APPLICABILITY OF BIOSCREEN TO A HYDROCARBON CONTAMINATED UNDERGROUND STORAGE TANK SITE

By

CANDY RAE AKINS

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1997

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of Master of Science May, 1999

OKLAHOMA STATE UNIVERSITY

APPLICABILITY OF BIOSCREEN TO A HYDROCARBON CONTAMINATED

UNDERGROUND STORAGE

TANK SITE

Thesis Approved:

Thesis Adviser g. Wilken B. Powell

Dean of the Graduate College

ACKNOWLEDGMENTS

First, I would like to thank God, who gave me the strength I needed to continue my education when my personal life was experiencing tremendous turmoil. Through God, all things are possible.

I would like to thank the members of my thesis committee for their time and many helpful comments during this research. Dr. John Veenstra and Dr. Dee Ann Sanders committed hours and hours of their time during my Master's program to see this research to completion and graciously pushed me along when I seemed to be "stalling." Dr. Wilber, who seems to never close his door, helped me tremendously with the operation and maintenance of the laboratory equipment.

My family was a source of never-ending support during this research. I would especially like to thank my mother, who instilled in me strength, commitment, independence and will. Words cannot express the true depth of appreciation and love that I have for her.

Lastly, and least in age but most in my heart, I would like to thank my son Connor. Connor was 10 months old when I started my education and has spent his life competing with my homework responsibilities. Thank you, Connor, for being the greatest son a mother could have. Now, we can play

iii

TABLE OF CONTENTS

<u>Cha</u>	Chapter Page			
LIST	OF TA	BLES	vi	
LIST	OF FIG	GURES	. viii	
NON	IENCLA	TURE	ix	
1.0	INTRO	DUCTION	1	
2.0		ATURE REVIEW	4	
2.0	21	Natural Attenuation Processes		
	Z . I	2.1.1 Biodegradation		
		2.1.1.1 Microorganisms		
		2.1.1.2 Electron Acceptors		
		2.1.1.3 Nutrients		
		2.1.1.4 Favorable Environment		
		2.1.1.5 Biodegradation Rate and Verification		
		2.1.2 Dispersion		
		2.1.3 Adsorption		
		2.1.4 Volatilization	18	
	2.2	Modeling Bioremediation		
		2.2.1 Introduction to Modeling	. 19	
		2.2.2 Required Model Parameters	21	
		2.2.3 Model Calibration	23	
		2.2.4 Sensitivity Analysis		
		2.2.5 Examples of Bioremediation Models		
	2.3	ORBCA	25	
3.0	METH	ODOLOGY	27	
	3.1	Site Description	27	
		3.1.1 Location and Description		
		3.1.2 Site History		
		3.1.3 Site Characterization		
		3.1.4 Site Hydrogeology		
	3.2	Sampling Procedure		
	3.3	Materials		
		3.3.1 BTEX Analysis		
		3.3.2 Anion Analysis		
		3.3.3 Organic Carbon Analysis		
		3.3.4 Dissolved Oxygen, pH, Temperature, and Groundwater Depth		
	3.4	Bioremediation Modeling	36	

	4.0	RESUL		. 38
	4.1	Results	of Analyses	38
		4.1.1	BTEX Concentrations	38
			4.1.1.1 Benzene	38
			4.1.1.2 Toluene	40
			4.1.1.3 Ethylbenzene	41
			4.1.1.4 Xylene	42
		4.1.2	Anion Concentrations	43
			4.1.2.1 Sulfate	43
			4.1.2.2 Nitrate	45
			4.1.2.3 Phosphate	
			4.1.2.4 Iron	
		4.1.3	Total Organic Carbon Concentrations	
		4.1.4	Dissolved Oxygen, pH, Temperature, and Groundwater Depth	
	4.2	Interpret	tation of Isopleth Maps	51
	4.3		Data	
	4.4	Bioreme	ediation Modeling Results	
		4.4.1	BIOSCREEN Inputs	
		4.4.2	Calibration	
		4.4.3	Model Run #1	
		4.4.4	Model Run #2	
		4.4.5	Model Run #3	
		4.4.6	Model Run #4	
		4.4.7	Model Run #5	
		4.4.8	Model Run #6	
		4.4.9	Model Run #7	66
5.0	SUMN		D CONCLUSIONS	68
6.0	RECO		ATIONS	72
REF	ERENC	ES		74
APP	ENDIC	ES		78
	Арр	endix A	Sample Chromatographs	79
	App	endix B	BIOSCREEN Equations and Assumptions	89
	Арр	endix C	Isopleth Maps	
	Арр	endix D	BIOSCREEN Output - Calibration	
	App	endix E	BIOSCREEN Output – Run #1	
	App	endix F	BIOSCREEN Output – Run #2	
	Арр	endix G	BIOSCREEN Output – Run #3	
	App	endix H	BIOSCREEN Output – Run #4	
		endix I	BIOSCREEN Output – Run #5	
		endix J	BIOSCREEN Output – Run #6	
	Арр	endix K	BIOSCREEN Output – Run #7	262

LIST OF TABLES

Tab	Table Pa		
2.1	Electron Acceptor Energy Production	9	
2.2	Stoichiometry of Common Biodegradation Reactions	1 1	
2.3	Techniques for Demonstrating Biodegradation in the Field	14	
2.4	Physical Properties of Geologic Materials	22	
3.1	Physical and Chemical Properties of BTEX	31	
3.2	January Benzene Standard Results	32	
3.3	January Sulfate Standard Results		
4.1	Benzene Concentration Results		
4.2	Average Benzene Concentrations		
4.3	Toluene Concentration Results		
4.4	Average Toluene Concentrations		
4.5	Ethylbenzene Concentration Results	41	
4.6	Average Ethylbenzene Concentrations	41	
4.7	Xylene Concentration Results		
4.8	Average Xylene Concentrations		
4.9	Sulfate Concentration Results	44	
4.10	Nitrate Concentration Results	45	
4.11	Phosphate Concentration Results		
4.12	2 Iron (II) Concentration Results	47	

4.13 TOC Concentration Results	
4.14 DO Concentration Results	
4.15 pH Results	
4.16 Temperature Results	
4.17 Depth to Groundwater Results	
4.18 Delta Electron Acceptor Values	53
4.19 Projected Mass	54
4.20 Run #1 Results	55
4.21 Calibration Run Varying Parameters	
4.21 Calibration Run Varying Parameters4.22 Run #2 Results	
	57
4.22 Run #2 Results	57
4.22 Run #2 Results 4.23 Run #2 Variable Parameters	57
 4.22 Run #2 Results 4.23 Run #2 Variable Parameters 4.24 Run #3 Results 	
 4.22 Run #2 Results 4.23 Run #2 Variable Parameters. 4.24 Run #3 Results 4.25 Run #3 Variable Parameters. 	

LIST OF FIGURES

<u>Fig</u>	Figure Pag		
	Relative Electron-Accepting Process Locations	8	
2.2	Electron Tower Theory	10	
2.3	Model Application Process		
3.1	General Site Location Map	27	
3.2	Site Map		
3. 3	Calibration Curve for Benzene (January)	33	
3.4	Calibration Curve for Sulfate (January)	34	
4.1	Effects of ∆SO₄ Variation	64	
4.2	Effects of ΔNO_3 Variation	66	
4.3	Δ SO ₄ and Δ NO ₃ Comparison	67	

NOMENCLATURE

Acronyms

BGS	Below Ground Surface
BTEX	Benzene, toluene, ethylbenzene, xylenes
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
DO	Dissolved Oxygen
EPA	Environmental Protection Agency
FID	Flame Ionization Detector
GC	Gas Chromatograph
IC	Ion Chromatograph
MT3D	Modular 3-Dimensional Transport Model
MT3DMS	Modular 3-Dimensional Transport Model with Multi Species
MW	Monitoring Well
000	Oklahoma Corporation Commission
ODOT	Oklahoma Department of Transportation
ORBCA	Oklahoma Risk-Based Correction Action
TOC	Total Organic Carbon
USGS	United States Geological Survey
UST	Underground Storage Tank
VOC	Volatile Organic Compounds

Units of Measure

_

Δ	change in concentration
°C	degrees Celsius
cm	centimeter
d	day
eq	equivalent
ft	feet
g	gram
in	inch
Kcal	kilocalorie
kg	kilogram
kg L	kilogram liter
-	-
L	liter
L m	liter meters
L m mg	liter meters milligram
L m mg mL	liter meters milligram milliliter
L m mg mL mm	liter meters milligram milliliter millimeter

1.0 INTRODUCTION

Thousands of sites across the United States are contaminated with hazardous chemicals that are dangerous to the public and the welfare of the environment. These include 32,000 sites plus a significant number of the approximately 7,000,000 underground storage tank sites (Baker and Herson, 1994). The cleanup of United States' existing environmental contamination carries a one trillion dollar price tag (USGS, 1997).

Natural attenuation is a process in which chemicals in the subsurface are destroyed by naturally occurring microorganisms (Baker and Herson, 1994). Although natural attenuation of wastes exhibits a slow rate of cleanup, it is receiving an increased amount of research since the process minimizes surface site disturbances and requires low capital cost. Some of the advantages of natural attenuation are reduced cost, reduced risk of exposure, minimal environmental impact and liability, application to large scale contamination, and ability to safeguard a water supply (Environmental Microbiology, 1997a).

However, there are disadvantages to natural attention. Natural attenuation may not be capable of achieving the very high destruction rates obtainable through thermal and chemical processes (Skinner et al., 1991). In addition, if the environmental conditions (e.g. electron acceptors, nutrients, temperature, pH, and microorganisms) are not within certain parameters, the conditions at the site will not allow natural attenuation to be effective. Finally, since the public may view natural attenuation as a passive alternative, problems may arise. For example, the general population may demand that a site be cleaned up as quickly as possible, without regard to the cost (Mast, 1997). Natural attenuation is not the quickest alternative available. However, in today's realm of environmental contamination, the use of an alternative that is low in cost, requires little labor, disturbs the site only slightly, and is still effective is becoming more and more popular. Prior to 1994, few states considered natural attenuation to be an acceptable

strategy for petroleum hydrocarbon remediation; however, by 1996, most states had developed policies for considering natural attenuation (Chapelle, 1999).

Due the many advantages of natural attenuation, many natural attenuation computer models and contaminant fate and transport models have become available in recent years. These models simulate the plume's natural attenuation, or intrinsic bioremediation, under alternate electron accepting conditions, and evaluate the maximum plume concentrations and maximum plume length. This aids decision makers in estimating a site's hazard to the environment and public health. BIOPLUME, BIOSCREEN. RT3D, BioF&T 3D, and SEAM3D are examples of modeling programs that simulate biodegradation and allow the use of multiple electron acceptors (Rifai et al., 1998; Newell et al., 1996; Waddill and Widdowson, 1998; BOSS International, 1998; Striegel, 1998). The number of models incorporating biodegradation is relatively low compared to the number of models available for contaminant fate and transport simulation (Striegel, 1998). As environmental decision making relies increasingly on risk analysis, the applicability of these models to contaminate sites increases.

With so many models available and each based on varying equations, assumptions, methods of evaluation, etc., a given model may or may not be applicable to a given site. For example, where Model A is calibrated for Site A and, based upon monitoring data, accurately depicts the plume's characteristics (extent of plume, significance of plume, reduction of plume over time), when Model A is applied to Site B, it exhibits results that are in error by several orders of magnitude. Hence, as research continues, further information must be acquired regarding the applicability of screening models. Modeled predictions need to be compared to actual conditions, and the model's weaknesses and strengths need evaluation.

Determining the applicability of contaminant fate and transport models has only recently become an issue as risk-based approaches to site clean-up have increased. The Environmental Protection Agency (EPA) granted over \$250,000 to a research project (NCERQA, 1999) that quantitatively evaluated the performance and reliability of contaminant transport models used for assessing human exposure and health risk from soils contaminated with volatile organic

compounds (VOCs). The goal of the project was to "identify typical model performance for practical risk assessment applications based on input parameters developed from standard site data collection methods, rather than based on model calibrations that cannot be accomplished for most contaminated sites (NCERQA, 1999)." This type of information, an analysis of current models, is essential for today's decision makers to establish model uncertainty and error. At the current time, based on satisfying Oklahoma Risk-Based Corrective Action (ORBCA) requirements, performing required modeling and obtaining actual data through monitoring, a contaminated site can be closed even though contamination is still present in the subsurface (OCC, 1997). Based on this, and based on the limited input data available at small petroleum contaminated sites (Striegel, 1998), the capability of today's screening models should be investigated.

The objectives of this thesis include the following: to review current literature regarding natural attenuation and the use of alternate electron acceptors, as well as literature on bioremediation models; to determine the changing levels over time of BTEX, sulfate, nitrate, phosphate, dissolved oxygen, and total organic carbon through periodic monitoring at an Oklahoma Department of Transportation (ODOT) Residency Facility contaminated with petroleum hydrocarbons; to determine the applicability of BIOSCREEN to the ODOT Site reviewed in this thesis based on modeling predictions and monitoring results; to investigate BIOSCREEN results under alternate electron conditions using site-specific parameters from the ODOT Site; to examine the sensitivity of BIOSCREEN to Δ SO₄ and Δ NO₃ anions that are common in groundwater and can occur at high concentrations in groundwater in Oklahoma (Wood and Burton, 1968); and to examine variability in BIOSCREEN results with normal variability in monitoring data. Based on the findings of this study, recommendations will be made regarding the applicability of BIOSCREEN to the ODOT Site and to sites with subsurface characteristics similar to the ODOT Site's subsurface characteristics.

2.0 LITERATURE REVIEW

Natural attenuation, or intrinsic bioremediation, causes measurable changes iff groundwater chemistry by indigenous microorganisms reducing the total mass of contamination in the subsurface without addition of nutrients (Wiedemeier et al., 1995). This chapter will cover the processes involved in natural attenuation, including biodegradation, dispersion, adsorption, and volatilization. The chapter then reviews modeling of bioremediation including required model parameters and calibration methods.

2.1 Natural Attenuation Processes

Following Sun Oil Company's reporting of an in situ bioremediation success effort in 1972, engineers, scientists and microbiologists performed studies and designed several in situ bioremediation projects to interpret their performance (Brubaker, 1995). In 1979, a crude oil spill occurred in Bemidji, Minnesota. The site was studied by USGS scientists who discovered that the toxic chemicals leaching from the crude oil plume were rapidly degraded by naturallyoccurring microbial populations. In addition, as the rates of microbial degradation came into balance with the rates of contaminant leaching, the plume stopped enlarging. This example of intrinsic bioremediation was the first and best documented case of natural attenuation (USGS, 1997).

Several processes are involved in natural attention, including biodegradation, dispersion, adsorption, and volatilization. Each of these processes is discussed in the following sections.

2.1.1 Biodegradation

In natural attenuation, naturally-occurring microorganisms are responsible for breaking down the hazardous substance, also known as the substrate (e.g. BTEX), by using the substrate as a carbon or energy source, and producing less toxic end products. This process is known as

biodegradation, which is the principal mechanism for mass loss from BTEX plumes (Ollila, 1996). For biodegradation to be successful, four main requirements must be satisfied. These requirements are:

- presence of microorganisms (primarily bacteria);
- availability of an energy source and an electron acceptor;
- availability of nutrients;
- favorable environmental factors (moisture, pH, temperature;
- absence of toxicity;
- removal of metabolites; and
- absence of competitive organisms.

(Cookson, 1995)

Of these requirements, the availability of electron acceptors is considered to have the most influence on the rate of in-situ biodegradation; in fact, other factors rarely limit the amount of biodegradation occurring at petroleum contaminated sites (Rifai et al., 1998). The following sections will cover each of these requirements.

2.1.1.1 Microorganisms

The ability of microorganisms to degrade hydrocarbons is well known (Borden et al., 1995). As early as 1946, researchers identified over 100 microbial species that could degrade some types of hydrocarbon. In 1972, researchers found 50,000 or more hydrocarbon-degrading organisms per mL in samples from wells containing traces of gasoline, while a noncontaminated well had only 200 organisms per mL (Borden et al., 1995). Microorganisms obtain energy for cell production and maintenance by facilitating the transfer of electrons from electron donor to electron acceptors.

Microorganisms fall into one of two categories: procaryotes or eucaryotes. Examples of procaryotes are bacteria and blue green algae. A procaryote has a simple cell structure and a typical length and weight of five microns and ten pico grams, respectively. Eucaryote organisms, including algae and fungi, are larger and have a more advanced cell structure than

procaryotes (Grasso, 1993). A eucaryote has a typical length of 20 microns (Reynold and Richards, 1996).

A microorganism can further be classified based upon the carbon source, energy source and electron acceptor. A bacterial cell in a bioactive microbial zone that uses organic compounds as a carbon and energy source, and uses oxygen as the electron acceptor is considered a hetero-organotrophic aerobe (Grasso, 1993).

The procaryotic organisms are the most important to bioremediation. Of the procaryotic organisms, the bacteria are most important in the bioremediation process (Cookson, 1995). Laboratory and field studies have identified many microorganisms responsible for degradation of hazardous chemicals, including, but not limited to, *Alcaligenes denitrificans, Inonotus circinatus, Methanobacteriaceae, Nocardia corallina, Pseudornonas stutzeri, and Serratia marcescens* (Cookson, 1995).

Various chemical formulas have been used to represent bacteria, but the most common of these is C₅H₇NO₂. A bacteria cell typically contains 50% carbon, 20% oxygen, 1D-15% nitrogen, and 5% hydrogen (Grasso, 1993).

Requirements necessary for anaerobic bacteria to degrade fuel hydrocarbon are: absence of dissolved oxygen; availability of carbon sources, electron acceptors, and essential nutrients; and proper ranges of pH, temperature, and salinity. Molecular oxygen is toxic to some anaerobic enzyme systems used for electron transfer and energy production (Wiedemeier et al., 1995).

2.1.1.2 Electron Acceptors

Bioremediation of a contaminant, either aerobically (where oxygen is present) or anaerobically (where oxygen is not present), requires the presence of an electron acceptor for successful oxidation of the substrate. This oxidation occurs in small steps, each step involving the removal of electrons, and the simultaneous loss of protons. The electrons and protons are

transferred to an acceptor molecule which will not accept the protons until it has accepted the electrons; thus, the acceptor molecule is known as an electron acceptor (Skinner et al., 1997)

In aerobic processes, molecular oxygen (O₂) is used as the electron acceptor. Common electron donors at fuel hydrocarbon contaminated sites (aerobic or anaerobic) are natural organic carbon and fuel-related organic compounds, including BTEX (Wiedemeier et al., 1995). The availability of dissolved oxygen to the process can be the rate limiting step (Bordon, 1995) The reaction with oxygen will proceed in the plume until all of the required electron acceptor is depleted. This is due to the low solubility of oxygen in water and may also be due to the characteristics of the subsurface soil. One mg of dissolved oxygen is required to metabolize 0.32 mg of BTEX (Wiedemeier et al., 1995). Since oxygen has the greatest available energy (shown later in Table 2.1) it is most preferred for the degradation reaction (Wiedemeier et al., 1995).

Once oxygen has become depleted, the conditions become anaerobic. For anaerobic processes, alternate electron acceptors include nitrate, ferric iron, sulfate, water, manganese (IV), or carbon dioxide. Anaerobic biodegradation can occur by denitrification, iron (III) reduction, sulfate reduction, or methanogenesis, depending upon the types of electron acceptors present. pH conditions, and oxidation-reduction (redox) potential. Denitrification typically occurs first, followed by iron (III) reduction, sulfate reduction, and finally methanogenesis, although sulfate reduction and methanogenesis appear to account for the greatest reduction in dissolved BTEX mass. Ultimately, the relative importance of aerobic processes, methanogenesis, sulfate reduction, denitrification, and iron reduction depends upon the geochemical characteristics of the host groundwater (Wiedemeier et al., 1995).

Typical reactions for biodegradation of benzene are:

- Aerobic respiration
 7.5CO₂ + C₈H₈ = 6CO_{2.g} + 3H₂O
- Denitrification
 6NO₃ + 6H^{*} + C₆H₆ = 6CO_{2 a} + 6H₂O + 3N_{2 a}
- Iron reduction $60H' + 30Fe(OH)_3 + C_8H_8 = 6CO_{2,0} + 30Fe^{2*} + 78H_2O$
- Sulfate reduction $7.5H^* + 3.75SO_4^{-2} + C_6H_6 = 6CO_{2,0} + 3.75H_2S^0 + 3H_2O_{2,0}^{-2}$
- Methanogenesis
 4.5H₂O + C₆H₆ = 2.25CO_{2 o} + 3.75CH₄

```
(Wiedemeier et al., 1995)
```

Of the electron-accepting processes, methanogenesis appears to be the most important and accounted for 39 percent of the total degradation capacity in a study funded in part by the EPA (Wiedemeier et al., 1995). Figure 2.1 below indicates the location of the above electronaccepting processes within a contaminant plume.

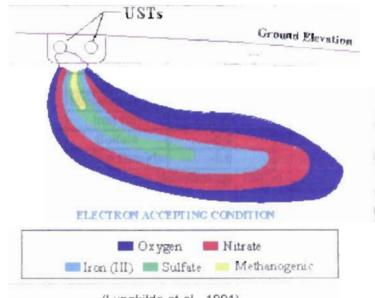


Figure 2.1: Relative Electron-Accepting Process Locations

(Lyngkilde et al., 1991)

The trends that are observed in alternate electron accepting environments are depicted above in Figure 2.1. The figure indicates that respiratory conditions of the plume vary from highly reactive aerobic conditions, through anoxic nitrate and iron reduction, to highly reduced sulfate and methanogenic conditions. Note that the order of electron acceptor respiration agrees well with the utilization order predicted by the electron tower theory presented below in Figure 2.2 (Lyngkilde et al., 1991) discussed later Aerobic conditions are most preferred since they liberate more energy, thus remediation occurs faster under aerobic conditions (Skinner et al., 1991). However, anaerobic processes may account for 90 percent (or greater) of the total contaminant mass being biodegraded in groundwater contaminated with fuel hydrocarbons. Thus, over time, anaerobic processes are more important than aerobic processes for natural bioremediation (Wiedemeier et al., 1995). In either process, in order to completely break down the contaminant, a consortium of bacteria must be present under favorable environmental conditions, as discussed in Section 2.1.1.4.

Water and carbon dioxide are the least preferred alternate electron acceptors, because microorganisms gain the least energy from these reactions (Borden et al., 1995). Some of the electron acceptors' energy production capabilities are presented below in Table 2.1.

	<u> </u>
	Free Energy
Electron	Change,
Acceptor	Kcal/Eq.
Oxygen	-29.9
Nitrate	-28.4
Manganese (IV)	-23.3
Iron (III)	-10.1
Sulfate	-5.9
Carbon Dioxide	-5.6
	1:1 1007

Table 2.1: Electron Acceptor Energy Production

(Environmental Microbiology, 1997a)

Figure 2.2 below shows the electron Tower Theory as described by Jorgensen (1989).

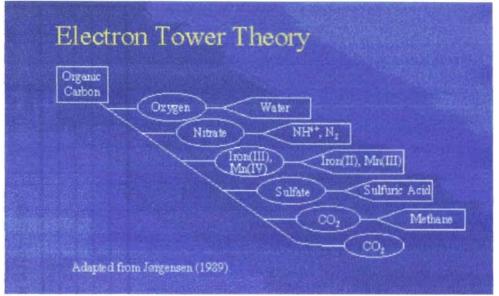


Figure 2.2: Electron Tower Theory

(Adapted from Jorgensen, 1989)

According to Jorgensen (1989), the Tower Theory relates the amount of energy a given microbial population can gain from an electron acceptor to the electron acceptor's position on the tower. Microbes tend to oxidize organic substrates using the electron acceptor that provides the most energy. Note that oxygen, which is at the top of the electron tower, provides microbes with more free energy (via oxygen reduction) than any other electron acceptor. Carbon dioxide, which is used as the electron acceptor by methanogenic bacteria, yields the least energy of all the electron acceptors, and is therefore located at the bottom of the tower. Thus, the electron tower provided above schematically depicts the order of electron acceptor utilization based upon the free energy a given microbial population can gain from reduction of a given electron acceptor (Jorgensen, 1989). Table 2.2 on the following page shows the ratios and relationships between mass of utilized electron acceptors and biodegradation reactions.

2.1.1.3 Nutrients

Certain elements are required in various quantities for efficient transformation of hazardous compounds to carbon dioxide. The nutrients needed in large quantities are carbon, potassium, magnesium, calcium, hydrogen, nitrogen, oxygen, sulfur, phosphorus, sodium, and

Table 2.2: Stoichiometry of Common Biodegradation Reactions					
Biodegradation Reactions	Average Mass Ratio of Electron Acceptor to Total BTEX*	-	Mass of BTEX Degraded per unit mass of Electron Acceptor Utilized (mg)*	Mass of BTEX Degraded per unit mass of Metabolic Byproduct Produced (mg)*	
Aerobic Respiration	3.14:1		0.32		
Denitrification	4.9:1		0.21		
Iron Reduction		21.8:1		0.046	
Sulfate Reduction	4.7:1		0.21		
Methanogenesis		0.78:1		1.28	

*This stoichiometry assumes no cellular mass is produced. Adapted from Wiedemeier et al., 1995.

chloride. Other nutrients are required in lesser amounts. They are cobalt, nickel, iron, zinc, molybdenum, copper, manganese and selenium (Grasso, 1993).

Of these nutrients, those that are not naturally present in the subsurface at levels required will inhibit microbe growth. However, nutrients that are present in excess can also inhibit microbe growth. The carbon:nitrogen: phosphorus ratio required is between 100:10:1 and 100:1:0.5 (Grasso, 1993).

2.1.1.4 Favorable Environment

Both the pH and temperature of the subsurface environment are important parameters for microbial growth. Although the optimum pH varies based upon the organisms present, most bacteria have maximum growth rates at a pH between 6.5 and 7.5 (Grasso, 1993). Relatively few microbes can grow in acidic (pH<4) or basic (pH>10) environments. The pH of a system will continue to change as hydrogen ions are generated and consumed, so pH monitoring is important to sustain a high rate of remediation. Decreases in pH have been observed downgradient of contaminant sources at several sites resulting from organic acid accumulation associated with the incomplete anaerobic degradation of aromatic compounds. Therefore, low pH may be both an indicator of previous biodegradation and a signal of inhibitory conditions (Lewandowski and DeFilippi, 1998). The concentration of hydrogen ions in groundwater is governed by the types of compounds produced by bacterial activity, as it is controlled by $CO_3^{2^-}$:HCO₃:CO₂ equilibrium rates (Wilber, 1997).

Just as with pH, the temperatures at which microbes can grow also vary. Some can grow at temperatures below 0°C, while others can grow above 93°C. In general, most microorganisms will grow best in a temperature range of 25 to 30°C (Grasso, 1993). Typically, the rates of bioremediation double for every 10°C increase in temperature (Lewandowski and DeFilippi, 1998). Colder temperatures will slow biodegradation rates (Lewandowski and DeFilippi, 1998).

Separately, microorganisms cannot mineralize most hazardous compounds. When several types of microorganisms are combined, a degradation sequence occurs where a second organism degrades the metabolic products of the first, and a third, etc., to yield complete mineralization of an organic compound. Hence, a mixed microbial consortium is required for complete bioremediation to occur (Cookson, 1995). The multiple roles of microbial synergism are below.

- Stepwide or sequential degradation
- Synthesis of a necessary component
- Removal of toxic metabolites
- Enhancing overall rate of degradation
- Microbial web, the need of complex associations
- Favorable thermodynamics (Cookson, 1995)

As stated previously, there is no single organism responsible for bioremediation of a contaminated site. However, frequently identified active members of microbial consortiums in bioremediation processes include, but are not limited to *Arthrobacter globiforms, Nocardia corallina, Pseudomonas fluorescens, Pseudomonas paucimobilis, and Pseudomonas vesicularis* (Cookson, 1995).

2.1.1.5 Biodegradation Rate and Verification

Through monitoring, the rate and extent of natural attenuation can be assessed based upon the changing concentration of carbon dioxide (Borden et al., 1995). The ease of biodegradation also depends on the type of hydrocarbon. As the molecular weight of the hydrocarbon increases, so does the resistance to biodegradation (Borden et al., 1995). When monitoring a site, changes in certain parameters should be evaluated to be assured degradation is occurring. Table 2.3 on the following pages details techniques for demonstrating biodegradation is occurring in the field.

Table 2.3: Techniques for Demonstrating Biodegradation in the Field			
Technique	Purpose	Implementation Methods	
	Measurements of Field S	Samples	
Number of bacteria	To determine whether the number of contaminant degrading bacteria has increased over usual field conditions	Standard and emerging cell-counting techniques from microbiology	
Number of protozoans	To determine whether the population of protozoans that prey on bacteria has increased	Standard microbiological techniques for counting protozoans, including the most-probable-number technique	
Rates of bacterial activity	To estimate the potential rates at which bacteria from the field can degrade the contaminant	Determination of contaminant loss rate and other relevant markers of biodegradation in laboratory microcosms	
Bacterial adaptation	To assess whether bacteria from the contaminated site can metabolize the contaminate more quickly than before bioremediation began	Microcosm studies before and after the initiation of bioremediation or using samples from the bioremediation zone and contaminated area outside the bioremediation zone; gene probing to analyze changes in the bacteria's genetic makeup	
Inorganic carbon concentration	To determine whether the inorganic carbon concentration in subsurface samples has increased, indicating possible conversion of contaminants to inorganic carbon	Gas chromatography for determining gaseous carbon dioxide; inorganic carbon analysis for determining aqueous species	
Carbon isotope ratios	To evaluate whether the inorganic carbon at the site originates from contaminant biodegradation	Measurement of the ¹³ C/ ¹² C ratio using a mass spectrometer	
Electron acceptor concentration	To determine decreases in concentration of O_2 or other electron acceptors used during biodegradation	Standard analytical methods from wet chemistry	
Byproducts of anaerobic activity	In oxygen-depleted environments, to determine whether byproducts of anaerobic metabolism such as methane, sulfides, reduced forms of metals, and nitrogen gas have accumulated	Standard chemical analytical methods	
Intermediary metabolite formation	To determine the presence of intermediary metabolites unique to the biodegradation of a particular contaminant.	Gas chromatography, high-performance liquid chromatography, and/or mass spectrometry	

	Table 2.3: Techniques for Demonstrating Biode	gradation in the Field, continued
Technique	Purpose	Implementation Methods
Ratio of nondegradable to degradable substances	degradable components of a contarninant has increased	Standard chemical analytical methods
a transmission (1990)	Experiments Run in the	e Field
Simulating bacteria within subsites	To establish whether the contaminant loss rate increases when growth-stimulating materials are added to the site	Comparison of amended and unamended subsites within the contaminated area
Measuring the electron acceptor uptake rate	To estimate the rate of consumption of oxygen or other electron acceptors necessary for contaminant metabolism	Measurement of the rate at which oxygen (or another electron acceptor) is consumed once the flow of the material is stopped (e.g., using an oxygen probe)
Monitoring conservative tracers	To distinguish abiotic contamianant losses from losses due to biodegradation	Comparison of the fate of nondegradable tracer compounds to the fate of the degradable contaminant
Labeling contaminants	To determine the fate of carbon contained in organic contaminants	Monitoring of ¹³ C-labeled versions of the contaminant
	Modeling Experime	nts
Modeling mass losses	To analyze whether abiotic mechanism (e.g., dilution, transport, volatilization) can explain all of the losses of the contaminant mass	Use of mathematical models to represent abiotic loss mechanisms and comparison of the result with the contaminant loss rate in the field
Direct modeling	To estimate the biodegradation rate	Use of mathematical models to directly estimate the biodegradation rate and compare it with observations from the field

(MacDonald and Rittman, 1993)

Relative to background concentrations, a reduction in nitrate or sulfate concentration or an enrichment in iron (III) or methane concentrations within an existing BTEX plume is a strong indication that indigenous bacteria are established and actively biodegrading fuel contamination (Wiedemeier et al., 1995). Loss of electron acceptors is one method of verifying biodegradation is occurring.

Patterns and rates of intrinsic bioremediation can vary markedly from site to site, depending on the physical and chemical processes (Wiedemeier et al., 1995). Studies have indicated first-order BTEX decay rates in the laboratory of approximately 0.016 to 0.045d⁻¹ and field decay rates ranging from approximately 0.0002 to 0.038 d⁻¹ for various sites (Borden et al., 1997, Hutchins et al., 1991, and Wiedemeier et al., 1996).

2.1.2 Dispersion

Dispersion is one way a contaminant is transported in groundwater. Dispersion, or mixing, occurs in groundwater as a result of continuous splitting, slowing down, and deflecting of water particles in the pores (Novotny and Olem, 1994). Since dissolved constituents migrate through subsurface materials that are not homogeneous, there are inherently different constituent migration rates in different portions of the plume (Lewandowski and DeFilippi, 1998). This results in spreading which is represented by transverse and longitudinal dispersivity. Dispersion is usually stronger in the transverse (perpendicular) direction than it is in the longitudinal direction.

Where diffusion is molecular mixing, dispersion is mechanical mixing. Since mechanical dispersion cannot be distinguished from molecular diffusion (a process of molecular movement along a concentration gradient in the liquid or gaseous phase), the two concepts can be combined to produce a diffusion/dispersion coefficient. The equations follow:

 $DL = aL^*v + De = Perpendicular coefficient$ $DT = aT^*v + De = Longitudinal coefficient$

(Rong, 1999)

Where

ere DL(T) = diffusion/dispersion coefficient parallel (perpendicular) to the principal direction of groundwater flow, L^2/T

- aL(T) = longitudinal (transverse) dispersivity, L
 - v = groundwater velocity, L/T
 - $De = effective diffusion coefficient, L^2/T$

In the saturated zone, the higher the groundwater velocity, the greater the dispersion process (Rong, 1999). At lower velocities, diffusion is more of a factor. Usually, transverse dispersivity is about one order of magnitude smaller than longitudinal dispersivity, and vertical dispersivity is about two orders of magnitude less than longitudinal (Zheng and Bennett, 1995). In large field scale studies, a typical range of longitudinal dispersivity was found to be 1-100 meters and the average value was found to be 25 meters (Schnoor, 1996).

2.1.3 Adsorption

Adsorption is a process in which the contaminant is adsorbed onto a soil or sediment particle. Adsorption is usually reversible. Hence, when conditions permit, the adsorbed contaminant will detach from the soil particle and move back into solution or groundwater. Adsorption can account for small fluctuations in contaminant concentrations in groundwater (Novotny and Olem, 1994). The Freundlich isotherm is frequently used to represent the adsorption equilibrium.

 $x/m = X = KC_e^{1/n}$ (Reynolds and Richards, 1996),

where	x =	=	mass of solute adsorbed
	m :	=	mass of adsorbent
	X	=	mass ratio of the solid phase - that is, the mass of adsorbed
	solu	te p	er mass of adsorbent
	Ce	=	equilibrium concentration of solute, mass/volume
	К, п	=	experimental constants
ļ	Another isot	her	m used to represent the adsorption equilibrium is the Langmuir isotherm:
	x/m	= >	$X = (aKC_e) / (1 + KC_e)$ (Reynolds and Richards, 1996)
Where:	a :		mass of adsorbed solute required to saturate completely a it mass of adsorbent

K = experimental constant

For the situation of groundwater contaminated with hydrocarbons, the equations can be narrowed to obtain a relationship for the sorption of hydrocarbons onto soil. Two very similar equations are presented below, the first proposed by Karickhoff, Brown, and Scott and the latter by Rao and Davidson (Novotny and Olem, 1994):

 $K_{OC} = 0.63 K_{OW}$; $K_{OC} = 0.66 K_{OW}^{1.07}$

Where: K_{∞} = the partitioning coefficient normalized by the organic carbon.

Kow = octanol partition coefficient

The K_{OW} for various chemicals can be found in environmental reference manuals. For BTEX, the K_{OW} values are the following:

- Benzene: $K_{OW} = 10^{213}$
- Toluene: $K_{OW} = 10^{269}$
- Ethylbenzene: $K_{OW} = 10^{315}$
- Xylene: $K_{OW} = 10^{3.38}$ (m- and o-) = $10^{3.39}$ (p-) (Novotny and Olem, 1994)

The rate of adsorption is limited by the following mechanisms:

- the movement of the solute from the bulk solution to the liquid film or boundary layer surrounding the adsorbent solid;
- the diffusion of the solute through the liquid film (film diffusion);
- the diffusions of the solute inward through the capillaries or pores within the adsorbent solid (pore diffusion); and
- the adsorption of the solute onto the capillary walls or surfaces .

(Reynolds and Richards, 1996)

2.1.4 Volatilization

Volatilization is the transfer of chemicals or contaminants from the liquid phase to a

gaseous phase or to the atmosphere. The relationship between the contaminant vapor density

and the concentration of the contaminant in water is given by Henry's Law as follows:

$$K_{\rm H} = V_{\rm P} / C$$
 (Wilson et al., 1995),

where $C = \text{concentration of dissolved pollutant}, \mu g/L$

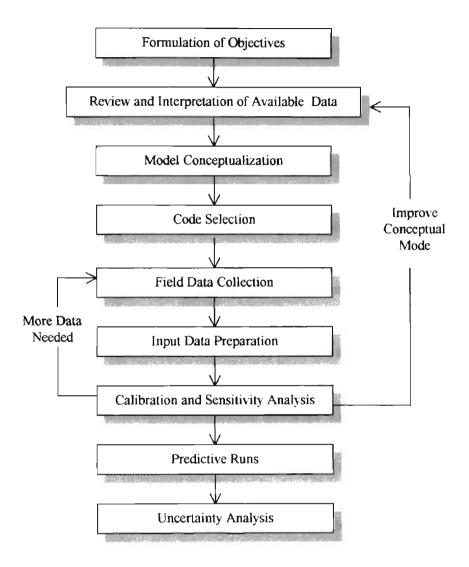
K_h = Henry's constant for the contaminant, dimensionless

 V_P = vapor pressure of the contaminant, $\mu g/L$

Volatilization tends to contribute most to contaminant mass loss at sties where the water table is shallow or highly fluctuating (ASTM, 1996).

2.2 Modeling Bioremediation

2.2.1 Introduction to Modeling


Because actual site conditions are complex and extensive, a model simplifies a site's conditions by introducing a set of mathematical assumptions which express the nature of the system and those features of its behavior that are relevant to the problem under investigation (Bear et al., 1992). In a 1992 EPA publication titled "Fundamentals of Ground-Water Modeling" presented the steps required for proper application of a groundwater model (Bear et al., 1992). These steps are included as Figure 2.3 on the following page.

Many analytical and numerical computer models for use in evaluating groundwater contamination exist. These models can address saturated, unsaturated, and fracture flow; saturated and unsaturated multiphase transport, and geochemical and biological processes. Models simulate the plume's movement by considering the quantity of contaminant release, advection, dispersion, and sorption. Some models also incorporate biodegradation simulation. Numerical models are capable of simulating heterogeneous systems but are more complex and require more data than analytical models (Striegel, 1998). Analytical models are typically limited to simplified hydrogeologic scenarios (Bear et al., 1992).

Modeling methods for assessing intrinsic bioremediation usually rely on three approaches for measuring biodegradation rates in groundwater systems. They are the following:

- documenting contaminant mass along a flow path, subtracting out the effects of dilution and sorption, and applying a rate law to the data;
- 2) using controlled field tracer studies to estimate biodegradation rates; and
- obtaining aquifer materials and performing laboratory microcosm studies or in situ columns to estimate biodegradation rates.

(Bear et al., 1992)

Models vary in how they simulate biodegradation. In modeling, two basic approaches to mass and energy balances are 1) the eularian approach, and 2) the lagrangian approach. The eularian approach calculates balances relative to volume elements which have constant sizes and spatial locations. The lagrangian approach tracks a fixed unit of mass as it moves through space and time (Zheng and Bennett, 1995).

2.2.2 Required Model Parameters

Two types of data are needed for bioremediation modeling. The first is the required parameters that define hydrogeologic and hydrogeochemical conditions in the contaminated area. The second type of data needed includes measured hydraulic heads, flow rates, contaminant arrival times, solute concentrations, and/or mass removal rates at the available monitoring points. The data required for bioremediation models include specific information describing the characteristics of the site being investigated. When site-specific data are inadequate to support the model, fieldwork is necessary to collect additional data (Zheng and Bennett, 1995). The hydraulic conductivity and storage coefficient (confined aquifer) or specific yield (unconfined aquifer) are needed in the model to define the flow of the groundwater. Hydraulic conductivity is a property of both the porous medium and the moving fluid.

To define transport in a model, porosity and dispersivity are required. Porosity is a factor in determining the seepage velocity and the pore volume of a model cell available for storage of solute mass. Dispersivity is strongly influenced by the aquifer heterogeneity and the degree to which heterogeneity is represented and is discussed in Section 2.1.2. Usually, transverse dispersivity is about one order of magnitude smaller than longitudinal dispersivity, and vertical dispersivity is about two orders of magnitude less than longitudinal (Zheng and Bennett, 1995).

Surface and subsurface hydrogeologic conditions can greatly influence the threedimensional configurations of groundwater flow. Vertical groundwater flow is greatly influenced by water depths, presence and thickness of fine-grained bottom sediments, and locations of surface water bodies relative to buried high-permeability zones (Lewandowski and DeFilippi,

1998). Table 2.4 below shows the porosity and hydraulic conductivity of different types of geologic materials.

	Porosity, %	Hydraulic Conductivity, cm/s
Clay	33-71	10 ⁻¹⁰ - 10 ^{-3 3}
Sandy clay	20-64	
Silt	20-52	10 ^{-/-} 10 ⁻³
Sand	15-50	10 ^{-5.5} -1
Fine sand	29-50	10-3-10-2
Medium sand		10
Coarse sand	33-44	10 ⁻² -1
Gravelly sand	12-46	10 ⁻¹ -1
Gravel	25-80	10 ⁻¹ -10 ²
Fine gravel		>1
Peat		10 ⁻⁷ -10 ⁻²
Loam	20-50	
Sandstone	3.5-30	10 ⁻⁸ -10 ^{-4 b}
Limestone	0.5-20	10 ^{-7 2} -10 ^{-3.5}
Shale	0.5-10	10-11-10-7
Granite		10-12-10-9
Unfractured	.02-5	
Fractured	0-10	-

Table 2.4: Physical Properties of Geologic Materials

Table 2.4 shows that as the porosity of the material decreases, so does the hydraulic conductivity.

Chemical parameters of a model are defined by sorption constants and kinetic reaction rates. Sorption isotherms are adequate only in idealized situations. The most common isotherms used are the linear, Freundlich, and Langmuir isotherms, the linear isotherm being the most popular. Because of organic contaminants' limited solubilities, they generally tend to adsorb, or partition, to other forms of organic carbon in the subsurface. This can lead to adsorption of these constituents to the organic coatings of the solid particles or to their adsorbed water. The simplest of the kinetic reaction rates is the first order irreversible rate reaction and is used most often (Lewandowski and DeFilippi, 1998).

⁽Lewandowski and DeFilippi, 1998)

2.2.3 Model Calibration

Calibration of a model is done by adjusting model parameters until modeled results match actual monitored field conditions. The adjustable variables include hydraulic heads, flow rates, solute concentrations, contaminant arrival times or mass removal rates (Zheng and Bennett, 1995). Model calibration is an inverse process where field observed data are used to derive optimal input parameters.

2.2.4 Sensitivity Analysis

Sensitivity measures the effect on one factor of changing another factor. Repeated runs are needed to calculate a sensitivity coefficient. The sensitivity coefficient measures the sensitivity of the model response to a given parameter. The sensitivity analysis is useful for:

- examining the overall responses of simulation results to changes in the model input parameters;
- examining the likely uncertainty in simulations results due to uncertainty in model input parameters; and
- examining how well parameters are likely to be estimated from the data available for model calibration.
 (Zheng and Bennett, 1995).

2.2.5 Examples of Bioremediation Models

One of the most recent bioremediation models is the new version of MT3D, called MT3DMS, Modular 3-Dimensional Transport Model with Multi-Species. MT3DMS is able to accommodate add-on reaction packages. The developer of MT3D, Chun Miao Zheng of the University of Alabama, originally introduced the model in 1988 (K.S.B., 1997). The new version combines the three major classes of transport solution techniques (the standard finite difference method; the particle-tracking-based Eularian-Lagrangian methods; and the higher-order finite-volume total variation diminishing method) into a single code. These three classes had been used individually in the past and were shown not to be effective for all transport conditions (HydroGroup, 1999). The modular structure of the MT3D and MT3DMS is similar to that implemented in the U.S. Geological Survey modular three-dimensional finite-difference groundwater flow model, MODFLOW (HydroGroup, 1999).

Jose E. Munoz and Manuel J. Irarrazaval developed another model that considers only aerobic conditions. The model supports the idea that bioremediation of hydrocarbons is controlled by (1) groundwater flow rate (dependent on soil and fluid characteristics); (2) contaminant transport through a porous medium (dependent on soil, fluid, and contaminant characteristics); and (3) biodegradation and interaction among the three transported solutes-hydrocarbons, oxygen, and microorganisms (dependent on the characteristics of the contaminant and of microorganisms present in the medium). The numerical model represents the interactions of the three solutes using Monod kinetics and a Freundlich adsorption isotherm. The model may be a useful tool in gauging the efficiency of treatment methods (Munoz and Irarrazaval, 1998).

Models capable of simulating biodegradation that incorporate multiple electron acceptor processes include BioF&T 3D, BIOSCREEN, SEAM3D, BIOPLUME III, and RT3D (Newell et al., 1996: Rafai et al., 1998; Waddill and Widdowson, 1998; Boss International, 1998). BIOSCREEN is based on the 1987 Domenico three-dimensional analytical solute transport model. This model will be further discussed in Section 3.4.

SEAM3D is capable of simulating transport and biodegradation of multiple constituents in three dimensions, is a block-centered, finite-difference computer algorithm, and interfaces with the groundwater flow model MODFLOW. SEAM3D assumes Monod kinetics and includes manganese as an electron acceptor whereas BIOPLUME III and BIOSCREEN do not (Waddill and Widdowson, 1998; Rafai et al., 1998; Newell et al., 1996).

BIOPLUME III is a two-dimensional numerical model that uses Monod, first order, or instantaneous reaction assumptions. The model applies an instantaneous reaction to both aerobic and anaerobic biodegradation if the microbial reaction is assumed to occur at a much faster rate than the rate of electron acceptor replenishment via groundwater flow, and assumes biodegradation is limited by the amount of electron acceptor available (Rifai et al., 1998).

RT3D incorporates three dimensional reactive groundwater transport. RT3D includes instantaneous reactions utilizing oxygen, nitrate, ferric iron, sulfate, and carbon dioxide as

electron acceptors. Multiple sorbed and aqueous phase contaminants and reactions can be defined, and user-defined kinetic expressions can be employed (BOSS International, 1998). The model can be used to analyze different types of subsurface contaminant reactions, microbial metabolisms, and microbial transport kinetics (Clement et al., 1998). In studies, RT3D simulation results were shown to compare favorably against an analytical solution and against the results from BIOPLUME III. The study also shows that RT3D is general enough to solve any type of kinetic reactions with any number of mobile and immobile species (Clement et al., 1998).

The most common method for simulating biodegradation in more recent models is through Monod kinetics, which describe microbial growth in first-order, mixed-order, and zeroorder regions. The Monod equation is:

$$\mu = \mu_{max} [C / (K_c + C)]$$

where μ is the growth rate (time⁻¹), μ_{max} is the maximum specific growth rate (time⁻¹), and C is the concentration of the growth-limiting substrate (mg/L). K_c is the half-saturation constant or the substrate concentration that allows the microorganism to grow at the half the maximum specific growth rate (Rafai and Bedient, 1995).

2.3 ORBCA

The models described in the previous section could be used to support closure of a site under a risk-based approach. The ODOT Site under investigation in this study was closed based partially on the results of the AT123D model which indicated the subsurface contamination was not posing an immediate threat to human health or the environment, nor would the contamination pose a threat in the future. The closure of the ODOT Site was based on the Oklahoma Risk-Based Correction Action (ORBCA) process (Caldwell, 1996). The ORBCA process is based on considerations of risk and exposure, and is a major component of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) program. An ORBCA report, or a Risk Assessment, is prepared using site specific conditions. The report determines target levels which contaminants must not exceed. If the target levels are exceeded,

the regulatory agency, being the Oklahoma Corporation Commission in Oklahoma, requires corrective action of the contaminated site. The Risk Assessment report includes the following:

- identification of chemicals of concern,
- identification of receptors,
- exposure analysis,
- dose-response analysis,
- risk and sensitivity/uncertainty quantification, and
 - risk management.
 - (OCC, 1999)

These basic activities are included in all risk assessments whether the site is a small

underground storage tank (UST) release site or a large-scale Superfund site. The degree of

complexity of the above items depends on the goal of the assessment and the site's

characteristics and surroundings.

•

3.0 METHODOLOGY

3.1 Site Description

The information contained in the following Section 3.1 (location, description, site history, site characterization, and site hydrogeology) is derived from information obtained from the Risk Assessment Report completed by Caldwell Environmental Associates, Inc. (Caldwell) (Caldwell, 1996) in May, 1996 for the Edmond ODOT Residency Facility and from site visits during sampling events.

3.1.1 Location and Description

Figure 3.1 below identifies the ODOT Site location on a general location map.

Figure 3.1: General Site Location Map

The ODOT Site, located about 1,000 feet northwest of the intersection of Interstate 35 and Memorial Road in Oklahoma County, is used as office space for ODOT personnel working on Logan County and north Oklahoma County projects. The facility layout is presented in Figure 3.2.

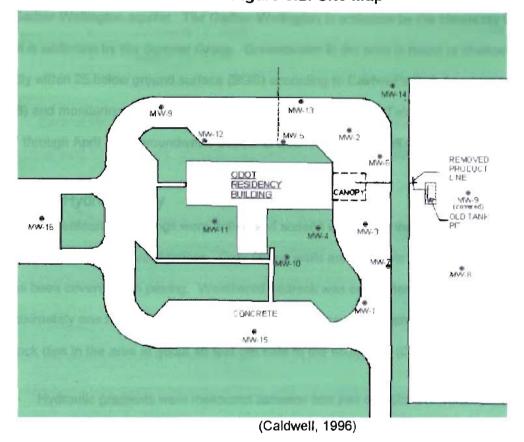


Figure 3.2: Site Map

3.1.2 Site History

In early 1991, a fuel dispenser line leak was discovered at the ODOT Site. The quantity of leaked fuel is unknown. The dispenser line and an UST were removed from the ODOT Site in early February 1992 and September 1994, respectively. Initial Response, Initial Abatement Measures and Site Check, Initial Site Characterization, and Tier 1A Reports were subsequently completed and submitted to the Oklahoma Corporation Commission. The subsurface investigations at the ODOT Site found a dissolved petroleum groundwater plume in the subsurface (Caldwell, 1996).

