
CHOOSING A BETTER ALGORITHM FOR

MATRIX MULTIPUCATION

By

XING ZHANG

Master of Project Management

Western Carolina University

Cullowhee, North Carolina

1991

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirement for
the Degree of

MASTER OF SCIENCE
July, 2000

CHOOSING A BEITER ALGORITHM FOR

MATRIX MULTIPLICATION

Thesis Approved:

ii

PREFACE

Matrix multiplication is a basic operation of linear algebra, and has hum rous

applications to the theory and 'practice of computation. Many applications can be solved

fast if the algorithm of matrix multiplication is fast because it is a substantial part of these

applications.

This thesis conducts the study of three algorithms; the straightforward algorithm,

Winograd's algorithm, Strassen's algorithm, their time complexities, and compares the

three algorithms using graphs. The thesis also briefly describes two asymptotic

improvements: Pan's of 1983 and Strassen's of 1986.

111

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my adviser, Dr. J. P. Chandler,

for his constructive and frequent guidance, academic supervision, inspiration and friendly

help. I also owe my appreciation to Dr. G. E. Hedrick and Dr. H. K. Dai. I not only

learned knowledge for my committee members, but much other common sense as well. A

professor has too many students to remember, but each student certainly remembers the

professor who taught him.

I always give thanks to my parents, Mr. ZaiKe Zhang and Ms. Peilei Qian,

whenever I have something to celebrate, and I always remember their smiling faces while

listening quietly to my complaints.

I would also like to take this opportunity to thank the OSU university librarian

for their timely assistance. Their assistance is so impressi ve that I like to have the e nic

people around me all the time.

My thanks also extend to the Department of Computer Science for providing

excellent computing facilities and learning environment.

iv

CHAPTER

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

1.1 Matrix Multiplication 1
1.2 Properties of a Matrix and its Operations 2
1.3 Problem Statement 4
1.4 Organization of the Thesis 6

n. STRAIGHfFORWARD ALGORITHM 7

2.1 Algorithm Based on the Definition 7
2.2 Computational Analysis 8

m. WIN'OGRAD'S ALGORITHM 10

3.1 Input vs. Computation Time 10
3.2 Vectors and Matnces 11
3.3 Winograd's Algorithm 12
3.4 Computational Complexity 14

IV. STRASSEN'S ALGORITIill 17

4.1 Block Matrix 17
4.2 Strassen's Algorithm 21
4.3 Computational Complexity 28

V. ASYMPTOTIC IMPROVEMENT FOR MATRIX MULTIPLICATION 32

5.1 Some Notation and Definitions 33
5.2 Pan's Improvement (1983) 37
5.3 Strassen's Improvement (1986) 40

VI. COMPARISON 44

6.1 Implementation 44
6.2 Performance Comparisons 44
6.3 Performance with truncation at 64x64 52
6.4 Strassen' s algorithm implementation considerations 56
6.5 Choosing an optimal truncation for 1024x1024 matrices 59

v

CHAPTER Page

vn. CONCLUSIONS 61

SELEC'fED BffiLIOGRAPHY 63

APPENDIX 66

vi

LIST OF FIGURES

fl~re p.
2-1 Straightforward Algorithm 7

3-1 Matrix Multiplication: Dot Product Version 13

3-2 Winograd's Algorithm 14

4-1 Strassen's Algorithm 27

6-1 Operation Count for 2d x 2d Matrices 45

6-2 Multiplication Count for 2d x 2d IyIatrices 47

6-3 Time Count for 2d x 2d Matrices .48

6-4 Number of Operations vs. Input Size : 49

6-5 Runtime vs. Input Size 50

6-6 Runtime vs. Input Size Sf

6-7 Operation Count for 2d x2d Matrices with Truncation at 64x64 53

6-8 Multiplication Count for 2d x 2d Matrices with Truncation at 64x64 53

6-9 Number of Multiplications vs. Input Size " 54

6-10 Time Count for 2d x 2d Matrices with Truncation at 64x64 55

6-11 Runtime vs. Input Size 56

6-12 Runtime Comparison (Pass by Value vs. Pass by Reference) 57

6-13 Runtime vs. Input Size (Pass by Reference) 59

6-14 Performance at different truncation size for 2'0 x i O matrices 60

vii

CHAPTER I

INTRODUCTION

1.1 Matrix Multiplication

Many types of problems involve arithmetic operations, whether it is

multiplication, division or more complicated arithmetic operations. The two major

problem areas which are the concern of arithmetic complexity of computations are:

1. What is the minimum number of arithmetic operations which are needed to

perronntbecomputation?

2. How can we obtain a better algorithm when improvement is possible [6]?

The above two questions pertain to any computation that is arithmetic in nature.

From the point of view of arithmetic complexity of computation anal ysis, when very

large numbers or large sequences of numbers are involved, some algorithm that are good

for small input become inefficient when the size of the input grows [1].

Matrix multiplication is an important problem in linear algebra, and is closely

related to many applications. The computational time required for matrix multiplication

often is the dominant part of the total computational time required for all of those

applications. That is, all such problems can be reduced to matrix multiplication and can

be solved fast if matrix multiplication is solved fast [19]. The simple and straightfoIWard

algorithm is to multiply corresponding row and column entries of the two matrices, and

add the results of these products to fonn the new entry in the new matrix. This algorithm

works well when the sizes of the two input matrices are small. When the size of the two

input matrices become larger, say large than 100 the omputation n com

tediously time consuming.

With this underlying question in mind~ many scienti ts have tried to find a fast

algorithm to compute the product of two matrices. A fast algorithm for matrix

multiplication implies faster algorithms for many other related problems -(2]. Thi tudy

analyzes different approaches used to improve computational efficiency of matrix

multiplication when the size of the input matrices is a major factor.

1.2 Properties of a Matrix and its Operations

This section briefly describes matrix representation and some of the operations

relating to matrix multiplication.

If m and n are positive integers, then an mXn matrix (read "m by n") is a

rectangular array

all a l2 a l3 alII

a 21 a22 a23 a211

mrows

'-......_--............---------'

n columns

in which each entry, a j J of the matrix is a number. An mxn matrix has m row and n

columns. The entry a .is located in the ith row and the jth column; i is the row subscript
I J

because it gives the position among the horizontal lines, and j the column subscript

because it gives the position among the vertical lines [3].

2

It is standard mathematical con ention to r pre nt m tric in ny n f th

following three ways.

1. A matrix can be denoted by an uppercase letter such as

A,B,C,

2. A matrix can be denoted by a representative element enclo ed in brackets, such as

3. A matrix can be denoted by a rectangular array of numbers

all a t2 all a 1n

a
21

a 22 a 2l a 2n

A = [a i j] = all a 32 a 3l a 3n

If A and B are matrices of the same size, then the sum A + B is the matrix obtained

by adding the corresponding entries of A and B; that is, if A and B are both mxn then =

A + B is the m x n matrix whose entries satisfy [5]:

i =1,2, ... ,m, j = 1,2, ... ,n.

Addition of matrices of different size is not defined, and matrix addition ha the

associative property, that is

(A + B) + C =A + (B + C).

When multiplying a matrix A by a scalar c, the scalar c multiplies each entry in A,

that is if A =[a
j
j] is an mXn matrix and c is a scalar, then the scalar multiple of A by c is

the mxn matrix given by cA =[c ai j] [5].

3

IfA =[a; j] is an mXn matrix and B =[bl j] i an llXp matrix, th n the pr du tAB

is an mxp matrix

n

Where cij =Lai.\:bkj =ailb1j +al2 b2j + a/3b3j +... + ainbnj [3].
Ie=.

This definition means that the entry in the ith row and the jth column of th

product AB is obtained by multiplying the entries in the ith row of A by the corresponding

entries in the jth column of B and then adding the results. In matrix multiplication, the

number of columns of the first matrix must equal the number of rows of the second

matrix. That is,

A x B = AB
mXn nxp mxptt<qJ1

size of AB

However matrix multiplication is not, in general, commutative, that is, it is

usually not true that the product AB is equal to the product BA [3].

The associative property holds for matrix multiplication. If A is an mXn matrix, B

is an nxp matrix, and C is a pxq matrix, then (AB)C = A(RC) [4]. The associative law

allows matrix multiplication to be computed in different orders and still have the same

results.

1.3 Problem Statement

Reducing the number of computations in matrix multiplication is a challenge task.

4

The traditional way for oomputing the product of two n><n matrices u es n 3

multiplications and n3
- n2 additions. However, trying to find minimum number of

arithmetic operations needed to perform the computation and obtain a faster gorithm i

always challenging. A computational algorithm that requires less computation time than

the regular algorithm is considered better.

By rearranging the order of the computations, Winograd's algorithm can improve

the matrix multiplication by a factor of 2 over the straightforward algorithm, and

Strassen's algorithm can improve the multiplication from O(n 3) down to O(n 2.81)[2] by

using a different approach.

After Strassen's discovery, many improvements have been made by using new

techniques. Pan's method of 1983 and Strassen's method of 1986 use bilinear and

trilinear algorithms to further reduced the exponent to 2.67 and 2.48 respectively. Such an

improvement over the "very natural" O(N 3
) algorithms is theoretically important, even

though any substantial impact of the asymptotically fast matrix multiplication on the

practice of computing matrix products remains questionable, due to the overhead of those

algorithms [19].

This thesis presents the three algorithms, compare Winograd's and Strassen's

algorithms and analyzes them, and describes Pan's improvement of 1983 and Strassen's

improvement of 1986. For the purpose of comparison, entries of all matrices are taken to

be integers.

5

1.4 Organization of the Thesis

This thesis is composed of seven chapters. Chapter I gives an overview of the

matrix multiplication problem as related to computational complexity. The chapter also

briefly describes properties of matrices and their operations.

Chapter II presents the straightforward algorithm of matrix multiplication and its

computational analysis.

Chapter ill raises the importance of the relationship of computation time between

input and algorithm, presents Winograd's algorithm, the methodology the algorithm uses

and the computational analysis.

Chapter IV presents Strassen's algorithm, one possible deriving method and the

computational analysis.

Chapter V describes the asymptotic improvement of Pan's method of 1983 and

Strassen 's method of 1986.

Chapter VI compares the straightforward algorithm, Winograd's algorithm, and

Strassen's algorithms, their requirements and implication.

Chapter VII is the conclusion of the thesis study and a summary of these

algorithms.

6

CHAPTER II , 1

STRAIGIITFORWARD ALGORITHM

2.1 Algorithm Based on the Definition

The straightforward algorithm is based on the definition of matrix. multiplication.

n

The product of two matrices A _II = [al j] and B nxp =[bi j j is AB =CI j =Lalkbk j •

km(

By definition, an entry in clj is the sum of the products of the ith row of A and the

jth column of B. Then the algorithm is

for i= 1 to m

for j =1 to p

for k =1 ton

end

end

end

Figure 2-1: Straightforward algorithm [5]

The usual order of matrix. multiplication is "row times column." If the matrices

are A and B, rowl of A multiplies column 1 of B to give the (1,1) entry in the comer

of AB . This product of vectors is an inner product, combining n ordinary multiplications

7

of at j times bjl . If A and B are n by n, there will be n ~ ntri in AB and th y R rmally

involve n3ordinary multiplications [13].

The outer loop controls the row number in the matrix A; when the outer loop

finishes its iterations, the multiplication is complete. The middle loop controls the column

number in the matrix B; each iteration of the middle loop goes from column 1 to

column p. The inner loop controls column number on matrix A and row number on

matrix B; the inner loop iteration calculates the entry in the matrix C.

2.2 Computational Analysis

From the algorithm in Figure 2-1, the number of total additions of the matrix

multiplication can be calculated easily. For each entry in c; i ' there are (n -1) additions,

where n is number of columns in A or the number of rows in B, so in one row of C there

are p entries and a total of (n -1) x p additions, since there are m rows in C, 0 there are

a total of (n -1)x m x p additions resulting from the straightforward algorithm.

For each value i (1 ~ i ~ m) in the outer loop, there are p iterations of middle

loop, and for each value j (1 ~ j ~ p) in the middle loop, there are n iterations of the

inner loop, so there are m X p X n multiplications.

