
INTERNATIONALIZATION AND LOCALIZATION

FOR CHINESE SOFfWARE

By

HANGBOZHANG

Bachelor of Engineering

Hunan University

ChangSha, China

1991

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
In PaI1ial Fulfillment of
The Requirements for

The Degree of
MASTER OF SCIENCE

July 2000

INTERNATIONLIZATION AND LOCALIZATION

FOR CIDNESE SOFTWARE

Thesis Approved:

H· L
Thesis Adviser

Dean 0 he Graduate Coli e

II

ACKNOWLEDGEMENTS

I sincerely thank my thesis advisor, Professor Huizhu Lu, for her intelligent

supervision, constructive guidance, warm encouragement, and valuable time she has

given me toward the completion of my thesis. My sincere appreciation extends to

Professors Chandler and Nohpill Park for serving on my committee; their guidance,

encouragement, assistance, and friendship are invaluable.

I would like to give my special thanks to my wife, Xinyue Zhu, for her love,

encouragement, patience, and understanding throughout my study at Oklahoma State

University. My respectful thanks go to my parents Binwen Zhang and Shiying Peng for

their love and encouragement.

Finally, I would like to thank all the faculty of the Department of Computer

Science for their support during my two and half year study here.

1Il

TABLE OF CONTENTS

Chapter Page

I INTRODUCTION I

Moti vation 2

Objectives 2

Organization 3

II LITERATURE REVIEW 4

Internationalization and Localization 4

Encoding Technologies for Character Sets 10

AS(~Il 10

Double Byte Character Sets 10

Unicode 10

Visual C++ and Microsoft Foundation Classes (MFC) 12

The Generic Approach to Internationahzation 12

Planning an International Application 12

Customizing Features 13

Setting Up a Development Environment 14

Coding 16

iv

Testing 16

ill INTERNATIONALIZATION MODELS 17

Compile-Time Model 17

Run Time Model... 18

Examples... 19

Methods of Handling Resource Files 21

Advantages and Disadvantages of These Models 22

IV LOCAI..IZATION 24

The I..ocalization Process 24

Windows Resource Files 24

Compiling Resource Files 25

I..ocalizing Dialogs 26

Storing Strings 27

V APPLICATION DESIGN AND IMPLEMENTATION 28

Planning an International Application 28

Setting up a Development Environment 31

Coding Skills 36

Testing 38

Application Implementation 39

I..ocalization of Application 52

Java Application Design and Implementation 56

VI SUMMARY AND FUTURE WORK 61

Summary 61

Future Work 61

REFERENCE 63

APPENDIXES 65

APPENDIX A Check List for Internationalization 65

APPENDIX B Code for C++/MFC Application 67

APPENDIX C Code for Java Application 104

vi

Figure

LIST OF FIGURES

Page

--

1. Internationalization and Localization in the Development cycle 9

2. A Localized EXE 14

3. An Example of the CIC++ File Directory 15

4. A Java Application File Directory 15

5. The Localization Process 24

6. Typical Resource Elements 25

7. The About-Dialog 26

8. Various Components of an Appl ication 32

9. An EXE with Two Resource Files 34

10. An English DLL 35

11. A Chinese DLL 36

12. An English Application 40

13. A Chines Application 40

14. A Chinese Application on the English WinNT Operating System 4J

15. Basic Settings 42

16. A Chinese IME 43

17. The English Environment... 43

VII

18. The Chinese Environment 43

19. An Application Icon 45

20. A Document Icon 45

21. An Icon Containing Text 46

22. American Date and Time Formats 46

23. Chinese Date and Time Formats 47

24. English Message Box 1 49

25. English Message Box 2 49

26. Chinese Message Box] 49

27. Chinese Message Box 2 , 49

28. A Font Dialog for Printer and Screen Display 50

29. A Font Dialog for Printer and Screen Display in Chinese SO

30. An Address Dialog in English 51

31. An Address Dialog in Chinese 51

32. A String Table 52

33. A Splash Window 53

34. A Properties File for an English Project 57

35. A Localized Properties File 59

36. A Java Application GUl in English 60

37. A Java Application GUl in Chinese 62

viii

-

CHAPTER I

INTRODUCTION

The largest software markets in the world have been the United States, Europe,

and Japan. In recent years, China's economic expansion has created many software users

and opened a huge software market. Additionally, the Spanish-speaking population using

software products has also been increasing quickly. Software products are now expected

to be available in the native languages of its customers. On the surface, this may look like

a simple process, as some people would say, "It's easy, we just need to translate the

English version into another language". But in fact, the issue is much more complicated.

Every local market has its specific requirements, from both a cultural point of view and a

technical point of view.

1.1 Motivation

During the 1990's, China has gradually become a sizable software market, partly

because of the global information revolution. The Chinesy society has quite different

cultural traditions from the West. These traditions also differ among the Asian countries

such as Japan and Korea. This thesis deals with the concepts of internationalization (also

called globalization) and localization, as well as the associated technologies of encoding

character sets. It will discuss how programs can be designed and coded to minimize the

challenge of converting a software product from the English edition into, say, Chinese.

1.2 Objectives

The objectives of the thesis are to study the major approaches to software

internationalization and localization, to implement two applications in C++ and Java and

finally to show in detail how to internationalize software products in general, and how to

localize software products to Chinese in particular.

1.3 Organization of the Thesis

The thesis consists of six chapters, listed below:

• Chapter 1: Introduction

• Chapter 2: Literature Review

• Chapter 3: Internationalization Models

• Chapter 4: Localization

• Chapter 5: Application Design and Implementation

• Chapter 6: Summary and Future Work

2

Chapter II

LITERATURE REVIEW

2.1 Internationalization and Localization

Whenever a software program is written, it is usually localized to the culture and

language of the programmer, mainly because that is what the programmer is familiar

with. According to Dave Taylor [1], it is hard for software in a foreign language to

succeed in the international marketplace where it is sold~ applications and the underlying

operating system need to work in the language of the user, not the developer. Basically.

the users' need is the engine to run the business. This is the reason why we need to

globalize and localize software products.

• Internationalization (or Globalization)

GlobalizationlInternationalization is the set of code design and changes that are

made to ensure that a software product or a Web-site can be adapted to various local

languages and can be used hy customers in different countries. It's the proces of

developing a program (or Web-site) whose design features and code implementation

aren't based on a single language. The goal of internationalization is to give users a

consistent look and functionality among different language versions of a software

product. Users may expect the localized software to have the same basic features as the

native language version. To achieve this goal, it is necessary for developers to design

and code the program so that it can be smoothly converted from one version to another.

Obviously, a company will save money and time if their applications are designed

-

internationally from the beginning.

The following is a brief discussion of the major issues encountered by

developers when producing an internationalized software product.

• Character Set

A character set is, intuitively, just a collection of symbols which can be used to

build languages, which are then used by humans and computers. Before the

Oouble Byte Character Sets (OBCS) and Unicode (explained in section 2.2) were

introduced into English programs, the programs generally used the ASCII set,

which means that only 256 symbols can be used; they include the 26 upper and

lower case English letters, commonl y used punctuation marks. and certain other

symbols. Using the ASCII set alone is clearly not enough if the software product is

to be internationalized. For example, even the most basic collection of Chinese

characters is in the thousands. Nowadays, several OBCSs, each of which contains

several thousand symbols, are supported on all the Windows operating systems.

Additionally Unicode, which can potentially contain over sixty thousand

characters, is supported on the Windows NT operating system. It is now possible

to create any language versions of a software product with the appropriate choice

of one or several character sets.

• Sorting Methods

In a Latin language environment, we sort text strings according to the order of

the underlying alphabet. This clearly has to be done differently in other languages.

For example, in the Far East edition of Windows, several different sorting methods

are supported: kanji characters in Japanese are sorted by the order of the radical,

4

and Han characters can be sorted by the number of strokes used in characters.

• Bitmaps, Icons and Sounds

Using bitmaps and icons in a program to identify certain features is indeed a

creative activity. However, when converting a software product from one language

edition to another, it is generally a waste of time to recreate those same pictures.

Therefore, programmers need to consider the portability of bitmaps and icons when

designing them. For instance, we at least need to consider using colors and graphics

that will not violate the target market's culture. Fortunately, many programs can

take advantage of the common toolbar defined in Windows 95/98 and those

international symbols. Using portable symbols in the program is an important step

in producing global software. As for the use of sounds in programs, obviously the

less the better, since we need to translate them for each localized version of the

software.

• Menus and Dialogs

Menus and Dialogs are essential elements in any Windows-based application.

When text in Menus and Dialog boxes are translated from English to another

language, their layout length will often change. Programmers typically need to

allow more space for menu hars, toolbars, and dialog boxes which contain text

strings or are used as text edit boxes, just in case later translations of these text

strings expand in length.

• Currency Symbols and Number Separators

Different countries use different currencies, and each currency has its own

representative symbol. Similarly, each culture seems to have its own way of writing

5

long numbers and decimals. In the US, people write numbers in the form 34,567.89

and they immediately recognize the meaning of the comma and the period in the

expression, while other cultures may well have different ways of presenting the

same number. During programming, we need to avoid putting characters such as

currency symbols and decimal separators in the implementation files. Instead, the

resource files are better places to hold them.

• Date Format and Calendar

Again, different countries tend to use different date formats. For example, when

dealing with date related issues, a typical software package in the US should

interpret the expression 1/2/99 as January 2nd
, 1999, while an application in

England should understand it as February IS" 1999. This date expression will

probably produce an error message in a Chinese software package, because the date

format in China is year/month/day.

• Hard-coded Literals

In windows programming with C/C++ and Java, if a programmer puts a text

literal (such as a warning message) in one of the implementation files: *.c files, *.h

files, *.cpp files, and *.java files, the practice is called hard-coding, and the text

literal is said to be hard-coded. Since a commercial software product consists of

hundreds, if not thousands, of files, it will be extremely difficult to locate those text

strings for translation if the software is to be localized to a particular foreign

language edition. Normally, in a properly internationalized C/C++ Windows-based

application, there will be one or several files (called resource files) to collect

dialogs, menus, tool bars, bitmaps, icons, and text strings used in the program. For

6

Java applications, those features are stored in properties files for different locales.

When localizing a product, developers need only let translators access those

resource or properties files. Hard-coded text strings, if not discovered in the

translation process, will clearly produce undesired results during software run time,

when the users of the translated programs cannot understand the displayed strings.

Even if the translator is allowed to access source files, he or she may not be a

programmer and therefore will have trouble distinguish between a hard-coded string

(which needs translation) and a key word (which does not need translation). Thus

the common practice to avoid hard-coding is to give a unique identifier to each

string needed in the program, and then store them accordingly in the resource files.

The source files then only use those identifiers.

• Non-ill strings

As we mentioned earlier, a careful Programmer assigns a unique identifier (ill)

to each text string needed in the implementation files. There are also strings which

are just displayed on the panel as static labels. The IDs for such strings are given

automatically by the Visual c++ Resource Editor, like IDS_STATIC. This happens

in Windows API (Application Programming Interface), too. Programmers do not

pay much attention to assigning IDs in this situation. When writing global

programs, this may cause problems in the localization process. The author will

discuss the possible solutions in a later chapter.

• Political and Cultural References

To internationalize a software product, we need to identify not only the

language-dependent elements, but also the culture-dependent and politics-dependent

7

-

elements. It happens often that software developers impose their own values and ideals

upon the customers in foreign countries where applications and operating systems are

sold. One needs to be particularly cautious with politics, as in some countries, politics or

reference to the government is a very sensitive issue. Insensitivity in this area could

present serious obstacles to shipping the products.

• Localization

[n contrast to internationalization, localization is the process of adapting a

program for a specific locale. It includes translating the user interfaces, resizing the

dialog boxes, customizing certain features (if necessary), and testing the program to

ensure that it works well in the desired locale. The goal of this process is to better match

the product with the target culture and marketplace.

Nadine Kano [2] discusses seven increasing levels of localization, which are listed

below:

1 Translate nothing

2 Translate documentation and packaging only

3 Enable code,

4 Translate software menus and dialogs

5 Translate online help, tutorials and samples and README files

6 Add support for locale-specific hardware

7 Customize feature for locale

Obviously, the higher the level of the localization, the more the cost of the development,

both in time and money. For this reason, it is important that international software is

designed properly right from the beginning. When the programmers take

8

internationalization into account during the process of planning and developing,

localizations can then be done very effectively; the relationship is shown in Figure 2.1. In

particular, software internationalization and localization should not be the step after

designing, coding and testing, but should be one of the guiding principles throughout the

development cycle.

