100] investigated complex

number arithmetic in a redundant radix-(2y) number system. Jamil [62] and Blest [55]

further analyzed the complex number computations in the radix-(7 -1) number system

and included proposed arithmetic methods for addition, subtraction, multiplication and

division. Frougny [60] and Koren [65] provided a theoretic investigation of complex

number arithmetic for complex numbers in the bases yVè and -b + j . Stepanenko [68]

also investigated the complex number arithmetic in radix-(7'V2).

Multiplication is an essential operation for high-speed hardware implementation

of complex number computations. It can be used to compare the complexity of complex

number arithmetic with different complex radices. The analysis of complex number

multiplication in these various radices will provide one metric for comparison.

To compute the product of two complex numbers, the conventional method is to

use four binary multiplications, one addition, and one subtraction, as shown in Figure

2-5. Define two complex numbers as:

where j= 4 ^ , and , R,, and R. are the real and imaginary parts of the complex

numbers, A and B . Multiplication of A and B is given by;

A x B = (Â . + jA .)X(B̂ . + jB.) = Â .B̂ . - A.B. + j{A^.B. + Â B̂ .) (2.33)

37

Figure 2-5. Basic Diagram of Complex Number Multiplication

In this direct implementation method, four multiplications plus two additions are

required. To reduce the arithmetic complexity of the complex number multiplication, an

algebraic transform, given in Equation (2.34), is proposed by Blahut [101]. This method

saves one real number multiplication at the expense of three more additions:

C2 34)

B:

Figure 2-6. Blahut’s Complex Number Multiplier [101]

38

As shown in Figure 2-6, this method requires pre-addition of B̂ . + B. and pre­

subtractions, Â . - and 5, - B. , before the binary multiplications, resulting in an

increase of critical path delay. Although addition is generally less expensive in area than

multiplication, the overall savings in hardware does not offset the non-trivial critical path

delay. Therefore, the complex multiplication scheme given in Equation (2.33) will be

utilized in this research.

2.2.2 Comparison of Different Complex Radices

Representing complex numbers with a complex radix implies that the complex

numbers can be manipulated without separating the real and the imaginary part. It is

supposed that in these complex radices, the complex-numher computational arithmetic

will be simplified. For example, complex number multiplication may only need one

complex radix multiplication and hence provide a major performance improvement. Can

a complex radix system really achieve such improvement? In the analysis, the various

complex radices are compared, although it is interesting that no significant improvement

is achieved compared to the traditional 2’s-complement binary representation of complex

numbers with the real and imaginary parts treated separately. Further, many of the

alternative complex radix representations are unbalanced or fractal, thereby providing, in

limited precision hardware, a significant representation issue for the range of the real and

imaginary number components as well as the positive and negative fixed-point values. A

review of these alternative complex radices follows.

39

2.2.2.1 Radix-(2j)

As early as 1960, Knuth [63],[64] proposed radix-(2y) which leads to an

interesting system called “quater-imaginary” (by analogy with “quaternary” or base-4). In

this system every complex number is represented with the digits 0, 1,2, and 3 without a

sign. For example;

(1 1 2 1 0 . 3 % - 1 6 + (-8y) + 2 x (- 4) + (2 ;) - k 3 x (- l y) + (- l) ^ 7 ^ - 7 l ; (2.35)

Here the number (u^^L)zy is equal to

(<22ajL ^-2K^-4 ^ .U] L)_̂ (2.36)

Conversion to and from quater-imaginary radix reduces to the conversion to and

from negative quaternary representation of the real and imaginary parts. In his book [64],

Knuth proposed that the interesting property of this system is that it allows the

multiplication and division of complex numbers to be done in a fairly unified manner

without treating real and imaginary parts separately. For example, we can multiply two

numbers in this system, much as we may do with any radix, by merely using a different

carry rule. Whenever a sum digit exceeds 4, we subtract 4 from the sum digit and carry

-1 two columns to the left; when a sum digit is negative, we add four to it and carry +1

two columns to the left.

Representing complex numbers in radix-(2y) is the same as representing the real

and imaginary parts in radix-(-4). Although there is no sign to deal with in radix-(-4), the

number system is imbalanced. The imbalance of the negative-base number system in

Zohar’s work [102] isn’t correct. Zohar’s results [102] are shown in Equations (2.37) and

(2.38):

40

For radix g<0, the maximum positive number is given by

2[(fl+l)/2] 1

and the minimum negative number is given by

= (2.38)
M+1

Here are the eorreet results. Consider a system that uses D digits to represent

numbers in the base '̂<0. When D is even, the largest representable integer is the positive

number P, whose representation is:

^ ,0,1^1-1,0,1^1-1). (2.39)

Its value is given by,

= = ^ (2.40)

Similarly, the smallest integer {N) is:

Â = (|^|-1,L ,0 ,|g |- l ,0 ,|^ |- l ,0) . (2.41)
Its value is given by,

IÛ -1 I |2

(2.42)

The number of integers eontained in the elosed interval defined this way is

P - N + X. That is:

p + Ar-l = p = lT - Z l + M M - d l + i , | g | ' ’ (2.43)
1 + k l 1 + H ' '

The result is very similar when D is odd. The largest representable integer is the

positive number P whose representation is

41

,0 ,|^ |-1 ,0 ,|^ |-1). (2.44)

Its value is given by:

, = = ^ (2.45)

and the smallest integer (TV) is

TV = (0 ,|gr |_ l,L ,0 , |^ |- l ,0 , |g r |- l ,0) . (2 .46)

Its value is given by:

1-M i+ k l
(2.47)

The number of integers contained in the closed interval defined this way is

F-TV + 1. That is:

f + = f = ‘ M<H * T l^ |^ |° (2.48)
1+M 1+kl

This, however, is the number of different configurations of the D digits. We

conclude, therefore, that D digits span all the integers from TV to P\ regardless of D being

even or odd. A troubling result is that the closed interval {N,P) is quite asymmetrical. A

simple example will illustrate these statements.

Assume

q - -10 and Z) = 3

Then the largest number is (909)_,o = 909 , and the smallest is (90)_,g = -90.

Assume

q = -10 and Z) = 4

Then the largest number is (0909) jq = 909 , and the smallest is (9090)^,„ = -9090.

42

2.2.2.1.1 Complex Number Addition in Radix-(2y)

Dao [58] proposed a hardware implementation for the radix-(2y) addition. The

adding of two numbers X and Y in the quater-imaginary system, as in any positional

representation, consists of adding digits of the same weight. The modulo-(-4) result

produces a sum digit and a carry digit. In this radix, the carry is -1 and has a weight equal

to that of the digit two digit positions to the left:

=(% ,+x)(2y)'
where

(2.49)
4<(x.4-_y.)<6

For example:

5 + 10j 1 1 3 3 1 1
+ 8 + 2 j 0 1 0 2 1 0

1 2 3 1 2 1
-1

13 + 12j 1 1 3 1 2 1

Figure 2-7. An Example of Addition in Radix-(2/) [58]

Actually, the radix-(2y) adder is a radix-(-4) adder in the separate even and odd

digit positions. The negative radix addition for real numbers is further investigated in

[103],[104]. We conclude that the radix-(2y) addition reduces to the radix-(-4) addition in

the even and odd positions separately.

2.2.2.1.2 Complex Number Subtraction in Radlx-(2/)

In negative bases like (-4), no explicit sign digit is required in the representation.

The negation of a number is obtained by taking the 4’s-complement of each non-zero

digit together with a positive carry digit of 1 two positions ahead:

43

= (- 4 + x J (2 y) w ith = 4 -% ^

= (2 ; r ' + ^ (2 ; y

The subtraction of a number X is reduced to adding its 4’s-complement with

proper carry propagation:

Similar to addition, the implementation of radix-(2y) subtraction is radix-(-4)

subtraction in the even and odd positions separately.

5 + 10j 1 1 3 3 1 1
- (8 + 2j) 0 3 0 2 3 0

1 1 carry from 4'S-complement
+ _i _i carry from radix-(-4) addition

- 3 + 8j 1 0 3 1 0 1

Figure 2-8. An Example of Subtraction in Radix-(2/) [58]

2.2.2.1.3 Complex Number Multiplication in Rad\x-(2j):

Serial multiplication, i.e., one digit of the multiplier at a time, proceeds as in the

binary case. Given,

X = X o (2 y f - fL + x ^ _ ,(2 y y - '

the product is:

z = A T = Y L y y A (. v n < . v f (2-si)
/t=0 /=0

The digit product can generate a carry (0,-1,-2), which must be added to the

digit position two places ahead in the partial sum:

Jkh
 ̂ (2.52)

44

The terms inside the braeket represent the partial produet from the lower digit of

the multiplier.

Notiee that shifting a number X one position to the left is equivalent to rotating

the vector v by 90 degrees and doubling its length, while shifting to the right one position

results in a -90 degree rotation and halving the length.

5 + 10j 1 1 3 3 1 1
X 8 + 2 j 0 1 0 2 1 0

20 + 90j 1 1 3 3 1 1 0 Partial Product
2 2 2 2 2 2 Partial Product
-1 -1_____________________
1 1 2 1 1 3 1 0

1 1 3 3 1 1 Partial Product
-1 -1

3 2 1 3 1 0

Figure 2-9. An Example of Multiplication in Radix-(2/) [58]

The implementation of radix-(2y) multiplication results in a radix-(2y) partial

product generator with even and odd positions separately followed by a radix-(-4)

addition tree to generate the final product (see example in Figure 2-9).

An analysis of Knuth’s “quater-imaginary” radix shows that there are several

disadvantages of this imaginary number system:

• Since the numbers obtained from sensors and digital systems are normally

2’s-complement binary numbers, a conversion from 2’s-complement to radix-

(2j) must be conducted. Our research [105] shows that the implementation of

this conversion procedure will require a delay on the order of a earry-

lookahead adder and will add an additional computational delay in the critical

path.

45

• A key computation for complex numbers in radix-(2y) will invariably be

multiplication. Without further developments, radix-(2y) is slow, compared to

2's-complement binary multiplication that uses Wallace trees, redundant

binary number addition. Booth encoding, or array multipliers.

• Representing complex numbers in radix-(2y) is the same as representing the

real and imaginary parts in radix-(-4). As previously shown in Equations

(2.40), (2.42), (2.45) and (2.47), the radix-(-4) is an imbalanced system while

a traditional positive radix system is a balanced number system.

Recently, Aoki [31],[97],[98] and Mcllhenny [99],[100] investigated the

redundant complex radix-(2y) arithmetie for high-speed signal processing with emphasis

on complex number addition and multiplication. The addition of two numbers,

A = (Xĵ _jL X;L x_^) and 7 = (y^_, L >’,.L) in the redundant complex number system

(2/3), where e {-3,-2,-l,...l,2 ,3}, is performed by the following three steps for

each digit:

Step 1 : Z; = X- + y.
Step 2: - 4c. 4- w. = z. (2.53)

Step 3: s .= w .+ c ._2

Here z. is the linear sum, w. is called the intermediate sum, and c. is the carry. This so-

called radix-(2y) redundant number system is actually a radix-(4) redundant number

system with the real and imaginary parts treated separately.

In summary, this analysis shows that the non-redundant radix-(2y) number system

has several disadvantages and the redundant radix-(2y) complex number system is a

radix-(4) redundant binary system, with real and imaginary parts treated separately.

46

Therefore, radix-(2y) offers no overall hardware implementation advantage over a

conventional binary number system.

2.2.2.2 R a d ix -(j4 2)

A system similar to radix-(2y) that uses only the digits 0 and 1 is based on j 4 l .

This scheme, however, requires an infinite non-repeating expansion for the simple

number 0+\j. Slekys [67] defined arithmetic operations on a modified bi-imaginary

number system based on radix-(/V2). If a modified bi-imaginary complex system is used

to encode each complex number a-\-jb as a + jy flc , then the number

o,ûto.a_,L üf_2̂)^ .is equal to:

) - 2 ^ ^ - 2 A T + l) - 2

The conversion to and from radix- (y V2) notation reduces to the conversion to and fi-om

a negative-2 representation of the real and imaginary parts separately. Slekys defined

algorithms for complex number addition, subtraction, multiplication and division.

However, since Slekys's radix- (7V2) system is not redundant, the computational

arithmetic requires additional operations comparable to the conventional 2’s-complement

representation of complex numbers. To see this, multiplication in this system is

considered.

Define the multiplier and multiplicand as the complex numbers Z; and Z2

respectively, where:

Z, = Z + jB
Z2 = C + jD

Using a modified bi-imaginary representation let,

47

Z , '- ^ + ;V 25

Zj = C + j-J ^ D

Then the multiplication of Zj and Z2 will be:

Zj «Z2 =Zj « Z j + 5 » Z) (2.54)

Equation (2.54) shows that in the bi-imaginary complex-radix system the

multiplication of two complex numbers will be composed of one complex number

multiplication requiring four multiplications and two additions, plus one real number

multiplication and one complex number addition.

For complex radix-(jV2), we can also use a redundant binary system for the

computational arithmetic. Similar to the case of radix-(2y), this redundant complex radix-

(j y f l) is just a radix-(2) redundant binary system with the real and imaginary parts

treated separately.

2.2.2J Radix-(j-1)

A binary complex number system is also obtained by using the base (/-I), as first

suggested by Penney [66]. Further studies of this radix were conducted by Jamil [62] and

Blest [55]. Jamil shows that the conversion from 2’s-complement to radix-(/’-l) is

actually the conversion from radix-(2) to radix-(-4) for the real and imaginary parts

separately, with a (/-I)-based addition needed to complete the conversion procedure. The

multiplication and division of complex numbers based on this radix are also presented in

Jamil's [62] and Blest’s work [55]. Hardware implementations were not specifically

addressed. In fact, it appears that the hardware for this radix will possess considerable

48

latency and gate count due the necessary carry detection logic requirement for the

addition operation.