Assuming m ~ n ~ p, then m x n x p ~ p x p x p , so the straightforward

algorithm results in O(m3)~O(n3)~O(p3)computation time. In the case of

m =n =p, the computation time is 8(n3
) , and the total number of additions is

(n-l)n 2
•

The straightforward algorithm could be the best practical algorithm un] s the

matrices are very large. Connen et al. suggests n > 45 [7], and J. Cohen and M. Roth

suggest n > 100 [8]. Although some authors have different suggestions based on their

testing results, for small matrices the straightforward algorithm is preferable [7], and

quite efficient.

t'

"

9

CHAPTERlli

WINOGRAD'S ALGORITHM

3.1 Input vs. Computation Time

Many signal processing problems place a very heavy computational load on even

the largest computers which are available, thus a modest reduction in their execution time

may have practical significance [6]. In the arithmetic operations, the number of

multiplications and additions required for computation has been studied systematically.

Speaking of the arithmetic complexity means consideration of both the number of

additions and the number of multiplications [6]. In some cases, the number of

multiplications is a major factor in determining the asymptotic complexity while in some

of the other applications, the attention is on the number of additions, and not just the

number of multiplications [6].

In matrix multiplication, addition is preferred to multiplication, since additions

can be performed more quickly than multiplications, and they contribute little to the total

computational cost relative to multiplication does [19]. Therefore additions are less

important than multiplications in matrix multiplication, and multiplication deserves more

attention. So a more efficient algorithm is the one with less multiplication and its

importance will have a profound impact on the way many computations are being

performed [6J.

If a program is given large amount of inputs, the algorithm needs to reconsider

more the input size to improve the algorithm efficiency than othelWise for small input

LO

size algorithms do. If there is a way to rearrange the input to the matrix. multiplication, so

the input to the matrix. multiplication requires fewer multiplications, and thus r duces

computation time even with more additions than the original algorithm's, then the

algorithm is more efficient and faster.

In 1968, Shmuel Winograd presented his new algorithm which cuts down the

number of multiplications required and computes the product of two n X n matrices using

roughly n 3 /2 multiplications instead of n3 multiplications which the regular method

necessitates [10].

3.2 Vectors and Matrices

Matrix computations are built upon a hierarchy of linear algebraic operations. Dot

products involve the scalar operations of addition and multiplication. Matrix-vector

multiplication is made up of dot products. Matrix-matrix multiplication amounts to a

collection of matrix-vector products [11]. Winograd's algorithm Of matrix multiplic tion

uses the concept of vector and vector multiplication (inner product) to rearrange the input

to the matrix multiplication.

A vector is an entity characterized by its length and direction. A vector

x = (x. ,x2 ' x3 ,' ", xn) in an n - space is an ordered n - tuple of real numbers. The set of

all ordered n - tuples is called n - space and is denoted by R n [3]. The members of

Rn are column vectors; on the other hand, the elements of Rlxn are row vectors [11].

The set of all mx n matrices with real-valued entries is denoted by R mxn [7].

II

[
a,l alJ

AE R
mxn
~ A =raj]] =: :

amI'" am

and matrix multiplication is R
IIIX1I x Rnxp ~ Rm><p [12]. Ifx,yE R

nxI
, their dot (inner)

product cis

n

C= L.x;Y; = x,Y\ +X2Y2 +x3 Y3'+···'xn yn ·
;=)

A matrix Amxn can be viewed as a collection of column (row) vectors, that is,

3.3 Winograd's Algorithm

multiplication can have very different levels of performance [11].

Since matrix multiplication can be represented by dot products, then for

Suppose A E R mxll ,B E R
I1X

P, and C E RntXP. The usual matrix multiplication

A E R
mxn ,B E Rnxp and C E R mXp , the matrix AB can be partitioned into

Although equivalent mathematically, it turns out that these versions of matrix

matrices provide an alternative way of thinking about matrix multiplication [14].

right, top-to-bottom order [11]. Using the concept that a matrix is a colJection of column

procedure regards AB as an array of dot products to be computed one at a time in left-to

(row) vectors, the product C can be computed as m· p inner products. Rowand column

and

12

B =[b ... b]
I' 'p

Then the algorithm to compute the AB product is

for i=1 to m

for j =1 to p

end

end

Figure 3-1: Matrix multiplication: Dot product version [11].

In this way, many of the properties of the dot product are direct consequences of

corresponding properties of matrix multiplication.

vector, compute the number [1]

and

Let x = (X,",, x,,) and Y= (YI'''', Y,,) be two vectors, and if n is even, for each

,,/2

~ = LX2j-1 • X2i
j=1

,,/2

1] =L Y2j-l . Y2j .
j=l

The inner product (x, y) is then given by [1]

,,/2

(x, y) =L(X2j-1 + Y2)(X2j + Y2j-l) - ~ -1] =X'YI + X2Y2 +... + x"Y,,·
j=1

When n is odd, the formula misses the last product of components in the vectors

x and Y, but this can be remedied easily by adding the product.

13

Let A be an m X n matrix and B be an nx p m trix.. Winograd's algorithm to

compute the product of AB is:

11/2

A; =L ai ,2k-1 • a i ,2k '
k=1

n/2

B j =Lb2k- 1j . b2kj .

k=\

\', • JI

n/2

L (a i2k - 1 +b2k ,j)(ai.2k +b2H,j) - Ai - B j
k=1

if n is even

C', =I.)

n/2

L(am -1 +b2k ,j)(a',2k +b2k_Ij)-~ -Bj +anbn if nisodd
k=l

Figure 3.2: Winograd's algorithm [10]

Winograd's algorithm'shows that rearrangi.ng the order of the computations can

make a difference, even for expressions such as matrix multiplication. In the algorithm.

the Ai sand Bjs need to be computed only once for each row or column. To compute all

the A; sand Bj s requires only n2 multiplications. The total number of multiplications has

thus been reduced to ~ n3 +n 2
• The number of additions has increased by about ~ n3

•

This algorithm is thus better than the straightforward algorithm in cases where additions

can be performed more quickly than multiplications [1].

3.4 Computational Complexity

Let N denote total n -dimensional vectors, T denote inner products involving

these vectors, and Lt Jdenote the integer part of t. For each A; or Bj' there are Ln /2 J

14

multiplications and Ln 12J-1 additions. There are N vectors, so there ar N Ln/2 J

multiplications and N (L n12 J-1) additions resuJting from calculating NAj or NB j

alone. For each inner product, when n + 1 is odd, the number of multipli at~on will

one more than n because the inner prod~ct needs to add tbe pIOduct of Xn+l n+l. In eim r

case, there are L(n + 1) 12J multiplications. For ex.ample, n =2, there is one product,

L(2+1)/2)J =1, n=3, there are one product plus product of X 3Y3' total 2 products,

L(3 +1)12 J= 2, similarly there are n +Ln12 J+1 additions. Since there are T inner

products, there are T(L (n +1)1 2J) multiplications and T(n +Ln/2J+ 1) additions

resulting from calculating the inner products. The total number of multiplications

required is then N Ln 12 J+ T L(n +1) 12 J. The total number of additions required is

N(LnI2J-1)+T(n+LnI2J+1) [10]. In the regular way, for N n-dimensional

vectors, to perform T inner products, there are Tn = Nn + (T - N)n multiplications a

compared with N Ln12J+ TL (n +1)1 2J= Nn + (T - N) L(n +1)/2J, n >L (n +1)1 2J for

n > 1, so if T > N , Winograd's algorithm requires fewer multiplications than the regular

method. The total number of additions required is N(Ln/2J-l)+T(n+LnI2J+ L),

while the regular method requires only T(n -1) additions [10].

Let A be an m x n matrix , and B be an n x p matrix.. Computing the product

AB is equi valent to giving N =m + p vectors and performing mp inner products [10].

The total number of multiplications is

(m+ p)n+(mp-m- p)L(n+l)/2J

:::: (m+ p)n+(mp-m- p)(nI2)

=mn+np + mnpI2-mn/2-npI2

15

= mn /2 + np / 2 + mnp / 2

when m=n= p

If m, n, p are large, W'inograd's algorithm requires about ~mnp multiplications

and .% mnp additions, while the regular method requires mnp multiplications and

mnp additions [10].

16

CHAPTER IV

STRASSEN'S ALGORITHM

4.1 Block Matrix

A matrix can be subdivided or partitioned into smaller matrices by inserting

horizontal and vertical lines between selected rows and columns [14]. Column and row

partitionings are special cases of matrix blocking. Having a facility with block matrix

notation is crucial in matrix computations because it simplifies the derivation of many

central algorithms. Moreover, "block algorithms" are increasingly important in high

perfonnance computing. Block algorithm essentially means an algorithm that is rich in

matrix-matrix multiplication [11].

In general. an m -by- n matrix A can be partitioned by both the rows and columns

to obtain

[~' ~'l
ml

A=
Aq, Aqr mq

n j nr

where ml + ... +nlq =m, n I + ... + nr =n, and Aap designates the (a, {3) block or

submatrix. Block Aap has dimension ma -by- np and A =(Aa;8) is a q -by- r block matrix

[11].

The concepts of matrix operations in Chapter I also carryover to block matrices

provided the size of the submatrices are such that the matrix multiplications and additions

are defined [14].

17

Block matrices combine just like matrices with scalar entri as long as certain

dimens.on requirements are met. If

then B is partitioned confonnably with the matrix A, The sum C = A + B can also be

regarded as a q -by- r block matrix [11J:

then

[~" :J m l

AB=C=
Cql mq

111 n,

where Ca/3 = AaBp for a = 1,. ",q and {3 = l,'··,r

Proof [11]. Relate scalar entries in block Ca/3 to scalar entries in C. For 1~ a ~ q,

1<{3< 1<'< ·dl<'< h- - r, _ L _ rnn ' an -) - n13 ' one as

where A =rn l +,.. +ma_1 I f..l =n. +.,. +np_1 •

But CA.+i,JJ+J =ra)'+i,kbk'Jl+J =~)Aa]ik[Bp]kj =[AaBp]ij'
k=l k=l

lK

Lemma4.1.2 [11] IfAE RmxP,BE RPxn,

B~ IT] p~,and

S

AB=C= L~Br.
r=1

then

Proof [15]. For 15 i 5 m and 15 j 5 n,

Thus
S

AB=C= LAyByo
y=1

Theorem 4.1.3 [11] if

[1~', .. ·lJ m l [B" BJ PI
A= B=

mq BS1 Bs Ps

PI Ps n1 n,

the partition of the product C =AB is as follows,

19

then

r.
a =1," . ,q , fJ = 1, ... , r .

Proof. Set

and

s

from Lemma 4.1.2 C= LA,Br =[AIBI]+[~B2]+ .. ·+[AsBs]'
r=l

s

CaP = [L A,Br]aP = [Aa1 BIP] + [Aa2 B2P] + ... + [AaI' Bstd
r=1

By proving that matrix product AB exists and A, B are partitioned into blocks, the

product in terms of blocks produced by the partitions is obtained formally in the same

way as that in terms of the scalar elements [16]. When matrix A and B are conformably

partitioned, the partition of the columns of A must be the same as the partition of the

rows of B, hut there is no restriction on the partition of the rows of A or the columns

ofB [17].

20

Block multiplication of matrices is of con ider bl theoretic 1 u e bu bl k

multiplication of matrices also has practical use in large- cale computation (15). Sine fo

two confonnably partitioned matrices multiplication is treated just like ordinary scalar-

level matrix multiplication, block matrix multiplication can also be partitioned in several

possible ways so as their corresponding version of algorithms [14].

. !

4.2 Strassen's Algorithm

In 1968, Volker Strassen discovered a new algorithm to compute the product of

two matrices, and reduced the computation time to O(n 2.81) which is quite efficient for

very large matrix multiplications. Although Strassen's algorithm does not use the full

theorem of block matrix multiplication, the algorithm does apply the partition of matrix

to divide two matrices into half of their size in a series steps to reduce the number of

multiplications.

Strassen's algorithm uses a divide-aod-conquer method and it is iterative in

nature, that is, it reduces the problem of multiplying n x n matrices to several instances of

smaller problems [6].

Assume matrix A and B are two n x n matrices, and n is power of 2. Let n =2m ,

then m =nJ 2. Use m to partition hoth matrices of A and B into four m x m matrices,

21

B=1811 BI~ .

lP21 BJ
The product AB =C

22

.,

: 1CII =All X BII + An X B21 '

C21 = A21 X BII +~2 X 8 21 '

where the ~j's, Bi} ,sand Cij 's are n12 x n 12 matric . Using block matri

multiplication, each submatrix is treated as are elements of the nx n matric . Then the

elements in C is [6]

If computing the Cij's in the straightforward way, there are 8 multiplications.