Internationalize

software products

Development ----

Design, code and test

Localize

Software Products

Figure 2.1 Internationalization and Localization in the Development Cycle

2.2 Encoding Character Sets

2.2.1 ASCII

ASCII is the acronym for American Standard Code for Infonnation Interchange.

In this standard, the numbers from 0 to 255 represent Latin letters, numbers, punctuation

marks and other characters. The ASCII code was designed to facilitate transmitting tex.t

between computers, or between a computer and a peripheral device. Since it only

contains 256 characters, it can not represent all the languages in the world.

2.2.2 DBCS

9

DBCS is the acronym for Double Byte Character Set. Double byte character sets

were created to handle some East Asian languages that use ideographic characters such as

Chinese, Japanese, and Korean. A character in a DBCS is usually represented by 2 bytes,

or 16 bits. With 16 bits we can represent 65,536 characters, although far fewer characters

are defined for the East Asian language. For instance, the Han character set today

includes about 18,000 characters. In the areas where DBCSs are used - such as China,

Japan and Korea, both single-byte and double-byte characters are used in the character

set. The single-byte characters used in these areas are almost identical to the ASCn

character set. For double-byte characters, the first byte is called the lead byte, the second

called the trail byte. Non-DBCS-enabled software may behave strangely: the cursor can

be put in the middle of a character, resulting in selecting half of a character or deleting

half of a character. Thus it is necessary to DBCS-enable a program that handles, say, Han

characters. Alternatively, we can have the program Unicode enabled, as discussed below.

2.2.3 Unicode

The Unicode standard was produced by an industry group called the Unicode

Consortium, and has been adopted as the standard character encoding specification by the

International Standard Organization (ISO). The Unicode is a character-encoding scheme

that uses 2 bytes for every character. It uses the numbers from 0 to 65335 to represent

characters or symbols from every language in the world. In fact, the value range has not

run out, there are still some empty slots for later character creations. Unicode is full y

supported by Windows NT. Unfortunately, operating systems earlier than Windows NT

do not fully support Unicode. This is the reason that the DBCS technology still exists as a

method of coding character sets. Some people do not like to use Unicode since a single

10

Latin character will occupy 16-bit of space instead 8 bits and they do not want to expand

the extra disk space for their applications. The author will thus implement a Windows

based application using DBCS programming techniques.

2.3 Microsoft Visual C++ Studio 6.0 TM and Microsoft Foundation Classes (MFC)

The author will use the Microsoft Visual Studio 6.0™ as the development

environment to implement some Windows-based applications, and use the Microsoft

Foundation Classes to help the implementation. The Microsoft Foundation Classes

(MFC) form an "application framework" for programming in Windows [3]. Written in

Microsoft Visual C++ Studio 6.0™, MFC provides much of the code necessary for

managing windows, menus, dialogs boxes, perlorming basic input/output, storing

collections of data objects, and so on. Generally speaking, the classes in MFC help create

a skeleton for an application; programmers can then design the user interface elements

visually through the resource editor. We can build the text implementation files and the

resource files together into executables or Dynamic Link Libraries (DLL); we can also

build them into separate DLLs. The Visual C++ compiler provides users with the ability

to handle MFC code, it has the "symbiotic" relationship with MFC [4]. It is a very useful

tool for developing Windows applications.

2.4 The Generic Approach to Designing a Global Software

Internationalizing software involves designing a user interface and a code base

that are generic enough to apply to most of the product's target language editions, they

are developed independently of the countries or languages of their users, and then

localized for multiple countries or regions. Of course, some customization changes may

be necessary during localization, but the fewer the changes, the better the initial design.

II

An important prerequisite to creating an internationalized code base for an application is

that all language editions share the same source files. Maintaining separate source files

for different language editions of the same product is error prone and unnecessary for

code that has been properly internationalized. The following steps are usually taken when

developing international software:

2.4.1 Planning an International Application

Programmers may need to have a written design specification before any code

work begins. In this step, programmers take the internationalization issues into

consideration. First, the product feature details need to be made clear. For instance, the

function calls in the Japanese edition to handle the ideographic characters may not be

supported by the US edition, so we need to specify the entry points for those functional

calls, allowing the program to run properly in different languages. Second, the languages

and locales to which the final product is targeted need to be known in advance, so that the

developing team can address the international issues related to different locale . [n

addition to those, Nadine Kano [2] suggests that the developing team communicate with

the marketing representatives and language specialists to make the specification parts

related to the culture concise. Planning ahead reduces the cost of developing an

international application rather than modifying it for international use later on.

2.4.2 Customizing Features

A well-designed international product minimizes the need for customizing features

for different language editions. Some features might be essential for all language editions,

yet they might need different implementation (or different algorithms). For example,

there is no spell-checker for the Chinese version of Microsoft Word™ since the spelling

12

rules are too complicated. To implement a spell-checker in the Chinese version may not

be worth the expense .. Obviously, in this situation, it is important to create code that is

flexible for programmers to add, remove or to customize functionality.

Designing an international user interface is also included in this step. Nadine

Kano [2] suggests two rules: first, use simple generic graphics, and second, avoid

crowding those graphics. The Windows Interface: An Application Design Rule [11]

provides lots of recommendations for designing consistent interfaces which also meet the

requirements for international markets. Tony Fernandes [5] gives readers some design

rules in his book. From the internationalization point of view, the GUI design consists of

two parts. The first part is designing the visual elements: bitmaps, icons, sounds, menus,

dialogs; The other part concerns the language and locale related factors, such as date

formats, currency formats, address formats, keyboard layouts, measurement systems,

number formats, time formats and paper size. In this step developers also need to

consider legal issues both in US exporting laws and laws in the foreign market.

2.4.3 Setting Up a Development Environment

An application consists of a user interface component and an application

component [8]. The user interface component contains graphics, text strings andettings

for various locales. The application component includes the source code which can be run

for all the language editions. The application component processes the user-interface

component. To make the application easier to maintain and localize, we normally

separate the application source code files from user interface components. Therefore, we

don't have to browse the source code to localize interface elements. This relationship is

shown in Figure 2.1

13

User Interface and
+

Language DLL\EXE

~.
"\,

\\
'.

\'\.

Application
Source Code
Implementation and
CoreEXE

= Localized

Product

Localized Messages

Figure 2.2: A Localized Product

The major program elements that need to be isolated from the resource files

include certain algorithms for different locales, as well as dialogs, menus, prompts,

sounds, status bars, and toolbars. Sometimes developers put message files in the language

DLlJEXE files, or link localized messages to the Core EXE and Language DLUEXE at

run time as shown in Figure 2.2. On the other hand, putting strings or character literals in

the main body of implementation source files (like .c, .cpp, .h file in CIC++ environment

or .java file in java environment) may cause the so-called hard-coding problems as

discussed previously. In order not to recompile the source code every time we build

different language editions, putting the localizable resource for windows-based

applications in windows resource files is the simplest way to set up an international

application [2]. When we build the application, we can build the resource file into

Dynamic Linked Libraries (DLLs), but these DLLs must be included in the same physical

memory space of the source code execution files. Dale Rogerson [9] illustrates another

14

general way of dealing with resource files, that is, we can use the so-called Component

Object Model (COM) technology to build the Core EXE and the resource files as a

Client-Server relationship. In a COM-based EXE server part, we can use the resource

across different processes. No matter which fonnat we use for resource files, either EXEs

or DLLs, we need only build the resource DLLs or register the EXEs when building the

whole application, and that makes localization easier. Issac Varon [10] presents ideas to

create resource DLLs for !vIFC applications. From the above discussion, we may have a

file structure shown in Figure 2.2. Developers will focus only on the native version

resource files (except certain algorithms), and translators complete the other language

specific resource files.

Product

---r-----r----I-----------,

\Tools \Header files \Library files \Implementation files \Resource files

\Native

Figure 2.3: An Example of C/C++ File Directory

Product

I
\CHN

I
\JPN

r-
\ENG \FRS ...

I I I
\Tools \\Library files \Implementation files

I
\properties files

\Native

Figure 2.4 Java Application File Structure

15

\CRN \JPN \ENG \FRS ...

Java applications have almost the same file structure as Windows programs do; Java

applications use properties files instead of resource files. See Figure 2.4.

2.4.4 Coding

In real world programming, we have to deal with many intricate issues related to

locale changes. Avoiding hard-coding localizable elements is the first issue that

developers need to keep in mind. When dealing with internationalization, ordinary

methods consist of eliminating compile dependencies, making buffer size large enough to

hold translated text, using UnicodelDBCS techniques, etc. Some tricks may be related to

specific projects. For example, developers may decide whether to use smart pointers or

wrapper classes when working with COM-based EXEs or DLLs. The coding step is

inevitably the most difficult part in global software programming.

2.4.5 Testing

Just like we should consider internationalization early in the product cycle, so

should we consider testing of localized applications. Kory Srock in his article [7]

discusses some general testing methods, such as extended character testing, DBCS testing

and Pan-European testing. Basically, the checklist consists of the interface part and the

functional part. The testing step always goes along with the developing cycle.

16

CHAPTER III

INTERNATIONALIZATION MODELS

Two approaches to internationalization are used in the industry today; the

compile-time internationalization model and the run-time internationalization model.

each used in different situations. For small-sized products, or products that are mainly

sold in English-speaking countries and areas, especially when the companies' main focus

is the market in those areas, compile-time internationalization may be appropriate. In this

case, less time and money will be spent on training the developers how to work on a

generic code base which can be used for different language versions. When products are

sold to non-English-speaking areas to achieve a high level of profit margin, then run-time

internationalization is probably the way to go, even when it means that higher costs will

be incurred in educating the programmers how to build an internationalized code ba e for

all the language versions; in the long run, companies still ave time and money. The

decision of choosing which model to use depends on the concerns about efficiency as

well as the release date for the major market.

3.1 Compile-Time Internationalization Model

Roughly speaking, the compile-time internationalization model goes like this: "If

you want it in Chinese, then write it that way". This is a reasonable model for developing

some software. Obviously, it is easy for programmers. Two examples are given in the

following.

17

-

-

3.1.1 Examples

void princhi(void}

1* say "hi" on the printer, in the appropriate language *1

FILE *printer;

If((printer=fopen(PRINT_DEVICE, "w"» == NULL) {

fprint(stderr, "could not open printer for printout\n");

exit(l); Ilproblem: when error, the prompting text is English.

#if LNAGUAGE=FRENCH

Ilcan add other choices like French etc.

fprint(printer, "baur");

#else

fprint(printer, "hi");

#endif

fclose(printer);

Another version isolates all the language and culturally sensitive elements into

different portions of code to improve modularity.

void princhi(void)

FILE * printer;

printer = open_fileO; Ilget FILE*

say_hi(printer);I/language choices

close_printer(printer);//close

Exit(D);

18

-

3.1.2 Advantages and disadvantages of this approach

The advantages of this approach are that it offers the programmer the ability to

have complete control of all aspects of the software, and there are no mysterious

invocations of routines that might or might not work correctly. However, when using this

approach for each locale, we need a different language version, and we need to modify

the source code for each version, which is error prone. Moreover, we need to recompile

the program and rebuild the executable file for each and every locale. All the

modifications result in a lot of wasted time and money, which will drastically delay the

product release for different locales.

3.2 Run Time Internationalization Model

This is the main approach for internationalization. The program source code is

separated from the locale-related resources, one executable file can be used in different

locales with different resource files, which can be DLLs or be contained in EXEs.

3.2.1 An Example

To compare with the Compile-Time Internationalization Model, we rewrite the

previous example as follows.

void princhi(void){

FILE* printer;

Choose_languageO;

Printer = open_printerO;

Say_hi(printer);

Close_printer(printer);

19

-

void say_hi(FILE* fd){

fprinf(fd, gecmessage_from_db(l»;

lIthe internationalization support code would be written like this:

void choose_language(void){

language = getenv("LANG");

open_language_db(language);

void get_message_from_db(int index.) {

rewind(db);

while(read_line(buffer, db) != EOF);

if(indexof(buffer) ==index)

return (char*) valueof(buffer»;

return (char*) NULL;}

Ilfor error message

FlLE* open_printer(void){

Static FILE* printer;

If(printer =fopen(PRINT_DEVICE, "w") = = NULL) {

fprintf(stderr, gecmessage_from_db(2»;

Ex.it(l);

Return (FILE*) printer);

Ildatabase for internationalization file

#Ianguage =English

1 hi

2 could not open printer for printout.

#language =Frenchs

1 Baura

2 No ...

20

The previous examples for the two internationalization models are just simple pseudo

code for printing the hello message and reporting errors. We can see that the Run-Time

Model approach is more complicated than the Compile-Time Model approach. This is

true for developing a single language product. If we need to release a multi-language

product, the run time model is more efficient.