3.1.3 Site Characterization

The ODOT Site is located on a hill, with land use north and east of the ODOT Site being commercial, and land use to the west being residential. East of the ODOT Site is the ODOT Maintenance Facility and I-35. Surface water run-off at the ODOT Site is to the northwest, toward an unnamed intermittent creek located about 0.5 miles to the northwest, and eventually to the Canadian River. Principal groundwater resources include alluvial and terrace deposits and the Garber-Wellington aquifer. The Garber-Wellington is undertain by the Hennessy Group which is undertain by the Sumner Group. Groundwater in the area is found at shallow depths, usually within 25 below ground surface (BGS) according to Caldwell's Risk Assessment Report (1996) and monitoring results of this study (Caldwell, 1996). See Table 4.17 for specific October 1997 through April 1998 groundwater depths at each monitoring well (MW).

3.1.4 Site Hydrogeology

Seventeen soil borings were drilled and sixteen wells were installed at the ODOT Site during the subsurface investigations. Only fifteen wells are available for monitoring as one (MW-9) has been covered with paving. Weathered bedrock was encountered at depths of approximately one to five feet BGS, and groundwater was encountered at less than 25 feet BGS. Bedrock dips in the area at about 40 feet per mile to the southwest (Caldwell, 1996).

Hydraulic gradients were measured between one pair of wells on February 20, 1996 and another pair of wells on May 21, 1996, and were found to be 0.006 and 0.005 foot/foot, respectively. Aquifer slug test performed at the ODOT Site resulted in a hydraulic conductivity of 6.3 X 10^{-4} cm/sec. The average horizontal groundwater flow velocity, based on hydraulic conductivity (1.0×10^{-3} cm/s), hydraulic gradient (0.006 foot/foot), and porosity (20%), was calculated to be 0.077 feet/day in the southwest direction (Caldwell, 1996).

3.2 Sampling Procedure

Groundwater sampling at the ODOT Site was performed on six occasions during this study spanning a period of approximately six months. The sampling events occurred on the following dates:

- October 20, 1997
- December 15, 1997
- January 20, 1998
- February 17, 1998
- March 24, 1998
- April 14, 1998

Each of the six sampling events included several tasks which were performed at each monitoring well. Occasionally, a monitoring well would be dry and could not be sampled or analyzed. Each monitoring well had a dedicated one-liter open top bailer with ball stop. Initially, if conditions allowed, four bailers of groundwater were purged from the monitoring well to allow a representative sample of the groundwater to be collected. Depth to groundwater was estimated at each event using the baler's depth below the ground surface.

Following the purging of the well, the dissolved oxygen concentration was analyzed by lowering the dissolved oxygen meter's probe (discussed in Section 3.3.4) into the monitoring well. The meter was given time to equilibrate, and the dissolved oxygen quantity for the well was recorded in a field book. After each use of the dissolved oxygen meter, the probe was rinsed with deionized water.

Following dissolved oxygen analysis, the groundwater sample was collected. Groundwater samples were collected in cleaned one-liter plastic bottles. After the sample was collected, the pH was tested with a pH meter (discussed in Section 3.3.4). The sample bottle and sample bottle lid were completely filled with groundwater (to avoid air bubbles in the sample) from the monitoring well, and the bottle was capped. The sample was then stored at 4^oC until analysis. Once the sampling was complete for each of the fifteen wells, the samples were returned to the laboratory. Necessary sample preservation was accomplished before storage of samples. Forty mL of each sample was preserved with 6N HCI. This HCI preserved sample was used for the BTEX analysis and total organic carbon analysis. The anion analysis was performed within 24 hours of sampling with filtered, non-preserved sample.

3.3 Materials

3.3.1 BTEX Analysis

The general physical and chemical properties of the BTEX compounds are presented in

Table 3.1 below.

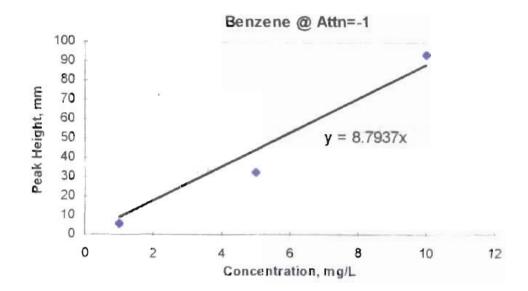
Property	Benzene	Toluene	Ethylbenzene	o-Xylene
Empirical Formula	C ₆ H ₆	C ₇ H ₈	C ₈ H ₁₀	C_8H_{10}
Formula Weight	78.11	92.14	106.17	106.17
Boiling Point (°C)	80.10	92.14	136.20	144.40
Henry's Law Constant (atm*m3/mol, @25°C)	0.00548	0.00674	0.00868	0.00535
Log K _{oc}	1.69	2.05	1.98	2.11
Log K _{ow}	2.13	2.65	3.13	2.95
Solubility in Water (mg/L, @25°C)	1800	524	206	204
Specific Density (@25°C)	0.87366	0.86233	0.86250	0.875 9 6
Vapor Density (g/L, @25°concentration)	3.19	3.77	4.34	4.34
Vapor Pressure (mm Hg, @25°C)	95.2	22	10	10

Table 3.1: Physical and Chemical Properties of BTE)

(Montgomery and Welkom, 1990; Nielsen, 1980)

The BTEX concentration in the groundwater samples was analyzed using a Hewlett Packard 5890 Series II gas chromatograph (GC) with Flame Ionization Detector (FID). The 6' long by 1/8" inner diameter stainless steel column packed with 5.0% SP-1200/1.75% Bentone[®] on 100/120 SUPELCOPORT separates the BTEX components from the groundwater sample according to their affinities for the column material and releases each component separately to the FID. The GC was connected to a HP 3396 Series II integrator. The carrier gas used was

helium flowing at 20 ml/min, and the FID gas was a combination of hydrogen and air. The flow of the helium was adjusted to acquire distinctly separate peaks for each of the BTEX components. One μ l of groundwater sample was injected using a 5 μ l syringe and analyzed at a constant 75°C. The injector and detector temperatures were set at 200°C and 275°C, respectively. Under these conditions, the BTE peak times were approximately 1.5, 2.8, and 5.2 minutes, respectively. The o- and p-xylene peak times were 5.5 and 6.5 minutes, respectively.

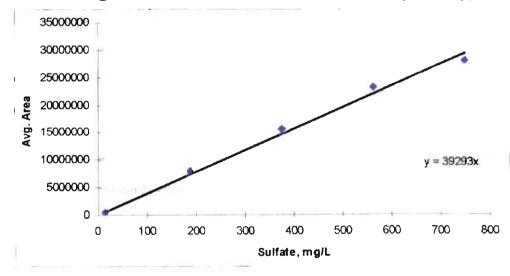

BTEX standards (from Fisher Scientific Company) were prepared for each sampling event and were analyzed to determine a relationship between the standards and the resulting chromatograph peaks. A combination standard prepared from benzene, o-xylene, p-xylene, ethylbenzene, and toluene dissolved in methanol was prepared and diluted in deionized water to make 20, 10, 5, 2.5, 1, 0.1, 0.05, and 0.005 mg/L. Each dilution was analyzed in the GC at various attenuations. As an example, the January GC calibration for the benzene results are presented below in Table 3.2.

Conc.,	Peak Height, mm				
mg/L	Attn: -2	Attn: -1	Attn: 0		
0.005					
0.1					
1	13	5.5			
5	60.5	32.5	9		
10		94	45		
20			75		
EXN	y = 12.135x	y = 8.794x	y = 3.8x		

Table3.2: January Benzene Standard Results

In the above derived equations presented in the EXN row of Table 3.2, y is the resultant GC peak of the unknown sample analysis and x is the resulting concentration. The equations presented were derived by graphing the concentrations versus the peak height. An example, Figure 3.3, of the January benzene graph for attenuation -1 is below.

The derived equation was used to calculate the unknown sample's concentration. For example, the MW-3 benzene peak for January was 105 mm at an attenuation of -1. Therefore. 105 / 8.794 = 11.94 mg/L. The correlation coefficient, \mathbb{R}^2 for the curve was 0.9565. The lowest \mathbb{R}^2 value observed during the BTEX standards analyses was 0.647 for ethylbenzene at an attenuation of 0. Results of the BTEX analysis are presented in Section 4.1.1. Sample GC chromatographs are presented in Appendix A.


3.3.2 Anion Analysis

A Dionex 2000i/SP Ion Chromatograph (IC) using the AS4A-SC 4mm column was used to analyze the anion concentrations in the groundwater samples. The IC was connected to a HP 3380A Integrator. The IC works similarly to a GC in that the anion constituents are separated and refeased to the detector at discrete times. However, the IC measures the concentrations according to their conductivity. The eluent solution was prepared by dissolving 0.5712 g NaHCO₃ and 0.7632 g Na₂CO₃ (both obtained from Fisher Scientific Company) and diluting to 4 L with deionized water. The regenerant solution was prepared by diluting 2.8 mL concentrated H₂SO₄ to 4L with deionized water. A series of 1000mg/L standards was prepared by diluting 1.3707 g NaNO₃, 1.4330 g KH₂PO₄, and 1.8141g K₂SO₄ to 1L each. The standards were then

combined to create a working standard solution that was analyzed in the IC. A linear relationship between the standards and the IC chromatograph peaks was determined. Each standard was analyzed twice and an average area was calculated. As an example, January's sulfate set of standard results follows in Table 3.3:

Table 3	Table 3.3: January Sulfate Standard Results						
mg/L	Run #1 Area	Run #2 Area	Avg Area				
750	24566115	31587057	28076586				
562.5	22945109	23437622	23191366				
375	15585472	15610715	15598094				
187.5	7783989	8131561	7957775				
15	524253	424278	474265.5				

Similar to the benzene standard analysis, a linear relationship was derived for each standard of the anion analysis. Figure 3.4 below is an example of the January sulfate concentration versus area graph.

The derived equation was used to calculate the unknown sample's concentration. For example, the MW-3 sulfate average area for January was 306,416. Therefore, 306,416 / 39,293 = 7.8 mg/L. The correlation coefficient, R^2 , for the January standard curve was 0.9915. The lowest R² value for the anion standards analysis, 0.926, was observed for the phosphate analysis during the October 1997 sampling event. The results of the anion analyses can be found in Section 4.1.2. A sample chromatograph is presented in Appendix A.

3.3.3 Organic Carbon Analysis

The organic carbon is determined by the difference between the total carbon and the inorganic carbon tested by a Shimadzu 5000A Total Organic Carbon (TOC) Analyzer with ASI-5000A Auto Sampler. A TOC Analyzer measures the total carbon a sample contains by oxidizing the carbon to CO_2 and H_2O . The CO_2 is transported through the carrier gas stream (ultra pure air flowing at 150 mL/min) and is measured by a nondispersive infrared analyzer resulting in a measurement of total carbon. The inorganic carbon is measured under acidic conditions where inorganic carbon is converted to CO_2 . The total organic carbon is calculated as the difference between the total carbon and the inorganic carbon.

The carrier and purging gas used in the TOC Analyzer was ultra pure air. H_3PO_4 , phosphoric acid, was used as the acidifying agent for the inorganic carbon analysis. A 1g/L total carbon standard was prepared by dissolving 2.1254g anhydrous potassium biphthalate, $C_8H_5KO_4$, in deionized water and diluting to 1L. An 1g/L inorganic carbon standard was prepared by dissolving 4.4122g anhydrous sodium carbonate, Na₂CO₃, and 3.497g anhydrous sodium bicarbonate, NaHCO₃, and diluting to 1L.

The total carbon standards analyzed were at concentrations of 50, 100, and 200 mg/L. The inorganic carbon standards were at concentrations of 10, 25, and 50 mg/L. The TOC Analyzer created and stored a linear relationship (a calibration curve) using the results from the total and inorganic carbon standards.

After determining the calibration curves, the TOC Analyzer tested each unknown sample's total and inorganic carbon content and provided a printout of the results. Total organic carbon was then calculated from the difference of total and inorganic carbon. Total organic carbon results are presented in Section 4.1.3. Sample output from the TOC Analyzer can be found in Appendix A.

3.3.4 Dissolved Oxygen, pH, Temperature, and Groundwater Depth

Dissolved oxygen (DO), pH and temperature were measured during the sampling process using a DO probe and pH meter. The DO analysis was performed using the YSI Model 52 Dissolved Oxygen Meter. The pH was analyzed using the HACH EC10 Portable pH Meter. Depth to groundwater was measured using the depth of the baler below ground surface BGS. Iron (II) was sampled during April.

3.4 Bioremediation Modeling

Bioremediation modeling was accomplished using BIOSCREEN Version 1.3. BIOSCREEN is an EPA provided natural attenuation decision support software package produced by C. J. Newell and R. K. McLeod of Groundwater Services, Inc., and J. R. Gonzales of the Air Force Center for Environmental Excellence (Newell et. al, 1996). BIOSCREEN is a Microsoft[®] Excel spreadsheet in a user-friendly format readily available for free download from the EPA internet site (www.epa.gov). BIOSCREEN allows for identification of sites where natural attenuation is most likely to protect human health and the environment (Newell et al., 1996). Three different model types are included in the model:

- Solute transport without decay,
- Solute transport with biodegradation modeled as a first-order decay process (simple, lumped-parameter approach),
- Solute transport with biodegradation modeled as an "instantaneous" biodegradation reaction (approach used by BIOPLUME models).

(Newell et al., 1996)

Information contained in the BIOSCREEN User Manual states that BIOSCREEN simulates natural attenuation using aerobic and/or anaerobic conditions and attempts to answer two questions: (1) How far will the dissolved contaminant plume extend if no engineered controls or further source zone reduction measures are implemented? and (2) How long will the plume persist until natural attenuation processes cause it to dissipate? BIOSCREEN is intended to be used as a screening model to determine the feasibility of natural attenuation at a site and as the primary groundwater model at smaller sites. The model's limitations include assuming simple

groundwater flow and only approximating complex sites where detailed, accurate results are required (Newell et al., 1996).

BIOSCREEN is based on the Domenico analytical solute transport model and accounts for the effects of advective transport, three-dimensional dispersion, adsorption, and first-order decay. BIOSCREEN assumes a fully penetrating vertical plane source oriented perpendicular to groundwater flow, to simulate the release of organics to moving groundwater (Newell et al., 1996).

Alternate electron acceptor processes modeled in BIOSCREEN include oxygen, nitrate, ferric iron, sulfate, and carbon dioxide. Input data required by BIOSCREEN includes the following: seepage velocity; hydraulic conductivity; hydraulic gradient; effective porosity; longitudinal, transverse, and vertical dispersivity; estimated plume length; retardation factor; soil bulk density; organic carbon partition coefficient; fraction organic carbon; contaminant first-order decay coefficient; dissolved plume solute half-life; delta oxygen; delta nitrate; observed ferrous iron; delta sulfate; observed methane; model area length and width; simulation time; source thickness in saturated zone; source zone width; source zone concentration; and soluble mass in source zone. The model equation, boundary conditions, assumptions, and limitations are presented in Appendix B.

Due to limit monitoring data, the instaneous model was chosen over the first-order decay model of BIOSCREEN. First-order rate constants could not be calculated based on six months of data. In addition, reverse calibration canot be achieved with an unknown amount of initial release.

4.0 RESULTS AND DISCUSSION

4.1 Results of Analyses

The following sections present results of the BTEX, anion, carbon, dissolved oxygen, pH, temperature, and groundwater depth analyses. Since the initial Caldwell Environmental Tier1A report was completed, monitoring well (MW) 9 has been covered with pavement and is not accessible for monitoring. In the tables of this section, the word "dry" indicates groundwater was not present in the MW at the time of sampling in a great enough quantity to perform an analysis. Figure 3.2 presents the locations of the monitoring wells and contaminant source.

4.1.1 BTEX Concentrations

The concentrations of the hydrocarbons varied widely from month to month. The BTEX concentrations determined for each of the sampling events are presented in the following sections. A discussion of the results follows each table. The BTEX detection limits for the GC under the conditions described in Section 3.3.1 were approximately 0.2, 0.005, 0.005, and 0.005 mg/L, respectively.

4.1.1.1 Benzene

The results of the benzene analysis are presented below in Table 4.1. Section 3.3.1 details the gas chromatograph used to obtain these results.

MW 1 2 3 4 5	20-Oct-97 * 8.95 7.85	15-Dec-97 * 12.51	20-Jan-98 * 11.94	17-Feb-98	24-Mar-98	*
2 3 4	* 8.95	*	*			
2 3 4	* 8.95	*	*			
3 4	8.95			*	+	
4		12.51	11.04		-	*
	7.85		11.34	12.63	2.31	10.01
5		16.03	40.26	25.53	5.77	9.48
	*	*	*	*	*	*
6	1.11	3.54	3.30	2.97	0.74	1.57
7	1.65	2.60	2.80	2.97	*	0.45
8	*	*	*	*	*	*
10	dry	*	*	0.21	*	dry
11	*	*	*	*	*	*
12	*	*	*	*	*	*
13	*	*	*	*	*	*
14	*	*	*	*	*	*
15	*	*	*	*	*	*
16	*	*	*	*	*	*
lotes: Refe	er to Figure	3.2: Site Ma	ap for locatio	ons of MWs.		

Table 4.1: Benzene Concentration Results

Benzene was found to be present in MWs 3, 4, 6, 7, and 10. The maximum benzene concentration observed was 40.26 mg/L found in MW-4 during the January 20, 1999 sampling event. The average concentration for each of the five MWs over the six sampling events is contained in Table 4.2 below.

MW	Avg. Benzene
	Concentration, mg/L
3	9.72
4	17.49
6	2.20
7	1.74
10	0.05

Table 4.2: Average Benzene Concentrations

As Table 4.2 indicates, MW-4 contains the highest concentration of benzene. MW-10, farthest from the contaminant source with respect to the above five MWs, contained the lowest concentration of benzene.

4.1.1.2 Toluene

Table 4.3 below presents the toluene concentration results.

	Toluene Concentrations in Groundwater, mg/L							
MW	20-Oct-97	15-Dec-97	20-Jan-98	17-Feb-98	24-Mar-98	14-Apr-98		
1	0.13	*	*	*	*	*		
2	0.09	*	*	0.04	*	*		
3	11.43	19.88	18.47	24.12	3.44	14.16		
4	4.86	18.29	59.46	30.56	4.39	5.89		
5	0.26	0.17	0.09	0.09	*	*		
6	0.26	3.70	0.43	0.26	0.52	0.17		
7	1.91	3.18	3.36	2.49	*	0.22		
8	*	*	0.09	*	*	0.04		
10	dry	*	*	0.60	0.04	dry		
11	*	0.09	0.34	*	*	*		
12	0.17	*	*	*	*	0.09		
13	0.09	0.09	*	*	*	*		
14	0.09	*	*	*	*	*		
15	*	*	*	*	*	*		
16	*	*	*	*	0.13	*		
lotes: R	efer to Figure	e 3.2: Site M	ap for locat	ions of MWs				
A	n asterisk (*)	indicates c	oncentration	was below	the detection	n limit.		

Table 4.3:	Toluene	Concentration	Results
------------	---------	---------------	----------------

The maximum toluene concentration observed was 59.46 mg/L found in MW-4 during the January 20, 1999 sampling event. The average concentrations in the MWs are presented below in Table 4.4.

MW	Avg. Toluene	Avg. Toluene MW	
	Concentrations, mg/L		Concentrations, mg/L
1	0.02	8	0.02
2	0.02	10	0.16
3	15.25	11	0,07
4	20.58	12	0.04
5	0.10	13	0.03
6	0.89	14	0.01
7	1.86	16	0.02

Table 4.4: Average Toluene Concentrations	Table 4	4: Average	e Toluene Co	oncentrations
---	---------	------------	--------------	---------------

The high toluene concentrations were found in MWs 3, 4, 6, and 7. The maximum average toluene concentration was found in MW-4. These results were consistent with the results of the benzene analysis.

4.1.1.3 Ethylbenzene

Ethylbenzene concentrations are presented below in Table 4.5.

	Ethylbenzene Concentrations in Groundwater, mg/L							
MW	-			17-Feb-98		14-Apr-98		
1	0.07	*	*	*	*	*		
2	0.05	*	*	*	*	*		
3	0.33	1.32	1.47	0.84	0.28	0.84		
4	0.42	3.81	4.53	2.18	0.65	0.60		
5	0.09	*	*	*	*	*		
6	0.05	0.05	0.09	0.09	0.09	0.05		
7	0.19	0.28	0.33	0.28	*	*		
8	*	*	*	*	*	*		
10	dry	*	*	0.05	*	dry		
11	*	0.03	0.09	0.09	*	*		
12	*	*	*	*	*	*		
13	*	*	*	*	*	*		
14	*	*	*	*	*	*		
15	*	*	*	*	*	*		
16	*	*	*	*	0.13	*		
Notes: Re	efer to Figure	e 3.2: Site N	ap for locat	ions of MWs				
Ā	n asterisk (*)	indicates c	oncentratior	was below	the detection	n limit.		

Groundwater samples from MWs 1 - 7, 10, 11, and 16 contained ethylbenzene. The maximum ethylbenzene concentration observed was 4.53 mg/L found in MW-4 during the January 20, 1999 sampling event. The table below provides the average concentrations of the results.

MW Avg. Ethylbenzene MW Avg. Ethylbenzene Concentrations, mg/L Concentrations, mg/L 0.02 1 0.01 5 0.07 2 0.01 6 3 0.84 7 0.18 4 2.03 10 0.01

 Table 4.6: Average Ethylbenzene Concentrations

Once again, the high concentrations are present in MWs 3, 4, 6 and 7 and the maximum ethylbenzene concentration was found in MW-4.

4.1.1.4 Xylene

Finally, the xylene (ortho and para) concentrations are reported below in Table 4.7.

Xylene Concentrations in Groundwater, mg/L								
MW	20-Oct-97	15-Dec-97	20-Jan-98	17-Feb-98	24-Mar-98	14-Apr-98		
1	0.07	*	*	*	*	*		
2	0.10	*	*	*	0.05	*		
3	1.30	4.91	4.08	7.38	0.95	3.39		
4	0.30	3.48	10.90	6.37	0.87	0.95		
5	0.10	*	0.05	*	*	*		
6	0.09	0.25	0.32	0.17	0.17	0.06		
7	0.35	0.65	0.80	0.55	*	0.05		
8	*	*	*	*	*	*		
10	dry	*	*	0.10	*	dry		
11	*	0.10	0.05	*	*	*		
12	*	*	*	*	Ør	*		
13	*	*	*	*	*	*		
14	*	0.05	*	*	*	*		
15	*	*	*	*	*	*		
16	*	*	*	*	0.13	*		
lotes: Refer to Figure 3.2: Site Map for locations of MWs.								
An asterisk (*) indicates concentration was below the detection limit.								

 Table 4.7: Xylene Concentration Results

Xylene was found in groundwater samples from MWs 1-7, 10, 11, 14, and 16. The maximum concentration of ethylbenzene observed was 10.9 mg/L found in MW-4 during the January 20, 1999 sampling event. The average concentrations from the MWs showing the presence of xylene are presented below in Table 4.8.

MW	Avg. Xylene Concentrations, mg/L	MW	Avg. Xylene Concentrations, mg/L	
1	0.01	6	0.18	
2	0.02	7	0.40	
3	3.67	10	0.02	
4	3.81	11	0.02	
5	0.02	14	0.01	

Table 4.8: Average Xylene Concentrations

The high xylene concentrations were found in groundwater samples from MWs 3, 4, 6 and 7. The maximum xylene concentration was present in MW-4.

Although the concentrations fluctuate from month to month, the tables presented above show that for each BTEX constituent, the high average concentrations consistently existed in MWs 3, 4, 6 and 7. These MWs are in close proximity to the source of contamination (see Figure 3.2 for MW locations). Groundwater in MW-4 consistently exhibited the maximum average concentration for each of the four hydrocarbons.

4.1.2 Anion Concentrations

The anions (sulfate, nitrate, iron and phosphate) act as electron acceptors as described previously in the Literature Review (Section 2.1.1.2) of this document. The results of the anion analyses for sulfate, nitrate, iron and phosphate are presented on the following pages. In the following tables, the word "dry" indicates groundwater was not present in the MW at the time of sampling in a great enough quantity to perform an analysis.

4.1.2.1 Sulfate

Once the available oxygen, nitrate, and iron (III) in the groundwater system have been depleted, sulfate-reducing bacteria can begin degrading fuel hydrocarbons (Wiedemeier et al., 1995). Relative to background concentrations, a reduction in sulfate concentrations within an existing BTEX plume is a strong indication that indigenous bacteria are established and actively biodegrading fuel contamination (Wiedemeier et al., 1995). During monitoring, a strong sulfur smell was observed when purging and sampling MWs with high BTEX concentrations. The sulfate results are presented below in Table 4.9.

	Sulfate Concentrations in Groundwater, mg/L							
MW	20-Oct-97	15-Dec-97	20-Jan-98	17-Feb-98	24-Mar-98	14-Apr-98	AVG.	
1	33.65	26.72	26.23	25.16	41.86	26.02	29.94	
2	639.33	537.51	565.99	562.24	578.00	607.81	581.81	
3	8.56	7.34	24.56	4.14	10.29	13.14	11.34	
4	7.71	2.88	1.11	1.36	3.15	2.85	3.18	
5	776.06	637.61	787.47	756.88	722.79	887.79	761.43	
6	764.64	543.29	743.51	704.41	734.43	855.74	724.34	
7	212.40	229.50	248.62	208.01	352.02	440.08	281.77	
8	163.58	131.30	123.06	70.86	105.75	165.78	126.72	
10	dry	35.75	38.07	163.64	30.18	dry	33.40	
11	86.37	62.57	51.65	41.33	39.30	42.56	53.97	
12	244.45	171.91	187.03	199.41	173.33	185.03	193.53	
13	483.87	402.87	455.12	448.34	449.04	501.51	456.79	
14	313.42	185.45	179.88	158.51	232.09	264.76	222.35	
15	62.65	47.16	54.74	51.31	55.84	64.15	55.97	
16	569.48	455.25	273.60	181.03	339.93	242.23	343.59	
	Note	Notes: Refer to Figure 3.2: Site Map for locations of MWs.						

 Table 4.9: Sulfate Concentration Results

The sulfate concentrations found in the groundwater at the ODOT Site were high compared to normal values. Normal sulfate background values ranged from 0 to 96.6 mg/L at seven sites summarized in the BIOSCREEN User Manual (Newell et al., 1996). In a 1968 study, only ten of 55 groundwater samples taken from the Garber-Wellington formation in Cleveland and Oklahoma County contained more than 250 mg/L of SO₄; however, the maximum SO₄ concentration was found to be 1,450 mg/L (Wood and Burton, 1968). The maximum sulfate concentration observed at the ODOT Site was 887.79 mg/L found in MW-5 during the April 14, 1999 sampling event. On average, MWs 2, 5, 6, and 13 exhibited the highest sulfate concentrations. Each of these MWs is upgradient from the source of contamination. MW-5 exhibited a maximum average sulfate concentration of 761.43 mg/L. The low average sulfate concentrations were observed in MWs 1, 3 and 4. The lowest values were observed in MWs 3 and 4. During sampling events, a strong sulfur odor was detected in these wells exhibiting low sulfate concentrations. This odor may be evidence of sulfate reduction.

4.1.2.2 Nitrate

After almost all free dissolved oxygen has been removed from the aquifer and anaerobic conditions prevail in the groundwater, nitrate can be used as an electron acceptor by microorganisms to mineralize the BTEX compounds via denitrification (Wiedemeier et al., 1995). The results of the nitrate analysis are presented below in Table 4.10.

	Nitrate Concentrations in Groundwater, mg/L							
MW	20-Oct-97				24-Mar-98		AVG.	
1	0.04	0.08	0.40	1.19	0.88	0.52	0.52	
2	18.53	14.21	25,39	13.57	15.26	17.24	17,37	
3	0.04	0.17	0.79	0.04	0.19	0.30	0.26	
4	0.07	0.13	0.05	0.12	0.16	0.77	0.22	
5	24.75	18.39	22.54	21.94	22.73	28.03	23.06	
6	5.66	1.46	3.05	0.93	1.76	20.58	5.57	
7	5.29	6.89	5.55	4.30	7.00	7.60	6.11	
8	19.71	13.44	13.71	6.98	13.99	19.09	14.49	
10	dry	0.95	1.06	0.79	1.40	dry	1.05	
11	0.35	0.42	0.11	0.19	0.45	0.89	0.40	
12	7.32	5.18	5.72	6.05	5.66	5.94	5. 98	
13	31.72	25.44	34.64	34.37	36.46	44.36	34.50	
14	16.74	11.78	13.84	10.74	15.29	17.19	14.26	
15	4.52	3.02	3.69	3.40	3.63	4.27	3.75	
16	32.48	26.61	19.42	14.77	22.73	19.19	22.53	
	Notes	: Refer to F	igure 3.2: S	ite Map for	locations of	MWs.		

Table 4.10: Nitrate Concentration Results

MW-13 exhibited the maximum nitrate concentration observed, averaging 44.36 mg/L over the six sampling events. The average high concentrations were observed in MWs 2, 5, 8. 13, 14, and 16. Of these, MWs 2, 5, 13, and 14 are upgradient from the contaminant source. The low average concentrations were observed in MWs 3 and 4.

4.1.2.3 Phosphate

Phosphorus is a necessary nutrient for bacteria cell growth and reproduction. It is used by the microorganisms in the synthesis of phospholipids and nucleic acids and is essential for the electron-accepting process to occur (Scalzi, 1999). When phosphorus is limited, the metabolism of microorganisms decreases, reducing their capacity to use the hydrocarbons as organic sources. Table 4.11 below presents the phosphate concentrations observed in groundwater at the ODOT Site.

Phosphate Concentrations in Groundwater, mg/L							
MW	20-Oct-97	15-Dec-97	20-Jan-98	17-Feb-98	24-Mar-98	14-Apr-98	AVG.
1	0.00	0.33	0.41	0.27	0.06	0.00	0.18
2	0.16	2.96	2.82	0.45	0.45	0.54	1.23
3	0.00	0.16	0.13	0.00	0.00	0.00	0.05
4	0.00	0.27	0.39	0.00	0.00	0.00	0.11
5	0.00	5.24	5.65	0.47	0.40	0.76	2.09
6	0.00	1.98	4.97	0.30	0.46	0.51	1.37
7	0.00	1.08	1.10	0.00	0,00	0.00	0.36
8	0.00	0.56	0.50	0.00	0.23	0.00	0.22
10	dry	0.19	0.00	0.00	0.15	dry	0.06
11	0.00	0.30	0.28	0.00	0.23	0.00	0.14
12	0.01	0.80	0.59	0.00	0.20	0.18	0.30
13	0.08	2.61	2.71	0.28	0.45	1.38	1.25
14	0.00	3.21	0.78	0.00	0.25	0.40	0.77
15	3.39	0.52	0.45	0.18	0.23	0.23	0.83
16	0.00	2.04	1.31	0.11	0.1 8	0.25	0.65
	Notes	: Refer to F	igure 3.2: S	ite Map for	locations of	MWs.	

Table 4.11: Phosphate Concentration Results

As Table 4.11 indicates, the phosphate concentrations in groundwater were consistently low. The high average phosphate concentrations were observed in MWs 2, 5, 6, and 13, with MW-5 exhibiting a maximum average phosphate concentration of 2.09 mg/L. MWs 3, 10, and 11 exhibited the lowest average concentrations.

4.1.2.4 Iron

Once the available dissolved oxygen and nitrate in the aquifer have been depleted, iron (II) can be used as an electron acceptor. Iron (II) concentrations at the ODOT Site were analyzed; however, iron (II) was analyzed only during one sampling event. Table 4.12 below presents the iron results for the April 14, 1998 sampling event.

Iron (II) Conc. in Groundwater, mg/L						
MW	14-Apr-98	MW	14-Apr-98			
1	1.56	9	covered			
2	0.18	10	0.15			
3	2.74	11	0.19			
4	>	12	0.07			
5	0.00	13	0.28			
6	0.09	14	0.85			
7	>	15	*			
8	0.00	16	*			
	Notes: (1) * indicates groundwater too turbid					
to analyze; (2) > indicates result was out of						
range (>3 mg/L); and (3) refer to Figure 3.2;						
Site	e Map for loc	ations of M	Ws.			

Table 4.12: Iron (II) Concentration Results

4.1.3 Total Organic Carbon Concentrations

The results of the TOC analysis are presented below in Table 4.13.

	TOC Concentrations in Groundwater, mg/L								
MW	20-Oct-97	15-Dec-97	20-Jan-98	17-Feb-98	24-Mar-98	14-Apr-98	AVG.		
1	29.54	56.72	2.45	24 .14	15.08	20.16	24.68		
2	30.46	43.16	NA	29.42	14.0	9.37	20.38		
3	72,90	93.17	47.65	81.72	55.17	51.19	66.97		
4	140.96	151.7	68.85	72.05	46.84	39.97	86.73		
5	32.68	40.02	18.88	38.97	19.98	13.45	27.33		
6	40.47	62.5	13.95	45.09	20.83	11.5	32.39		
7	42.52	37.66	21.78	39.49	15.2	11.79	28.07		
8	34.27	37.92	16.45	24.82	18.34	10.97	23.80		
10	dry	47.31	17.57	27.61	18.68	dry	23.4		
11	40.72	82.14	25.30	39.17	23.91	10.16	36.90		
12	34.24	56.09	17.27	29.77	16.79	6.06	26.70		
13	34.53	55.02	17.82	26.54	16.05	6.58	26.09		
14	30.20	52.59	17.30	29.51	14.55	6.79	25.16		
15	27.71	29.35	13.21	24.86	11.7	10.44	19.55		
16	32.14	64.02	16.29	27.01	10.52	8.13	26.35		
	Notes	: Refer to F	igure 3.2: S	ite Map for I	ocations of I	MWs.			

Table 4.13: TOC Concentration Results

On average, the maximum TOC concentration was observed in MW-4. As expected, the maximum average TOC concentration corresponded to the maximum average BTEX concentrations. The minimum average concentration of 19.55 mg/L was observed in MW-15.

4.1.4 Dissolved Oxygen, pH, Temperature, and Groundwater Depth

Dissolved oxygen (DO), pH, temperature, and groundwater depth were measured in the field during each sampling event. The results of the analyses are presented in table format on the following pages.

DO is an electron acceptor and should behave as the anions (phosphate, nitrate, and sulfate) by showing a minimum value where the BTEX concentrations were highest. Table 4.14 below presents the results of the DO analyses.

	DO Concentrations in Groundwater, mg/L							
MW	20-Oct-97			17-Feb-98		14-Apr-98	AVG.	
1	0.21	0.21	0.63	0.77	0.84	1.7	0.73	
2	1.45	2.58	1.98	1.82	2.21	3.2	2.21	
3	2.9	4.4	3.1	0.99	3.64	5.1	3.36	
4	0.19	0.22	0.08	0.2	0.81	0.8	0.38	
5	5.01	5.48	4.67	4.07	4.46	4.2	4,65	
6	0.18	0.23	0.25	0.52	0.32	0.8	0.38	
7	0.23	0.18	2.33	0.62	0.56	0.9	0.80	
8	1.06	0.22	0.33	0.71	0.6	1.6	0.75	
10	dry	dry	dry	dry	dry	dry	-	
11	5.11	0.85	0.57	1.13	1.48	2.6	1.96	
12	3.2	2.9	3.11	3.02	3.3	6.2	3.62	
13	4	6.03	5.15	4.58	4.79	8	5.43	
14	5.5	5.36	5.39	5.3	4.48	6.5	5.42	
15	5.21	4.55	4.8	4.9	4.65	7.7	5.30	
16	5.37	6.23	5.37	5.23	5.84	8.1	6.02	
	Note	s: Refer to I	Figure 3.2:	Site Map for	locations of	MWs.		

Table 4.14: DO Concentration Results

As expected, the average minimum DO concentration was observed in MW-4 where the BTEX constituents were at maximum concentrations. The DO concentration in MW-4 was 0.38 mg/L. The maximum average DO concentration, 6.02 mg/L, was observed in MW-16.

The results of the pH field tests can be found in Table 4.15 below.

	pH in Groundwater								
MW	20-Oct-97	15-Dec-97	20-Jan-98	17-Feb-98	24-Mar-98	14-Apr-98			
1	NA	6.60	6.92	NA	6.57	6.42			
2	6.66	6.92	6.70	7.18	6.62	6.62			
3	7.00	6.73	7.16	7.36	7.00	6.99			
4	6.85	6.70	6.93	7.33	6.80	6.79			
5	6.90	7.01	6.94	7.12	6.79	6.80			
6	6.75	6.65	6.79	NA	6.76	6.69			
7	6.76	6.81	6.92	NA	6.74	6. 67			
8	6.67	6.78	6.60	NA	6.55	6.54			
10	dry	7.15	7.43	7.35	7.29	dry			
11	7.04	6.90	6.85	7.27	6.85	6.96			
12	6.93	6.89	7.02	7.37	6.69	6.79			
13	6.99	6.65	6.80	7.48	6.70	6.89			
14	6.97	6.96	6.77	7.34	6.87	6.91			
15	6.77	6.78	6.96	7.32	6.63	6.68			
16	6.81	7.08	7.07	7.53	6.87	6.90			
	Notes: Ref	er to Figure	3.2: Site Ma	ap for locatio	ons of MWs.				

Table 4.15: pH Results

As stated in Section 2.1.1.4, although the optimum pH varies based upon the organism present, most bacteria have maximum growth rates in a pH range of 6.5 and 7.5 (Grasso, 1993). According to Table 4.15 above, the pH in the groundwater at the ODOT Site allows for optimum growth of bacteria. In a 1968 study of Oklahoma and Cleveland County groundwater resources, groundwater in the Garber-Wellington ranged from 6.1 - 8.9 (Wood and Burton, 1968).

The temperature data of the groundwater at the ODOT Site during each sampling event are presented below in Table 4.16.

	Temperature of Groundwater, degrees Celsius							
MW	20-Oct-97	15-Dec-97	20-Jan-98	17-Feb-98	24-Mar-98	14-Apr-98	AVG.	
1	NA	19.7	19.2	17.8	17.9	18.10	18.5	
2	19.9	20.0	19.7	17.6	17.8	17.60	18.8	
3	21.5	19.8	19.4	17.7	18.7	18.20	19.2	
4	19.7	19.4	19.1	18.3	18.3	17.90	18.8	
5	19.7	19.7	18.9	18.0	17.7	18.20	18.7	
6	19.7	19.9	19.5	17.8	18.5	18.40	19.0	
7	19.3	19.6	18.6	18.3	19.1	19.10	19.0	
8	19.9	20.3	20.3	18.4	19.6	19.90	19.7	
10	dry	19.2	18.6	17.2	19. 0	dry	18.5	
11	19.8	19.3	19.2	18.0	1 8.4	18.60	18.9	
12	20.1	19.2	18.8	17.4	17.7	17.40	18.4	
13	19.7	19.7	19.1	17.7	17.6	17.40	18.5	
14	15.7	NA	19.1	17.9	18.0	17.60	17.7	
15	19.8	19.5	18.9	17.5	17.6	18.40	18.6	
16	20.6	20.4	19.8	18.9	18.8	18.60	19.5	
	Notes: Refer to Figure 3.2: Site Map for locations of MWs. NA indicates data was not available for MW.							

「たいないない」の日本のないです

 Table 4.16: Temperature Results

As stated previously in Section 2.1.1.2, in general, most microorganisms will grow best in a temperature range of 25 to 30°C (Grasso, 1993). The temperatures of the groundwater at the ODOT Site maintain an average level below 20°C.

Below, in Table 4.17, the depth to groundwater in each MW is presented.

Table 4.17: Depth to Groundwater Results								
	Depth of Groundwater, feet							
MW	20-Oct-97	15-Dec-97	20-Jan-98	17-Feb-98	24-Mar-98	14-Apr-98	AVG.	
1	20.5	20.0	20.0	22.0	22.0	22.50	21.2	
2	23.0	22.0	23.0	25.0	23.0	23.08	23.2	
3	20.0	24.0	22.0	22.0	NA	22.33	18.4	
4	22.5	23.0	24.0	24.0	22.0	23.25	23.1	
5	23.0	22.0	22.0	23.0	22.0	23.75	22.6	
6	22.0	21.0	22.0	24.0	21.0	22.58	22.1	
7	22.5	22.0	25.0	23.0	25.0	23.25	23.5	
8	25.0	24.0	25.0	24.0	24.0	24.33	24.4	
10	dry	23.0	25.0	23.0	24.0	24.33	23.9	
11	24.0	24.0	24.0	24.0	24.0	25.00	24.2	
12	21.0	23.0	24.0	25.0	22.0	23.83	23.1	
13	24.0	21.0	23.0	22.0	22.0	22.67	22.4	
14	25.0	22.0	20.0	24.0	24.0	24.17	23.2	
15	22.0	23.0	25.0	23.0	23.0	24.00	23.3	
16	21.0	23.0	23.5	23.0	24.0	23.75	23.0	
	Notes	: Refer to F	igure 3.2: S	ite Map for I	ocations of	MWs.		

Table 4.17: Depth to Groundwater Results

4.2 Interpretation of Isopleth Maps

A convenient way of determining whether the electron-accepting process is active in a given area is to prepare isopleth maps for the contaminant and each of the electron acceptors (Wiedemeier et al., 1995). If it can be shown that there is a relationship between the distribution of electron acceptors and total BTEX at a site, then it can be assumed that the electron-accepting process is active (Wiedemeier et al., 1995).

Isopleths for benzene, toluene, ethylbenzene, xylene, sulfate, nitrate, phosphate, TOC and DO are presented in Appendix C. The isopleths were plotted using Surfer, Version 6.02 and analyzed by the kriging method. Kriging is a geostatistical gridding method that attempts to express data trends so that high points are connected along a ridge, rather than isolated by bull's-eye type contours. Non-detectable limits were assumed to be a concentration of zero mg/L for averaging purposes.

The BTEX isopleths show the extent of the plume and the plume boundaries. The high concentration areas of the plume were to the southwest of the contamination source (near MW-4). The TOC isopleths were similar to the BTEX isopleths: the center of the plume was near MW-4, and the concentrations decrease outwardly from MW-4 in a radial nature.

The electron acceptor isopleths (nitrate, sulfate, and DO) reveal an inverse relationship to the BTEX isopleths: low concentrations of electron acceptors occur where there are high concentrations of BTEX. Based on the study performed by Wiedemeier et al. (1995), evidence of biodegradation is present based on the relationship between the BTEX and electron acceptor isopleth maps.

4.3 Rainfall Data

Rainfall data were obtained from The Oklahoma Climatological Survey. Significant rainfall can result in increased BTEX concentrations due to desorption as discussed in Section

2.1.3. Rainfall for the months of March and April 1998 were 6.78 and 3.45 inches. No conclusions or trends were observed based on the rainfall data.

4.4 **Bioremediation Modeling Results**

The instantaneous model of BIOSCREEN was chosen to model the ODOT Site as suggested by the BIOSCREEN User Manual for sites under anaerobic conditions. Because electron acceptor limitations are not considered in a first-order decay equation, a more accurate prediction of biodegradation effects may be realized by incorporating the instantaneous reaction equation into a transport model (Newell et al., 1996).

4.4.1 BIOSCREEN Inputs

BIOSCREEN-required parameters were obtained from both the Risk Assessment Report prepared by Caldwell Environmental Associates, Inc. (Caldwell, 1996) and the sampling results of this study as detailed in Section 4.0. Site specific data such as hydrogeology and dispersion were obtained from Caldwell as presented in Section 3.1. Below are the details of these input parameters which remained constant through out each of the seven runs.

•	Seepage velocity:	25.0 ft/yr
•	Longitudinal dispersivity:	23.0 ft
٠	Transverse dispersivity:	1.5 ft
•	Vertical dispersivity:	0.2 ft
٠	Retardation factor:	1.2
•	Modeled area length:	300 ft
٠	Modeled area width:	300 ft

To use the instantaneous reaction model of BIOSCREEN, changes in electron acceptor concentrations are required. Several background concentrations for each electron acceptor were averaged to obtain an initial value, and down-gradient concentrations were averaged to obtain final values. The wells were chosen to obtain the best representative sample for each required parameter. For DO, NO₃, and SO₄, the background MWs are 14; 8, 13, and 14; and 8 and 14, respectively. The downgradient MWs chosen for DO, NO₃, and SO₄ are 4, 6, and 7; 1, 3, and 4; and 1, 3, and 4, respectively. An explanation of the chosen background and downgradient wells follows.

MWs 8, 13, and 14 are the most upgradient wells at the ODOT Site (see Figure 3.2) based on source location and groundwater flow direction. However, since DO is the first electron acceptor to be utilized by the hydrocarbons, the DO value in MWs 8 and 13 had been reduced (see Table 4.14 for DO values). Therefore, the DO background well used was MW-14. For nitrate, MWs 3, 13, and 14 were chosen as the background wells. Sulfate concentrations at the ODOT Site were high. The average sulfate values for MW 8, 13, and 14 were approximately 126, 456, and 222 mg/L. respectively. From a study completed by Striegel (1998), using the ODOT Site's sulfate data, BIOSCREEN predicted attenuation of the plume in less than two years. Based on this, and in an attempt to obtain an reasonably calibrated model for the ODOT Site, only MWs 8 and 14, exhibiting the lower of the three sulfate concentrations in the upgradient wells, were chosen as the background wells.

MWs 1, 3, and 4 were the wells most affected by the hydrocarbon plume based on the source location and the monitoring results presented in Section 4.0. Thus, these wells were chosen as the downgradient wells for SO₄ and NO₃. However, the data for the DO concentration indicated the lower DO values were exhibited in MWs 4, 6 and 7. Thus, these wells were used as the downgradient wells for DO. The following table provides the resulting background concentrations of electron acceptors on an averaged basis over the six sampling events. These are the amounts of electron acceptors available for anaerobic alternate electron accepting processes.

e	∆ Value,
acceptor	mg/L
DO	5.42
NO ₃	21.1
SO4	174

 Table 4.18: Delta Electron Acceptor Values

Ferrous iron, Fe^{2^+} , was also a required input of BIOSCREEN. The ΔFe^{2^-} value used for the ODOT Site was 0.4 mg/L based on sampling results in April 1998 and successful

BIOSCREEN model calibration of the ODOT Site in a 1998 study (Striegel, 1998). Methane was not sampled; this value is set equal to 0 in the BIOSCREEN model runs.

4.4.2 Calibration

Before analyzing BIOSCREEN for its applicability to the ODOT Site, appropriate and site-specific parameters were used to achieve a calibrated model providing consistent and realistic predictions that were similar to actual conditions. Using the sampling results, depth of contamination, and porosity, a contaminant mass was determined based on the results of each sampling event. A mass was calculated from the monitored contaminant concentrations, porosity, and depth of contamination. This calculated mass was projected seven years back (when release was reported to have occurred (Caldwell, 1996)) to the point of assumed release by assuming 33% of the contaminant mass had degradeded in seven years (Cookson, 1995) which is a conservative assumption. For each sampling event, the projected BTEX mass is presented below.

1991 Projected Mass, kg								
Event Date	BTEX, kg							
20-Oct-97	11							
15-Dec-97	19							
20-Jan-98	46							
17-Feb-98	30							
24-Mar-98	8							
14-Apr-98	12							

т	able	4 19·	Projected	Mass
	anic	4.13.	riojecieu	111033

Table 4.19 reveals wide fluctuations in model results from month to month showing that January BTEX was projected at 46 kg, but two months later in March, BTEX was projected at only 8 kg.

A BIOSCREEN simulation time of seven years was used. Initially, the high ΔSO_4 input value resulted in the a simulated remediation in less than seven years. As the plume had not remediated in seven years, the initial ΔSO_4 value was reduced to 10 mg/L based on the average range of ΔSO_4 in groundwater according the BIOSCREEN User Manual (Newell et al. 1996) and successful BIOSCREEN model calibration of the ODOT Site in a 1998 study (Striegel,

1998). Each sampling event's individual monitoring results (monthly contaminant mass and Δ nutrients) were used to calibrate six different model variations. The varying parameters used in the Calibration Run are detailed on the following page in Table 4.21.

Calibration was considered satisfactory when the field data curve and the instantaneous reaction model curve were equal. The output results for the Calibration Run are presented in Appendix D.

4.4.3 Model Run #1

Following calibration, the simulation time was increased until the instantaneous reaction curve revealed that natural attenuation had remediated the plume to satisfactory contaminant levels. Based on the risk-based screening levels determined in the Risk Assessment Report prepared by Caldwell Environmental Associates, Inc. for the ODOT Site, the Category II Soil and Groundwater Cleanup Levels were determined to be the applicable remediation goal for the site. For BTEX in groundwater, the Category II Cleanup Levels are 0.05. 10, 7, and 100 mg/L. respectively. Since BIOSCREEN does not model separate constituents and this study summed the individual BTEX contaminants to reach a total soluble mass amount, the lowest of the Cleanup Levels was set as the cleanup goal for the modeling. Therefore, the plume was required to be remediated to less than 0.05 mg/L before attenuation was satisfactory.

Table 4.21 on the following page presents the soluble mass amounts, electron acceptor values, and source zone concentration used for Run #1. The results of the run are summarized below in Table 4.20 and presented in Appendix E.

Run #1											
Event Date	Approx. Remediation Time, yrs										
20-Oct-97	16										
15-Dec-97	48										
20-Jan-98	104										
17-Feb-98	85										
24-Mar-98	16										
14-Apr-98	19										

Table	4.20:	Run #1	Results
-------	-------	--------	---------

	Table 4.21: Calibration Run Varying Parameters																	
)ct-9	97	De	c-9	7	Ja	n-9	8	Fe	b-9	8	N	lar-9	98	A	pr-9	98
Soluble Mass		11			19			46		30			8				12	
$\Delta \mathbf{E}^{-} \mathbf{Acceptors}$	E Acceptors																	
Oxygen		5.3		5.15		4.5			4.85			4			5.67			
Nitrate		22.7	7	16.8			20.29		16.95		21.5		26.27		7			
Iron		0.4		().4		0.4		0.4			0.4			0.4			
Sulfate		10			10		10		10			10			10			
Methane		0			0			0	_	0			0			0		
Source Zone																		
Width, ft	5	8	12	5	5	10	1	5	10	0.1	5	10	1	10	10	1	10	10
Conc, mg/L	5	20	23	0.01	6	20	0.01	20	35	0.01	8	30	1	8	15	1	15	22

The results for Run #1 range from 16 years to 104 years for October 1997 and January 1998, respectively. The table shows that the minimum month varies from the maximum by almost an order of magnitude. The results above vary widely due to the wide fluctuations in BTEX sampling results. In addition, the electron acceptor concentrations varied slightly for each event.

In order to obtain more consistent runs, the next run was altered from Run #1 by using the same contaminant mass and Δ electron acceptor concentrations for each month's model and varying only the source zone concentrations. That attempt, Run #2, is detailed in the following section.