Replacing each multiplication by a recursive call, the recurrence relation is

T(n)=8T(n/2)+O(n 2
), which implies that T(n) =O(n lO8Z8

) =O(n3
). If there is an

algorithm that computes the product of two 2 x 2 matrices with fewer than 8

multiplications, then the algorithm is asymptotically faster than cubic [1].

The most important part of the recursion is how many multiplications are required

to compute the product of two 2 x 2 matrices. In the design of an algorithm for matrix

multiplication, the number of additions does not carry the same weight as the number of

multiplications since they always contribute O(n 2) to the recurrence relation, which i

not a factor in detennining the asymptotic complexity although it does affect the constant

factor [1]. Strassen discovered a unique recursive approach in which 7 multiplications

and 8(n 2
) scalar additions and subtractions are enough to compute the product of two

2 x 2 matrices, and it has a recurrence relation T(n) =7T(n / 2) + S(n 2) =O(n IOgZ') =

O(n 2,81) [7].

Strassen did not give the details of how and what method he used to discovered

the submatrix products that make his algorithm work [1][7]. However, his method has

four steps:

1. Partition the input matrices A and B into n/2x ,,/2 submatrice: .

2. Using 8(n 2
) scalar additions and subtractions. compute 14 n/2xn/2 matrices.

3. Recursively compute the 7 matrix products p;.

4. Using additions and subtractions of the P; to compute the desired submatrices Cij [7].

Udi Manber [1] thinks that the following is possibly a method that could have

been used by Strassen to find the algorithm.

Computing the product

is equivalent to computing the product

Write the above matrix multiplication as A· X =Y I and look for ways to

minimize the number of multiplications required to evaluate Y. The following are four

types of special products that are easy to compute.

Type

a)

Product

[
a aJ [eJ [a(e+ /1
a a f - a(e+ f~

No. Multiplications

1

f3) [a aJ' CJ = [a(e + f)J
-(1 -a -a(e+f

23

1

0 0 0 0 a-b 0 0 0

c-b 0 0 c-b 0 d-b 0 b-c
D= E=

b-c 0 0 b-c c-b 0 a-c 0

0 0 0 0 0 0 0 d-c

If A· X =Y can be expressed in the fonn of a product of several steps of the types

listed above, then it may require fewer multiplications since these types of products use

fewer than that the actual number of multiplications. Let

2

2

b b 0 0 0 0 0 0

b b 0 0 0 0 0 0
B= c=

0 0 0 0 0 0 c c

0 0 0 0 0 0 c c

Then, A = (B + C + D + E) and therefore AX =BX + CX + DX + EX . EX ,CX and DX

can be computed with one multiplication using types a or f3 , hut not EX . However E

can be expressed as the sum of two matrices E = F +G , such that F is of type rand G

is of type 8:

a-b 0 0 0 0 0 0 0

0 0 0 0 o d-b Ob-c
F= G=

c-b 0 a-cO 0 0 0 0

0 0 0 0 0 0 0 d-c

24

So AX = (BX +CX + DX + EX) =(BX + CX + DX + FX +GX). Overall it

takes two products of type a , and one product each of type f3 r, and 8 .

Each of the matrices B , C,' D, F and G contributes to the product AX :

D contributes

o

Z2 '

G contributes

C contributes 0

o
B contributes Zl

z\
o
o

F contributes

Let z. =b(e+ f), Z2 =c(g +h),

Z3 =(c-b)(e+h), Z4 = (a -b)e,
J

Zs = (a - c)(g - e), Z6 =(d -c)h,

Z7 =(d-b)(f'-h).

Apparently, choosing different matrices of a, f3, r and8 will lead to different

Zj 's , and thus will have different p, r, s, and t representations. Strassen could have

25

used a similar method to discover the algorithm. The algorithm first proceed by

computing the following seven matrices [6):

Then the algorithm uses these seven matrices to computes the Cij 's:

CII =P,. +P4 -P5 +P7 ,

C21 =P2 +P4,

CI2 =~ +~,

C22 =~ + P3 - P2 + P6 .

Altogether Strassen's algorithm calls for computing 18 additions of mXm

matrices and 7 multiplications of m x m matrices [6]. The conventional matrix

multiplication involves (2m)3 multiplications and (2m)3 - (2m)2 additions. If Strassen's

algorithm is applied with conventional multiplication at block level, then 7m 3

multiplications and 7m 3 + 11m 2 additions are required. If m »1, then at the each step,

the Strassen method involves about 7/8 ths the arithmetic of the fuIIy conventional

algorithm [11].

Starting from the 2-by-Z block matrix multiplication, Strassen's algorithm use a

completely different approach to the matrix-matrix multiplication problem. Strassen'

algorithm can be applied to each of the half-sized block multiplication associated with the

p;. Thus, if the original A and B are n -by-n and n = zq, then Strassen's multiplication

algorithm can be applied recursively. As the partitioning of matrices continues, there is

no need to recur down to the n =1 level. When the block size gets sufficiently small, that

is n 5 nmin , it may be sensible to use the conventional matrix multiplication algorithm

[11] .

The following is the overall procedure of the Strassen's algorithm. Suppose

n =Zq and that A E R"xn and BE Rnxn . If nmin ;= Zd with d 5 q, then the algorithm

computes C =AB by applying Strassen's procedure recursively q - d times [11].

26

C = strass(A,B,n,nmin)

i£ <':f n - nIDin

C=AB

else

'1 ' .. '

L

m =n/2

u = 1 to m

v = m+l to n

~ =strass(A(u,u) + A(v,v), B(u,u) + B(v, v),m,nmin)

P2 =strass(A(v,u) + A(v, v), B(u,u),m,nmin)

~ =strass(A(u,u), B(u, v) - B(v, v),m,nmin)

P4 =strass(A(v,v),B(v,u) - B(u,u),m,nmln)

Ps =strass(A(u,u) +A(u, v),B(v, v),m,nmin)

P6 = strass(A(v,u) - A(u,u), B(u,u) + B(u, v),m,nmin)

P7 =strass(A(u, v) - A(v, v), B(v,u) + B(v, v),m,nmin)

C(u, u) =~ + P4 - Ps + P7

C(u,V) =~ + Ps

C(v,u) = P2 + P4

C(v, v) =~ + P3 - P2 + P6

end

Figure 4-1: Strassen's algorithm [11],

Strassen's algorithm is one of the most striking examples of a nonintuitive

algorithm for a seemingly simple problem [1]. The algorithm is recursive; it calls itself

until n =nlDin • When this condition is reached, the process of partitioning of the matrices

stops the recursion. The blocks will then have the size nmin •

27

't

Strassen's algorithm assumes that the multiplying matrices have th size n x n ,

and n is a power of 2. In the case when n is not a power of 2, the two matrices can be

modified by adding two matrices by O's so as to make their dimension n', a power of 2

[6].

4.3 Computational Complexity

Compared with the straightforward algorithm which requires approximately 2n 3

(n 3 multiplications and n 3 _n 2 additions) arithmetic operations, Strassen's algorithm

computes the coefficients of the product of two square matrices A and B of order n

from the coefficients of A and B with fewer than 4.7n log1
7 arithmetic operations [18].

Define algorithms am,k which multiply matrices of order m2k with m37 k

multiplications and (5+m)m 2 7 k -6(m2 k
)2 additions and subtractions of numbers by

induction on k :

am,O is the usual algorithm for matrix multiplication requiring m 3 multiplications and

m\m -1) additions.

Assume am,k is true for the algorithm with m37k multiplications and

(5 +m)m 2 7 k
- 6(m2k

)2 additions and subtractions of numbers.

Define am,k+l as follows:

If A, B are matrices of order m2*+' to be multiplied, write

28

No. additions and subtractions

same as P2

same as P2

same as p..

same as p..

same as P2

No. multiplications

P.. m3 7*

P2 m3 7*

P3 same as P2

P4 same as P2

P5 same as P2

P" same as PI

P7 same as p..

ell

Cl2

CI2

C2'!.

Where the A;.t> Bit, Ci* are matrices of order m2* . Then compute p.., P2' P3 ,

P4' P5 , ~ I P7' CII • C12 , C21 and Cu defined in section 4.2 using am.k for

m2* [18].

multiplication and the usual algorithm for addition and subtraction of matrices of order

The total number of multiplications is 7m 3 7* =m37k+l and since the sum of two

m2* x m2* matrices uses (m2*)2 additions, the total number of additions and subtractions

29

is 7«5+m)m 27 k)-6(m2 k)2)+18(m2k)2.

(5+m)m 27 k+\ _6(m2k+1)2

= 7(5 + m)m 27 k -6(m2 k 2)2

=7(5 + m)m 27 k
- 24(m2*)2

=7(5 + m)m 2 7* - 42(m2*)2 + 18(m2*)2

=7«5 + m)m 27* - 6(m2k)2) + 18(m2*)2

Fact 1. am,k computes the product of two matrices of order m2 k with

m 3 7 k multiplications and (5 + m)m 2 7 k
- 6(m2 k

)2 additions and subtractions of numbers.

Thus, the algorithm multiplies two matrices of order 2* with 7* multiplications and

fewerthan 6·7 k additions and subtractions [18].

Fact 2. The product of two matrices of order n may be computed with

< 4.7· n IOCz 7 arithmetic operations.

Proof [18]. Put

k =[log 2 n -4], (1)

m =[n2 -k] +1. (2)

from (2) m-l=n/2k

2k (m -1) =n

then n ~ m2 k
•

Embedding matrices of order n into matrices of order m2 k reduces the task to

that of estimating the number of operations of am k • By Fact 1 this number is

m37 K +(S+m)m2 7 k -6(m2k
)2

30

k =[lOg2 n -log2 16]

log2 n/16 =k

In the general case when n is not a power of 2, embed each matrix in a matrix

$ max(2(8/7r +12.03(4/7)' nlog77
4S1Sj

Since log27::= 2.807 , asymptotically the number of multiplications in Straseen's

whose dimension is the next higher power of 2. A more careful "padding", as well as

let t =log 2n - k

use

from (1)

by a convexity argument [18].

using the regular way for multiplying two matrices where n is small shows that the total

procedure is O(n 2
.
807

). However, the number of additions (relative to the number of

number of operations for multiplying two n x n matrices need not exceed 4 x n logz 7 [6].

multiplications) becomes significant as nmio gets small [11].

31

CHAPTER V

ASYMPTOTIC IMPROVEMENT FOR MATRIX MULTIPLICATION

Strassen's publication of his discovery became one of the exciting news and the

most frequently cited results in the study of the time-complexity of algorithms [19].

Strassen's result also encourages us to think that it is possible to further accelerate the

matrix multiplication speed by designing new algorithms using some different ideas and

techniques.

Strassen's algorithm remained the fastest for about ten years [19]. Many attempts

have been made to improve Strassen's famous result with little progress, but much more

significant is the use of a new approach of approximating algorithms to find a bound for

the multiplication [25J. In 1978, V. Ya. Pan published his asymptotic improvement; the

result of was O(n 2
.
795

) [20]. Pan introduced a new technique of trilinear operations of

aggregating, uniting and canceling, and applied the technique to construct a fast linear

non-commutative algorithm for matrix multiplication [20J. Pan's method enables

construction of a fast algorithm and is asymptotically faster that Strassen's algorithm.

Pan's method also resulted in many attempts to find an improvement not only for

matrix multiplication, but also for an asymptotically faster algorithm for questions where

matrix multiplication is a substantial part of algorithms for other computational problems

of linear algebra and combinatorics [19J. The current best result for matrix multiplication

- in tenns of asymptotic running time - isO(n 2
.376) [21] by Coppersmith and Winograd.

32

Because these algorithms have relaxed the ground rules of matri multiplicati n

and use more complex techniques and some algorithms do not compute a matrix product

at aU [21], this chapter only describes Pan's method of 1983 and Strassen's method of

1986.

5.1 Some Notation and Definitions

Any systematic study of algorithms must begin by making precise the notion of

the algorithm under investigation [6]. Therefore before further describing Pan's and

Strassen's methods, it is necessary to have some notation and definitions.

Notation of LA ([20][22]): If a fast linear algorithm of a certain type (LA) for

multiplying two matrices of a specific size was given, then fast algorithms for matrix

multiplication, matrix inversion, evaluation of a determinant and solving linear systems

of equations, and for some other important problem of any large size could be

immediately constructed.