3.2.2 Methods of Handling Resource File

Let us assume that we want to internationalize a product so that one executable

file runs worldwide. We then have to properly handle the resource files and the source

code to make the executable file interact with the appropriate resource files. Basically,

there are three methods we can use to achieve this goal.

3.2.2.1 The resource file is part of the executable file. In this set up, if any change is

made to the resource file, we have to recompile the whole project to produce a new

executable file. This is not good for localization, but we can put multiple language

translations in one resource file. For example, the resource file can contain English,

Chinese and Japanese resources. The program can dynamically select different resources

at runtime. For small-sized products, this is a good way to make the product work with all

different locales.

3.2.2.2 The resource file is separated from executable file and compiled as a separate

DLL with all languages in it. We put multiple language translations in one resource file

as in method 3.2.2.1. The executable file links with the DLL resource file at run time, and

it dynamically selects the appropriate locale resources according to different operating

systems. Compared with the first method, the size of the executable file is smaller and

changes in the resource file do not require the recompiling of source code.

21

-

3.2.2.3 The resource tile is separated from executable file and compiled as a separated

DLL for each different language. In this set up, each language has its own DLL. We load

the specific resource DLL at runtime according to different locale, or install only the

locale specific DLLs. Compared with the previous methods, this is the best way to

internationalize a product. Nadine Kano [1] recommends this method as a general method

for developing global software. In this method, developers have to handle different

locales manually, rather than let the executable file itself choose the appropriate resource.

3.2.3 Advantages and disadvantages of the runtime internationalization model

The advantages of this approach are that not only can new languages be added

without modification to the source code, but also the amount of disk space required

equals the space for a single executable plus the database files, which are typically quite

small. The best aspect about this solution is that programmers can be completely freed

from the complexity of having to internationalize their code, thus they can focus on the

development of the key algorithms for the product. In actuality, the database of

international support becomes split into lwo pieces; the "static cultural data" including

notational conventions, collation data, and transliteration data, and the "active program

specific data", which the programmer is responsible for creating and utilizing.

Compared with the compile time internationalization model, the advantages for run time

mode are as follows:

• With the addition of localization data, the same executable file may run worldwide.

• Textual elements, such as status messages and the GUI component labels, are not

hard-coded in the program. Instead, they are stored outside the source code and

22

-

..

retrieved dynamically.

• Modification for new languages does not require recompilation.

• Culturally-dependent data, such as dates and currenCIes, appear 10 fonnats that

conform to the end user's region and language.

• It can be localized quickJy.

23

CHAPTER IV

LOCALIZATION

4.1 The Localization Process

The process of localization or creating localized software usually involves

communications among the product team and translators. Figure 4.1 below shows the

basic interaction required for international product development.

Localization

Testing

Figure 4.1 the Localization Process

During the core phases, the Development team provides files to the Localization team,

which translates text, resizes dialog box.es, and hands files back for compilation, if

necessary. The localized ex.ecutable then goes to the Testing team, which reports

functionality problems to Development and reports user interface problems to

Localization. All three groups work together to resolve bugs, and the cycle continues.

4.2 Windows Resource Files

24

The Development team should place every element of the user interface that needs to be

localized in one or several Windows resource files; this includes pictures, strings,

messages, menus, dialog boxes, and version information. Figure 4.2 shows some resource

elements defined by Windows.

EI- Accelerator
.~ lOR_MAINFRAME

EJ· Dialog
IDD_ABOUTBOX

leon
lOR_MAINFRAME
IDR_TTTYPE

8··, Menu

lOR_MAINFRAME
IDR_TTTYPE

String Table
.... String Table

EJ . ,,... Toolbar
lOR_MAINFRAME

8· Version

•. 1hD VS_VERSIONJNFO

Figure 4.2 Typical Resource Elements

In addition to the elements shown in Hgure 4.2, a Windows product may contain other

resource elements such as bitmaps, fonts, message table, and user-defined resource file.

4.2.1 Compiling Resource Files

Virtual C++ 6™ is a Win32 SDK (software Development Kit), it is useful for creating

and editing resource files. There are three steps in compiling a resource file in a WIN32

SDK environment. First, the RC compiler turns the .RC file into a .RES file; second, the

.RES file is converted to an object file; finally, the object file is linked to the program

executable. If we have multiple languages that span more than one Windows code page,

then we usually need multiple .RC files. For example, we may want to expand our

English-language application to include Chinese and Japanese user interface translations.

25

-

The standard code page for Japanese is 938 and the standard code page for Chinese is

936. Because the RC compiler can handle only one code page at a time, we need a

separate RC file for each of these languages. The translators need to see the localized text

as it will appear in the final product, so they will edit the Chinese file on a system that

supports Chinese characters, the Japanese file on a system that supports Japanese. We can

use the corresponding RC file for building the specific language resource file. To create

multiple-language resource files, we may use some localization tool to speed the process

and make fewer errors. This kind of tool isolates localizable resources from the rest of the

.RC file format and displays only text that needs to be translated. Some localization tools

can plug into translation database or allow developers to provide comments for strings so

that translators know how to translate them.

4.2.2 Localizing Dialogs

The most time-consuming part of localizing dialog boxes is resizing them,

particularly for applications that will ship in numerous languages and that contain a large

number of dialog boxes. Developers can minimize the amount of resizing necessary by

creating your native-language dialog boxes with as much room to spare as developers

feel comfortable leaving. Extend text frames as far as possible to allow text to grow when

it is translated. For example, in Figure 4-3 below, the frame surrounding the version text

field in the About dialog box extends to the right until it reaches the OK button.

)(

Figure 4.3 The About-Dialog

26

-

4.2.3 Storing Strings

For those character strings that will be displayed in the application, we need to

avoid putting them in the implementation files, instead, placing them in the string table or

message table. String tables are good for short strings and for strings containing only one

replacement parameter; Message tables are more convenient for alert and error messages

that contain more than one replacement parameter. As message tables support up to 99

parameters.The FormatMessage API function will substitute variables according to each

place holder's numeric label and not according to its position in the string. Localization

members can freely change a string's word order and FormatMessage will still return

correct results. We can use FonnatMessage with string tables as well as with message

tables, but it is more efficient to use this function with message tables. FormatMessage

can retrieve message table strings directly, but it cannot access string tables. To format a

string from a string table, we would first have to retrieve it with the LoadString function

and then pass it in a buffer to FormatMessage. The following are two ex.amples for each

type.

l/sample.MC

Messageld=1 SymbolicName=IDS_SAMPLE
Language=English
Cannot open file %1

j jstring table
IDS_STRING1
IDS_STRING 2
IDS_STRING3

Open
Find
SAMPLE

27

-

CHAPTER V

APPLICATION DESIGN AND IMPLEMENTAnON

Many US companies have been very successful in exporting their products to

Europe and some Asian regions (notably Japan, Taiwan, and Singapore). Other

companies have been trying to improve their businesses in Europe and Asia, and are

doing a lot of research in this regard [1][5]. The overseas success of software companies

depends very much on their internationalization and localization efforts. For historical as

well as economic reasons, most software internationalization and localization efforts so

far have been focused on the European countries and Japan [2][5][6]. In particular, very

little attention has been given to the characteristics of Chinese software localization. As

China experiences rapid economic growth, there is no doubt that demand in software

products localized in Chinese will increase dramatically.

In this thesis, the author designs and implements an editor using C++ with MFC.

The author also implements a relatively simple editor using Java with JFC Swing.

Through designing and implementing the Windows applications, the author will

demonstrate how to internationalize software in general and how to localize software

applications with C++ and Java in Chinese in particular. We first discuss the major steps

in designing and implementing the application using C++. The Java internationalization

approach will be discussed separately.

5.1 Planning an International Application

28

-

To demonstrate the internationalization and localization ideas, we consider the

following major Windows program elements that require localization.

Certain algorithms Messages

Constants Prompts

Dialogs Sounds

Macro Language Status Bars

Menus Toolbars

In the mean time, we also need to consider certain locale-dependent features such as

Date format

Currency format

Calendar formats

Paper Size

Time format

Measurement units

Screen font and printer font

Address format

The specifications for this application are presented as follows:

The application can be run under a Chinese version windows operating system, it

can be also run under an English version of the operating system without

recompiling the source code. The application will use localized common dialogs.

2 The application will provide help files both in English and in Chinese.

3 In general, the application uses bitmaps which are free of letters, and avoids

punctuation marks that may be changed in the Chinese environment. More

specifically, text is not included in bitmaps or icons unless the text does not need

to be translated. Be cautious with representations of animals, religious and

mythological symbols, national emblems, colors, people (like racial, cultural or

29

-

gender), hand gestures, and body language, which might be misinterpreted or

might offend users in China. Keep the use of sounds to a minimum, since there

are many local accents in China, and some areas may prefer their own accents to

Mandarin, the official spoken language for the country.

4 Design menu bars, status bars, toolbars, title bars, and dialog boxes to allow text

size to increase. The Chinese characters are larger than Latin characters in the

same font type, so the translation is likely to warrant more text space. Some

shortcuts will be created using the function keys (F3, F4 etc) or combinations of

Ctrl and All with Latin characters. For example, use ctrl with character s as a

shortcut for ~ave, use crrl with character a as a shortcut for Save As.

5 The date and time fonnats in the application should be automatically selected

according to what operating system the application is running on.

6 Different address formats will be used in different versions.

7 There are several font types popular in China, such as standard type, Songti, Heiti

and so on. The application should get and set the screen font type and font size. [t

should allow users to set the different printer font type and size as well.

5.2 Setting up a Development Environment for the Run-time Internationalization Model

Two operating systems are used during the implementation: Windows NT 4.0

(simplified Chinese version) and Windows NT 4.0 (English version). The author will also

use Visual C++ 6.0 as the Integrated Development Environment.

The author uses the MFC AppWizard (EXE file) to build the basic application

executable file. The author also uses the MFC AppWizard (DLL file) to build the basic

30

DLL file that is to contain the resource file separated from the MFC executable. The

whole application architecture is shown in figure 5.1. A localized executable file

consists of compiled source code plus a localized user interface. Customized language

code can be contained in a DLL. The basic features which the author can get from VC++

AppWizard (for executable) include the Single Document Interface (SDI) framework,

with CEditView as the base class in the document-view architecture, and a help file. For

the DLL the author will use MFC extension DLL (use shared DLL); this option is

chosen just in case some MFC built-in classes are needed as base classes to build the

DLL application.

31

-

Core Source CoreEXE

+

Language DLL

(Optional)

I

..

Localized Messages Linked into EXE or DLL

Figure 5.1 Various Components of an application

5.2.1 Handling the Resource File

Three ways to handle resource files were discussed in Chapter 4. We are going to use

methods 1 and 3 respectively. First, the resource file will become part of the executable

file.

For this method, the following steps are taken [10]:

• Create a default MFC AppWizard application (called "Project" in this thesis), and

specify "U.S English" for the resource language, Using MFC library as a shared DLL.

• Insert into Project a default MFC AppWizard application as an independent project

(called ResourceDll in the thesis), and select MFC extension DLL for the type of

DLL.

32

-

• Remove and delete the RC file, the Resource.h file, ResourceDIl.rc2 file and res

directory from the ResourceDll project.

• Add CPROJECT.RC file to the ResourceDll project.

• For each additional language, Project has localized resources. Create both the release

and debug configuration, copy the settings from Win32 debug and Win32 release (in

the thesis, Chinese Debug and Chinese Release configurations are built). For both

Chinese Release and Debug configuration, we need to set the preprocessor definition

as AFX_RESOURCE_DLL and AFX_TARG_CHS. Set the output name for Win32

Debug, Win32 Release, Chinese Release and Chinese Debug to be ResourceDll.dll,

ResourceDlld.dll, ResourceDllchs.dll and ResourceDlIchsd.dll respectively.

• For aU the configurations of the ResourceDll application, we need to add the path for

all the Project application in the "additional include directory field".

• For all the configurations of the Project application, we also need to set the

preprocessor definitions field, add AF)CRESOURCE_DLL; this setting will remove

all of the resources from Project.exe

• In the ResourceDll workspace in the Visual C++ IDE, we need to copy all the

resources including menus, tool bars, dialogs, string tables into another language

version, and set the language type for another version to ClllNESE (PRC).

• Work on the English resources under English Windows NT 4.0, work on the Chinese

resources under Chinese Windows NT 4.0. After finishing all the work, compile and

build the application in either operating system; the Project.exe file can be run under

different operating systems and it chooses the appropriate language version resource

33

-

file dynamically. The result is that the ex.ecutable file contains two resource file for

two different locales. It will choose appropriate resource under different operating

systems.