4.4.4 Model Run #2

In Model Run #2, electron acceptor concentrations were kept constant for each month's run rather than varying the concentration of electron acceptors from month to month. The averaged electron acceptor values are listed above in Table 4.18. In addition, the initial contaminant mass was held constant at 16 kg, based on Caldwell's Risk Assessment (Caldwell 1996), J. Striegel's thesis (Striegel, 1998), and monitoring data from this study. Each month's run was calibrated as discussed in Section 4.4.2. The input parameters used in Run #2 are presented in Table 4.23 on the following page.

The results of this run are presented below.

Run #2									
Event Date	Approx. Remediation Time, yrs								
20-Oct-97	18								
15-Dec-97	34								
20-Jan-98	30								
17-Feb-98	44								
24-Mar-98	21								
14-Apr-98	26								

Table 4.22: Run #2 Results

	Table 4.23: Run #2 Variable Parameters																	
)ct-9) 7	De	ec-9	7	Ja	n-9	8	Fe	b-9	B	N	lar-9	98	A	pr-9	98
Soluble Mass	16																	
Oxygen		5.42																
Nitrate		21.1																
Iron									0.4	4								
Sulfate									10)								
Methane									0									
Source Zone																		
Width, ft	5	7	10	5	5	10	0.2	4	12	0.1	3	10	5	7	10	5	6	10
Conc, mg/L	20	18	20	3	8	22	0.01	20	55	0.01	8	37	7	6	11	8	14	18

Compared to Run #1's results, these results are much more comparable from month to month. The remediation times range from 18 to 44 years, with the minimum and maximum occurring during October 1997 and February 1998, respectively. The BIOSCREEN output for this run is presented in Appendix F.

4.4.5 Model Run #3

As mentioned in Section 4.4.2, using the initially calculated ΔSO_4 value of 174 mg/L resulted in remediation times of the contaminant plume less than the seven year calibration period in most instances. Run #3 provides results obtained from BIOSCREEN when the ΔSO_4 value of 174 mg/L is used to model the ODOT Site. The input parameters used for Run #3 are presented in Table 4.25.

Note that the source zone concentrations remain unchanged from Run #2 in order to consider the effects of increasing the ΔSO_4 concentration. In Run #3, BIOSCREEN resulted in a simulated remediation time sooner than the seven year calibration time in most instances as presented below in Table 4.24 and in Appendix G.

Rur	า #3
Event Date	Approx. Remediation Time, yrs
20-Oct-97	3
15-Dec-97	4
20-Jan-98	8
17-Feb-98	8
24-Mar-98	2
14-Apr-98	3

Table 4.24: Run #3 Results

Table 4.24 shows the October, December, March and April plumes being remediated in less than eight years. However, monitoring results reveal that the BTEX still exists seven years later; hence, BIOSCREEN does not accurately predict the actual conditions at the ODOT Site. BIOSCREEN does not have any electron acceptor limits, nor is there any known BIOSCREEN

	Table 4.25: Run #3 Variable Parameters																	
)ct-9	97	De	ec-9	7	Ja	n-98	8	Fe	b-9	8	N	lar-9	98	A	рг-9	8
Soluble Mass	16																	
∆ E ⁻ Acceptors																		
Oxygen	\square	5.42																
Nitrate		21.1																
Iron				_					0.4	4						_		
Sulfate									17	4								
Methane									0									
Source Zone														_				
Width, ft	5	7	10	5	5	10	0.2	4	12	0.1	3	10	5	7	10	5	6	10
Conc, mg/L	20	18	20	3	8	22	0.01	20	55	0.01	8	37	7	6	11	8	14	18

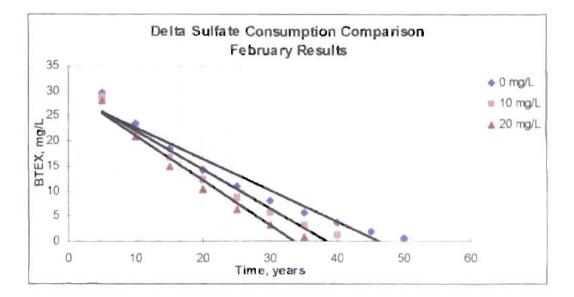
studies at sites with very high Δ SO₄ values similar to those at the ODOT Site (Newell, 1999). In addition, although the BIOSCREEN source mass input box says "soluble mass", Charles J Newell reported that the required mass is actually the total non-aqueous phase liquid mass present in both the soil and groundwater (Newell, 1999). However, an individual using BIOSCREEN to model a site inputs the soluble mass into the source mass input box, not the total non-aqueous phase liquid. For this study, the source mass value was assumed to be 16 kg.

4.4.6 Model Run #4

The model FORTRAN AT123D was used by Caldwell Environmental Associates, Inc. (Caldwell) to model the ODOT Site in 1996 for completion of the Risk Assessment Report. The input values used in FORTRAN AT123D by Caldwell were input into BIOSCREEN for comparison between the two models. The parameters used by Caldwell for AT123D in the 1996 Risk Assessment for the ODOT Site are presented below.

- Seepage velocity: 31.0 ft/yr
- Longitudinal dispersivity: 10.0 ft
- Transverse dispersivity: 7 ft
- Vertical dispersivity: 0.1 ft
- Retardation factor: 2.7
- First-order decay coeff.: 7.3E-2 d¹
- Modeled area length: 250 ft
- Modeled area width: 250 ft

Caldwell used AT123D to model 620 feet downgradient of the plume which is the distance to the closest possible shallow groundwater user. Therefore, the comparison between BIOSCREEN and AT123D was made at 620 feet downgradient and was performed in ten-year increments in order to compare the two models. The AT123D model uses first-order reactions rather than instantaneous reactions; therefore the BIOSCREEN results below are first order results rather than instantaneous results. In addition, AT123D modeled only the amount of benzene contamination in groundwater. Electron acceptors were not used for this run. This BIOSCREEN Run #4 analyzed the same amount of contaminant mass, four kg, that AT123D used as input. The results are presented below and can be found in Appendix H.


Run #4										
Time, years	AT123D BTEX, mg/L	BIOSCREEN BTEX, mg/L								
10	0.000	0.000								
15	0.000	0.000								
20	0.000	0.000								
30	0.003	0.0005								
40	0.003	0.001								
50	0.0014	0.002								
60	0.001	0.009								
70	0.0001	0.002								

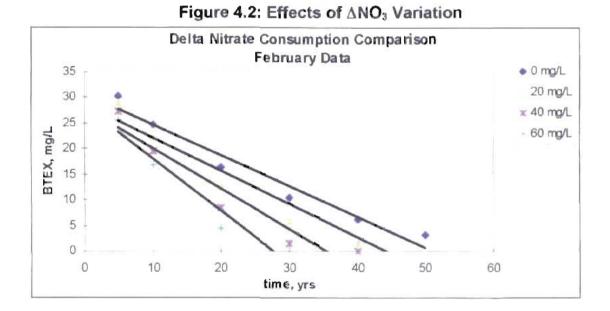
The comparison in the above table shows that AT123D and BIOSCREEN results are within an order of magnitude in most cases when considering first-order reactions. The BIOSCREEN simulated increase then decrease in BTEX concentrations is due to the outer boundary of the plume reaching the evaluation point (620 feet), and then the center of the plume reaching the evaluation point (620 feet).

4.4.7 Model Run #5

Model Run #5 examined the effects of varying ΔSO_4 on the simulated remediation time of the contaminant plume calibrated in Model Run #2. The following figure shows the effects of increasing the amount of ΔSO_4 available to the contaminant. The Run was performed using the same parameters and input as in Model Run #2 but with varying ΔSO_4 values. See Table 4.27 for the input parameters used in this Run.

Table 4.27: Run #5 Variable Parameters																		
	C)ct-9	97	De	ec-9	7	Ja	n-9	B	Fe	b-9	8	N	lar-	98	A	pr-	98
Soluble Mass									16	3								
Oxygen		5.42																
Nitrate		21.1																
Iron									0.4	4								
Sulfate									vari	es								
Methane		0																
Source Zone													-					
Width, ft	5	7	10	5	5	10	0.2	4	12	0.1	3	10	5	7	10	5	6	10
Conc, mg/L	20	18	20	3	8	22	0.01	20	55	0.01	8	37	7	6	11	8	14	18

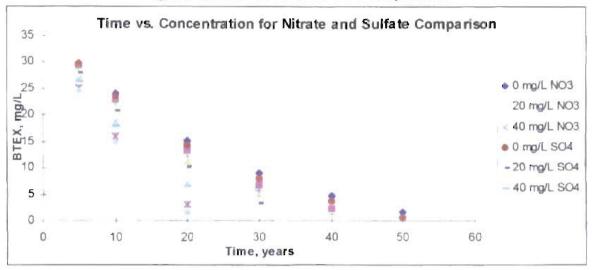
Figure 4.1: Effects of ∆SO₄ Variation


As Figure 4.1 shows, as ΔSO_4 increases, the time required for plume remediation decreases. With 0 mg/L ΔSO_4 , the plume takes approximately 46 years to remediate. However, increasing ΔSO_4 to 10 mg/L and 20 mg/L, the plume is remediated in approximately 38 years and 33 years, respectively. The BIOSCREEN output for this run is presented in Appendix I.

4.4.8 Model Run #6

Similar to Run #5, Model Run #6 analyzes the effects on the estimated time to remediation of varying the available ΔNO_3 . See Table 4.28 for the input parameters used in this run. The figure below shows the results of this Run.

()


Table 4.28: Run #6 Variable Parameters																		
)ct-9	97	De	ec-97	7	Ja	n-9	B	Fe	b-9	8	N	lar-	98	A	pr-9	98
Soluble Mass									16	5								
∆ E ⁻ Acceptors	Γ																	
Oxygen	\square	5.42																
Nitrate		varies																
Iron		0.4																
Sulfate	Γ								10)								
Methane	1	0																
Source Zone																		
Width, ft	5	7	10	5	5	10	0.2	4	12	0.1	3	10	5	7	10	5	6	10
Conc, mg/L	20	18	20	3	8	22	0.01	20	55	0.01	8	37	7	6	11	8	14	18

The results of this Run are similar to the results when ΔSO_4 is varied: as ΔNO_3 increases, the time required for remediation decreases. The results shown above indicate that with 0 mg/L ΔNO_3 , the plume is remediated in approximately 50 years. As the available ΔNO_3 is increased to 20, 40, and 60 mg/L, the time to remediation decreases to approximately 44, 35, and 28 years, respectively. The BIOSCREEN output for this run is presented in Appendix J.

4.4.9 Model Run #7

After analyzing the effects of both ΔNO_3 and ΔSO_4 on the plume in Model Runs #5 and #6, Model Run #7 compares ΔNO_3 and ΔSO_4 to each other. Data presented in Section 4.3.4 are averaged for the six sampling events and the resultant ΔNO_3 value was 21.1 mg/L NO₃. Model Run #7 compares two conditions: (1) Run #2 with varying ΔSO_4 and keeping ΔNO_3 constant at 21.1 mg/L; and (2) Run #2 with varying ΔNO_3 and keeping ΔSO_4 constant at 21.1 mg/L ΔNO_3 equivalents, or 16.32 mg/L ΔSO_4 . The figure representing the results is below

Figure 4.3: $\triangle NO_3$ and $\triangle SO_4$ Comparison

Figure 4.3 above shows only a slight difference in the time to remediation when ΔSO_4 and ΔNO_3 are varied. For each equivalent comparison, the BTEX plume appears to be remediated at a quicker rate with available ΔSO_4 than with available ΔNO_3 . BIOSCREEN appears to be more sensitive to SO_4 than to NO_3 and over time, the difference between the two increases. For example at 10 mg/L ΔSO_4 and ΔNO_3 , the BTEX concentation difference at five years is 0.336 mg/L, but at 40 years, the BTEX concentration difference is 1.06 mg/L... The BIOSCREEN output for this run is presented in Appendix K

5.0 SUMMARY AND CONCLUSIONS

The objectives of this thesis are presented on page 3. A review of current literature regarding natural attenuation and the use of alternate electron acceptors, as well as literature on bioremediation models was presented in Section 2.0. Natural attenuation causes measurable changes in chemistry by indigenous (naturally occuring) microorganisms, reducing the total mass of contamination in the subsurface without the addition of nutrients. The processes involved in natural attenuation include biodegradation, dispersion, adsorption, and volatilization. Of these processes, biodegradation is the principal mechanism for BTEX plume remediation (Ollila, 1996). Biodegradation can occur aerobically (with oxygen) or anaerobically (without oxygen) by microorganisms breaking down the contaminant and using it as an energy source or an electron donor. The availability of electron acceptors has the most influence on the rate of biodegradation (Rifai et al., 1998).

Literature on bioremediation models was also reviewed. Because actual conditions at contaminated sites are often complex and extensive, a model, analytical or numerical, simplifies a site's conditions by introducing a set of mathematical assumptions which express the nature of the system and those features of its behavior that are relevant to the problem under investigation (Bear et al., 1992). Models simulate the plume's movement by considering the quantity of contaminant release, advection, dispersion, sorption, and sometimes biodegradation. In modeling, two basic approaches to mass and energy balances are 1) the eularian approach, and 2) the lagrangian approach (Zheng and Bennett, 1995). The most common method for simulating biodegradation in more recent models is through Monod kinetics, which describes microbial growth and is composed of first-order, mixed-order, and zero-order regions (Rifai and Bedient. 1995).

Models vary in how they simulate biodegradation. Two types of data are needed for bioremediation modeling: 1) hydrogeologic and hydrogeochemical parameters; and 2) hydraulic heads, flow rates, contaminant arrival times, solute concentrations, and/or mass removal rates (Zheng and Bennett, 1995). Models capable of simulating biodegradation and that incorporate multiple electron acceptor processes are BioF&T 3D, BIOSCREEN, SEAM3D, BIOPLUME III, and RT3D, among others (Newell et al., 1996; Rifai et al., 1998; Waddill and Widdowson, 1998; Boss International, 1998).

Calibration of a model is done by adjusting model parameters until modeled results match actual monitored field conditions. The adjustable variables include hydraulic heads, flow rates, solute concentrations, contaminant arrival times or mass removal rates (Zheng and Bennett, 1995). Sensitivity measures the effect on one factor of changing another factor. Repeated runs are needed to calculate a sensitivity coefficient.

The Oklahoma Department of Transportation (ODOT) Residency Facility located in Edmond, Oklahoma experienced a leaking fuel dispenser line in 1991 that contaminated the subsurface with BTEX. The changing levels over time of BTEX, sulfate, nitrate, phosphate, dissolved oxygen, and total organic carbon were periodically monitored. These results are presented in Section 4.0. Isopleths were prepared for BTEX, nitrate, sulfate, phosphate, DO, and organic carbon for the ODOT Site. The relationships between isopleths show that electronaccepting processes are active at the ODOT Site. Results show that in areas of high BTEX concentration, nitrate, sulfate, and dissolved oxygen have been reduced relative to measured background concentrations. This phenomenon indicates that natural attenuation through biodegradation is occuring at the ODOT Site.

Caldwell Environmental Associates, Inc. completed the Risk Assessment report in 1996 according to Oklahoma Risk Based Corrective Action (ORBCA) closure requirements. These requirement were presented in Section 3.0 of this study. The ORBCA program is a three-tiered approach: 1) qualitative analysis, 2) site-specific impact, and 3) probabilistic evaluations and sophisticated modeling. The user of the process starts at Tier 1 and advances only if required to

do so. If target levels, determined through the tiered process, are exceeded, corrective action is necessary. However, if the target levels are not exceeded, the site may be approved for closure. Currently, the ODOT Site is closed.

The applicability of BIOSCREEN, an EPA provided natural attenuation decision support software package, to the ODOT Site monitored in this study was investigated. The ODOT Site was monitored for a period of approximately six months. Based on monitoring results, and sitespecific data obtained from the Risk Assessment Report prepared by Caldwell Environmental, Inc., modeling predictions were inaccurate. BIOSCREEN's instantaneous reaction model, which incorporates alternate electron acceptor processes, was used to model the site. The BIOSCREEN model predicted the plume's remediation in two to eight years which assumes remediation of the plume in 1993 to 1999. However, monitoring data obtained through sampling in Fall 1997 and Spring 1998 indicated that the plume was still active with BTEX concentrations averaging 9.72, 15.25, 0.84, and 3.67 mg/L, respectively, in MW-3 (located near the original source of contamination, see Figure 3.2). These results were obtained using a conservative value for ΔSO_4 of 174 mg/L although actual ΔSO_4 values reached approximately 850 mg/L. Thus, based on the data obtained in this study, BIOSCREEN did not accurately represent plume characteristics at the ODOT Site. Charles J. Newell reported that there are no electron accepter boundaries in BIOSCREEN and that he has no knowledge of any BIOSCREEN studies where the ΔSO_4 observed were as high as those observed at the ODOT Site. C. Newell also reported that the source mass required in BIOSCREEN is the total non-aqueous phase liquid in the groundwater and soil, although the BIOSCREEN source mass input box indicates the source mass is the soluble mass of the contaminants. C. Newell indicated that the next BIOSCREEN update would better clarify the source mass requirements (Newell, 1999).

To investigate the variability in BIOSCREEN results with normal monitoring variability, BIOSCREEN model analysis was performed using the ODOT Site data with a reduced Δ SO₄ value of 10 mg/L. Using averaged (over the six months of sampling events) electron acceptor

monitoring results and averaged soluble contaminant mass results, the model simulated the remediation of the BTEX plume in 18 to 44 years.

The sensitivity of BIOSCREEN to Δ SO₄ and Δ NO₃ anions was investigated by holding Δ NO₃ constant at 21.1 mg/L (site-specific change in nitrate concentration) and varying Δ SO₄ and then holding Δ SO₄ equal to 21.1 mg/L Δ NO₃ equivalents and varying Δ NO₃. Using the site-specific data obtained from the Risk Assessment report prepared by Caldwell Environmental Associates, Inc. and monitoring data collected in this study, BIOSCREEN appears to be more sensitive to SO₄ than to NO₃. This finding supports a study by Wiedemeier et al. that indicated although denitrification typically occurs before sulfate reduction, 25 sites across the country shouwed that sulfate reduction accounts for 29 percent of the anaerobic biodegradation capacity, while denitrification only accounts for 14 percent (Wiedemeier et al., 1995).

In summary, using the ODOT Site-specific groundwater data obtained during monitoring and subsurface geological input data obtained from a Risk Assessment Report for the ODOT Site prepared by Caldwell Environmental Associates, Inc., BIOSCREEN predicted natural attenuation of the groundwater in two to eight years. However, monitoring results prove that the groundwater remains contaminated with BTEX seven years later; thus, BIOSCREEN is not applicable to the ODOT Site under the conditions indicated in the study and careful consideration must be given when using BIOSCREEN at a site with high sulfate concentration depressions. The high changes in sulfate concentrations found at the ODOT Site were lowered for modeling analysis purposes. Monthly data was averaged, modeling was repeated, and results revealed natural attenuation of the ODOT Site in 18 to 44 years. Comparing various BIOSCREEN model runs showed that as changes in nitrate and sulfate concentrations increase, time required for natural attenuation decreases. Comparing equivalents of nitrate and sulfate changes revealed the BTEX plume attenuated at a faster rate with sulfate than with nitrate. Comparing the results of BIOSCREEN to AT123D using identical parameters resulted in BTEX concentration variations typically within an order of magnitude.

6.0 RECOMMENDATIONS

Since 1972, when in-situ bioremediation was first practiced commercially, bioremediation has matured from a novel process to an important, technically recognized and economical method of remediating groundwater (Scalzi, 1999). Research will continue at sites across the United States as long as the desire for a more effective, more efficient, lower cost process continues. Although natural attenuation holds promise for the future, the interactions of microorganisms with different hydrologic environments must continue to be studied. There exists an agreement among the research community that field-based research is needed to realize the full potential of natural attenuation and its applications (Environmental Microbiology, 1997b). As the understanding increases, so should the incidents of natural attenuation site closures.

This study, using site-specific data obtained from a Risk Assessment report prepared by Caldwell Environmental Associates, Inc. along with additional monitoring data, investigated one model, BIOSCREEN, at one site, an Oklahoma Department of Transportation site with subsurface BTEX contamination, and found the model to misrepresent the actual plume conditions. Careful consideration and evaluation should be given when using BIOSCREEN to model a site with subsurface characteristics similar to those of the ODOT Site. When BIOSCREEN is to be used at a site with observed high Δ SO₄ values, BIOSCREEN should be compared to other models or to actual site plume delineation.

As more and more models are introduced with varying equations, assumptions, methods of evaluation. etc., investigations of the models by researchers, consultants, and regulatory officials should continue. Additionally, when modeling a site, if the site-specific data is altered unreasonably in order to obtain calibration, the model may not be appropriate for the site.

Several models exist that simulate bioremediation through aerobic and anerobic processes. Site A's specific characteristics should be compared to characteristics of Site B that has had success with a particular model. If Site A and Site B have similar characteristics, then it is more likely that the same model may be appropriate for Site A also.

The technology that exists in today's world provides unlimited communication between regulatory agencies, the public, researchers, consulting firms, and commercial entities via the internet. As more and more studies are performed and research is completed about the applicability of various models to certain sites, the findings and conclusions should be made available so that the entire environmental community can benefit. This process would save time and money, would decrease the incidence of model uncertainty, and would enhance and perhaps quicken the current process of risk-based closure by showing that a site with similar characteristics was accurately simulated by the same model used in the Risk Assessment for the site under investigation.

REFERENCES

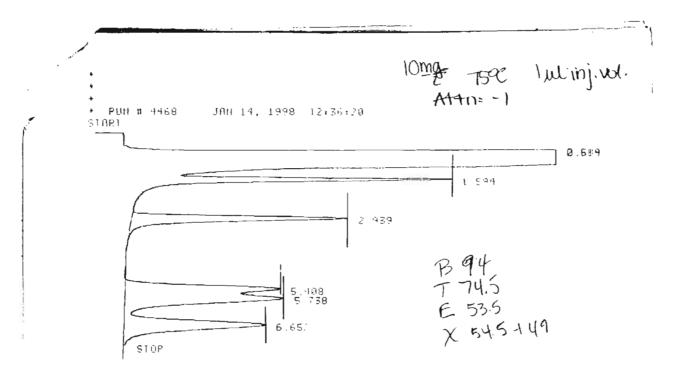
- ASTM Remediation by Natural Attenuation Task Group. 1996. Draft ASTM Guide for Remediation by Natural Attenuation at Petroleum Release Sites. ASTM: West Conshohocken, PA.
- Baker, Katherine H. and Diane S. Herson. 1994. Bioremediation. McGraw-Hill, Inc. pp. 1,
- Bear, Jacob, Milovan S. Beljin, and Randall R. Ross. 1992. Fundamentals of Ground-Water Modeling. EPA Office of Research and Development. EPA/540/S-92/005, April 1992.
- Borden, R. C., C. A. Gomez, M. T. Becker. 1995. Geochemical Indicators of Intrinsic Bioremediation. Ground Water. v33n2, pp. 180-89.
- Boss International. 1998. RT3D Module for BOSS GMS. <www.bossintl.com/ html/gms_rt3d.html>
- Borden, Robert C., Melody J. Hunt, Michael B. Shafer, and Morton A. Barlaz. 1997. Anaerobic biodegradation of BTEX in aquifer material. *Environmental Research Brief.* EPA/600/S-97/0003.
- Bradley, P. M., F. H. Chapelle, J. E. Landmeyer, J. G. Shumacher. January 1997. Potential for Intrinsic Bioremediation of a DNT-Contaminated Aquifer. *Ground Water.* v35n2, pp. 12-17.
- Brubaker, G. R. 1995. The Boom in In Situ Bioremediation. Civil Engineering. v65n10, pp. 38-41.
- Caldwell Environmental Associates, Inc. 1996. *Risk Assessment Report, Oklahoma Department* of Transportation Edmond Residency Facility. OCC Case I.D. #064-0439.
- Chapelle, Francis H. 1999. Bioremediation of Petroleum Hydrocarbon Contaminated Groundwater: The Perspectives of History and Hydrology. *Groundwater. Jan/Feb 1999*.
- Clement, T.P., Y. Sun, B.S. Hooker, and J.N. Petersen. 1998. Modeling Multispecies Reactive Transport in Ground Water. *Ground Water Monitoring and Remediation*. Spring 1998, pp. 79-92.
- Cookson, John T. Jr., 1995. Bioremediation Engineering, Design and Application. McGraw-Hill, Inc. pp. 69-77.
- Dean, Warren T., Jeffrey A. Johnson, PhD, William J. Seaton, Brandon J. Fagan, and James M Fenstermacher. Accessed 1999. Modeling Simulations Lead to Remedial Design Improvements. http://www.Sgcleanup.com/modeling.html.
- Edwards, E. A., L. E. Wills, M. Reinhard, and D. Grbic-Galic. 1992. Anaerobic Degradation of Toluene and Xylene by Aquifer Microorganisms under Sulfate-Reducing Conditions. *Applied Environmental Microbiology.* v58n3, pp. 794-800.

- Environmental Microbiology. Accessed November 1997a. World Wide Web Site. Biodegradation, Groundwater, and Bioremediation: Relationships and Processes. http://bordeaux.uwaterloo.ca/biol447new/relationships.htm. pp. 1-5.
- Environmental Microbiology. Accessed November 1997b. World Wide Web Site. Natural and Accelerated Bioremediation. http://bordeaux.uwaterloo.ca/biol447new/definition.htm. pp. 1.
- Environmental Microbiology. Accessed November 1997c. World Wide Web Site. Site Characterization Overview. http://bordeaus.uwaterloo.ca/biol447new/sitecharacterization.htm>. pp. 1-3.
- Grasso, D. 1993. <u>Hazardous Waste Site Remediation Source Control</u>. *Bioremediation.* CRC Press, Boca Raton, Florida. pp. J-1 J-77.
- Hutchins, Stephen R., Guy W. Sewell, David A. Kovacs, and Garmon A. Smith. 1991. Biodegradation of aromatic hydrocarbons by aquifer microorganisms under denitrifying conditions. *Environmental Science and Technology*. v25n1, pp 68-76.
- HydroGroup. Accessed 1999. *Introduction to MT3DMS*. http://hydro.geo.ua. edu/mt3d/mt3dms2.htm>.
- Jorgensen, B.B. 1989. Biochemistry of chemoautotrophic bacteria. In H.G. Schlegel and B. Bowien, eds., *Autotrophic Bacteria*. Science Tech Publishers, Madison, WI. pp. 117-146.
- K.S.B. 1997. Advanced bioremediation Model Due this fall. *Environmental Science and Technology*. v31n8, pp. 349A.
- Kennedy, Lonnie G. 1994. Abiotic Microbial Interactions Under Electron Acceptor Limited Shallow Aquifer Conditions. Unpublished report.
- Lewandowski, Gordon A. and Louis J. DeFilippi. 1998. <u>Biological Treatment of Hazardous</u> <u>Wastes</u>. John Wiley and Sons, Inc. pp. 191-214, 240-245.
- Lyngkilde, J., T.H. Christensen, B. Skov, and A. Foverskov. 1991. Redox zones downgradient of a landfill and implications for biodegradation of organic compounds. In R.E. Hinchee and R.F. Olfenbuttel, eds., In Situ Bioreclamation: Applications for Hydrocarbon and Contaminated Site Remediation. Butterworth-Heinemann, Boston. pp 363-376.
- Lovley, Derek R., John D. Coates, Joan C. Woodward, and Elizabeth J. P. Phillips. 1995. Benzene Oxidation Coupled to Sulfate Reduction. *Applied and Environmental Microbiology*. March 1995. v61n3, pp. 953-958.
- MacDonald, Jacqueline A. and Bruce E. Rittman. 1993. Performance Standards for In Situ Bioremediation. *Environmental Science and Technology*. v27n10. Pp. 1974-1979.
- Montgomery, J.H. and L.M. Welkom. 1990. Groundwater Chemicals Desk Reference. Lewis Publishers.
- Munoz, Jose F. and Manuel J. Irarrazaval. 1998. A Numerical Model for Simulation of Bioremediation of Hydrocarbons in Aquifers. *Ground Water*. v36n2. pp. 215-223.
- Mast, Vernon. 1997. Course notes. CIVEN 5213, Environmental Geotechnology. Department of Civil and Environmental Engineering. Oklahoma State University. Spring 1997.

- NCERQA (National Center for Environmental Research and Quality Assurance). Accessed February 1999. World Wide Web Site. *Experimental Validation and Reliability Evaluation of Multimedia Risk Assessment Models*. USEPA Office of Research and Development. http://es.epa.gov/ncerqa_abstracts/grants/96/fate/siegrist.html>.
- Newell, Charles J., Kevin McLeod, and James R. Gonzales. 1996. BIOSCREEN Natural Attenuation Decision Support System User's Manual, Version 1.3. National Risk Management Research Laboratory. Office of Research and Development, USEPA. August 1996.

Newell, Charles J., 1999. Telephone interview with Candy Akins regarding BIOSCREEN.

- Nielsen, J.M. 1980. *Material Safety Data Sheets*. Volume I: Inorganic and Organic Materials. Technology Marketing Operation, General Electric Company, Schenectady, NY.
- Novotny, Vladimir and Harvey Olem. 1994. <u>Water Quality- Prevention, Identification, and</u> <u>Management of Diffuse Pollution</u>. Van Nostrand Reinhold, New York. pp. 328-303, 343, and 399-403.
- OCC (Oklahoma Corporation Commission). Accessed 1999. *Risk Based Corrective Action.* Oklahoma Administrative Code Chapter 165:25.
- Ollila, Paul W. 1996. Evaluating natural attenuation with spreadsheet analytical fate and transport model. *Ground Water Monitoring and Remediation*. v6n5, pp. 69-75.
- Paxton, Kevin Ray. 1997. Quantifying Groundwater Contaminant Transport Model and Parameter Uncertainty in a Decision Analysis Context. Dissertation for PhD in Mechanical Engineering. University of California, Los Angeles.
- Rifai, Hanadi S. and P.B. Bedient. 1995. A review of biodegradation models: theories and applications. *Groundwater Models for Resources Analysis and Management.* CRC Press: USA.
- Reynolds, Tom D. and Paul A. Richards. 1996. <u>Unit Operations and Processes in</u> <u>Environmental Engineering</u>. Second Edition. PWS Publishing Company. pp. 350-352.
- Rong, Yue. Accessed February 1999. World Wide Web Site. *Diffusion Need Not be a Cause of Confusion*. Soil and Groundwater Cleanup. http://www.Sgcleanup.com/training/diffusion.html, pp. 1-3.
- Scalzi, Michael. Accessed 1999. Bioremediation Can Produce Predictable, Reproducible Results. http://www.sgcleanup.com/bio/biorem.html
- Schnoor, Jerald L. 1996. Environmental Modeling, Fate and Transport of Pollutants in Water, Air, and Soil. John Wiley and Sons, Inc. pp. 471-473.
- Skinner, J., G. G. Ondich, T. L. Baugh. 1991. <u>On-Site Bioreclamation: Processes for Xenobiotic</u> and Hydrocarbon Treatment. U.S. EPA Bioremediation Research Projects. Butterworth-Heinemann, Stoneham, Massachusetts. pp. 1-15.


Striegel, Jami A. 1998. *Modeling Natural Attenuation of Petroleum Hydrocarbon Contamination in Groundwater Using Alternate Electron Acceptors.* Master's Thesis. Environmental Engineering. Oklahoma State University.

- Tech Trends. September 1996. World Wide Web Site. National Integrated Bioremediation R&D Test Site. http://www.clu-in.com/ttrend/ttncibrd.htm>. pp. 1.
- United States Environmental Protection Agency. April 1996. World Wide Web Site. A Citizen's Guide to Bioremediation. http://www.clu-in.com/TOOLKIT/GUIDES/BIOREM.HTM>. pp. 1-6.
- United States Geological Survey. April 1997. World Wide Web Site. *Bioremediation: Nature's Way to a Cleaner Environment.* http://h2o.usgs.gov/public/wid/html/bioremed.html, pp. 1-4.
- Waddill, Dan W., and Mark A. Widdowson. 1998. Three-dimensional model for subsurface transport and biodegradation. Journal of Environmental Engineering. v125n4. pp. 336-344.
- Wiedemeier, Todd H., Ross N. Miller, John T. Wilson, and Donald H. Kampbell. 1995.
 Significance of Anaerobic processes for the Intrinsic Bioremediation of Fuel Hydrocarbons.
 National Groundwater Association, Proceedings of the Petroleum Hydrocarbons and Organic Chemicals in Ground Water Conference, Houston, Texas, November 1995.
- Wiedemeier, T.H., M.A. Swanson, J.T. Wilson, et al. 1996. Approximation of biodegradation rate constants for monoaromatic hydrocarbons (BTEX) in ground water. *Ground Water Monitoring and Remediation*. v16n3, pp. 186-194.
- Wilber, Greg. 1997. Course notes. CIVEN 5813, Advanced Environmental Laboratory Analysis. Department of Civil and Environmental Engineering. Oklahoma State University. Fall, 1997.
- Wilson, L.G., Lorne G. Everett, Stephen J. Cullen. 1995. Handbook of Vadose Zone Characterization and Monitoring. CRC Press, Inc., Boca Raton, FA. pp 93-94.
- Wood, P.R., and L.C. Burton. 1968. Ground-Water Resources, Cleveland and Oklahoma Counties. Oklahoma Geological Survey. Circular 71.
- Wu, Jingshi. 1995. Degradation of Contaminated air Streams Containing Toluene, Ethylbenzene, and O-Xylene by Biofiltration. PhD Dissertation. Doctorate of Philosophy. Oklahoma State University.
- Zheng, Chunmiao and Gordon D. Bennett. 1995. <u>Applied Contaminant Transport Modeling –</u> <u>Theory and Practice</u>. Van Nostrand Reinhold, New York. pp. 201-311.

APPENDICES

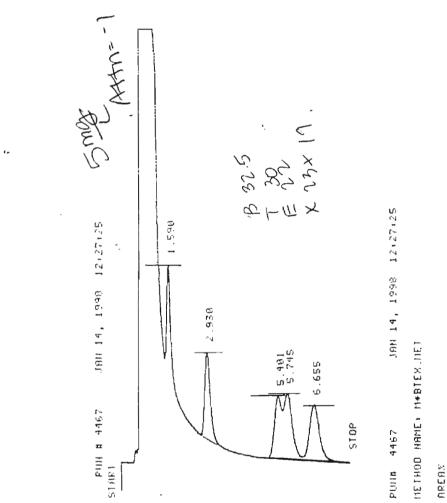
APPENDIX A SAMPLE CHROMATOGRAPHS

SAMPLE GC CHROMATOGRAPH

.

PUNN 4468 JAN 14, 1998 12:35:20

HETHOD NAME: M+BIER.HET

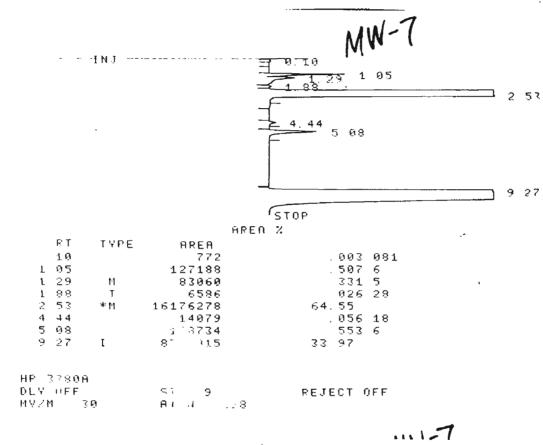

ARERX

.

RI	HREA	T'/PE	WIDIH	BREBS
.514	330861	ÛВ	867	71.26579
1.594	21440	BP	138	4 59032
2 939	26444	BP	220	5 66168
5.498	24836	80	286	5.31740
5 738	30828	υų	.348	6.53858
6.652	30669	I UP	388	6 56625

TOTAL APEA≤ 467070 HUL FACTOR=1 0000E+00

.



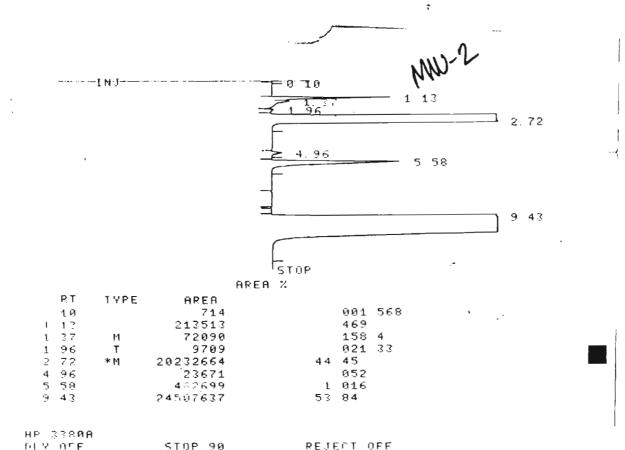
•

AFEAX 28:28822 20.33080 25 95482 25 95482 24 31309 REA TYPE UIDTH 4517 8P .984 9981 FU .286 12742 UU .351 11936 UU .389 à

TOTAL APER= 49093 HUL FACTOR=1.0000E+00

.

....


7

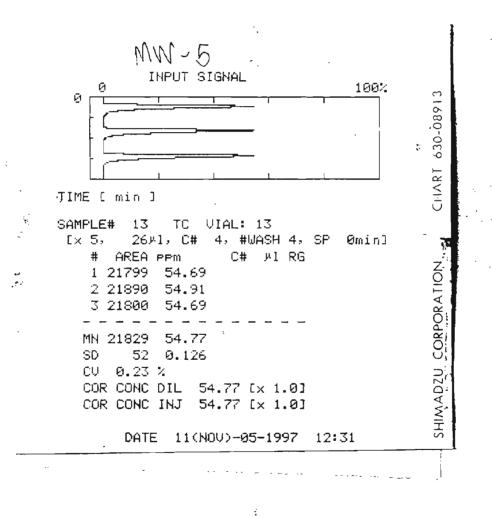
SUPELCO, INC., Benef 2 Car. No. 2-2876 (pec). Ę NO. 2-2085 (DOX 0* 10 28

.

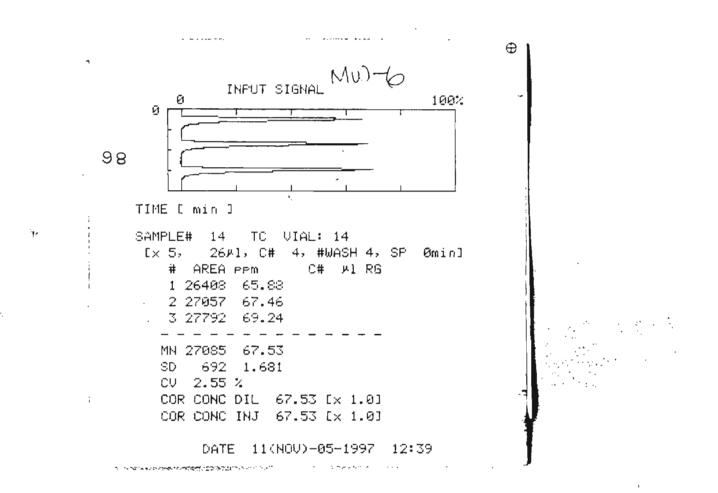
SAMPLE IC CHROMATOGRAPH

_ _

~


	- 61 Y - 65	F	STOP	90	REJECT	$0 {\rm F}$
¢,	ммим	3.0	ATTN	128		

~


85

the state of the second st

SAMPLE TOC ANALYZER CHROMATOGRAPH

 γ_{r}

APPENDIX B BIOSCREEN EQUATIONS AND ASSUMPTIONS

.

-

L

APPENDIX A.1 DOMENICO ANALYTICAL MODEL

The Domenico (1987) analytical model, used by BIOSCREEN, is designed for the multidimensional transport of a decaying contaminant species. The model equation, boundary conditions, assumptions, and limitations are discussed below.

Domeni	co Model with Instantaneous Reaction	Superposition Algorithm	5553
Contraction of the second seco	$\frac{\alpha_{y}}{\alpha_{z}}$	$\frac{C(x, y, o, t)}{(Co + BC)} = \frac{1}{8} \exp\left[\frac{x}{\alpha_x 2} \left(1 - \left(1 + 4\lambda\alpha_x / v\right)^{1/2}\right)\right]$ $erfc\left[\frac{\left(x - vt\left(1 + 4\lambda\alpha_x / v\right)^{1/2}\right)}{2(\alpha_x vt)^{1/2}}\right]$ $\left\{erf\left[\frac{\left(y + Y/2\right)}{2(\alpha_y x)^{1/2}}\right] - erf\left[\frac{\left(y - Y/2\right)}{2(\alpha_y x)^{1/2}}\right]\right\}$ $\left\{erf\left[\frac{(Z)}{2(\alpha_z x)^{1/2}}\right] - erf\left[\frac{(-Z)}{2(\alpha_z x)^{1/2}}\right]\right\} - BC$ where: $v = \frac{K \cdot i}{\theta_e R}$ $BC = \Sigma \frac{C(ea}{UF_e}$) <u>,</u>
BC	Biodegradation capacity (mg/L) Concentration at distance x downstream of source and distance y off centerline of plume at time t (mg/L) Concentration in Source Zone (mg/L) Concentration in Source Zone at t=0 (mg/L)	UFn Utilization factor for electron acceptor n (i.e., mass rat of electron acceptor to hydrocarbon consumed in biodegradation reaction) ax Longitudinal groundwater dispersivity (ft) ay Transverse groundwater dispersivity (ft) az Vertical groundwater dispersivity (ft)	io
x y z	Distance downgradient of source (ft) Distance from plume centerline of source (ft) Distance from surface to measurement point (assumed to be 0; concentration is always assumed to be at top of water table).	θe Effective Soil Porosity λ First-Order Degradation Rate (day ⁻¹) υ Groundwater Seepage Velocity (ft/yr) K Hydraulic Conductivity (ft/yr) R Constituent retardation factor i Hydraulic Gradlent (cm/cm)	
C(ea) _n	Concentration of electron acceptor n in groundwater (mg/L)	Y Source Width (ft) Z Source Depth (ft)	

The initial conditions are:

1)	c(x, y, z, 0) = 0	(Initial concentration = 0 for x, y, $z_{1} > 0$)
2)	$c(0, Y, Z, 0) = C_0$	(Source concentration for each vertical plane source = C_0 at time 0)

The key assumptions in the model are:

- 1) The aquifer and flow field are homogenenous and isotropic.
- 2) The groundwater velocity is fast enough that molecular diffusion in the dispersion terms can be ignored (may not be appropriate for simulation of transport through clays).
- 3) Adsorption is a reversible process represented by a linear isotherm.

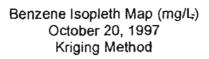
The key limitations to the model are:

- 1) The model should not be applied where pumping systems create a complicated flow field.
- 2) The model should not be applied where vertical flow gradients affect contaminant transport.
- 3) The model should not be applied where hydrogeologic conditions change dramatically over the simulation domain.

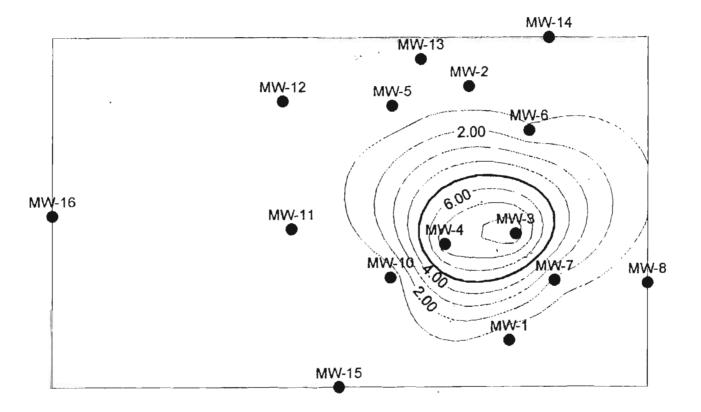
The most important modifications to the original Domenico model are:

- 1) The addition of "layer cake" source terms where three Domenico models are superimposed one on top of another to yield the 5-source term used in BIOSCREEN (see Connor et al., 1994; and the Source Width description in the BIOSCREEN Data Entry Section).
- Addition of the instantaneous reaction term using the superposition algorithm (see Appendix A.2, below). For the instantaneous reaction assumption, the source concentration is assumed to be an "effective source concentration" (Coe) equal to the observed concentration in the source zone plus the biodegradation capacity (see "Source Concentration" on the BIOSCREEN Data Entry section).

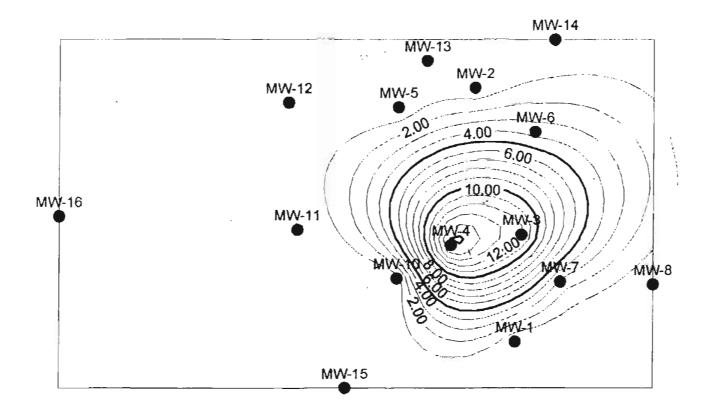
APPENDIX C ISOPLETH MAPS

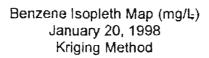

.

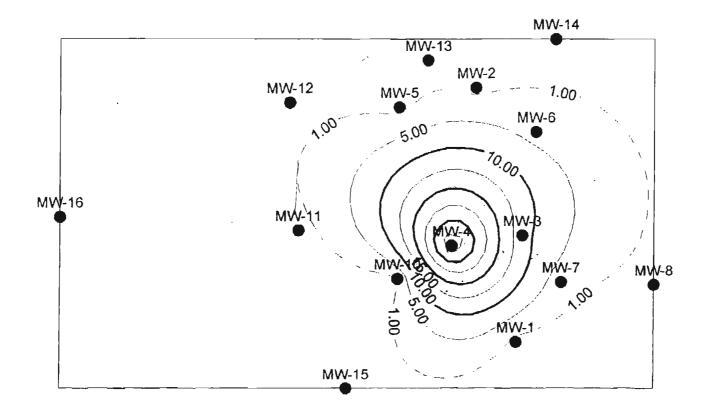
BENZENE ISOPLETH MAPS

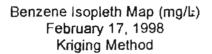

.

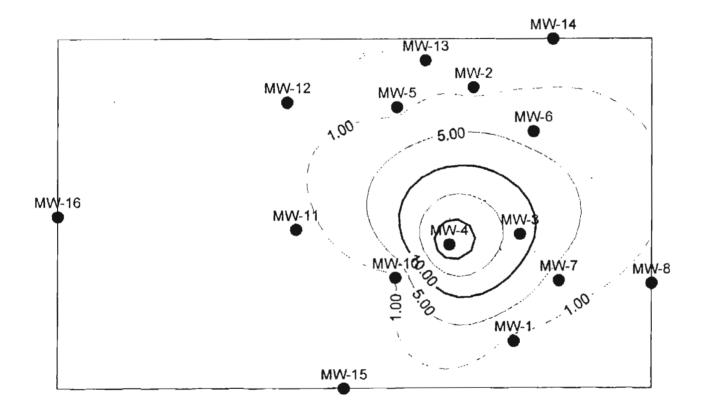
.




...

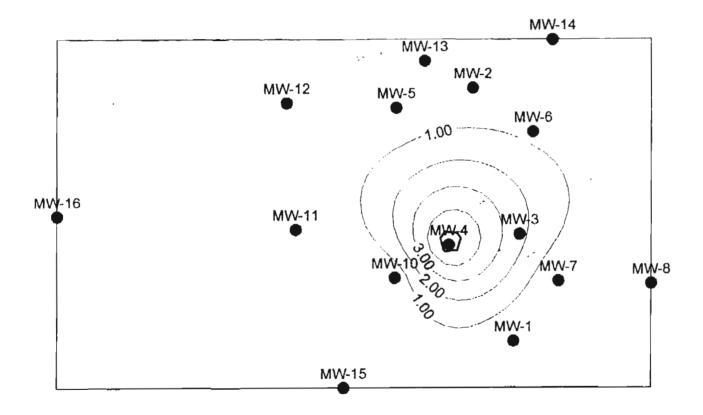

Benzene Isopleth Map (mg/៤) December 15, 1997 Kriging Method 1

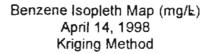

<u>5</u>


. ..

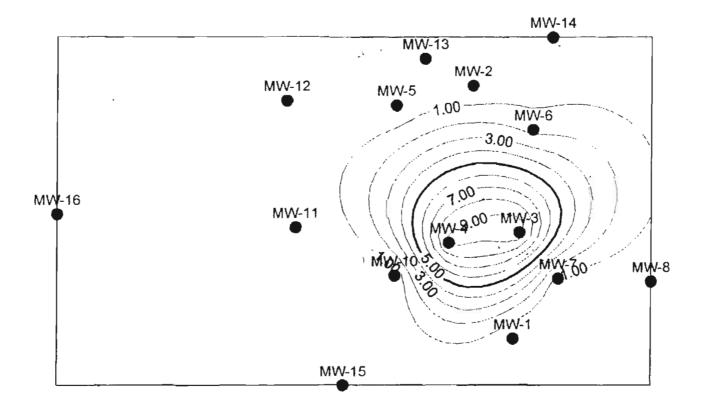
.

...