In radix-(/-l), there exists a carry propagation problem in complex number

addition that further exacerbates the partial product additions in the multiplication

hardware. To deal with this carry propagation problem for high-speed parallel hardware,

a zero-detector is required for eaeh digit. The zero-detector adds additional latency and

gate complexity.

The value of an #-bit binary number A = with radix-(/-l) can

be written in the form of a power series as follows:

^ ' + û̂ -2 (-1 + -̂-I----- ̂ (~1 + y) + ̂ 0 (2.55)

where the coefficients ̂ ‘ ^ {0,1} • As an example, if # is a 16 bit number,

the powers of -1 + j associated with the coefficients will be (from bottom to top, right to

left, in groups of four):

[Row 4] (-128-jl28), (0+jl28), (64-j64), (-64+jO)
[Row 3] (32 + ;32), (0-y32), (-16 + y 16), (16 + yO)
[Row 2] (-8-y 8), (0 + y8), (4 -y 4), (-4 + yO)
[Row I] (2 + y2), (0-y2), (-1 + yl), (1 + yO)

To describe the hardware implementation difficulties for this system, we need

only consider the addition operation. In radix- (-1 + y), we have:

(l)_,+y +(!)_,+;=(2)_,+,=(1100)_,+, (2.56)

In radix-(-1 + y) there are two earries from one bit position. The addition truth table for

one bit position is shown in the Table 2-F.

49

From the truth table, it is seen that there is a carry propagation problem in the

addition of numbers in radix- (- l - t j) . Figure 2-10 shows an example for

= 1, y, = 1, ĉ 2 — 1 ^rid c. 3 = 1.

In this example, x, = y, = c,_2 = = 1, from Table 2-F and Equation (2.56), the

carry-out and c.̂ 3 to the 2 and 3 digit positions to the left are c,̂ 2 = <̂,+3 = 2 ■ Then

carry = 2 will further propagate to = 1 and carry c .̂ 3 = 2 will further

propagate to = c,3_g = 1. Thus, carry =1 + 1 = 2 will propagate to = 1.

Table 2-F. Truth Table for Radix-(-1 + j) One-Bit Addition

X, y, 4-2 4-3 4 4+2 4+3
0 0 0 0 0 0 0

0 0 1 1 0 1 1

0 1 1 1 1 1 1

1 1 1 1 0 2 2

1 1 1 2 1 2 2

1 1 2 2 0 3 3

1 1 3 3 0 4 4

Sum0

^ '4 8 4 + 7 4 h 6 4 + 5 4 + 4 4 + 3 4 + 2

Figure 2-10. An Example for Radix-(/-I) Carry Propagation

50

A possible hardware method to work around this problem is a zero-detector based

on the equality:

(!!)_ ,,,- k (l l l)_ , , , - (0 ^ , , (2.57)

However, the zero-deteetor is expensive, serial in nature, and produces high latency.

From this analysis, the radix- (-1 + j) has no advantage in the complex number

computational hardware for addition and multiplication.

In summary, different complex radices such as radix-(2y), radix-(-Hy) and radix-

(7V2) are studied. It is shown that these complex radices have no advantage over

traditional binary number systems in hardware implementation. Chang’s research

[56],[57] also supports this conclusion. In Chang’s research, a RIA (Real Imaginary

Alternate) complex number system is proposed. In essence, his system represents

complex numbers in 2’s-eomplement binary form with interleaved real and imaginary

parts. Therefore, based upon traditional binary number representation and the previously

discussed real-number inner-produet processor, a high-performance complex multiplier

and complex number inner-produet processor is developed in the following sections.

2.2.3 Complex Number Multiplier and Inner-Product
Computation

2.2.3.1 RB C om plex N u m ber M ultiplier

Applying the inline multiplication method to the complex inner-produet requires

no modification to Figure 2-2 to produce the redundant binary imaginary part,

+A,Bj^). However, the real part, Â B̂,̂ -A^B j, requires a final redundant binary

subtraction, rather than an addition. The subtraction is easily implemented by modifying

the redundant binary adder (RBA) to add the complement of the redundant binary

51

number , since)gg = {A,B,)^g, where -1 = 1, 1 = -1, and 0 ^ 0. In the

actual hardware implementation of Figure 2-2, the addend or its RB eomplement are

multiplexed into the RBA, thereby converting it to an adder/subtracter. Defining the

control signal Real lmg as Real_Img=l, for the A^^B^ -̂A^B ̂ computation and

Real_lmg=0 for the A^B ̂+ Â B̂ computation, and then the inline implementation for

\ B q ± Â B̂ is shown in Figure 2-11. For Booth encoding of the inline method, no further

modification is required.

Binary N um ber Partial Product
G enerator for AnB„

Binary N um ber Partial Product
Generator for A ,

PP, PP PP, PP PP, PPPP, PP

RBPPG

RB
Mapping

RB
Mapping

RB
Mapping

RBARBA RBARBA

V/
RBA

w
R BA

f r
N O T

RBA

RB Adder
Tree

TR B Sum o f AgBg - A j B j

Figure 2-11. Inline Implementation oïA„B„ -A jB j

The cross partial product method is slightly more difficult and requires mapping

the difference of two 2’s-complement numbers into a redundant binary number to

52

compute the real part of the complex product, -A iB ,. The result given here is

similar to that provided in [49] and is derived much the same as given in Section 2.1.1 for

AqBq + A^Bj.

V-2 V-2

A^Bq-A ^B ^- (-«^-1,02^ ' + X a. Q2' q 2^ ‘ ^ b. ,̂ 2') -
/=0 !=0

+EX ,.,2 ')
;=0 ;=0

= 2^ '(<^A'-i.o^v-i.o2 ̂ ' + 2]("^'.o^v-i.o)2' “ 2^ ' + %](^o^v-u)2') +
;=o !=o

Î ; 2 ' , 2 “-' + E " , . .2 ') + 4 , ,W - u 2 " - '- Z V ,2 ') } (2.58)
/■=0 j=Q j= 0

N - 2

~ 2 { (a ^ _ , q Z 2 ^ _ j Q — ,) 2 + ^ (“ ‘2 , - , o ^ a '- i , o " * " ^ i , i ^ v - i , i) 2 } +

(=0

^ 2 {(~<2at_i_ô ;,0 ‘̂ V-1,1̂1,1)2 + ^ (^;,o4,0 ~)2 ̂}
i=0 j= 0

Considering the first term of Equation (2.58),

N - 2

2 l(^;v-i,o^v-i,o '^v-i,i^v-i,t)2 + ^ (‘̂ i,o^A -̂i,o ■*"‘̂ (,i^v-i,i)2 }
(=0

1=0

= 2 " - ' , „2" - ' + | ; / / , . 2 ' }

1=0 (=0

N - 2

i=0

where /i,. ̂ (0 < i < TV -1) is a redundant binary number with

B n - \ . o ~ ^ n - \ , (P n - \ , o ~ ^ N - \ 2 p N - \ , \ Bifi ~ ~ ^ i , (p N - \ f i ^ i ^ N - x i forO<i<A^ —2. (2.60)

Encoding as two binary hits for 0< i< N - 2 :

B n - \ , o ^ n - \ ’0 ^ n - \ , 0 ’ B n - 1,0 ^ N - i n ^ N - [, i ’ ̂ (2.61)
Bi,o ~ î,o^N-i,o’ Bifi ~

53

Converting the last term of Equation (2.58) to redundant binary,

^ 2 o^,-.o + ^ (^ y , o 4 . 0 ~ }

(2-«2)

i=0 y=0

where v. . (0 <i < N -2 , 0 < y < # - 1) is a redundant binary number and

(2.63)

Encoding v. j (0 < i< N -2 , 0 < y < TV -1) as a redundant binary number using

two binary bits:

^ i , N - \ ^V-l,o4.0 ’ ^
 (2.64)

The general redundant binary equation for the summation of is:

A B „ - A A = 2 « - y ^ „ _ ,„ 2 » - '+ |; / i ,„ 2 ‘) + |;2 'K _ , ,„ 2 '* - ‘ + |;v ,„ 2 ') .(2 .6 5)

Now consider the inner-produet, A^B^ - A^B ,̂ using modified Booth encoding:

"-12 V-2 2i- A,B, = X + Z « » 2 ') 2
/=0 k = 0

y -'
“ Z i 6z,i(-<3^_i ,2^ ' + ^ 0^ ,2 ' ')2

1 = 0 k = 0
y - ' y - 1

- Z (C , . + & , .) 2 " - Z (V , , + g u) 2 '
1 = 0 / = 0

a '
= X (^'.0 “ + Si,o ~

(2.66)

/=o

54

From Equation (1.10), the subtraction of two 2’s-complement numbers can be considered

as a redundant binary number. So Equation (2.66) becomes

4)^0 “ 4 4 - X (^',0 “ Q.i + Si,o ~ Si,i)2^'
1=0

J - '

= +gz.o (2.67)
(=0

N

= Z (n o ,+ r , , . ,) 2 ”
;=0

where V. g, is a redundant binary number from the subtraction of

C.Q and C., with K-m =C.g-C,., and • The correction factor, y.g, ,

depends upon the value g. g and g. ^, as shown in Table 2-G.

Table 2-G. Booth Correction Factors for Redundant Binary Partial Product
Generation of AgBg - A jBj

Sifi &,1 y,.oi =& .o“ &,i T '/.o i / / , o i
0 0 0 0 1
0 1 -1 0 0
1 0 1 1 1
1 1 0 1 0

From the Booth coding Table 2-A,

y i,m S i,o 4 + 1 , 0 4 .0 4 - 1 ,0 ■ * " 4 + i ,o 4 ,o 4 - 1 ,0 4 + i , o 4 , o 4 - i , o

“ 4 + 1 ,0 4 , o 4 - i , o

/;,oi= &;.i =4+i.i4.i 4_].i +4+i,i4,i 4-1,1 +4+i.i4,i 4-
(2 .68)

1,1

“ 4+ 1 ,1 4 , i 4 - i , i

Again, the “+” in the equations above is the Boolean OR operation.

2.2.3.2 RB Complex Number Inner-Product Processor

The inner-produet of complex numbers Cg, C,, • • • and Z)g, Z),, • • • ,,

55

Q — A + 7 ^ ’ Q “ ^2 “ ^2M-2 ~^J^2M-I
■̂0 ~ ^0 ■*■ J^I’ A ~ A ~ ^2M-2 +7Aa/-1

(2.69)

is
A / - 1 M-1

(c , o) = X CjA = z (4 y + 2 4 , . ,) (4 , + 2 4 , . ,)
y-0 7=0
M - l M - \

~ %] (^ 2 2 A 2 " A 2+1A 2+1) + 7 ^ (^ 2 ; A 2+1 ■*‘ ^ 2 2 + i A y)
2=0 2=0

The real part of the complex number inner-produet is shown as Figure 2-12.

(2.70)

RBA RBA RBA

RBARBA

RBA

T
RB A dder Tree

Figure 2-12. The Real Part of the Complex Number Inner-Product

The imaginary part of the complex number inner-produet is shown as Figure 2-13:

‘M 2-2

RBA RBARBA

RBA RBA

RBA

:
RB Adder Tree

Figure 2-13. The Imaginary Part of Complex-Number Inner-Product

56

Defining a control signal Real_lmg=l/0 for A B -C D /A B + CD computation,

then the overall structure of a unified inner-produet processor for AB ± CD is shown in

Figure 2-14:

1 2's-Complement
A and B i

RBPPG

u u y n 1 r 1r

PPo PP, PPo PP, PP n-2 PP N-l

RB
M apping

RB
M apping

RB
M apping

W
RBA

I
RBA

w
RBA

RBA

T

2's-Complement
C and D JL

Binary Number Partial Product Binary Number Partial Product
Generator for A B Generator for C D

PPo PPi PPo PPi - P P n-2 P P n-1

RB
M apping

RB RB
M apping M apping

RBA RBA

w
Real Img

RBA

?
2:1

CD

i M
U
X

RB Adder
Tree

RB Sum o f AB + CD

Figure 2-14. Unified RB IP Processor for ± CD

Using the above structures, the real and imaginary parts of the complex number

inner-produets are computed in redundant binary form. Finally, a RB to 2’s-complement

converter is needed to convert the redundant binary inner-produet real and imaginary

parts to 2’s-complement form, if required.

57

2.3 Inner-Product Computation Comparison

In this section, the computation time for real number inner-produet processing is

compared between the Texas Instruments TMS320C6000 series and the RB inner-

produet processor. The sample irmer-produet assembly code using TMS320C6000 [92] is

shown in Figure 2-15:

MVK .SI 100, A1 ; set up loop counter
ZERO .LI A7 ; zero out accumulator

LOOP:
LDH .D1 *A4++,A2
LDH .D1 *A3++,A5
NOP 4
MPY .Ml A2,A5,A6
NOP
ADD .LI A6,A7,A7
SUB .SI Al,1,A1

[Al] B .S2 LOOP
NOP 5
; Branch occurs here

load ai from memory
load bi from memory
delay slots for LDH
ai * bi
delay slot for MPY
sum += (ai * bi)
decrement loop counter
branch to loop
delay slots for branch

Figure 2-15. An Example Code of Fixed-Point Inner-Product [92]

To analyze the execution clock cycles of this sample, a dependency graph is very

useful. Dependency graphs can help analyze loops by showing the flow of instructions

and data in an algorithm. These graphs also show how instructions depend on one

another. The following terms are used in defining a dependency graph:

• A node is a point on a dependency graph with one or more data paths flowing in

and/or out.

• The path shows the flow of data between nodes. The numbers beside each path

represent the number of cycles required to eomplete the instruetion.

• An instruction that writes to a variable is referred to as a parent instruction and

defines a parent node.

58

• An instruction that reads a variable written by a parent instruction is referred to as

its child and defines a child node.