Using MS Visual C++ 6.0 IDE to open the ex.ecutable file as resource, we can see

what is contained in the EXE; see Figure 5.2

EJ·

Proiect.eKe
Accelerator
Dialog
Icon

128
128 [Chinese (P. R.C.ll
129
129 [Chinese (P.R.C.}1

Menu
128
128 Chlr1",:.e IF' Fi C

- 135
.... 135 [Chinese (P.R.L)]

rr" String Table
: ~ String Table

l L~ String Table [Chinese {P.R.C.ll
~.. Toolbar

1.... 128
..... 128 [Chinese (PR.LIl

138
.... 138 [Chinese (P R.ell

I±J.. Version

Figure 5.2 An EXE with Two Resource Files.

Next, the resource file is separated from executable and compiled as a separated DLL for

each language version. This is the Method 3 mentioned in Chapter 3; the following steps

need to be taken to build separated DLLs:

• Create the new project (called Project in this thesis) using MFC AppWizard (exe).

34

- --

• Create another new project (called ResourceDll in the thesis) using MFC AppWizard

(dB), the DLL project is not in the same workspace as that in the method 1.

• Delete Resource.h, ResourceDII.rc and the res directory from the ResourceDII project.

• Copy Project.rc (change the name to ResourceDll.rc) into ResourceDII project, and

copy Resource.h and res directory into ResourceDll project as well.

• Delete ResourceDIl.rc2, Project.rc and the res directory from the "Project" project.

• Make a copy of ResourceDII project and translate the elements to Chinese.

• Build two DLLs.

The result is that each DLL consists of one resource file for each language, the executable

file can only run properly with the correct DLL. From Figure 5.3, Figure 5.4, we can see

that each DLL contains only one language version resource.

x El- F: e::.ourceD II. dl!

s·-

13· .

e-·-.

Accelerator
Dialog
Icon

128
129

Menu
128
135

String Table
String Table

Toolbar
~ 128

Figure 5.3 An English DLL

~-- - • 138
l±J .. -6 Version

35

-

-

Accelerator
Dialog
Icon

128 [Chinese (P.R.C)]
..... 129 [Chinese (P. R.C)]

EJ· Menu
128 [Chinese (P.R.C)]
135 [Chinese (P.R.Cll

S'" String Table
L...§i!S String Table [Chinese (P.R.C)]

S":' Toolbar
• 128 [Chinese (P.R.C.)]

L. ~ 138 [Chinese (P.R.C)]
!±J. Version

Figure 5.4 An Chinese DLL

5.3 Coding Skills

As mentioned early in Chapter II, developers have to deal with a lot of intricate

issues related to locale change in real world programming. The following

considerations are what the author always keeps in mind when coding international

software.

1 Avoid hard-coding localizable elements.

Hard-coded strings, characters, constants, screen positions, filenames, and file

paths are difficult to track and localize. From the beginning of designing a global

36

-

application, always remember that all the elements should be suitable for global

use. For instance, if we write a print function like:

pDC->TextOut(l, 2, "We are implementing global software");

We will be unable to display it in Chinese under Chinese operating system without

changing the source code, since the program cannot select the appropriate

characters to display.

2. Make buffers large enough to hold translated text.

In the case of characters we always use the largest buffer size to avoid insufficient

space for translated text. In the English version of the product, we nonnally use

the following code:

char szOk[3];

GetCHSName(szOk);

This will cause a problem when OK is translated into two Chinese character,

which requires four bytes. A better way for global software writing is to use code

like the following:

char szOk[MAXSIZE]; IIMAXSIZE is 4096 in win 32 programming

GetCHSName(szOk);

3. Do not limit character parsing to Latin Script.

It is not advisable to parse the character string, and assume the characters are

Latin script; we can use the Win32 function IsCharAlpha() to find out.

4. Do not assume that characters are always 8-bit.

If we write code that is based on 8-bit characters, the code certainly will not work with

17

-

double byte character sets or Unicode. For instance, the following code will not work in a

generic code base.

int len =strlen(szString);

pBuffer = (char*)malloc(len);

If we want to make it work with different character sets, we might use code like:

int len =strlen(szString);

pBuffer =(TCHAR*)malloc(len*sizeof(TCHAR»;

Keeping these items in mind will make the localization process a little easier.

Besides, the possible mistakes mentioned above are easy to avoid as long as one is

willing to pay some attention to internationalization issues while coding.

5.4 Testing

Testing is a very important step in the cycle of developing a software product; this is

especially so for products to be released to different locales. Not only the functionality of

the application should be tested carefully, the issues related to localization (such as the

u')cr interface) are also very important. From Appendix A we see how testing a global

software product is different from testing a normal English-version product. Appendix A

is the checklist for internationalization suggested by Nadine Kano [1].

5.5 Application Implementation

Planning ahead for internationalization always saves time for localization later on.

Again, we treat the two models for internationalization separately.

38

-

I. Compiler-time Internationalization

A Chinese version application is implemented under the Simplified Chinese

Windows NT 4.0 operating system; an English version application is implemented under

the English version Windows NT 4.0 operating system. One application may not be able

to run correctly under another operating system. The English language version

application runs well under both operating system, but of course it does not display

Chinese characters in the Chinese WinNT4.0, see Figure 5.5. The Chinese language

version application runs well under the Chinese WinNT4.0, but it does not display

English characters on the English WinNT4.0. Figure 5.6 shows the correct Chinese

version application running under the Chinese WinNT 4.0 and Figure 5.7 shows it

running under the English WinNT4.0.

39

-

•
For Help, pr_ F1

Figure 5.5 An English Application

Figure 5.6 An Chinese Application

40

-

Figure 5.7 A Chinese Application on English WinNT Operating System

II. Run-time Internationalization

Using this model, the author implements an application which can be run under

different operating systems. The application displays English characters under English

WinNT as shown in Figure 5.5, and it dispJays Chinese characters under the Chinese

WinNT as shown in Figure 5.6. The author also discusses some program details in the

following sections.

The DBCS version implementation involves the following issues:

41

-

• Setting the basic environment: A single document application, a docking

toolbar, an initial status bar, printing and print preview support, a shared DLL

to reduce the size of the executable file, CEditView as the base class for view.

Figure 5.8 summarizes the setup information.

Figure 5.8 Basic Settings

• IME support. 1MB is the acronym for Input Method Editor. Different

languages are supported by different IMEs, and there are 1MB's that are multi

language. In this implementation, the author uses the IME that comes with the

Simplified Chinese version of Windows NT4.0. Figure 5.9 shows what the

IME looks like.

42

-

Figure 5.9 Chinese Input Method Editor (IME)

• Working on Menus and toolbars. Menus and toolbars in the English edition

differ from their counter-parts in the Chinese edition. The work here will

include creating an option item to show the problem caused by inappropriately

coding the program.

-

Figure 5.10 The English environment Figure 5.11 The Chinese environment

Two "Count Characters" items appear in the menu entry Insert. The first

"Count Character" refers to the main part of the implementation:

CString str;

str.LoadString(IDS_COUNT_CHAR);

int nlen =GetBufferLengthO;

TCHAR buf[64];

wsprintf(buf, str, nlen);

AfxMessageBox((LPCTSTR)(but);

43

-

The problem in this implementation is that it does not work with double byte

character sets since it assumes the character string is Latin. Thus we implemented

a second "count Character" menu item:

void CProjectView: :OnInsertCharcountO
{

CString str;
str.LoadString(IDS_COUNT_CHAR);
CEdit &edit =GetEditCtrlO;
int lines =edit.GetLineCountO;
TCHAR *charcnt;
charcnt =(TCHAR*) malloc(lOO*sizeof(TCHAR»;
int count =0;
for(int i=O; i<lines; i+-t)
{

edit.GetLine(i, charcnt, 100);
if(vfDBCS) tlget this from constructor
{

for(count; *charcnt; charcnt =MyCharNext(charcnt))
{

if(IsDBCSLeadByte(*charcnt»
charcnt+-t;

++count~

}
else
(
for(count; (*charcnt); charcnt++)

++count;
}

}
TCHAR buf[64];
wsprintf(buf, str, count);
AfxMessageBox((LPCTSTR)(buf);

In this implementation the author considers two situations. One important thing we need

to pay attention to is the function MyCharNext(char* pszStr). The implementation details

are shown below:

44

-

char* CProjectView::MyCharNext(char* pszStr)
{

BYTE bRange =0;
while«bRange < 12) && (vbLBRange[bRange] != NULL))
{

if«*pszStr >= vbLBRange[bRange]) &&
(*pszStr <= vbLBRange[bRange + 1]))
return (pszStr + 2); Iiskip two bytes

bRange +=2;
}
return (pszStr + 1);

}

In this implementation, the author checks to see whether *pszStr is a lead byte, the

constant 12 allows up to 6 pairs of lead-byte range values. The second "Count Character"

sub menu item works well for both MBCS and SBCS.

• Working on bitmaps and icons: Use the resource editor to create different bitmaps

and icons. Most of the icons created by the AppWizzard are good enough for our

application.

••••••.........••••••••••••••••••••••••••••

•••• •.. ...•••• •••••••••••• •••••..

..:.......................•...............
••••••.....................................

Figure 5.10 An Application icon Figure 5.11 A Document icon

Some icons, as shown Figure 5.10, Figure 5.11 and Figure 5.12 should not be used in the

implementation of an international software product, since the text on the icon is hard to

45

-

product, since the text on the icon is hard to translate during localization.

Figure 5.12 An Icon containing text

• Creating List Boxes for Date and Time String. Two list boxes will be created to

demonstrate different formats in date and time.

f)ate Formats:
02-May-00
03:33:07
03:33:07 AM
05/02/00
05/02/2000
3:33:07
3:33:07 AM
5/2/00
5/2/2000
May 02~ 2000
Tuesday~ 02 May ~ 2000

r············CiK···········i
, ,

Cancel

Figure 5.13 American Date and Time Formats

46

-

00-5-2
11:46:39
2000 05 02
2000-05-02
2000-5-2
2000~5~2B
....t.~ 11:46:39
Ji§.M= 2000 05 02
Ji§.M= 2000~5 J3 2 B

Figure 5.14 Chinese Date and Time Fonnats

Date and time formats are specific to a language and its local dialects. During the

implementation, the author uses·one of the most useful sets of Win32 National Language

Support (NLS) API - GetDateFormat, GetTimeFormat, EnumDateFormat, and

EnumTimeFonnats. The latter two functions, as their names suggest, enumerate the date

and time picture string that the system carries for a particular locale. With the following

implementation we get the two list boxes in the Figure 5.13 and Figure 5.14.

Here is the core part for adding list elements (date and time strings):

m_pListBox = &m_Iistbox; /1 set static member
GetLocalTime(&m_time);
m_id =GetUserDefaultLCIDO;

EnumDateFormats(DateFmtEnumProc,ID_id, DATE_SHORTDATE);
EnumDateFormats(DateFmtEnumProc, ID_id, DATE_LONGDATE);
EnumTimeFormats(TimeFmtEnurnProc, ID_id, 0);

rn_pListBox = NULL;
m_listbox.SetCurSel (0);

47

-

Helper functions DateFmtEnumProc and TimeFmtEnurnProc are also listed below:

BOOL CALLBACK CDateTimeDlg::DateFmtEnurnProc(LPTSTR IpszFormatString)
{ ASSERT(m_pListBox != NULL);

TCHAR bufl256];
VERIFY(GetDateFormat(m_id, 0, &m_time, IpszFormatString, buf, 256»;
if (m_pListBox->FindStringExact(-l,but) == CB_ERR)

m_pListBox->AddString(but);
return TRUE; }

BOOL CALLBACK CDateTimeDlg::TimeFmtEnurnProc(LPTSTR IpszFonnatString)
{ ASSERT(m~pListBox != NULL);

TCHAR bufl256];
VERIFY(GetTimeFormat(m_id, 0, &m_time, IpszFormatString, buf, 256»;
if (m_pListBox->FindStringExact(-l,buf) == CB_ERR)

m_pListBox->AddString(buf);
return TRUE;}

• Message Boxes and Message Files: Message boxes are very useful to give users

information about the current status of using the application. The author created some

message boxes, and all the messages strings and the their translation will be put in a

DLL and be loaded dynamically in run time. An example of such a string is "the

character number is n", where n is the actual number. We need to store the string "the

character number is O/Od" in the STRING Table of the resource file. The string is

loaded during run time. The corresponding translated Chinese string is stored in the

Chinese resource file. Some examples of message boxes are shown in Figures 5.15

5.16,5.17 and 5.18.