Bilinear forms ([6]). A general system of bilinear forms can be written a

)

,
)
J
Y-..
[,
t

s ,

fk =LLQijkX;Yj'
j=l ;=1

k = 1,2, ",t,

where {xl'''',x,}and {YI, ''''Y s } are two sets of indeterminates, and the aUk '8 are

elements of the field of constants.

Definition ([23]): Bilinear algorithms for matrix multiplication. Given a pair of

mXn and nXp matrices X =[xij], Y =[Yjk], compute XY in the following order:

First evaluate the linear forms in the x -variables and in the Y -variables,

L; =L J'(j, k, q)Yjk '
j,k

33

(5.1)

then the products Pq = LqL; for q =0,1,,,,, M -1, and finally th entries L, U jk of
j

XY, as the linear combinations

M-l

L,XijYjk = Lf"(k,i,q)LqL;, (5.2)
j q=O

where fijq' /;kq' and f~~ are constants such that (5.1) and (5.2) are the identities in the

indeterminates xij ' Y jk ' for i =0,1,,,,, m -I ; j =0,1,,,,, n -1; k =0,1,,, " p -1. M , the

total number of all multiplications of Lq by L; is caned the rank of the algorithm, and

the multiplications of Lq by L; are called the bilinear steps of the algorithm, or the

bilinear multiplications of the algorithm.

Assume n =s" for a fixed but sufficiently large s and for h ----t 00. The bilinear

algorithm (5.1), (5.2) can be applied where all the xlj' Y jk and consequently, all the Lq

and L; denote s x s matrices for a natural s. Then recursi vely apply this bilinear

algorithm with successive substitutions of SK x SK matrices for xi} and Yjk (for all i, j

and k), where multiplying a pair of n x n matrices with n =S /It], g =h -1, h - 2" .. ,1 .

This defines a recursive bilinear algorithm for computing XY [23].

Both the straightforward algorithm and Strassen's algorithm are bilinear. The

straightforward algorithm for m x n by n x p matrix multiplication has rank mnp, and

Strassen's algorithm for 2x 2 matrix multiplication has rank 7. In both algorithms, the

constants J,!',/" take only the values 0,1, and (for Strassen's algorithm) -1 [24].

If for some pair n, M there exists an algorithm for n x n matrix multiplication

34

"•)•)-
J

-)
•J
r

r
I I
t,

that involves only M multiplications and gives rise to a So-a n-lik ur 1

construction, then

where m is exponent of matrix multiplication [24].

Theorem ([24]). Given a bilinear algorithm (5.1), (5.2) for mX nX p matrix

multiplication, such that mnp > 1, then

The theorem reduces estimating the asymptotic complexity of matrix

multiplication (represented by m) to estimating the rank of a specific problem (m, n, p),

so it "only" remains to choose appropriate m, n, p and to design a bi linear algorithm

(5.1), (5.2) of a smaller rank M . The exponent depends only on the number of bilinear

steps of the algorithm (5.1), (5.2) or equivalently on the number of bilinear products

LqL; in (5.2) and that the number of linear operations involved in the basic bilinear

algorithm does not influence the exponent [19].

Definition of tensor [27] [28]: A tensor is an entity having a unique set of

components in a given coordinate system. A tensor of rank r associated with a point P

of an 11 -dimensional metric manifold Vn is an r -linear form in the base-vectors

associated with the point whose coefficients are in general functions of the co-ordinates

of the point and which is invariant to choice of co-ordinate system.

A tensor component may have a set of numbers called indices consisting of either

superscripts or subscripts or a combination to indicate its component. The exact number

of indices is termed the tensor rank [26].

35

)

)

'2
)
to
)

..,
»,
J
r-..
r
I ,

•I

The number of components in a given tensor depend on botb it rank nd on

"tensor dimensionality". The lowest rank that a tensor may have i 0, and th number of

components possessed by a tensor of rank 0 is ,aJways 1 regardless of the dimensionality

of the tensor. A common name for such a tensor is "scalar" [26].

ScaJar tensors may have any rank, A rank-zero scalar tensor is a "scaJar scalar ", a

rank-one scalar tensor is a "scaJar vector", and a rank-two scalar tensor is a "scaJar

matrix". The number of components in a tensor of rank R in a space of dimensionaJity D

is given by the formula Z =DR [26].

Schonhage's r - theorem [21][25]: Assume we are given a file F and coefficients

aijhl , f3 jkhl' rkihl in F(;{) (the field of rational functions in a single indeterminate A),

such that

is an identity in x;jh), yj~), Zk:'), A, where f g are arbitrary trilinear forms. Given £ > 0,

an aJgorithm can be constructed to multiply N x N square matrices In

0(N 3t"+E) operations, where r satisfies L= L(mhnhP,,)t". Using 0(,,1.) as the error
h

term, the above hypothesis becomes

~[~ (h) (h) (h) J D("l)f f;Xij Yjk Zki + /L.

36

)

J
)

'2
)
to
)-
i

...
)
I
I

Less formally, the hypothesis is a trilinear algorithm, using L bi,Jinear

multiplications to (approximately) compute simultaneously several independent matrix

products, of dimension mh x nh times nh x Ph (written < mh , nh , Pj >) [25).

Each of the L bilinear multiplications is a linear combination of x variables,

times a linear combination of Y variables:

Linear combinations of these products M, are identically equal (up to errors of

order A) to the desired elements w of the answer matrix:

Multiplying both sides by Zk;'), which can be viewed as a dual to w~), and

summing, to obtain the single trilinear identity, this identity contains all the information

of the several bilinear identities. In such a situation, the matrix exponent obtained from

the construction is defined as £ =3r [21].

5.2 Pan's Improvement (1983 [19][24])

pxm matrices respectively, i=O,···,m-i; j=O,"',n-l; k=O,· .. ,p-land assume

no relations among the entries of the four given matrices, using the following bilinear

algorithm for the simultaneous evaluation of two matrix products XY and UV.

LXijYjk = L(xij +ujk)(Yjk +Vki)- LUjkYjk - L(xij +Ujk)Vki for all k,i (5.3)
i i j j

37

)

i
)

2
)
to
~-
j..

..
!"...
i"'

LUjkVkj = L(xjj +Ujk)(Yjk +Vkj)-LUjkYjk -XjjL(Yjk +Vkl) foraH i,j (5.4)
k A: k

Evaluate the mnp bilinear products (xij + U jA:)(y jk + vkj) for all i, j,k; the mn

products xij L(y jk +Vkj) for aU i, j ; the np products U jA: Y jA: for aJI j, k , and the pm
~

products L (xij + U jk)vki for all k, i . This amounts to a total of
j

bilinear products of the fonn LqL;, and M "',/I,p is the rank of the bilinear algorithm.

After calculating all the M m,/I,p products LqL;, use (5.3), (5.4) to evaluate the matrix

M m,/I,p =mnp + mn + np + pm [24] (5.5)
)

)

i
)

')..
)..
)

product XY and UV as linear combinations of those LqL~ with the coefficients j"

equal to 0,1 and -1 and defined by (5.3), (5.4).

Because no relations were assumed among the entries of the four matrices, the

products of XY and UV are disjoint matrix product and the entries are indetenninate.

From (5.3), (5.4), the bound w can be deduced

Because the algorithm (5.3), (5.4) simultaneously solves two equally hard

problems (m,n,p) and (n,p,m), a factorof2 appears in the bound [24].

Modify (5.3), and (5.4) by introducing an auxiliary nonzero parameter A to

accentuate the power of the algorithm (5.3), (5.4) [19]

LXjjYjk =L(xil +ujk)(Yjk +AVk)- LUjkYjk -AL(xjj +Ujk)Vki (5.5)
j) I i

38

-
....

....-

t ri

For every value A:I= 0, the algorithm (5.5), (5.6) defines a bilinear algorithm of

rank M m.n.p that evaluates XY and UV , also consider the case where A is a real or

complex parameter that converges to zero. When A become very small, that is

limA.~ (x .. + U 'k)v,-, =0
A--Hl L.J I)) ..

j

the products - A.L(x;j + U jk)Vki can be deleted from (5.5), and the bilinear algorithm of
j

products is

M m,n,p.J. =mnp + mn + np [19] (5.7)

)

I
)

that approximately evaluates XY and UV with a precision that can be made arbitrarily

high by choosing A. small.

An example [24]:

--I
..
....-

This is aA -algorithm for partial matrix multiplication. It evaluates three out of

four entries of the 2x 2 matrix Q= XY with arbitrary precision as A decreases. Reduce

the rank to 5 after ignoring the vanishing products. Consider the problem of the

evaluation of the product Q* of a 2 x 2 matrix X * by a 2 x 3 matrix Y". Represent Q"

as the sum Q" =QO + QI where QO,Ql have the form

39

.
0

:l Q' =la
. •

[qOO qOI

q~JQO=

q~o
• 0qll ql2

Then evaluate QO and the transpose of QI by the above algorithm. This defines a

bilinear A. -algorithm of rank 10 for Q. and consequently defines the exponent OJ =2.799.

However, one can use a complicated recursive construction that starts directly from the

above design of rank 5 for partial matrix multiplication and finally derive the exponent

OJ ~ 3log6 5 =2.694 [25].

By generating a recursive construction starting from the A-algorithm (5.5), (5.6)

that defines the exponent

OJ ~ 3log 2 (M m,n,p,A /2)/ log2 (nmp)

substitute (5.7) into the above inequality bound for m = p =7 , n =1 and deduce that

OJ ~ 31og2 31.5/log 2 49 =2.669 [24].

5.3 Strassen's Improvement (1986 [21] [29])

In 1986, Volker Strassen relaxed the ground rule for computing matrix

multiplication by using a basic trilinear form which is not a matrix product [21]. His

method for estimating the exponent ill of matrix multiplication has led to the bound

ill < 2.48. Coppersmith and Winograd have summarized Strassen's construction of the

algorithm in the following [21].

In his construction, Strassen ohserved that, using the ability to multiply a pair of

NxN matrices, one can "approximately" (in the A. sense) multiply (3/4)N 2 pairs of

independent scalars, that is, compute

40

•f
•
)
~

I
Ie
I

...

.:

:ti'M

()./4)N Z

LX/YIZ, + 0(..1)
1;1

where all the XI' Y" z, are independent. Setting g =[X (N + 1)] one can to obtain

L (xijAh2ij)(y jk A/+ 2j(k- 8))(zkiA(k-d +2(k-8)i) = LXuY jk Zki + 0(...1)
ISi,j,k5.N i+ j+kcg

ISi,j,kSN

since the exponent of A, i2+2ij+ / +2j(k-g)+(k-g)2 +2(k-g)i=Ci+ j+k_g)2

is zero when i + j + k =g and is positive otherwise, Since any two indices i, j uniquely

determine the third k =g - i - j , each variable Xij is involved in at most one product.

There are about [(3/4)N 2
] triples (i,j,k), 15:i,j,k5:N, i+j+k=g. Call this

construction (*) [21].

Strassen uses the following basic trilinear algorithm, which uses q +1

multiplications:

t. (xo + Axi)(Yo + AYi)(Zi / A) + (xo)(Yo)(- L ZI' A)
i=1

•-•,.
•t
I

)
Ie,
Ie

:

.:

= t. (x; YoZ; +xoY;Z;)+O(A).
i=1

(1)

This is viewed as a block mner product: t.(x:y~Z; +x;Yi2z;)+0(A), The
;=1

superscripts denote indices in the block inner product: XlylZ + X 2 y 2Z, or, dually,

This is the block structure of an inner product, or matrix product of size < 1,2,1 > ,

where the 1x 2 block matrix (row vector) X is multiplied by a 2 x1 block matrix

(column vector) Y to yield a 1x 1 block matrix (block scalar) W , Because Xi and Xo are

41

5'"

different variables, they are .labeled with different uperscripts, th t i , put thm into

different blocks; so are Y; and yo' However, the z -variables are shared in both blocks.

Thus, this algorithm does not in itself represent a matrix product [21].

Examine the fine structure. The first block, LX:Y~Z; ,represents a matrix. product

of size < q,1,l >[29]. A qXl matrix (column vector) x is multiplied by a Ix1 matrix

(scalar) Yo to yield a q x 1 matrix (column vector) w, which is dual to z [21]. In the

second block, LX; l z; represents a matrix product of size < 1,1, q > [29]. A 1x.l matrix.