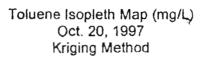



and the second second

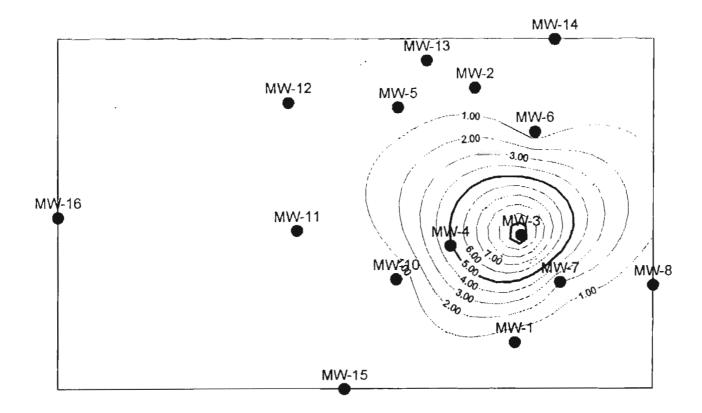
Consider Street State Street S

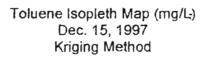

Benzene Isopleth Map (mg/Ŀ) March 24, 1998 Kriging Method

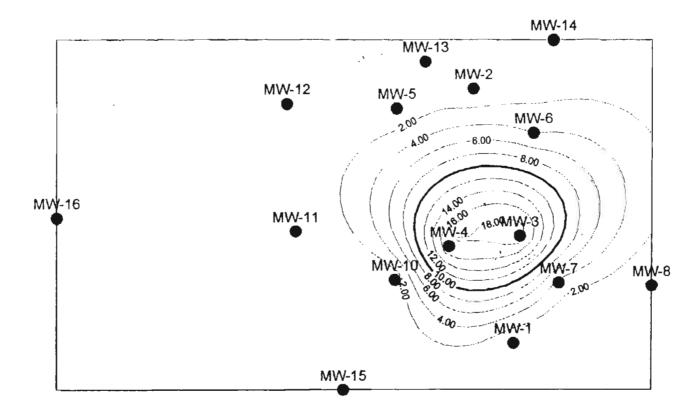
. ··



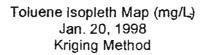
· ··

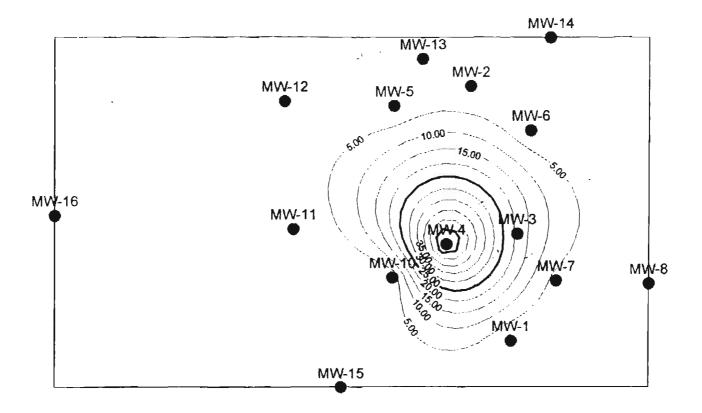


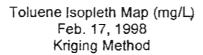

TOLUENE ISOPLETH MAPS

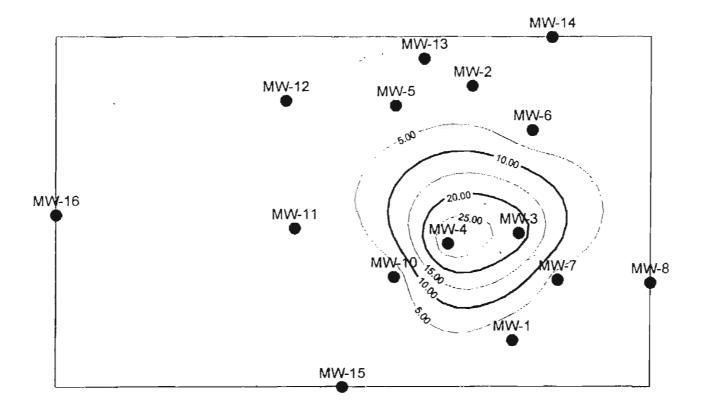

9-

· ··

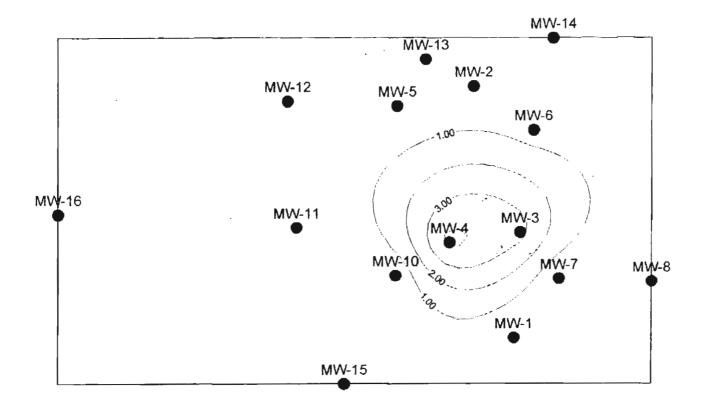


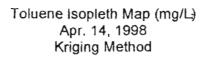

A Designed of the second state of the second s

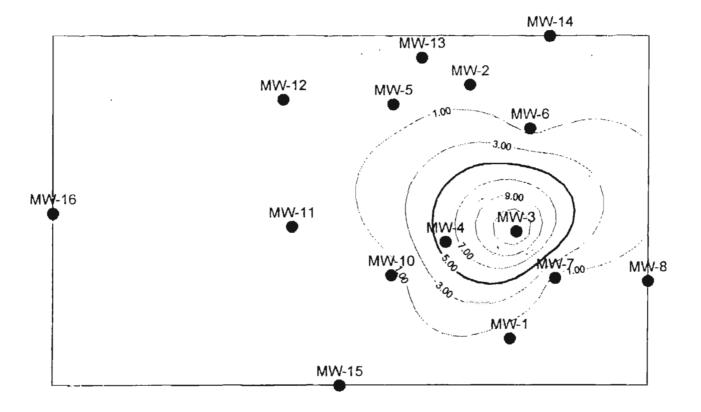

the Property of the Contract of the second second


THE STATISTICS

• -

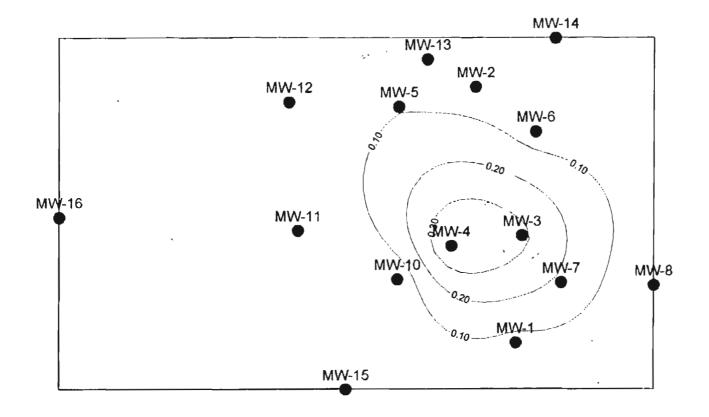




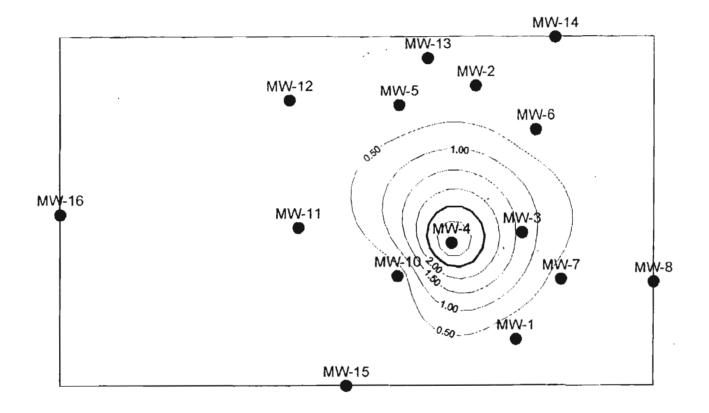

The second s

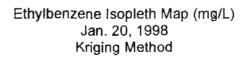
Toluene Isopleth Map (mg/L) Mar. 24, 1998 Kriging Method

. . . ¹

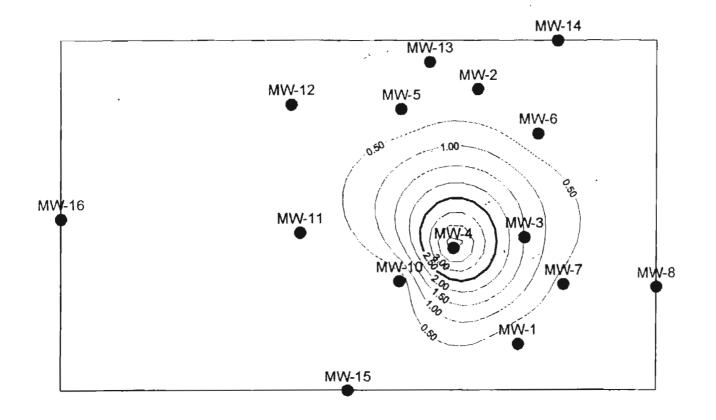

ETHYLBENZENE ISOPLETH MAPS

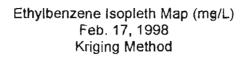
.

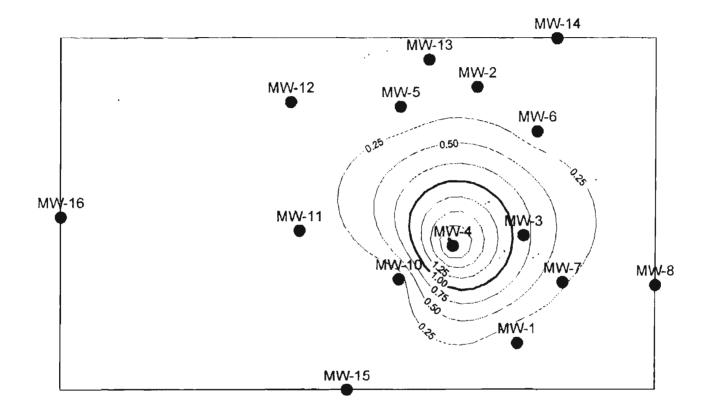

'. 'r


·

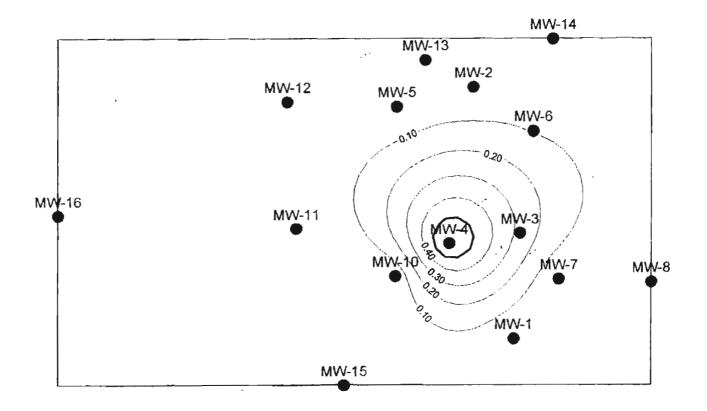
Ethylbenzene Isopleth Map (mg/L) Oct. 20, 1997 Kriging Method

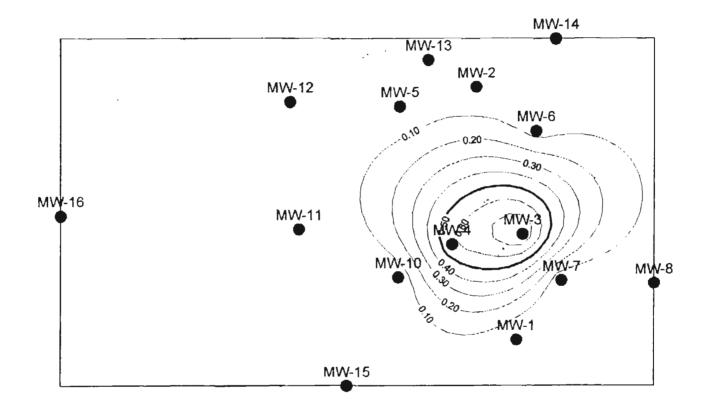



Ethylbenzene Isopleth Map (mg/L) Dec. 15, 1997 Kriging Method

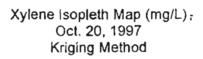


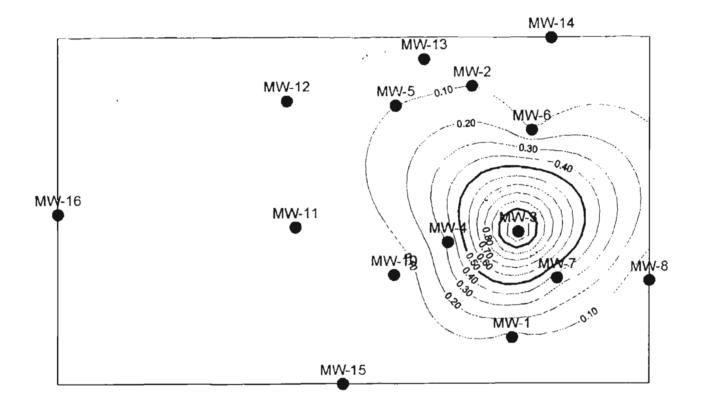
...*

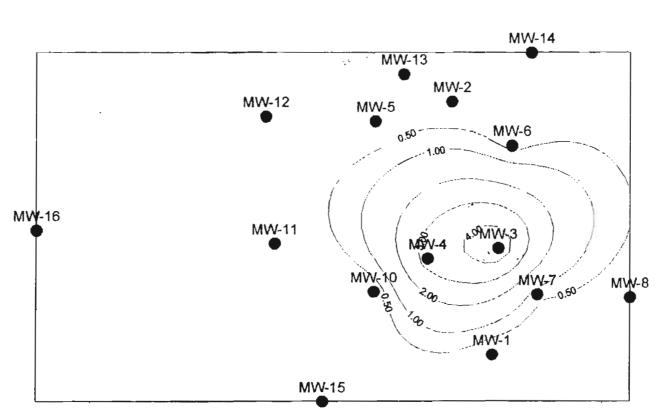



1.11

Ethylbenzene Isopleth Map (mg/L) Mar. 24, 1998 Kriging Method

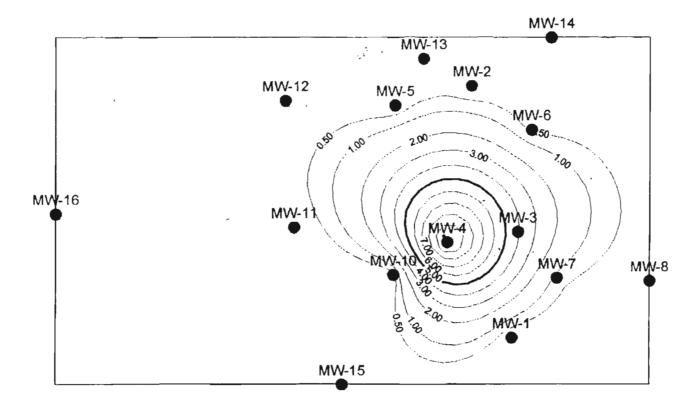

Ethylbenzene Isopleth Map (mg/L) Apr. 14, 1998 Kriging Method

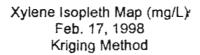


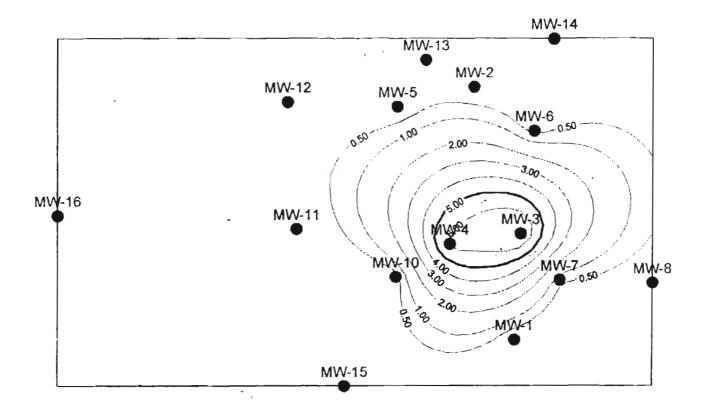

XYLENE ISOPLETH MAPS

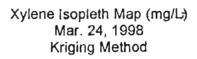
ν

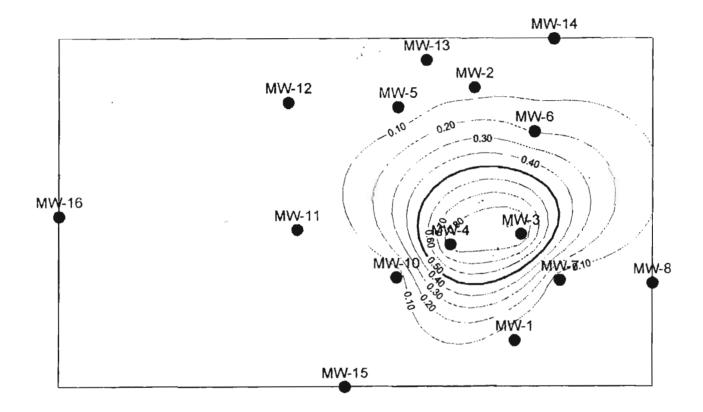
.

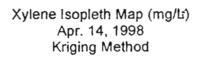


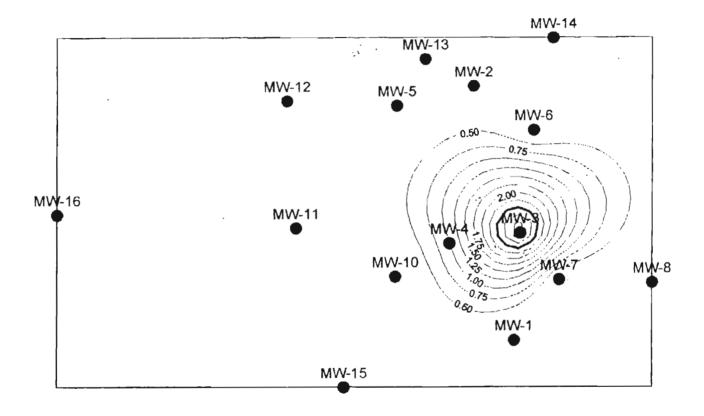



Xylene Isopleth Map (mg/L)[∛] Dec. 15, 1997 Kriging Method


Xylene Isopleth Map (mg/L); Jan 20, 1998 Kriging Method


.*





DO ISOPLETH MAPS

`,

٠.

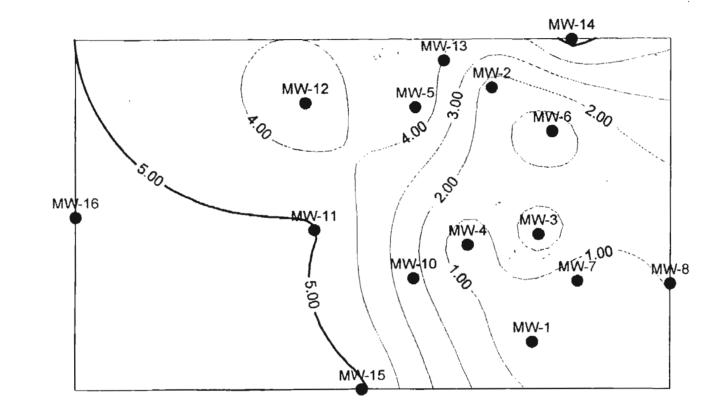
۰.

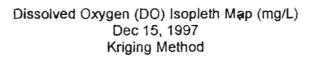
-

_

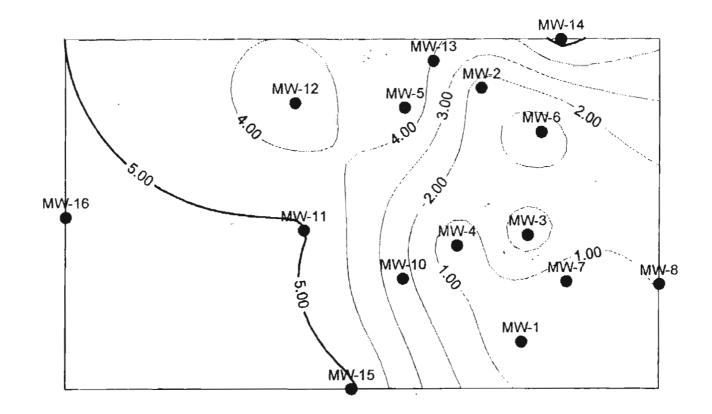
.

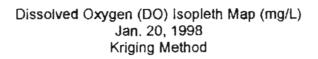
 2σ

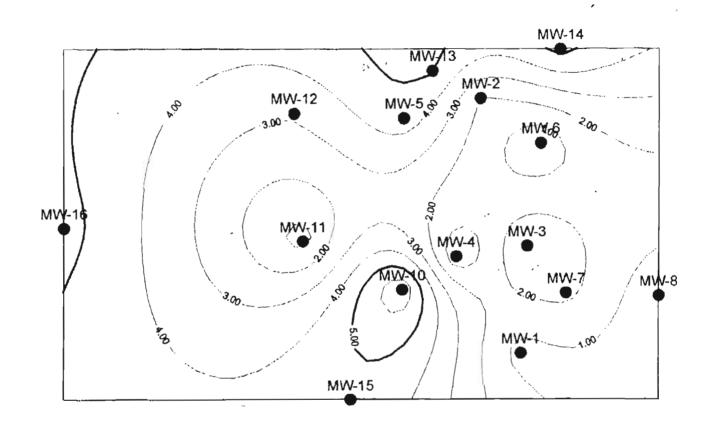

ŕ,

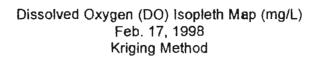

.

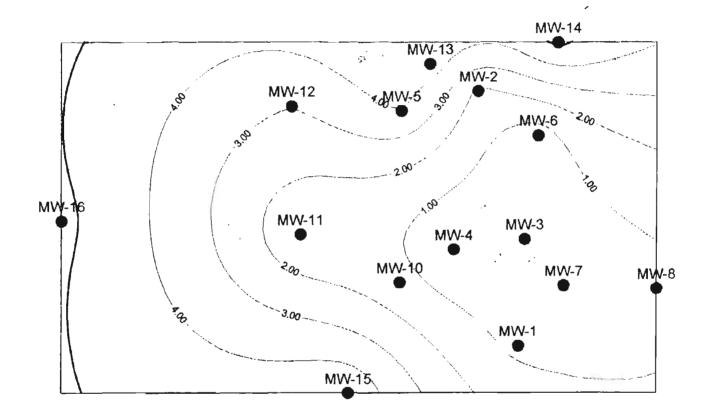
`.

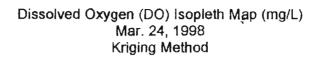

Dissolved Oxygen (DO) Isopleth Map (mg/L) Oct. 20, 1997 Kriging Method


. ..

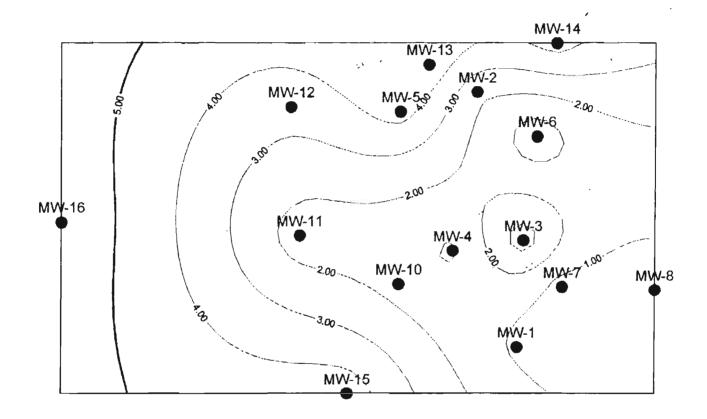


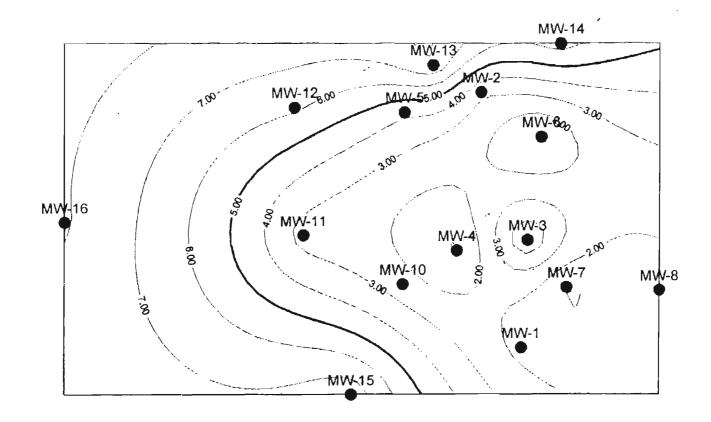

••





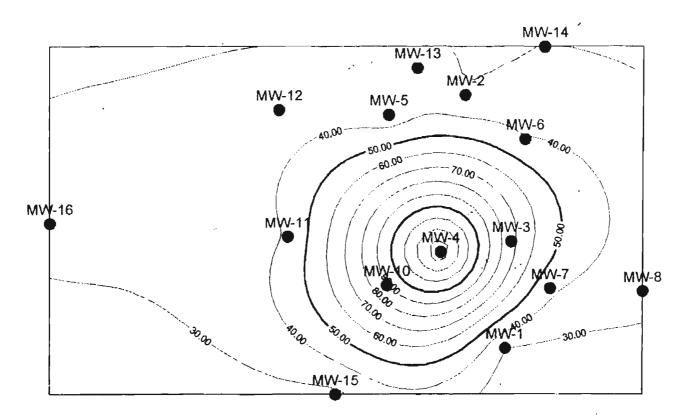
. · · ·





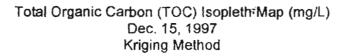
. . · *

Dissolved Oxygen (DO) Isopleth Mạp (mg/L) Apr. 14, 1998 Kriging Method

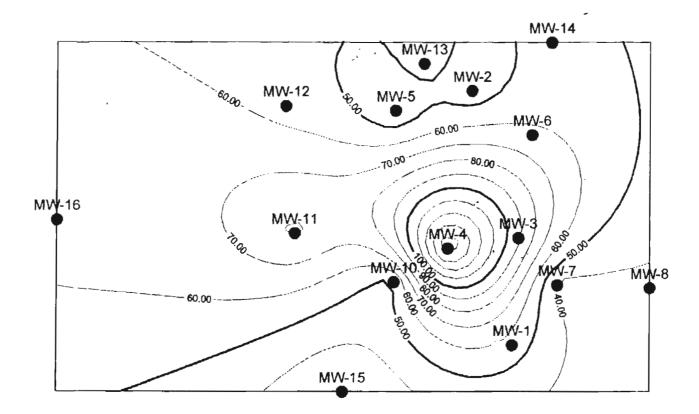


TOC ISOPLETH MAPS

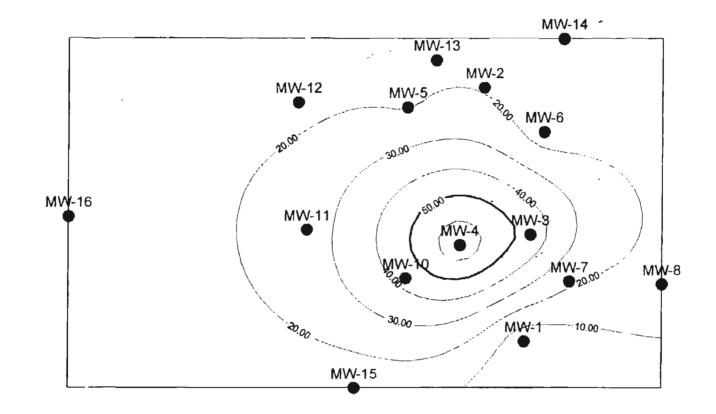
· · · · ·

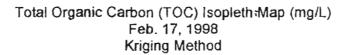

1

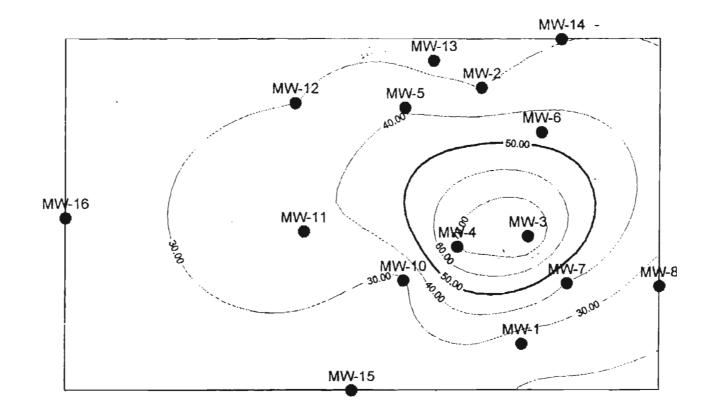
ç

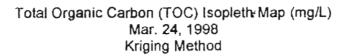

Total Organic Carbon (TOC) Isopleth Map (mg/L) Oct. 20, 1997 Kriging Method

.*

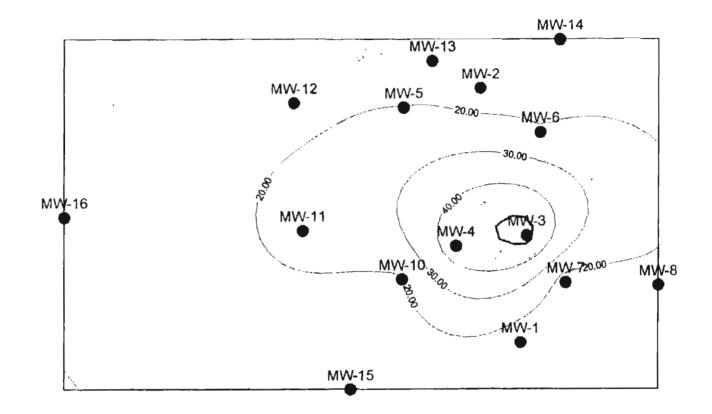


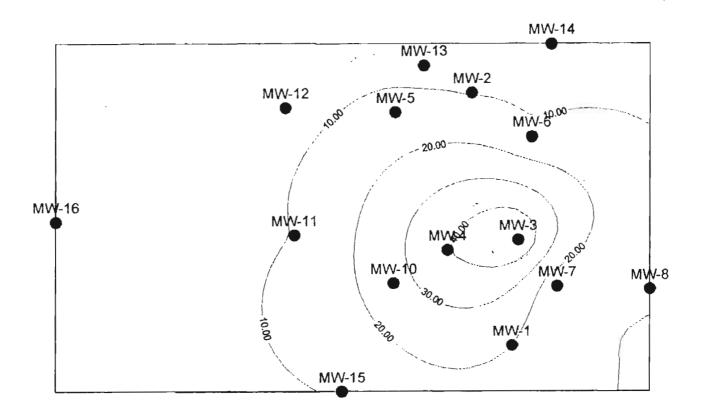

.

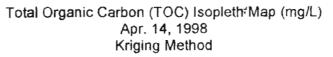

.



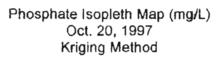
Total Organic Carbon (TOC) Isopleth Map (mg/L) Jan. 20, 1998 Kriging Method



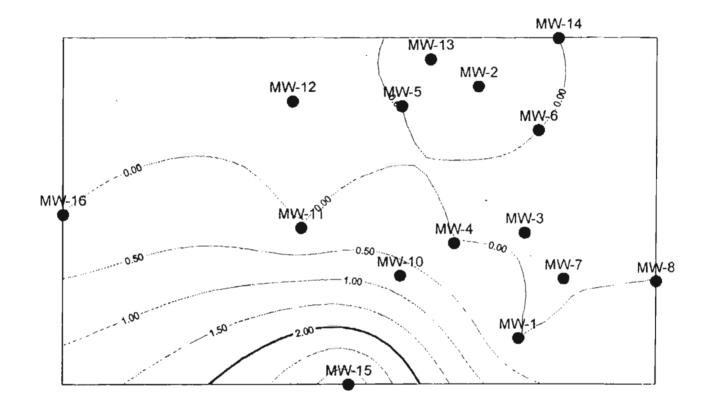


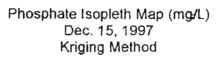


· · ·

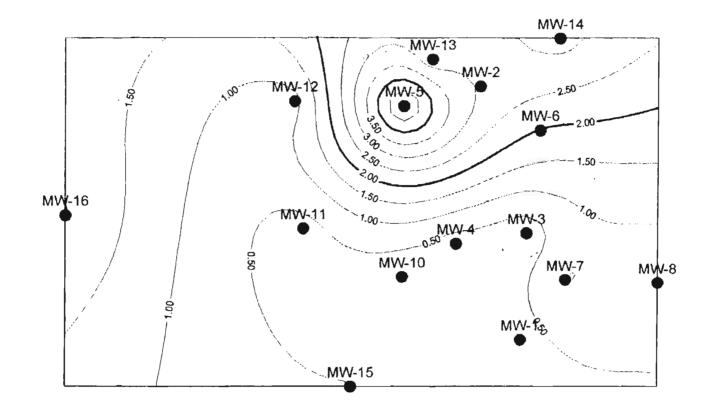

PHOSPHATE ISOPLETH MAPS

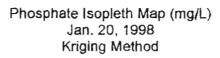
·

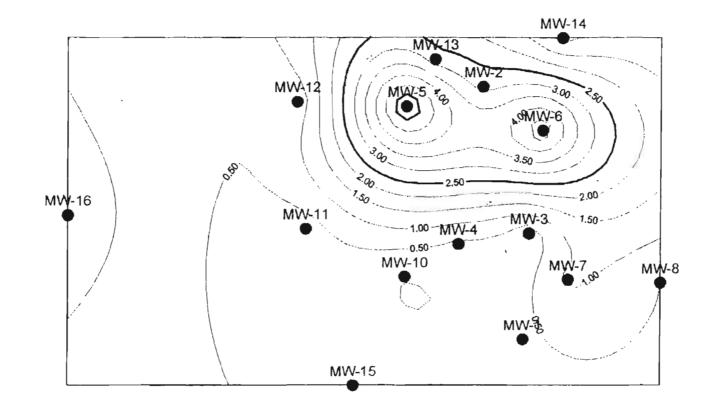

ч.

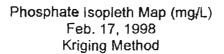

.

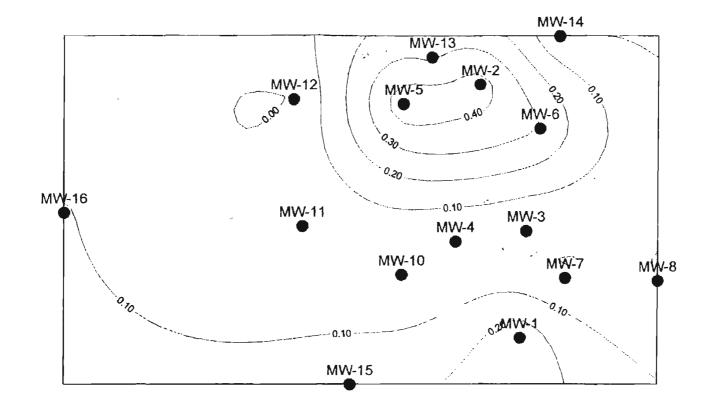
·

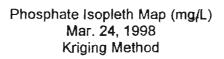


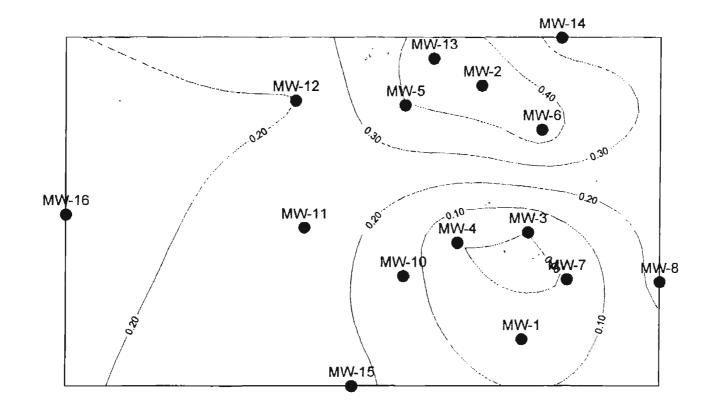

· · ·



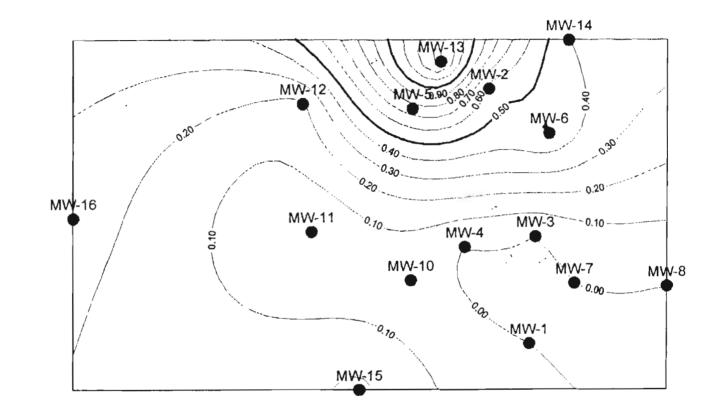

....




. •



. . · ·



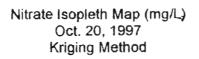
. . . .

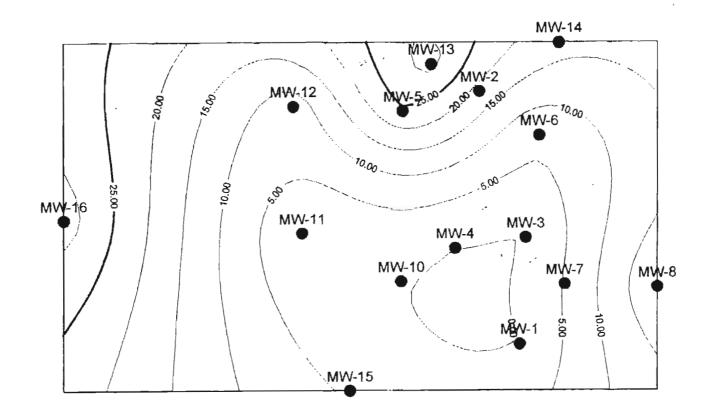
Phosphate Isopleth Map (mg/L) Apr. 14, 1998 Kriging Method

NITRATE ISOPLETH MAPS

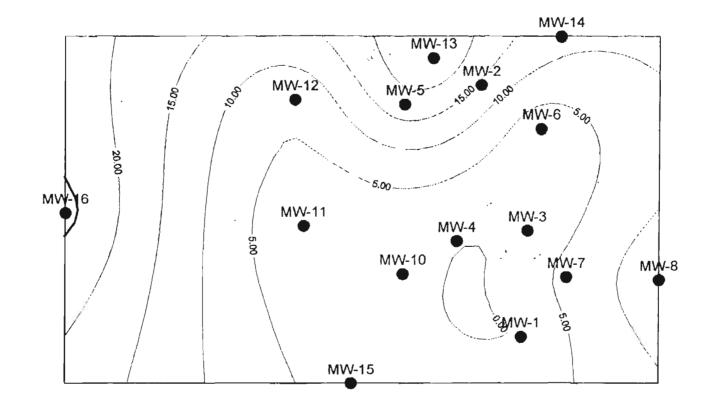
.

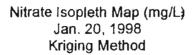
ኘ፦

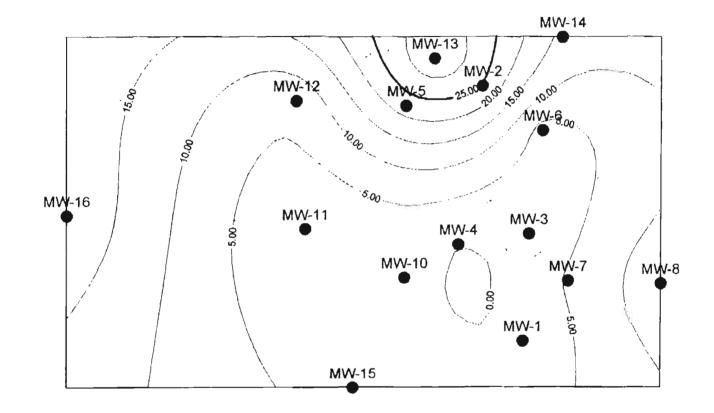

٠.

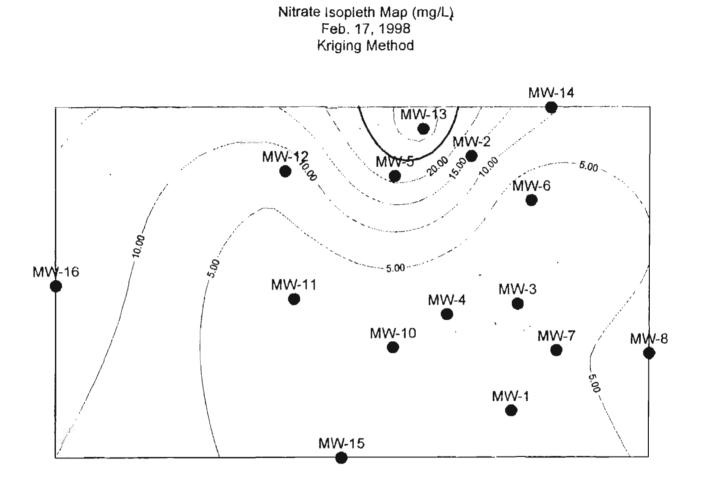

.

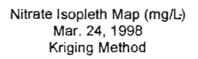
·.


.

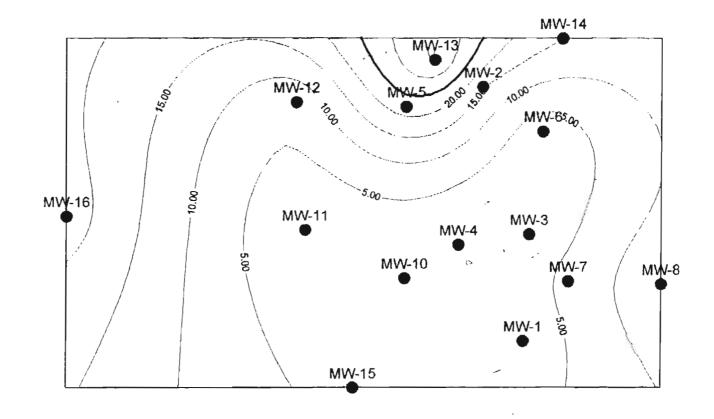

· .

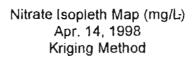



Nitrate Isopleth Map (mg/L), Dec. 15, 1997 Kriging Method

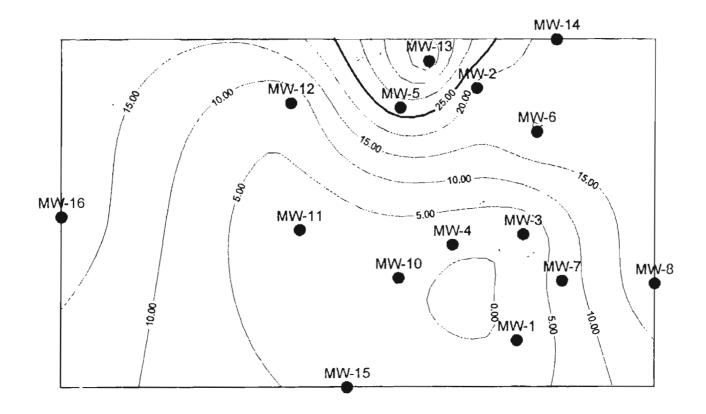


· · ·





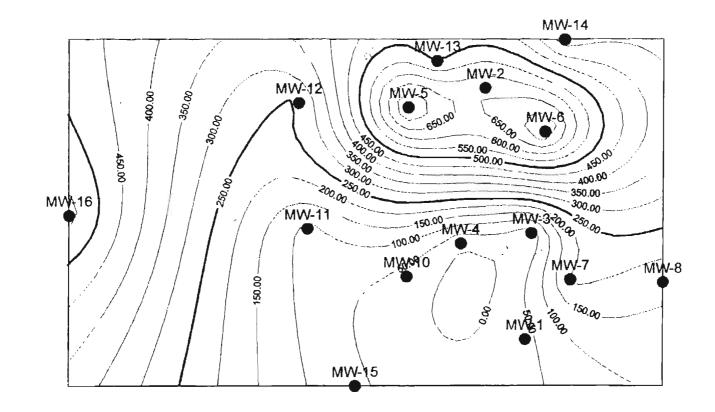
.

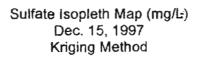


.*

...

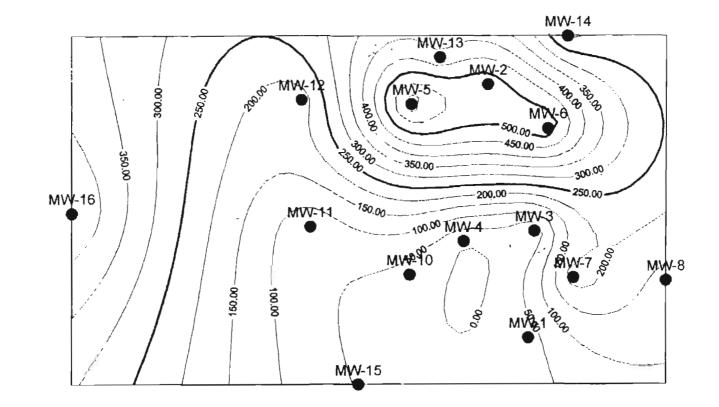
148

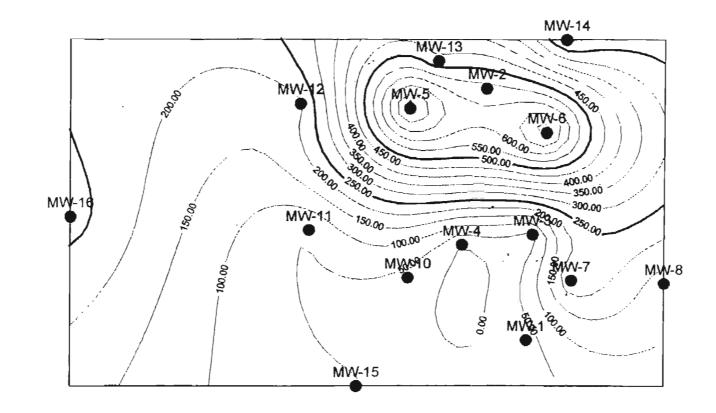

SULFATE ISOPLETH MAPS

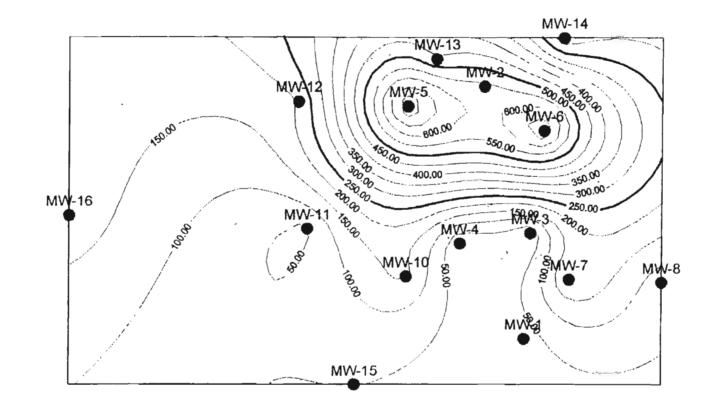

·

۰ ۲

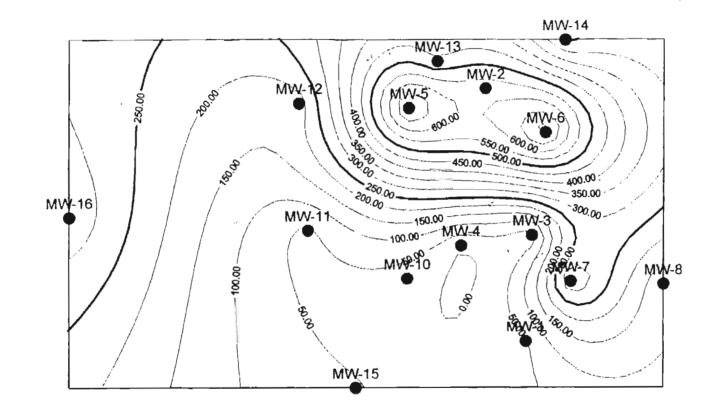
·


Sulfate Isopleth Map (mg/l=) Oct. 20, 1997 Kriging Method

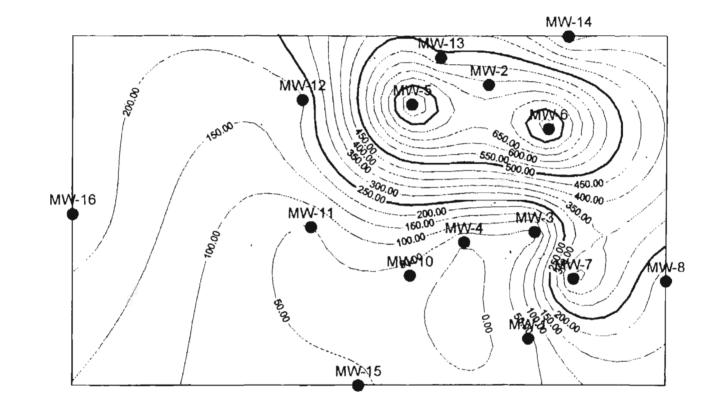



. ..

1


Sulfate Isopleth Map (mg/L) Jan. 20, 1998 Kriging Method

Sulfate Isopleth Map (mg/L) Feb. 17, 1998 Kriging Method 1



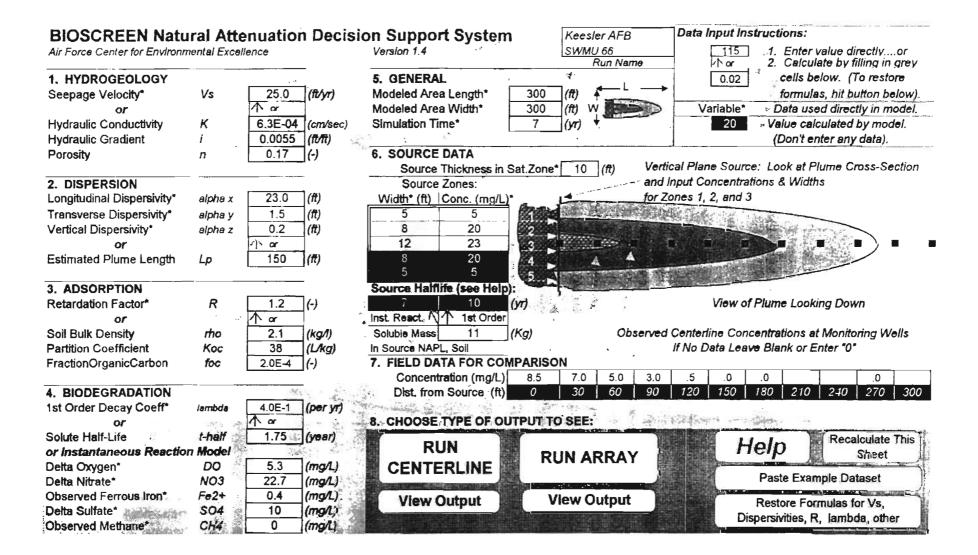
,

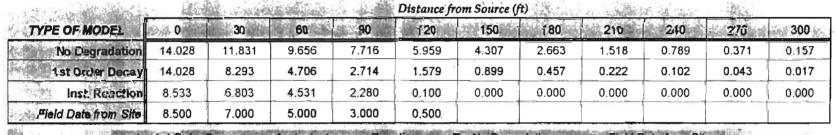
Sulfate Isopleth Map (mg/L) Mar. 24, 1998 Kriging Method

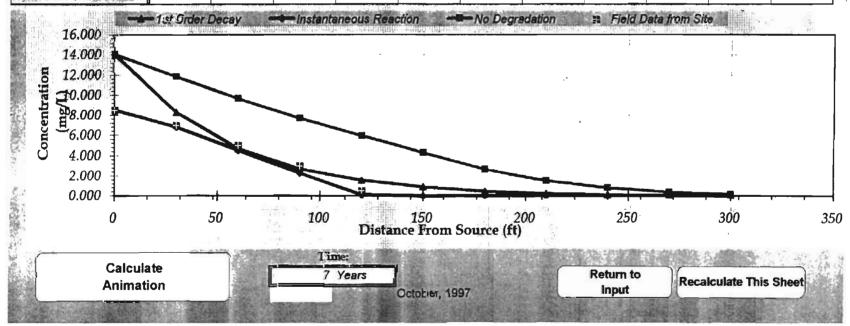
Sulfate Isopleth Map (mg/Ļ) Apr. 14, 1998 Kriging Method

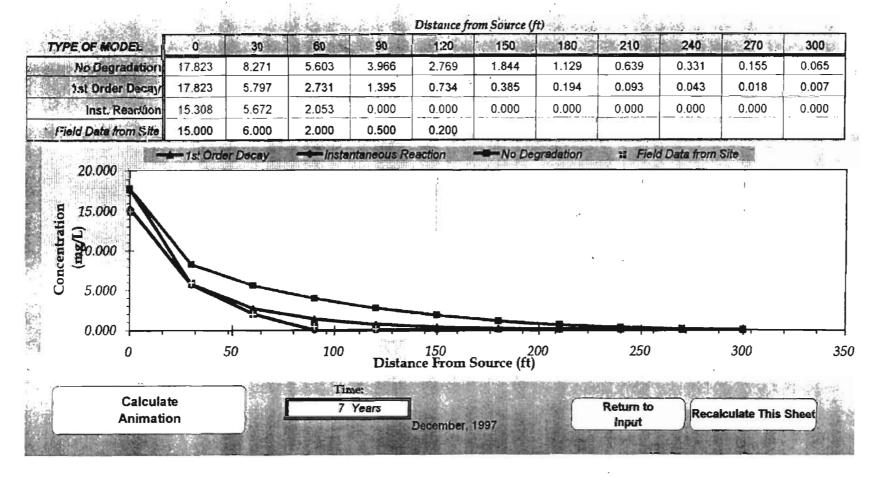
.