48

-

Figure 5.15 English Message Box 1

Figure 5.17 English Message Box 2

Figure 5.16 Chinese Message Box 1

Figure 5.18 Chinese Message Box 2

• Working on screen fonts and set pri.nter fonts. For different locales the operating

system supports different fonts for screen display and printer, because these fonts are

locale dependent. Using the screen-fonts dialog and printer-fonts dialog, we can take

advantage of some Windows built-in controls which have been localized well, see

figure 5.19 and Figure 5.20. After we select a font, the editor will use the appropriate

font to display characters.

49

-

Figure 5.19 A Font Dialog for Printer and Screen Display

Figure 5.20 A Font Dialog for Printer and Screen Display in Chinese

50

~..,.
It

--

• Set address dialog to get address information and display appropriate address format

when editing text.

Figure 5.21 An Address Dialog in English

Figure 5.22 Address dialog in Chinese

• Creating the Application Data file: the data file stores all the characters in the editor.

51

.,.~

,
.,.

~.j-.
,
'1

..;

• Construct all the strings in the string table of the program as shown in Figure

5.23.

·11- ".",1' . ' , ' , . ""
-,'., ..

ID F;J'1.6II·JFF:.uJ,1E 1':::; F'1:'!",,:I'.t·,' rF'r,::",,: t,Fr,)",: File I PIII'.n PII".nF'rolecl [',xllr"etl"t,FI(iI"': [1(<('II"e,,1
IDS_PROJECT_TITLE
IDS_COUNT_CHAR
IDS_STATE1
IDS_STATE2
IDS_STATE3
IDS_STATE4
IDS_STATE5
IDS_STATE6
IDS_PROVINCE1
IDS_PROVINCE2
IDS_PROVINCE3
IDS_PROVINCE4
IDS_PROVINCE5
IDS_PROVINCE6
IDS_AMERICA
IDS_CHINA
IDS_JAPAN
IDS_KOREA
IDS_CANADA
lDS_NO_ADDRESS
IDSJNVALID_LINE
IDS_BIG_UNENUM

129 H~ Zhang Thesis Project
130 The Number of Olaraclet is %d
131 OK
132 IX
133 KS
134 IL
135 NY
136 CA
137 HUNAH
138 HUBEI
139 GUANGDONG
140 GUANGXI
141 SICHUAN
142 YUNAN
143 USA
144 INA
145 JAPAN
146 KOREA
147 CANADA
148 No address has been enteled!
149 Li1e nurroe, is i1Va~d

150 line number %d is cU of range

..
',':;.':
".i~",
~1.. " .

Figure 5.23 A String Table

• Creating DLL files for the Application. Dynamic Link Library (DLL) files need to be

created for the run-time executable file. Using DLLs improves program efficiency as

well.

• Documentation in Chinese: The accompanying help file written in simplified Chinese

will be included in the project.

• Other Features: Add some features which makes the editor easy to use. In the

implementation we have included the following Dialog classes: CGoLineDlg,

CsetTabStops, CmySplashWnd. The last dialog as shown in Figure 5.24 is used to

show the project infonnation at the beginning of the project. This window also needs

52

"
t
0,

-

to be localized.

Figure 5.24 Splash Window

• Testing the Application: We folJow general testing rules [7] and the check list in

Appendix A.

5.6 Localization of Application

For compile time internationalization model, we do not have to deal with localization,

since the localization is finished while the internationalization is done. For runtime

internationalization, no matter what methods we have used to handle resource file, we do

not have to touch the source code at all. What we need to do is to localize the Windows

features contained in the resource file. As the author planned ahead before writing a

single line of code, the source code for the application has been internationalized. An

internationalized application is very easy to localize. The following procedures have been

taken to localize the program.

53

1 Compiling the resource file. We use the build operation in Visual C++ 6.0 to

compile the .RC file into a .res file, then use CVTRES to convert the .res file into

an object file, and then link the object file to the program using LINK32. Since

the resource compiler can only handle one code page at a time, we have to

compile the resource files under different operating systems. The code page for

the English operating system is 1252; for Chinese it is 936.

2 Localizing the resource file. In the localization industry there are many tools to

help translation. Those tools isolate localizable resources from the rest of the .RC

file fonnat and display only the text that needs to be translated. In our application

here, the author manually translated all the text in the .RC file.

3 Localizing Dialogs. The most time-consuming part of localizing dialog boxes is

resizing them. For one or two locales, as is the situation here, this is not difficult.

If a product will be released to a lot of locales, and if the application uses a large

number of dialog boxes, resizing these dialogs could be a very tedious task. To

ease the pain here, developers usually follow the rule that the English version text

fields in a dialog box should employ as much room as they feel comfortable

leaving. Figure 5.21 and figure 5.22 show the difference between the sizes of the

same text field in Chinese and English.

4 Check the string table. We need to check the string translation. We also need to

check to see if the messages have been correctly fonnatted.

5 We pack the executable file and all the DLLs together. This executable can then

be run under different operating systems.

54

....

5.7 Java Internationalization and Localization

The basic Java internationalization issues are very much similar to the ones in

c++. But Java has its special way of handling these issues. Listed below are some

differences in internationalization issues between c++ and the current version of Java,

Java 2.

1 Java supports the Unicode encoding technique, which makes life for international

programmers much easier, since all the characters are represented using two

bytes. When Single Byte Character Sets or Multiple Byte Character Sets are used,

the Java Virtual Machine will handle the conversion between Unicode and SBCS

(or MBCS).

2 A Java application also uses something like a resource file, which includes user

interface features and locale specific elements. Visual C++ can save these

elements visually, but Java saves all these features in a plain text file called the

properties file.

3 With the pure OOP characteristics, Java also has two special classes to handle the

properties file. These classes are called the PropertiesResourceBundle and the

ListResourceBundle. Both classes are inherited from the base abstract class

ResourceBundle. In C++ there is no class of this type to handle the resources.

4 Clearly there are other differences created by programming details related to the

two different programming languages.

4.7 Java Application Design and Implementation

Our Java application in the thesis is a simple text editor. Basically, it will show us how to

55

' ..

-

internationalize Java applications. The following are the implementation details.

1 The base class for the Jthes application class is Jpanel. Basic Windows elements

such as JTextComponet, HashTable, JMenuBar, Toolbar, Jcomponent (for status)

are set in this class.

class Jthes extends JPanel {

private static ResourceBundle resources;
private JTextComponent editor;

private Hashtable commands;
private Hashtable menultems;
private JMenuBar menubar;
private JToolBar toolbar;
private JComponent status;

II

2 Create the English properties file which can be used for any language as shown in

Figure 5.25. A properties file stores information about the characteristics of a

program or environment. A properties file is in plain-text format. For this

application, locale-specific data must be tailored according to the conventions of

the end user's language and region.

56

.~

Ifh
IP Resource properties for Jthes

'I Title=Internationalization Project
UiewportBackingStore=false

I # lIIenubar definition
i menullar=file edit,

I II file Menu definition
!.file=new open save - exit

I
,filelabel=File

openlabel=Open
, newlabel=New
sauelabel=Saue
exitlabel=Exit

I edit Menu definition
. edit=cut copy paste - undo redo
editlabel=Edit

I cutlabel=Cut
cutAction=cut-to-clipboard
copyLabel=Copy
copyRction=copy-to-clipboard
pasteLabel=Paste
pasteRction=paste-frolll-cliplloard
undoLabel=Undo
undoRction=Undo

I redoLabel=Redo
i redoAction=Redo

Figure 5.25 A Properties file for an English Project

3 Load the resource file into the program according to locale, and implement the

event handler for all the menu items.

57

,
3..
~,

,..

static {
try {
if(Locale.getDefaultO·toStringO.equals("en_US"»

resources =ResourceBundle.getBundle("resources.Jthes" ,
Locale.getDefaultO);

else if(Locale.getDefaultO.toStringO.equals("zh_eN"»
resources = ResourceBundle.getBundle("resource.Jthes_zh_CN",

Locale.getDefau1t(»;
} catch (MissingResourceException rnre) {

System.err.println("resources/Jthes.properties not found");
System.exit(l);

4 Translate all localizable text into Chinese. Use the Java text converter function,

native2ascii, to convert the Chinese properties file into Unicode fonnat. The

resulting properties file is named Jthes_zh_CN.properties, as shown in Figure

5.26.

5 Test the project. Figure 5.27 and Figure 5.28 present CUl in English and Chinese,

respectively.

S8

IJthes_zh_CH.properties file
Title=\u56fd\u9645\u5316\u8bba\u6587\u7aOb\u5e8f
Elelll.entTreeFrallleTitle=Elelllents
UiewportBackingStore=false
I llIenubar definition
llIenubar=file edit about
file Menu definition
file=new open saue - exit
fileLabel=\u6587\u4ef6
openLabel=\u6253\u5fOO

, newLabel=\u65b 0\u5efal
saueLabel=\u4fdd\u5b58

I •
i eX1tLabel=\u9000\u51fa

• edit Menu definition
edit=cut copy paste - undo redo
editLabel=\u7f16\u8f91
cutLabel=\u5207\u9664
cutAction=\u5207\u9664\u5230\u673a\u5668

i copyLabel=\u590d\u5236
! copyAction=\u590d\u5236\U5230\u673a\u5668
I
I pasteLabel=\u7c98\u8d34
I pasteAction=\u4ece\u673a\u5668\u7c98\u8d34

undoLabel=\u6062\u590d
, undoAction=\u6062\u590d
redolabel=\u91cd\u505a
redoAction=\u91cd\u505a
• about Menu definition
about=uersion

, aboutLabel=\u5173\u4e8e
, uersionLabel=\u7248\u672c

, .:, .
~ __._ •.-..-..:........~ .. '•• "",-.,_.~~~_. ·~:"-·":""""---:-Jh ..._•.•.

Figure 5.26 A Localized Properties File

59

Figure 5.27 Java Application GUI in English

60

Figure 5.28 Java Application GUI in Chinese

61

CHAPTER VI

SUMMARY AND FUTURE WORK

6.1 Summary

The author has discussed the issues of internationalization and localization of

software for the Chinese market. The study has successfully designed and

implemented two Windows applications using C++ and Java. The executable files

can be run under different operating systems dynamically loading the appropriate

Dynamical Link Library (DLL). The applications have been adapted to English and

Chinese without changes to the source code. Users can get consistent appearance and

functionality in both versions of the applications. The study has also showed why it is

important to handle the Windows resources and locale related features correctly and

appropriately. The study used a generic approach to software internationalization and

adapted the application to the Simplified Chinese locale. In general, software

internationalization and localization is very complicated. To successfully market a

software product outside the US, a well functioning feature design along with a

friendly user interface is very essential. Furthennore, to succeed in entering the

Chinese software market requires a lot more than the product itself. The software

itself must be very sensitive to the Chinese cultural tradition and political system,

both quite different from the western society.

6.2 Future Work

62

While working on the thesis, the author noticed some interesting subjects related

to internationalization and localization. The author would like to share these with people

who might be interested in this area.

1 Conversion tools between ASCII, nBCS and Unicode. Since Unicode is not

fully supported on Windows 95/98, these tools should prove useful in

internationalization/localization projects.

2 Web internationalization and localization. With the rapid development of the

Internet, the need to localize web pages for all international audience has been

increasing on a daily basis.

3 Internationalization and localization for various potential software markets.

The Arabic world has very special culture. Some Southeast-Asian countries

such as Thailand and Vietnam also have different cultures. To study the

internationalization and localization issues for these potential software

markets should be very interesting.

4 Localization tools. Localization tools are widely used to speed the localization

process. There are a few commercial tools available in today's market.

