
THE DESIGN AND IMPLEMENTATION OF A TWORK

MANAGEMENT APPLICATION

USING SNMP PROTOCOL

By

WENXIA ZHANG

Bachelor of Science

Tianjin Finance & Monetary University

Tianjin, China

1994

Submitted to the Faculty ofthe
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 2000

THE DESIGN AND IMPLEMENTATION OF A NETWORK

MANAGEMENT APPLICAnON

USING SNMP PROTOCOL

Thesis Approved:

Dean of the Graduate College
u~ 13. !?CJU411

11

ACKNOWLEDGEMENTS

I would like to express my special gratitude to my advisor Dr. Jacques E. Lafrance

for his encouragement and guidance in my entire graduate study.

I would also like to thank Dr. ling Peng and Dr. H. K. Dai for serving as my

committee members and reviewing this thesis, without their suggestions, ideas and

support, it would be impossible to finish the thesis on time.

111

Chapter

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

IL LITERATURE REVIEW 3

2.1 SNMP Protocols 3
2.2 Management Information Base (MIBs) 5

III. THE ARCHITECTURE OF SNMP 9

3.1 The Manager/Agent Model 9
3.2 The Fetch-Store Paradigm 12
3.3 Management Information Base (MIB) 13
3.4 SNMP Protocol Format 18

IV. THE IMPLEMENTATION OF AN SNMP TOOL 21

4.1 Implementation Considerations 21
4.2 AN SNMP Tool - snmpPacket Control 22

V. AN SNMP APPLICATION - VBSNMP 26

5.1 Interfaces And Components 26
5.2 Data Flows And Algorithms 30

VI. EXAMPLES OF THE USE OF THE APPLICATION 34

VII. FUTURE IMPROVEMENTS AND ENHANCEMENTS 46

BIBLIOGRAPHy 47

APPENDIXl: THE Mill.TXT FILE 49

APPENDIX 2: APPLICAnON OPERATING PROCEDURE 51

IV

LIST OF FIGURES

Figure Page

3.1 Manager/Agent Management Model 10

3.2 SNMP And The TCP/IP Protocol Suite 11

3.3 Object Identifiers In The Management Information Base 15

3.4 ASN.l Object Structure 16

3.5 The Common SNMPvl Type Identifiers 17

3.6 SNMP Message Format 18

3.7 An Example Of SNMP Message Field Encoding 18

3.8 PDU Format 19

3.9 The Variable Binding List Format 20

5.1 SNMP Control Demo 27

5.2 Variable Value Setting Window 30

5.3 Data Flow Diagram 31

6.1 The Result of ipForwarding Object 35

6.2 The Result of ipDefaultTTL Object 36

6.3 The Result of ipInReceives ..37

6.4 The Result of ipInHdrErrors Object 38

6.5 The Result of iplnDelivers Object 39

v

6.6 The Result of ipOutRequests .40

6.7 The Result ofipReasmTimeout Object .41

6.8 The Result ofipReasrnReqds Object .42

6.9 The Result ofipReasmOKs Object .43

6.10 The Result ofipReasmFails Object 44

Vl

CHAPTER I

INTRODUCTION

Computer networks have been growing explosively over the last two decades.

Today's networks are often intemetworks and intranetworks that have greatly increased

in size and complexity due to the fact that network hardware and software from different

vendors often coexist in the same network. It is also possible for different network

architectures and technologies to coe~ist in these intemetworks. As more and more

people have access to networks, the security issue also becomes a major concern. In order

to maintain network performance and efficiently use the network resources, it is very

important to have a standard way ofmanaging networks.

Over the last few years, two standards emerged from the network management

community, one is the SNMP (Simple Network Management Protocol), another is ISO

CMIP (Common Management Information Protocol). However, with the rapidly growth

ofInternet and the wide adoption ofTCP/IP protocol, SNMP which is based on the

TCP/IP protocol has gathered extremely widespread support among internetworking

vendors of hardware, software, and network management platform products.

SNMP is an open standard so that it can operate with many different types of

network devices from various vendors and can be integrated into networks ofdifferent

sizes, ranging from small LANs (Local Area Networks) to large WANs (Wide Area

Networks), and different existing networking technologies such as Frame Relay, ATM

1

(Asynchronous Transfer Mode), and so on. It is also easily expanded as newer

networking technologies and equipment emerge. Furthermore, it is cost-effective: 1) its

documentation is free, the standards are published as RFCs (Request for Comments), 2) it

is relatively easy to implement because of its vendor-independence, 3) it can be used to

manage a wide range of devices, services and applications, and 4) it can be implemented

to fulfill the major functions ofnetwork management including fault management,

accounting managem~nt, configuration management, performance management, security

management, and more.

TCPIIP-based internetworks are designed to be multivendor systems, although a

TCP/IP-based version of CMIP (known as CMOT - CMIP Over TCPIIP) is also

available as RFC1189, but it has not gathered the widespread support as ofSNMP. Based

on the current industry consensus support of SNMP, it would be significant for the

internet technology development to do some research on SNMP. It is for this reason that

I choose this challenging field for my thesis study.

2

•

CHAPTERll

LITERATURE REVIEW

SNMP is the standard operations and maintenance protocol for the network and

internets. SNMP is also the key technology that enabled the Internet's phenomenal

growth, it is widely used in today's internet management.

Current research mainly covers two aspects of the SNMP field: SNMP protocol

studies (including SN1\1Pvl, SNMPv2 and SNMPv3) and Mill (Management Information

Base) studies.

2.1 SNMP Protocols

The proposed research work on SNMP protocols presents some background

information, the overview of network management requirements and an explanation of

fundamentals such as network management architecture; performance, fault and

accounting monitoring; and configuration and security control. To understand the history

ofSNMP, one need to know and check the RFCs. RFC stands for Request For

Comments, it is a prime vehicle for disseminating information about the internet and its

standards. The SNMP specifications in their various stages have been published as RFCs.

The RFCs can be obtained through a variety ofmeans from different sources. They are

stored on-line and may be obtained at no charge over the internet using e-mail,

3

anonymous FTP, or a web browser. The original SNMP authors are Jeffrey Case, M.

Fedor, M.L. Schoffstall. and J. Davin. their research was published in 1988 as RFC 1067

entitled "A Simple Network Management Protocol"[l]. Before the publication ofRFC

1067. many others also mad.e significant contributions to the SNMP protocol. For

example, Keith McCloghrie and Marshall Rose fInished the three key elements of SNMP:

the SMI, the MIB, and the protocol. Their work was published in RFC 1065 "Structure

and Identification of Management Information for TCPIIP-based intemets"[2] and in

RFC 1066 "Management Information Base for Network Management ofTCPIIP-based

intemets"[3]. In April 1989, Schoffstall, Davin, Fedor, and Case revised the SNMP

protocol and issued "Simple Network Management Protocol(SNMP)" as RFC 1098[4].