Use the following steps to draw a dependency graph:

1) Define the nodes based on the variables accessed by the instructions.

2) Define the data paths that show the flow of data between nodes.

3) Add the instructions and latencies.

4) Add the functional units.

Figure 2-16 shows the dependency graph for the fixed-point inner-produet

assembly instructions, shown in Figure 2-15 and their corresponding register allocations;

LDH LDH

D1 D1
(A5)(A2)

MPY SUB

cntr
(Al)Ml

.S I

ADD

sum
(A7) LI LOOP.S I

Figure 2-16. Dependency Graph of Fixed-Point Inner-Product [92]

Figure 2-16 provides the following observations:

• The two LDH instructions, which write the values of a. and b-, are parents

of the MPY instruction. Five cycles for the parent (LDH) instruction are

59

needed. Therefore, if the LDH is scheduled on cycle i, then its child

(MPY) cannot be scheduled until cycle i + 5.

• The MPY instruction, which writes the product p., is the parent of the

ADD instruction. The MPY instruction takes two cycles to complete.

• The ADD instruction adds p. (the result of the MPY) to the sum. The

output of the ADD instruction feeds back to become an input on the next

iteration and, thus, creates a loop carry path.

The dependency graph for this inner-produet algorithm has two separate parts

since the decrement of the loop counter and the branch do not read or write any variables

from the other part. The loop counter graph shows the following:

• The SUB instruction writes to the loop counter, cntr. The output of the

SUB instruction feeds back and creates a loop carry path.

• The branch (B) instruction is a child of the loop counter.

Executing this inner-produet code serially requires 16 cycles for each iteration

plus two cycles to set up the loop counter and initialize the accumulator, thus 100

iterations require 1602 cycles. For the fixed-point TMS320C62X (‘C62X) devices, which

are operated typically at a 200 MHz clock (5 ns) frequency, 100 iterations require:

1602x5 = 8010 /» (2.71)

For the RB inner-produet processor, Figure 2-17 shows the structure to implement

the real number iimer-product computation. For an accurate and fair comparison, we use

only one RB multiplier and RB accumulator.

60

RB
A ccum ulator

R B-to-2's-com plem ent
Converter

Figure 2-17. RB Inner-Product Implementation

A CMOS implementation of the RB multiplier [3] with 0.5 jum fabrication shows

that a 54x54 bit multiplier achieves 8.8 ns delay, which includes 2.4 ns delay for the

RB-to-2’s-eomplement converter. The actual delay of the RB multiplier is only 7.2 ns.

Compared to the implementation of TMS320C62X processor, if two-stage pipelines are

used for the multiplication and the RB multiplier is employed in the TMS320C62X, then

the clock cycle can be reduced to 6.4/2=3.2ns. Assuming that all the other instruction

operations (LDH, ADD, SUB, etc) take the same time in the RB IP processor, then for

100 iterations of inner-produet computations, the total time required is

1602x3.2-5126.4M.Y (2.72)

Table 2-H shows the comparison result using TMS320C62X and the RB inner-

produet processor for 100 iterations of inner-produet computations:

Table 2-H. Comparison of IP Computation between TMS320C62X and RB Inner-
Produet Processor

100 Iterations
TMS320C62X 8010 ns
RB Inner-Product 5126.4 ns
Processor

61

2.4 Implementation of Unified Signed/Unsigned Multiplier

In this section, a unified signed/unsigned multiplier is developed using the RB

inner-produet core without and with Booth encoding. An unsigned binary number can be

considered as a 2’s-eomplement number with an extra sign bit 'O’ padded before the

MSB (Most Significant Bit). For example, an unsigned binary number 10001111 can be

considered as a signed binary number 010001111 with an extra sign bit ‘O’.

2.4.1 Unified Signed/Unsigned Muitipiier Without Booth Coding

From Equation (1.6), a RB number, A , can be derived from the addition of a pair

of 2’s-complement numbers. Thus for an unsigned N x N multiplier of A x B , N

unsigned partial products are generated. These N unsigned partial products are converted

to N+\ signed partial products with extra bit 0 padded before MSB and are mapped to

N/2 RB partial products with correction factors as shown in Figure 2-18.

sign extension
0 0
0 •

0 0 . *
0 . . .

Redundant binary
Partial Products

0 -1 0 -1 correction factors a,

Figure 2-18. Unsigned Multiplier with Partial Product Generation

Consider the partial products of and for signed multiplier of A and B

as:
N - 2

N - l
PPn-2 - i~ ‘̂ N-\^N-2 2^ + ‘̂ N-l^N-l 2*̂ ’ + X P^V-2 2')2

(=0

= 1

(2.73)

62

Where PPf _̂2 and are 2’s-complement binary numbers, the sum of

PPf _̂2 and f a r e mapped into a RB number according to Equations (1.10), (1.11),

(1.12) and Figure 1-14. The mapping structure is shown in Figure 2-19.

^N-Pn~2^N-Pn-\ ^N-iK-2 <̂ N-2̂ N-\ ^o4v-2 ôAv-1

Figure 2-19. Mapping of and for Signed Multiplier into a RB Digit

Consider the partial products of PQ^̂ 2 and PQ ĵ_i for unsigned multiplier of A

and B as:

N - 2

=(002"'+'
i=0

PQ„_, = ((0 ™ +a„_,b,_a" +a,_,b„_,2"-' + 2 ')2

N - 2

(2 74)
N - 2

1=1

Where PQfç_2 andPg^ , are 2’s-complement binary numbers, the sum of

PQf _̂2 and PQf̂ _x are mapped into a RB number according to Equations (1.6), (1.7), (1.8)

and Figure 1-13 with an extra correction factor -1. The mapping structure is shown in

Figure 2-20.

63

0 0 ^7V-1̂ 7V-2 ̂ N-2^N-\ ^ (P n -2 ^(P n -\

Figure 2-20. Mapping of PQ _̂2 and PQj^.j for Signed Multiplier into a RB Digit

Define a eontrol signal, SIGN, where SIGN=l for signed multiplieation and

SIGN=0 for unsigned multiplication, then the combined partial product is realized

in Figure 2-21.

i PPn-io i

x iSIGN

2 to 1 MUX

pH,N -\,N

2 to 1 MUX

PP to PP

Figure 2-21. Circuit Realization of the Last Partial Product ̂ for
Signed/Unsigned Multiplier

Thus, for the implementation of #-bit unsigned multiplier, the correction factors

are {0, -1, 0, -1, 0, -1 ,..... -1}. That is:

(̂ N-2 = = • • • = «2 = «0 = -1
~ ̂ N-3 = • ■ ■ = <̂3 = =0

(2 75)

64

For unsigned multiplication, all the correction factors except = -1 can be

added in the RB addition tree. Here the factor is combined with the first partial

product, 2 ' "PP^\ PP^o, which is shown in Figure 2-22;

sign extension • • • • • • • •
0 0 • • • • • • • • partial product PPO

 ^-1__________________________

• • • • • • • • • • partial product PQ O
for unsigned multiplier

Figure 2-22. First Partial Product PQO for Unsigned Multiplier

Table 2-1 to Table 2-L are the truth tables for the first partial product PQO of the

unsigned multiplier:

Table 2-1. Partial Product fgOg to PQO^_j for Unsigned Multiplier

First Partial Products PPo First Partial Products PQo
PPOq to PPO^ ^ P G O o to P % _ ,

0 1 1 0 1 1

Table 2-J. Partial Product f ̂ for Unsigned Multiplier

First Partial Products PPq First Partial Products PQo

0 1 1 1 0

65

Table 2-K. Partial Product f y for Unsigned Multiplier

First Partial Products PQo

0 0 1
0 1 0
1 0 0
1

e 2-L. Partial ;

f̂O)V_2

1

Product PQO^

1

and PQOj^ ĵ for Unsigned Multiplier

First Partial Products PQo
PQ^n and

0 0 1
0 1 0
1 0 0
1 1 0

The logic equation of the partial product PQO for unsigned multiplier is as

follows:

~ P P ^ N 3 (2.76)

Figure 2-23 shows the circuit realization of the combined partial product PP^.

66

PP■' O.A'-l PP

SIG N
2 to 1 M UX2 to 1 M UX 2 to 1 M U X

PP.0,«-2 / ’/ ’oo toP/’ô _3

Figure 2-23. Circuit of the First Partial Product PP ̂ for Signed/Unsigned Multiplier

For the partial products of PQ ̂ and PQ^-2 for unsigned multiplier, an extra bit 0

is padded before the MSB. Figure 2-24 shows the circuit realization of the combined

partial products from PP[to PPh_2 ■

\ fo

SIG N

2 to I M UX

PP,, pp:,toPp;,_,

Figure 2-24. Circuit of the Partial Products fromPP, to PF% ̂ for Signed/Unsigned
Multiplier

Figure 2-25 shows a unified signed/unsigned multiplier with the eontrol signal

67

i Signed/Unsigned
A and B

Binary Number Partial Product
Generator for AB

PQo PPr
a

2:1 MUX 2:1 MUX

P Q n -1

5
PPN -l

SIGN
2:1 MUX

RBPPG
RB RB RB

M o p in g M apping M apping

V / 4 f
RBA RBA

W
RBA

T
Figure 2-25. A Unified Sign/Unsigned Multiplier

Both the signed and unsigned multiplier have the same structure of the RB adder

tree. The partial products are controlled to switch between signed and unsigned

multiplication. Then the combined binary partial products are mapped to RB partial

products and added using the RB adder tree to compute the signed/unsigned RB product.

2.4.2 Unified Signed/Unsigned Muitiplier With Booth Coding

For the unsigned multiplier for A and B,

68

^ = %]a,.2' =-0x2*+ajv_,2"-' + ^a,.2' =,4'

(2^^)
5 = 1;(.,2' =* ,.,2» - i„ . ,2 " - ‘ + Y,b ,2‘ = i,_ ,2 * -+ 5 '

(=0

where A' and 5 ' are 2’s-complement binary numbers.

Thus, the product of AB is calculated as:

=24'6^_,2""-H.4'.8' (2.78)
Â-1

=^a,6^_,2'2^+v4'^'
/•=o

The product of A 'B ' using Booth encoding was previously discussed in Section

N - l

2.1.3. The extra ^a,6^_i2'2^ value can be combined with the correction factors y .. The
i=0

new correction factors are

r ! - o

r î = 4+14 4-1 +4+14 4-i + 4+i4 4-i

= 4+1 44-1 (2.79)

y 1+1 4+3 4+24+1

r,;. = 1

Nwhere / = 0,2,4,...— - 2 and

7i —^Pn-\ 7i =1 (2.80)

where N ,N + \ , . . . ,2 N - \ .

2.5 The Implementation of a Unified Signed/Unsigned Inner-
Product Processor for A B ± CD

The overall structure of a unified signed/unsigned inner-product processor is

described for the computations of ^15 + CD and A B -C D . In Section 2.2.3.1 and Figure

69

2-11. The - CD implementation is developed using the structure for AB + CD with

inverters added in the RBA tree and a unified structure for AB±CD is developed. In

Section 2.4, a unified sign/unsigned multiplier was developed using RB representations.

Define two control signals, SIGN=l/0 for signed/unsigned multiplieation, and

Real_Img=l/0 for the A B -C D I AB + CD computation. Then the overall structure of a

unified signed/unsigned inner-product processor for AB±CD is shown in Figure 2-26,

where the PQ^ to of AB and CD refers to the unsigned partial products discussed in

Section 2.4.

Signed/Unsigned
A and B

Binary Number Partial Product
Generator for A B

r T
PQc pp.

i
Signed/Unsigjied
C and D

Binary Number Partial Product Generator for
CD

W W PQn-1 PPnu

 1 % _ Z : , ______ S r '
2.1 2.1 MUX I 2:1 MUX | 2:1 M u F | | 2:1 M U x] | % m 1 ^

RBPp\ / 1 / y I /
I RB RB RB

_ M a p ^ M apping M app.ng M apping M apping

PPn.

z
£
PQc PP,

2

£

SIGN

RBPPG

4 ^
2:1 MUX 2:1 MUX

RBA RBA RBA

i
RBA

RBA
R ea llm g

RBA

,4 5
t

CD
2:1
M

< ------------

1 r 1 r

U
X

RB Adder
Tree

RBA

J RB Sum o f AB + CD

Figure 2-26. Unified Signed/Unsigned IP Processor for AB ± CD

70

2.6 The Implementation of a Redundant Binary Multiplier
Currently, numerous floating-point unit designs incorporating a fast multiplier

make iterative use of the multiplier for implementing fast algorithms for division, square

root, and/or transcendental function computations by extended polynomial approximation

[107]-[112], If multipliers are to be used iteratively for RB computations, it is

advantageous for the multiplier to accept redundant binary coded input directly, in

addition to the initial 2’s-eomplement numbers. A multiplier capable of accepting both

2’s-complement and RB inputs avoids the excessive RB to 2’s-eomplement delay. To our

knowledge, no prior multiplier design exists with this capability. Recently a new floating

point arithmetic unit was proposed [113]. A redundant number system is used to achieve

IEEE compliant results. All operations in the arithmetic units are carried in redundant

form with conversion back to the standard IEEE format performed only when an operand

is written to memory. In [113], it is argued that the proposed floating point unit could

achieve better performance across all of the required functions. In all these eases, a fast

multiplier that can accept either 2’s-complement or RB inputs is advantageous, i.e., the

multiplicand and multiplier are both redundant binary numbers with the product produced

in redundant binary form, as shown in Figure 2-27:

X 2 c o r Xi^fj Y 2 c o r Yj^

Figure 2-27. A RB Multiplier Diagram

71

2.6.1 Direct Implementation of Redundant Binary Multiplier

To implement the dual input multiplier, we first consider a RB multiplier. Figure

2-28 shows an example of RB multiplication.