(scalar) Xo is multiplied by a 1x q matrix (row vector) y to yield a 1x q matrix (row

vector) w. When adding the two blocks, the indices i of w (or z) cannot be identified

as row indices or as column indices [21]. This is the difficulty solved in Strassen's

construction.

Take the construction (1) and the two constructions gotten by cyclic permutations

of the variables x, y, Z, and tensor them together [29], to get an algorithm requiring

(q +1)3 multiplications to compute [21]

~(II 11 II 21 II 12 II 12 21 21 12 22 12. 21 IIL XijO YOjk ZiOk + X;jk YOjk Z;oo + XijO YOOk lijk + Xijk YOOk ZijO + X OjO Yijk ZiOk +
i,j,k=1

This is a block 2x 2 matrix product (indicated by the superscripts). Within each

block is a smaller matrix product; for example the block I = 1, J = 1, K =2 is the matrix

product t (Xi~'~ Y~k z~~) , which can be interpreted as a matrix product of size < q2,1, q > :
i,j,k=l

·-•,..
I,
l
I

)
•
I

:

:

~ 11 12 21L Xij,OYOO.k Zk.ij
i,j.k=]

[21].

42

Taking the N'h tensor power of this construction, one can get a construction

requmng

(q + 1)3N multiplications, and producing a block 2N x 2N matrix product, each block of

which is a matrix product of some size < m, n, p > where mnp = q3N [29]. Applying

construction (*) to the block structure, one then obtains (3/4)(2 N)2 independent matrix

products, each some size < m,n, p > where mnp =q3N [21]. Applying the l' - theorem,

one gets

.-•r-
I

(J) ~ 31'N '

Taking N'h roots and letting N grow, the (.%) becomes insignificant, then one

has cv ~ 31', (q +1)3 =22 q3r . Letting q = 5 , Strassen obtains an upper bound for OJ [29].

43

:

:

..

CHAPTER VI

COMPARISON

6.1 Implementation

The implementation of the three algorithms consists of six classes: a random

number generator [30] class provides random numbers to fill elements of the matrix A

and the matrix B; an array class [31] creates two arrays objects for Winograd's

algorithm; a matrix class implements necessary member functions for matrix objects to

perform operations; a straightforward algorithm class; a Winograd's algorithm class; and

a Strassen's algorithm class.

The implementations of the algorithms are written in C++ and were compiled on a

Sun Microsystems 64-bit Solaris 7 platform. Timing of the speed of algorithms is

accomplished by starting a clOCK before executing the algorithm and stopping the clock

after the execution. The difference is then divided by C++ library function <time.h>

macro CLOCKS_PER_SEC to get CPU execution time of a particular section of

algorithm in seconds. To compare three algorithms, all algorithms use the same operand

matrix A and B of the same size.

6.2 Performance Comparisons

To gain better comparisons, all testing matrix sizes are power of 2 to avoid the

overhead cost involved with padding which has small constant of proportionality for the

number of arithmetic operations. After running on different matrix sizes, the following

tables give the results and comparisons.

44

....
I
r-,

)

:

Matrix size Standard Winograd Stra sen (original)
Number of Operation Number of Operation Number of Operation

8X8 1,024 1,200 1,576

16 X 16 8,192 8,928 12,184

32X 32 65,536 68,544 89,896
-

64X64 524,288 536,448 647,704

128 X 128 4,194,304 4,243,200 4,607,656

256 X 256 33,554,432 33,750,528 32,548,504

512 X 512 268,435,456 269,220,864 229,019,176

i
1024 X 1024 2,147,483,648 2,150,627,328 1,607,852,824

Figure: 6-1 Operation count for 2d X 2d matrices

For the purpose of comparison, recursion in Strassen's algorithm is carried out

until matrices are partitioned down to reach the 2x2 level, and then the multiplication is

switched to the straightforward method.

The number of operations for an algorithm for a certain matrix size include the

number of additions, the number of subtractions and the number of multiplications. A

portion of the number of additions for any size matrix multiplication comes from the fact

that counts the addition of zero after e lj is first initialized to zero in equation

elj =cij +ail x bkj. This addition is unnecessary when using hand calculation, but

unavoidable in the algorithm. For example, for 8x8 matrices, by definition, there are

n 3
- n

2 =83
- 82 =448 additions, in the algorithm. Adding 0 right after eli is initialized

to zero is also one operation, so there are n2 times more operations of addition of zeros

causing the total number of additions to be 512. This is true for both the straightforward

45

)....
I
:-

)

:

9#1

algorithm and Strassen's algorithm implementation since both algorithm u the same

multiplying method, but not Winograd's algorithm. At the 2x2 level, Strassen's

algorithm, in theorem, has a total of 12 additions + 6 subtractions + 7 multiplications =

25 operations~ in its implementation, there are 12 additions + 7 addition (resulting form

initializing cij = 0 of 7 multiplications) + 6 subtractions + 7 multiplications = 32

operations. By definition in Winograd's algorithm there are a total number of

N Ln / 2 J+T L(n +1) /2Jmultiplications and N Ln / 2 J+T (n +Ln/2J + 1) additions and

subtractions, where N =m + p and T =mp. For matrices of size 32x32, the total

number of multiplications is: 16n2 +32n=16384+1024=17408, which is ~n3+n2,

compared with n\= 32768) for the straightforward algorithm. The total number of

additions and subtractions is: n 3 +17n 2 +30n=32768+17408+960=51136. With

large size matrices, this number will be close to ~ n 3, that is, compared with the

straightforward algorithm, Winograd's algorithm will increase the number of addition

by about .x n 3
.

Since the implementation of Strassen's algorithm uses full recursion, a relatively

large portion of the total number of operations results from calculating at small size. For

instances, at the 2x2 level, the straightforward method involves 8 multiplications and 4

additions, while Strassen's algorithm uses 7 multiplications and 18 additions and

subtractions which is not efficient.

Looking at the total number of operations alone, Strassen's construction is

advantageous over the straightforward algorithm and Winograd's algorithm at 256x256

46

)..
..

).

level and greater, and Winograd's method seems to have similar perfonnance th

regular one.

Matrix size Standard Winograd Strassen (original)
of Multiplication # of Multiplication # of Multiplication

8X8 512 320 392

16 X 16 4,096 2,304 2,744

32X 32 32,768 17,408 19,208

64X 64 262,144 135,168 134,456

128 X 128 2,097,152 1,064,960 941,192

256 X 256 16,777,216 8,454,144 6,588,344

512 X 512 134,217,728 67,371,008 46,118,408

1024 X 1024 1,073,741,824 537,919,488 322,828,856
Figure 6-2: Multiplication count for 2d x 2d matrices

Even with the full recursion, as the matrices get large, Strassen' s construction

seems to outperform the other two methods. At levels of 64x64 and 128x128, the total

number of multiplications is half of those of the straightforward method, and also

thousands of times less than that of Winograd's. At level 256x256 and greater, the total

number of multiplications of Strassen's construction is about one third of that of the

regular and algorithm millions less than that of Winograd's.

Looking at the number of multiplications alone, Strassen's construction

outperforms the other two except at 32x32 level and less, while Winograd's algorithm

has about half of the number of multiplications of the straightforward algorithm. The

results suggest that among these sizes of matrices, there should be a point at which the

47

)..

)

-

recursion of Strassen's algorithm is stopped and the process is witched to the tandard

method. In general, it seems that the point is machine dependent. By considering the

number of multiplications alone, it seems as if choosing 64x64 as the truncation point

where recursion is switched to straightforward method is a good idea.

Matrix size Standard Winograd Strassen (original)
Time (second) Time (second) Time (second)

i

8X8 0.0 0.0 0.0

16 X 16 0.01 0.01 0.03

32X 32 0.04 . 0.04 0.27

64X64 0.32 0.23 1.74-_ .._.-

128 X 128 2.54 1.85 12.28

256 X 256 21.21 16.19 86.51

512 X 512 175.19 144.82 625.76

1024 X 1024 1,667.83 L,362.58 4,391.0
Figure 6-3: Time count for 211 x 211 matrices

The observed time for each different matrix size is repeated several times. For

size below 128x128, the result of each run can differ by a single digit after the decimal.

For sizes above 128x128, the results could differ in the ten's digit. Overall, the runtime

of each algorithm is quite consistent.

From the figure, it can be seen that runtime for matrix size 64x64 and below

among three algorithms is not significant. Starting from size 128x128, the runtime for

both the straightforward algorithm and Winograd's algorithm increase by a factor of

average 8.5 when n is doubled while runtime for Strassen's algorithm increases by a

48

)..

)

1.

""'""

factor of 7.1. It proves that even with a fully recur ive impl m ntation, Stra en'

algorithm does run faster than the other two.

At matrix size 128x128 and above, the relative large run time for Strassen s

algorithm could be due to some factors. When parameters are passed by value the

recursive structure requires a lot of spaces in the heap memory. Each time Strassen's

algorithm calls itself, parameters passed by value are costly due to the time spent copying

the large structure and this also causes the increase of number of memory access. The

large value of run time for large matrix size could also be due to the coding.

tandard

Winograd

Slrassen

)..

)

Figure 6-4: # of operations vs. n (log-log scales)

1000 10000

n (log scale)

Figure 6-4 shows taking the logarithms of both total multiplications and input

size for each algorithm, and plotting them to get straight lines. The slope of a line is the

exponent of the number of multiplications for that algorithm. By definition, the

straightforward algorithm requires nJ multiplications, and the slope for its line is 3.

49

-Standard
Winograd
S trassen

-

Strassen's algorithm has a theoretical upper bound of 2.80735, and for this empirical line

the slope is 2.768. This result is close to the theoretical value.

For the straightforward line, log(y) =3.010g(x) +0.3013. Its slope is 3 and this

value is slightly larger than the other two. This implies the line goes upward relatively

more quickly than the other two lines do, and the straightforward algorithm will result in

more total operations than the other two algorithms do as the input size getting larger.

The slope for Winograd's algorithm line log(y) =2.96810g(x) +0.398, is very close to

that of straightforward line, this implies, as the input size gets larger, both lines will be

relatively parallel, and have similar number of total operations.

From Figure 6-4, line, log(y) =2.96810g(x) + 0.398, for Winograd's algorithm

have an interception with line, log(y) = 2.76810g(x) +0.87, for Strassen's algorithm at

approximate input size of 64x64. Below this point, Strassen's algorithm results in more

multiplications than Winograd's algorithm does, above the point, Winograd's algorithm

results in more multiplications than Strassen's algorithm does.

4500 -,-----------------------------;-----.,

4250
4000
3750
3500
3250

~3000
§ 2750
g 2500
'"~2250
E 2000
.~ 1750
::l
... 1500

1250
1000
750
500

2 5~ J.._>--T__..c==r~~;:===::::;::::::::::::~=--._-___._--.,___-__,--_.__----J

).

Figure 6-5: runtime vs. input size

o 100 200 300 400 500 600 700 800 900
input size

1000 lIon

50

-

Figure 6-5 shows a graph of run time vs. input size in econds. Becau of full

recursion, Strassen's algorithm requires more time copying large structures and accessing

the memory, and its run time increases rapidly as the input size increases, for fairly small

n the differences in run time are negligible.

).

10000

><.,
e

'z:l
:3

E

-.- Standard

~Winograd

---.- Strassen

Winograd log(y):3.0210g(x)-3.96

Standard log(y):3.07log(x)-4.02

Strassen log(y)=2,8S61og(x)-2,9S

, , , , " I , , " I

Figure 6-6: runtime x LOO vs. input size (log-log scale) 1.0000

n (log scale)

Figure 6-6 shows the plotting of runtime vs. input size on a log scale. Because

runtime at small input size takes less than 1 second, runtime for all input sizes at and

above 16x 16 are multiplied by 100 before taking logarithms, and runtime for size 8x8 is

dropped because it is not measurable.

From the figure, it can be seen that graphs for both the straightforward algorithm

and Winograd's algorithm have close value of slopes. Their lines are relatively parallel

for the given input sizes, since the difference between the two slope values is fairly small,

it can be expected that the two lines could keep the parallel trend for large input size.