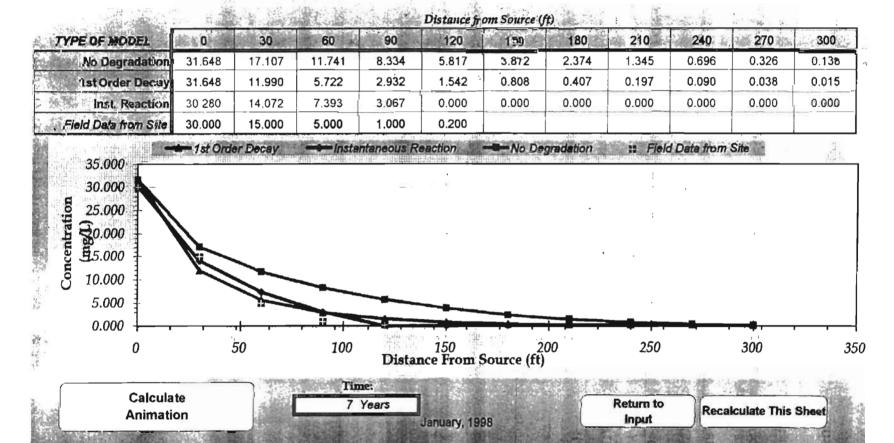
.

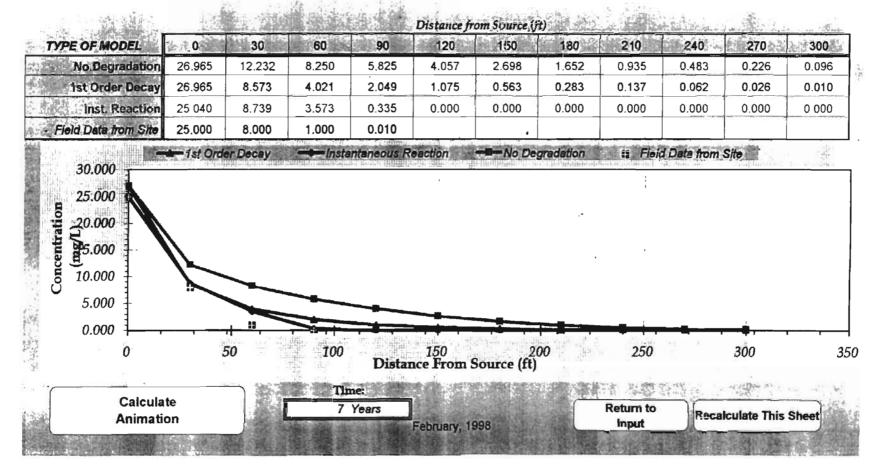

APPENDIX D BIOSCREEN OUTPUT – CALIBRATION

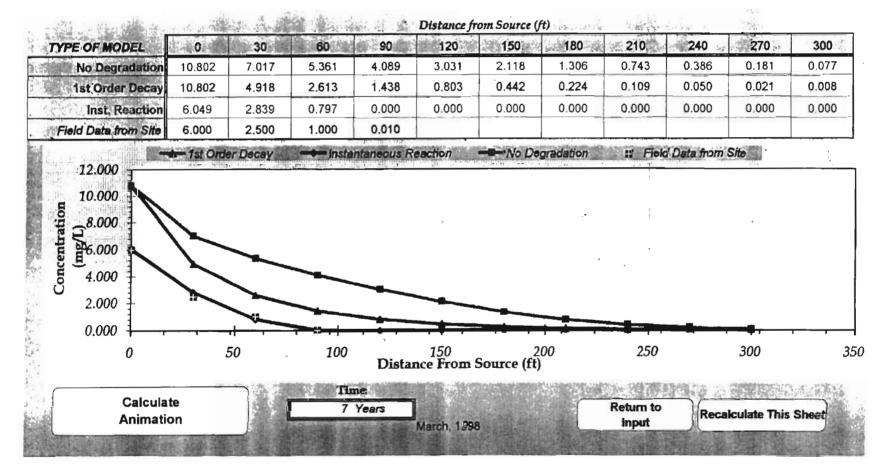

.

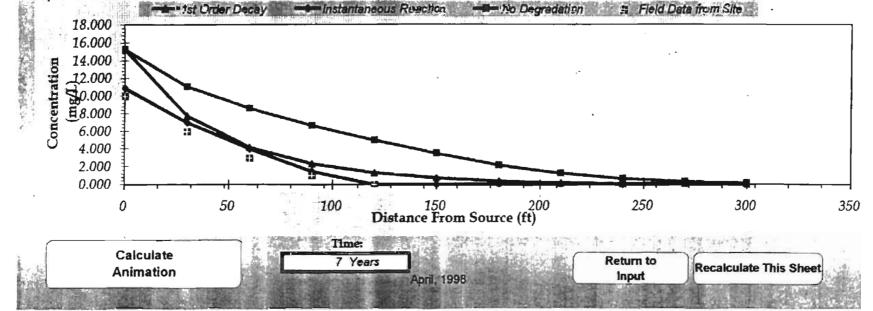

.

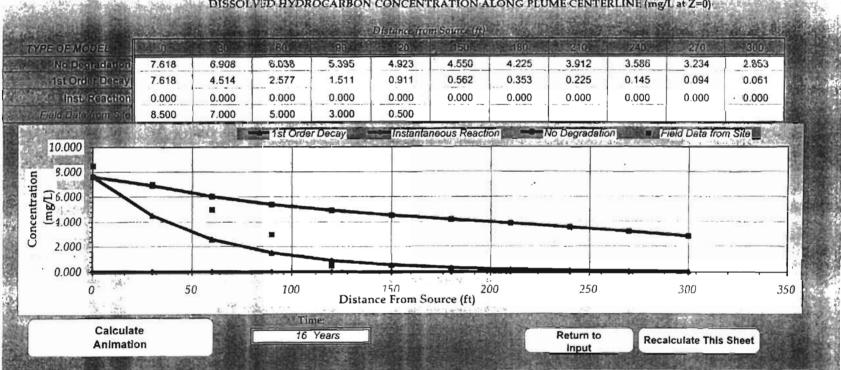

-

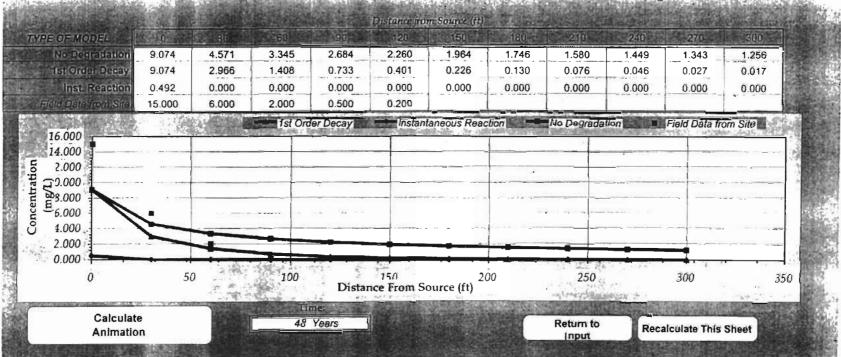

•

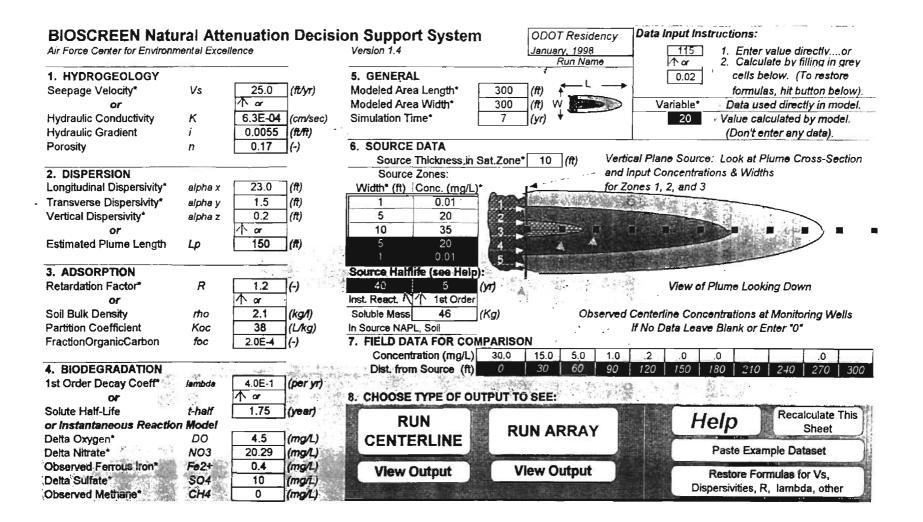




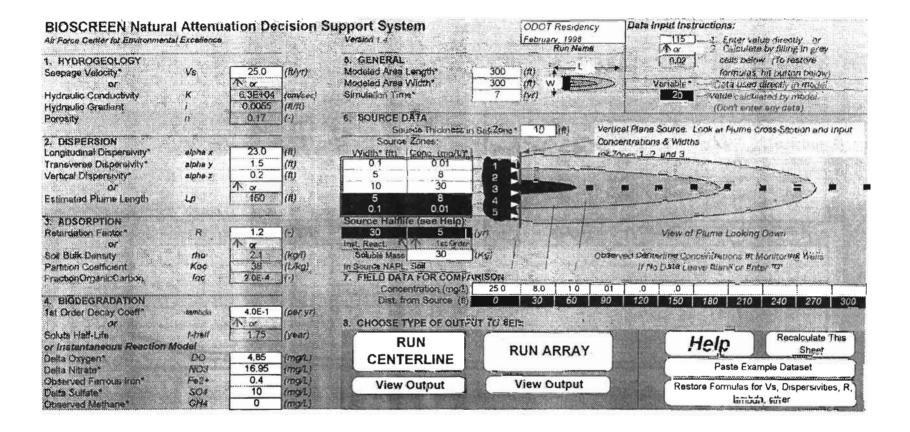


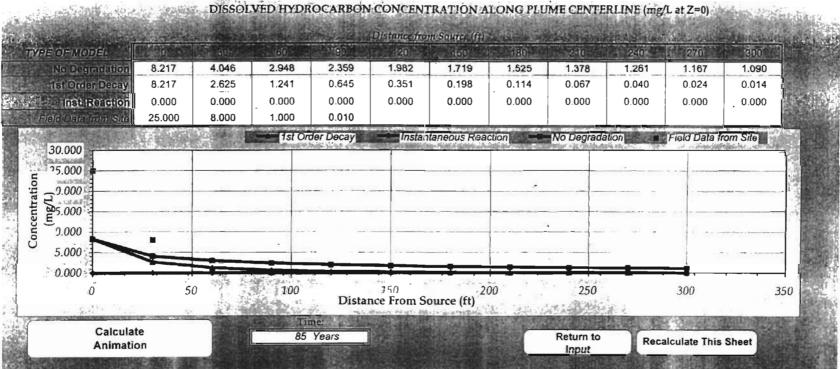

and a shirt and	. Distance from Source (ft)										
TYPE OF MODEL	0	30	60	90	120	150	-180	210	240	270	300
No Degradation	15.253	11.065	8.640	6,674	4.999	3.522	2.174	1.238	0.643	0.302	0.128
1st Order Decay	15,253	7.756	4.211	2.348	1.325	0.735	0.373	0.181	0.083	0.035	0.014
Inst. Reaction	10.912	6 990	4.030	1.472	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Field Data from Site	10.000	6.000	3.000	1.000	0.010			1			

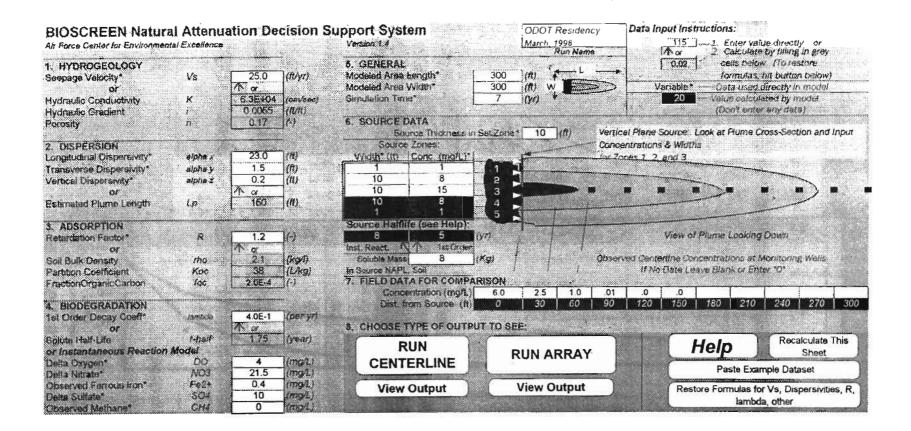

APPENDIX E BIOSCREEN OUTPUT – RUN #1

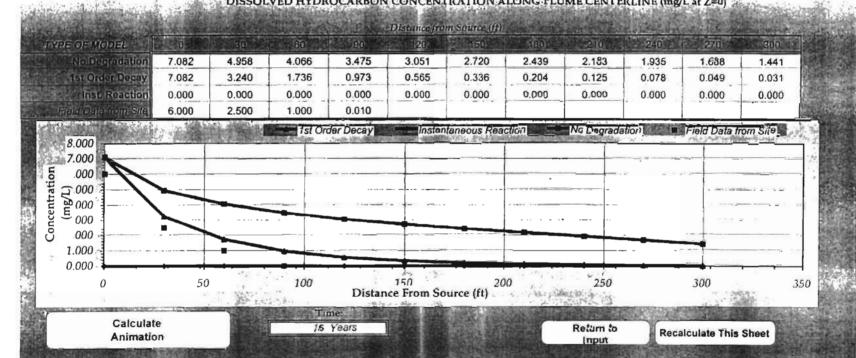

.

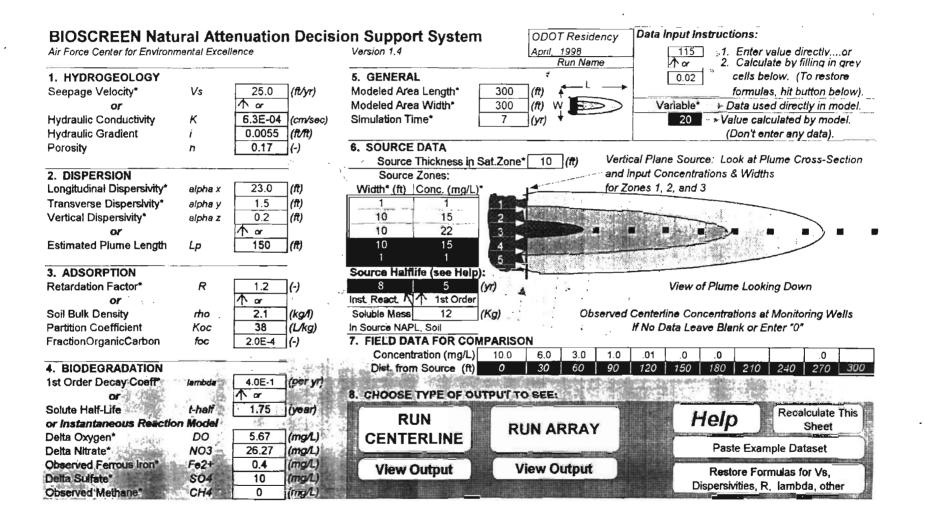
BIOSCREEN Natura	Attenuati	ion Decisi	on Supp	ort System		ODOI	Residenc	y	Data Input	Instructions:			101
Air Force Center for Environment	A.C			Version 1 4		Octobe		1144.1 114	é i			directly or	
							Run Namo	۲ <u>ــــــــــــــــــــــــــــــــــــ</u>	. !	tor 21	Calculate D	tilling in grey	
1. HYDROGEOLOGY	in gebre		_	5. GENERAL		See See			t i	0.02	ells bolow.	(To restore	
Seepage Velocity*	Vs	25.0	(11/41)	Modeled Area Length*	300	(h)	1			· · · · · · · · · · · · · · · · · · ·	umulas, hli	button below),	(ak)
or		Λa		Modeled Area Width*	300	(#)	N		Van	i sble*	ita used dir	ctly in model	
lydraulic Conductivity	к	6.3E+04	(cm/sec)	Simulation Time*	7	()+()	+			20 ////	ie calculate	d by model	
tydraulic Gradient	1	0.0055	(17/17)	100 C 100						(D	on't enter a	iy dala)	
Poroalty	л	0.17](-)	6. SOURCE DATA									
			-	Source Thickness	in Sat.Zone	* 10	(11)	R	Tane Source ations & W	took at Plum	e Cross-Se	ction and Input	
2. DISPERSION				Source Zones		1			1 2 and				
ongitudinal Dispersivity'	alpha x	23.0	(11)	Width* (ft) Conc. (mg/L	<u>p</u>	1-		-					-
Transverse Dispersivity*	alpha y	1.5	(h)	5 5	1	ď							
Vertical Dispersivity*	alpha z	0.2	(!!)	8 20	2	1							
or		1 or		12 23	3		E	1 1				••••	
Estimated Plume Length	Lp	150	(11)	8 20	4		. 1						
				5 5	5		1						
3. ADSORPTION				Source Haiflife (see Help)		•		<u>a</u>					
Retardation Factor*	R	1.2	(•)	7 5	(yr)				1	tiew at Plume	Looking£	lawn	
òr		Λœ	and the second second	Inst. React. 1st Op	der								
Soll Bulk Density	rho	2.1	(kg/t)	Soluble Mass 11	(Kg)	in the second	in the second	0.65		terline Concentra	C		
Partition Coefficient	Koc	38	(L/kg)	In Source NAPL, Soil		h sa t	2 1		If No	o Dete Leave Bia	ink or Enter	<i>.</i> 0.	
FractionOrganicCarbon	foo	2.0E-4	(-)	7. FIELD DATA FOR COM									
			_	Concentration (ing	1000 m	7.0	5.0	3.0	5	0		<u> </u>	
BIODEGRADATION			-	Dist, from Source	(ft) 0	30	60	90	120	150 180	210	240 270	
st Order Decay Coeff*	kembola	4.0E-1	(per yr)	and the second second									
or		<u>↑</u> ø		8. CHOOSE TYPE OF OUT	PUT TO SEE	:							
Solute Half-Life	t-half	1.75	(year)							Hel		Recalculate	
ar Instantaneous Reaction	Model			RUN CENTERLIN	E	RUN A	RRAY					Sheet	
lelta Oxygen*	DO	5.3	(mg/L)							-	Parte Eve	npie Dataset	-
Delta Nitrate*	NO3	22.7	(mg/1.)							, , , , , , , , , , , , , , , , , , ,	aste Exa	iple bataset	
Observed Ferrous Iron*	Fe2+	0.4	(mg/L)	View Output		View (Dutput			Restore Fo	mulas fo	r Vs, Dispersiviti	es F
Delta Sulfate*	\$0#	10	(mg/L)	and the second s	J							a, other	
Opserved Methane*	CH4	0	(mg/L)										and the second

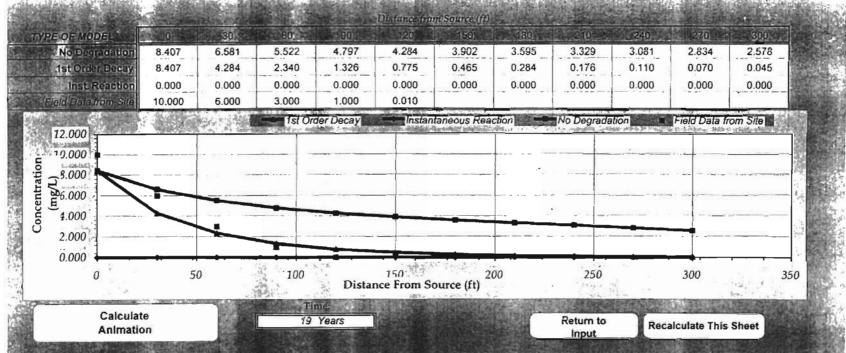


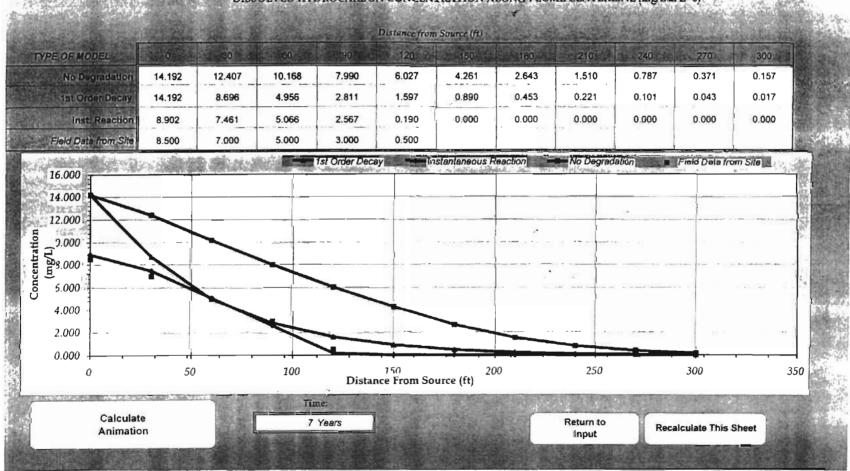

BIOSCREEN Natur			cision S	Support System		Dec. 19		,	Datə lı	1101092040	structions:	value directly or
		i im	.				Run Nam	на,		Aa		ate by filling in grey
I. HYDROGEOLOGY		1	Theory A	5. GENERAL	1 200		ι			0.02		How (To restore
Seepage Velocity*	Vs	25.0	(ft/yr)	Modeled Area Length Modeled Area Width*	300	(ft) (ft) W	-			/ariable		as, hit button below)
or			- · · · ·	Simulation Time*	300		Survivor.					ed directly in model.
lydraulic Conductivity	ĸ	6.3E+04 0.0065		Simulation (#1.43	1	_(yr) 1			1	20		culated by model.
Aydraulio Gradiant	1	0.0085	(@/ff)	6. SOURCE DATA					;kk		(DOUTE	nter any data)
Porosity	n	0.17](-)	Source Thickness i	- C-+ 7	* 10] <i>(ft</i>)	Vortin	ni Diana	Fouroo	Look at Olum	e Cross-Section and Inpu
DISPERSION			- C. A.	Source Zones;	n oecone	10	Jtin	20	intration	X.Z. 193383	Contraction of the second s	a cross-section and mpd
ongitudinal Dispersivity*	elpha x	23.0	(ff)	Width" (it) Conc. (mg/L)*	14	-		28 - C.	nes 1 2	111-121003.11	u ia	
Transverse Dispersivity*	alpha y	1.5	(ft)	5 0.01		1		·······	they they	A170.3	the second s	
Ventical Dispersivity*	alphe Z	02	(ft)	5 6	2		*****		·····			
Ar Ar	en,J110. 2	Ag	1.8	10 20	3							
Estimated Plume Length	LP	150	⁻ (ff)	5 6								
autodia i futo conger		1	74.66	5 0.01	5	7	 					the second s
ADSORPTION			-	Source Halfilfe (see Help):								
Retardation Factor*	R	1.2	(-)	20 5	(yr)	· 1				View	of Plume Look	ing Down
or		A a	1	Inst. React. A 1st Croser								
ioil Bulk Density	rtia	21	(KOM)	Soluble Mass 19	(Kg)		- Million - Mill	Observ	red Centi	edine C	oncentrations (A Monitoring Wells
Partition Coefficient	Кос	38	(LAKg)	In Source NAPL, Soil	<u> </u>				If No	Data L	eave Blank or:	Enter *0*
FractionOrganicCarbon	faç	2 OE-4](•)	7. FIELD DATA FOR COMP	Contraction of the second			<u></u>				
			a.	Concentration (mg/t.)		6.0	2.0	.5	.2	.0		
BIODEGRADATION				Dist. from Source (ft)	0	30	60	90	120	150	180 21	0 240 270 3
at Order Decey Goeff*	jambola	4.0E-1	(per yr)									
or	S. Mariana	1 a		8. CHOOSE TYPE OF OUT	PUT TO SE	E:						
Solute Half-Life	t-helf	1.75	(year)	RUN							Help	Recalculate This
or Instantaneous Reaction			-1		F	RUN A	RRAY			1	neip	Sheet
lelta Oxygen*	DO	5.15	(mg/L)	CENTERLINE							Paste F	xample Dataset
Jelta Nitrate*	NO3	16.8	(mg/L)								realt L	
Observed Ferrous Iron*	F82+	10	(mg/L)	View Output		View O	utput			Re	store Formulas	for Vs, Dispersivities, F
Jetta Stilfate*	\$04 CH4	0	(mg/L)	Contraction of the second							lam	bda, other
Doserved Methane*	CH4	U U	(morl)					1.2 C		Contraction of the local division of the loc		

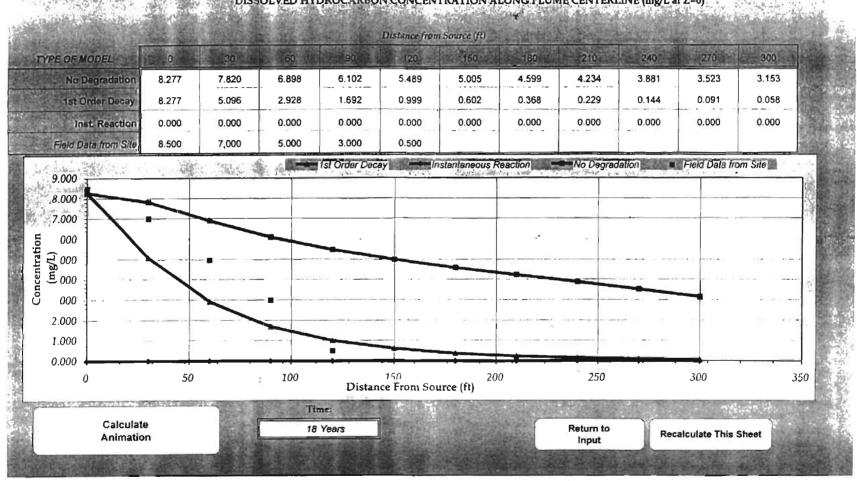


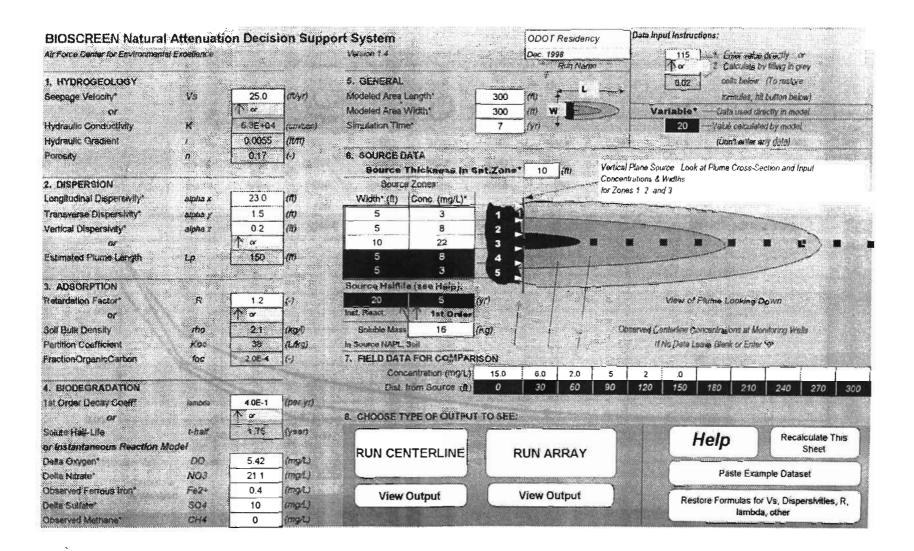


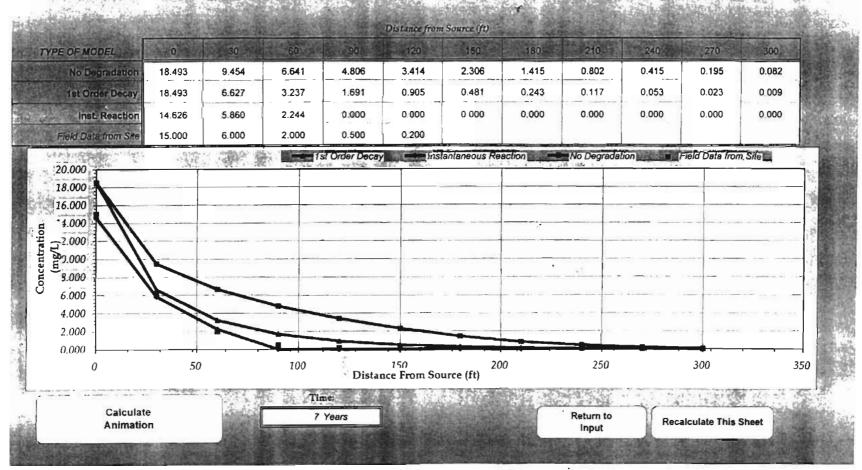

e of Monel	22010	14. 10. 1 0. 2 - 3	60	19[8]	120	150	180	210	240	270	300
No Deep dation	7.844	4.602	3.413	2.746	2.311	2.006	1.781	1.608	1.471	1.360	1.269
(st Order Decay	7.844	2.986	1.437	0.750	0.410	0.231	0.133	0.078	0.046	0.028	0.017
तिर्वाधनन्त्र संतत	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	• 0.000
field Data from Sita	30.000	15.000	5.000	1.000	0.200	of the balance of the			Carl Carl State of a local	Constant of the local data	
A State State State	Lake in the		ist Orde	r Decay	Instanta	neous Reactio	n n	vo Degradation	1	ield Data from	n Sile
35.000											
30.000							-				
5.000							·		-		
30.000				14							
E 5.000	_										
	- C - S							•			
2.000											
5.000											
0.000									-	-	
	50	0	100	in sent the station	150	2	00	250		300	
0	50		100	Distar	nce From Se	aurce (ft)	10	250	· ·	300	35
		2.4	1 1 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2	L'ISTUI	tee monton	barec (it)	19225	1 T. Charles in	Presta in m		1

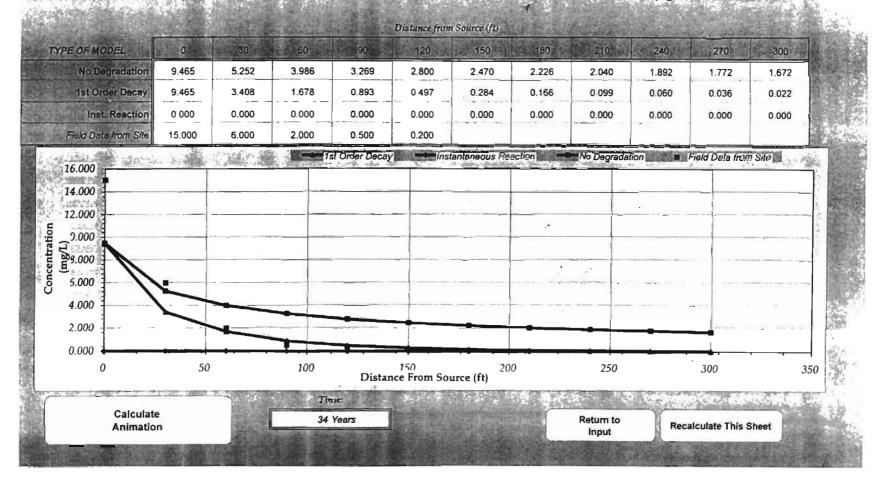


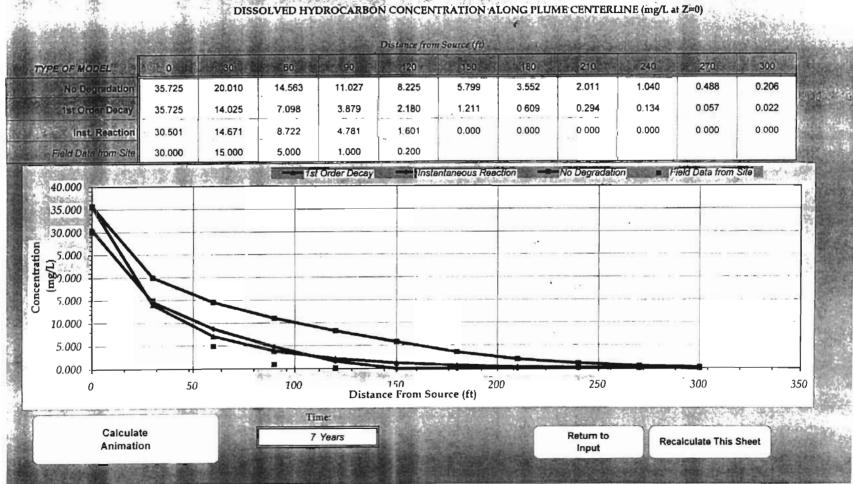

APPENDIX F BIOSCREEN OUTPUT -- RUN #2

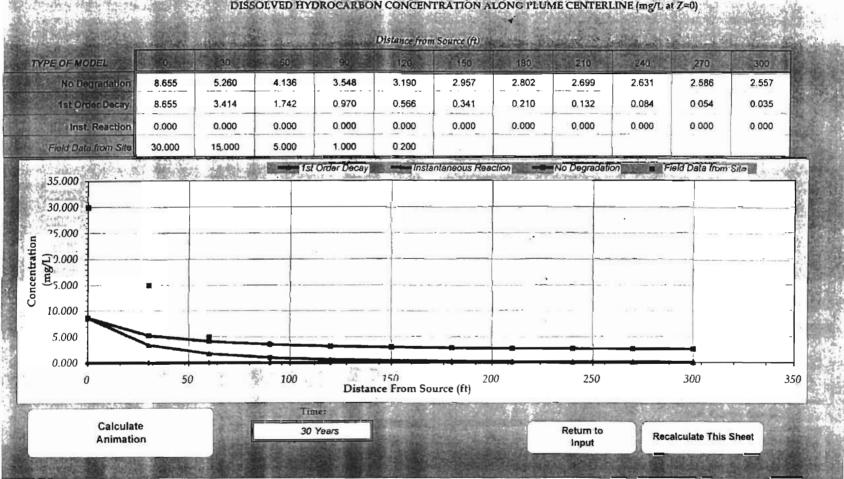

.


.


.

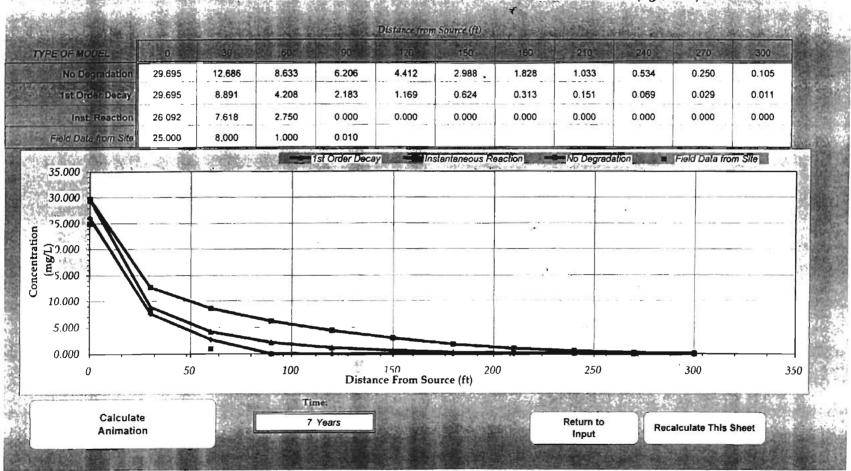

Data Input Instructions: **BIOSCREEN Natural Attenuation Decision Support System** ODOT Residency Version f.4 October, 1997 115 Enle value directly, or Air Force Center for Environmental Excellence Run Norrio Tor 2. Calculate by filling in grey cells below. To restore 5, GENERAL 0.02 1. HYDROGEOLOGY Modeled Area Length* 300 (t) formidas, hit bisten below) Seepage Velocity* Vs 25.0 (two) ar Modeled Area Width* 300 (#) W Variable* -Data used directly in model. 0/ 20 -Value calculated by model. 5.3E+04 (cm/sec) Simulation Time* 7 (11) к Hydraulic Conductivity (Don't enter any data) 0.0055 (用作) Hydraulic Gradient 1.50 6. SOURCE DATA 0.17 Porosity (.) n Vertical Plane Source: Look at Plume Cross-Section and Input Source Thickness in Sat.Zone* 10 (11) Concentrations & Widths Source Zones: 2. DISPERSION for Zones 1, 2, and 3 Width: (fi) Conc. (mg/L)* Longitudinal Dispersivity* alpha x 23.0 (#) 20 Transverse Dispersivity* alpha y 1.5 (4) 5 1 (11) 7 18 2 Vertical Dispersivity* alpha z 0.2 10 20 3 ar OF 18 Estimated Plume Length 150 (#) 4 Lp 5 20 5 Source Halflife (see Help): 3. ADSORPTION 10 5 View of Plume Looking Down R (YI) 1.2 Retardation Factor (\cdot) 1 or Inst. React 1st Drder 01 Observed Centerine Concentrations at Monitoring Wells (ko/l) Soluble Mass 16 (Ka) 2.1 Soil Bulk Density tho If No Deta Leave Blank or Enter "0" Partition Coefficient Koc 35 (L/kg) In Source NAPL, Soil 7. FIELD DATA FOR COMPARISON 2.0E-4 FractionOrganicCarbon for 61 5.0 3.0 .0 Concentration (mg/L) 7.0 .5 8.5 30 60 150 Dist. from Source (ft) 0 90 120 180 210 240 270 300 4. BIODEGRADATION (per yr) 1st Order Decay Coeff" lambda 4.0E-1 8. CHOOSE TYPE OF OUTPUT TO SEE: or 175 Solute Half-Life t-half (year) **Recalculate This** Help Sheet or Instantaneous Reaction Model RUN ARRAY RUN CENTERLINE (mg/L) Delta Oxvgen* 00 5.42 Paste Example Dataset NO3 21.1 (mg/L) Della Nitrale* Observed Ferrous Iron* Fe2+ 0.4 (mg/L) **View Output View Output** Restore Formulas for Vs, Dispersivities, R, SO4 10 Delta Sulfate* (mgA)lambda, other CH4 0 Observed Methane* (mgA)

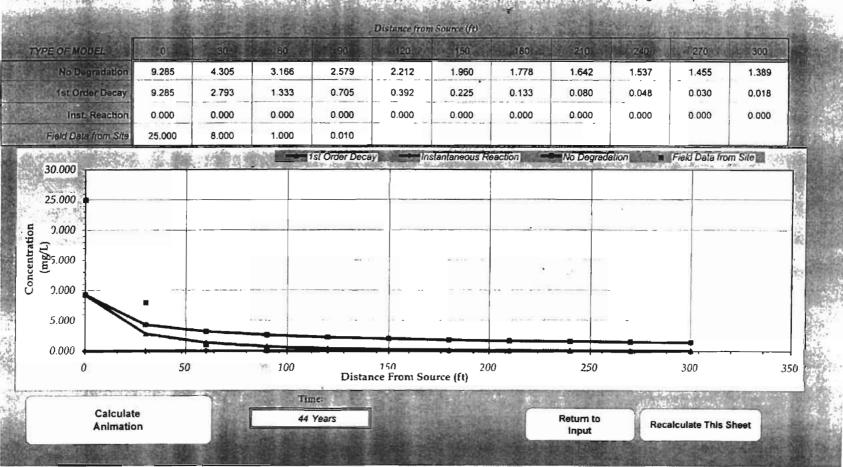




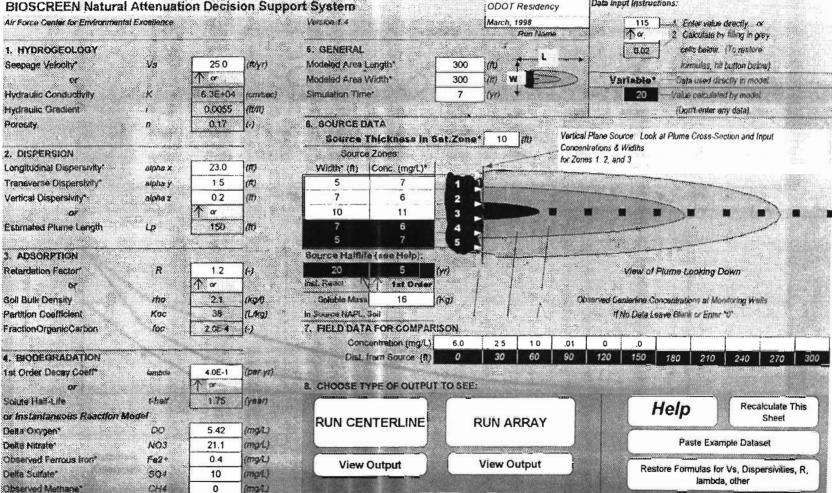
BIOSCREEN Natura	I Attenuati	ion Supp	ort System	ort System ODOT Resid				icy	Data II	put insti	ructions;				
Air Force Center for Environmen		Version 1.4	A CAN BE THE REAL OF A CANADA A CANADA A CAN A CANADA A C					115 Enter value directly of							
				1 (<u></u>				Fin Na	ne		for			filling in grey	
1. HYDROGEOLOGY			-	5. GENERAL	1						0.0			(To resione	· · · · · · · · · · · · · · · · · · ·
Seepage Velocity*	Vs	25.0	(ft/yr)	Modeled Area L	ength*	300	(ñ)	f	The second second				·····	button below)	<u></u>
or		1 α		Modeled Area V		300	(11)	₩	\geq	V	arimbl			ictly in model	
Hydraulic Conductivity	ĸ	6.3E+04	(contact)	Simulation Time	•	7	00	•			20	- / Colum	odunale	d by model	
Hydraulic Gradient	i	0.0055	(11/17)			CALC HOLDER				1		(Do	n'i enter si	ny dataj	
Poroalty	n	0.17	_(+)	8. SOURCE DJ				<u></u>	16.1		باربيتيك.	(Ch			
				Source T	hickness in	Sat.Zone	1	0 (#)	950C	ntrations		bok at Hiume	Cross-Se	ction and Input	
Z. DISPERSION				Source		1.1.1			That we want the	105 1. 2. 6				5 10	
ongitudinal Dispersivity'	alpha x	23 0	(11)	Width* (ft)	Conc. (mg/L)*		1								1.1.58298-021-0
Fransverse Dispersivity*	alpha y	1.5	(fft)	0.2	0.01	1	0					1000			
Vertical Dispensivity*	alpha z	0.2	(ft)	4	20	2									
or		1 or		12	55	3) 💻
Estimated Plume Length	Ĺρ	150	(1)	4	20	4			L					- mark	
				0.2	0.01	5	1				•				
3. ADSORPTION		_	→ .	Source Halfill		_	T		<u>~~~~</u> ~~	38 (
Retardation Factor*	R	1.2	6)	9	5	(w)	γ. γ				New	of Piume i.	ooking C	owa	
Qır		1 or		Inst. React.	1st.Orda	-	*		807						
Soll Bulk Density	tho	2.1	(Kg/I)	Soluble Mass	16	_(KG)	t	1 2		SSC 28228	See 200		85 - CC, 30 - CB	storing Wells	
Partition Coefficient	Koc	38	(Ling)	In Source NAPL, S			-	Ч. I.		7	It No Deb	e Loave Blan	ik or Enter	Y	
FractionOrganicCarbon	foc	2.06-4	10	7. FIELD DATA	Section of the section of the	1 montheast and		<u></u>	- produka -	<u> </u>	<u>ya n</u> uki	فديتاسعهم	Y	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
				and the second	untration (mg/L)	and a second	15	and the second second	1.0	2	0				
BIODEORADATION		· · · · · ·	-	Dist. f	rem Source (ft)	0	30	60	90	120	150	180	210	240 2	70 3
Ist Order Decay Coeff"	elocimel	4.0E-1	(per yr)												
or		<u>^ ~</u>		8. CHOOSE TY	PE OF OUTPL	IT TO SEE									
Solute Half-Life	t-half	1.75	(ysar)		1							Help		Recalcu	late This
ir Instantaneous Reaction		·	-	RUN CEN	TERLINE		RUN	ARRAY						Sh	eet
leita Oxygen*	00	5.42	(mg/L)									D	icto Evor	nple Dataset	
)elle Nitrate*	NO3	21.1	(mg/L)			-		U.W.				F.	ISIE EXA	inpre Dataset	
Observed Ferrous Iron*	Fe2+	0.4	(mg/L)	View (Dutput		View	Output			R	estore For	mulas for	Vs, Dispers	wities R
Selta Sulfate*	SO4	10	(mg/L)			and the second								a, other	
Observed Methane*	CH4	0	(mg/L)								-		Contraction of the local division of the loc		