Let Aj^g={\ -1 0 \},B^g=[-\ 1 0 -1] . Then, the product of A,^ and is

computed as:

-1
1

0
0

-1

0
-1

0

-1

0

0
-1

1 0
0 0

1

-1

-1 -1 -1

Figure 2-28. An Example of RB Multiplication

The RB partial product is generated according to Table 2-M, where a. and p. are

the RB signed digits of and , respectively.

Table 2-M. RB Partial Product Generation

or,. A or,/7.

-1 -1 1
-1 0 0
-1 1 -1
0 -1 0
0 0 0
0 1 0
1 -1 -1
1 0 0
1 1 1

Encoding the RB digits 1=(11), 0=(01)=(10), -1=(00), Table 2-N shows the

encoded RB partial products.

72

Table 2-N. Encoded RB Partial Product Generation

a,. A Pi ~ ^ ip i
-1 (0,0) -1 (0,0) 1 (1,1)
-1 (0,0) 0 (0,1) (1,0) 0 (0,1)(1,0)
-I (0,0) 1 (1,1) -1 (0,0)
0 (0,1) (1,0) -1 (0,0) 0 (0,1)(1,0)
0 (0,1) (1,0) 0 (0,1)(1,0) 0 (0,1)(1,0)
0 (0,1) (1,0) 1 (1,1) 0 (0,1)(1,0)
1 (1,1) -1 (0,0) -1 (0,0)
1 (1,1) 0 (0,1) (1,0) 0 (0,1) (1,0)
1 (1,1) 1 (1,1) 1 (1,1)

From Table 2-N, Equation (2.81) is derived to find the encoded RB partial

product:

p r or; or; #+
(281)

=orr yg: +crr y?/

Another way to implement a RB multiplier is to use the RB inline inner-product

processor core. In Section 2.4, and Section 2.5, the implementation of Â B̂Q+AyB̂ and

AqBq-A^B^ for both 2’s-complement and unsigned numbers was discussed. Here the

reuse of these cores is investigated to implement the RB multiplier.

2.6.2 Redundant Binary Multiplier Implementation Using Inner-
Product Processor

N-l
Let = , where Z^g is a RB number and ^.is encoded as two binary

i=0

bits (refer to Table 1-B). In this research, the RB encoding is .

Therefore,

73

Â -1 N - \

/-O (-0
N - \ N - l ____

= £ c 2 ' - £ c 2'

(2.82)

1=0 i=0

LetZ+ = X C 2 ' and Z = then
1=0 1=0

Z ^ g = Z + - Z - (2.83)

where Z^ and Z are unsigned binary numbers.

For two RB numbers, and , we bave:

N - l N - l N - l

■̂RB ~ %]^i^ ’ ^ — %](î 2 and v4 — 2

2Î„ = E A 2', B* = y A* 2' md 2?" = Z /̂ r 2'

(2.84)

1=0 1=0 1=0

Here a. and p. are encoded as (a,^) and (y9̂ p.) , with a. = - a. and

From Equation (2.83),

(2.85)

so becomes

\ b^ rb =){B^ - B)

={A^B^ -A~B^)+{A^ B - - A ^ B ~)
Where A^ ,A~ ,B^ and i?“are all unsigned binary numbers, so the product of RB

v4gg and B ^ can be realized, using two unsigned binary numbers computations with

A^B* -A ~ B ^ and A~ B - A^ B~̂ . The diagram is shown in Figure 2-29:

74

u nsigned

R B A (R e d u n d a n t B inary A d d er)

P ro d u c t o f

Figure 2-29. Implementation of RB Multiplier

Using this method to split the RB eneoding bits and utilizing the unsigned feature

of the multiplier (see Figure 2-26), the basie IP computing core will generate RB

products with RB multiplicand and multiplier inputs.

2.7 Redundant Binary Inner-Product Computation

With the development of a RB multiplier in Section 2.6, an inner-product

processor which can accept RB numbers input is easily designed. For example. Figure

2-30 shows the implementation structure to find the inner-product of A B + X A , where

A, B, X and A are RB numbers.

RBA

RB
A c c u m u la to r

RB m ultiplier

Figure 2-30. IP Implementation for RB Number AB + XA

75

Chapter 3 Implementations of Division Method

3.1 Division Aigorithm Review
The notation is used in the discussion here of division algorithms:

^ Dividend 2̂ v-i "̂2v-2 ' ' '̂ 1

D Divisor d,^_2.. .<i,

6 Quotient

S Remainder [Z - (£) x Q)] ...s Ŝq

Division algorithms can generally be divided into the following classes: digit

recurrence (restoring or non-restoring), functional iteration, table look-up and variable

latency. The basis for these classes is the difference in the hardware operations used in

their implementations, such as multiplication, subtraction, and table look-up. Many

practical division algorithms are not pure forms of a particular class but rather are

combinations of multiple classes. For example, a high performance algorithm may use

table look-up to gain an initial approximation of the reciprocal, then use a function

iteration algorithm to converge quadratically to the quotient. Table look-up may be

impractical for general applications. The division method of table look-up requires a

large RAM size for longer divisor size. The size of RAM increases exponentially with the

word length of the divisor. The variable latency method results in a complex design for

the control circuit and requires an asynchronous design method. The latency of variable

latency division method depends on the value of the divisor. For different values of

divisor, the latency is different. The two most popular division methods are digital

recurrence and functional iteration.

76

Digit recurrence is the oldest class of high-speed division algorithms and, as a

result, a significant quantity of literature exists proposing digit recurrence algorithms,

implementations, and techniques. The most common implementation of digit recurrence

division in modem processors was named SRT division by Freiman [81], taking its name

fi'om the initials of Sweeney, Robertson, and Tocher, who developed the algorithm

independently at approximately the same time. Atkins [78] did fundamental research on

division by digit recurrence, which was the first major analysis of SRT algorithms. Tan

[89] derived and presented the theory of high-radix SRT division and an analytic method

of implementing SRT look-up tables. Ercegovac and Lang [79] presented a

comprehensive treatment of division by digit recurrence. Kuninobu [83], Aoki [77], and

Srinivas [88] investigated the digit-recurrence division method with the redundant binary

representation of the remainders. Basically the equation of the digit-recurrence division

method in radix-(r) is:

(3.1)

Digit recurrence algorithms deal with how to represent the remainder and

quotient, how to choose the quotient, and choice of radix. Convergence of digit-

recurrence is linear and has order N. A high performance quadratically convergent

method, function iteration, was proposed which included the Goldschmidt [82] and

Newton-Raphson [85] methods. Both methods first find the reciprocal and then use

multiplication to compute the quotient. The functional iteration method is discussed

below.

To compute the radio Q = Z !D , one can repeatedly multiply Z and D by a

sequence of M multipliers Xq , X ,..., :

77

n - P 2)

If this is done in such a way that the denominator Z)Xo,Xi...,X^_j converges to 1, the

numerator will converge to Q. This process does not yield a remainder,

but the remainder S (if needed) can be computed, via an additional multiplieation and a

subtraction, using S = Z - QD .

To perform division based on the preceding idea, we face two questions:

1. How should we select the multipliers so that the denominator does in fact

converge to 1 ?

2. Given a selection rule for the multipliers X. how many iterations are needed?

In the following discussion, we answer these questions in turn, but first, we

formulate this process as a convergence computation.

Assume a bit-normalized fractional divisor, D, and dividend, Z, in [1/2 1). If this

condition is not satisfied initially, it can be made to hold by appropriately shifting Z

and/or Z). The corresponding convergence computation is formulated as follows [82]:

= D.X. Set Dq = Z); make converge to 1
Z. ,̂ = Z.X. Set Zq = Z; obtainZ /D = g %Z^ (3 3)

We now answer the first question posed above by selecting,

W ,= 2 -D , (3.4)

This choice transforms the reeurrenee equations into:

A + i= A (2 ~ A) SetZ>Q=Z); iterate until Z)^ « 1
Z;+, = Z .(2- D.) SetZq = Z; obtainZ ID = Q ^ Z ^

(3 5)

78

Thus, computing the functions/and g consists of determining the 2’s-complement

of D. and two multiplications by the result 2 - D . .

Now to address the second question: How quickly does D. converge to 1? In

other words, how many multiplications are required to perform division? Noting that

= D,(2 - D,) = ! - (! - D,)' (3.6)

It is concluded that [82]:

1 -D ,+ ,= (1 -D ,) ' (3.7)

Thus, if D. is already close to 1 (i.e. \ - D . < s), will be even closer to I (i.e.

1 -). This property is known as quadratic convergence and leads to a

logarithmic number, M, of iterations to complete the process.

Another way to compute Q - Z ! D is to first find HD and then multiply the result

by Z If several divisions by the same divisor D need to be performed, this method [85] is

particularly efficient. One method for computing HD is based on the Newton-Raphson

iteration to determine a root off(x)=0. We start with some initial estimate X q for the root

and then iteratively refine the estimate using the recurrence:

where f (X.) is the derivative of f(x). To apply the Newton-Raphson method to

reciprocation, we use f(x)=l/x-d which has a root at x=l/d. Then / (x) = -1/x^, leading

to the recurrence.

y ^ ,,,= y f,(2 -^ ,D) (3.9)

79

Computationally, two multiplications and a 2’s-complement step are required per

iteration.

Let S - = \ I D - X. be the error at the /th iteration. Then:

= (3.10)

Since D<\, we have ô^^^<{S.Ÿ , thus this functional iteration based upon

Newton-Raphson converges quadratically.

3.2 Further Studies of the Goldschmidt and Newton-
Raphson Methods

In this section the algorithm of the Goldschmidt and the Newton-Raphson method

are compared and studied. We show that these two methods are theoretically equivalent,

but are often treated separately in the literature. Further studies of the Goldschmidt

method are presented. Next, the RB inner-product processor core is investigated for

performing the division computations for both real and complex numbers. We show how

to control and/or reconfigure the RB inner-product processor to provide high-

performance division.

3.2.1 Comparison of the Goldschmidt and Newton-Raphson
Methods

For the initial divisor, D, and dividend, Z, the Goldschmidt iteration equations are:

A.i = A (2 - A), Set Z)„ = D; iterate until
Z,,, = Z (2-D ,), Set Z , = Z; obtain Z /D = g «

where D. is the iterated divisor, Z. is the iterated dividend, and Q is the quotient.

For the Newton-Raphson method, the iteration equations are:

80

% , = Z , (2 - ^ , D) (3 .12)

where X. is the approximate reciprocal of D.

Multiplying Z on Equation (3.12) on both sides, we have:

= ZY, (2 - ylT,D) (3 .13)

Comparing Equations (3 .13) with (3.11), we notice that in Equation (3.13), ZX^ is

the approximate quotient which is gradually close to Z/D after each iteration. Therefore,

Z ,- Z Y , . (3 .14)

Then Equation (3.13) becomes:

Z ,,, = Z Y ,(2 - J i r ,D) = Z , (2 - . i r ,D) (3 .15)

If we define D. = X^D , then Equation (3.15) is:

Z ,,, = Z , (2 - ^ , D) = Z , (2 - D ,) (3 .16)

Note that.

and

= y r , , ,D = J i r ,D (2 - ^ ,D) = D , (2 - D ,) (3 .17)

(3.18)
Letting X q=1, then

= X^D = D Zq = ZXg = Z (3.19)

Under the condition of X q=1, Equations (3.12) and (3.13) are equivalent to

Equation (3.11). However, from the standpoint of implementation, Goldschmidt and

Newton-Raphson methods are different. For the Goldschmidt method, as shown in Figure

3-1, two parallel multiplications plus two complement operations are required. For the

Newton-Raphson method, as shown in Figure 3-2, two sequential multiplications and one

complement operation are required. Therefore, the critical time delay in the Newton-

81

Raphson method is two multiplications plus one addition, while for the Goldschmidt

method, only one multiplication step (parallel multiplications) and one addition are

necessary. As far as the implementation area is concerned, the Goldschmidt method

needs only one extra complement operation to implement. From this, we conclude that

there are performance advantages for using the Goldschmidt method rather than Newton-

Raphson method.

2-D,

2-D,

MultiplierMultiplier

A .

Figure 3-1. Goldschmidt Divisor Implementation [82]

Multiplier

Multiplier

Figure 3-2. Newton-Raphson Divider Implementation [85]

82

3.2.2 Further Discussion of the Goidschmidt Method

In [85], it is claimed that the number of elock cycles for the Goldschmidt division

method is log27V, where N is the word length for dividend and divisor. Further study of

our circuit implementations show that the actual number of eloek cyeles to aehieve

precise aceuraey in the LSB of the quotient is log27V+l. In the implementation of the

Goldschidmt method, two additional guard bits are required to get the quotient preeision

of bits.

After M = logz N iterations,

= 1 - 2 ' ' (3.20)

so,

V , 0.21)

and,

= ^ (1 - 2 "') = g (l - 2 -^) (3.22)

The error between the aetual quotient and untruneated quotient is

g, = |6 - Z^ I = |G - 6(1 - 2-'')| = 62-^ (3.23)

For Z < D , we have g < l, so £•, < .

The approximate quotient is taken by truncating Z^ to Whits as (Z^)^ , so

g ,= |Z ^ - (Z ^) , |< 2 - ' ' (3.24)

The error between the actual quotient and the computed one is;

83

^ \ Q - ^ m \ + \Zm (3 25)
=2'^+2"^ = 2"^""

i.e. g < 2-"̂ +̂

After M = logj N iterations, the precision of the quotient found from the

Goldschimdt method is N-l bits. In order to reach the precision of N hits, log; Â + 1

iterations are needed.

If we want to achieve the computation error of the division using the RB IP

processor to satisfy ér < 2~^ , from Equations (3.23)(3.24) and (3.25), the following

conditions must be satisfied as:

g, < 2"^ ' and g; < 2"^ ' (3.26)

That is, the dividend z, and divisor d. during the iteration must be truncated to

+ I bits instead of TV bits, so one extra guard bit is required for the iteration.