51

At full recursion, Strassen ,s algorithm has relati ve large run tim at and above

size 16x16 for the reasons described before. The value of slope for Stassen's algorithm is

relatively smaller than the other two, and this implies that the line for Stra sen's

algorithm will intercept the other time lines somewhere as input size increases and stay

below the other two lines.

6.3 Performance with truncation at 64x64

Values in Figure 6-1 suggest a truncation point at size of 64x64, and Figure 6-7

shows the result of operation count at that truncation level. With the number of

operations for the straightforward algorithm and Winograd's algorithm unchanged.

Strassen's construction has a big reduction of the total operations at and above the

truncation level. On average, below the truncation level, the total number of operations

decrease by 31%; at and above the truncation level, the decrease rate is 18.5%.

52

-

Matrix size Standard Winograd Stras en (original)
Number of Operation Number of Operation Number of Operation

8X8 1,024 1,200 1,024

16 X 16 8,192 8,928 8,192

32 X 32 65,536 68,544 65,536

64X 64 524,288 536,448 524,288

128 X 128 4,194,304 4,243,200 3,743,744

256 X 256 33,554,432 33,750,528 26,501,120

512X512 268,435,456 269,220,864 186,687,488

1024 X 1024 2,147,483,648 2,150,627,328 1,311,531,008
Figure: 6-7 Operation count for 2d x 2d matrices with truncation at 64x64

Matrix size Standard Winograd Strassen (original)
of Multiplication # of Multiplication # of Multiplication

8X8 512 320 512

16 X 16 4,096 2,304 4,096

32X32 32,768 17,408 32,768

64X64 262,144 135,168 262,144

128 X 128 2,097,152 1,064,960 1,835,008

256 X 256 16,777,216 8,454,144 12,845,056

512 X 512 134,217,728 67,371,008 89,915,392

1024 X 1024 1,073,741,824 537,919,488 629,407,744

Figure 6-8: Multiplication count for 2d x 2d matrices with truncation at 64x64

Figure 6-8 shows the comparison results after using truncation at size 64x64.

Because the recursion is switched to the standard algorithm when truncation point is

53

dC

reached, the total number of multiplications for Stras en's algorithm has incre ed y

overall average 61 %. Above the truncation point, the increase rate is even higher, 94%,

this increase results from multiplying matrices at size 64x64. For example, for size

64x64, the standard algorithm results in 262144 multiplications, with fuU recursion, the

same size results in about half the number (134456). Figure 6-9 shows the graphs of

results of Figure 6-8 after taking logarithms.

1.00E+08
-.- Standard

-0- Winograd

--4- Strassen

Strassen: log(y)=2.81710g(x) + 0.337

Winograd: log(y)=2.9681og(x)+0.398

Standard: log(y)=3.01og(x)+0.30 13

100 10000
n (log cale)

Figure 6-9: # multiplication vs. n (log-log scale)

The line for Strassen's algorithm can be viewed as two parts. The first part is

below the size of 64x64, because below this level, the number of multiplications are the

same as those of the straightforward algorithm. Above 64x64, the recursion first

partitions the large matrices until reaching the size of 64x64, then the straightforward

algorithm takes over the calculation. Size 64x64 is the turning point above which

54

-

Strassen's algorithm increases the number of multiplications by 940/(, so the lope of the

Strassen's line is calculated for the part above 64x64 level.

Matrix size Standard Winograd Strassen (original)
Time (second) Time (second) Time (second)

8X8 0.0 0.0 0.0

16X 16 0.01 0.01 0.01

32X 32 0.04 0.04 0.04

64X64 0.34 0.25 0.36

128 X 128 2.61 2.02 2.45

256 X 256 20.2 15.07 16.39

S12X512 173.3 132.41 117.67

1024 X 1024 1684.3 1,389.16 817.39
Figure 6-10: Time count for 2d x 2d matrices with truncation at 64x64

Figure 6-10 shows the results of run time after using truncation. From the figure,

it can be seen that the run time for Strassen's algorithm has been reduced dramatically.

The average speed up is 5.07. At input size 1024x0124, the speed up is

4391.0/817.39=5.37.

Figure 6-11 shows the plotting of logarithms of the results in Figure 6-10. The

plotting dropped results at 8x8 level since they were all zeros. The line function for

Strassen's construction is constructed between input size 64x64 and 1024x1024 to reflect

the trend of using truncation. The other two line functions are constructed between input

size 16x16 and 1024x1024.

55

P""'"'"

It can be seen from the graph that both the straightforward algorithm and

Winograd's algorithm take a similar amount of time for a given size. Stras en's algorithm

has a smaller value of slope for its runtime plotting, and its line will move apart from

both straightforward line and Winograd's line as the input size increases which means

Strassen's construction uses less time than both the straightforward algorithm and

Winograd's algorithm for a given input size as the input size increases as expected from

the asymptotic complexities.

Standard: log(y)=3.08Iog(x)-4.05

Winograd: log(y)=3.03Iog(x)-3.97

Strassen: log(y)=2.79Iog(x)-3.49

10000

Q)
Iiio
<II

Olg
o
o
~

x
(])

E
.~

2

10 100

-Standard

Winograd

Strassen

1000 10000

Figure 6-11: runtime x 100 vs. n (log-log scale)

6.4 Strassen's algorithm implementation considerations

n (log scale)

Implementation of an algorithm affects time and space efficiency of the

algorithm. Strassen' s algorithm is supposed to be faster for larger input matrices. Up to

56

this point, this study uses a recurs.ive method of implementation. The parameters in the

method are passed by value. Passing parameters by value consumes not only memory

space but also execution time. When the input matrix size increa es, a proportional

execution time is used to copy matrices instead of doing the calculation.

One way to reduce this time is to pass parameters by reference; only the addresses

of the data objects are passed. Data are manipulated at their original location in memory.

The implementation of Strassen's algorithm using passing by reference shows

considerable time saving as the input matrix size getd larger. Table 6-12 shows the results

of run time for the two passing methods, their run time difference, and fraction of

reduced time relative to the time of passing by value.

Matrix size Pass by value Pass by reference Difference Fraction
(second) (second) (second) (diff I by value)

8X8 0.0 0.0 0.0 0

16 X 16 0.01 0.0 0.01 0

32 X 32 0.04 0.04 0.0 0

64X 64 0.36 0.31 0.05 0.14

128 X 128 2.45 2.19 0.26 0.11

256 X 256 16.39 15.75 0.64 0.04

512 X 512 117.67 111.0 6.67 0.06

1024 X 1024 817.39 769.07 48.32 0.06

Figure 6-12: run time comparison (pass by value vs. pass by reference)

The table shows that the time saved is proportional to the input size. At

1024x 1024 level, the time saved is 48 seconds by using passing by reference.

57

Considering, when passing by value, that multiplying two 256x256 matrice us s only

less than 17 seconds, the time saved is quite significant. Memory space saved is also

significant, although it cannot be seen, since data manipulations are taking place at their

memory location. The speed up because of using passing by reference at level S12x512 is

117.67/ 111.0 =1.06. At leve11024x1024, the speed up is 817.39/769.07 =1.06.

Using run time resulting from passing by reference to replot the graph of run vs.

input size. The run time for the straightforward algorithm and Winograd's algorithm

remain the same, so their hne functions are the same as in Figure 6-11. The new line for

Strassen's algorithm is constructed between input size 64x64 and 1024x 1024 to reflect

the use of truncation at 64x64. The graph uses the same scale as that of in Figure 6-11 in

order to compare the difference.

Stan:lard: log(y)=3.08log(x)-4.05

Wirograd: log(y)=3.03log(x)-3.97

Strassen; log(y)=2.8011og(x)-3.55

1<XXXl

8
><
Il.l

.5c
2

100

-- SlancIard
-0- WlI'IOgT<Id

-k- Strassen

IlXXl

n(log scale)

1<XXXl

Figure 6-13: runtime x 100 YS. n, (log-log scale) pass by reference

58

The slope value for the line of Strassen's algorithm is 2.816 when u ing 4

significant digits during the calculation, 2.801 when using 3 significant digits. Both

values are close to the theoretic value 2.807. This result shows that an implementation of

an algorithm can make a difference both in time and space efficiency.

6.5 Choosing an optimal truncation for 1024x1024 matrices

Strassen's algorithm results in better performance for large size matrix

multiplication. With truncation, Strassen's algorithm can result in even better

performance.

Strassen's algorithm responds differently In terms of total operations, total

number of multiplications and execution time at different truncation levels. So

determining the truncation level is a matter of finding where stopping the matrix partition

and calling the straightforward algorithm is faster among all possible truncations. Figure

6-14 lists the empirical testing results for multiplying 1024x1024 matrices, and it is

believed that the measures of totaJ operation, total number of multiplications and

execution time vary from machine to machine even at the same truncation.

59

Truncation Size Total Operations Total Multiplication Time (second)

8X8 1,153,257,088 421,654,016 920.5

16 X 16 1,138,198,016 481,890,304 791.28

32X32 1,198,434,304 550,731,776 779.3

64 X64 1,311,531,008 629,407,744 826.44

128 X 128 1,466,073,075 719,323,136 903.27

256 X 256 1,657,143,296 822,083,584 1,017.54

512X512 1,883,766,784 939,524,096 1,195.09

1024 X 1024 2,147,483,648 1.073,741,824 1,667.83

Figure 6-14: Performance at different truncation size for 2'0 x 2'0 matrices

From the Figure, setting truncation at higher level results in more operations,

more multiplications and higher execution time. This is because at and below that

truncation level, the straightforward algorithm takes over; setting truncation at too low

level also results in relative high total operations and execution time. From the Figure, it

can be believed that if the truncation is lower than 8x8, both the total number of

operations and execution time will also increase.

If the truncation criteria are the combination of total operations, total number of

multiplications and execution time, among all possible truncations from 8x8 to

1024x1024, truncation at 16x16 or 32x32 seem to be a better choice.

60

.,

CHAPTER VII

CONCLUSIONS

The straightforward algorithm is always the best choice for sma]] size matrix

multiplication. It provides stable results with precision and efficiency. As to what is the

appropriate size of matrix fits the straightforward algorithm, there could be many

concerns, but its complexity of n3 and the nature of the algorithm makes it theoretically

less attractive for large n.

Winograd's algorithm cuts down the number of multiplication by a factor of 2,

and this is consistent regardless of the input size. The use of the concept of inner produl:t

to reduce the number of multiplications rests on the idea that additions can be performed

more quickly than multiplications. The total number of operations of Winograd's

algorithm is about the same as those of the straightforward algorithm [10).

Strassen's algorithm, for the first time, improved on the asymptotic complexity of

the straightforward algorithm, and gave the hope of further improvement and

al:ccleration. Strassen's algorithm has some drawbacks in terms of required input size,

less stable results than the straightforward algorithm, that is, for similar errors in the

input, Strassen's algorithm will probably create large round off errors in the output, and

less efficient as truncation size to stop the recursion becomes small.

Although Strassen's construction results in asymptotic improvement. At large

input size, the run time can be greatly reduced by choosing a suitable input size at which

61

l

I

F

the recursion is stopped. and the calculation is then switched to the traightforward

process. This empirical study has shown that run time for Strassen' s algorithm can be

reduced dramatically by choosing truncation point at 64x64 for input size range 8x8 to

1024x1024.

After Strassen's discovery, many new approaches to find asymptotical

improvements of matrix multiplication exhibit characteristics of approximating algorithm

[25], that is, what is the greatest lowest bound (J) on the exponents. Put in a different

way. (J) ~ logn M where M is the number of multiplication, and n is the input size [19].

The most exciting aspect of Strassen's approach of 1986 is that it eliminates a major

barrier to proving UJ =2. Schonhage's T - theorem enables to deal with not a fixed

algorithm but with a family of algorithms. In a search for more starting algorithms of the

Strassen variety, one of them might yield the elusive (J) =2 [21].

62

SELECTED BmLIOGRAPHY

1. Udi Manber, "Introduction to Algorithms." Addison-Wesley, Reading, MA, 1989,
301-304.

2. Steven S. Skiena, "The Algorithm Design Manual." TELOS, Springer-Verlag New
York Inc., New York, 1997,204-206.

3. Ron Larson and Bruce H. Edwards, "Elementary Linear Algebra." D. C. Heath and
Company, Lexington, MA, 1996, 13-85.

4. Bill Jacob, "Linear Functions and Matrix Theory." Springer-Verlag New York, Inc.,
New York, 1995, 119-120.

5. Charles G. Cullen, "Linear Algebra with Applications." Addison-Wesley, Reading,
MA, 1997,47-58.

6. Shmuel Winograd, "Arithmetic Complexity of Computations." Society for Industrial
and Applied Mathematics, Regional Conference Series in Applied Mathematics,
1980, 1-23

7. T. Cormen, C. Leiserson, and R. Rivest, "Introduction to Algorithms." MlT Pre s,
CambridgeMA, 1990,731-744.

8. J. Cohen and M. Roth, "On the Implementation of Strassen's Fast Multiplication
Algorithm." Acta Informatica, 6:341-355, 1976.