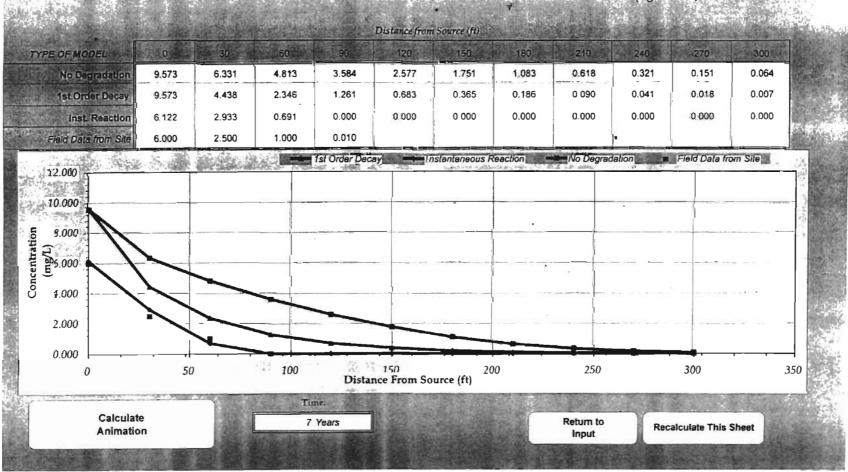
<u>*</u>

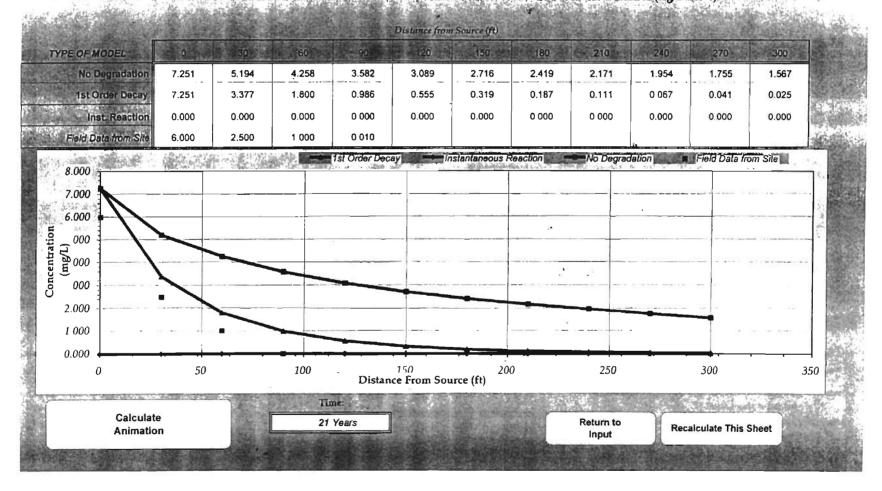



A 135 2. : 注意聞い、別にも、実施など言言

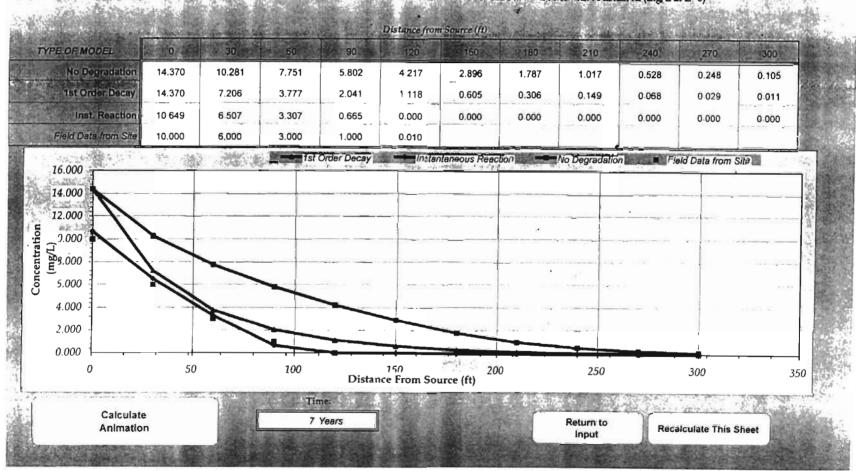
186

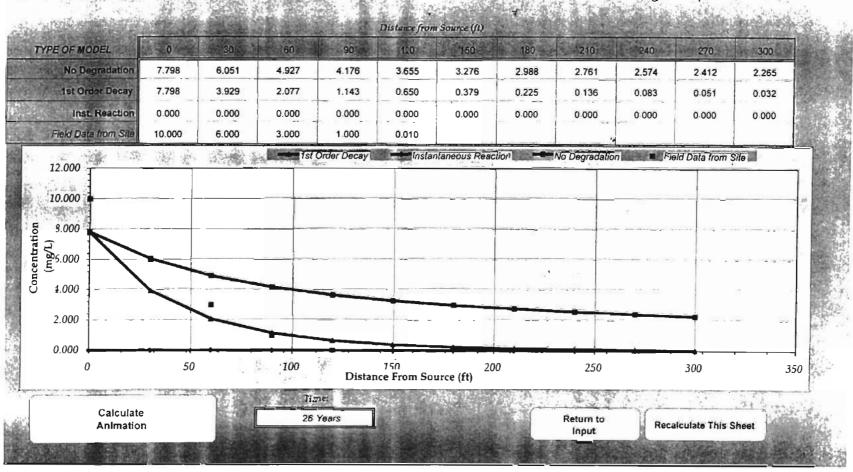

BIOSCREEN Natura	I Attenuati	ion Decisi	on Supp	ort System		ODOT	Residency	Data Inp	Data Input Instructions:					
Air Force Center for Environment	The second second second second	Version 1.4					115 - Enter value directly or							
			200 002	100 100 100 100 100 100 100 100 100 100			Run Name		100000000000000000000000000000000000000	e by filling in gray				
t. HYDROGEOLOGY			_	5. GENERAL		_ *	L			w. (To restore				
Seepage Velocity*	Vs.	25.0	(ft/yr)	Modeled Area Length*	300	(11)	f.		iormulas	hit button below)				
or		N a		Modeled Area Width*	300	(ff)		> 🗸 🗸		directly in model				
lydraulic Conductivity	K	6.3E+04	(cm/sec)	Simulation Time*	7	(yr)	•		20Value calcu	lated by model.				
tydraulic Gradient	1	0.00\$5	(11/17)						(Qon't ente	n eny data)				
Porosity	n ⁱ · · · ·	0.17	Θ	8. SOURCE DATA						adama da anti-spanna				
1.000				Source Thickness I	n 8at.Zone	10	11110003.0000000	ertical Plane Soi oncentrations &	irce Look at Plume Cross	-Section and Input				
DISPERSION				Source Zones			000000000000000000000000000000000000000	r Zones 1, 2, an						
ongitudinal Dispersivity*	alpha x	23.0](ff)	Width* (#) Conc. (mg/L)	*	pt-			The second s					
Fransverse Dispersivity*	alpha y	1.5]#	0.01 0.01	1	1			and the second s	State of the second				
/ertical Dispersivity*	alpha z	0.2	(#)	3 8	2				and the second s	· · · · ·				
or		1 α		10 37	3									
Estimated Plume Length	Lþ	150	(#)	3 8	4		+		and the second					
				0.01 0.01	5	4				and the second se				
ADSORPTION			_	Source Halfille (see Help).	_	1		17. ¹⁰	B	1. S.				
Relardation Factor*	R	1.2	(-)	20 5	(Yī)				View of Philipe Lookin	д Дажт				
Of		or		Inst. React. 1 1st. On			1	or strenk is						
Soll Bulk Density	tho	2.1	(Kg/l)	Soluble Mass 16	(Kg)		· ,		plarine Consentrations at					
Partition Coefficient	Koc	36	(LANG)	In Source NAPL, Soil	/	. 1	1		No Data Leave Blank or El	nter "O"				
ractionOrganicCarbon	foc	2.0E-4	0	7. FIELD DATA FOR COMP	ARISON				·					
				Concentration (mg	22.24 in the second	8.0	- minimul-	01 0	.0					
BIODEGRADATION			4	Dist. from Source	(i) O	30_	60	90 <u>120</u> _	150 180 21	0 240 270 3				
st Order Decay Coeff*	lambda	4 DE-1	(per yr)	Statement of the Owner water										
or		Ϋ́α		8. CHOOSE TYPE OF OUT	PUT TO SEE:				-					
lolute Half-Life	t-hatt	1.75	(ysar))				Heip	Recalculate This				
r Instantaneous Reaction i	Model		_	RUN CENTERLINE	± P		RRAY		incip	Sheet				
elts Oxygen*	00	5.42	(mg/L)						Dente	un mole Datas et				
elle Nitrate"	NÖ3	21.1	(mgL)	ALCO AND AND					Paste E	xample Dataset				
Observed Ferrous tran*	Fe2+	0.4	(mg/L)	View Output		View C	utput		Restore Formulas	for Vs, Dispersivities, R				
Selfa Sulfate*	SQ4	10	(mg/L)							bda, other				
Observed Methane*	CH4	0	(myL)											



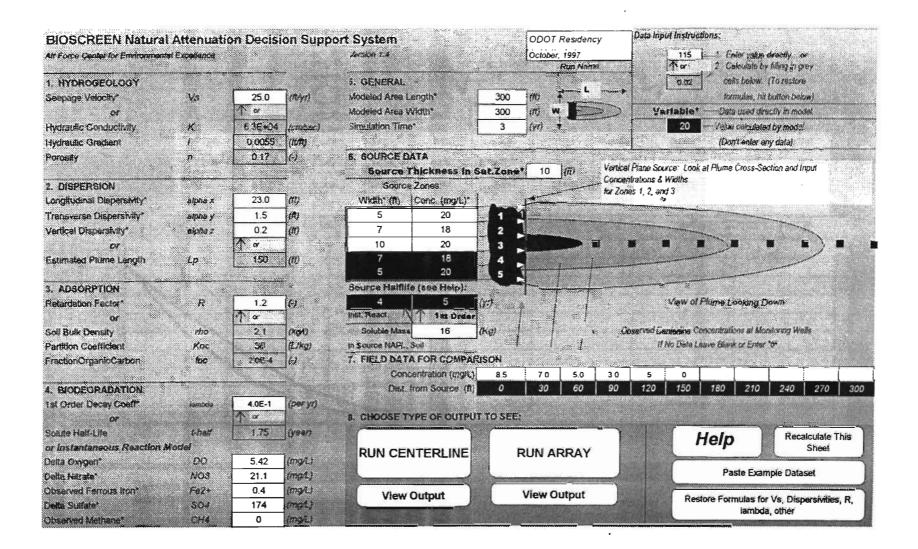

DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/L at Z=0)

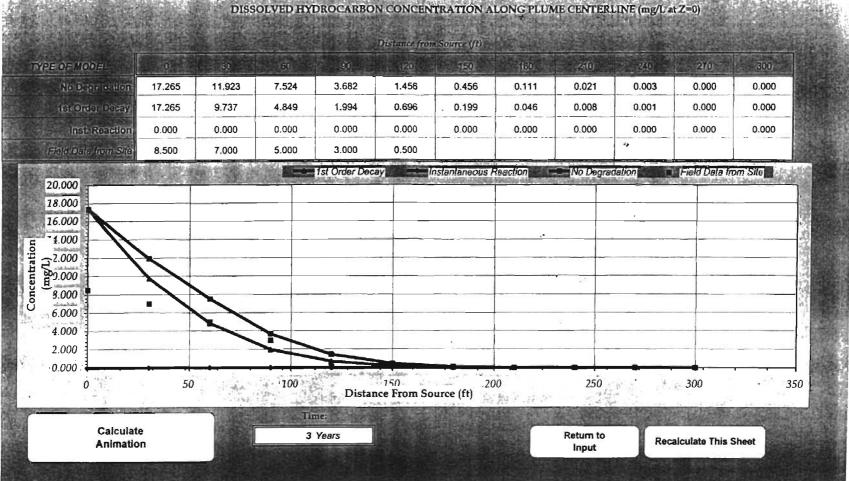
BIOSCREEN Natural Attenuation Decision Support System

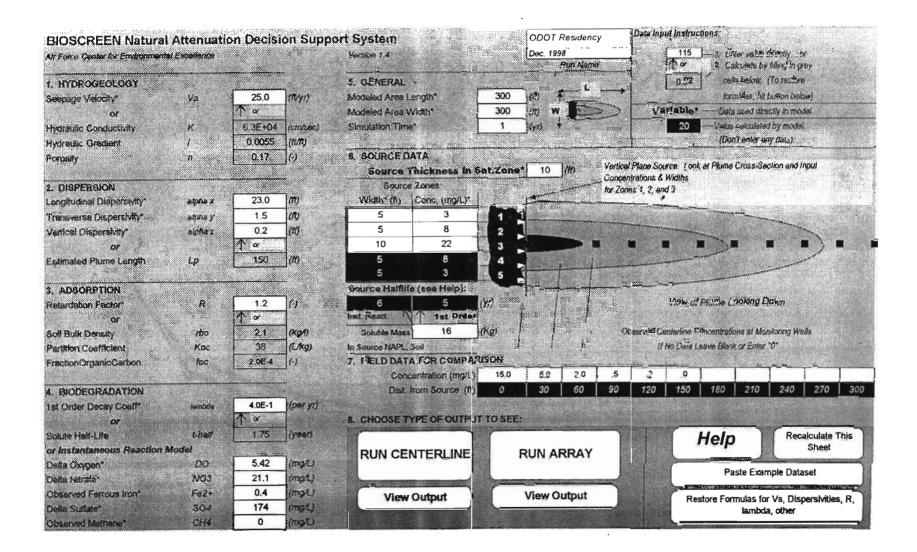


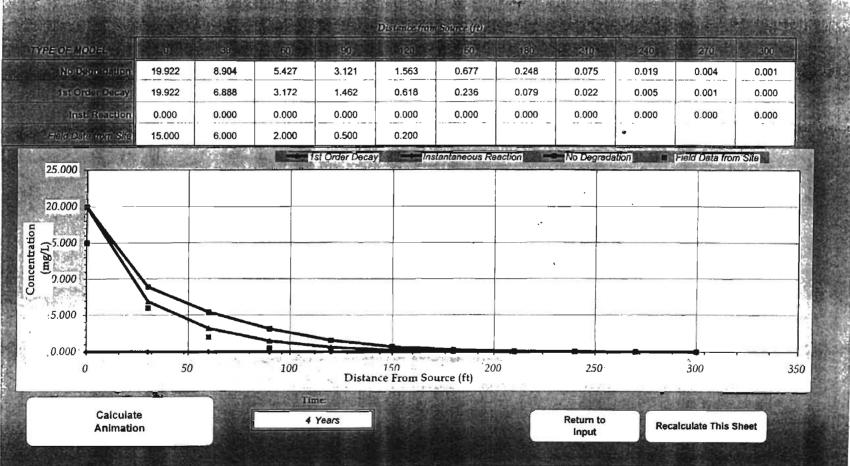

Data Input Instructions:

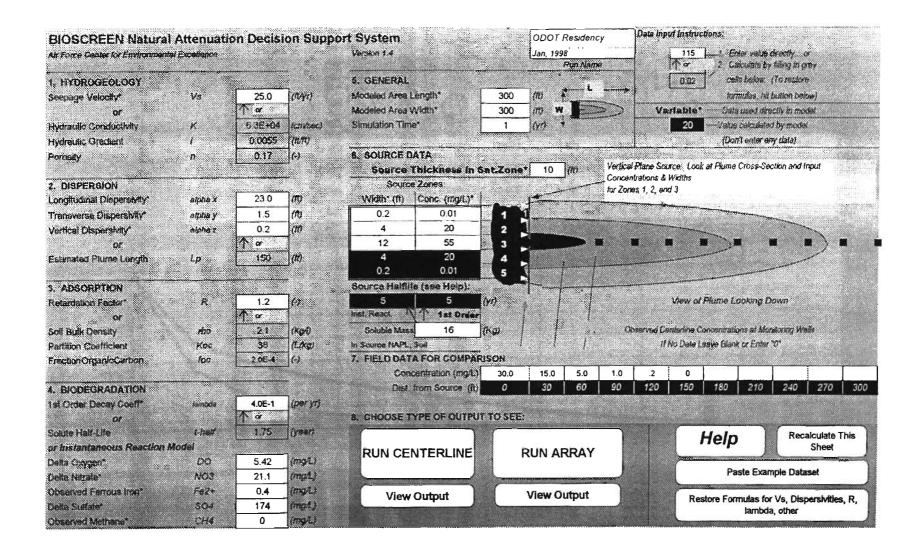
BIOSCREEN Natural Attenuation Decision Suppo				ort System			,ODOT	Residen	су	Data Inpi	nt Instruct	tons		in de la com	
Air Force Center for Environmen	A REAL PROPERTY AND A REAL			Version 1.4				115 Enter value directly or							
			_10 M	the second of				Run Narr	NP		1) ar	2 Calci	dale by h	lling in gray	
I. HYDROGEOLOGY				5. GENERAL	•		î	1			0.02	cells !	Notex (1	o restore	
Seepage Velocity*	Vs	25.0	(tt/yr)	Modeled Area Longth*		300	(ft)	Ť		. <u> </u>		tormu	las, hit bi	ition below).	
or		Λa		Modeled Area Width*		300	(m) W		\geq	Va	fable"		sed direct	ly in model	· · · ·
lydraulio Conductivity	ĸ	6 3E+04	(cn/sec)	Simulation Time*		7	640	+			20	—Value ce	iculated L	iy model	
tydraulic Gradient	4.	0.0055	(1071)									(Don't e	nter any	dala)	
Poroedy	n	0.17	(+)	8. SOURCE DATA											
			_	Source Thickne	ss in 6	et.Zone	* 10	(11)	2.2.2	Plane Sou Iretions & I		at Plume Cri	oss-Secti	on and Input	
. DISPERSION				Source Zones:					***	is 1 2 and					
ongitudinal Dispersivity'	atpha x	23.0	(17)	Width* (ft) Conc. (r	ng/L)*		1	,					wett 114		Materia
Fransverse Dispersivity*	alpha y	1.5	(#)	5 8	3	1	1							Line solution	000000000
ertical Dispersivity*	alpha z	02	(#)	6 1	18	2								~	
or		1 or		10 1	8	3					1 1			•)	
Stimated Plume Length	Lp	150	(11)	6 1		4		, 1				8			
			and and a	5 8		5		1							
. ADSORPTION				Source Halfille (see H	and a second										
etardation Factor*	R	1.2	0	10 5		(71)	. 1	1	4 · · ·	4 (¹	View of I	Рите Loo	king Dai	¥77	
64'		¶ or `		· · · · · · · · · · · · · · · · · · ·	Order										
oll Bulk Density	rho	2.1	(AQI)	Solubie Mass 1	6	KØ	t		Öö	States and the second	2447. Startes	ncuntrations			
artition Coefficient	Koc	38	(L/kg)	In Source NAPL, Soil		1	e de la composición de	× 1		, its	fo Data Le	avə Ellank or	Enter V	•	
ractionOrganicCarbon	foc	2.08-4	6	7. FIELD DATA FOR C	·····	SON		,	,	<u> </u>		<u></u> ,	~		
				Concentration		10.0	5.0	3.0	1.0	.01	.0				
. BIODEGRADATION			-	Dist. from Sou	rce (ff)	0	30	60	90	120	150	180	210	240 270) 3
st Order Decay Coeff*	ebomel	4.0E-1	(per yr)												
07		Ϋ́α		8. CHOOSE TYPE OF	DUTEUT	TO SEE									
loiute Hati-Life	t-haif	1 75	(ysar)								F	lelp		Recalculat	e This
Instantaneous Reaction			÷	RUN CENTERL	INE			RRAY			'	quer	1	Shee	t
aita Oxygen*	00	5.42	(mg/L)								C		E		
elta Nitrate*	NO3	21.1	(mg/L)			-						Paste	Examp	le Dataset	
Ibserved Ferrous Iron*	Fe2+	0.4	(mg/L)	Vlew Output			View O	utput			Ber	ere Ferrer	lao for l	s, Dispersivit	
elte Sulfate*	SØ4	10	(mg/L)				-				Rest		ambda,		ies, R,
bserved Methane*	CH4	·0	(mg/L)								-	-			

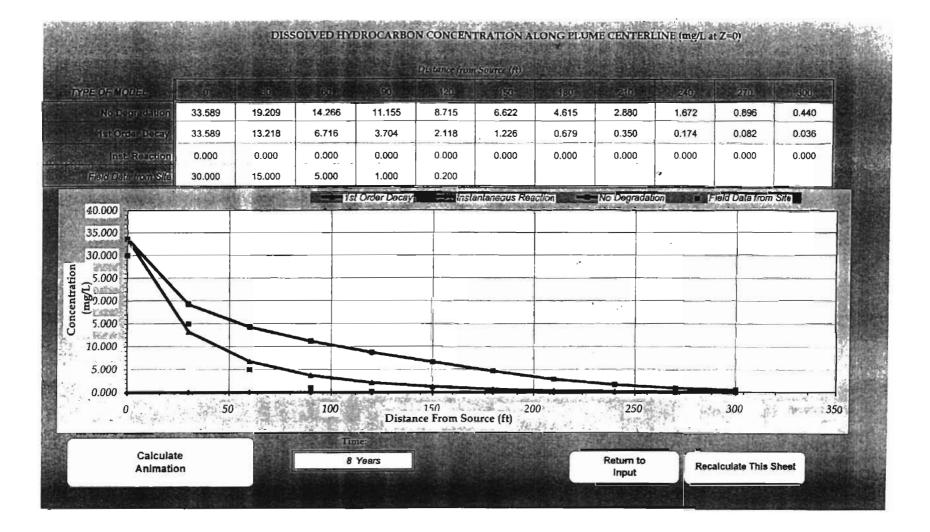


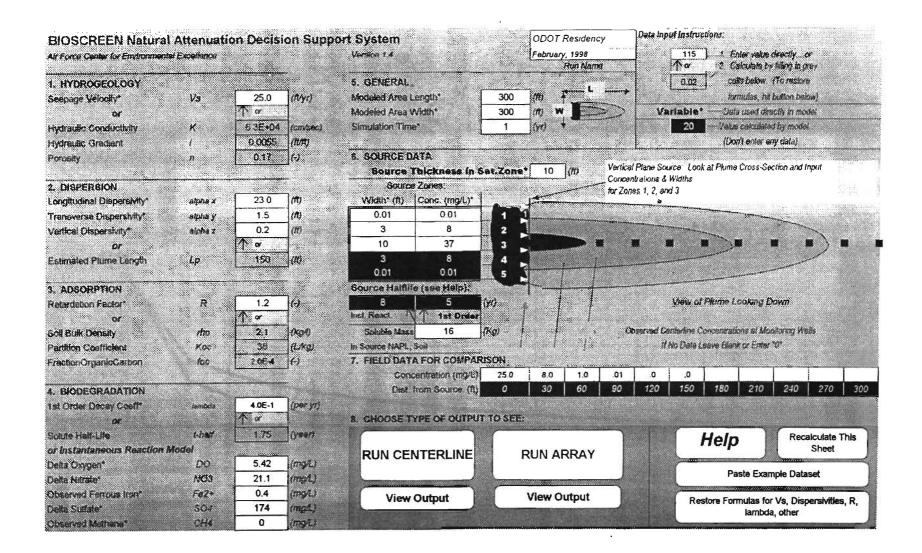


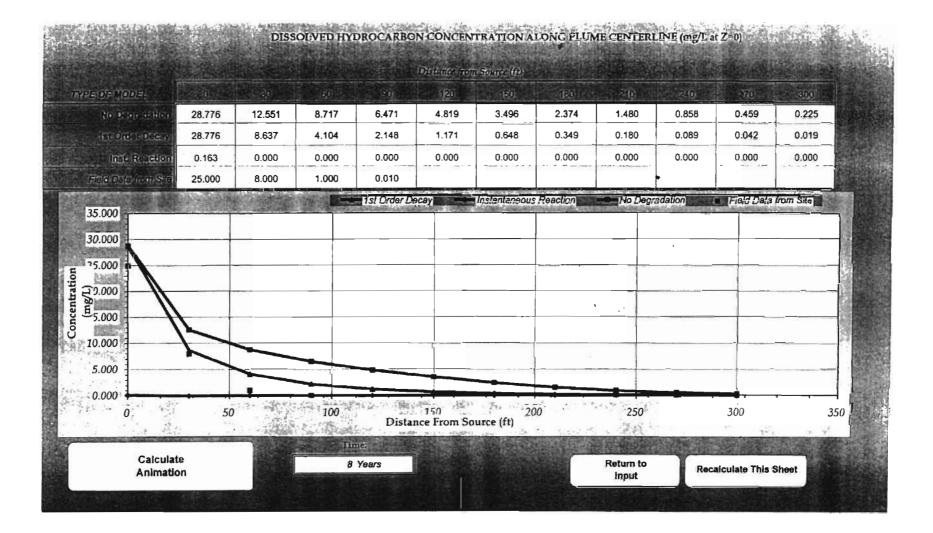

APPENDIX G BIOSCREEN OUTPUT – RUN #3

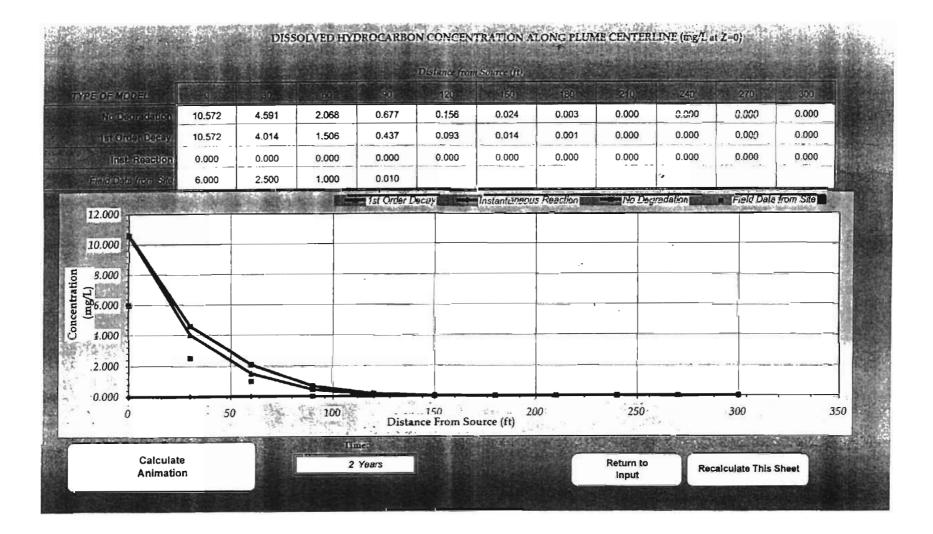

.

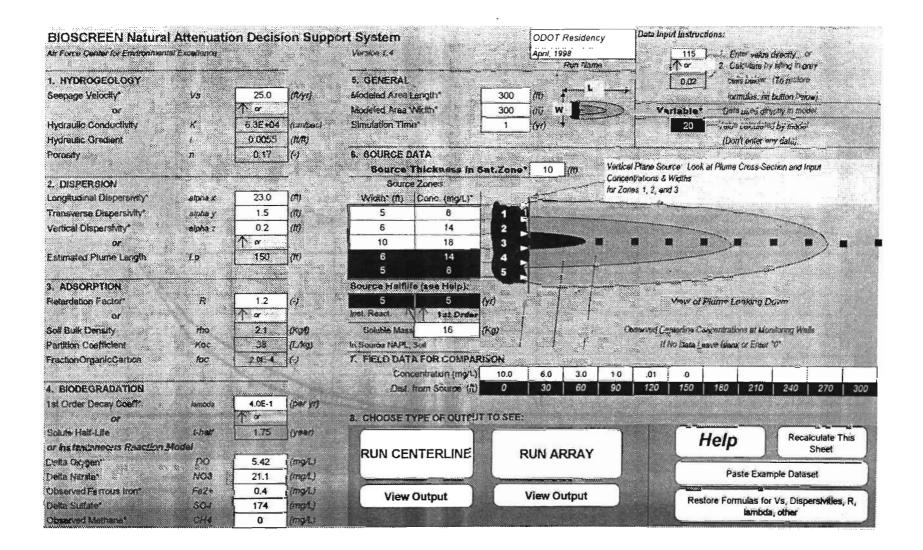

.

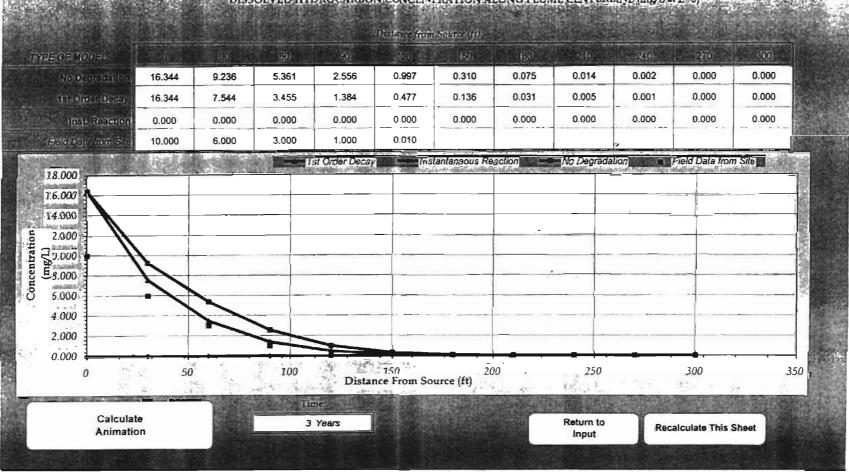








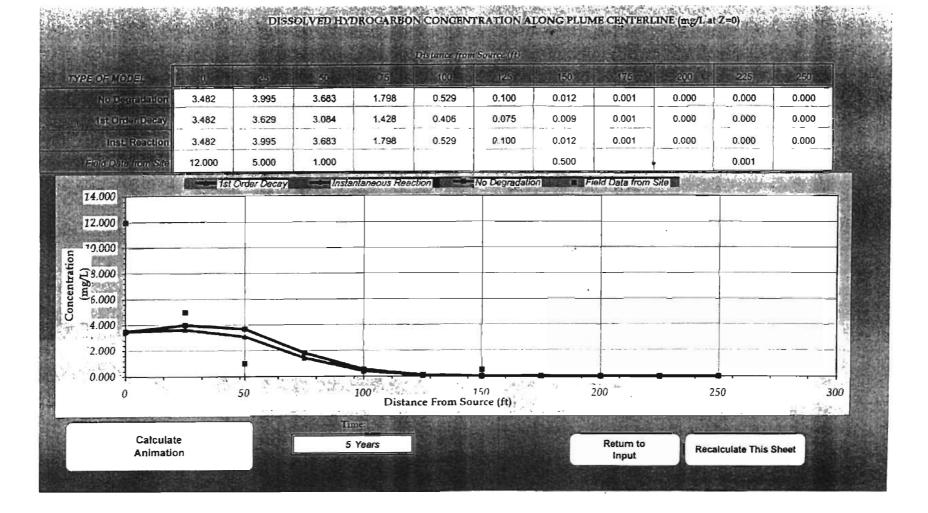


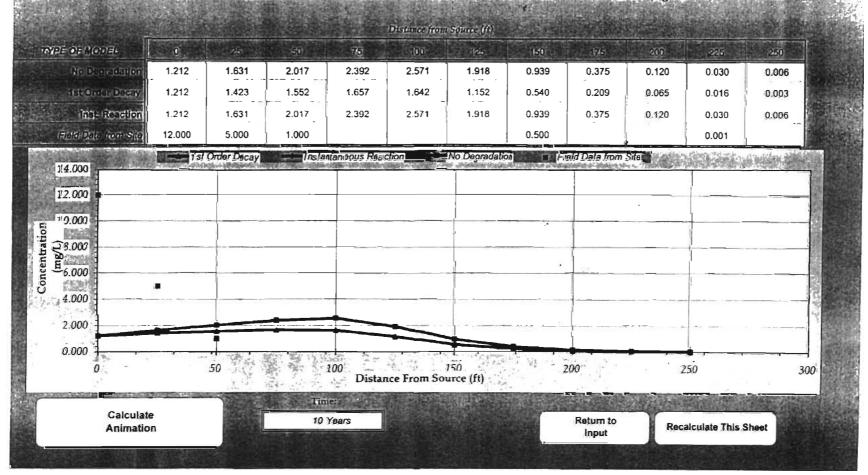


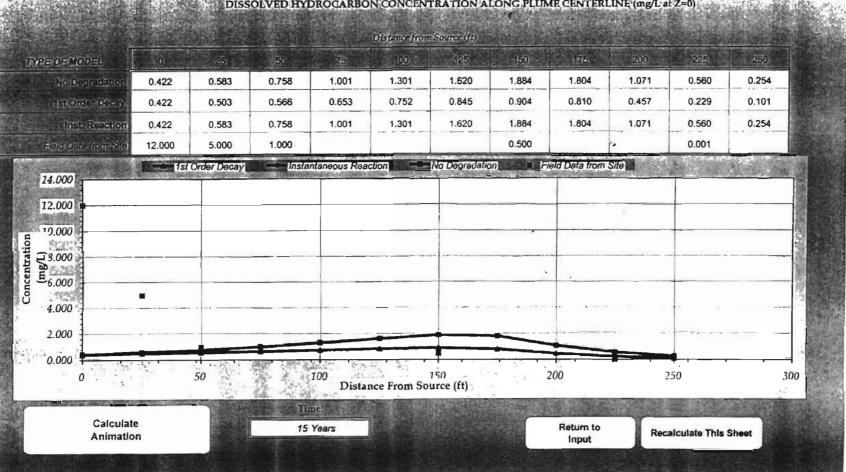
BIOSCREEN Natura	I Attenuat	ion Decisi	on Supp	ort System ODOT Residency			Data	Input Instructions:						
Air Force Center for Environmen	A CONTRACT OF STATES			Version 1.4 March, 1998					115 Enter value deactly of					
			2				Run Name		Ma	2 0	alculate 3	v filling in grey		
I. HYDROGEOLOGY			_	5. GENERAL					0.02	~ «	As below.	(To restore		
Seepage Velocity*	٧s	25.0	(RVyr)	Modeled Area Length*	300	(10)		····••		to	rmulas, hii	(Exition below)		
or		1 or		Modeled Area Width*	300	417)	w Ess	>	/eriable	•*	la used dr	scily in model		
hydraulic Conductivity	ĸ	6.3E+04	(cur/sec)	Simulation 'Time*	1	(40)	+		20	-Vata	e calculate	d by model		
Hydrautic Gradient	1	0.0055	(11/17)	100 C			an in the i		·	(Do	HT enter a	ny data):		
Porcieilly	л	0.17	(-)	8. SOURCE DATA										
				Source Thickness in 5	iat.Zone	10	274 2.2 0000000000000000000000000000000000	Vertical Plane	1	ok at Plunn	e Cross-Se	ection and input		
DISPERSION				Source Zones:				or Zones 1, 2,	1.1. MARKIN (244					
Longitudinal Dispersivity*	atpha x	23.0](17)	Width* (ft) Cond. (mg/L)*		Fr.	·······		3					
Fransverse Dispersivity*	atīptas y	1.5	(11)	5 7	1	ś i			man adden	······································	and and a second	-		
/artical Dispersivity	alpha z	0.2	(11)	7 6	2	1								
0ľ		Λσ		10 11	3									
Eistimated Plittine Length	Lp	150](11)	7 6 5 7	4	-	++							
ADSORPTION				Source Halflife (see Help)										
Retardation Factor*	R	1.2	θ	New york and the second s	(70)	A 10	1		Vew o	at Filun 10 L	ooking L	Эрмп		
Q.		φ α		Inst. React. 1 st Doder		1		** ×						
Soll Bulk Density	rbo	21	(KoA)	Soluble Mass 16	(749)	İ.	t i	Observed				nitoring Wells		
Partition Coefficient	K.oc	38	(LAQ)	In Source NAPE, Soil	с <u>а. </u>	F ,	lisen: [*		If No Date	Leave Blar	uk de Enter	°0'		
vacuonOrganicCarbon	fac	2.06-4	(-)	7. FIELD DATA FOR COMPAR	usda			<u></u>		<u>.</u>		w		
	a.	1997 - BANK		Concentration (rng/L)	6.0	2.5	1.0	.01 .0	.0					
BIODEGRADATION				Dist. from Source (ft)	0	30	60	90 120	150	180	210	240 270 3		
st Order Decay Coeff	demlade	4.0E-1	(per yr)	1		6.4.5. H								
or		l ↑ œ		8. CHOOSE TYPE OF OUTPUT	r to see	:								
loiute Half-Life	t-heif	1.75	(year)							Help	,]	Recalculate This		
r Instantaneous Reaction I	Model			RUN CENTERLINE		RUN	ARRAY			ncip		Sheet		
elta Oxygen*	DO	5.42	(mg/L)	Con officient						-				
oita Narate*	NOS	21.1	(mg1.)							P	aste Exa	mple Dataset		
bsarved Ferrous Iron*	F62+	0.4	(mg/L)	View Output		View	Output			estore Eo	mulae fo	r Vs, Dispersivities, R.		
velta Sutfate*	\$04	174	(mg/L)		-					COLUIC PU		a, other		
bserved Methane*	CH4	0	(mg/L)						-					

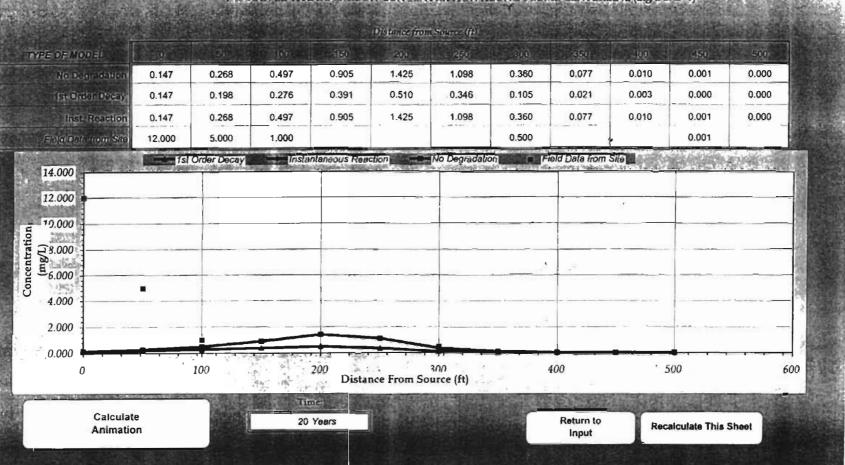
APPENDIX H BIOSCREEN OUTPUT – RUN #4

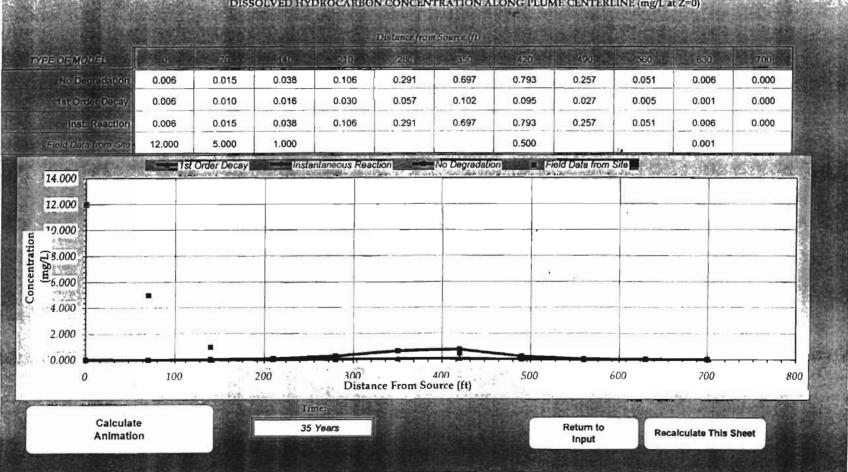
•

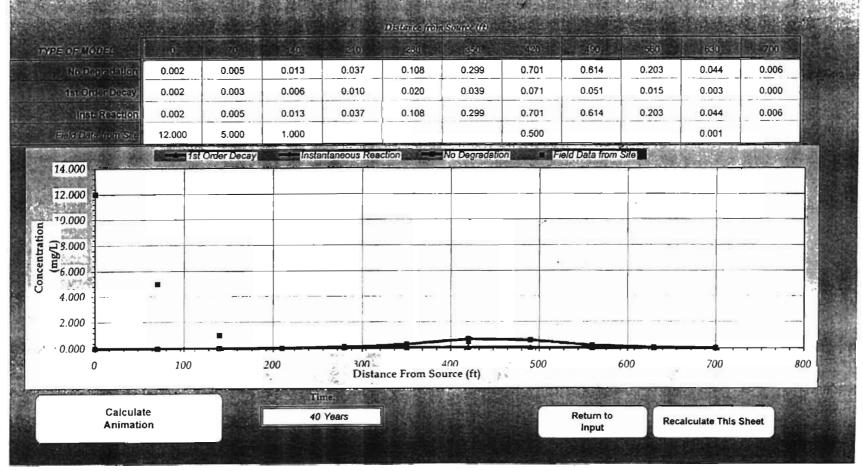

.

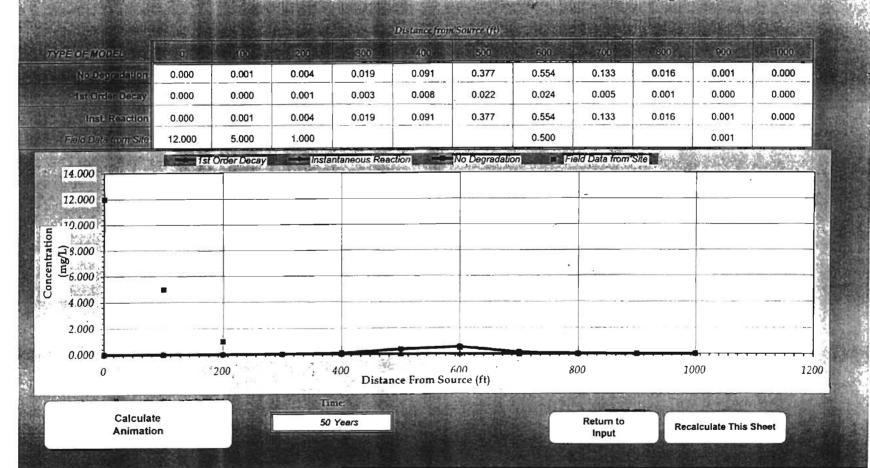

BIOSCREEN Natura	1	ion Decis	ion Supp	6. South State (State State Sta State State S			Keesler	33	Data Inpu	A lastructions:	
Vir Force Center for Environmen	tal Excellance			Version 9:4			SWMU	6 Run Name	_		e directly or In filling to gran
HYDROGEOLOGY			 1	5. GENERAL			·····•			1	(To restore
Seepage Veloc#y*	Vs	31.0	(nyi)	Modeled Area Length		50	(#)	• L •		formulas, h	it betton bolgs)
or		ħα		Modeled Area Width*	2	50	W UN	100) Val	riable* Data used da	rectly in model
Ivdraulic Conductivity	×	1.0E-03	fanvsec)	Simulation Time*		5	()	- Summer -		20Valus calculat	ed by model
lydrautic Gradiant	1	0.005	(11/10)			. S		6.9	New York	(Don't enter	any data).
oroanty	n	0.2	6	6. SOURCE DATA							
			7	Source Thick	ness in Sat.Z	one.	9	10		rce Look at Plume Cross-S	ection and Input
DISPERSION			-	Source Zone	3:			CONTRACTORY	oncentrations & V Zones 1, 2, and		
angitudinal Dispersivity*	atpha x	10.0	(11)	Width* (ft) Conc	(mg/L)*		1-		20103 1, 1, 010		
ransverse Dispersivity*	alpha y	7.0	m	45	0.05	1	l			and the second se	
ertical Oispersivity*	elpha z	0.1	(11)	20	1	2				and construction of the local division of the local division of the local division of the local division of the	
or		Λa		55	10	3	\$				
stimated Piume Longth	Lp	260	(11)	20	1	4				and the second se	
The second second				45	0.05	5		1			-
ADSORPTION			-	Source Haifille (see	Help};		h+		•		
eterdation Factor*	Ŕ	2.7	(-)	3	3 (¥t)		1			View at Plame Looking	Down
or		^` ar		Inst. React.	1st Order	1		1			
oll Bulk Density	rho	1,7	(KgA)	Soluble Mass	4 (Kg)	1	1	10 S.	Ocserved Cel	nterine Concentrations at M	onitoring Wells
Partition Coefficient	Koc	38	(LAkg)	In Source NAPL, Sol		1	1		tt	vo Data Leave Allank or Ents	r'0'
ractionOrganicCarbon	foc	5. 7E-5	Θ	7. FIELD DATA FOR	COMPARISON	ł	, <u> </u>				
and the second				Concentrat	202000000000000000000000000000000000000	2.0	5.0	1.0		.5	.001
BIODEGRADATION		_	_	Dist. from 6	ource (ft)	0	25	50 7	5 100	125 150 175	. 200 225 ;
st Order Decay Coeff	shows	7.3E-2	(per yr)		1						
or		<u>↑</u> œ		8. CHOOSE TYPE C	FOUTPUT TO	SEE:					
oute Half-Life	t-heif	0.15	(ymer)							Help	Recalculate This
r Instantaneous Reaction			_	RUN CENTE	RLINE	B	UN AF	RRAY		incip	Sheet
elta Oxygen*	D0	0	(mg/L)	I CON CENTER						Dest: E	male Datasat
elte Aurate*	NOS	0	(mg/L)	- BOOK - BOOK						Paste Exa	mple Dataset
bserved Fenous Iron*	Fe2+	0	(mg/L)	View Outp	ut	33	View O	utput		Restore Formulas f	or Vs. Dispensivities, R
olta Sulfate*	SO4	0	(mgt.)	A CONTRACTOR OF THE OWNER OF							ta, other
bserved Methane*	CH4	0	(mg/L)			1					

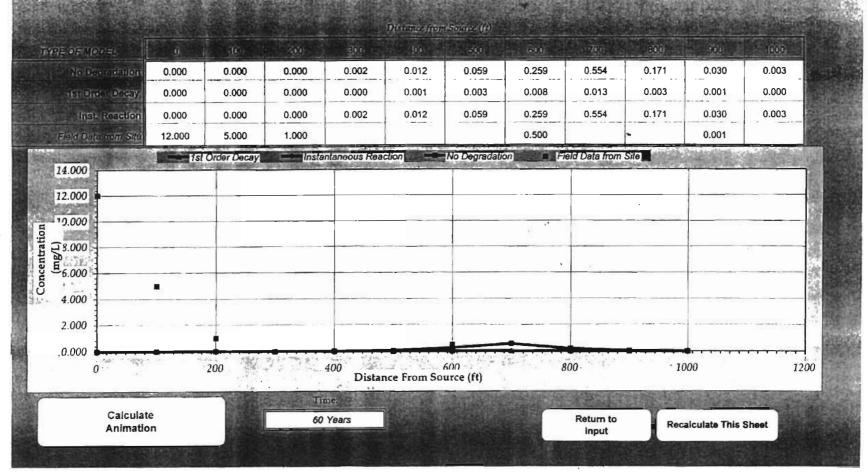

.

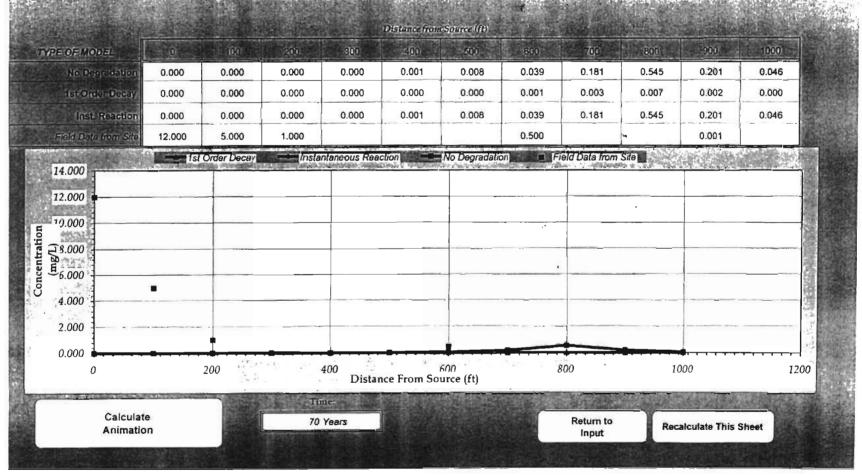

.

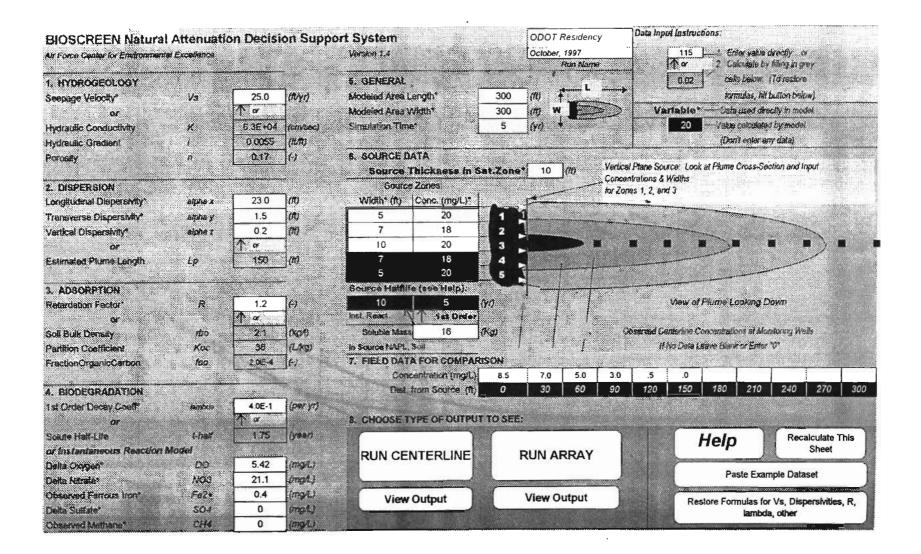

. 4≱

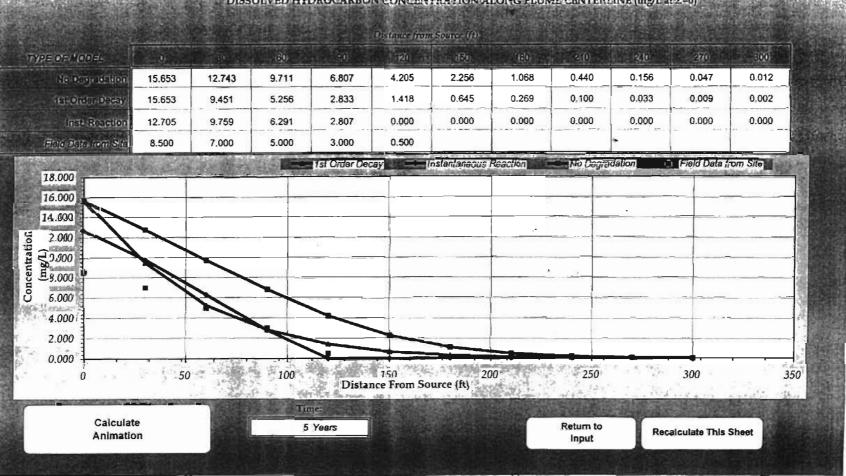




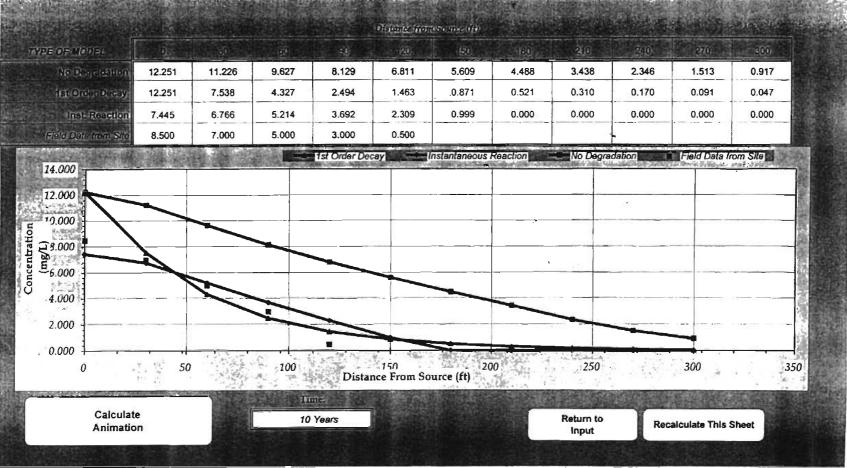


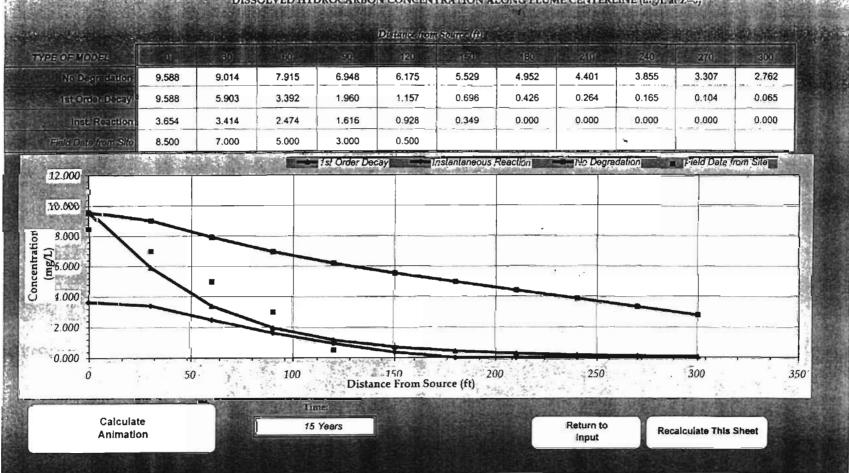


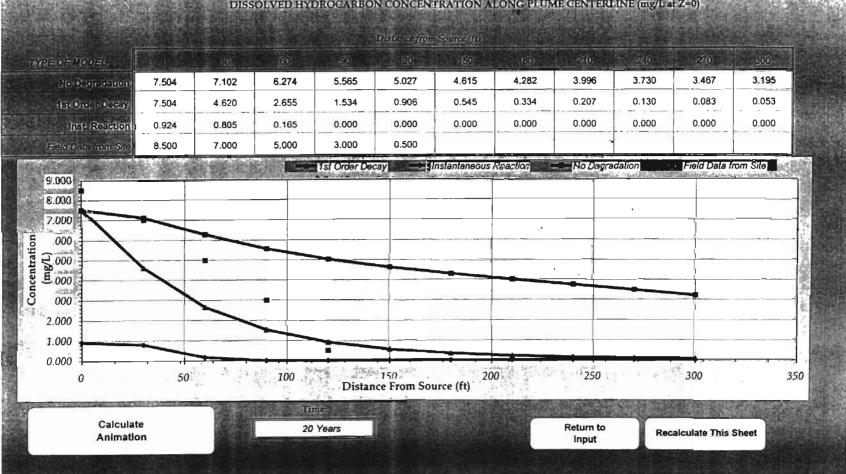


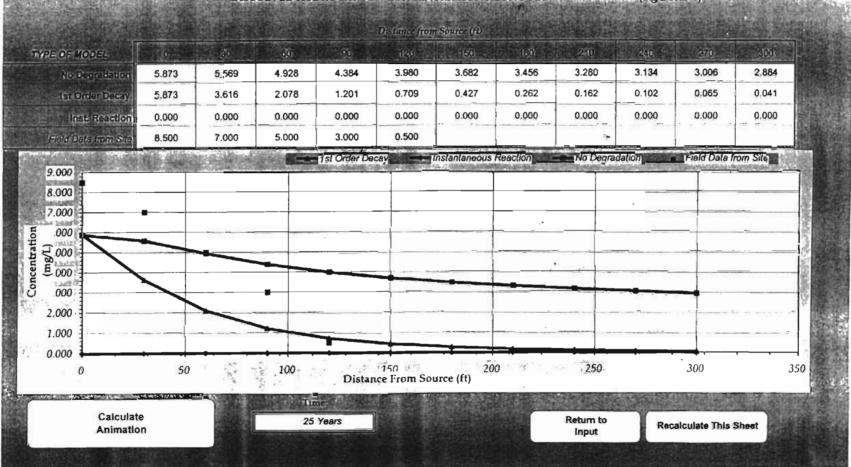


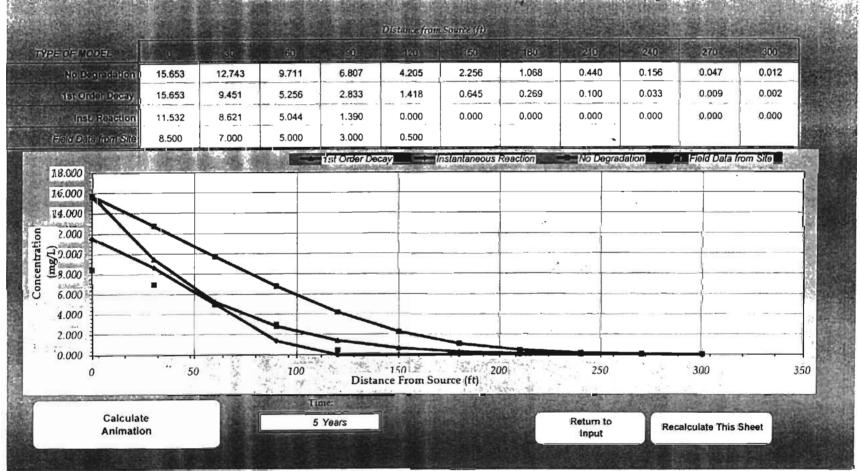
APPENDIX I BIOSCREEN OUTPUT – RUN #5

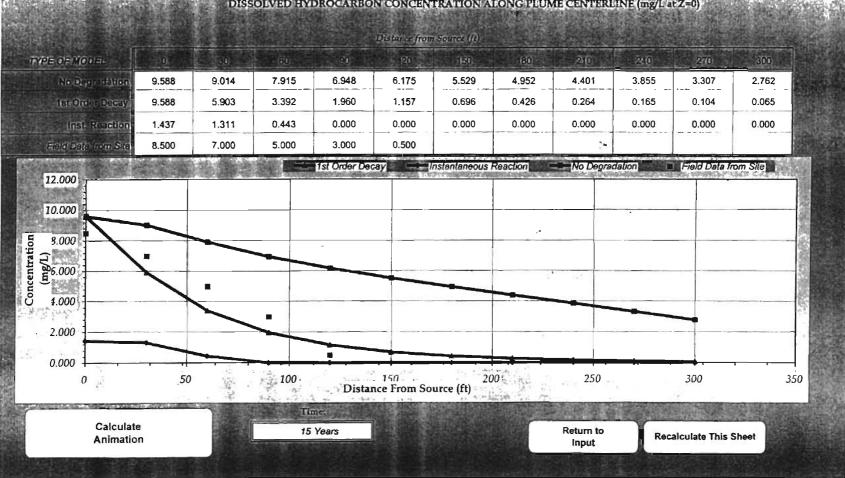

1

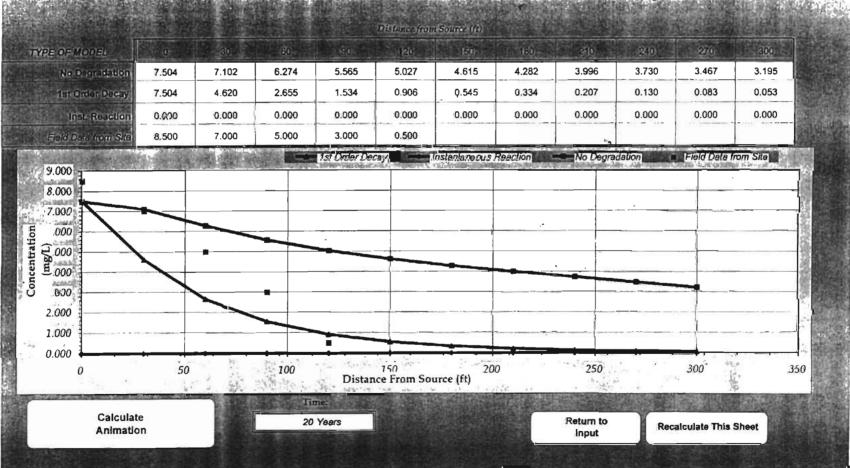

.