From then on, many vendors released SNMP implementations, such as Cisco, Proteon

and the Wollongong Group. In 1990, the SNMP operability study was done by many

scholars. Rose, McCloghrie, and Davin issued RFC 1187 on how tables can be retrieved

more efficiently in SNMP, "Bulk Table Retrieval with SNMP"[5]. By 1992 the talk of

SNMP Version 2 to improve the management framework was well underway. One very

important magazine -Simple Times-- is an excellent source of information on SNMP. It

includes technical articles, the status of working groups and the SNMP RFCs, and some

book reviews. Sean Harnedy gave some very detailed information about the Simple

Times and the evolution of the standard SNMP[6]. In April 1993, more than 10 RFCs

regarding the SNMPv2 were issued. Case, McCloghrie, Rose, and Waldbuser discussed

the network management framework, the structure of SNMPv2, some conventions, the

administrative model of SNMPv2, the security protocols and the transport mappings for

SNMPv2. However, the implementation of the draft SNMPv2 specifications have been

4

-

slow to appear from both manager and agent vendors. Until now, although the SNMPv2

implementations are widely available from agent and manager vendors, SNMPvl is still

the most pervasive fonn ofnetwork management. In 1997, the SNMPv3 working group

was fonned to begin work on the latest version of SNMP. The research on SNMPv2 and

SNMPv3 mainly focuses on security features such as message authentication code and

encryption, USM (User-Based Security Model), and VACM (View-Based Access

Control Model). In 1998, William Stallings provided some very good discussions on the

SNMPv3 security features: authentication, privacy and access control [7. 8]. It is

important to realize that SNMPv3 is not a stand-alone replacement for SNMPvl or

SNMPv2. SNMPv3 defines a security capability to be used in conjunction with SNMPv2

or SNMPvl. SNMP provided a standard internetworking management protocol. Some

scholars made some research on the SNMP based management architecture for Internet

Information Services. For example, F. Stamatelopoulos and B. Maglaris presented a

hierarchical management scheme for Internet Information Services[9], the hierarchy

consists of at least three layers: the agent, the domain manager/remote monitoring agent(

DMIRMA) and the management station(MS). The management of mobile networks using

SNMP protocol also caught some scholars' attention. Luca Den and others developed a

mobile network management system by the implementation ofSNMP using Java[10].

Other scholars researched the SNMP Basic Encoding Rules for information packets

encoding and decoding across the heterogeneous network layers [11].

2.2 Management Information Base (MIBs)

5

-

Other proposed research work has concentrated on the study ofMIBs (Management

Information Base). MIB specifies what variables the network elements maintain (the

information that can be queried and set by the manager). Some proposed research offers a

functional view of SNMP-based management, emphasizing the aspects that relate directly

to MIBs. These include 1) modeling and development, 2) relationships between objects,

3) textual conventions, 4) domains and control fields, 5) versions and migration[12].

Some research has covered the basic syntax and specifications ofMIB modules and the

discussions of advanced data structures and data types, including I} nested tables and

multi-table relationships, 2) linked lists, 3} multidimensional arrays, 4) floating point

numbers[13].

Two versions of the Internet MIB for SNMPvl have been published: MIB-I, RFC

1156[14], and the enhanced MIB-II, RFC 1213[15]. Three excellent sources of

information on MIBs include Dave Perkins' "How to Read and Use an SNMP MIB"[16],

Bob Stewart's" Development and Integration of a Management Information Base"[17],

and 3Com Corporation's "Introduction to Simple Network Management Protocol: A Self­

Study Guide"[18]. One important MIB is RMON MIB: Remote Network Monitoring

Mill. Several RFCs define RMON functions: RMON for Ethernet networks, RFC

1757[19]; RMON extensions to support upper-layer protocol functions, known as RFC

1513[20]. Some scholars such as Kevin Tolly and Jim Carr discussed some RMON

applications[21] .

RFC 1155 specified the Structure ofManagement Information (known as SM!)

which is a set of common structures and an identification scheme used to reference the

6

-

variables in the MIB[22]. For example, the SMI specifies that a Counter is a nonnegative

integer that counts from 0 through 4,294,967,295.

There are several commercial network management applications available that are

based on SNMP, such as the OpenView from Hewlett-Packard and the NetView from

IDM/Tivoli. Utilities such as the WinSNMP APIs and SNMP++ classes set also exist that

help network engineers develop network management applications.

However, all the commercial applications have some disadvantages. First of all, they

are very expensive, an enterprise version ofHP OpenView will cost almost $20,000 to

install and for each additional user there will be more license fees to be charged, plus,

you need pay the expensive service and consulting fees. Besides the cost, these

applications can not resolve all the requirements of the network management, for

example, this commercial software cannot resolve some complex network security issues

and often the business needs some duplicate investment in the security management of

the network. For a middle or small sized network, it is unaffordable to purchase this kind

of software to manage the network. However, because SNMP is an open standard, it is

possible to develop some specific applications for the specific needs of any network

management. As Microsoft Visual Basic (VB) and Visual C++ (VC++), especially the

ActiveX controls, become more and more popular in developing GUI applications, it

would be very beneficial to have a custom control that could help in developing network

management applications in VB or VC++. This is exactly the goal of this thesis: create an

SNMP ActiveX control, called SnmpPacket control, and then use it to develop a simple

network management application called vbsnmp - a network manager, we can use this

network manager (vbsnmp) to demonstrate how flexible and expandable it is to fetch and

7

r

set values ofmanaged objects from a given SNMP agent. By doing so, it shows how this

kind of research can benefit the management ofmiddle and small sized networks.

8

CHAPTER III

THE ARCHITECTURE OF SNMP

3.1 The Manager/Agent Model

Over the past decade, computing architectures have moved from centralized,

mainframe-based environments to distributed Client/Server environments. Similarly, the

network management systems architecture has moved from host-based systems to

distributed systems which use a methodology called the Manager/Agent Model. The

network devices managed by the Manager/Agent Model systems are called objects. The

definition for each object is contained in the Management Information Base, which will

be discussed shortly. The Agent resides in the object and reports the object's current

status to the Manager. Most internetworking products, from the simplest bridge to the

most complex ATM switch, come with an embedded SNMP agent. The Manager

maintains global knowledge of the internetwork in question. The Manager is the

application system to be developed to manage the network device which supports the

SNMP Agent. The Manager usually includes three functions: a Graphical User Interface

(GUI), a database, and communication facilities. The GUI allows end users to visualize

the internetwork, the database keeps track of the internetwork elements and parameters

for those elements, and the communication facilities which use SNMP protocol help the

Manager to communicate with the managed elements. These three functions enable the

Manager to see what is happening on the network, to communicate with the devices being

9

managed to query or modify parameters, and to oversee dynamically the network

operations.

SNMP uses the Manager!Agent Management Model to monitor and control a

network. Figure 3.1 shows the relationship between the Manager!Agent Management

Model and the TCPIIP 4-layer communication model.

I. Application Layer 1. Application Layer

r o '_"'."""_"_""
U
.""'" NMProtocol -;"""-""""""""-''''''

~ Manager i ! Agent !
~ ~ .._.._.._ .._.~ ~

: I
I • I :

~. ,_"""""",0 _~
: ,..................................,

2. Transport Layer 2. Transport Layer
(Host-Host) (Host-Host)

3. Internet Layer 3. Internet Layer
(IP) (IP)

4. Network access i) : 4. Network access

Interface ~rotocols , Interface Protocols
Physical Links Physical Links

• 'i.:" ~.~. lif>' <I!. !

Figure 3.1 Manager!Agent Management Model

The figure depicts two network devices, one is termed the network management

manager, and the other is termed the network management agent. Both the manager and

the agent operate at the application level (the top layer) in the TCP!IP 4-1ayer

communication model. They communicate with each other to exchange management

information via a network management protocol which, in this case, is the SNMP.

to

-

The SNMP protocol is defined as an app,lication-Ievel protocol. It relies on a set of

lower-level protocols and device drivers for the networking communications. When

available, the TCP/IP protocol suite is adapted to realize the communications between the

manager and agent. Figure 3.2 shows how SNMP and the primary protocols in the

TCP/IP protocol suite fit into a typical network management message. Notice that SNMP

uses the User Datagram Protocol (UDP) as the transport service.