9. Alfred V. Aho, Hohn E. Hopcroft, and Jeffrey D. Ullman, "Data Structures and
Algorithms." Addison-Wesley, 16-19, 1983.

10. Shmuel Winograd, "A New Algorithm for Inner Product." IEEE Transactions on
Computers, C-17: (1968),693-694.

11. Gene H. Golub and Charles F. Van Loan, "Matrix Computations." The Johns
Hopkins University Press, Baltimore, 1996,3-34.

12. Gene H. Golub and Charles F. Van Loan, "Matrix Computations." The Johns
Hopkins University Press, Baltimore, 1985, 1-16.

63

13. Gilbert Strang, "Introduction to Applied Mathematics. Wellesley-Cambridge Pre ,
Massachusetts, 1986,25-28.

14. Howard Anton, "Elementary Linear Algebra." John Wiley & Sons, Inc., New York,
1994,25-31.

15. Howard Eves, "Elementary Matrix Theory." Allyn and Bacon, Inc., Boston, 1966,
37-40.

16. Peter Lancaster, ''Theory of Matrices." Academic Press, Inc., New York, 1969,16-19.

17. Ross A. Beaumont and Richard W. Ball, "Introduction to Modem Algebra and Matrix
Theory." Rinehart & Company, Inc., New York, 1957,25-29.

18. Volker Strassen, "Gaussian Elimination is Not Optimal." Numerische Mathematik,
13, (1969), 354-356.

19. Victor Pan, "How Can We Speed up Matrix Multiplication?" Society for Industrial
And Applied Mathematics Review, V.26, 393-415.

20. V. Ya. Pan, "Strassen's Algorithm is Not Optimal. Trilinear Technique of
Aggregating, Uniting and Canceling for Constructing Fast Algorithm for Matrix
Operations." Proceedings 19th Annual Symposium on Foundations of Computer
Science, pp. 166-176.

21. Don Coppersmith and Shmuel Winograd, "Matrix Multiplication via Arithmetic
Progressions." In Proceedings Nineteenth ACM Symposium, Theory of
Computing, Page 1-6, 1987.

22. V. Ya. Pan, "New Fast Algorithms for Matrix Operations." Society for Industrial and
Applied Mathematics, Journal of Computing, Vol. 9, No.2, 1980, pp. 321-342.

23. Dario Bini and Victor Y. Pan, "Polynomial and Matrix Computations." Vol. J,
Birkhauser, Boston, 1994, 314-317.

24. Victor Pan, "How to Multiply Matrices Faster." Lecture Notes in Computer Science,
Edited by G. Goos and J. Hartmanis, Springer-Verlag, New York, 1984,1-93.

25. A. Schonhage, "Partial and Total Matrix Multiplication." Society for Industrial and
Applied Mathematics, Journal of Computing, Vol. 10, No.3, 1981, pp. 434-454.

26. John A. Eisele and Robert M. Mason, "Applied Matrix and Tensor Analysis." John
Wiley & Sons, Inc., New York, 1970,206-264.

27. Banesh Hoffmann, "About Vectors." Prentice-Hall, Inc., New Jersey, 1966, 111-128.

64

I

1

28. A. P. Wills, "Vector and Tensor Analysis." Prentice-Hall, Inc., New York, 1931,
242-259.

29. Volker Strassen, "The Asymptotic Spectrum of Tensors and The Exponent of Matrix
Multiplication." Symposium On Foundations of Computer Science, IEEE, 1986,
pp.49-54.

30. Mark R. Headington and David D. Riley, "Data Abstraction And Structures Using
C++." Jones and Bartlett Publishers, Boston, 1997, 75-80.

31. George J. Pothering and Thomas L. Naps, "Introduction to Data Structures and
Algorithm Analysis with C++." West Publishing Company, New York, 1995,
45-61.

65

APPENDIX

~==

II matrix.h head file
1/ This file creates matrix object of arbitrary size and enables some simple matrix
// operations
//==

#include<iostream.h>
#include<assert.h>
#include<string.h>

#ifndefMATRIX_H
#define MATRIX_H

long int addition=O, subtraction=O, multiplication=O;

tempJate<c]ass index, class anytype>
class Matrix

public:
Matrix(index, index);
Matrix(const Matrix<index, anytype> &);
-MatrixO;
Matrix& operator=(const Matrix<index, anytype>&);
void assign(index, index, const anytype &);
anytype retrieve(index, index);
anytype &operatorO(index, index);
void statistic(long int& ,long int &,Jong int &);
int rowsize, colsize;

private:
anytype *matrixData;

};

66

I""""

template<c1ass index, class anytype>
Matrix<index, anytype>::Matrix(index row, index col)
{

matrixData = new anytype[row * col];
rowslze = row;
colsize = col;

template<class index, class anytype>
Matrix<index, anytype>::Matrix(const Matrix<index, anytype> &initmatrix)
{

rowsize = initmatrix.rowsize;
coJsize =initmatrix.colsize;
matrixData = new anytype[rowsize * colsize];
assert(matrixData '=0);
memcpy(matrixData, initmatrix.matrixData, rowsize*colsize*sizeof(anytype»;

template<class index, class anytype>
Matrix<index, anytypc>::-MatrixO
{

delete [] matrixData;

template<class index, class anytype>
Matrix<index, anytype> &Matrix<index, anytype>::

operator=(const Matrix<index, anytype> &source)

if(rowsize != source.rowsize II colsize != source.colsize)
{

delete [] matrixData;
. .

rowslze = source.rOWSlze;
colsize = source.colsize;
matrixData = new anytype[rowsize * colsize];
assert(matrixData !=O);

}
memcpy(matrixData, source.matrixData, rowsize*colsize*sizeof(anytype»;

return *this;

67

template<c1ass index, class anytype>
void Matrix<index, anytype>::assign(index row, index col, const anytype &val)
{

matrixData[(row-l)*colsize + (col-I)] = val;

template<c1ass index, class anytype>
anytype Matrix<index, anytype>::retrieve(index row, index col)
{

return matrixData[(row-l)*colsize + (col-I)];

template<class index, class anytype>
anytype &Matrix<index, anytype>::operatorO(index row, index col)
{

return matrixData[(row-l)*colsize + (col-I)];

template<c1ass index, class anytype>
Matrix<index,anytype> operator*(Matrix<index,anytype> &A,

Matrix<index,anytype> &B)

assert(A.colsize == B.rowsize);
Matrix<int, int> C(A.rowsize, B.colsize);

for(int i=l; i<=A.rowsize; i++)
for(int j=l; j<=B.colsize; j++)

I
C(i,j) = 0;
for(int k= 1; k<=A.colsize; k++)
{

C(i,j) = C(i,j) + A(i,k)*B(k,j);
addition++;
multiplication++;

}
return C;

template<class index, class anytype>
Matrix<index, anytype>& operator+(Matrix<index,anytype> &A,
Matrix<index,anytype>&B)

I
assert(A.rowsize==B.rowsize IIA.colsize==B.colsize);

68

+'

for(int i=l; i<=A.rowsize; i++)
for(int j= I; j<=A.colsize; j++)
{

A(i,j) = A(i,j) + B(i,j);
addition++;

}
return A;

1/ enable objects subtraction
template<class index, class anytype>
Matrix<index,anytype>& operator-(Matrix<index,anytype> &A,

Matrix<index,anytype> &B)

assert(A. rowsize==B .rowsize II A.colsize==B.colsize);
for(int i=l; i<=A.ruwsize; i++)

for(int j=1; j<=A.colsize; j++)
{

A(i,j) = A(i,j) - B(i,j);
subtraction++;

}
return A;

II return counters
template<class index, class anytype>
void Matrix<index, anytype>::statistic(long &plus, long &minus, long &mult)
{

plus = addition;
minus = subtraction;
mult = multiplication;

#endif

69

//===
II This header file exports facilities for pseudorandom number
/1 generation. Machine dependency: long ints must be at least 32 bits
11==

#ifndef RAND_H
#define RAND_H
#include <assert.h>

static long currentSeed~

const long A = 16807~

const long M = 2147483647;
const long Q = 127773;
const long R = 2836;

class Rnumber
{

public:
void SetSeed(long):
float NextRandO:

};

ffUpdated as a globbal variable
IlMultipJier = 7**5
IIModulus = 2**31-1
IIQuotient of MIA
IIRemainder of M IA

void Rnumber::SetSeed(long initSeed)
{

assert(initSeed >= 1);
initSeed = initSeed % M;
currentSeed = (initSeed > 0) ? initSeed : 1;
assert(currentSeed >=1 && currentSeed < M);

float Rnumber::NextRandO
{

long temp =A *(currentSeed % Q) - R *(currentSeedlQ);
assert(currentSeed>=1 && currentSeed<M);
currentSeed = (temp>O) ? temp: temp + M;
float result = float (currentSeed)/float(M);
assert(currentSeed>= 1 && currentSeed<M);
assert(result>O && result<I);llresult should be floating num

return result;

#endif

70

11==============================,===:======================
II header file: array.h
II This file enables array object to check index range, compare two objects; assign one
II object to another; retrieve element of the object, and some of necessary object
II operations
11===

#include<iostream.h>
#include<assert.h>

typedef enum boolean{FALSE, TRUE} BOOLEAN;

#ifndef ARRAY_H
#define ARRAY_H

II class declaration

template<class index, class anytype>
class Array
(

public:
Array(index);
Array(const Array<index,anytype> &);
-Array()~

Array &operator=(const Array<index,anytype> &);
void assign(index, const anytype &);
anytype retrieve(index); Ilreturn element value
anytype &operator[](index.);

private:
anytype *arrayData~

int baseIndex., hiIndex;
BOOLEAN outRange(index);

};

II constructor, allocate space for new object

template<class index, class anytype>
Array<index, anytype>::Array(index size)
{

arrayData = new anytype[size);
assert(arrayData != 0);
baseIndex = 1;
hiIndex = size;

7L

Ilpoints to array data

llinternal range checking

Iiallocate space
Ilcheck the allocation

=

1/ copy constructor, enables argument passing, return value
template<class index, class anytype>
Array<index, anytype>::Array(const Array<index, anytype> &initarray)
I

baselndex = initarray.baselndex;
hiIndex = initarray.hilndex;
arrayData =new anytype[hilndex];
assert(arrayData !=O);

for(index i= baselndex; i<=hilndex; i++)
arrayData[i] = initarray.arrayData[i];

template<c1ass index, class anytype>
Array<index, anytype>:: - ArrayO
I

delete [] arrayData;

Ilassign lower bound
Ilassign upper bound
Iiallocate space
Ilcheck the allocation

Ilcopy element by element

Iispace allocation

II overload operator=, enables assignment between objects
template<class index, class anytype>
Array<index,anytype> &Array<index,anytype>::

operator=(const Array<index,anytype> &source)

anytype *ptrl, *ptr2;

if«loIndex !=source.baselndex) II (hiIndex !=source.hiIndex»
{ Ilprevents self assignment

delete [] arrayData;
baselndex = source.baselndex;
hilndex = source.hilndex;
arrayData = new anytype[hilndex];
assert(arrayData != 0);

}
ptrl = arrayData;
ptr2 = source.arrayData;

for(int i=baselndex; i<=hilndex; i++)
{

*ptrl = *ptr2;
ptrl++;
ptr2++;

return *this;

72

Ilassign element value

lienable concatenation

II overload operator[], enables array object using []
template<class index, class anytype>
anytype &Array<index, anytype>: :operator[](index i)
{

assert(!outRange(i»;
return(arrayData[i]);

Ilindex out range! abort

II checking array object index range
template<class index, class anytype>
BOOLEAN Array<index, anytype>::outRange(index i)
{

if((i<baseIndex) II O>hilndex»
{

Iii beyond range

cerr«"Index "«i«" out of range"«endl;
return(TRUE);