In the same way, if the computation error of the division is required to meet

s < 2“^ , then two guard bits are required to compute the quotient using the RB IP

processor.

3.2.3 Implementation of the Goldschmidt Division

Here we will explore how to implement the Goldschmidt division method using

the RB inner-product structure. From Equation (3.5) in order to implement the high-speed

divisor, all the intermediate dividend, divisor are in RB forms. Therefore, a RB-

complement operation, 2-v4^ , similar to 2’s-complement operation, and a RB

multiplier must be developed. In Section 2.6, the RB multiplier is studied using the RB IP

structure, so only the RB-complement operation requires development.

84

i = - L i=0 i=~L

Let a real number A with precision N be represented in RB form, that is:

N - L - \ N - L - \ -1

^ = g ^ «,2' + or,2' (3.27)

where a. = {-1,0,1} , then

2 - ^ = 2-("^^ 'or,2 ' + %;or,2') = (0010),+ ^ (-or,)2' + %](-or,)2' (3.28)
/=0 i=—L i=0 i——L

Using the RB coding system, 1=(1 1), 0=(1,0)=(0,1) and -1=(0,0), notice that if

a ,is encoded as (a^ or:), then -a ,w ill be encoded as (or/ or/). The implementation of

2 - A r b Î s shown in Figure 3-3:

Fractional PartInteger Part(0010)2

NOT Gates

RB Adder

Figure 3-3. Implementation of 2 - A r b

3.3 Real Number Division Implementation

First, the dividend Z and the divider D are normalized to satisfy Z and D e[0.5 1).

For the normalization circuit, see references [116]-[118].

Then for the first iteration equation,

D ,= D ,(2 -D J
Z ,= Z o (2 -D J

Set Dq = D
Set Zg = Z

(3.29)

85

where Zg and Dg are both 2’s-complement numbers. From Equation (1.9), Zg and Dg can

be mapped into RB digit numbers (Zg)^g and (Dg)gg directly. Thus a RB multiplier which

can accept the inputs (Dg)^^, (Zg)^^, and (2-Dg)gg can realize the first iteration, as is

shown in Figure 3-4.

(^ o) rB 2 - (Z) g) g g (^ o) r B 2 - (Z) g)O /R S

4 (2 “ A)

1r

m)\̂ RB

4 (2 “ 4)

1r

(■̂ i)rr

Figure 3-4. First Iteration Implementation of the Goldschmidt Division

Notice that the output Z, andD, of the first iteration are redundant binary

numbers. Thus the successive iterations can be implemented as shown in Figure 3-5.

2-Di

2-D,

RB M u lt ip lie rR B M u lt ip lie r

RB R e g is te rs RB R eg is te rs

Figure 3-5. Implementation of Successive Iteration Computation for Z and D

After log2 A-t-1 iterations are carried out, where TV is the number of bit precision,

a RB-to-2’s-eomplement converter is required to convert the quotient back to 2’s-

complement, if required. Four unified structures of AB ± CD are required to realize the

86

real number division. Figure 3-6 shows the overall structure of the divider using RB IP

processor.

RB Multiplier

Normalization

2 to 1 MUX2 to 1 MUX

RB Multiplier

Normalization
Registers to store
number o f shifts

and sign

Figure 3-6. Overall Structure of Divider Using RB IP Processor

3.4 Comparison of the implementations of Division
The implementation time required for division is compared between the Pentium

Processor and the division implementation using a RB processor. Division implemented

on the Pentium processor uses the SRT method. The 8-bit unsigned division implemented

on the Pentium requires 17 clock cycles [85],[114],[115]. If the VLSI fabrication in [3] is

implemented to realize the RB inner-product processor, then one iteration for the RB

multiplication requires 8.8-2.4=6.4ns [3]. For 8-bit division, 4 iterations are required. The

total time required for 8-bit division using the RB IP processor is:

(log; 8 -1-1) X 6.4 = 25.6»^' (3.30)

If this division implementation result is compared to the Pentium processor, the

equivalent clock cycle will b e25.6/17 = 1.505^6', and is equivalent to 660Mhz clock

frequency of Pentium processor.

87

3.5 Complex Number Division implementation

To find the quotient of the complex number

.4 + jB _ {A + jB) { C - jP) _ AC + BD . B C -A D
^ / - I . * 7 -^ / ^ . ' r ^ \ ' r \ \ ^ 2 r \2 ^ , r ^ 2

(3^1)
C + y'D (C + yD X C -yD) C^+D" " C ' + D"

For the implementation of a complex number divisor, AC + BD, BC - AD and +D^

need to be computed. These computations can be realized by the unified signed/unsigned

AB ± CD IP structure. For +D% let A = B and C = D . Notice that the outputs are in

RB form for AC + BD, B C -A D and C ^+ D ^. For the Goldschmidt division method,

both the dividend and the divisor need to be normalized. To normalize a RB digit, a RB-

to-2’s-complement converter is required to convert it back to 2’s-complement. A

normalization circuit is required to normalize J C + RZ), BC - AD and C^ +D^ into [0.5

1). The diagram is shown in Figure 3-7.

Normalized AC+BD,
BC-AD, d+ D ^

Normalization

BC-AD

NormalizationNormalization

AC+BD

R B to
2's-Com plem ent

Converter

RB to
2 's-C om plem ent

Converter

RB to
2 's-C om plem ent

Converter

registers to store
sign and shift

Figure 3-7. Complex-Number Division Implementation Initial Process

88

Following the derivation of the normalized 2’s-complement values of AC+BD,

BC-AD and +D^ in the first iteration, the real-number division implementation

procedure is utilized to develop the quotient.. Six blocks of unified IP structure

AB ± CD are needed to compute the complex number division since the implementation

of divisors for both and can share the same computing structure for

C^ +D^. For normalization circuits, see [116]-[118].

89

Chapter 4 Computational Extensions
The inner-product structures described in Chapter 2 can be extended to provide a

rich set of real, complex, RB and mixed real, complex and RB number computations. The

inline partial product method [39] allows more extensions than the cross partial product

scheme and will be used for illustrating added capabilities. Together with the basic

inner-product operation, the computational capabilities afforded can be implemented

using control signals or accomplished with circuit reconfiguration if configurable

hardware is used. All of these extended computational capabilities are targeted for

implementation in a Complex Aritbmetie Signal Processor (CAST).

Referring to Figure 4-1, up to eight accumulator segments are required to support

the following operations for M = 8.

RB Adder Tree
RBA

AfBj+Â B<

R B
Accum ulator

RBARB A

Figure 4-1. An Example of a Redundant Number Adder Tree

The structure in Figure 4-1 can support the following real number computations:

1. 8-element real number inner-produet computation using a single RB

accumulator segment.

90

2. Dual 4-element real number inner-product using two RB accumulator

segments.

3. Quad 2-element real inner-product using four RB accumulator segments.

4. Eight parallel multipliers with or without eight accumulator segments.

The structure in Figure 4-1 can support the following complex number

computations:

1. Single 2-element complex number inner-produets using one RB

accumulator segment.

2. Dual single complex number inner-produets using four RB accumulator

segments.

3. Two parallel complex number multipliers with or without two real and

imaginary accumulator segments.

The structure in Figure 4-1 can support the following redundant binary number

computations:

1. Single element redundant binary number inner-produet computation using

one accumulator segment.

2. Dual 2-element RB inner-produet using two RB accumulator segments.

3. Four parallel RB multipliers using 4 RB accumulator segments.

Mixed real and complex number operations and mixed real/complex, 2’s-

eomplement/RB operations are also possible using the same 8-element IP structure. All

of the extended computations are performed by bypassing some or all of the RB adder

tree shown in Figure 4-1. The basic inner-produet structure has the highest latency since

the entire RB adder tree is utilized. When implementing one or more of the extended

91

operations using control signals, design choices should be carefully considered since

additional multiplexers are necessary for a multiple operation capability.

For a general purpose complex number DSP core, a key element of the design is

the segmented accumulator and the ability to provide both overflow and saturation

aritbmetie. The design of the segmented accumulator and its associated final RBA for

implementing the extended operations in a CASP device is beyond the scope of this

dissertation and is the subject of continuing research.

4.1 Real-Number Computational Extensions

4.1.1 8-Element Real Number Inner-Product Computation

This structure is developed in Chapter 2 and provides the basic computational

foundation for extended calculations. Refer to Figure 2-2 and Figure 4-1.

4.1.2 Dual 4-Element Real Number Inner-Product

Figure 4-2 shows the structure to perform dual 4-element real number inner-

product using two RB accumulator segments. This calculation requires two accumulators,

one for each inner-product.

RBARBA

RB
Accumulator

RB
Accumulator

Figure 4-2. Dual 4-Element Real Number Inner-Product

92

4.1.3 Quad 2-Element Real Inner-Product Using Four Redundant
Binary Accumulators

For this computation, the RB adder tree requires reconfiguration as shown in

Figure 4-3. Here four RB accumulators are required:

R B
Accumulator

RB
Accumulator

RB
Accumulator

RB
Accumulator

Figure 4-3. Quad 2-Element Real Number Inner-Product

4.1.4 Eight Parallel Multipliers Using 8 Redundant Binary
Accumulators

For this computation, the RB adder tree needs to be controlled as shown in Figure

4-4. Here eight RB accumulators are required, if the structure is used for computing eight

inner-produets; otherwise, the accumulators are bypassed.

accumulator
bypats

A ccum ulator A ccum ulatorA ccum ulator A ccum ulatorA ccum ulatorA ccum ulator

Figure 4-4. Eight Parallel Multipliers Using 8 RB Accumulators

93

4.2 Complex-Number Computational Extensions
Defining four complex numbers as: Q = ^ + jB^, C^=A^+ jB ,̂ € 2 = A2 + ’

C3 = + jB^, the computational extensions for complex number computations are

depicted as follows.

4.2.1 Single 2-Element Complex Number Inner-Product
Computation Using One Reai/lmaginary Redundant Binary
Accumulator

Figure 4-5 shows the structure of a single 2-element complex number inner-

produet using a RB accumulator segment for the real and imaginary parts separately.

RBARBA

A yB A :tB

R B
Accumulator

R B
Accumulator

R e a l P a r t Im a g in a ry P a r t

Figure 4-5. Single 2-Element Complex Number IP Using One Real/Imaginary RB
Accumulator

4.2.2 Dual Single-element Complex Number Inner-Product
Computation Using Four Redundant Binary Accumulators

Figure 4-6 shows the structure of dual 2-element complex number inner-produets

using four RB accumulators.

94

RB
Accumulator

RB
Accumulator

^ ^ I

RB
Accumulator

RB
Accumulator

R eal P a r ts Im a g in a ry P a r ts

Figure 4-6. Dual 2-Element Complex Number Inner-Products Using Four RB
Accumulators

4.2.3 Two Parallel Complex Number Multipliers
Figure 4-7 shows the structure of two parallel complex number multipliers using

four RB accumulators.

RB
Accumulator

RB
Accumulator

A2B2-A2B} A2B2+A2B2

R B
Accumulator

a c c u m u la to r
bypass

RB
Accumulator

{A2+\B2){A3+\B3)

Figure 4-7. Two Parallel Complex Number Multipliers

4.3 Redundant Binary Number Computational Extensions

4.3.1 Single Element Redundant Binary Number inner-Product
Computation

95

Figure 4-8 shows the structure of a 4-element redundant binary inner-product

computation, where 0g to 0^ and to F ̂are redundant binary numbers. The structure of

the RB multiplier for (Pgfg to is discussed in Section 2.6.

R B A d d e r T r e e
R B A

RB
A c c u m u la to r

R BAR B A

Figure 4-8. 4-Element Redundant Binary Inner-Product

4.3.2 Dual 2-Element RB Inner-Product plus Two Redundant
Binary Accumulators

Figure 4-9 shows the structure of dual 2-element RB inner-product computation

using two RB accumulators.

RB
Accumulator

RB
Accumulator

RBARBA

Figure 4-9. Dual 2-Element RB Inner-Product

96

4.3.3 Four Parallel Redundant Binary Multipliers Using Four
Redundant Binary Accumulators

Figure 4-10 shows the structure of four parallel RB multipliers using 4 RB

accumulators:

accum ulator
b yp ass

R B
A c c u m u la to r

RB
A c c u m u la to r

RB
A c cu m u la to r

RB
A c cu m u la to r

Figure 4-10. Four Parallel RB Multipliers Using 4 RB Accumulators

4.4 Pipeline Extensions

In this section, the possible pipeline design alternatives of the RB inner-product

processor are investigated. The 0.5 //m CMOS time delay model from [3] for an 8-bit

RB multiplier is used for the discussion and is shown as Table 4-A:

Table 4-A. Time Delay Model of RB Multiplier [3]

Time Delay
2’s-complement to RB Mapping 2-Nand gate^200ps=0.2ns
RBA (RB adder) 0.9 ns
RB to 2’s-eomplement converter 1.6ns

Consider the 8-word 8-bit RB IP processor in Figure 4-1 and re-draw it as shown

in Figure 4-11:

97

B inan N um ber Partial P roduc t
G enerator f o r d A

E M erT mRBPPG

U

11

Accum ulator

Figure 4-11. 8-Word 8-Bit RB IP Processor

98

The implementation of consists of 2’s-complement to RB mapping

and 4 RB adders. If a two-stage pipeline structure is used, the resulting pipeline RB IP

processor is depicted in Figure 4-12.