Application Layer
Transport Layer
Internet Layer
Network Access Layer

SNMP
UDP
IP(w/ICMP)
LAN/WAN Protocols

Figure 3.2 SNMP And The TCPIIP Protocol Suite

The UDP is a connectionless transport protocol that can send data without a pre-

established data-circuit connection. The advantage ofUDP over TCP is that UDP has less

overhead than TCP and can send a sequence ofmessages (or broadcast message) with

each to a different destination. Each UDP data packet has source and destination IP

addresses and a port number that identifies the application involved in the data exchange.

For SNMP, this port number is usually 161, if the agent replies back any network error, it

will send traps back to manager side UDP port 162. By using two different port numbers,

a single system can easily run both a manager and an agent. The disadvantage of the UDP

is that it provides no reliability: it sends the datagrams that the application writes to the

IP layer, but there is no guarantee that they ever reach their destination. This means that a

request from the manager may not arrive at the agent, and the agent's reply may not make

11

-

it back to the manager. The manager probably wants to implement a timeout and

retransmission. However, since SNMP messages only have five commands which we will

discuss soon and four of them are simple request-reply protocols (the manager sends a

request, the agent sends back a reply), using UDP will be good enough for the SNMP.

The Manager is the active participant in the SNMP model. In the general case, the

Manager initiates requests to manage one or more network nodes. The agents passively

wait for requests from the Manager. When an agent receives a request, it translates the

request, performs necessary operation(s), sends an appropriate response, and then goes

back to the ''waiting'' state.

3.2 The Fetch-Store Paradigm

The SNMP model uses the fetch-store paradigm for interaction between a manager

and an agent. Each agent, also called an SNMP server, maintains a collection of data

associated with all of its network devices and services, called managed objects. The

Manager, also called the SNMP client, can read or write these data by exchanging SNMP

messages with the agent. There are two basic types of operations: fetch, used to read a

value from an object, and store, used to write a value to an object. By fetching values of

managed objects, the manager can determine their status. Storing a value to an object

causes a change of the object's setting or causes the agent to perform a certain predefined

operation such as a device reboot.

The SNMP version 1 (SNMPvl) has only five commands for management:

• get-request

• set-request

12

.

-

• get-next-request

• get-response

• trap

The Manager can fetch values of objects by sending get-request or get-next-

request messages. The former fetches the value ofan object specified in the request

message while the latter reads the value of the next valid object managed by the agent.

This provides a convenient way of tree-traversing all the objects the agent manages. The

set-request command is used by the Manager to modify the value ofa specific object.

The agent can reply to these three commands with the get-response message ifno

error occurs. The agent is also capable of sending a message to Manager notifying the

occurrence of some predefined condition. The Manager is then responsible for

determining any future interaction between the agent and subsequent action(s).

In SNMP version 2 (SNMPv2), two additional messages have been added: one is

called get-bulk-request message, which allows the Manager to fetch large amounts

of data with a single request, the other is called inform-request message and is used

for manager-manager communications.

3.3 Management information base (MID)

The collection of all the object types SNMP can manage is known as the

Management Information Base or MID. Each object type in the Mffi is defined by a set of

rules called the Structure ofManagement Information (SMO using the ISO Abstract

Syntax Notation One (ASN.I) protocol, and possesses three basic attributes: object type

name, object type syntax, and object type encoding.

13

-

The object type name, also called object identifier, is a unique representation for

identifying an object type in the Mm. In order for the naming system to be flexible and

expandable, SNMP adapts the ASN.1 narning convention so that every object in the MIB

is placed in a global tree that begins with an unnamed root and has nodes appended to it

to represent the various objects. Each node is assigned a number and the subsequent

sibling nodes are assigned incremental numbers. Each object identifier is represented as a

string of these numbers separated by periods. Figure 3.3 shows part of the MIB tree that

is of interest for SNMP.

As an example of the object identifier, the first object under the system group whose

value is a string that describes the managed network has a name:

iso.org.dod.internet.management.mib2.system.sysDescr

or

1.3.6.1.2.1.1.1

14

I
snmp [11]

-

o unnamed root

I
iso[l]

I
+------+

I I
[2] org[3]

I
+------+---+

I I I
[l] . .. [5] dod [6]

I
internet[l]

I
+------+--+----+

I
management. [2]

I
mib-2[l)

I
+--------+-------------+

I
system[!]

I
+------------+

I
sysDescr[l]

Figure 3.3 Object Identifiers In The Management Information Base

The object type syntax defines the abstract data structure that describes the object.

The data structure specifies four properties of the object:

• Type, the type ofthe object such as integer, octet string, IP address or other type.

• Access mode, the permission level that the agent examines when a request is received

for the object.

• Status, the managed node's responsibility for implementing the object. Mandatory or

optional?

• Name value, a textual name that is equivalent to its object identifier.

15

-

The SMI also specifies the encoding rules for transmitting the value ofa managed

object between a manager and an agent. The encoding rule for SNMP is the Basic

Encoding Rules (BER) for ASN.l which specifies how to encode ASN.l data items into

appropriate octet (8-bit byte) fonnat. According to ASN.l, the value of any object is

represented by three variable-length parts as shown in figure 3.4.

ILength

Figure 3.4 ASN.l Object Structure

Here the tag field represents the type of the object, or type identifier, the length is the

number ofoctets to hold the third part, the actual content of value. Figure 3.5 shows the

common SNMPvl type identifiers and their corresponding hex value.

16

-

Type Hex Type Hex

INTEGER 02h ' Time Ticks 43h

OCTET STRING 04h Opaque 44h

NULL OSh Get-Request POU aOh

OBJECT IDENTIFIER 06h Get-Next-Request POU alh

SEQUENCE, SEQ. OF 30h Get-Response PDU a2h

IPAddress 40h Set-Request POU a3h

Counter 41h TrapPOU a4h

Gauge 42h Get-Bulk-Request PDU aSh

Figure 3.5 The Common SNMPvl Type Identifiers

In particular, the type identifier of the SNMP data is SEQUENCE and has a value of 30h.

An SNMP message consists of several data items and therefore is a complex nesting of

encoded tag-length-value triplets.

In order to be able to represent arbitrarily large length value, SNMP uses the most

significant bit ofthe length identifier octet as a flag to indicate if the length is encoded in

a single octet. If this bit is zero, the short length encoding format is used and the least

seven bits represent the value of the length (therefore short format only applies to the

17

-

cases where length is less than 128 octets). If the bit is a 1, the long format is used and the

least seven bits represent the number of subsequent octets that hold the value of the

length. The long format applies to arbitrary length value.

3.4 SNMP Protocol Format

According to the ASN.l, every SNMP message that is transmitted between an

Manager and an agent has the following format:

Message
Tag(30h) SNMP Message Value

Figure 3.6 SNMP Message Fonnat

Each of the three parts in the message value field must be represented by an ASN.]

triplet and be encoded according to the BER. For example, in the case ofSNMP versionl,

the version field, with value zero, is encoded as follows (Note that the type of the Version

object is INTEGER whose tag number is 2):

Version Tag(=2) . Version Length(l octet) Version Value (0)

. -.