}
else

return (FALSE);

II enables value assignment to object element
temp]ate<c1ass index, class anytype>
void Array<index, anytype>::assign(index i, canst anytype &val)
{

assert(!outRange(i»;
arrayData[i] = val;

II enables retrieving element value from array object
template<class index, class anytype>
anytype Array<index, anytype>::retrieve(index i)
{

assert(!outRange(i»;
return(arrayData[i]);

#endif

73

Ilif out of range abort

11===
II naive.h head fiJe
II This is the head file for straightforward algorithm of matrix multiplication, it simply
II perfonns the desired operation and return data like time, number of operations.
11==

#incJude<iostream.h>
#include<time.h>
#include<iomanip.h>
#include "matrix.h"
#ifndef NAIVE_H
#define NAlVE_H

template<class index,class anytypc>
class Naive

public:
NaiveO;
void Mult(Matrix<index, anytype>&,Matrix<index, anytype>&);

private:
intN;

};

l/initialization
template<class index,class anytype>
Nai ve<index,anytype>:: Nai veO
{

N=O;

tempJate<class index,class anytype>
void Naive<index, anytype>::Mult(Matrix<index, anytype>&A,

Matrix<index, anytype>&B)

long int Add=O, Mul=O, Sub=O;
clock_t start, end;

Matrix<int, int> C(A.colsize, B.rowsize);
start =clockO;
C =A * B;
end = clockO;
C.statistic(Add, Sub, MuJ);

7.+

#endif

cout«"Straightforward algorithm\n"«endl;
cout«"\tMatrix A\t\t\t"«A.rowsize«" x "«A.colsize«endl;
cout«"\tMatrix B\t\t\t"<<B.rowsize<<" x "<<B.col ize«endl;
cout«"\tMatrix C\t\t\t"«C.rowsize«" x "«C.colsize«endl;
cout«"\tNumber of additions\t\t"«Add«endl;
cout«"\tNumber of subtractions\t\t"«Sub«endl;
cout«"\tNumber of multiplications\t"<<Mul<<endl;
cout«"\tTotal time\t\t\t"«f1oat(end-start)/CLOCKS_PER_SEC

«~It second"«endl;
cout«endl;
addition = 0;
subtraction =0;
multiplication = 0;

75

11==================.===========--===================
II Winogrd.h file
II This is the head file for Winograd's algorithm for matrix multiplication, it provides
II implementation of the algorithm.
/1===

#include<iostream.h>
#include<iomanip.h>
#include<time.h>
#include "array.h"
#include "matrix.h"

#ifndef WINOGRAD_H
#define WINOGRAD_H

template<class index, class anytype>
class Winograd
{

public:
WinogradO;
void Win(Matrix<index, anytype>&, Matrix<index, anytype>&);

pri vate:
int wino;

};

template<class index. class anytype>
Winograd<index, an ytype>::WinogradO
{

int wino=O;

template<class index, class anytype> II implementing the algorithm
void Winograd<index, anytype>::

Win(Matrix<index, anytype> &A, Matrix<index, anytype> &B)

long int Add30unt=O;
long int Mul_count=O;
long int Sub_count=O;
clock_t start, end:

Matrix<int, int> C(A.rowsize, B.colsize);
Array<int, int> X(A.rowsize), Y(B.colsize);

start = clockO;

76

//initializing counters

/Idefine product
I/define two array

for(int i= 1; i<=A.rowsize; i++)
{

Ilcalculating X[il from each row

X[i] =0;
int k;
for(k = 1; k<=(Acolsize)/2; k++)

X[i] = X[i] + A(i, 2*k-l)*A(i,2*k);

Add_count = Add_count + (k-2); Ilrecording the statistic
Mul_count = Mul_count + (k-l);

for(int j=l: j<=B.colsize; j++) II calculating Y[j] from each col
{

YUI = O~

int k;
for(k=l; k<=(B.rowsize)l2; k++)

Y[j] = Y[j] + B(2*k-l, j)*B(2*k,j);

Add_count = Add30unt + (k-2); Ilrecording the statistic
MuLcount = Mul_count + (k-l);

for(inti= 1; i<=Arowsize; i++) Ilcalculating element of C[i,j]
{

forOnt j=l; j<=B.colsize; j++)
I

C(i,j) = 0;
int k;
for(k=l; k<=(Acolsize)l2; k++)

C(i,j) = C(i,j)+(A(i,2*k-l)+B(2*k,j»*(A(i ,2*k)+B(2*k-l ,j»;

C(i,j) = C(i,j) - X[i] - Y[j]; Ileven size

Add_count = Add_count + (3*(k-l)-1); II accumulating counters
Sub_count = Sub_count + 2;
Mul_count = Mul30unt + (k-l);

if(A.colsize%2 != 0)
{

Ilodd size

C(i,j) = C(i,j) + A(i,Acolsize)*B(B.rowsize,j);
Add_count = Add_count +1;
MuLcount = Mul_count + 1;

77

-

#endif

end = c1ockO;
cout«"Winograd's algorithm\n"«endl;
cout«"\tMatrix A\t\t\t"<<.A.rowsize<<" x "«A.colsize«endl;
cout«"\tMatrix B\t\t\t"<<B.rowsize<<" x n<<B.colsize<<endl;
cout«"\tMatrix C\t\t\t"«C.rowsize«" x "«C.colsize«endl;
cout«"\tNumber of additions\t\t"<<.Add_count<<endl;
cout«"\tNumber of subtractions\t\t"«Sub30unt«endl;
cout«n\tNumber of multiplications\t"<<Mul_count<<endl;
cout«n\tTotal time\t\t\t"«float(end-start)/CLOCKS_PER_SEC

«" secondn«endl;

78

//===========;================.=======================
/1 strassn.h head file
II This head file implements Strassen's algorithm, it also includes some functions
II necessary to perform the algorithm.
//==

#include<iostream.h>
#include<iomanip.h>
#include<time.h>
#include"matrix.h"

#ifndef STRASSN_H
#define STRASSN_H

int truncation;

template<class index, class anytype>
class Strassen
{

pubJic:
StrassenO;
void stras(Matrix<index, anytyp~>&,Matrix<index,anytype>&);
Matrix<index, anytype> strass(Matrix<index,anytype>&,

Matrix<index, anytype>&,int);

private:
int stra;

};

template<c1ass index, class anytype>
Strassen<index,anytype>::StrassenO
{

stra =0;

template<class index, class anytype> 1/ pass matrices A and B to strassen's algorithm
void Strassen<index, anytype>::stras(Matrix<index, anytype> &A,

Matrix<index,anytype> &8)

long int N_Add =0, N_Sub =0, N_Mul =0;
c1ock_t start, end;

Matrix<int, int> C(A.colsize, B.rowsize);
start =c1ockO;
C =strass(A,B, A.colsize);
end =clockO;

79

r

cout«"Original"«endJ;
C.statistic(N_Add, N_Sub, N_Mul);

cout«"Strassen's aJgorithm\n"«endl;
cout«"\tMatrix A\t\t\t"<<A.rowsize<<" x "«A.colsize«endl;
cout«"\tMatrix B\t\t\t"<<B.rowsize<<" x "<<B.colsize<<endl;
cout«"\tMatrix C\t\t\t"«C.rowsize«" x "«C.colsize«endl;
cout«"\tNumber of additions\t\t"<<N_Add<<endl;
cout«"\tNumber of suhtractions\t\t"«N_Sub«endl;
cout«"\tNumber of multipIications\t"<<N_Mul<<endl;
cout<<"\tTotaI time\t\t\t"<<float(end-start)/CLOCKS_PER_SEC

«~It seconds\n"«endl;
addition = 0;
subtraction = 0;
multiplication = 0;

tempIate<c1ass index, class anytype> II strassen's algorithm
Matrix<index,anytype> Strassen<index,anytype>: :strass(Matrix<index,anytype>&A,
Matrix<index,anytype>&B,int n)
{

if(n<=truncation)
{

Matrix<int,int> C(l,1);
return C = A*B;

}
else
{

Matrix<int, int> Al 1(n/2, n/2);
Matrix<int, int> A12(n/2, n/2);
Matrix<int, int> A21(n/2, n/2);
Matrix<int, int> A22(nl2, nl2);
Matrix<int, int> B11 (n/2, n/2);
Matrix<int, int> 8 12(n/2, n/2);
Matrix<int, int> B21(n/2, n/2);
Matrix<int, int> B22(n/2, n/2);

80

//defining block matrix

for(int i=l; i<=nl2; i++)
for(int j=l; j<=n/2; j++)
{

Ilfilling elements of 4 block matrice

All(i,j) = A(i,j);
B11 (i,j) = B(i,j);
AI2(i,j) =A(i,j + nl2);
B12(i,j) = B(i,j + n/2);
A21(i,j) = A(i + nl2,j);
B21(i,j) = B(i + n/2,j);
A22(i,j) = A(i + nl2,j + nl2);
B22(i,j) = B(i + nl2,j + n/2);

Matrix<int, int> Pl(nl2, nl2);
Matrix<int, int> P2(nl2, nl2);
Matrix<int, int> P3(nl2, n/2);
Matrix<int, int> P4(nl2, nl2);
Matrix<int, int> P5(nl2, n/2);
Matrix<int, int> P6(nl2, n/2);
Matrix<int, int> P7(n/2, nl2);

PI = strass(All+A22,B 11+B22,nl2);
P2 = strass(A21+A22,Bll,nl2);
P3 = strass(All,BI2-B22,nl2);
P4 = strass(A22,B21-Bll,n/2);
P5 = strass(All+A 12,B22,nl2);
P6 = strass(A21-All,Bll+BI2,nl2);
P7 = strass(A12-A22,B21+B22,nl2);

Matrix<inl, int> Cll(nl2, nl2);
Matrix<int, jnt> C12(nl2, nl2);
Matrix<int, int> C21(n/2, nl2);
Matrix<int, int> C22(nl2, nl2);

Cll =Pl +P4-PS+P7;
Cl2 =P3 + P5;
C21 = P2 + P4;
C22 = PI + P3 - P2 + P6;

Matrix<int, int> C(n,n); IIC is composes of 4 blocks

Rl

#endif

for(int i=l; i<=n/2; i++) //join blocks together
for(int j=l; j<=n/2; j++)
{

C(i,j) = Cll(i,j);
C(i,j+n/2) = C12(i,j);
C(i+n/2,j) = C21(i,j);
C(i+n/2,j+n/2) = C22(i,j);

return C;

82

I1===
II This is the drive
II This main defines objects of the straightforward, Winograd, and Stra sen classes, and
II then executes the three algorithms by the objects on different size of matrices.
11==

#include "rand.h"
#include "naive.h
#include "matrix.h"
#include "strass.h"
#include "winograd.h"

mainO
{

int size;
long int x;
RnumberR;
Naive<int, int> N;
Strassen<int, int> S;
Winograd<int, int> W;

size =1024;
Matrix<int, int> A(size,size), B(size, size);

R.SetSeed«(long)time(NULL»;

for(int i=l; i<=size; i++)
for(int j=l; j<=size; j++)
{

x = int(R.NextRandO* 10+1);
A(i,j) =x;

B= A:

cout«"\tPlease indicate truncation"«endl;
cin»truncation;

Iidefining objects

S.stras(A, B);
N.Mult(A, B);
W.Win(A, B);

return 0;

Ilusing Strassen's algorithm
Ilusing straightforward algorithm
Ilusing Winograd's algorithm

83

VITA

XING ZHANG

Candidate for the Degree of

Master of Science

Thesis: CHOOSING A BETTER ALGORITHM FOR MATRIX MULTIPLICATION

Major Field: Computer Science

Biographical:

Personal Data: Born in HaiNai Provicnce of the P. R. China, the son of ZaiKei
Zhang and PeiLei Qian.

Education: Received Bachelor of Science degree from South China Teacher's
University, Guangzhou and Master of Project Management degree form
Western Carolina University, Cullowhee, NC in July, 1985 and August, 1991,
respectively. Completed the requirements for the Master of Science degree
with a major in Computer Science at Oklahoma State University in July, 2000.

Experience: Employed by General Bureau of State Farms of Guangdong province as
a project analyst; a graduate research assistant by Western Carolina University;
a computer technician by Fortress Systems International, Inc.; a technical
support technician by IBM Corporation; a graduate teaching assistant by
Computer Science Department of Oklahoma State University respectively.