AoBo+AiBi

Pipeline Registers XIZ
RBARBA

RB Adder Tree
RBA

RB
Accumulator

RB to 2's-complement
Converter

Stage 1

Stage 2

Figure 4-12. Two-Stage Pipelined RB IP Processor

The structure for stage 1 consists of the 2’s-complement to RB mapping and 4 RB

adders. The time delay is for the first stage is

0 . 2 4 - 4 x 0 . 9 = 3 .8 /w (4 .1)

The structure for stage 2 consists of 3 RB adders and one RB to 2’s-complement

converter. The latency for the second stage is

3 x 0 .9 4 - 1 .6 = 4 .3 /w (4 .2)

The difference of the time delay between these two stages is

99

4.3-3.8 - 0.5ns

and can be considered as a balanced pipelined structure.

If a three-stage pipeline structure is employed, then the resulting structure is

shown as Figure 4-13.

(4 3)

Stage 1

Figure 4-13. Three-Stage Pipelined RB IF Processor

The time delay for each stage is:

0.2-H 3 X 0.9 = 2.9ns

AoBo+AiBi

RBA

AoBo AiBi

RBA RBA RBA

RBA

RB
Accumulator

RBA

RBA

RB to 2's-complement
Converter

Pipeline Registers

Pipeline Registers

stage 1

stage 2

stage 3

(4 4)

100

Stage 2

3x0.9 = 2.7%; (4.5)
Stage 3

0.94-1.6 = 2.5%; (4.6)

The maximum difference in time delay among the three stages is 0.4 ns. This

pipeline structure can be considered to be balanced.

101

Chapter 5 Redundant Binary to 2’s-Complement
Number Conversion

Since the inner-product processor produces results in a redundant binary form, a

RB-NB (redundant binary to normal binary) converter may be required to provide a 2’s-

complement representation. Ruiz [5] proposed a carry-look-abead RB-to-2’s-

complement converter which is similar to the structure of a carry-look-abead adder.

Rajasbekbara [71] proposed a similar converter that is based upon a borrow-look-abead

structure. In bis paper [7], Yen gave a novel definition of carry in the proposed RB to 2’s-

complement converter. An on-tbe-fly converter was discussed in [72] which converts

serial RB inputs to a 2’s-complement number. Cboo [74] claimed a breakthrough of a

new converter which has no latency proportional to the word length. However, according

to the proof in [70], it is equivalent of 2’s-complement addition in the conversion of

redundant binary to 2’s-complement. Cboo’s converter never works correctly. Ling [106]

proposed a high-speed adder which is currently the fastest known binary adder. In this

chapter, based on Yen’s method [7] and Ling’s adder scheme [106], we propose an

improved RB-NB converter.

5.1 An Improved Redundant Binary to 2’s-Complement
Converter

Define a new variable carry c,. [7] as follows:

1) c,. =1 means that, for the current RB digit position i, there is at least one -1 to

the right of the current hit position and no + ls between the -1 and the current position.

2) c- =0 otherwise.

102

Table 5-A shows the conversion rules at stage /, where %, is the redundant binary

bit, c,. is the carry-in from next lower order position, 5, is the 2’s-complement binary bit

output, and c,.̂ , is the earry-out to the next higher bit position. Example 1 shows a

conversion from RB to 2’s-eomplement based on the foregoing rules.

Table 5-A. Conversion Rules in Stage / [7]

Input Output
Redundancy bit x, Carry in c- Binary bit s- Carry out

0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0

-1 0 1 1
-1 -1 0 1

Example 1: Letting the RB number =[-1 1 0 - 1 0 - 1 1 0 - 1 0 0 0], then

= [-1 1 0 -1 0 -1 1 0 -1 0 0 0] = -1320
C = [0 1 1 1 1 0 0 1 0 0 0 0]
and
5 = [1 1 0 1 0 1 1 0 1 1 0 0 0] = -1320

For example, at bit position 0, = 0 and Cq = 0 ; then according to Table 5-A,

5Q = 0 and c, = 0. For bit position 3, Xg = -1, Cg = 0 ; then according to Table 5-A,

Sj = 1 and C4 = 1.

Using the encoding provided in Table 1-B to encode Table 5-A, the RB-NB

conversion is shown in Table 5-B.

103

Table 5-B. Conversion Truth Table for RB-NB

Input Output
Redundancy bit Carry in c,. Binary hit s. Carry out c,.̂ ,
X,. = (x: x^)
0(0 1)(1 0) 0 0 0
0(0 1)(1 0) 1 1 1
1(1 1) 0 1 0
1(1 1) 1 0 0
-1 (0 0) 0 1 1
-1 (0 0) 1 0 1

According to this conversion truth table, we derive the following equation:

5,. =C-®{x. © x/)

c,+] = 4 +c,x,:x;
(5.1)

For the c.̂ ̂ equation above, define the signals, carry propagate, p. = x. x^ , and

carry generate, g. = x. + x^ . Then:

Unrolling the carry equations, we get:

(5.2)

C3 - &2 + gi;'2 + go;̂ ,;'2 + co.Po;̂ ,;̂ 2
C2 =gi+goA+Co;?(,;2,

c, =go+CoPo

(5.3)

Based on the Ling adder [106], a more efficient RB-NB converter can be

designed.

Define the signal, carry transfer, t. = p. 4- g. , (carry is not annihilated) and

h. = c. , then

104

‘'z ~ S i A ~ § i - \

~ 8i-\ î-A^i-Ah-ih-lh-\ (5-4)

Ling’s modification consists of propagating A. = c,. + c._, instead of c. . To

understand the following derivations, we note that g,._, implies c, (c. if g,._, =1), which in

turn implies A,.

■ xT X. =x7 +xl =g.

= gi-Â + gi-i + = g,_i)
= gi-A + + Pi-igi-i (Pi-igi-i =gi-i) +Ci-xPi-\Pi-i (repeated term)
= gi.A+P-iP,
= gi-xhi+c,_,p^
= g,-,A,+A-i(4-i+c,.)

= g,._,A,.+p,._,/i,. = V m

\+CiPi-x

4 = 4 + C,._, = (g._i + c , + C ._ ,

= g , _ i + c , _ ,

=&-] + Vih-2

Unrolling the recurrenee for h., we get;

=gH+^,-2(g/-2+A,_2(_3)
=g,_,+g,_2+A,_2(_2L3 {Sincet,_2g,_2 =g,_2)

~ g i - \ g i ~ 2 g i - i h - l h - l ^ /-3 ^ / - 4 h - 3 ^ i - 2

~ g i - l ~ ^ g i - 2 g i - 3 ^ i - 2 g i - 4 ^ i ~ 3 ^ - 2 + ̂ /_4̂ /-)h-4̂ Z-3̂ Z-2

K =go+^-A
/h = & + & 0 + W -l
^ = ^ 2 + ^ 1 + ^ 0 ^ 1 + V - l V l

4̂ = &3 + ̂ 2 + g^2 +goh^2 +

(5.5)

Now, the expression for the converter output is:

105

Si =c,. ©(x,. ® xl)

-(A/,_;)@(xr ©xj")
(5.6)

where,

h = Pi + gi = 4-^/ + 4 + = (4 + xl) + (x: x l)

= x ;+ x l = x;xl = Pi

Here, and are the 4-bit converter’s and , respectively. A carry network based

on the preceding equations can be used in conjunction with 2-input NANDs, producing

the ti signals, 2-input NORs, producing g . , and 3-input XNORs, producing the sum bits,

to build a 4-bit binary RB-NB converter. Note that since does not affect the

computation of the sum bits, it can be derived based on the simpler equation;

4̂ = ^ 3 + ^ 4 , (5.7)

with a slight speed penalty. The resulting carry network is depicted in Figure 5-1.

g2.
ti ■
g i -

to-

i o

F=̂>—D-̂

■hi

Figure 5-1. Four-Bit Carry-Lookahead RB-NB Converter (Similar to [85])

106

Compared to Equation (5.3), Equation (5.5) for contains only 12 terms, while

in Equation (5.3), c^has 15 terms. The cost is that the sum is obtained by a slightly more

complex expression in (5.6), as compared to Equation (5.1).

Given the design represented in Equations (5.5), the group “block generate” and

“block propagate” signals can be derived as follows:

M u + a]- g /+ 3 + Si+2 +&,+l(+2 + g/,+1 ,̂+2

~ h-\hh+\h+2

Figure 5-2 shows a schematic diagram of a 4-bit carry-lookahead block carry

generator based on Ling’s design.

hj+4 î+3 î+2 î+1
k g,-3Ph3 k g,i2P, 2 k gi^lPi I À g iP i

(5.8)

U u 1 1 u
4-Bit Carry-Lookahead Generator

1 r

3̂]

Figure 5-2. Diagram of a 4-Bit Carry-Lookahead RB-NB Carry Generator
(Similar to [85])

Given the 4-bit carry-lookahead generator from Figure 5-1 and Figure 5-2, the

construction of a multilevel-lookahead circuit is straightforward. For example, to

construct a two-level 16-bit carry-lookahead RB-NB converter, we need four 4-bit RB-

NB converters and a 4-bit carry-lookahead generator, connected together as shown in

Figure 5-3.

107

11-15

'/5

’ 11-15

.■̂ 11- 15-^11- 15) ■^8-11 (- ^ - 1 1 ^ - 1 1) ^ 4 - 7 (-^4-7■^4- 7) -^0-3 (-^o_3-^o_3)

L i i
4-bit

RB-NB
Convert

'76

t[12,15]
g [1 2 ,1 5]f

‘II

‘ 1 2

8-1

4-bit
RB-NB
Convert

11]
M8,ll]

’ 4 -7

4-bit
RB-NB
Convert

44,7]
g[4,7]

’ 0 -3

4-bit
RB-NB
Convert

40,3]
,3]

4-Bit Lookahead RB-NB Converter Block Carry Generator

Figure 5-3. Two-Level 16-bit RB-NB Converter (Similar to [85])

5.2 Comparison Result
In this section, the novel converter is compared to a traditional carry-look-ahead

based converter. A 4-bit converter is used for comparison. Assume only 2-inputs OR or

AND gates can be used to build such a converter. For a traditional carry-look-ahead

converter, the longest latency is defined by Equation (5.3). That is,

C4 = ^3 + g o A 172.P3 +C0I70A.P2.P3

If only two-input gates are allowed, then it requires 14 gates to the realized c^.

The critical path delay is six gates level.

For the converter investigated here, the critical path delay is defined by Equation

(5.5). That is,

A4 " &3 + ̂ 2 + g / 2 + goh4 + AoL/oĥ 2

If only two-input gates are allowed, then this requires 10 gates to the realized

and the critical path delay is only five gates level.

108

Chapter 6 Summary and Conclusions

Inner-product computations play a central role in digital signal processing,

especially in the areas of digital filters, signal correlation, convolution, FFT, etc.

Complex number arithmetic computation is a key arithmetic feature required in modem

digital communication, radar systems and optical systems. Many algorithms based on

convolutions, correlations, and complex number filters require complex number

multiplication and high-speed inner-product computation. The overall motivation for this

work is the design of a high-performance complex arithmetic processor (CASP) capable

of offering novel extended inner-produet operations.

The CASP design relies on the high-speed multiplication afforded by redundant

binary techniques, while avoiding the relatively slow conversion back to 2’s-complement

numbers until a final 2’s-complement result is necessary. Inherently, the CASP device

provides intermediate register storage for redundant binary, as well as 2’s-complement

numbers. A new high-performance inner-product processor using redundant binary

number representation is presented in this dissertation.

When the Booth coding technique is used, our proposed RB inner-product

processor can significantly reduce the number of partial product to 25%. Also, it can be

dynamically reconfigured/controlled to perform real, complex and redundant binary

number computations such as parallel multiplications and inner-product computations.

The extended computational capabilities of the RB IP processor are developed for real,

complex, and redundant binary number or mixed computations. In Chapter 2, the

structure of for IP computation is studied. Two possible implementations ,

109

the inline and the cross partial product methods, are compared, with our inline method

provides several advantages in speed and flexibility.

Complex number representations and arithmetic are also studied. Different

complex radices such as radix-(2y), radix-(/-l) and radix- (V2y) are investigated and

compared. It is found that the complex radices have no advantage in hardware

implementations. The traditional redundant binary number representation is used to

implement complex-number multiplication and inner-product processing. The new RB

inline inner-product processor can be reconfigured/controlled to perform complex-

number computations. The structures for Aç̂Bq -f yfjR, and is developed and

compared. The implementation of A^B^+A^B^ can be easily controlled to perform the

computation of A^B ̂- A-̂ B̂ . The complex number inner-product processor is investigated

based upon this unified structure for Â B̂̂ ±A^B^. The implementation using the RB IP

processor is compared with the TMS320C6XXX processor. This comparison shows there

is some speed improvement for the RB IP core. Next, a unified signed/unsigned

multiplier without and with Booth encoding is presented. Based upon the unified

multiplier, the RB IP processor is further extended to realize a redundant binary

multiplier that can accept both 2’s-complement or RB inputs. The ability to accept RB

inputs is essential for iterative calculations such as real and complex number division.

In Chapter 3, different division methods are reviewed. Two function iteration

division methods, Newton-Raphson and Goldschimdt, are compared in detail. The

theoretical equivalence of these two methods is shown. Further studies show that the

Goldschmidt method is preferred over the Newton-Raphson method for efficient

hardware implementation. Extension to the RB IP core are provided for performing

n o

Goldschmidt division. The division implementation structure for both real and complex

numbers is discussed using the same IP processor.

In Chapter 4, together with the basic inner-product operations, the computational

capabilities afforded ean be implemented using control signals or circuit reconfiguration

if configurable hardware is used. These extended operations provide a rich set of

computational capabilities targeted for implementation in a eomplex arithmetic signal

processor (CASP). Various extensions such as IP computations, parallel multiplication of

real, complex and redundant binary numbers are studied. Possible pipeline

implementations of the RB IP core are investigated. A two-stage and three-stage pipeline

structures are presented and the time delay model of these stages is studied. An improved

RB to 2’s-complement number converter is investigated in Chapter 5. This converter

shows improvement in speed with a small increase in area.