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Figure 3.7 An Example OfSNMP Message Field Encoding

18

F'"

The format ofProtocol Data Unit (pDU) is

PDUValue
PDU
Tag

Request ID Error Status Error Index
Ii

Figure 3.8 PDU Format

Again, each of the four parts which constitute the PDU value field is represented as an

ASN.l triplet. The request ill field is an "integer" that identifies the request sent from the

Manager to the agent. The Manager uses this number to identify the subsequent matching

response message from the agent. The error status field indicates whether there is an error

and, in case of error(s), the type of the first error. The error index points to the first

variable (object) in the variable binding list that caused the error. The variable binding list

is a list of variables (objects) that a particular SNMP message carries. Its format is as

follows:

19

VarBindList
Tag(30h)

Var#l
Tag

VarBindList
Length

Var#l
Length

Var#l
Value

VarBindList
Value

Var#n
Tag

Var#n
Length

Var#n
Value

Value Value

Figure 3.9 The Variable Binding List Fonnat

where the object ill and the value field at the lowest level are further divided into their

corresponding ASN.l triplets.

20

CHAPTER IV

THE IMPLEMENTATION OF AN SNMP TOOL

4.1 Implementation Considerations

Microsoft Visual Basic 5.0 was chosen as the implementation language for all the

related application development of this thesis. The primary reasons for choosing Visual

Basic is that it offers a very easy way to create a graphic user interface. It is becoming

more and more popular in business and education. Furthennore, ifVisual Basic gains

more capability in object oriented design and programming, it will be easy to enhance in

the future to meet more complex network management requirements.

In order to confonn to the SNMP rules to the fullest extent, one should not

presume the size of any data type or data field involved in an SNMP message. For

example, one can not assume an integer in SNMP has 16 or 32 bits. Every data field

associated with an SNMP message must be packed according to the ASN.1 and be

encoded according to the BER as described earlier. In Visual Basic, an appropriate data

type to hold the SNMP packet is the byte array.

In order to take advantage of the object oriented features of Visual Basic, an

ActiveX control snmpPacket, which can be used to perfonn most of the SNMP property

settings and packet encoding and decoding, was created using the ActiveX control

development utilities that come with Visual Basic version 5. In the next chapter of this

21

thesis, the SNMP application (the network manager) which uses the ActiveX control as a

tool to fulfill the network management task uses Visual Basic, too. Note that ActiveX

controls written in Visual Basic look and behave just like controls written in C or C++.

They can be used in various places: on web pages through Microsoft Internet Explorer, in

Microsoft Visual C++, Visual Basic, Borland Delphi, and more.

4.2 AN SNMP Tool- snmpPacket Control

With Visual Basic 5, it is very easy to create and debug an ActiveX control. If a user

chooses the "ActiveX control" option when creating a new project, Visual Basic

automatically creates a template for drawing the interfaces and designing all the

properties, methods, and events of the control. A project group can also be formed to

include in it the ActiveX control project and a standard EXE project which allows the

control to be tested and debugged in a very convenient way. For this thesis, a control

called snmpPacket control was created whose primary responsibilities are encoding and

decoding SNMP packets. The following properties are designed for the control with

which the users of the control can interact to get or set values that are important in an

SNMP message

1. Version. Type of byte, version ofSNMP. The default value is 0 (version 1).

2. CommName. Type of string, the community name of the SNMP message. The

default value is "public".

3. PduType. Type of byte, the SNMP command 10. The valid values are: GET-

REQUEST (160), GET-NEXT-REQUEST (161), GET-RESPONSE (162), SET-

REQUEST(163), and TRAP (164).

22

4. ReqID. Type of byte, request ill. The user of the control is responsible for

setting or checking the request ill of an SNMP message. The default value is

zero.

5. ErrStat us. Type of byte, error status. The recognized values are:

Status Name Status Value

NoError 0

TooBig 1

NoSuchName 2

BadValue 3

ReadOnly 4

GenericError 5

6. Errlndex. Type of byte, error index.

7. Oi d. Type of string, object identifier.

8. Va rVa 1 Type. Type of objectType which is defined as an enumeration. The

valid values are:

23

I
1,
-

Type Name Value Type Name L Value

INTEGER TAG 2 IP AOOR TAG 64- -

STRING TAG 4 COUNTER TAG 65- -

NULL TAG 5 GAUGE TAG 66-

010 TAG 6 TIME TICK TAG 67
- -

UNIV_SEQ TAG 48 OPAQUE_TAG 68-

9. Va rVa 1. Type of string, represents value of the variable.

The Property Set and Property Get statements were used in defining each of

those properties. The value ofeach property is stored in a private module level variable.

All those properties were defined as public properties. They serve as interfaces for a user

to access the corresponding private variables.

An "initializeO" event has been designed so that the users of the control have a

chance to initialize some basic properties of the control such as the "Version",

"CommNarne" properties, and so on.

There are two methods implemented in the control: packetize(ByRefba() As Byte),

which packs all the information set in the control into a byte array ba() that is ready to be

sent between the manager and agent, and unpack (ByRefbaO As Byte, ByRefresult Val As

String), which takes an SNMP packet (a byte array) baO as input, unpacks it, checks for

possible errors in the packet, and, if no errors occur, extracts the object identifier and the

corresponding value. The extracted value is stored in the string resultVal.

24

P"

Two module-level public enumeration data types have been defined: SnmpType.

which represents the type of SNMP commands. and objectType. which represents the

type of managed object or variable. Having these not only prevents the user of the control

from messing up type ofdata but also makes those data types available to the Visual

Basic object browser.

There are also some private sub procedures defined for the control which are not

available to the user of the control. For example. the sub procedure oidDyteO converts an

object identifier string into a byte array that only holds the numbers in the object

identifier. The sub procedure stringByteO converts a string or number (may be integer or

long integer) into a byte array.

A user defined data type mibNode has also been defined which contains two strings.

one is the OID of an object and another is a textual description of the object.

Type mibNode

oid as string

desc as string

End type

A MIB table was defined as an array of mibNode which is initialized when the control is

loaded. This table is useful when the control unpacks an SNMP message.

Finally. the snmpPacket control, like the Timer control in Visual Basic, is oniy

visible at design time.

25

-

CHAPTER V

AN SNMP APPLICATION - vbsnrnp

In this application, a simple yet flexible and expandable network manager, vbsmnp,

was created which can be used to fetch and set values ofmanaged objects from a given

SNMP agent. Users can use these values to analyze and manage network. Three

operations are supported: GET-REQUEST. GET-NEXT-REQUEST, and SET-

REQUEST.

5.1 Interfaces And Components

The application consists of two standard fonns:frmSnmp, which is the main form of

the application, and frmSet, which is used to set an SNMP value, and a module mdlSnmp

in which constants, user-defined data types, public variahles and procedures are defined.

The main form has the following components: a Microsoft Winsock control, the

SnmpPacket control, a tree view control, three option buttons, two command buttons and

several text boxes. Figure 5.1 shows a snapshot of the main window when the value of

the object sysUpTime, which indicates how long the system has been running since its

last start up, has been fetched from the SNMP agent installed in a server narned "sro".

26

....

.
d

1 I

sro

1 :: 1-, 1 : 1 1 -, I-I

'-','=I.II,TIII'f-'

Selected 010:

Target Ne.me:

010= 1.3.6.1.2.1.1.3.0
Value= 493016368 ticks
67 days, 1 hours. 29 minutes

[dod)
8·· [inlernet)

$.. [mgmt)
S,[mib2}

$.. [system]
i [sysDescr

I! sysObjecllD

;-
; sysContacl
)... sysName

Figure 5.1 SNMP Control Demo

The SnmpPacket control and the Winsock control play major roles in the application.