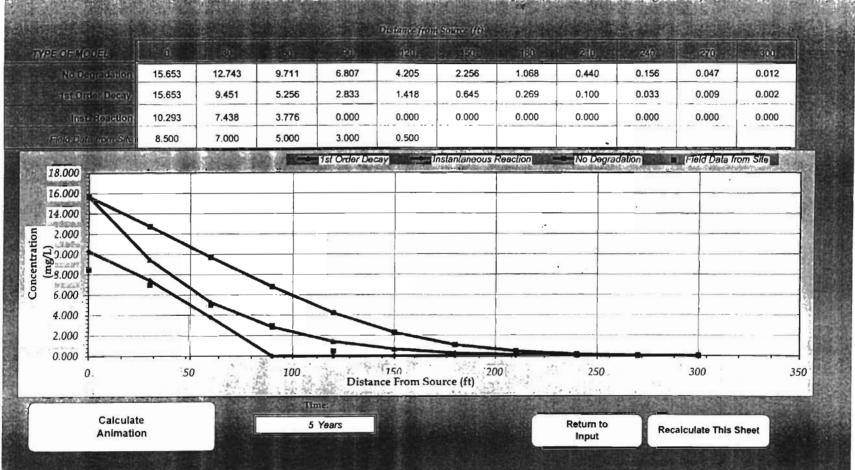

Sands the Start

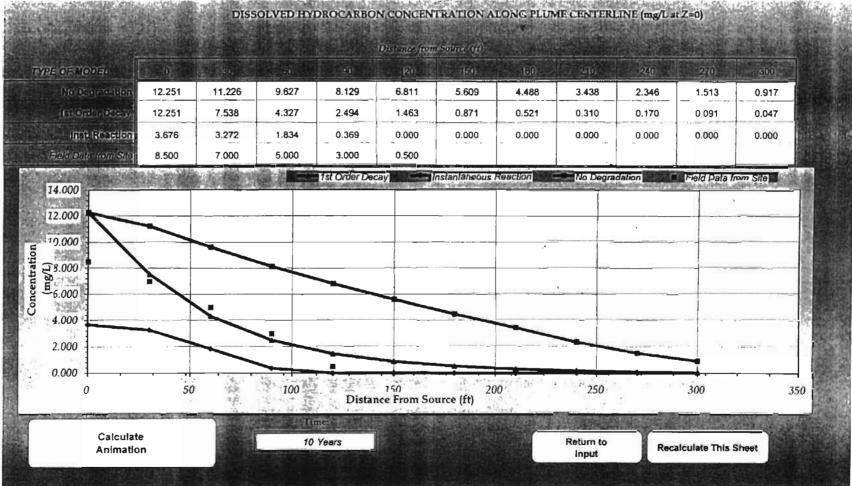


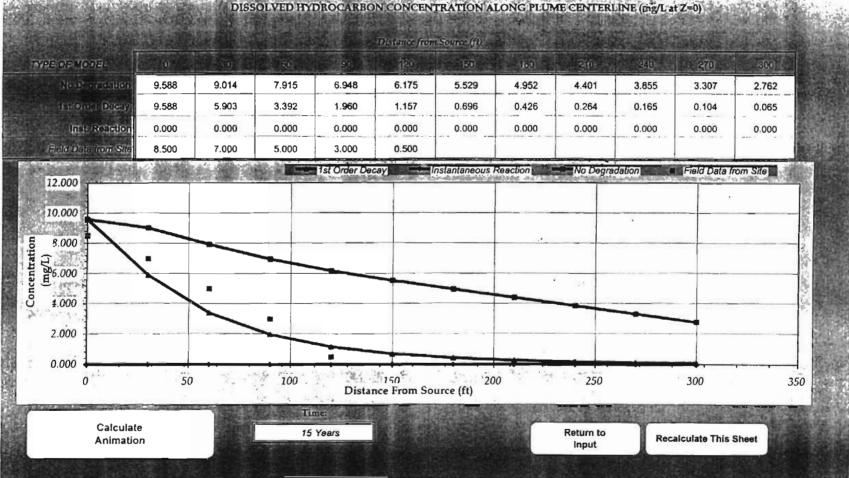



226

BIOSCREEN Natura	Attenuati	on Decisi	on Supp	ort System		ODOT	Residency	Date In	put Instru	ctions:					
Air Force Center for Environment	Contraction of the set of the last			Version 1.4						115t. Enter value directly or					
							Run Nama		for	The second back of the	000000000000000000000000000000000000000	hilway ta pr	C		
1. HYDROGEOLOGY				5. GENERAL	<u></u>	_	. L		0.02	୍ର ଅନ	s below.	(To restore			
Seepage Velocity*	Vs	25.0	(Riys)	Modeled Area Length*	300	(10				A CONTRACTOR OF A CONTRACT		button belo			
or		1 or		Modeled Area Width*	300	(ff) W		> _ v	artable	Data	used diff	cily in moo	₩		
Hydraulic Conductivity	к	6.3E+04	(cm/sec)	Simulation "Time"	5	(m)	r		20	Volua	cakulala	t by model	2°.		
Hydraulic Gradient	1	0.0055	(批布)		1					(Don	'l onter er	ny dalat			
Porcety	л	0.17	6	6. SOURCE DATA											
			-	Source Thickness	n 6at.Zone	• 10	HIII	ertics/ Plane So oncentrations &		k at Plume	Cross-Se	ction and tr	iput .		
2. DISPERSION				Source Zones:	1.		2000 CO. 1000 - 1000 - 1000	r Zones 1, 2, a	1 1 1 1 2 1 2 1 2				1422		
Longitudinal Dispersivity*	atpha.x	23.0	(11)	Width* (ft) Conc. (mg/L)'	1				obsi orther bet seen					
Transverse Dispersivity*	alpha y	1,5	60	5 20	1	٩						-			
Vertical Dispersivity*	alpha'z	0.2	(11)	7 18	2								~		
or		ſα		10 20	3	and the second second					l i		• .) =		
Estimated Plume Length	Lp	150	(#)	7 18	4				- 111	atomation .		- Andrews	/		
			-	5 20	5	0			•				2		
3. ADSORPTION			-	Source Hatflife (see Help)		•	in free				Page 1				
Retardation Factor*	R	1.2	(-)	10 5	(41)				View of	Flume Le	loking D	очт			
or	and the second	1 or]	Inst. React. 1 1 1 at On	ler		4		an na h						
Soil Bulk Density	rbo	2.1	(KgA)	Soluble Mass 16	(Kø)		3	Opaarvad (ls		
Partition Coefficient	Koc	38	(L/kg)	In Source NAPL, Sol	1	, and		1	l No Dala i	68V9 Blani	or Estate	V *			
FractionOrganicCarbon	foo	2.08-4	(+)	7. FIELD DATA FOR COMP	ARISON										
			T.	Concentration (mg	VL) 85	70		3.0 .5	.0						
4. BIODEGRADATION	0.200			Dist. from Source	(6) 0	30	60	90 120	150	180	210	240	270 30		
1st Order Decay Coeff	kwabda	4.0E-1	(per yr)	Contraction of the											
or		Ϋ́σ		8. CHOOSE TYPE OF OUT	PUT TO SEE	;									
Source Helf-Life	t-ine#	1.75	(year)							Help		Reca	iculate This		
or Instantaneous Reaction	Model			RUN CENTERLIN	=i	RUN A	RRAY						Sheet		
Delta Oxygen*	DO	5.42	(mg/L)						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	D -	eta Eve				
Della Netrale*	NOS	21.1	(mgh.)	2000		MALERS.				Ра	sie Exan	nple Data	Set		
Observed Ferrous Iron*	Fe2+	0.4	(mg/L)	View Output		View O	utput		Re	store For	nulas fo	Vs Dise	ersivities, R,		
Celte Suifate*	304	10	(mgit.)				-		A A	otore i un		a, other	an ann tranail 171		
Observed Methane*	CH4	0	(mg/L)												





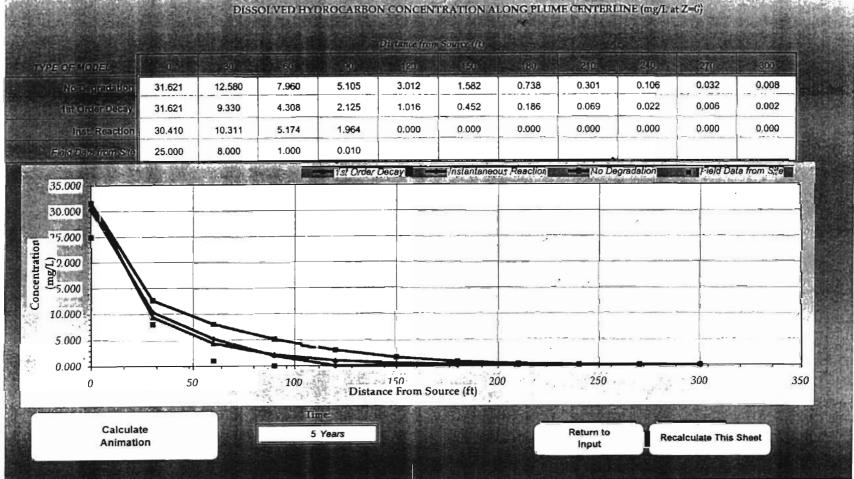

BIOSCREEN Natura	I Attenuat	ion Decisi	on Supp	ort System	rt System				Data Inpt	Input Instructions;			
Air Force Center for Environmen	Version 3.4			October, 1997			115 Enter value directly or						
								Run Name		1	e by filling in grey		
1. HYDROGEOLOGY			.	5. GENERAL				. 1		0.02. Selfs bek	w. ito restore		
Seepage Velocity*	Vs	25.0	(tvyr)	Modeled Area Len		300	_(11)	1		totiiiulas	hit button below)		
Q1		The or		Modeled Area Wit	∄h*	300	(ft) V		S Va	riable* Osts used	directly in model		
Hydrautic Conductivity	×	6.3E+04	(cm/sec)	Simulation Time*		5	(+1)	+		20 — Vəlus caku	lated by model		
Hydrautic Gradiant	· · · · ·	0.0055	(11/#)						Series .	(Don't ente	v eny data)		
Porceify	п	0.17]()	6. SOURCE DAT	C					a dina di kana			
			+	Source Th	······································	Sat.Zon	10		Verticel Plane Sou Concentrations & V	rce ⁻ Look at Plume Cross	-Section and Input		
2. DISPERSION			~	Source 2	· · · · · · · · · · · · · · · · · · ·			1020003555555555555	for Zones 1, 2, end		2422		
Longitudinal Dispersivity*	alpha x	23.0	(17)	Width (ft) C	onc. (mg/L)*	-				-	5.1.35.17.5 P.11.2.11.0.00000000		
Transverse Chapershitty*	alpha y	1.5	<i>(II)</i>	5	20	1	Ŋ			All and	-		
Vertical Dispersivity*	alpha z	0.2	(ff)	7	18	2			100	and the second division of the second divisio			
or		1 or		10	20	3	P				·# #) #		
Estimated Plume Length	Lp	150](0)	7	18	_ 4	Þ	: L			and the second s		
			-	5	20	5				·			
3. ADSORPTION		· · · · · · · · · · · · · · · · · · ·	-	Source Halfille (_							
Retardation Factor*	R	1.2	(+)	9	5	(Yr)	· 1	1		View of Plume Looken	g Down		
<u>م</u>	N. Charl	_ ~	A Sheer	Inst. React.	1st Drde	4	1	1					
Soll Bulk Density	rtro	21	(Kg-1)	Soluble Mass	16	HKØ)			Second way of the second	starbne Concentrations at	Stand State of State		
Partition Coefficient	Noc	38	(LAQ)	In Source NAPL, So	Transa and a second second second	4	1		U N	io Dale Leave Mank or Er	tar D		
FractionOrganicCarbon	foo	2.08-4	JE)	7. FIELD DATA F		N. S. M. SCREETER		inter and a second	······································		<u></u>		
		No	-	and the second	tration (mg/L)	8	7.0	50	3.0 5	0			
BIODEGRADATION		· · · · · · · · · · · · · · · · · · ·	1	Unit. Hor	m Source (ff)	<u> </u>	30	60	90 120	150 180 21	0 240 270		
st Order Decay Coeff*	kambcia	4.0E-1	(per yc)						1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1.164 1.164			
or	3			8. CHOOSE TYP	E OF OUTPO	IT TO SEE							
Solute Half-Life	t-heif	1.75	(year)							Help	Recalculate This		
v Instantaneous Reaction		1	1	RUN CENT	ERLINE		RUN A	RRAY			Sheet		
Selfa Oxygen*	DO	5.42	(mg/L)							Parts C	kample Dataset		
Jelta Natrate*	NO3	21.1	(mgA.)	an and a second	and the second	-			v	Faste E	kample Dataset		
Observed Ferrous front	5024	0.4	(mg/L)	View OL	rtput		View Output			Restore Formulas	for Vs. Dispersivities. F		
Delta Suffate*	\$04	20	(mg/L)								bda, other		
bserved Methane*	CH4	0	(mg/L)							-			

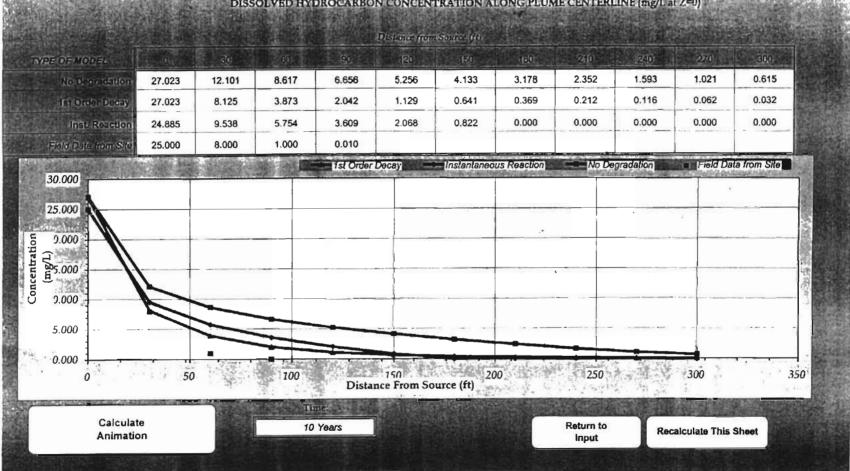
.

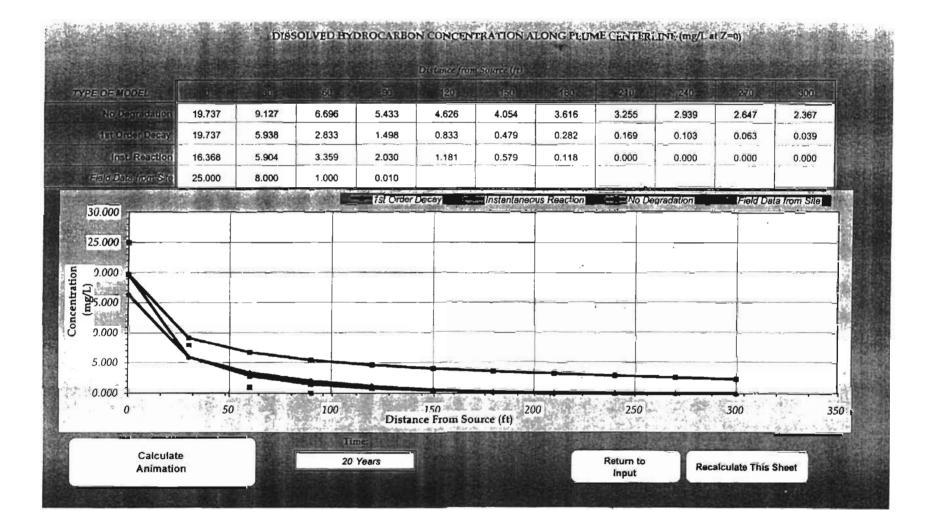
DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/L at Z=0)

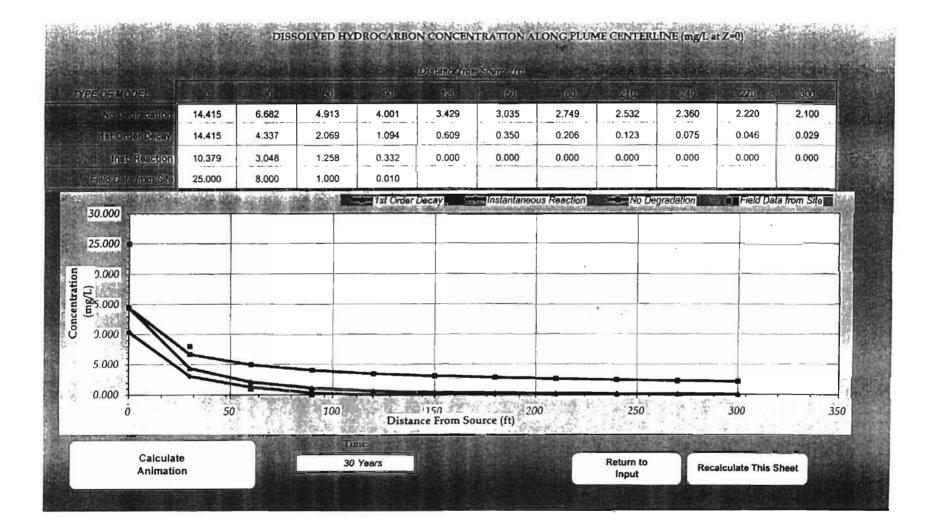
APPENDIX J BIOSCREEN OUTPUT – RUN #6

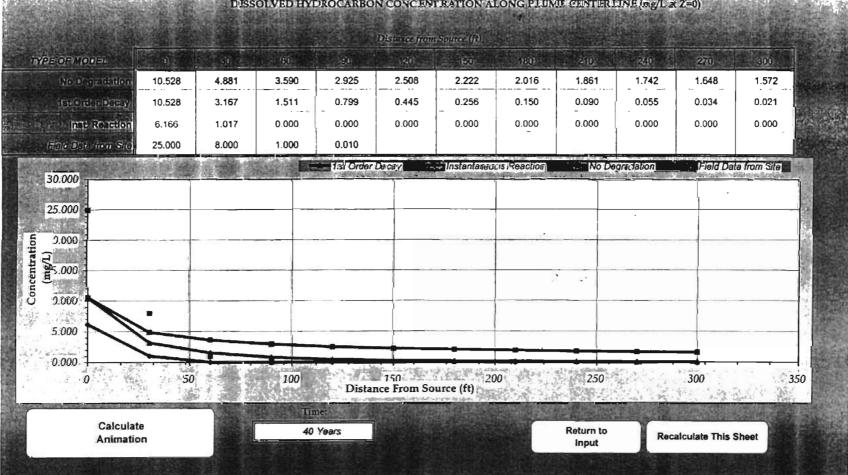
.

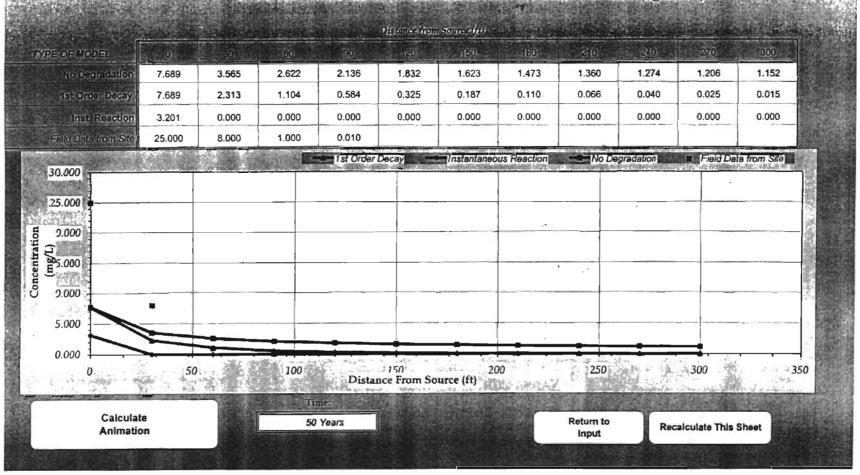

1

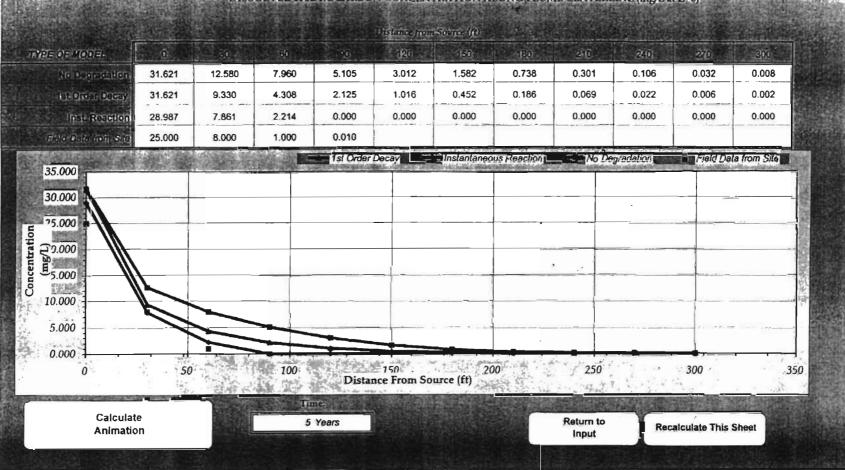

.

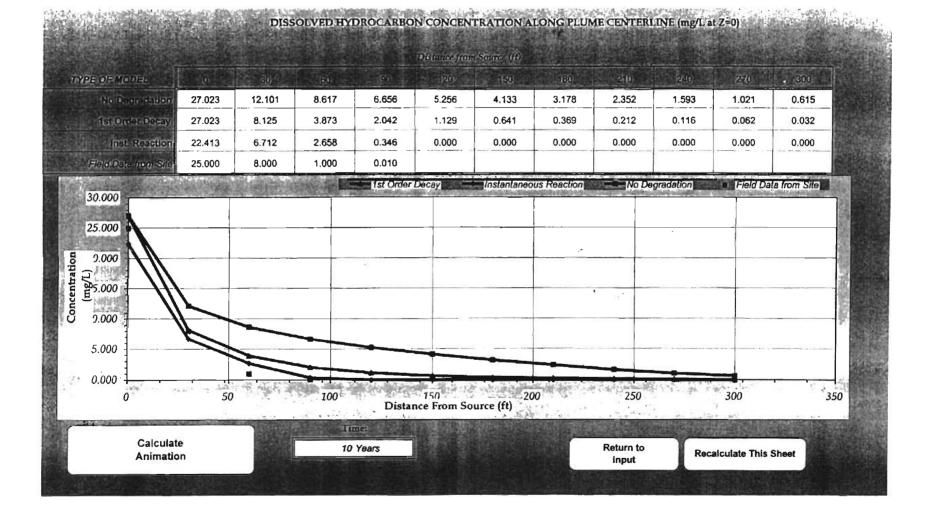

.

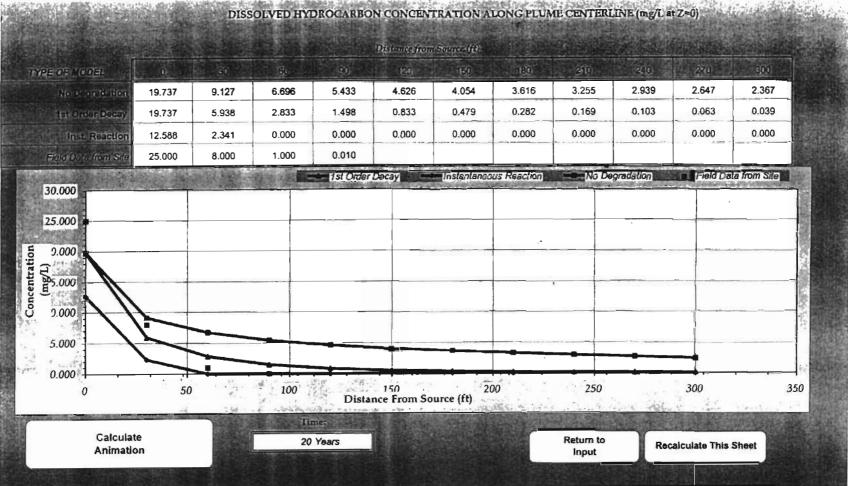

BIOSCREEN Natura	ort System		N.A	ODOT	Residency	y i	Data Input Instructions:							
Vr Force Center for Environmen	Version 1.4					115 conter value directly or								
			+				÷	Run Name		不 。	the second	alculate by I		
I. HYDROGEOLOGY		·	-	5. GENERAL			<u> </u>			0.	2000 A 1999	aks balow. (
Seepage Velocity*	Vs	25.0	(nyr)	Modelad Area Ler	X	300	_(11)	Ť <u>"e</u>		<u></u>		emulas, ini b		
or		1 or		Modeled Area Wi	dth*	300	(ff) V			Variab		ta usod drac	والمستعد المتعاد المحلول المحلول المحلول	
hydraulic Conductivity	ĸ	6 3E+04	(cin/sec)	Simulation Time:	() 	5	_(W)	•		2	and the second	n calculated	M	
tydraulaic Gradient	1	0.0055	(1017)								(D)	m't enter ony	dalaj.	
Porcally	n	0.17	T(-)	S. SOURCE DAT	S			4	Vartini	Nane Source	I not at Ohim	n Core Cas	ine and input	
			-		ickness in	Sat.zone	10	(11)		ations & Width		e (1035-084		
DISPERSION			7	Source 2		1	4 minut		25	1, 2, and 3	in an	1 · · · ·		
ongitudinal Dispersivity'	atone x	23.0	(11)	N 1	onc. (mg/L)*	- 10 C	J							
rensverse Dispershity*	atpha y	1.5	00	0.01	0.01	1	4	·····	·····				ner an	
/entical Dispensivity	elphe z	0.2	(#)	3	8	2	-	-		-				
or		Tor		10	37	3	-		18 -	-	ني ا	-) 📕
Estimated Plume Length	Lp	150](10	3 0 01	8 0.01	4	3	++	<u></u>			and the second second		
ADSORPTION				Bource Haiflife	see Help):		7						ter an	
letardation Factor*	R	1.2	(4)	20	5	(ya	42 1	-		Viev	v oi Plume i	Looking Do	wn.	
or		t a		Inst. Read	1st Orde	<u></u>		1	с., , , , , , , , , , , , , , , , , , ,	¥	8 is			
foll Bulk Density	ntro	2.1	(KgA)	Soluble Mass	16	(Kg)	1		Öby	erved Centerle	w Concanira	tions at Moni	toring Walls	
artition Coefficient	Koc	38	(LAG)	In Source NAPL, So		2	t t	1.1		If No De	ne Lezve Bla	ok or Enlar 7	r	
ractionOrganicCarbon	foc	2.06-4	Θ	T. FIELD DATA	FORCOMPA	RISON		hai na shi a shi						
				Concer	stration (mg/L)	25.0	8.0	1.0	01	0.0)			
BIODEGRADATION				Dist. fro	im Source (fi	0	30	60	90	120 15	0 180	210	240 27	0 3
st Order Decay Coeff*	i iambda	4.0E-1	(per yr)				5							
or		∱ ar		B. CHOOSE TYP	PE OF OUTPL	IT TO SEE	:							
iciute Half-Life	t-haif	1.75	(yeer)								Help		Recalcula	te This
r Instantanoous Reaction	Model			RUN CENT			RUN A	RRAY			nen		She	et
elta Oxygen*	DO	5 42	(mg/L)				CON A						174	
ella Natrala*	AKO3	0	(mgA)		/						P	aste Examp		
bserved Ferrous Iron*	F82+	0.4	(mg/L)	View O	utout		View Output				Pastara Ca			-
Delta Sutfate*	\$04	10	(mg1.)								Restore Fo	imulas for Iambda,	Vs, Dispersiv other	nues, R,
bserved Methane*	CHe	0	(mg/L)									Part Incoded		

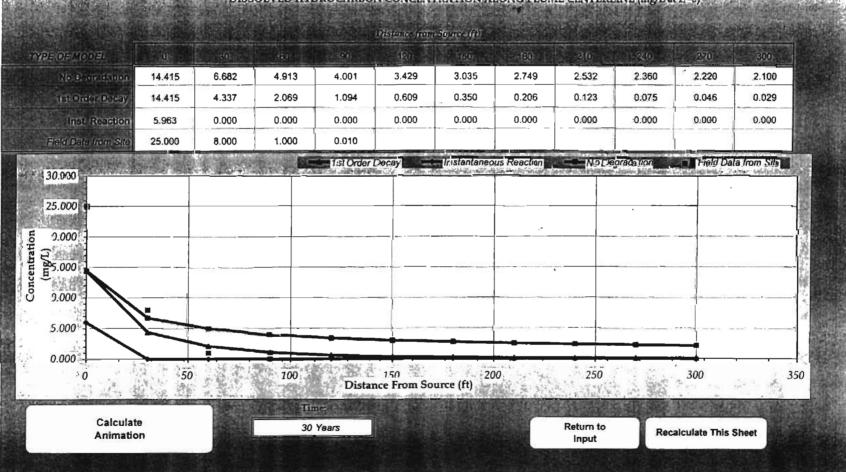

-



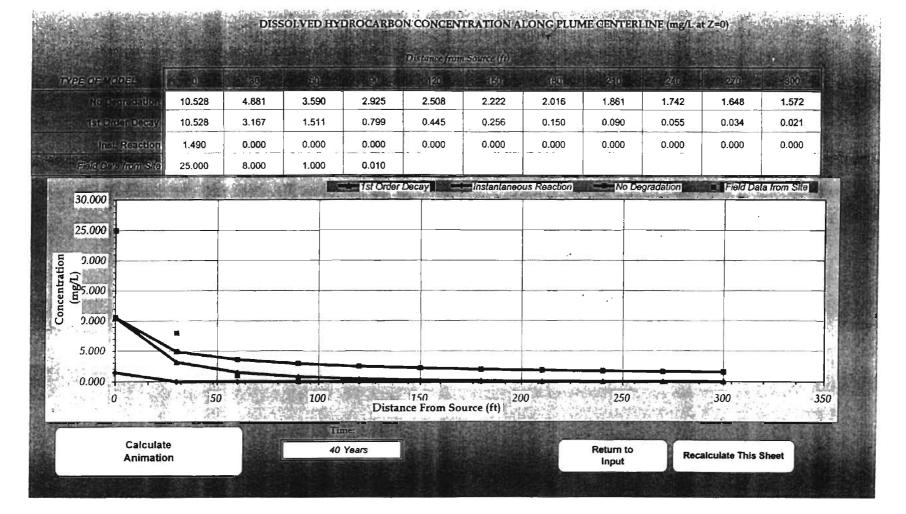


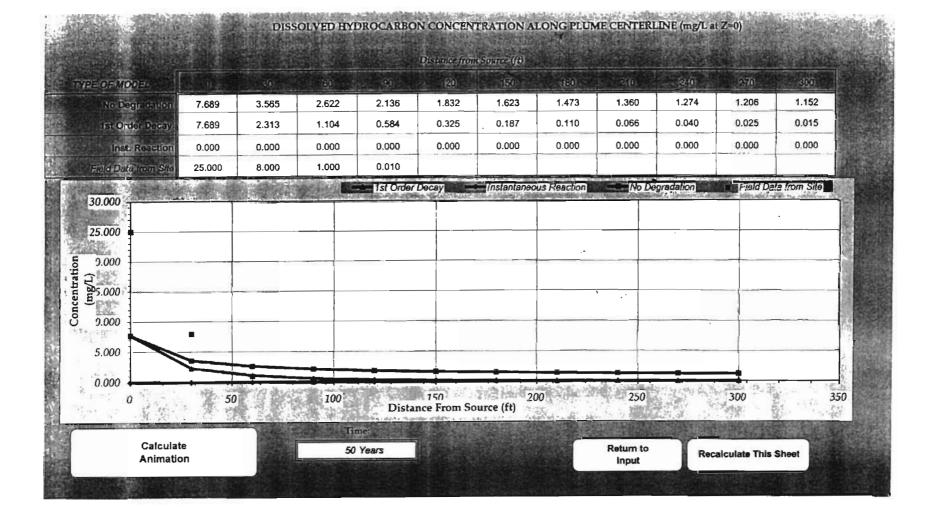


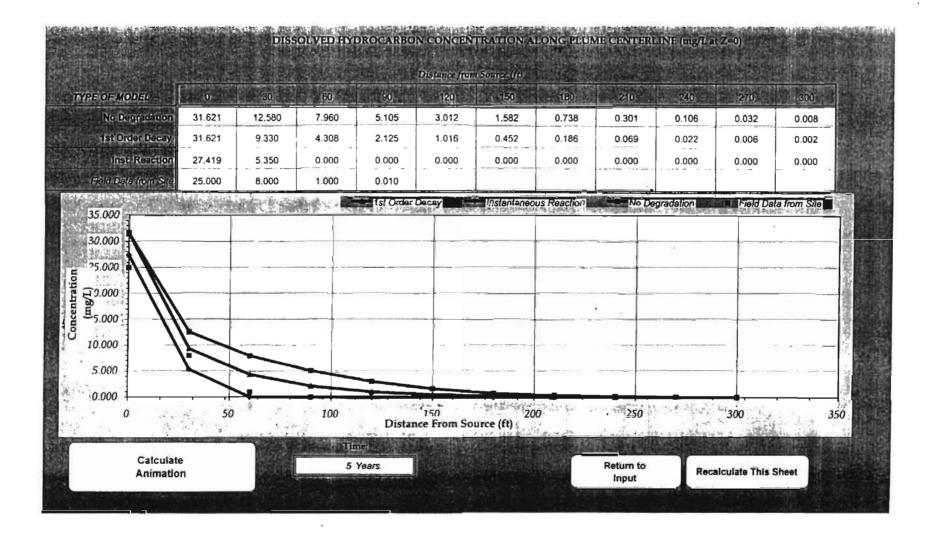

BIOSCREEN Natura	Attenuat	ion Decisi	on Supp	ort System		ODOT Residency				Date Input Instructions:						
Air Force Center for Environmen	al Expellanca			Vornica 1.4		aniani -	Febr	iary, 1998		in and	115			headly of	a de la compañía de l	
HYDROGEOLDGY		····	4	5. BENERAL				Frup Nar	794 	+	1 or 0.02	1.		filling in prev (To restore	e tera a	
Seepage Velocity"	Vs	25.0	(this)	Modeled Area Ler	velh*	300	(11)	i.			- 1	1	1114	button below		
	73	23.0 1 or	pon	Modeled Area Wit		300	(1)	w T	15-10		nable			ctly in model		
or Ivgrautic Conductivity	ĸ	6 3E+04	(cm/sec)	Singulation Time*		5	(yr)	1			F 20			f by model		
Avdrautic Gradient		0.0055	(11/17)	STITUE STITUE		L							n'i enier er			
Porceally Streaming	'n	0.17	(-)	5. SOURCE DAT	14	-		in the second		1				in an	·····	
oruary			$1_{0,1}$	Service and an and an and a service of the	ickness in	SatZong	10	(17)	8010m			k at Plump	Cross-Se	tron and Inpu	n i	
DISPERSION			-	Source 2				40.00	and the second se	trations &						
ongitudinal Dispersivity*	alpha x	23 0	(11)	a second s	onc. (mg/L)*	1	1		TOY LOTH	as 1, 2, en	03				i fatte	
"ransverse Dispersivity"	alpha y	15	an	0 01	0.01	1	1						-			
Artical Dispersivity"	alpha z	0.2	(11)	3	8	2	1							-		
or		1 ar	1	10	37	3) 🔳	
Estimated Piume Length	Lp	150	(m)	3	8	4			1	-				1 m	<u> </u>	
			7	0.01	0.01	5	1	1								
ADSORPTION				Source Maiflife	ses Help};		>~	-			()				×	
Retardation Factor*	R	12](·)	20	5	(yri	A 1	1 1			View of	Plume i.	ookong D	own		
or	ee	\^` a		Inst. Pears	fist Drder		+	1 !	served his	here.	- N - 1					
Solf Bulk Density	rho	2.1	000	Solobie Maas	16](Kø)			, a			200000000000000000000000000000000000000		doning Wess		
Partition Coefficient	Koc	38	(L/Kg)	In Struce NAPL, St	and the second		l	$l_{ij} = f^{ij}$		~~ H	No Date L	save 6.5n	ik of Boller	¢.		
Fraction Organic Carbon	foc	2.08-4	<u>(</u> 1)	7. FIELD DATA			<u></u>			r	<u></u>	<u>, </u>	т	<u> </u>		
	<u></u>		•	Contraction and the second	tration (mg/L)		: 8.0		01	.0	.0	100	010	0.40	070	
BIODEGRADATION		·	7	Datin	en Soulce (ft)	0	30	60	90	120	150	180	210	240	270 3	
st Order Decay Coeff'	lambda	4.0E-1	(per yr)													
or	*	∱ ar	_	8. CHOOSE TYP	E OF COTPO	IT TO SEE								· · · · · ·		
loiute Half-Life	t-had	1.75](year)									Help			ulate This	
r Instantaneous Reaction	101 - C.		7	RUN CEN	TERLINE		RUN.	ARRAY	·		RICOTAL	THE PARTY OF THE P		S	heet	
elta Oxygen*	DO	5.42	(mg/L)		ŝ							Pa	aste Exan	ple Datase	t	
ella l'utrate*	NO3	20	(mg/L)													
Ibserved Ferrous Iron*	Fe2* \$04	0.4	(mg/L) (mg/L)	View O	utput		View	Output			Re	store For	mulas for	Vs, Disper	sivilles, R,	
Selta Suffate*		10	- Contraction of the local division of the l									201 200	lambda	, other		
bserved Methane*	CH4	0	(mg/L)							CARD A REAL		0.00		1000 March 1		

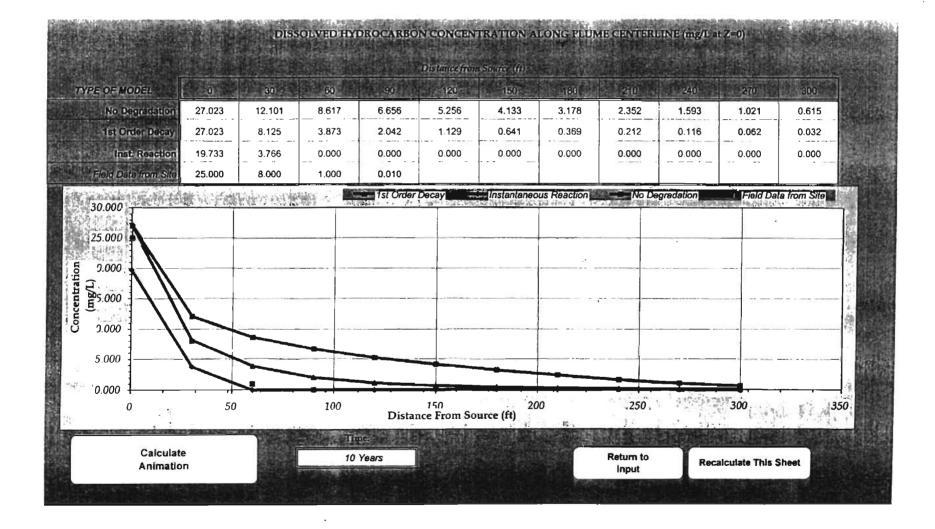

.

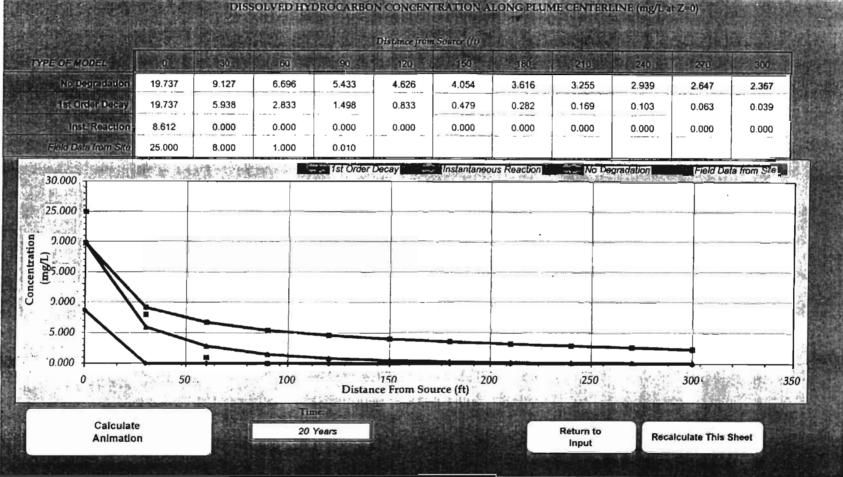
.

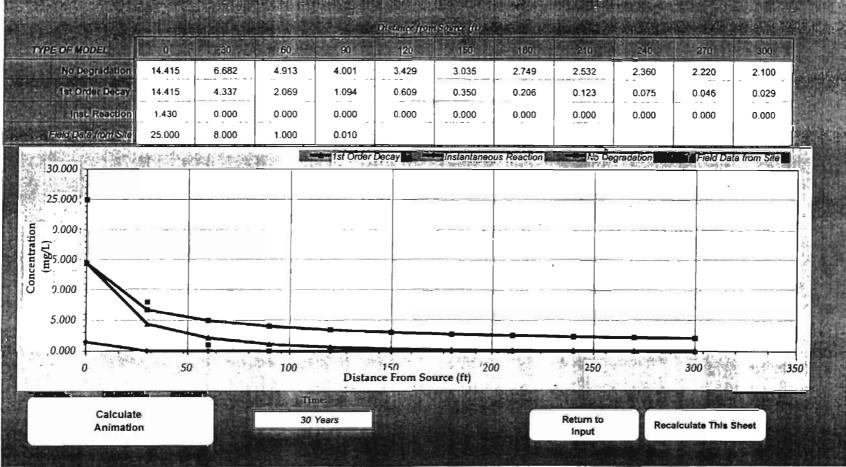


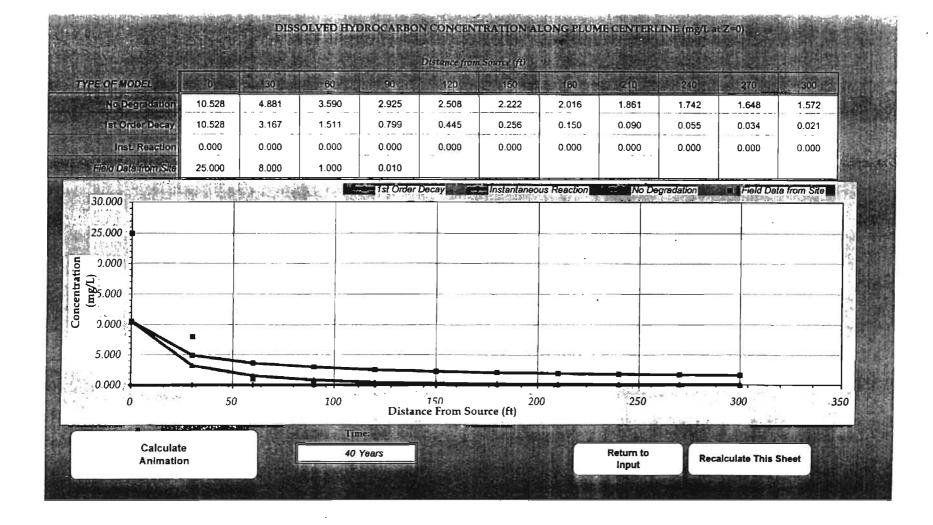


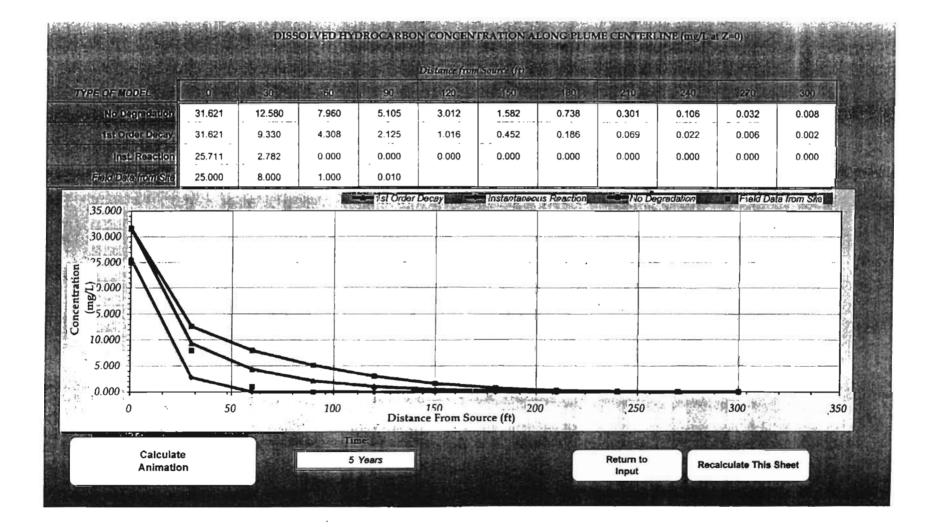


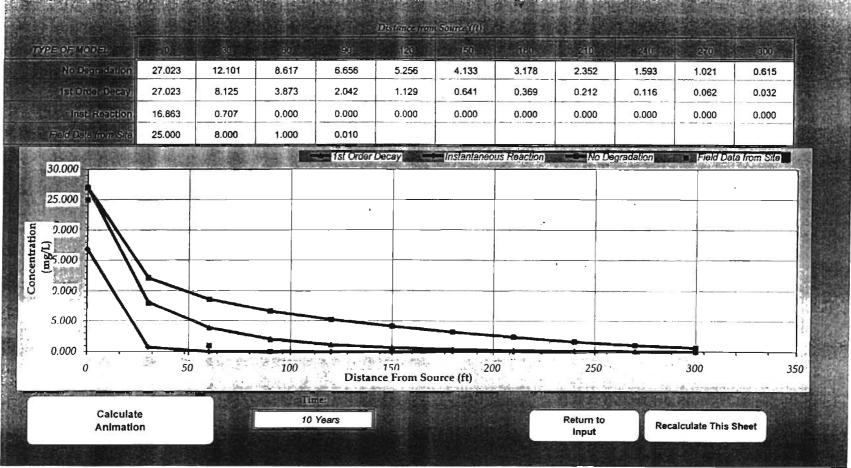

۰.