Several areas of research are suggested. Further development of the IP core is

required for the extended caleulation capabilities, primarily dealing with the segmented

accumulator and the requirements for flag setting based on arithmetic results for both

saturation and overflow arithmetic. In addition, the IP processor can be developed to

provide computational capabilities for square root, CORDIC, and other iterative

functions.

Since the IP processor developed here serves as a core DSP computing

capability, the overall architecture of the Complex Arithmetic Signal Processor (CASP)

device requires extensive research to provide a dual numeric representation, i.e., 2’s-

complement and redundant binary. The CASP device should have a rich instruction set

architecture that leverages the IP core for performing calculations for signed/unsigned.

111

real/complex binary numbers, as well as intermediate calculations on redundant binary

numbers. The CASP device will significantly enhance future applications requiring high-

performance inner-product calculations.

112

APPENDIX
VHDL HARDWARE IMPLEMENTATION

For the information regarding VHDL hardware implementations, please

contact the Office of Technology Development, University of Oklahoma.

660 Farrington Oval
Evans Hall, Room 201
Norman, Oklahoma 73019
Tel: (405) 325-3800
F ax:(405)325-7162

113

REFERENCES

[1] Y. Harata, Y. Nakamura, H. Nagase, M. Takigawa, and N. Takagi, “A high-speed
multiplier using a redundant binary adder tree,” IEEE Journal o f Solid-State Circuits,
vol. 22, no. 1, pp. 28-33, Feb. 1987.

[2] X. Huang, W. Liu, and B. W. Y. Wei, “A high-performance CMOS redundant binary
multiplication-and-accumulation (MAC),” IEEE Transactions on Circuits and
Systems I. vol. 41, no. 1, pp. 33-39, Jan. 1994.

[3] H. Makino, Y. Nakase, H. Suzuki, H. Morinaka, H. Shinohara, and K. Mashiko, “An
8.8-ns 54x54-bit multiplier with high speed redundant binary architecture, " IEEE
Journal o f Solid-state Circuits, vol. 31, no. 6, pp. 773-783, June 1996.

[4] N. Takagi, H. Yasuura, and S. Yajima, “High-speed VLSI multiplication algorithm
with a redundant binary addition tree,” IEEE Transactions on Computers, vol. C-34,
no. 9, pp. 789-796, Sept., 1985.

[5] G. A. Ruiz, “4bit CLA-based conversion from redundant to binary representation for
CMOS simple and multi-output implementations,” Electronics Letters, vol. 35, no. 4,
pp. 281-283, Feb. 1999.

[6] A. Herrfeld and Hentschke S., “Conversion of redundant binary into two's
complement representations,” Electronics Letters, vol. 31, no. 14, pp. 1132-1133,
July 1995.

[7] S. Yen, C. Laih, C. Chen, and J. Lee, “An efficient redundant-binary number to
binary number converter, ” IEEE Journal o f Solid-State Circuits, vol. 27, no. 1, pp.
109-112, Jan. 1992.

[8] M. O. Ahmad and D. V. Poomalah, “Design of an efficient VLSI inner-product
processor for real-time DSP applications,” IEEE Transactions on Circuits and
Systems, vol. 36, no. 2, pp. 324-329, Feb. 1989.

[9] E. Abdel-Raheem, A. Tawfik, M. Fahmi, and F. El-Guibaly, “New inner-product
processor for FIR filter implementation,” in Proceedings o f IEEE Pacific RIM
Conference Communication, Computer and Signal Processing, Victoria, May 17-19,
1 9 9 5 , p p . 3 9 5 - 3 9 8 .

[10] D. J. Soudris, V. Paliouras, T. Stouraitis, and C. E. Goutis, “A VLSI design
methodology for RNS full adder-based inner product architectures,” IEEE
Transactions on Circuits and Systems - II: Analog and Digital Signal Processing,
vol. 44, no. 4, pp. 315-318, April 1997.

114

[11] M. N. Fahmi, F. El-Guibaly, S. Sunder, and D. J. Shpak, “Design of novel serial-
parallel inner-produet processors,” in 1994 IEEE International Symposium on
Circuits and Systems, London, UK, May 30-June 2, 1994, pp. 55-58.

[12] S. Haynal and B. Parhami, “Arithmetic structures for inner-product and other
computations based on a latency-free bit-serial multiplier design,” in 33'̂ ̂Asilomar
Conference on Signals, Systems and Computers, Pacific Grove, CA, Nov. 3-6, 1996,
pp. 197-201.

[13] W. P. Burleson and L. L. Scharf, “VLSI design of irmer-product computers using
distributed arithmetic,” in 1989 IEEE International Symposium on Circuits and
Systems, Portland, OR, May 8-11, 1989, pp. 158-161.

[14] A. S. Vega, P. S. R. Diniz, and A. C. Mesquita, “A modular distributed-arithmetic
implementation of the inner product and its application to digital filters,” Journal o f
VLSI Signal Processing, vol. 10, pp. 93-106, 1995.

[15] N. Kazakova, R. Sung, N. Durdle, M. Margala, and J. Lamoureux, “Fast and low-
power inner product processor,” in The 2001 IEEE International Symposium on
Circuits and Systems, Sydney, Australia, May 6-9, 2001, vol. 4, pp. 646-649.

[16] R. Lin and S. Olariu, “A new buses scheme for fast inner-product computation,” in
2S‘̂ Asilomar Conference on Signals, Systems and Computers, Monterey, CA, Oct.
30-Nov. 2, 1994, pp. 1402-1406.

[17] J. A. Starzyk and C. Chen, “A VLSI inner-product processor for real-time DSP
applications,” in Proceedings o f the 26th Southeastern Symposium on System
Theory, Athens, OH, March 20-22, 1994, pp. 219-223.

[18] C. C. Wang, C. J. Huang, and Y. P. Chen, “Design of an inner-product processor for
hardware realization of multi-valued exponential bidirectional associative memory,”
IEEE Transactions on Circuits and Systems II: Analog Digital Signal Processing,
vol. 47, no. 11, pp. 1271-1278, Nov. 2000.

[19] C. C. Wang, P. M. Lee and C. J. Huang, “Three alternative architectures of digital
ratioed compressor design with application to inner-product processing,” lEE
Proceedings on Computers and Digital Techniques, vol. 147, no. 2, pp. 65-74,
March 2000.

[20] D. C. M. Bilsby, R. L. Walke, and R. W. M. Smith, “Comparison of a programmable
DSP and a FPGA for real-time multiscale convolution,” in Proceeding o f the 1998
lEE Colloquium on High Performance Architectures for Real-Time Image
Processing, London, UK, Feb. 12, 1998, pp. 4/1-4/6.

[21] L. Breveglieri and L. Dadda, “A VLSI inner product macrocell,” IEEE Transactions
on VLSI Systems, vol. 6, no. 2, pp. 292-298, June 1998.

115

[22] E. Dujardin and O. Gay-bellile, “Software implementation of ADSL application with
a convolution coprocessor,” in Proceedings o f the 1998 IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP, Seattle, WA, May
12-15, 1998, pp. 3053-3056.

[23] O. Gay-Bellile and E. Dujardin, “Architecture of a programmable FIR filter co­
processor,” in 1998 IEEE International Symposium on Circuits and Systems, Pacific
Grove, CA, May 31-June 3, 1998, vol. 5, pp. 433-436.

[24] R. Ein, “Reconfigurable parallel inner product processor architectures,” IEEE
Transactions on VLSI Systems, vol. 9, no. 2, pp. 261-272, April, 2001.

[25] R. Lin, A.S., Botha, K.E. Kerr, and G.A., Brown, “An inner product processor
design using novel parallel counter circuits”, in The First IEEE Asia Pacific
Conference on ASICs, Seoul, Korea, Aug. 23-25, 1999, pp. 99-102.

[26] W. K. Euk and J. E. Vuillemin, “Recursive implementation of optimal time VLSI
integer multiplier,” in Proceedings o f VLSI 1983, Amsterdam, Netherlands, 1983,
pp. 155-168.

[27] R. Managuli, G. York, and Y. Kim, “An efficient convolution algorithm for VLIW
mediaprocessors,” in Proceeding o f SPIE—the International Society for Optical
Engineering, Jan. 1999, pp. 65-74.

[28] S. H. Baik, K.N. Han, and E. Yoon, “A 230MHz 8 tap programmable FIR filter
using redundant binary number system,” in IEEE International Symposium on
Circuits and Systems, Orlando, FL, May 30-June 2, 1999, pp. 415-417.

[29] M. A. Saeristan, V. Rodellar, A. Diaz, V. Garcia, and P. Gomez, “A reusable inner
product unit for DSP applications,” in 25‘̂ Proceedings o f EUROMICRO
Conference, 1999, pp. 209-213.

[30] G. Wang and M. Tull, “The implementation of an effieient and high-speed inner-
product processor,” in 35* Asilomar Conference on Signals, Systems, and
Computers, Nov. 4-7, 2001, vol. 2, pp. 1362-1366.

[31] T. Aoki, Ohi, Y., and Higuchi, T., “Redundant complex number arithmetic for high­
speed signal processing,” in IEEE Workshop on VLSI Signal Processing, Sakai,
Japan, Oct. 16-18, 1995, pp. 523-532.

[32] J. Buhler, M.A. Shokrollahi, and V. Stemann, “Fast and precise Fourier transforms,”
IEEE Transactions on Information Theory, vol. 46, no. I, pp. 213-228, Jan 2000.

[33] D. Fu and A. N. Willson Jr., “A high-speed processor for rectangular-to-polar
conversion with applications in digital communications,” in 1999 Global

116

Telecommunications Conference, GLOBECOM '99, Janeireo, Brazil, Dec. 5-9, 1999,
vol. 4, pp. 2172-2176.

[34] Y.P. Lee, L.G., M.J. Chen, and C.W. Ku, “A new design and implementation of 8x8
2-D DCT/IDCT,” in Workshop on VLSI Signal Processing, San Francisco, CA, Oct.
30-Nov. 1, 1996, pp. 408-417.

[35] K. Sasayama, M. Okuno, and K. Habara, “Coherent optieal transversal filter using
silica-based single-mode waveguides,” Electronics Letters, vol. 25, no. 22, pp. 1508-
1509, Oct. 1989.

[36] K. Sasayama, M. Okuno, and K. Habara, “Coherent optieal transversal filter using
silica-based waveguides for high-speed signal processing,” Journal o f Lightwave
Technology, vol. 9, no. 10, pp. 1225-1230, Oct 1991.

[37] M.A. Soderstrand, D.H. Chu, W. Chan, M. Lazkani, H.H. Loomis Jr., “Multi-rate
bandpass filter bank implemented in QRNS complex arithmetic using parallel
multiple DSP chips or ASICs,” in 2 /^ Asilomar Conference on Signals, Systems and
Computers, Pacific Grove, CA, Nov. 1-3, 1993, pp. 801-806.

[38] S. Toledo, “On the communication complexity of the discrete Fourier transform,”
IEEE Signal Processing Letters, vol. 3, no. 6, pp. 171-172, June 1996.

[39] M. Tull, G. Wang, and M. Ozaydin, “High-speed complex number multiplier and
inner-product processor,” in 45‘'’ Midwest Symposium on Circuits and Systems,
August 4-7, 2002, vol. 3, pp. 640-643.

[40] A. Berkeman, V. Owall, and M. Torkelson, “A low logic depth complex multiplier
using distributed arithmetic,” IEEE Journal o f Solid-State Circuits, vol. 35, no. 4, pp.
656-659, April 2000.

[41] S. He and M. Torkelson, “A eomplex array multiplier using distributed arithmetic,”
in Proceedings o f the IEEE 1996 Custom Integrated Circuits Conference, San Diego,
CA, May 5-8, 1996, pp. 71-74.

[42] M. Karlsson, M. Vesterbaeka, and L. Wanhammar, “Design and implementation of a
complex multiplier using distributed arithmetic, ” in 1997 IEEE Workshop on Signal
Processing, Leicester, UK, Nov. 3-5, 1997, pp. 222-231.

[43] V. G. Oklobdzija, “An integrated multiplier for complex numbers,” Journal o f VLSI
Signal Processing, vol. 7, pp. 213-222, 1994.

[44] V. G. Oklobdzija, D. Villeger, and T. Soulas, “Considerations for design of a
complex multiplier,” in 26̂ ̂ Asilomar Conference on Signals, Systems and
Computers, Pacific Grove, CA, Oct. 26-28, 1992, pp. 366-370.

117

[45] A. P. Pascual, J. Vails, and M. M. Peiro, “Efficient complex number multipliers
mapped on FPGA,” in 6th IEEE International Conference on Electronics, Circuits
and Systems, Pafos, Cyprus, Sept. 5-8, 1999, pp. 1123-1126.

[46] A. P. Pascual, T. Sansaloni, and J. Vails, “FPGA based on-line complex-number
multipliers,” in 8̂ '' IEEE International Conference on Electronics, Circuits and
Systems, Malta, Sept. 2-5, 2001, vol. 3, pp. 1481-1481.

[47] K. Z. Pekmestzi, “Complex number multipliers,” lEE Proceedings, vol. 136, no. 1,
pp. 70-75, Jan. 1989.

[48] T. J. Sansalon, J. Vails, and K. K. Parhi, “FPGA-based digit-serial complex number
multiplier accumulator,” 2000 IEEE International Symposium on Circuits and
Systems, Geneva, Switzerland, May 28-31, 2000, pp. 585-588.

[49] K. W. Shin and H. W. Jeon, “High-speed complex-number multiplications based on
redundant binary representation of partial products,” International Journal o f
Electronics, vol. 87, no. 6, pp. 683-702, June 2000.

[50] K. W. Shin, B. S. Song, and K. Bacrania, “A 200-Mhz complex number multiplier
using redundant binary arithmetic,” IEEE Journal o f Solid-State Circuits, vol. 33, no.
6, pp. 904-909, June 1998.