The former is used to set various values in an SNMP message, pack the message into a

byte array before sending the packet to an SNMP agent, and unpack an incoming SNMP

packet to extract the value of the inquired object. The latter is used to transmit packets

between the SNMP manager (this application) and a remote SNMP agent. The method

sendData sends a packet to the remote agent in the form of a byte array. The Winsock

27

-

control also provides an event, DataArrival(ByVal bytesTotal As Long), which allows us

to get the arriving data using the GetDataO method.

The text box labeled "target name" allows a user to specify the name of the remote

host which has SNMP agent software (server) installed. The box labeled "Selected OID"

is used to specify the object identifier whose value is to be fetched. The box at the bottom

displays the OID and the corresponding value received from the agent. The GET button

triggers transmission ofdata while the EXIT button quits the application.

The tree view control is another effort of this application. A tree view control acts

just like the Windows Explorer so that a user can browse through all of the nodes by

clicking at those nodes or using the arrow keys on the keyboard. In the present case, each

node in the tree represents an object in the Mm. The use of the tree view control greatly

eases the user's task in specifying the object identifier of an object. It also helps the user

to understand the meaning of a given object identifier.

Each node in the tree view control must have a key that uniquely identifies itself and

could have optional text for its description. In the present case, the object identifier could

have been used as the key since it is the unique name of an object in the Mm. However, a

string ofdot-separated numbers is not a valid key. Therefore the key that was actually

used for each node in the tree view control is an object identifier prefixed by the letter

Uk". The corresponding textual name of the object was used as the optional description

text for the node.

A dynamically allocated array, mibTable(), of the user-defined data type mibNode

(see section 4.2) has been declared to hold a collection of object identifiers and their

corresponding textual descriptions. The purpose of this array is two fold: first, it provides

28

-

a data source to load up the tree view control, and second, it serves as a database for the

application to interpret an object identifier provided by a user or fetched from an SNMP

agent. All the data items in the array are read from a text file "mib.txt" in which each line

contains an object identifier and the corresponding textual name (separated by a comma

and zero or more spaces). The following line is an example entry in the text file:

1.3.6.1.2.1.1.3.0 , sysUpTirne

The size (bound) of the array depends on the number of data items that are read from

the text file. This makes the application very expandable: ifone wants to include more

objects in the application, the only thing he or she needs to do is to add more entries to

the text file. Furthermore, entries in the text file do not have to be in order. In fact they

can be in any order. The application automatically puts all the entries into the correct

nodes in the MID tree.

The three option buttons are used to allow users of the application to choose different

SNMP operations. When the option button GET-REQ or GET-NEXT-REQ is clicked, the

pduType property of the SnmpPacket control is set to its corresponding value and the

varVa/Type property is set to NULL. While when the option button SET-REQ is clicked,

a new window, as shown in figure 5.2, is popped out to prompt the user to input setting

values such as the OlD of an object and the corresponding value. Since the window is

popped out as a modal window, the user must first respond to this window, either by

filling out all the required fields and clicking the OK button, or by clicking the CANCEL

button.

29

I

I
I I

:,.
I
I
I

Nun

CounterString

Gouge

VALUE:

Figure 5.2 Variable Value Setting Window
...

5.2 Data Flows And Algorithms

Figure 5.3 shows the data flows of the application. The shadowed rectangles

represent the user interfaces with which users can interact with the application. In this

case they are the main application window and the window for setting a value ofan OlD.

The open ended rectangles are stores of data or controls that contain both stores of data

and methods. The rounded rectangles represent processes that consist of one or more sub

procedures. The arrows represent the directions of data flows.

30

1
mib.txt file

I rnibTable () r)l SetNodes ()

1
TreeView ctrl

""User

Main window
Process
commands I Text boxes

User

set window \..

SnmpPacket ctrl

'I Winsock ctrl

:

I
t ·

Remote host

Figure 5.3 Data Flow Diagram

When the application starts, it first reads all the available OIDs and corresponding

textual names into the array mibTableO from the text file mib.txt. A subroutine setNodesO

is then called to load these data to the tree view control so that all the nodes in the tree are

positioned correctly. Next, the application does some necessary initializations to the

SnmpPacket control, Winsock control, and the text boxes, and finally displays the main

31

...

. t..

window. The user can now interact with the application through the interface(s) by

sending commands or data to the application. The application responds to these

commands by calling appropriate procedures, communicating with the stores of data and

the controls, and displaying the updated window(s) for further interaction. Specifically,

the application communicates with the tree view control to retrieve the infonnation of the

selected node (remember each node represents an object) or to change the selected node.

It communicates with the text boxes to update the display or to get the displayed text such

as the name of the remote host which the user wishes to contact. It communicates with

the SnmpPacket control to get or set values in an SNMP message and to pack or unpack

an SNMP packet. When it needs to send a packet to the remote host, it communicates

with the Winsock control.

A subprocedure readMibO was used to read data items from the text file "mib.txt". In

the procedure, the following statement was used to open the file:

Open App.Path & "\mib.txt" For Input As #1

where App is a global object provided by Visual Basic for detennining or specifying

properties of the application. App . Pa th is the path of the . exe file of the application.

The statement "1 i ne Input #1 , v" was used inside a loop to read one line from the

file each time and store it in a string v.

The procedure then loads the data items contained in "mib.txt" into a temporary

Visual Basic collection object mibColl which was declared as:

Public mibColl As New Collection

A binary search algorithm was used to insert the data items into the collection so that all

of the data items were sorted according to their OIDs. These sorted data items in the

32

..

collection are then moved to the mibTableO. with the object whose OID has smallest

string value being moved first. Next, a procedure setNodesO is called to load the data

items onto the tree view control. The following statement was used to add a node to the

tree

Set nodX tvwOid.Nodes.Add(relative, tvwChild,

"k" & mibTable(i) .oid, mibTable(i) .desc)

where tvwoid is the name of the tree view control, Nodes is a collection object

which contains a collection of Node objects, "k"& mibTable (i) .oid is the key for

the node to be added, mibTable (i) . desc is the text of the node, and relative is the

parent node which determines the position of the current node in the tree. In order to

position a node correctly in the tree, one must first find its parent node. The criteria for a

node (A) to be the parent node of a node (B) are: 1), the OlD ofnode A is a left substring

ofthe OlD ofnode B and 2), the number of dots in the OID ofnode A is at least one less

than that in the OlD ofnode B and the difference should be minimum. Sorting data items

in mibTable() is very important in ensuring that the whole tree is structured correctly.

33

)I

)..

--

CHAPTER VI

EXAMPLES OF THE USE OF THE APPLICATION

To demonstrate the use ofthis network management application, let's take the

objects in the ip group in the Mill tree as examples.

34

•
)

:

­"

sro

.'

'.

.'
'.

"

•
~

SNMPPOUlYPE:-~-=---~~~=====~

•. GET_REQ

org)
8- [dod)

EJ· [internet)
1$.. [mgmt)

l EJ··[mib2), .
1 $.. [system]
! iE·· [Interfaces]
I I··.. [at}
! ~·.[i~]
~ ~ ~...~
. :!-.. ipDefaultTTL

! :

OID= 1.3.6.1.2.1.4.1.0
Value= 2 ..