63

REFERENCE

1 Dave Taylor, Global Software, Developing Applications for the International Market,
Springer Verlag, 1992

2 Nadine Kano, Developing International Software for Windows 95 and Windows NT,
Microsoft Press, 1995

3 David J. Kruglinski, Inside Visual C++ 4.0, Microsoft Press, 1995

4 Mike Blaszczak, Professional MFC with Visual C++ 5.0, Wrox Press, 1997

5 Tony Fernandes, Global Interlace Design - A Guide to Design International User
Interlaces, AP Professional, 1995

6 Microsoft, Programmer's Guide Documentation,
URL: hUp://www.microsoft.comlglobaldev/gbl-gen/

7 Kory Srock, Planning for and Testing Global Software,
URL: http://www.microsoft.comlglobaldev/gbl-gen/

8 Microsoft, Users' Guide for Visual c++
URL: http://www.msdn.comJdgdeveloping.jnternational_application.html

9 Dale Rogerson, Inside COM, Microsoft Press, 1997

10 Issac Varon, Creating Localized Resource DLLs for MFC Applications, Microsoft
Visual Studio Library Documentation, Article ill: Q198846

11 Microsoft, The Windows Interlace: An Application Design Guide, Microsoft Press,
1991

64

APPENDIX A Check List for Internationalization

• Program specifications account for international considerations from the outset

• Features important to international markets are included

• Icons and bitmaps are generic, are culturally acceptable, and do not contain text

• Shortcut-key combinations are accessible on international keyboards

• Consistent English user interface tenninology is used in strings

• Strings are documented using comments to provide context for translators

• Strings or characters that should not be localized are marked

• International laws affecting feature designs are considered

• Third-party agreements support international design issues

• Menu and dialog-box designs leave room for text expansion

• Text and messages are devoid of slang and specific cultural references

• Code is generic enough to work for several languages

• Code doesn't concatenate strings to form sentences

• Code doesn't use a given string variable in more than one context

• Code doesn't contain hard-coded character constants, numeric constants, screen

positions, filenames, or pathnames that presume a particular language

• Buffers are large enough to handle translated words and phrases

65

• Program allows input of international data

• All language editions can read one another's documents

• Code contains support for locale-specific hardware, if necessary

• Features that don't apply to international markets can be removed easily

66

I

:I
I

APPENDIXB Code for C++/MFC Application

II DateTimeDlg.cpp : implementation file
II

#include "stdafx.h"
#include "Project.h"
#include "MyDialog.h"
#include "DateTimeDlg.h"
#include "hlpids.h"
#include <winnls.h>

#ifdef _DEBUG
#define new DEBUG_NEW
#Undef THIS_FILE
static char nnS_FILE[] = _FILE_;
#endif

SYSTEMTlME CDateTimeDlg::m_time;
LCID CDateTimeDlg::ID_id;
CListBox* CDateTimeDlg::m_pListBox = NULL;

const DWORD CDateTimeDlg::m_nHelpIDs!1 =
{

IDC_DATETIME_LIST, IDH]ROJ_DATETIME,
IDC_DATETIME_FORMAT, IDH]ROJ_DATETIME,
lOOK, IDH]ROJ_DATETIME,
IDCANCEL, lOH_PROJ_DATETIME,
0,0

I;

CDateTimeDlg: :CDateTimeDIg(CWnd* pPaTent I*=NULL*/)
: CMyDialog(CDaleTimeDlg::lOD, pParent)

II{ {AFX_DATA_INIT(CDateTimeDlg)
ID_seleclion = _T("");
II} }ABCDATA_INIT

void CDateTimeDlg::DoDataExchange(CDataExchange* pDX)
{

CDialog: :DoDataExchange(pDX);
II! (AFX_DATA_MAP(CDaleTimeDlg)
DDX_Control(pDX, lDC_DATETIME_LIST, m_listbox);
DDX_LBString(pDX, lOCJ)ATETIME_LIST, m_selection);
II} }AFX_DATA_MAP

67

...

i.1

BEGIN_MESSAGE_MAP(CDateTimeDlg, CMyDialog)
III {AFX_MSG_MAP(CDateTimeDlg)

ON_LBN_DBLCLK(IDC_DATETIME_LIST,OnDblcJkDatetimeList)
II} }AFX_MSG_MAP

END_MESSAGE_MAPO

BOOL CALLBACK CDateTimeDlg: :DateFmtEnumProc(LPTSTR IpszFormatString)
I

ASSERT(m_pUstBox != NULL);
TCHAR buf[256];
VERIFY(GetDateFormat(m_id, 0, &m_time, IpszFormatString, buf, 256));
if (m_pListBox->FindStringExact(-l,buf) = CB_ERR)

m_pListBox->AddString(buf);
return TRUE;

BOOL CALLBACK CDateTimeDlg::TimeFmtEnurnProc(LPTSTR IpszFormatString)

I
ASSERT(m_pListBox !== NULL);
TCHAR buf{256];
VERIFY(GetTimeFormat(m_id, 0, &m_time. IpszFormatString, buf, 256));
if (m_pListBox->FindStringExact(-l,but) = CB_ERR)

m_pListBox->AddString(but);
return TRUE;

void CDateTimeDIg::OnDblclkDatetimeList()
{

II TODO: Add your control notification handler code here
OnOKO;

BOOL CDateTimeDlg: :OnlnitDialogO
{

CMyDialog::OnInitDialogO;

m_pListBox == &m_listbox; II set static member
GetLocalTime(&m_time) ;
m_id == GetUserDefaultLCIDO;

EnurnDateFormats(DateFmtEnumProc, m_id, DATE_SHORTDATE);
EnurnDateFormats(DateFmtEnumProc, m_id, DATE_LONGDATE);
EnumTimeFormats(TimeFmtEnumProc, m_id, 0);

m_pListBox == NULL;
m_Iistbox.SetCurSel(O);

return TRUE; II return TRUE unless you set the focus to a control
II EXCEPTION: OCX Property Pages should return FALSE

II AddressDlg.cpp : implementation file

68

"IiiI

#include "stdafx.h"
#include "Project.h"
#include "AddressDlg.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#Undef nUS_FILE
static char TIllS_FILE[) = _FILE_;
#endif

CComboBox* CAddressDlg::m_pComboCountry =NULL;
CComboBox* CAddressDlg::m_pComboState = NULL;
CAddressDlg::CAddressDlg(CWnd* pParent I*=NULL*1)

: CDialog(CAddressDlg::IDD, pParent)

amastates[O] =IDS_STATEl;
amastates[l] = IDS_STATE2;
amastates[2] = IDS_STATE3;
amastates[3] =IDS_STATE4;
amastates[4] =IDS_STATE5;
amastates[5] = IDS_STATE6;
chsprovinces[O] =IDS_PROVINCE1;
chsprovinces[l] = IDS_PROVINCE2;
chsprovinces[2] = IDSYROVINCE3;
chsprovinces[3] =IDS_PROVINCE4;
chsprovinces[4] = IDS_PROVINCE5;
chsprovinces[5] = IDS_PROVINCE6;
III (ABCDATA_INIT(CAddressDlg)
m_strCty =_TC"");
m_strState = _T("");
m_strAdrl = _T("");
m_strAdr2 = _T("n);
m_strZip =3("");
III }ABCDATA_INIT

void CAddressDlg::DoDataExchange(CDataExchange* pDX)
(

CDialog::DoDataExchange(pDX);
lIt (AFX_DATA_MAP(CAddressDlg)
DDX_Control(pDX. IDC_COMBO_SATATE, ffi_comboState);
DDX_Control(pDX. IDe_COMBO_COUNTRY, ffi_comboCty);
DDX_CBString(pDX, IDC_COMBO_COUNTRY, ffi_strCty);
DDX_CBString(pDX, IDC_COMBO_SATATE, m_strState);
DDX_Text(pDX, IDC_EDIT_ADRl, m_strAdrl);
DDX_Text(pDX, IDC_EDIT_ADR2, m_strAdr2);
DDX_Text(pDX, IDC_EDIT_ZIP, m_strZip);
II} }AFX_DATA_MAP

BEGIN_MESSAGE_MAP(CAddressDlg, CDialog)
II { (AFX_MSG_MAP(CAddressDlg)
II} }AFX_MSG_MAP

END_MESSAGE_MAPO

BOOL CAddressDlg: :OnlnitDialogO

69

.,.

CDialog: :OnInitDialogO;
ID_pComboState = &m_cornboState;
m_pComboCountry = &m30mboCty; Iiset static member
CString str;

str.LoadString(IDS_AMERICA);
m-pComboCountry->AddString(str);

str.LoadString(IDS_CANADA);
m_pComboCountry->AddString(str);

str.LoadString(IDS_CHINA);
m_pComboCountry->AddString(str);

str.LoadString(IDS_JAPAN);
m_pComboCountry->AddString(str);

str.LoadString(IDS_CANADA);
m_pComboCountry->AddString(str) ;

int acp = «CProjectApp*)(AfxGetApp()))->localeACP;
if(acp = PROJ_UINI'_ENGLlSH)
(

for(int i=O; i<6; i++)
(

str.LoadString(amastates[i]);
m-pComboState->AddString(str);

]
m_pComboState->SetCurSel(O);
ID_pComboCountry->SetCurSel(O)j

else if (acp= PROJ_UINT_CHlNESE)
{

for(int i=O; i<6; i++)
{

str.LoadString(chsprovinces[i]);
m_pComboState->AddString(str);

}
m_pComboState->SetCurSel(O);
m_pComboCountry->SetCurSel(2);

return TRUE; II return TRUE unless you set the focus to a control
II EXCEPTION: OCX Property Pages should return FALSE

II GoLineDlg.cpp : implementation file

#include "stdafx..h"
#include "Project.hOl

#include "GoLineDlg.h"

70

#ifdef _DEBUG
#define new DEBUG_NEW
#Undef THIS_FILE
static char THIS_FILE[] = _FILE_;
#endif

IIIIIIIIIIIIII11/1//11III/II/1/11/1/1/1/11IIIII11/1//1/11111/11/1//1/1//111/1
II CGoLineDIg dialog

CGoLineDlg: :CGoLineDIg(CWnd* pParent /*=NULL*1)
: CDialog{CGoLineDlg::IDD, pParent)

II{ {AFX_DATA_INlT{CGoLineDlg)
m_nLine= 1;
II} }AFX_DATA_INIT

void CGoLineDlg: :DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);
III {AFX_DATA_MAP{CGoLineDlg)
DDX_Text(pDX, IDC_EDIT_GOLINE, m_nLine);
/1} }AFX_DATA_MAP

BEGlN_MESSAGE_MAP(CGoLineDlg, CDiaJog)
II{ {AFX_MSG_MAP(CGoLineDlg)
II} }AFX_MSG_MAP

END_MESSAGE_MAPO

void CGoLineDlg::OnCanceIO
{

CDialog::OnCancelO;
}
II MainFrm.cpp : implementation of the CMainFrame class
II

#include "stdafx.h"
#incJude "Project.h"

#incJude "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#Undef THIS_FILE
static char THIS_ffiE[] = _FILE_;
#endif

IMPLEMENT_DYNCREATE(CMainFrame, CFrameWnd)

BEGlN_MESSAGE_MAP(CMainFrame. CFrameWnd)

71

...

III (AFX_MSG_MAP(CMainFrame)
/I NOTE - the ClassWizard will add and remove mapping macros here.
II DO NOT EDIT what you see in these blocks of generated code!

ON_WM_CREATEO
II} }AFX_MSG_MAP
II Global help commands
ON_COMMAND(ID_HELP_FINDER. CFrameWnd::OnHelpFinder)
ON_COMMAND(ID_HELP, CFrameWnd::OnHelp)
ON_COMMAND(ID_CONTEXT_HELP. CFrameWnd::OnContextHelp)
ON_COMMAND(ID_DEFAULT_HELP. CFrameWnd::OnHelpFinder)

END_MESSAGE_MAPO

static UINT indicators[] =

l
ID_SEPARATOR. II status line indicator
ID_INDICATOR_CAPS,
ID_INDICATOR_NUM.
ID_INDICATOR_SCRL,

};

CMainFrame: :CMai nFrameO
{}

CMainFrame::-CMainFrame()
{}

int CMainFrame: :OnCreate(LPCREATESTRUCT IpCreateStruct)

l
if (CFrameWnd::OnCreate(lpCreateStruct) = -1)

return -1;

if (!m_wndTooIBar.CreateEx(this. TBSTYLE_FLAT, WS_CHlLD IWS_VISIBLE ICBRS_TOP
ICBRS_GRIPPER ICBRS_TOOLTIPS ICBRS_FLYBY ICBRS_SiZE_DYNAMIC) II
!m_wndTooIBar.LoadToolBar(IDR_MAINFRAME)

TRACEO("Failed to create toolbar\n");
return -1; 1/ fail to create

if (!m_wndStatusBar.Create(this) II
!m_wndStatusBar.SetIndicators(indicators.
sizeof(indicators)/sizeof(UINT))

TRACEO("Failed to create status bar\n");
return -1; /1 fail to create

if (!m_wndClrBar.Create(this, WS_CHILD IWS_VISIBLE ICBRS_TOP.
IDR_MYCLR_TOOLBAR) II

!m_wndClrBar.LoadToolBar(IDR_MYCLR_TOOLBAR»)