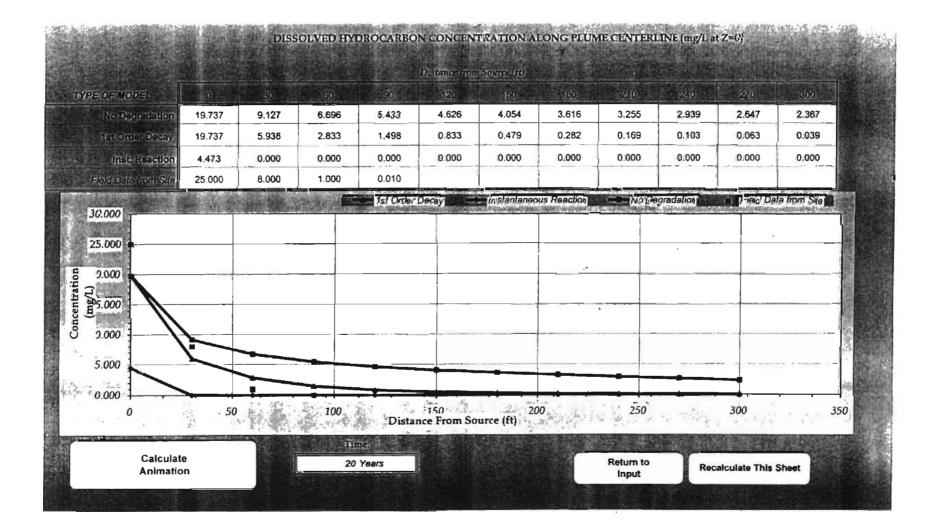


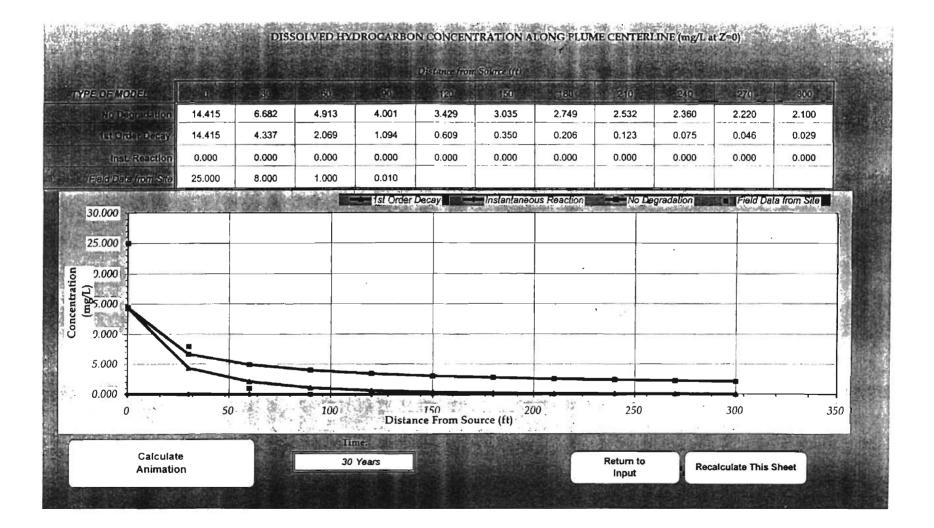



BIOSCREEN Natura	6-27-000-000-000-000-0002-002-00-000	ion Decisi	ion Suppe	Version 1.*			ODOT Residency February, 1998				nd lastr					
en a bita clanda (oi Eustidanale	aga comentitora			Version 1.*			Februa	ry, 1998 Run Nan	76	115 Enter water directly of						
1. HYDROGEOLOGY		*****	-	6. GENERAL	9		••••••	, mining		•	0.02	1 / • Ar	w (To restore			
Seepage Velocity*	Vs	25.0	(trys)	Modeled Area Le	ngih*	300	(H)	r r.	·····•		E		hit futtor below!			
۵ŕ		1 or		Modeled Area W	kith*	300	-8330333000	v 1 📰	5	V.	riable		interactiv to model			
hydraulic Conductivity	×	6.3E+04	(cm/sec)	Simulation Time*		5	(yr)	Į			20		dated by model			
lydrautic Gradient	1	0 0055	(化布)				4		M	and the second		Don'i ent	er ery dalal			
Porcelly	л	0.17	Θ	S. SOURCE DA	TA			****		1						
				Source Ti	nickaess in	6at,Zone	• 10	700				ik at Plume Cross	Section and Input			
2. DISPERSION				Source					CONTRACTOR OF THE	trations & es 1, 2, en						
Longitudinal Dispensivity*	atotia x	23.0	(11)	Width* (ft)	Conc. (mg/L)*	-	1		IUT LON	44 1, L, 80	43					
Treneverse Dispersivity*	atpha y	15	(A)	0 01	0 01	1	1				to the		e Hindaya da da			
Vertical Dispensivity*	aipha z	02	(11)	3	8	2							*			
or		Λœ		10	37	3						• ,•				
Estimated Plume Length	Lp	150](71)	3	8	4		. 1	ь.				1 - March 1			
				0.01	0.01	5	6	* * 1								
ADSORPTION				Source Hatflife	(see Help):		* <u> </u> ~			<u></u>	÷					
Retardation Factor*	R	12	6	20	5	(11)				•	Wew a	i Skurje Looky	g Llown			
or	<u>.</u>	¶ ∽		hust React	1tt Orde	<u>•</u>	- 1	1	200			iii iii	X			
Soll Bulk Density	oth	21	(KgA)	Soluble Mass	16	(Køt			n				Mactoria; Wells			
Partition Coefficient	Koc	38	(LAKQ)	In Source NAPL, S		- 1			11 at	H	Na Deta	Lusive Blank Cr.E	nter nd*			
rectionOrganicCarbon	hac	2 08-4]0	7. FIELD DATA		Summer Contractor	<u>.</u>		<u></u>							
			¥	Construction of the second second second	ntration (mg/L	St	8.0	1.0	.01	.0	Ó					
BODEGRADATION	5-32) . The		_12 	Dest fro	um Source (f)	0	30 -	60	_ 90	120	150	180 21	0 240 270 3			
st Order Decay Coeff*	ites máxicia	4.0E-1	(per yr)				100 AL 100									
OF		T a	Long to	8. CHOOSE TYP	PE OF OUTPU	it to see:		1.1								
loa.re + fall-Life	t-hed	1.75](rear)		ł							Help	Recalculate This			
r Instantaneous Reaction .	and the second second			RUN CEN	TERLINE	F		RRAY				i cip	Sheet			
elta Oxygen*	00	5.42	(my/L)									Deute P				
ella Marale*	AVQ3	40	(mg/L)									Paste E	xample Dataset			
loserved Ferrous Ignt	F#2+	0.4	(my/L)	View Output View Output						Restore Formulas for Vs, Dispersivities, R						
Aelta Suitate*	SO4	10	(mg/L)					-					bda, other			
bserred Methane*	CH4	0	(my/L)													








BIOSCREEN Natura	l Attenuat	ion Decisi	on Supp	ort System			ODO	T Residen	су	Data Inpi	ut instruc	tions:			
Ur Force Center for Environmen	tel Excellance			Vection 1.4			Febru	ary, 1998			115			Frectly or	
			.					Run Narr	× <u>e</u>	1	t or	10.0003300033		filling in grey	
I, HYDROGEOLOGY			_	I. GENERAL			<u> </u>	. 1			0.02]	ubekw.	To restore	
Seepage Velocity*	Vs	25.0	(ftAyr)	Modeled Area Le	ength*	300	(#)			L		form	nulas, inii	button below)	
or		t o ∩		Modeled Area Wi	fidth*	300	_ (ft)	W		1/a	rizble*	Units	uner dra	ally in model	
lydraulic Conductivity	ĸ	5.3E+04	(cm/sec)	Simulation Time	1. 1965	5	(77)	+	100	1.1	20	'Zəlus	<i>cacalata</i>	tiy model	
tydrautic Gradient	1	0.0055	(11.174)	9.000 (0.000)					ALC: N			(Don	't enter er	y dala)	
oroality	n	0.17	(4)	6. SOURCE DA	TA										- dittabilis
				the beauties and the second which	bickness in	Sat,Zone	10	(11)		Plane Sou trations &		at Plume	Cross-So	ction and Input	
. DISPERSION			1	Bource.	Marchael and the second state		19 ge a			RS 1, 2, 800					
ongitudinal Dispersivity*	alpha X	23.0	(17)	VVidth* (ft)			1				Miner Comments		00000-0000		Sk 200227021
ransverse Dispersivity*	афра у	1.5	m	0 01	0 01	1	g	·····							
ertical Dispersivity*	aipha t	0.2	(00)	3	8	2						anna a		-	
or		Λα		10	37	3	-					•)•	1) 🔳
stimated Plume Length	Lp	150] <i>(II</i>)	3	8	4		, 1							
e danalar			<u>.</u>	0.01	0.01	5,	4				•			-	
ADSORPTION	1	<u> </u>	-	Source Halfille			~~~ ~~	1							
etardation Factor*	R	1.2	θ	10	5	(YI)	ę.	1 1			View at	Plume Li	iciting D	own	
or		1 °		hist. React.	1st Drde		 	1. 1							
off Bulk Density	र्गाउ	21	(KgA)	Soluble Mass	16	(Kg)		l	0					itoring Wells	
artition Coefficient	Koc	35	(LAND)	In Source NAPL, 3		→ ⁻		i 1		111	V#Dete L	save Blank	or Enter	V.	
raction Organic Carbon	foo	2 OE-4]()	7. FIELD DATA	6 TO 10 CH	2. contractions	<u>.</u>								
	<u></u>				intration (mg/L	•.	80	10	01	0	.0				
BIODEGRADATION			ï	Elist, fr	om Source (fl	0	30	60	90	120	150	180	210	240	270 30
st Order Decay Coeff*	<i>Xembicite</i>	4.0E-1	(per yr)				¥								
or		1 or		8. CHOOSE TY	pe of outpi	JT TO SEE	•**	2.2			مسمران				
otute Half-Life	i-heif	1.75	(year)		1							Help		Recalcu	late This
Instantaneous Reaction I	A CONTRACTOR OF CONTRACTOR	<u>.</u>	1	RUN CEN	TERLINE		RUN	ARRAY	f			icip		[Sh	eet
alta Oxygen*	00	5.42	(mg/L)						f F			Par	to Even	ple Dataset	
eta Narate'	NOS	60	(mgA)								-	Pd:	Ne Eran	ipie Dataset	
bserved Ferrous Iron*	F42+	0.4	(17 9 1)	View C	Output		View	Output			Res	tore Form	nulas for	Vs, Dispers	wities P
eta Suttate*	\$04	10	(mg/L))						1		lambda		
bserved Methane*	CH4	0	(mg/L)								-				_

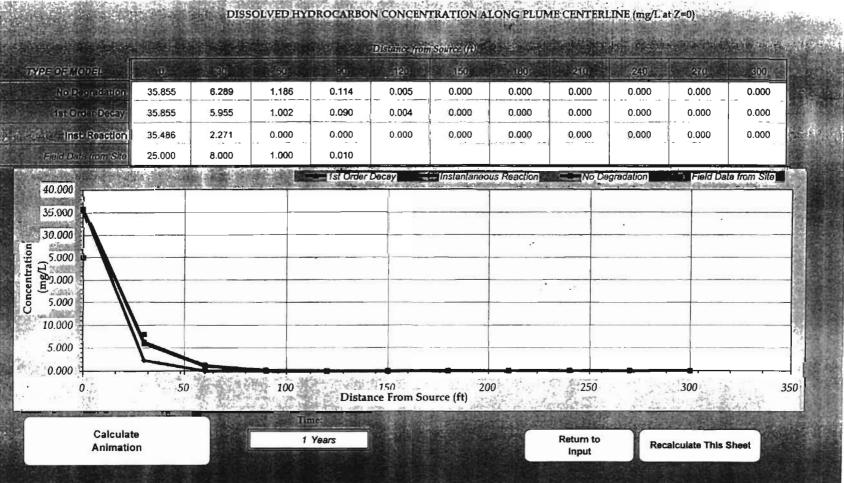
.

APPENDIX K BIOSCREEN OUTPUT – RUN #7

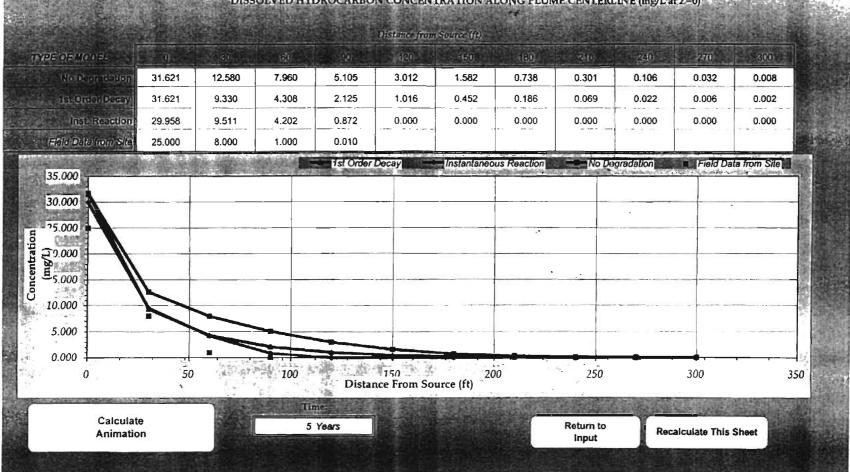
,

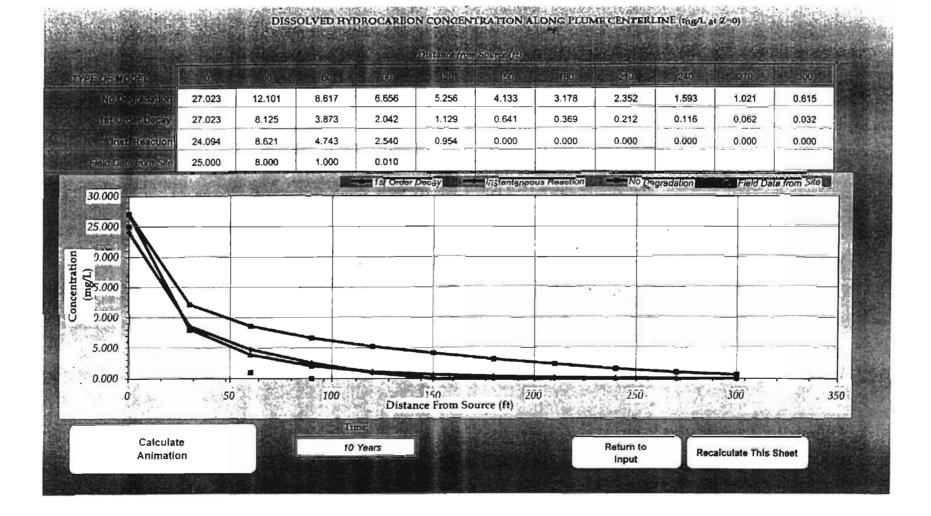
.

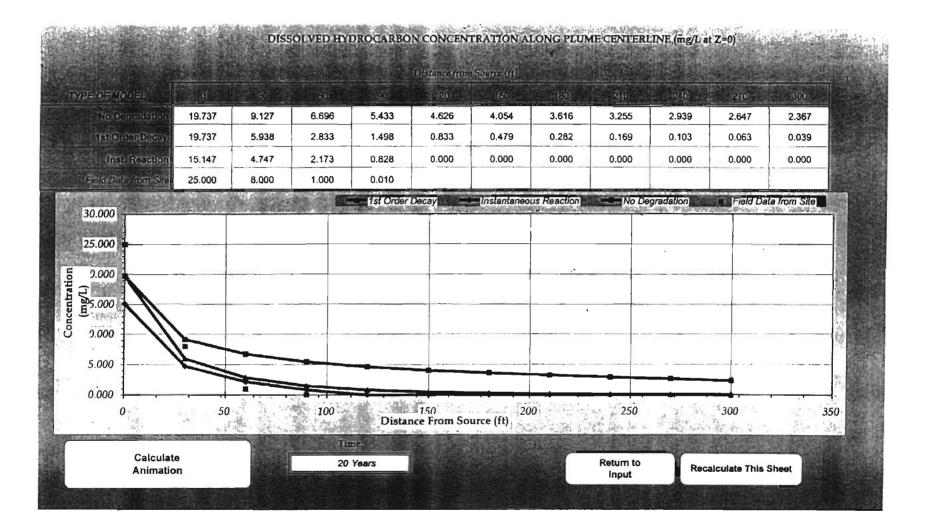
.

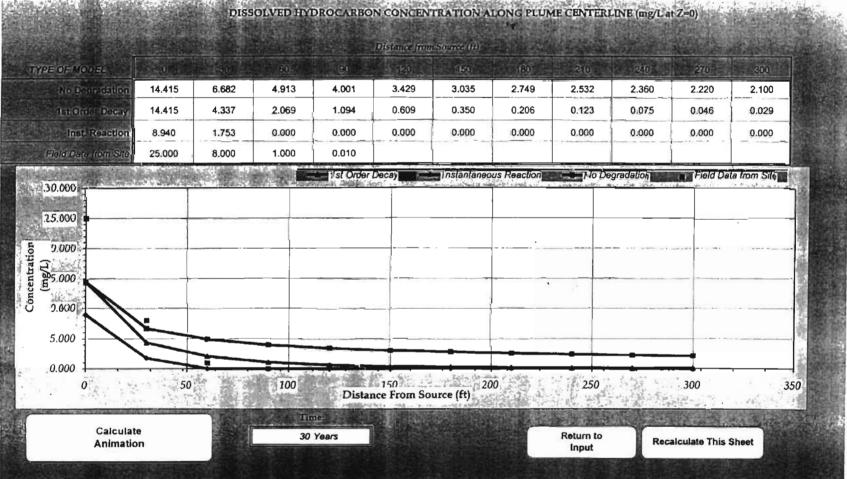

Ĵ

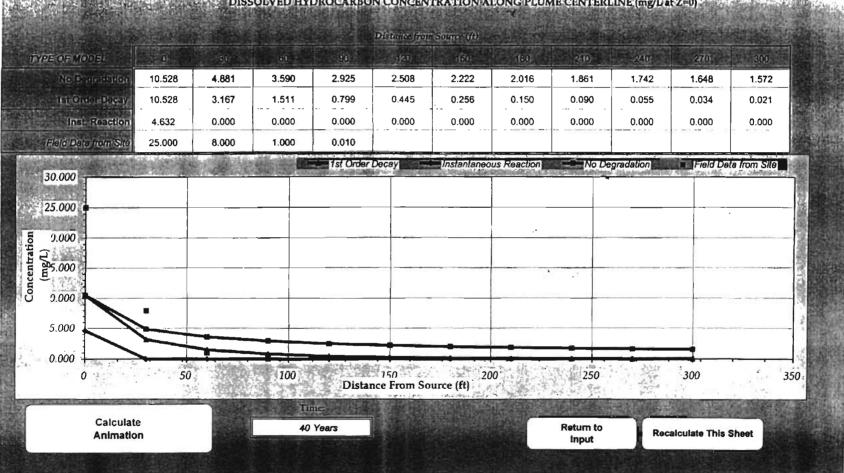
BIOSCREEN Natura	Attenuati	ion Decisi	on Supp	ort System	oft System ODOT Residency				y	Data Input Instructions:						
tir Force Center for Endronment	and a constant			Version # 4			Februa	ny, 1998			ectly or					
			+					Run Nam	e			iculate by f Is below. (1	lling in grey			
I, HYDROGEOLOGY			-	5. GENERAL		1 1000										
Seepage Velocity"	Vs	25.0	(ft/yr)	Modelad Area Ler		300	(11)	1					itton below)			
or		T or	-	Modeled Area Wi	#h*	300	1100	W 1		V.A	and a second second		lly in model			
tydraulic Conductivity	×	6.3E+04	(cm/sec)	Simulation Time*		5	[// i)	1		9 		calculated	÷			
tydrautic Gradient	ϵ	0.0055	(11/17)							<u>indige</u>	(Don	i'l enter eny	dala).			
Porosity	п	0.17]()	S. SOURCE DAT	· · · · · · · · · · · · · · · · · · ·		-		Vertical	Plane Sou	rce: Look at Plume	Cross-Sect	in and lonut			
			_		ickness in	Sat.Zone	• 10	(ft)	22	rations &		01000				
2. DISPERSION			-	Source 2		1	A		for Zone	s 1, 2, an	d 3					
ongitudinal Dispersivity*	atpha x	23.0	(11)	Contraction of the local division of the loc	one. (mg/L)*	-	f-		\$ <u></u>		time					
"ransversa Dispersivity"	alpha y	1.5	(ft)	0.01	0.01	1		·	·····							
rentical Dispensivity*	alpha z	0.2	(#)	3	8	2		_								
or		1 a		10	37	3,	-		• in , •		المست	. Is				
stimated Plume Length	Lp	150	_] <i>(1</i> 1)	3	8	4.	2	4			and a start of the					
		•		0.01	0.01	5,	4	1 1								
ADSORPTION			-	Source Halfille			1	1 1			14					
tetardation Factor*	R	1.2	(4)	20 Inst Read	5	(YI)	1				View of Flume i.	001410	WD.			
or		Γ α	_		1st Order	4	l				unterline Concentrall		tanan Illa Ma			
ioll Bulk Density	tho	21	(KgA)	Scluble Mass	16	(Kg)		i i		No. 20 (1996)	Intenine Concentrari No Dela Lenvo Blan					
Partition Coefficient	Koc	38	(LAKQ)	In Source NAPL, St	······································			1			IND LIGIE LEBVO CHAN	K.C.F. GERHET	na tan ti			
ractionOrganioCarbon	fac	2.08-4](-)	7. FIELD DATA		NATE PARALLAGE AND	1	1	1	0		r i	<u> </u>			
			-		stration (mg/L)	8	8.0 30	10 60	01 90	120	150 180	210	240 270 3			
BIODEGRADATION		A COLORING	٦	Chief, Ilic	im Source (ft)	0	30		90	120	130 1 160	210	240 270 3			
st Order Decay Coeff	lambda	4.0E-1	(per yr)	8. CHOOSE TYP		TA CEE										
or			4.	a. Choose I th	E OF OUTPO	H IU SEE				5 F			·			
olute Half-Life	t-he#	1.75	(yeert								Help		Recalculate This			
r Instantaneous Reaction			7	RUN CEN	TERLINE		RUN A	ARRAY					Sheet			
elta Oxygen*	DO	5.42	(mg/L)								Pa	ste Exam	ple Dataset			
elte Nitrale'	NOS	0	(mg/L)	and the second second												
bserved Ferrous Iron*	Fa2+	0.4	(mg/L)	View Output		View Output				Restore For	mulas for	Vs, Dispersivities, R				
oetta Suffate*	\$04	16.32	(mg/L)		and the second							lambda	other			
bserved Methane*	CH4	0	(mg/L)								A CONTRACTOR OF		Contraction of the second second second			

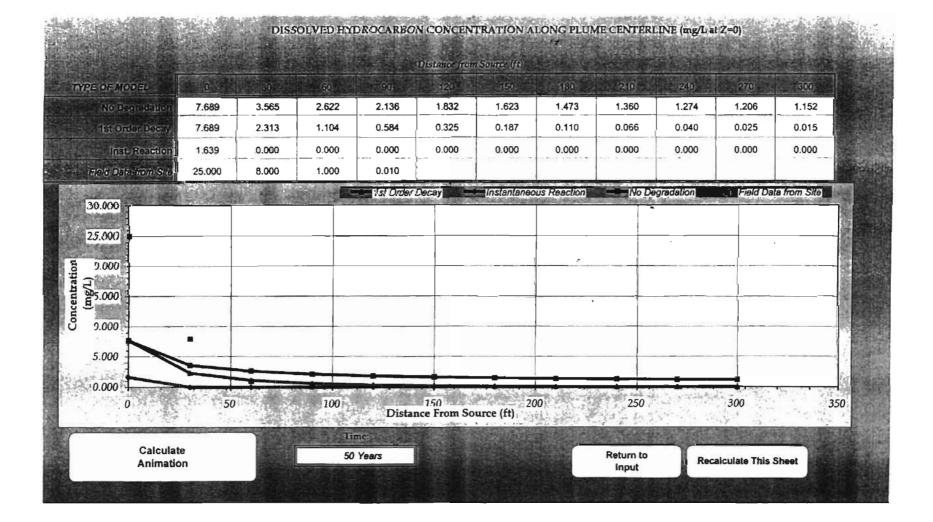

.

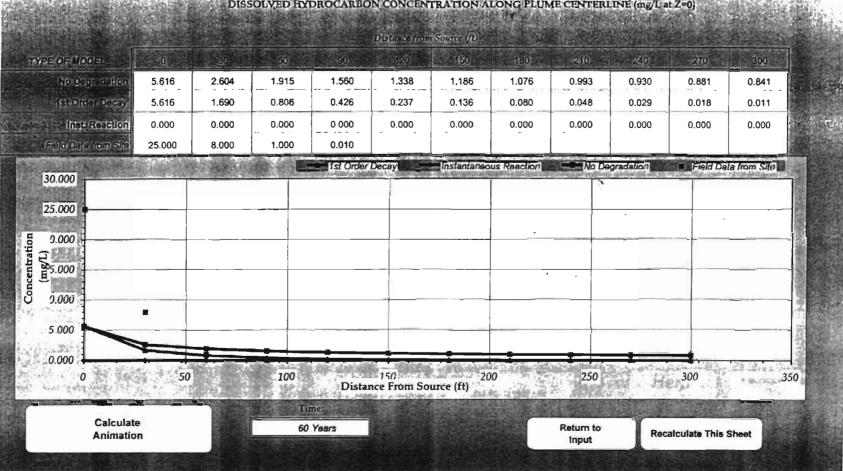

.

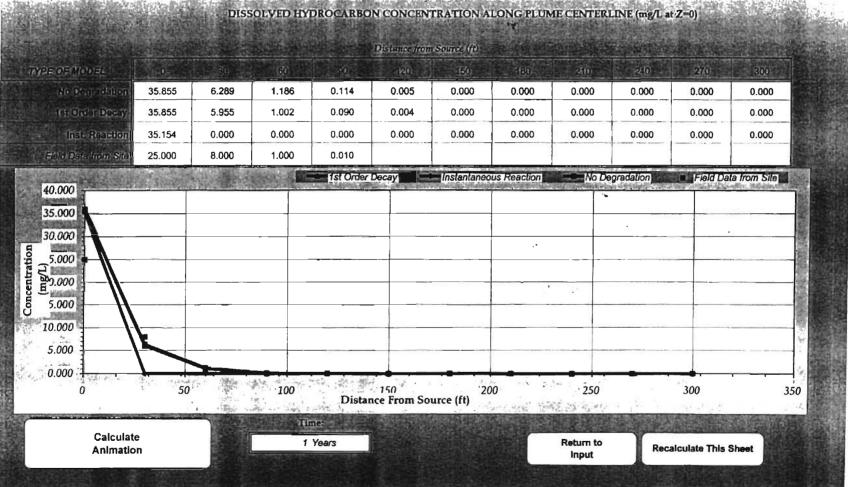

<u>ب</u>

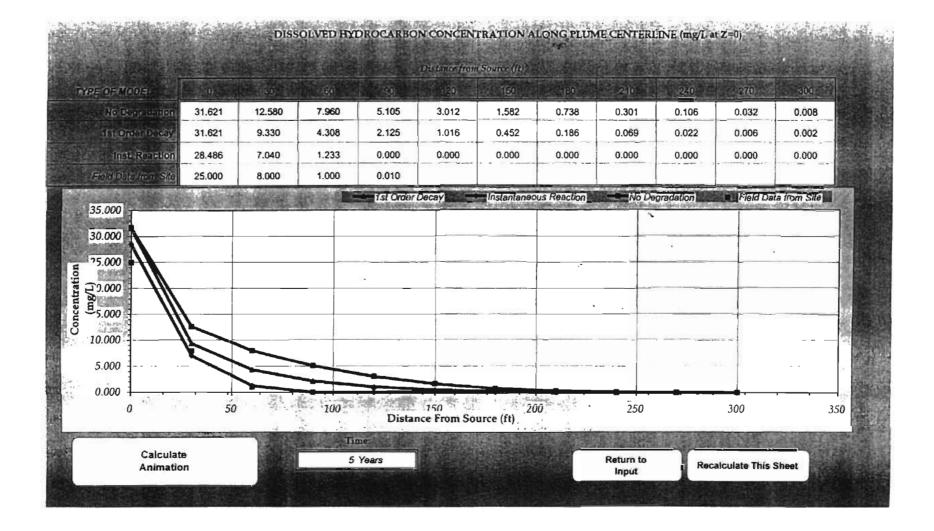


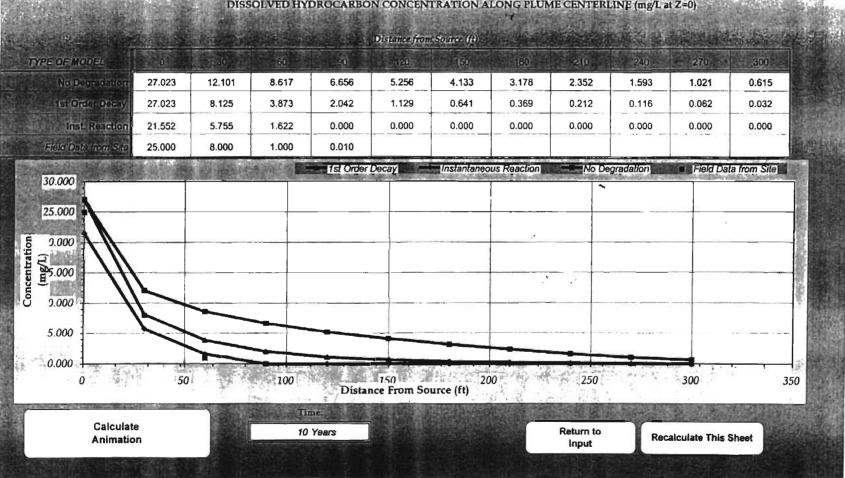

55:30

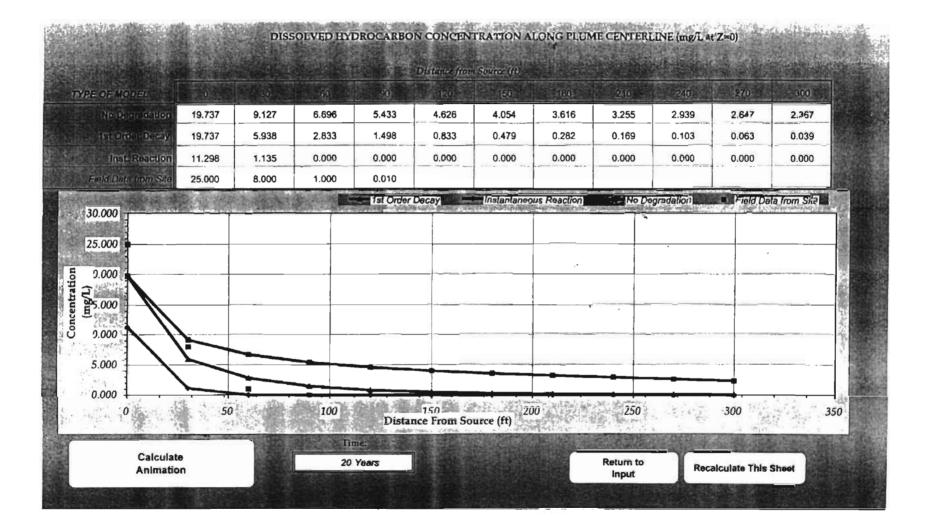


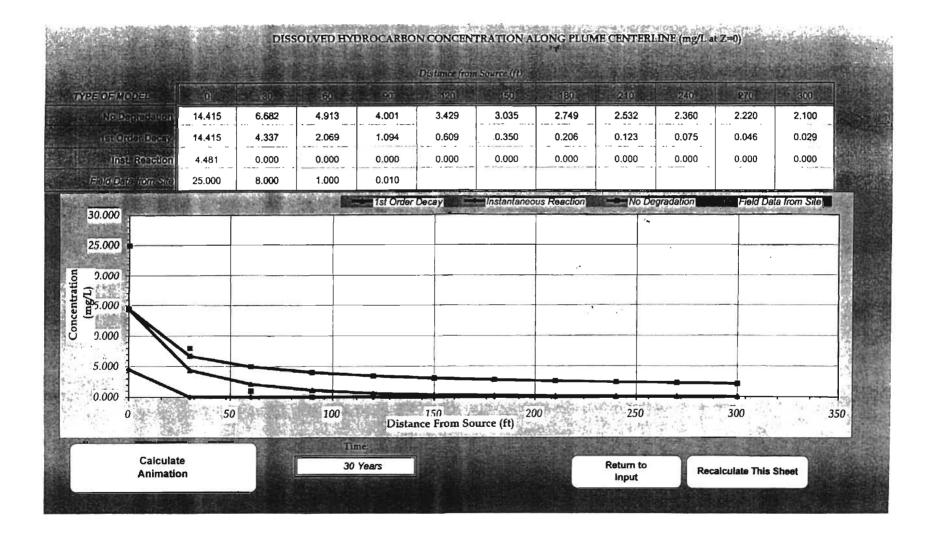


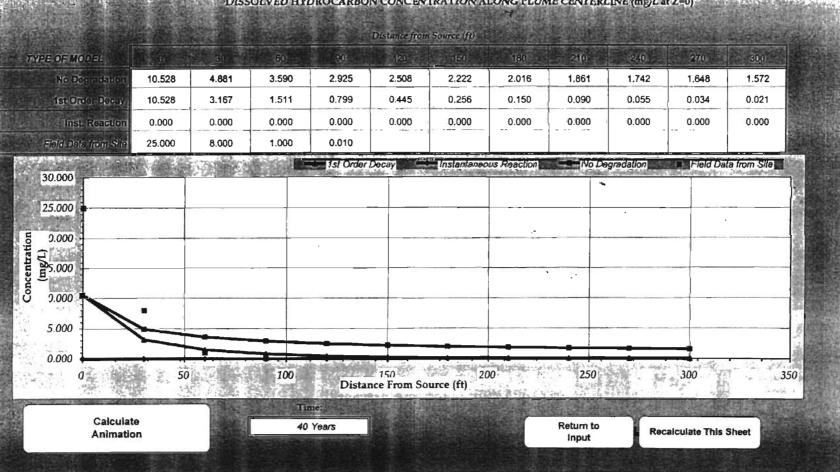


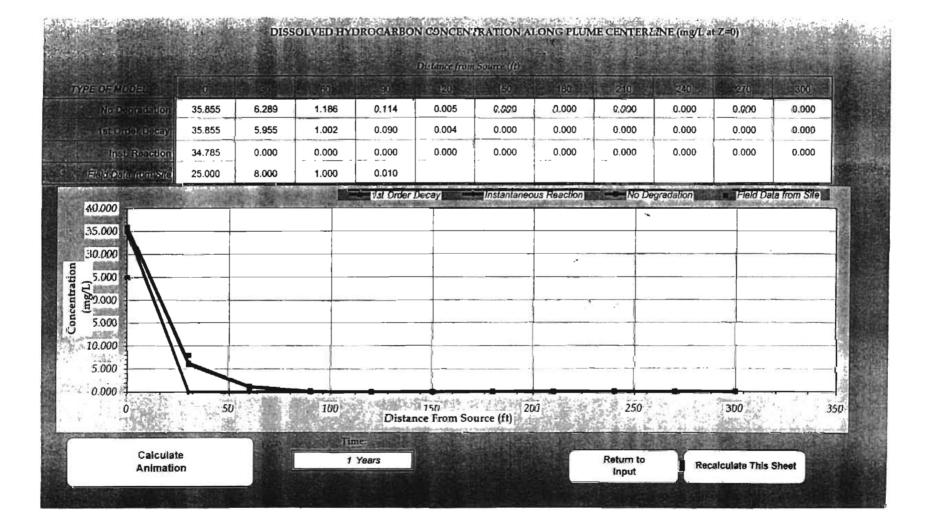


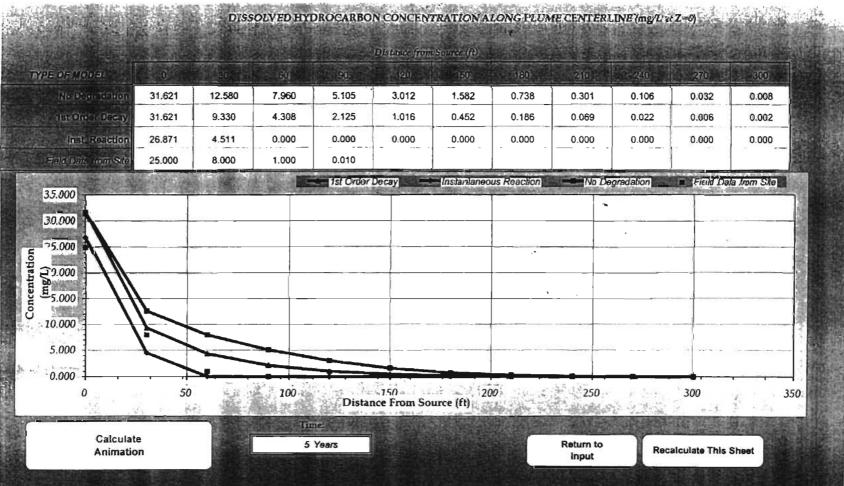


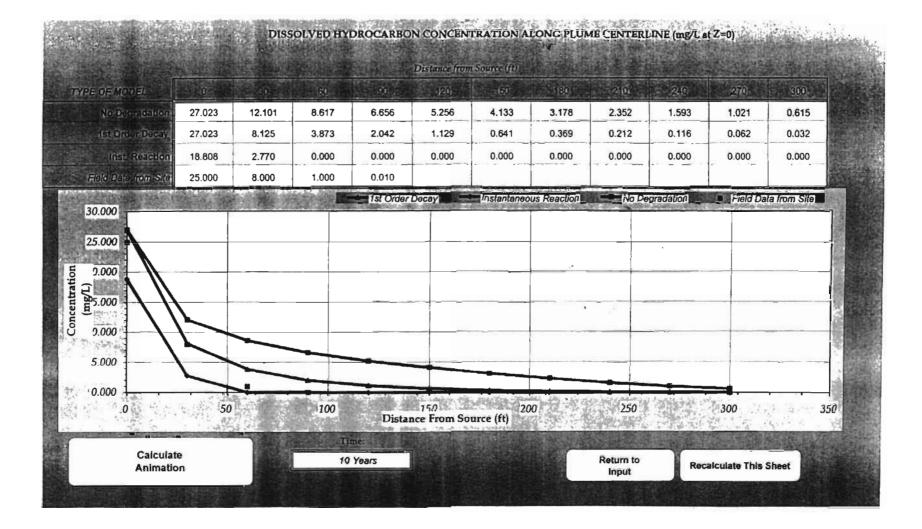


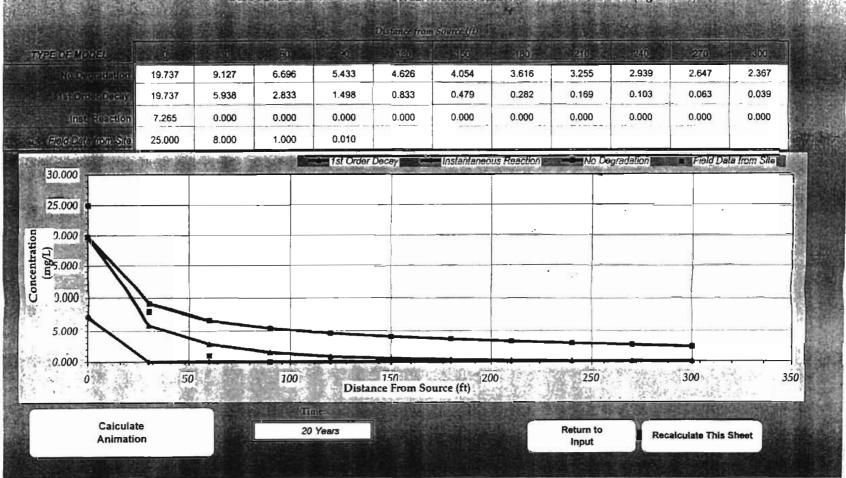

BIOSCREEN Natura	Attenuati	on Decisi	on Supp	ort System		548.	ODOT Residency			Data input instructions:						
ur Force Center for Environmen	tal Excellanca			Version 1.4		1 4 Y Y Z	February			115 Enter value dra thy or						
			-					Run Mune			Contraction of the local division of the loc		tilling Bri grey			
1. HYDROGEOLOGY			.	5. GENERAL			٦. [']	• î.		L		dis balow. (
Seepage Velocity*	Vs	25.0	(thiyr)	Modeled Area Lengt	· · · · · · · · · · · · · · · · · · ·	300	(11)						utton below)			
or		↑ œ		Modeled Area Width		300	_(#) W		2	Vali			ctly in model.			
Hydraulic Conductivity	ĸ	6 3E+04	(cm/sec)	Simulation Time*		1	_(m2 1				1 2010 2020	e calculated	845 mm			
Hydraulic Gradient	1	0:0055	(1071)								[Do	witenler an	y dalaj			
Porceality	n	0.17]()	6. SOURCE DATA		1.62	<u>, i i i i i i i i i i i i i i i i i i i</u>		Variant	Hana Couro	e: Look at Plum	Conce. So	tion and Innut			
		<u></u>	-	Source Thic		Sat,Zone	10	(#)		alionis & Wi		0 01205 000	aan ano mpas			
2. DISPERSION			÷	Source Zon			1 min			1, 2, and 3			in the second			
Longitudinal Diepersivity*	alpha x	23.0	(#)		c. (mg/L)*	-	12	<u></u>						1 margaretice		
Fransverse Dispersivity*	sipha y	1.5	(#)	0.01	0.01	1	ł									
Vertical Dispersivity*	alpha z	0.2	(11)	3	8	2				in the second	The second s					
or		T a	1	10	37	3			۲				• • >			
Estimated Plume Langth	Lp	150](10)	3	8	4					and the second s		-			
			-	0.01	0.01	5			.a.							
ADSORPTION			-	Source Halflife (19									jurn y 12			
Retardation Factor*	R	1.2	(-)	20	5	(41)					new of Pilline (සංඛනයි ස	own			
or		T a		y t	1 st Order		- i			· · · · ·		9				
Soll Bulk Density	rho	21	(Kori)	Soluble Mass	16](K@)	1		, Ob;	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	adini Convintra	0.0000000000000000000000000000000000000				
Partition Coefficient	Koc	38	(L/kg)	w Source NAPL, Soil				- t		HA5	Date Liseve Üla	के के दिन्हेंक	W			
ractionOrganicCarbon	fec	2.08-4](-)	7. FIELU DATA FO		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1	r ~ 1					r <u></u>			
			-	NO. 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -	ntion (mg/L)	and the second se	8.0	1.0	.01	.0	.0					
. BIODEGRADATION		- <u>8</u>	٦	Dist. from	Scurce (II)	0	30	60	90	120	150 180	210	240 270	2 3		
Ist Order Decay Coeff*	lambda	4.0E-1	(per yr)		10 A	·**			12			6-0-1				
or	and a second	Λœ		a. CHOOSE TYPE	OF OUTPU	T TO SEE:						<u> </u>				
Solute Half-Life	t-half	1.75	(year)			C					Help	b	Recalcula			
r Instantaneous Reaction			т.	RUN CENTE	RLINE	E F	RUN A	RRAY					Shee	et		
Delta Oxygen*	DO	5.42	(my/L)									aste Evan	nple Dataset	And the second		
Selta Natrate*	NOS	20	(mg/L)						_		And and a state of the state of		the Dataset			
Observed Ferrous Iron*	Fe2+	0.4	(mg/L)	View Out	put		View O	utput			Restore Fo	rmulas for	Vs, Dispersiv	ities, R		
Selta Sutfate*	504	16.32	(mgit.)									lambda				
Observed Methane*	CH4	0	(mg/L)										-			

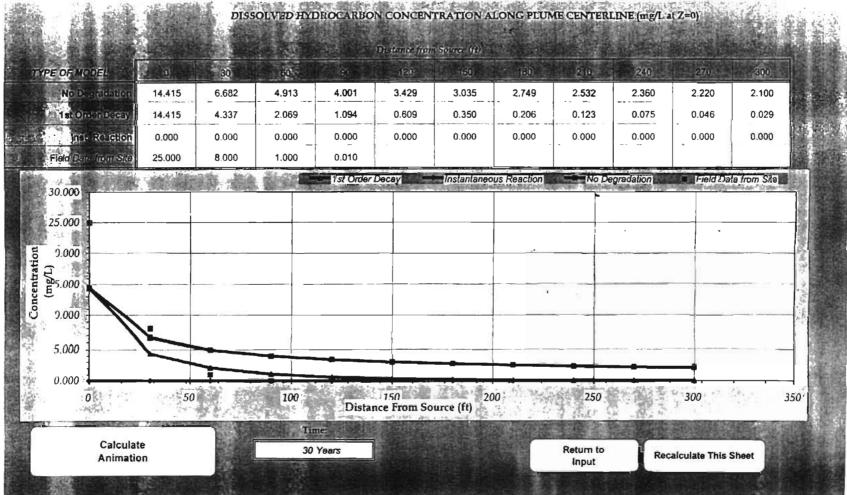











BIOSCREEN Natural Attenuation Decision Support Air Force Center for Environmental Excellence				ort System		ODOT Residency February, 1998			Data Input Instructions:						
Air Force Center for Emirohmen	at Exologica			Version 1.4			(<u>Febr</u>	Run Ala	/nex.	不	NORTH AND ALL STATISTICS		lifelg in grey		
1. HYDROGEOLOGY				5. GENERAL				7				As Balow (
Seepage Velocity*	Vs	25.0	(tvyr)	Modeled Area Le	ngth*	300	(11)	F	• ******		tor	mulas, hlt b	utton below)		
or		Tor		Modeled Area W	idth*	300	(17)	W	>>	Varia	ble* — Osh	a used direc	tly in model.		
lydraulic Conductivity	ĸ	6.3E+04	(cm/sec)	Simulation Time		1	(ye)	-			20	calculated	by model		
lydrautic Gradient	- I	0 0055	(thitty)			100 A 100	ಹೆಯಿಂ	Sec. 1			/Do	n'i enter en	r dala)	il	
orosity	л	0.17	- (-)	6. SOURCE DA	TA							a harra a	<u>.</u> .		
			-	Source Ti	bickness in i	6at.Zone	1	0 (11)	099855	Plane Source		Cross-Sec	tion and Input		
DISPERSION			· · · · · · · · · · · · · · · · · · ·	Source	Zones			- market		trations & Widi es 1, 2, and 3	ns .			128221	
ongitudinal Dispensivity*	atpha x	23.0](17)	Width: (ft)	Conc. (mg/L)*		1-					000000000000000000000000000000000000000	CALCULATION OF THE		
Transverse Dispersivity*	atpha y	1.5	(1)	0.01	0.01	1	1	4							
ertical Dispersivity*	alpha z	0.2	(11)	3	8	2							~		
or		1 or		10	37	3				u "~ u) 🔳 🕚	
stimated Plume Length	Lp	150	_(tt)	3 0.01	8 0.01	4			+						
ADSORPTION				Source Halflite	(see Help):		·	fa~							
letardation Factor*	R	1.2	0	10	5	(vr)	<u></u>	1		V/H	iw at Plume L	aaking Di	WT)	10 A.	
or		1 or		Inst. React.	1st Order		38			÷.,		1			
oll Bulk Density	rho	2.1	(kgA)	Soluble Mass	16	(Kat	9 	1		userved Geneer	the Concentral	ions si Man	toring Wells		
Partition Coefficient	Kac	38	(L/Kg)	In Source NAPL, S	oil		3999 (S	1 1		If No I	Jate Leave Blan	k or Enter"	p•		
ractionOrganicCarbon	foc	2.0E-4	6	7. FIELD DATA	FOR COMPAN	rison			and	and the second s	<u>,</u>	<u>lines</u>	<u></u>		
				Conce	intration (ing/l.)	25.0	8		01	0	0				
BIODEGRADATION			_	Dist. fr	om Source (ff)	0	30	<u>60</u>	90	120 1	50 180	210	240 27	70 30	
st Order Decay Coeff*	Jambola	4.0E-1	(per yr)				**								
OF		l ∧ ∝		8. CHOOSE TY	PE OF OUTPU	T TO SEE						announ			
olute Half-Life	t-hair	1.75	(year)								Help		Recalcul	ate This	
r Instantaneous Reaction			~	RUN CEN	TERLINE		RUN	ARRA	Y 📗				She	eet	
elta Oxygen*	DO	5.42	(mg/L)								D.	acta Evan	ple Dataset		
ielta Natrate*	NOS	40	(mg1.)								P	asie Exam	pie Dataset		
observed Ferrous Iron*	Fe2+	0.4	(mg/L)	View C	Dutput		View	Output			Restore For	mulas for	Vs, Dispersi	vities R	
Delta Su#ate*	\$04	16.32	(mg/L)	A STREET	·							lambda	Contraction of the second s	and the set	
observed Methane*	CH4	0	(mg/L)												

Candy Rae Akins

Candidate for the Degree of Master of Science

Thesis: APPLICABILITY OF BIOSCREEN TO A HYDROCARBON CONTAMINATED UNDERGROUND STORAGE TANK SITE

Major Field: Environmental Engineering

Biographical:

- Education: Graduated from Guthrie High School, Guthrie, Oklahoma in May 1989; received a Bachelor of Science degree in Civil Engineering from Oklahoma State University, Stillwater, Oklahoma in May 1997. Completed the requirements for the Master of Science degree in Environmental Engineering at Oklahoma State University in May 1999.
- **Experience:** Previously employed as a Civil Engineer Intern by Cobb Engineering Company of Oklahoma City, Oklahoma; previously performed grant-supported graduate research for the Department of Civil and Environmental Engineering at Oklahoma State University; currently employed by Cardinal Engineering, Inc. in the Oklahoma City office as a Project Manager since May 1998.
- **Professional Memberships:** Chi Epsilon, Phi Kappa Phi, Oklahoma Society of Professional Engineers, National Society of Professional Engineers.