Figure 6.1 The Result of ipForwarding Object

Figure 6.1 shows the result by querying the ipForwarding object on server "sro",

According to SNMP protocol specifications, ipForwarding returns a integer, 1 means

the system is forwarding IP datagrams, and 2 means it is not. The figure shows that "sra"

is not a IP gateway which forwarding datagrams,

Figure 6.2 shows the result by querying the ipDefaultTTL object on server "sro",

35

l-:-SNMP Contlol Demo ri1Ill-IEJ

SNMP POU TYPE:=====~",===:=:::;;;:=~-=""",,,,,,,,,,,,,,,,~---,,'""':':=:-::-~

•. GET_REQ

)

: i

1 :; 1-, 1 ~' 1 -I : I-I

If.l C1et ,:lIJltliL

Selected 010:

Target Name:

'.

&[1002)
$- (system)
$-' rlnlerfaces)
!.. (a1)

S- (ipl
! ~. ipForwarding
i L..
! ~

i j.••. ipfnReceives
1 ~... iplnHdrEnols
1 ~. iplnA.ddrEnors
! ~.... ipForwDalagrams

t··· iplnUnknownProtos. -,.----

;

OID= 1.3.6.1.2.1.4.2.0
Value= 255

Figure 6.2 The Result of ipDefaultTTL Object

The ipDefaultTTL object represents the default value inserted into the Time-To-Live

field of the IP header ofdatagrams originated at this entity, whenever a TTL value is not

supplied by the transport layer protocol. The figure shows that the TTL value is 255

secondslhops. This IP header field sets an upper limit on the number of routers through

which a datagram can pass. It limits the lifetime of the datagram. It is initialized by the

sender to some value (often 32 or 64) and decreased by one by every router that handles

36

the datagram. When this field reaches 0, the datagram is thrown away, and the sender is

notified with a message. This prevents packets from getting caught in routing loops

forever.

Figure 6.3 shows the result by querying the ipInReceives object on server "sro".

s- [mib2]
00- (tystem)
$" (interfaces]
j.... [all

fb.. [Ip]
i 1 ipForwarding
! I ipDefaulllTL(.-

~ iplnHdrErrors
(iplnAddrErrors
~ .. ipForwO~agrams
~... iplnUnknownProtot
L. ~_I~._ .. _.,,_'"

~.
)

I

)

,

: i

010= 1.3.6.1.2.1.4.3.0
V~ue= 147160776

Figure 6.3 The Result of iplnReceives

37

The iplnReceives object represents the total number ofinput datagrams received

from interfaces, including those received in error, By querying this kind ofnumbers, the

network administrators can figure out the traffic situation on a specific network node, this

information can then be used to the design and upgrade of the network,

)

• i·

·i"
)',
)

J
I

"j< •• • -

1 :: I:, 1 2 1 ~ -11'1

------~--~--- ----- ----
lI t1tIH ,JIFtJ"'!

"

* "

B·' [mib2)
$.. [system)
$.. [interfaces]

~.... [at)
S.. [ip]
, ~ ipFofwarding

~ ipDefaultTTL
~.. iplnReceives

r'
,.... ip'~ddrErrors
1-" ipForwDatagrams
t..·iplnUnknownProtos ~

Figure 6.4 shows the result by querying the ipInHdrErrors object on server "sro",

010= 1.3.6.1.2.1.4.4.0
rvalue= 0

Figure 6.4 The Result of iplnHdrErrors Object

38

The ipInHdrErrors is a counter, it represents the number of input datagrams

discarded due to errors in their IP headers, including bad checksums, version number

mismatch, other format errors, time-to-live exceeded, errors discovered in processing

their IP options, etc. The figure sh.ows there is no datagrams discarded.

)

:-..
i"
1'.
)

I
ISNMP POU lYPE:--"---=-~---::----~-:---~~~--"":"""""~I"

•. 6ET_REQ

Figure 6.5 shows the result by querying the ipInDelivers object on server "sro""

- ---~----- -- --- - - "'~

I-~-SNMP Control Demo r-!r-Trt:l

'.

",

.'

i···· iplnAeceives
~ iplnHdrErrors
j iplntlddrErrors
[ipFOIWOalagrdms

1···· iplnUnknownProtos
~.. iplnDiscafds

j....-
~_. ipOutAequesls
~- ipOutDisCdrds
to. ipOutNoAoules
~.. ipAeasmTimeout
i· .. ipRellsmAeqds

. l__.__.. • nil

010= 1.3.6.1.2.1.4.9.0
Value= 193059398

Figure 6.5 The Result of iplnDelivers Object

39

The iplnDelivers object is a counter, it represents the total number of input

datagrams successfully delivered to IP user-protocols.

Figure 6.6 shows the result by querying the ipOutRequests object on server "sro".

t .. iplnReceives
!.... iplnHdlErrors
1" ipln6.ddrErrolS
1 ipForwOalagrams
I iplnUnknownPlotos
1·..· ipInDiscardsI iplnDeliveTs

! ipOutDiscards
t·..· ipOulNoRoutes
i.. · ipReasmTineout
j.... ~pRe.!lsmReqcls

....
)

1'.
)

I.

: i

01 D= 1.3.6.1 .2.1 .4.10.0
Value= 205364758

Figure 6.6 The Result of ipOutRequests

The ipOutRequest object represents the total number ofIP datagrams which local IP

user-protocols supplied to IP in requests for transmission. This counter does not include

any datagrams counted in ipForwDatagrams.

40

Figure 6.7 shows the result by querying the ipReasmTimeout object on server "sro",

• &ET,JIEQ
) ..
1'.
I

~.~ iplnDi~calds

!..-iplnOelivels
L.. ipO utA equests

i··- ipOutDiscaJds
~.. ipOutNoRoutes
~....

! ipReasmReqds
! ipReasmOKs
) ipAeasmFa~s

j ipFragOKs

I···· ipFlagFails
j.... ipFlagCr~tes

010= 1.3.6.1.2.1.4.13.0
Value= 60

•

"

"

'.

"

.'..

Terget Nems:

sro

Figure 6.7 The Result ofipReasmTimeout Object

The ipReasmTimeout object represents the maximum number of seconds which

received fragments are held while they are awaiting reassembly at this entity. The figure

shows the number is 60 seconds.

Figure 6.8 shows the result by querying the ipReasmReqds object on server "sro".

41

The ipReasmReqds object is a counter, it records the number ofIP fragments

received which needed to be reassembled at this entity,

I--------~==~ - ~--

~ -;- SNMP Control Demo 1JII[iiJ [J

"

...j- ip/nDiscards
f" iplnDelivers
1·- ipOutAequests
~. ipO utD iscards
~... ipOutNoAoutes
f·..· ipReasmTimeout

~..-
j ipReasmOKs
j ipReasrrf'ails
~.. ipFragOKs
1..·· ipFragfails
j.... ipFragCreales

..&.- -=-_.

010= 1.3.6.1.2.1.4.14.0
Value= 181873

Figure 6.8 The Result ofipReasmReqds Object

42

Figure 6.9 shows the result by querying the ipReasmOKs object on server "sro".

The ipReasmOKs object is a counter, it records the number ofIP datagrams

successfully reassembled.

"'"

~... iplnDiscards

I···· iplnDelivers
~... ipOutRequesls
I···· ipOulDiscards
\ ipOutNoAoules
~ ipReasmTimeout
~•. ipAeasmReqds

i····_
i··.· ipAeasrnFails
l

I···· ipFragDKs
~•. ipF[agFails
j.- ipFragCreates
! 1 :'-:..' '.