TRACEO(IOFailed to create color toolbar\n");
return -I; 1/ fail to create

72

ID_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);
EnableDocking(CBRS_ALIGN_ANY);
DockControlBar(&m_wndTooIBar);

m_wndClrBar.SetBarStylel m_wndClrBar.GetBarStyleO I
CBRS_TOOLTIPS ICBRS_H..,YBY I
CBRS_SIZE_DYNAMIC);

m_wndClrBar.EnableDocking(CBRS_ALIGN_ANY);
DockControlBar(&IILwndCIrBar, AFJCIDW_DOCKBAR_LEFf);

return 0;

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
(

if(!CFrameWnd::PreCreateWindow(cs))
return FALSE;

II TODO: Modify the Window class or styles here by modifying
/I the CREATESTRUCT cs
return TRUE;

#ifdef DEBUG
void CMainFrame::AssertValidO const
{

CFrameWnd::AssertValidO;

void CMainFrame::Dump(CDumpContext& de) const
{

CFrameWnd::Dump(dc);

#endif II_DEBUG

II MyDialog.cpp : implementation file
II

#include "stdafx.h"
#include "Project.h"
#include "MyDiaJog.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#UndefTIDS_FlLE
static char THIS_Fll..E[] =_Fll..E_;
#endif

CMyDialog::CMyDialog(UINT nIDTemplate, CWnd* pParentWnd)
: CDialog(nIDTemplate, pParentWnd)

{
}

CMyDialog::CMyDialog(LPCTSTR IpszTemplateName, CWnd* pParentWnd)
: CDialog(lpszTemplateName, pParentWnd)

73

CMyDialog::CMyDialogO : CDialogO
{
}

void CMyDialog::DoDataExchange(CDataExchange* pDX)
{

CDialog: :DoDataExchange(pDX);
II{{AFX_DATA_MAP(CMyDialog)

II NOTE: the ClassWizard will add DDX and DDV calls here
II} }AFX_DATA_MAP

BEGIN_MESSAGE_MAP(CMyDialog, CDialog)
III {AFX_MSG_MAP(CMyDialog)
II} }AFX_MSG~AP
ON_MESSAGE(WM_HELP.OnHelp)
ON_MESSAGE(WM_CONTEXTMENU, OnHelpContextMenu)

END_MESSAGE_MAPO

LONG CMyDialog::OnHelp(UINT. LONG lParam)
(

::WinHelp((HWND)«LPHELPINFO)IParam)->hItemHandle. AfxGetAppO
>m_pszHelpFilePath.

HELP_WM_HELP, (DWORD)(LPVOID)GetHelpIDs());
return 0;

LONG CMyDialog::OnHelpContextMenu(UINT wParam. LONG)
{

::WinHelp«HWND)wParam, AfxGetApPO->m_pszHelpFilePath,
HELP_CONTEXTMENU, (DWORD)(LPVOID)GetHelpIDs());

return 0;

BOOL CMyDialog::OnlnitDialogO
{

CDialog: :OnlnitDialogO;
ModifyStyleEx(O, WS_EX_CONTEXTHELP);
return TRUE; II return TRUE unless you set the focus to a control

II EXCEPTION: OCX Property Pages should return FALSE

II MySplashWnd.cpp : implementation file
II

#include "stdafx.h"
#include "Project.h"
#inc1ude "MySplashWnd.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef nnS_Fll...E

74

static char THIS_FILE[) = _FILE_;
#endif

BOOL CMySplashWnd::Create(CWnd * pParent)
{

if (!CDialog::Create(CMySplashWnd::IDD. pParent»
(

TRACEO{"Waming: creation of CSplashWnd dialog failed\n");
return FALSE;

retumTRUE;

CMySplashWnd::CMySplashWnd(CWnd* pParent 1*=NULL*1)
: CDialog(CMySplashWnd::IDD, pParent)

//{ {AFX_DATA_INIT(CMySplashWnd)
II NOTE: the ClassWizard will add member initialization here

II} lAFX_DATA_INIT

void CMySplashWnd::DoDataExchange(CDataExchange* pDX)
{

CDialog: :DoDataEx.change(pDX);
II{ (AFX_DATA_MAP(CMySplashWnd)

II NOTE: the ClassWizard will add DDX and DDV calls here
II} }AFX_DATA_MAP

BEGIN_MESSAGE_MAP(CMySplashWnd. CDialog)
II{ (AF}CMSG_MAP(CMySplashWnd)
II) }AFX_MSG_MAP

END_MESSAGE_MAPO

Baal CMySplashWnd::OnInitDialogO
{

CDialog::OnlnitDialog();
CenterWindowO;

return TRUE;

// Project.cpp : Defines the class behaviors for the application.

#include "stdafx.h"
#include "Project.h"

#include "MainFrm.h"
#include "ProjectDoc.h"
#include "ProjectView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#Undef THIS_FILE
static char THIS_FILE[J = _FILE_;

75

#endif

BEGIN_MESSAGE_MAP(CProjectApp, CWinApp)
I/{ (AFX_MSG_MAP(CProjectApp)
ON_COMMAND(ID_APP_ABOUT, OnAppAbout)

/I NOTE - the ClassWizard will add and remove mapping macros here.
1/ DO NOT EDIT what you see in these blocks of generated code!

II} }AFX_MSG_MAP
1/ Standard file based document commands
ON_COMMAND(ID_FILE_NEW, CWinApp: :OnFileNew)
ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
1/ Standard print setup command
ON_COMMAND(ID_FILE_PRINT_SETUP, CWinApp::OnFilePrintSetup)

END_MESSAGE_MAPO

11//11111/11/11/11I/1//11///I//11I11//11/1//1/1/1111/11/1/11/1/11/11/1/11I1/1
/I CProjectApp construction

CProjectApp::CProjectAppO
{

10caleACP = GetACP();

#endif
Enable3dControlsStatic(); /I Call this when linking to MFC statically

10caleACP =GetACPO;
if(localeACP = PROJ_UINT-ENGLISH)

m_hInstResDLL =LoadLibrary("ResourceDll.dll");
else if (IocaleACP == PROJ_UlNT_CHINESE)

m_hInstResDLL =LoadLibrary("ResourceDllchsd.dll");
I/ASSERT(m_hlnstResDLL != NULL);
/lit is not necessary to call AfxSetResourceHandleO at this point

/I Call this when using MFC in a shared DLL

CProjectApp theApp;

BOOL CProjectApp: :InitinstanceO
(

AfxEnableControlContainerO;
#ifdef _AFXDLL

Enable3dControlsO;
#else

SetRegistryKeYLT("Local AppWizard-Generated Applications"»;
LoadStdProfileSettingsO; /1 Load standard INI file options (including MRU)
CProjectView::lnitaiiizeViewO;
CSingleDocTemplate* pDocTemplate;
pDocTemplate = new CSingleDocTemplate(

IDR_MAINFRAME,
RUNTIME_CLASS(CProjectDoc),
RUNTUvrn_CLASS(CMainFrame), /I main sm frame window
RUNTIME_CLASS(CProjectView»;

AddDocTemplate(pDocTemplate);

EnableShellOpenO;
RegisterSheIlFileTypes(TRUE);

76

CCommandLinelnfo cmdInfo;
ParseCommandLine(cmdlnfo);

if (!ProcessSheIlCommand(cmdInfo»
return FALSE;

m_pMainWnd->ShowWindow(SW_SHOW);
m_pMainWnd->UpdateWindowO;

m_splash.Create(m-pMainWnd);
m_splash.showWindow(SW_SHOW);
m_splash.UpdateWindowO;
m_splash.SetTimer(l, 300, NULL);

ffi_dwSplash =::GetCurrentTimeO;
m_pMainWnd->DragAcceptFilesO;
CString str;
str.LoadString(IDS]ROJECT_TITLE);

m_pMainWnd->SetWindowText«LPCTSTR)(str»;

retumTRUE;

class CAboutDlg : public CDialog
{
public:

CAboutDlgO;

II Dialog Data
II{ {AFX_DATA(CAboutDlg)
enum { IDD =IDD_ABOUTBOX };
II} }AFX_DATA

II ClassWizard generated virtual function overrides
IiI (AFX_VIRTUAL(CAboutDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); II DDXlDDV support
II} }AFX_VIRTUAL

II Implementation
protected:

II{ {AFX_MSG(CAboutDlg)
II No message handlers

II} }AFX_MSG
DECLARE_MESSAGE_MAP()

I;

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{

II{ (AFX_DATA_INIT(CAboutDlg)
II} }AFX_OATA_INIT

void CAboutDlg: :DoDataExchange(CDataExchange* pOX)

77

CDialog: :DoDataExchange(pDX);
III (AFX_DATA_MAP(CAboutDIg)
/I} }AFX_DATA_MAP

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
III {AFX_MSG_MAP(CAboutDlg)

/I No message handlers
II} }AFX_MSG_MAP

END_MESSAGE_MAPO

II App command to run the dialog
void CProjectApp::OnAppAboutO
{

CAboutDlg aboutDlg;
aboutDlg.DoModaIO;

BOOL CProjectApp::Onldle(LONG lCount)
{

1/ call base class idle first
BOOL bResult =CWinApp::Onldle(lCount);

/I do our own work
if (m_splash.m_hWnd != NULL)
{

if (::GetCurrentTimeO - m_dwSplash > 1500)
{

/I timeout expired, destroy the splash window
m_splash.DestroyWindowO;
m_pMainWnd->UpdateWindowO;

}
else
{

bResult = TRUE;

return bResult;

int CProjectApp::ExitInst.anceO
{

FreeLibrary(m_hlnstResDLL);
return CWinApp::ExitlnstanceO;

}
/I ProjectDoc.cpp : implementation of the CProjectDoc class
/I

#include "stdafx.h"
#include "Project.h"

#include "ProjectDoc.h"

#ifdef _DEBUG

78

#define new DEBUG_NEW
#Undef TIllS_FILE
static char THIS_FILE[] = _FILE_;
#endif

/11/11/11I11I11/1//11//11/11I//////1/111I////////////////////////1//11I//////
// CProjectDoc

IMPLEMENT_DYNCREATE(CProjectDoc. CDocument)

BEGIN_MESSAGE_MAP(CProjectDoc. CDocument)
II{ (AFX_MSG_MAP(CProjectDoc)

1/ NOTE - the ClassWizard will add and remove mapping macros here.
1/ DO NOT EDIT what you see in these blocks of generated code!

II} }AFJCMSG_MAP
//color handling

END_MESSAGE_MAPO

CProjectDoc: :CProjectDocO
{}

CProjectDoc::-CProjectDocO
{}

BaaL CProjectDoc::OnNewDocumentO
{

if (!CDocument: :OnNewDocument()}
return FALSE;

«CEditView*)m_viewList.GetHeadO)->SetWindowText(NULL);
return TRUE;

void CProjectDoc::Serialize(CArchive& ar)
{

/1 CEditView contains an edit control which handles all serialization
«CEditView*)m_viewList.GetHeadO)->SerializeRaw(ar);

#ifdef DEBUG
void CProjectDoc::AssertVaJidO const
{

CDocument::AssertValidO;

void CProjectDoc::Dump(CDumpContext& de) const
{

CDocument::Dump(dc);
}
#endif II_DEBUG

// ProjectView.cpp : implementation of the CProjectView class
//

#include "stdafx.h"
#include "Project.h"

79

#include "ProjectDoc.h"
#include "ProjectView.h"
#include "DateTimeDIg.h"
#include "SetTabStops.h"
#include "AddressDlg.h"
#include "GoLineDlg.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#Undef TIllS_FILE
static char THIS_FILE[] = _Fll...E_;
#endif

/////1/////1////1//1//111I////11I//1///1////////11I11I11I///11I11I11I/1///III
// CProjectView

IMPLEMENT_DYNCREATE(CProjectView, CEditView)

BEGIN_MESSAGE_MAP(CProjectView, CEditView)
//{{ABCMSG_MAP(CProjectView)
ON_COMMAND(ID_INSERT_DATEANDTIME, OnInsertDateandtirne)
ON_COMMAND(ID_CHOOSE_FONT, OnChooseFont)
ON_COMMAND(ID_FORMAT_TABSTOP,OnFormatTabstop)
ON_COMMAND(ID_INSERT_COUNTCHARACTERS, OnlnsertCount)
ON_COMMAND(ID_FORMAT_ADDRESS,OnFormatAddress)
ON_COMMAND(ID_INSERT]ASTEADDRESS, OnInsertPasteaddress)
ON_COMMAND(ID_EDlT_GOTO,OnEditGoto)
ON_WM_CONTEXTMENUO
ON_COMMAND(ID_FORMAT_SETPRINTERFONT. OnFormatSetprinterfont)
ON_COMMAND(ID:..JNSERT_CHARCOUNT, OnInsertCharcount)
/1} }ABCMSG_MAP
// Standard printing commands
ON_COMMAND(ID_FILE]RINT, CEditView: :OnFilePrint)
ON_COMMAND(ID_FILE]RINT_DIRECT, CEditView: :OnFilePrint)
ON_COMMAND(ID_Fll...E_PRINT_PREVIEW. CEditView: :OnFilePrintPreview)
ON_COMMAND_RANGE(ID_COLORO, ID_COLORI5, OnColor)
ON_UPDATE_COMMAND_UI_RANGE(ID_COLORO, ID_COLORI5, OnUpdateColor)