[51] A. Skavantzos and T. Stouraitis, “Decomposition of complex multipliers using
polynomial encoding,” IEEE Transactions on Computers, vol. 41, no. 10, pp. 1331-
1333, Oct. 1992.

[52] T. Soulas, D. Villeger, and V. G. Oklobdzija, “An ASIC macro cell multiplier for
complex numbers,” in European Conference on Design Automation with the
European Event in ASIC Design, 1993, pp. 589-593.

[53] T. Stouraitis and A. Skavantzos, “Multiplication of complex numbers encoded as
polyniamials,” Journal o f VLSI Signal Processing, vol. 3, no. 4, pp. 319-328, April
1991.

[54] T. Stouraitis and A. Skavantzos, “Parallel deeomposition of eomplex multipliers,” in
22^ Asilomar Conference on Signals, Systems and Computers, Paeific Grove, CA,
1988, pp. 379-383.

[55] D. C. Blest and Jamil, T., “Efficient division in the binary representation of complex
numbers,” in Southeastcon 2001 Proceedings IEEE, Clemson, SC, Mareh 30-April
1,2001, pp. 188-195.

[56] Y. N. Chang and K. K. Parhi, “High-performance digit-serial complex-number
multiplier-accumulator”, in Proceedings o f the 1998 IEEE International Conference
on Computer Design, Austin, TX, Oct. 5-7, 1998, pp. 211-213.

118

[57] Y. N. Chang and K. K. Parhi, “High-performance digit-serial complex multiplier,”
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing II, vol. 47, no. 6, pp. 570-572, June 2000.

[58] T. T. Dao, “Knuth’s complex arithmetic with quaternary hardware,” in I2 ‘̂
International Symposium on Multiple-Value Logic, May 1982, pp. 94-98.

[59] J. Duprat, Y. Herreros, and S. Kla, “New redundant representations of eomplex
number,” ÆEE Transactions on Computers, vol. 42, no. 7, pp. 817-823, July 1993.

[60] C. Fougny, “Parallel and on-line addition in negative base and some complex
number systems,” Euro-Par’96 Parallel Processing, pp. 175-182, 1996.

[61] W. J. Gilbert, “Complex numbers with three radix expansions,” Canadian Journal o f
Mathematics, vol. 24, no. 6, pp.1335-1348, June 1982.

[62] T. Jamil, N. Holmes, and D. Blest, “Towards implementation of a binary number
system for complex numbers,” in Proceedings o f the IEEE Southeastcon 2000,
Nasville, TN, April 7-9, 2000, pp. 268-274.

[63] D. E. Knuth, “An imaginary number system,” Communications o f the ACM, vol. 3,
no. 4, pp. 245-247, April 1960.

[64] D. E. Knuth, The Art o f Computer Programming, Vol. 2: Addison-Wesley Publishing
Company, 1969.

[65] I. Koren and Maliniak, Y., "On classes of positive, negative and imaginary radix
number systems", IEEE Transactions on Computers vol. C-30, no. 5, pp. 312-317,
May 1981.

[66] W. Penney, “A binary system for complex numbers,” Journal o f the Associated for
Computing Machinery, vol. 12, no. 2, pp. 247-248, April, 1965.

[67] A. Slekys, “Design of complex number digital arithmetic units based on a modified
bi-imaginary number system,” Ph.D. dissertation. University of California at Los
Angels, Los Angeles, CA, 1976.

[68] V. N. Stepanenko, “Computer arithmetic of complex numbers,” Cybernetics and
Systems Analysis, vol. 32, no. 4, pp. 585-591, July 1996.

[69] A. Avizienis, “Signed-digit number representations for fast parallel arithmetic,” IRE
Transactions on Electronic Computers, vol. EC-10, no. 3, pp. 389-400, Sept. 1961.

[70] G. M. Blair, “The Equivalence of two’s-complement addition and the conversion of
redundant binary of twos-complement numbers,” IEEE Transactions on Circuits and

119

Systems I: Fundamental Theory and Applications, vol. 45, no. 6, pp. 669-671, June
1 9 9 8 .

[71] T. N. Rajashekhara and A.S. Nale, “Conversion from signed-digit to radix
complement representation,” International Journal o f Electronics, vol. 69, no. 6, pp.
717-721, Dec. 1990.

[72] M. D. Ercegovac and T. Lang, “On-the-fly conversion of redundant into
conventional representations”, IEEE Transactions on Computers, vol. C-36, no. 7,
pp. 895-897, July 1987.

[73] M.P. Tull, G. Wang, and M. Ozaydin, “Method and apparatus for converting
redundant binary numbers to two’s-complement binary numbers”. Disclosure
03NOR005, University of Oklahoma, July 2002.

[74] I. Choo and R. G. Deshmukh, “A novel conversion scheme from a redundant Binary
to two’s complement binary number for parallel architeetures,” in SoutheastCon
2001 Proceedings o f IEEE, 2001, Clemson, SC, March 30-April 1, 2001, pp. 196 -
201 .

[75] S. F. Oberman and M. J. Flynn, “Design issues in division and other floating-point
operations,” IEEE Transactions on Computers, vol. 46, no. 2, pp. 154-161, Feb.
1997.

[76] G. Wang, M. Ozaydin, and M. Tull, “High-performance divider using redundant
binary representation,” in 45‘̂ Midwest Symposium on Circuits and Systems, August
4-7, 2002, vol. 3, pp. 640-643.

[77] T. Aoki, H. Tokoyo, and T. Higuchi, “High-radix parallel dividers for VLSI signal
processing,” in 4* Workshop on VLSI Signal Processing, Pacifie Grove, CA, Oct.
30-Nov. 1, 1996, pp. 83-92.

[78] D. L. Atkins, “Higher-radix division using estimates of the divisor and partial
remainder,” IEEE Transactions on Computers, vol. C-17, no. 10, pp. 925-934, Oct.
1 9 6 8 .

[79] M. D. Lrcegovac and T. Lang, Division and Square Root: Digit-Recurrence
Algorithms and Implementations'. Kluwer Academic, 1994.

[80] M. Flynn, “On division by functional iteration,” IEEE Transaction on Computers,
vol. 19, no. 8, Aug. 1970.

[81] C. V. Freiman, “Statistical analysis of certain binary division algorithms,” IRE
Proceedings, vol. 49, pp. 91-103, 1961.

120

[82] R. E. Goldschmidt, “Application of division by convergence,” M.S. thesis, MIT,
Cambridge, MA, June 1964.

[83] S. Kuninobu, T. Nisbiyama, H. Edamatsu, T. Taniguebi, and N. Takagi, “Design of
high speed MOS multiplier and divider using redundant binary representation,” in
Proceedings o f8 ‘̂ Symposium on Computer Arithmetic, 1987, pp. 80-86.

[84] S. F. Oberman and M. J. Flynn, “Division algorithms and implementations,” IEEE
Transactions on Computers, vol. 46, no. 8, pp. 833-854, Aug. 1997.

[85] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs'. Oxford
University Press, 2000.

[86] J. E. Robertson, “A new class of digital division methods,” IRE Transactions on
Electronic Computers, vol. 7, pp. 218-222, Sep. 1958.

[87] E. M. Sebwarz and M. J. Flynn, “Hardware starting approximation method and its
application to the square root operation,” IEEE Transactions on Computers, vol. 45,
no. 12, pp. 1356-1369, Dee. 1996.

[88] H. R. Srinivas, “High speed computer arithmetic architectures,” Ph.D. dissertation.
University of Minnesota, Twin Cities, MN, 1994.

[89] K. G. Tan, “The theory and implementation of high-radix division,” in Proceeding o f
IEEE Symposium o f Computer Arithmetic, 1978, pp. 154-163.

[90] K. D. Toeher, “Teehniques of multiplication and division for automatic binary
computers,” Quarterly Journal o f Mechanic Applied Mathematics, vol. 11, part 3,
p p . 3 8 6 - 3 8 3 , 1 9 5 8 .

[91] Intel Arehiteeture Tutorial, Intel Company, http://www.intel.com.

[92] “TMS320C6000 programmer’s guide,”
http://dspvillage.ti.com/docs/eatalog/resources/techdoes.jhtml?navSection=user_guid
es&familyld= 132.

[93] S. D. Pezaris, “A 40-ns 17-bit by 17-bit array multipliers,” IEEE Transactions on
Computers, vol. 20, pp. 442-447, April 1971.

[94] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transaction on Electronic
Computer, vol. EC-13, pp. 14-17, Feb. 1964.

[95] IEEE Standard VHDL Language Reference Manual
IEEE Std 1076-2002, http://ieeexplore.ieee.org/Xplore/DynWel.jsp

121

http://www.intel.com
http://dspvillage.ti.com/docs/eatalog/resources/techdoes.jhtml?navSection=user_guid
http://ieeexplore.ieee.org/Xplore/DynWel.jsp

[96] A.D. Booth, “A Signed binary multiplication technique,” Quarterly Journal
Mechanics and Applied Mathematics, vol. 4, pt. 2, pp. 236-240, June 1951.

[97] T. Aoki, Amada, H., and T. Higuchi, “Real/Complex reconfigurahle arithmetic using
redundant complex number systems,” in 13‘̂ IEEE Symposium on Computer
Arithmetic—Arith ’97, Pacific Grove, CA, July 6-9, 1997, pp. 200-207.

[98] T. Aoki, Hoshi, K., and Higuchi, T., “Redundant complex arithmetic and its
application to complex multiplier design,” in Proceeding o f 29‘̂ IEEE International
Symposium on Multiple Valued Logic, Freiburg, Germany, May 20-22, 1999, pp.
200-207.

[99] R. Mcllhenny and M. D. Ercegovac, “On-line algorithms for complex number
arithmetic,” in 52"^ Asilomar Conference on Signals, Systems, Computers, Pacific
Grove, CA, Nov. 1-4, 1998, pp. 172-176.

[100] R. Mcllhenny and M.D. Ercegovac, “On the design of on-line givens rotation,” in
Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA,

Nov. 4-7, 2001, pp. 160-164.

[101] R. E. Blahut, Fast Algorithms For Digital Signal Processing'. Addison-Wesley,
1987.

[102] S. Zhoar, “Negative radix conversion,” IEEE Transactions on Computers, vol. C-
19, no. 3, pp. 222-226, March 1970.

[103] D P. Agrawal, “Negabinary carry-look-ahead adder and fast multiplier,”
Electronic Letters, vol. 10, no. 15, pp. 312-313, July 1974.

[104] N.G.P. Satish, “Negative radix arithmetic and its applications,” M.S. thesis.
University of Nevada, Las Vegas, NV, 1973.

[105] G. Wang, M. P. Tull, and M. Ozaydin, “Binary conversion algorithms for the
implementation of complex-radix numbers,” presented at Proceedings of 2"‘* IEEE
Electro/Information Technology, Oakland, MI, June 6-8, 2001.

[106] H. Ling, “High-speed binary adder,” IBM Journal o f Research and Development,
vol. 25, no. 3, pp. 156-166, March 1981.

[107] W. S. Briggs and D. W. Matula, “A 17x69 bit multiply and add unit with
redundant binary feedback and single cycle latency,” in Proceeding o f IEEE
Symposium on Computer Arithmetic, Windsor, Canada, June 29-July 2, 1993, pp.
163-170.

122

[108] P. Chai, et al., “A 120 MFLOPS COS floating-point processor,” in Proceeding O f
IEEE 1991 Custom Integrated Circuit Conference, San Diego, CA, May 12-15,
1991, pp. 15.1/1-15.1/4.

[109] H. M. Darley, et al, “Floating-point/integer processor with divide and square root
functions,” U.S. Patent 4878190, Oct. 1989.

[110] S. M. Quek, L. Hu, J. P. Prabhu, and F. A. Ware, “Apparatus for determining
booth recoder input control signal,” U.S. Patent 5280439, Jan. 1994.

[111] Y. Harata, Y. Nakamura, H. Nagase, M. Takigawa, andN. Takagi, “A high-speed
multiplier using a redundant binary adder tree,” IEEE Journal o f Solid-State Circuits,
vol. 22, no. 1, pp. 28-34, Feb. 1987.

[112] N. Takagi and S. Yajima, “On a fast iterative multiplication method by recoding
intermediate product,” in Proceedings
Science, Kyoto University, Aug. 1987.
intermediate product,” in Proceedings O f 36'^ National Convention o f Information

[113] H.A.H. Fahmy, A.A. Liddicoat, and M.J. Flynn, “Improving the effectiveness of
floating point arithmetic,” in 35'* Asilomar Conference on Signals, Systems, and
Computers, Pacific Grove, CA, Nov. 4-7, 2001, pp. 875-879.

[114] IA-32 Intel Architecture Software Developer’s Manual volume 2: Instruction Set
Referenee, http://developer.intel.com/design/pentium4/manuals/.

[115] Intel Pentium Family User’s Manual volume 3: Architecture and Programming
Manual, Intel Corporation, http://developer.intel.com/design/pentium4/manuals/.

[116] E. Antelo, M. Boo, J. D. Bruguera, and E. L. Zapata, “A novel design of a two
operand normalization circuit”, IEEE Transactions on VLSI Systems, vol. 6, no. 1,
March 1998, pp. 173-176.

[117] V. G. Oklobdzija, “An algorithmic and novel design of a leading zero detector
circuit: comparison with logic synthesis”, IEEE Transactions on VLSI Systems, vol.
2, no. 1, pp. 124-148, March 1994.

[118] V. G. Oklobdzija, “Algorithmic design of a hierarchical and modular leading zero
detector cixcmi,” Electronic Letters, vol. 29, no. 3, pp. 283-284, Feb. 1993.

123

http://developer.intel.com/design/pentium4/manuals/
http://developer.intel.com/design/pentium4/manuals/