010= 1.3.6.1.2.1.415.0
Value= 181867

Target Name:

Figure 6.9 The Result ofipReasmOKs Object

43

Figure 6.10 shows the result by querying the ipReasmFails object on server "sro".

I
~~~~--~~~---- --=- SNIotP Conlrol Demo "'Il-J~

SNMPPOU1YPE::=============~=----=~~

• GET_REQ '.-.,
, "
, "

j.... iplnDiscards
~.. iplnDelivers
~.... ipOutAequests
j_.. ipOulDiscards
i..· ipOutNoAoutes
l ipAecssmTimeout
1 ipAeasmAeqds
i-.. ipAeasmOKsi...._
i..·ipFragOKs
i ipFragFaas
! ipFragCreates

_...;.,. r~ _ LJ."J_..,.----t. ,

010= 1.3.61.2.1.4.16.0
Value= 6

Target Name:

sro

Selected 010:

1 :: (, 1 ~ 1 --11 C, CI

-------- ------
IpF,'::',':1··,rr,F:"I·:.

Figure 6.10 The Result ofipReasmFails Object

The ipReasmFails object is a counter, it records the number of failures detected

By the IP reassembly algorithm (for what ever reason: timed out, errors, etc). Note that

this is not necessarily a count of discarded IP fragments since some algorithm can lose

track of the number of fragments by combining them as they are received. Figure 6.8

44



shows 181,873 fragments received, Figure 6.9 shows 181867 fragments successfully

reassembled, Figure 6.10 shows there are 6 fragments failed, sometimes this failed

fragments number maybe bigger due to the reason stated above.

45

...



CHAPTER vn

FUTURE IMPROVEMENTS AND ENHANCEMENTS

Computer networks are growing at a tremendous rate. As a result, network

management software needs to be improved or upgraded very frequently. With this initial

ground work, the following improvements are possible and should not be very difficult.

• Support more network management operations. In the present implementation,

the manager only supports three SNMP operations: GET-REQUEST, GET-NEXT-

REQUEST, SET-REQUEST. The SNMPv2 also defined two more commands:

GET-BULK-REQUEST and INFORM-REQUEST. In the future, these commands

and maybe some more new commands should also be implemented.

• Automated monitoring. In this part, a user can choose one or more managed

objects which he/she wants to monitor and the application fetches and displays

the values of these objects automatically for every given period oftime.

• Statistics and better Gills. The application could be improved so that it can

automatically fetch data at different times and use these data to create some

statistics. Charts and curves can also be used for better representation of the data.

• Learning ability. By using the GET-NEXT-REQUEST operation, a manager can

get the knowledge of all the objects managed by a given SNMP agent. The

manager can remember the set of the managed objects and can update the data

periodically at a given period of time.

46

"11
",



BIBLIOGRAPHY

[1] Case, J.D.; Fedor, M.; Schoffstall, M.L.; Davin, J.R. "A Simple Network
Management Protocol." RFC 1067, August 1988, Internet Authority Board:
http://www.faqs.org/rfcs/rfcl067.html

[2] McCloghrie, K.; Rose, M. " Structure and Identification of Management Information
for TCP/IP-based Intemets." RFC 1065, August 1988, Internet Authority Board:
http://www.faqs.org/rfcs/rfcl065.html

[3] McCloghrie, K.; Rose, M., "Management Infonnation Base for Network Management
ofTCP/IP-based Internets." RFC 1066, August 1988, Internet Authority Board:
http://www.faqs.org/rfcs/rfcl066.html

[4] Case, J.D., etc. "Simple Network Management Protocol (SNMP)." RFC 1098, April,
1989, Internet Authority Board: http://www.faqs.org/rfcs/rfcl098.html

[5] Rose, M.; McCloghrie, K.; Davin, J.R.. "Bulk Table Retrieval with SNMP." RFC
1187, October 1990, Internet Authority Board: http://www.faqs.org/rfcs/rfc1187.html

[6] Hamedy, Sean. Total SNMP: Exploring the Simple Network Management Protocol.
Second edition. Prentice Hall, Upper Saddle River, 1997.

[7] Stalling, William "SNMPv3: A Security Enhancement for SNMP." IEEE
Communication Surveys, 4th quarter, 1998.

[8] Stalling, William "Security Comes to SNMP: The New SNMPv3 Proposed Internet
Standards." The Internet Protocol Journal, Dec. 1998.

[9] Stamatelopoulos, F.; Maglaris, B. " A Management Architecture for Internet
Information Services." Presented at the HP Open View University Association Workshop,
Madrid, April 1997.

[10] Deri, Luca; etc. "JLOCATOR: A Web-Based Asset Location System." Presented at
the HP Open View University Association Workshop, Madrid, April 1997.

[11] Steedman, Douglas. Abstract Syntax Notation One (ASN1): The Tutorial and
Reference. London, Techmology Appraisals, Ltd. 1990.

[12] Rose, M. The Simple Book An Introduction to Management ofTCP/IP-based
Networks. Prentice Hall, Upper Saddle River, New Jersey, 1990.

47

,III
"



[13] Perkins, David; McGinnis, Evan. Understanding SNMP MIBs. Prentice Hall, Upper
Saddle River, New Jersey, 1997.

[14] McCloghrie, K. "Management Information Base for Network Management of
TCPIIP-based Internets." RFC 1156. May 1990. Internet Authority Board:
http://www.faqs.orglrfcs/rfc1156.html

[15] McCloghrie, K.; Rose, M. " Management Information Base for Network
Management ofTCPfIP-based Intemets: MIB-II." RFC 1213, March 1991. Internet
Authority Board: http://www.faqs.orglrfcs/rfcI213.html

[16] Perkins, David. "How to Read and Use an SNMP MIB." 3TECH, The 3Com
Technical Journal( Spring 1991): 31-55.

[17] Stewart, Bob. " Development an Integration of a Management Information Base."
ConneXions (June 1991): 2-11.

[18] Anonymous, "Introduction to Simple Network Management Protocol: A Self-Study
Guide." Document 8759-00, rev. A, 3Com Corporation, August 1991.

[19] Waldbusser, S. "Remote Network Monitoring Management Information Base." RFC
1757, February 1995. Internet Authority Board: http://www.faqs.orglrfcs/rfcl757.html

[20] Waldbusser, S. "Token Ring Extensions to the Remote Network Monitoring MIB."
RFC 1513, September 1993. Internet Authority Board:
http://www.faqs.orgirfcs/rfcI513.html

[21] Tolly, Kevin; Carr, Jim" RMON: A Ray ofHope for Token Ring Managers." Data
Communications (October 1995): 72-80.

[22] Rose, M.; McCloghrie, K. "Structure and Identification of Management Information
for TCP/IP-Based Intemets." RFC 1155, May 1990. Internet Authority Board:
http://www.faqs.orglrfcs/rfcl155.html

48



APPENDIX 1

THE MIB.TXT FILE

Note: the lines can be in any order, and more lines (objects) can be added if the agents in
the network nodes support more MIB objects.

1 , [iso]
1. 3 , [org]
1. 3 . 6 , [dod]
1.3.6.1 , [internet]
1.3.6.1.2 , [mgmt]
1.3.6.1.2.1 , [mib2]
1.3.6.1.2.1.1 , [system]
1.3.6.1.2.1.1.1.0 ,sysDescr
1.3.6.1.2.1.1.2.0 ,sysObjectID
1.3.6.1.2.1.1.3.0 , sysUpTime
1.3.6.1.2.1.1.4.0 ,sysContact
1.3.6.1.2.1.1.5.0 ,sysName
1.3.6.1.2.1.1.6.0 ,sysLocation
1.3.6.1.2.1.1.7.0 ,sysServices
1.3.6.1.2.1.2 , [interfaces]
1.3.6.1.2.1.2.1.0 ,ifNurnber
1.3.6.1.2.1.3 , [at]
1.3.6.1.2.1.4 , lip]
1.3.6.1.2.1.4.1.0 ,ipForwarding
1.3.6.1.2.1.4.2.0 ,ipDefaultTTL
1.3.6.1.2.1.4.3.0 , iplnReceives
1.3.6.1.2.1.4.4.0 , iplnHdrErrors
1.3.6.1.2.1.4.5.0 ,iplnAddrErrors
1.3.6.1.2.1.4.6.0 ,ipForwDatagrams
1.3.6.1.2.1.4.7.0 ,iplnUnknownProtos
1.3.6.1.2.1.4.8.0 , iplnDiscards
1.3.6.1.2.1.4.9.0 , iplnDelivers
1.3.6.1.2.1.4.10.0 ,ipOutRequests
1.3.6.1.2.1.4.11.0 ,ipOutDiscards
1.3.6.1.2.1.4.12.0 , ipOutNoRoutes
1.3.6.1.2.1.4.13.0 ,ipReasmTimeout
1.3.6.1.2.1.4.14.0 ,ipReasmReqds
1.3.6.1.2.1.4.15.0 ,ipReasmOKs
1.3.6.1.2.1.4.16.0 ,ipReasmFails
1.3.6.1.2.1.4.17.0 , ipFragOKs
1.3.6.1.2.1.4.18.0 ,ipFragFails
1.3.6.1.2.1.4.19.0 ,ipFragCreates
1. 3.6.1. 2.1. 4.20 , [ipAddrTable]
1.3.6. 1.2.1.4.20. 1 , [ipAddrEntry]
1.3.6.1.2.1.4.20.1.1 [ipAdEntAddr]

49

'".
"
"



1.3.6.1.2.1.4.20.1.2 , [ipAdEntlflndex]
1.3.6.1.2.1.4.20.1.3 , [ipAdEntNetMask]
1.3.6.1.2.1.4.20.1.4 , [ipAdEntBcastAddr]
1.3.6.1.2.1.4.20.1.5 , [ipAdEntReasmMaxSize]
1.3.6.1.2.1.4.22 , [ipNetToMediaTable]
1.3.6.1.2.1.4.22.1 , [ipNetToMediaEntry]
1.3.6.1.2.1.4.22.1.1 , [ipNetToMedialflndex]
1.3.6.1.2.1.4.22.1.2 , [ipNetToMediaPhysAddr]
1.3.6.1.2.1.4.22.1.3 , [ipNetToMediaNetAddr]
1.3.6.1.2.1.4.22.1.4 , [ipNetToMediaType]
1.3.6.1.2.1.4.23.0 , ipRoutingDiscards
1.3.6.1.2.1.5 , [icmp]
1.3.6.1.2.1.6 , [tcp]
1.3.6.1.2.1.7 , [udp]
1.3.6.1.2.1.8 [egp]
1.3.6.1.2.1.10 , [transmission]
1.3.6.1.2.1.11 , [snmp]
1.3.6.1.2.1.11.1.0 , snmplnPkts
1.3.6.1.2.1.11.2.0 , snmpOutPkts
1.3.6.1.2.1.11.3.0 , snmplnBadversions
1.3.6.1.2.1.11.4.0 , snmplnBadCommunityNames
1.3.6.1.2.1.11.5.0 , snmplnBadCommunityUsers
1.3.6.1.2.1.11.6.0 , snmplnASNParseErrs
1.3.6.1.2.1.11.8.0 ,snmplnTooBig
1.3.6.1.2.1.11.9.0 ,snmplnNoSuchNames
1.3.6.1.2.1.11.10.0 , snmplnBadValues
1.3.6.1.2.1.11.11.0 , snmplnReadOnlys
1.3.6.1.2.1.11.12.0 , snmpInGenErrs
1.3.6.1.2.1.11.13.0 , snmplnTotalReqVars
1.3.6.1.2.1.11.14.0 , snmpTotalSetVars
1.3.6.1.2.1.11.15.0 , snmplnGetRequests
1.3.6.1.2.1.11.16.0 ,snmplnGetNexts
1.3.6.1.2.1.11.17.0 , snmplnSetRequests
1.3.6.1.2.1.11.18.0 , snmplnGetResponses
1.3.6.1.2.1.11.19.0 , snmplnTraps
1.3.6.1.2.1.11.20.0 , snmpOutTooBigs
1.3.6.1.2.1.11.21.0 , snmpOutNoSuchNames
1.3.6.1.2.1.11.22.0 ,snmpOutBadValues
1.3.6.1.2.1.11.24.0 , snmpOutGenErrs
1.3.6.1.2.1.11.25.0 , snmpOutGetRequests
1.3.6.1.2.1.11.26.0 ,snmpOutGetNexts
1.3.6.1.2.1.11.27.0 , snmpOutSetRequests
1.3.6.1.2.1.11.28.0 ,snmpOutgetResponses
1.3.6.1.2.1.11.29.0 , snmpOutTraps
1.3.6.1.2.1.11.30.0 , snmpEnableAuthenTraps
1.3.6.1.3 , [experimental]
1.3.6.1.4 , [private]
1.3.6.1.4.1 , [enterprise]

50



APPENDIX 2

APPLICATION OPERATING PROCEDURE

1. Hardware and Software Requirements

Hardware: CPU with speed of 133 MHZ or above
CPU with Random Access Memory of 16 MB or above
CPU with spare disk space of at least 80 MB
SVGA color monitor
ffiM compatible keyboard and mouse

Software: Windows 95/98/NT operating systems
Microsoft Visual Basic 5.0 or above compiler

2. Installation and Operating Procedure

A. Create a file folder in Windows Explorer of your workstation.
B. Copy all the files in the floppy disk to the folder you just created.
c. Open the folder and find a file named vbsnmp.vbg.
D. Double click on this file and the Microsoft Visual Basic project window will be

opened.
E. Run the application by click on the"~" icon on the view bar.
F. The SNMP Control Demo Window will pop out.
G. Choose any MIB network object you are interested in from the left hand tree view

control, type the network node name in the "Target Name" box, choose one of the
three "SNMP PDU TYPE" radio button, then press the "GET" button, the
selected Mffi object value on the targeted network node will show on the bottom
text box. (Note: if you have the authentication to set a variable value on a network
node, then you can use the "SET_REQ" button to change the value of the network
node variable.)

51

I..



VITA

Wenxia Zhang

Candidate for the Degree of

Master of Science

Thesis: THE DESIGN AND IMPLEMENTATION OF A NETWORK MANAGEMENT
APPLICAnON USING SNMP PROTOCOL

Major Field: Computer Science

Biographical:

Personal Data: Born in Yangquan, Shaxi Province, China, June 7, 1966, the
daughter of Xuezhou Zhang and Shizheng Li.

Education: Graduated in July, 1984 from Yangquan 1st High School in Shaxi,
China. Received Bachelor of Science degree in Accounting from Tianjin
Finance & Monetary University, China in July, 1994. Completed the
requirements for the Master of Science degree with a major in Computer
Science at Oklahoma State University, Stillwater in May, 2000.

Experience: Engineer and manager in the Finance and Accounting Information
Systems Center of Tianjin University, Tianjin, China, 1988 - 1994.

J.