END_MESSAGE_MAPO

11I////////////////////1//////////////11///11/////////1/1/11/1////1///////1//
// CProjectView construction/destruction
UINT CProjectView: :m_nDeffabStops;
UINT CProjectView: :m_nDeffabStopsOld;
BOOL CProjectView::m_bDefWordWrap;
BOOL CProjectView::m_bDefWordWrapOld;
LOGFONT NEAR CProjectView: :m_lfDefFont;
LOGFONT NEAR CProjectView: :m_lfDefFontOld;
LOGFONT NEAR CProjectView::m_lfDefPrintFont;
LOGFONT NEAR CProjectView::m_lfDefPrintFontOld;

int CProjectView::s_ColorMap[] =

0,
I,
2,
3,

80

/lblack
/Idark red
I/dark green
I/Iight brown

4, //dark blue
5, /lpurple
6, /ldark cyan
12, /lgray
7, //light gray
13, fired
14, /Igreen
15, flyellow
16, Ilblue
17, flmagenta
18, I/cyan
19 //white

};

static TCHAR BASED_CODE szSettings[] =_T("Settings");
static TCHAR BASED_CODE szTabStops(] =_T("TabStops");
static TCHAR BASED_CODE szFont[) = _T("Font");
static TCHAR BASED_CODE szPrintFont[] =_T("PrintFont");
static TCHAR BASED_CODE szHeight[] =_T("Height");
static TCHAR BASED_CODE szWeight[] = _T("Weight");
static TCHAR BASED_CODE szItalic[] = _T("Italic");
static TCHAR BASED_CODE szUnderline[] =_T("Underline");
static TCHAR BASED_CODE szPitchAndFamily[] =_T("PitchAndFamily");
static TCHAR BASED_CODE szCharSet[] = _T("CharSet");
static TCHAR BASED_CODE szFaceName[] =_T("FaceName");
static TCHAR BASED_CODE szSystem[] = _T("System");
static TCHAR BASED_CODE szWordWrap{] = _T("WordWrap");

static void GetProfileFont(LPCTSTR szSec, LOGFONT* pit)
(

CWinApp* pApp = AfxGetAppO;
plf->ltHeight = pApp->GetProfilelnt(szSec. szHeight. 0);
if (plf->ltHeight != 0)
(

plf->lfWeight = pApp->GetProfileInt(szSec, szWeight, 0);
plf->lfItalic =(BYTE)pApp->GetProfilelnt(szSec, szItalic, 0);
plf->lfUnderline = (BYTE)pApp->GetProfilelnt(szSec, szUnderline, 0);
plf->lfPitchAndFamily = (BYTE)pApp->GetProfilelnt(szSec, szPitchAndFamily. 0);
plf->lfCharSet = (BYTE)pApp->GetProfilelnt(szSec, szCharSet,

DEFAULT_CHARSET);
CString strFont =pApp->GetProfileString(szSec, szFaceName, szSystem);
Istrcpyn«TCHAR*)plf->lfFaceName, strFont, sizeof plf->lfFaceName);
plf->lfFaceName[sizeof plf->lfFaceName-l] = 0;

static void WriteProfileFont(LPCTSTR szSec, canst LOGFONT* plf, LOGFONT* plfOld)
{

CWinApp* pApp = AfxGetAppO;

if (plf->ltHeight != plfOld->ltHeight)
pApp->WriteProfilelnt(szSec, szHeight, plf->lfHeight);

if (plf->lfHeight != 0)
{

jf (plf->lfHeight != plfOld->ltHeight)
pApp->WriteProfileInt(szSec, szHeight, plf->lfHeight);

81

if (plf->lfWeight != plfOld->lfWeight)
pApp->WriteProfileInt(szSec, szWeight, plf->lfWeight);

if (plf->lfltalie != plfOld->lf1talic)
pApp->WriteProfilelnt(szSec, szItalic, plf->Ifltalic);

if (plf->lfUnderline != plfOld->lfUnderline)
pApp->WriteProfileInt(szSec, szUnderline, plf->lfUnderline);

if (plf->lfPitchAndFamily != plfOld->ltPitchAndFamily)
pApp->WriteProfilelnt(szSec, szPitchAndFamily. plf->lfPitchAndFamily) ;

if (plf->lfCharSet != plfOld->lfCharSet)
pApp->WriteProfileInt(szSec, szCharSet, plf->IfCharSet);

if Ltcsemp(plf->ltFaceName, pltDld->ltFaceName) != 0)
pApp->WriteProfileString(szSec, szFaceName, (LPCTSTR)plf->ltFaceName);

}
*plfOld =*plf;

CProjectView: :CProjectViewO
{

ID_pGoLine = new CGoLineDlg;
m_bAddress = FALSE;
UINT lclACP = «CProjectApp*)AfxGetApp())->localeACP;
GetCPInfo(lclACP, &CPInfo);
vbLBRange =CPInfo.LeadByte;
vtDBCS =(CPInfo.MaxCharSize > 1);
/lcheck to see if the max length in bytes of page more than I

CProjectView: :-CProjectViewO
{

delete ID_pGoLine;

BOOL CProjeetView: :PreCreateWindow(CREATESTRUCT& cs)
{

BOOL bPreCreated =CEditView::PreCreateWindow(es);
cs.style &= -(ES_AUTOHSCROLLlWS_HSCROLL);
return bPreCreated;

void CProjectView::OnDraw(CDC* pDe)
{

CProjectDoc* pDoe = GetDocuIDentO;
ASSERT_VALID(pDoc);

pDC->SetTextColor(m_erColor);

BOOL CProjectView::OnPreparePrinting(CPrintInfo* pInfo)
(

II default CEditView preparation
return CEditView::OnPreparePrinting(pInfo);

void CProjectView::OnBeginPrinting(CDC* pDC, CPrintlnfo* pInfo)

l

82

II Enable word-wrapping

--

// DefauJt CEditView begin printing.
CEditView::OnBeginPrinting(pDC. plnfo);

void CProjectView::OnEndPrinting(CDC* pOC. CPrintlnfo* plnfo)
{

// Default CEditView end printing
CEditView::OnEndPrinting(pDC. plnfo);

#ifdef DEBUG
void CProjectView::AssertValidO eonst
{

CEditView::AssertValidO;

void CProjectView::Dump(CDumpContext& de) canst

l
CEditView: :Oump(de);

CProjectDoe* CProjectView: :GetDocumentO // non-debug version is inline
{

ASSERT(m_pOocument->IsKindOf(RUNTIME_CLASS(CProjectDoe»);
return (CProjectDoc*)m_pDocument;

}
#endif /CDEBUG

////////////////1/1///11I11I1////////11/////1/1//////////////11I///////////1/
// CProjectView message handlers

void CProjectView::OnlnsertDateandtirneO
{

CDateTimeOlg dig;
if (dlg.DoModalO = roOK)
GetEditCtrIO·ReplaeeSel(dlg.m_seleetion);

void CProjectView::OnChooseFontO
{
1/ get current font description

CFont* pFont = GetFontO;
LOGFONT If;
if (pFont != NULL)

pFont->GetObjeet(sizeof(LOGFONT), &If);
else

::GetObject(GetStockObjeet(SYSTEM_FONT), sizeof(LOGFONT), &If);

CFontDialog dlg(&lf, CF_SCREENFONTSICF_INITTOLOGFONTSTRUCT);
if (dlg.DoModalO == roOK)
{

1/ switch to new font.
rn_font.OeleteObjectO;
if (m_font.CreateFontlndirect(&If)
{

CWaitCursor wait;

83

SetFont(&ffi_font);
m_lfDefFont =If;

void CProjectView::InitailizeViewO
{

CWinApp* pApp = AfxGetAppO;
ffi_bDefWordWrap =pApp->GetProfileInt(szSettings, szWordWrap, 0);
m_bDefWordWrapOld =m_bDefWordWrap;
ffi_nDeITabStops = pApp->GetProfileInt(szSettings, szTabStops, 8*4);
ffi_nDeITabStopsOld =m_nDeITabStops;
GetProfileFont(szFont, &ffi_lfDefFont);
m_lfDefFontOld =m_lfDefFont;
GetProfileFont(szPrintFont, &m_lfDefPrintFont);
ffi_lfDefPrintFontOid = m_lfDetprintFont;

void CProjectView: :OnFormatTabstopO
{

CSetTabStops dIg;
int Utabs;
dlg.ffi_nTabStops = ffi_nTabStops/4;
Utabs = dlg.ffi_nTabStops;

if (dlg.DoModaIO = IDOK)
{

CWaitCursor wait;
if(dlg.ffi_Unit == 0)
{

int tabs =(int) (dlg.ffi_nTabStops * 2.54 * 20) /4;
Utabs = tabs / 4;

}
else if(dlg.ffi_Unit == 1)
{

int tabs =(dlg.ffi_nTabStops * 20)/4;
Utabs =tabs / 4;

SetTabStops(Utabs*4);
ffi_nDeITabStops =m_nTabStops;

void CProjectView::OnInitiaIUpdateO
{

CEditView::OnInitialUpdateO;
I/AfxGetMainWndO-> SetWindowText("Hangbo Zhang Thesis Project ");
I/AfxGetMainWndO->MoveWindow(20, 20, 600, 5(0);

void CProjectView::OnlnsertCountO

I

84

/lint acp == «CProjectApp*)AfxGetApp())->localeACP;
int lines =GetEditCtrIO.GetLineCountO~

char LINE[64];

for(int i=O; i<lines; i++)
(

if(GetEditCtrIO.GetLine(i, LINE));

CString str;
str.LoadString(IDS_COUNT_CHAR);
int nlen == GetBufferLengthO;
TCHAR buf[64];
wsprintf(buf, str, olen);
AfxMessageBox((LPCTSTR)(buf);

void CProjectView:: OnFormatAddress()
(

CAddressDlg adrDlg;
if(adrDIg.DoModaIO == IDOK)
{

m_strAdrl == adrDIg.m_strAdrl;
m_strAdr2 == adrDlg.m_strAdr2;
ffi_strState =adrDlg.m_strState;
ffi_strzip == adrDIg.ffi_strZip;
ffi_Stn:ty == adrDlg.m_strCty;
ffi_bAddress =TRUE;

void CProjectView::OnInsertPasteaddress()
{

if(!m_bAddress)
{

CString sIr;
str.LoadString(IDS_NO_ADDRESS);
AfxMessageBox(str);
return;

CString str == "";
int acp = «CProjeetApp*)AfxGetApp(»->loealeACP;
if(aep === PROJ_UlNT_ENGLISH)
{

str += ffi_strAdrl;
str += "\r\n";
str +== m_strAdr2;
str += "\r\n";
str +== m_strState + ", "+ m_strzip + "\r\n" + m_strCty;

if(acp = PROJ_UlNT_CHINESE)
{

85

str += "'t" + m_strState;
str +=" "+ m_strAdr1;
str += m_strAdr2;

GetEditCtrlO.ReplaceSel(str);

void CProjectView::OnEditGotoO
(

if(m_pGoLine->DoModalO != lOOK)
return;

if(m_pGoLine->m_nLine < 1)
{

CString str;
str.LoadString(IDS_INVALlO_LINE);
AfxMessageBox(str};
return;

}
CEdit &edit =GetEditCtrlO;
int i =edit.LineFromCharO; /I this is the current line the cursor is on
int nLine =m~pGoLine->m_nLine; II line number to go to

if(nLine> (edit.GetLineCountO»
{

CString str2;

str2.LoadString(lOS_BIG_LINENUM);
TCHAR buf[64];
wsprintf(buf, str2, nLine);
str2 =buf;
AfxMessageBox(str2};
return;

II move window and caret
--nLine; II edit control is zero based
edit.LineScroll(nLine-i); II new line number - the current line

int idx;
idx = edit.LineIndex(nLine);
edit.SetSel(idx, idx);

void CProjectView::OnContextMenu(CWnd* pWnd. CPoint point)
(

CMenu menuText;
menuText.LoadMenu(lOR_TEXT_POPUP);
CMenu* pMenuPopup = menuText.GetSubMenu(O);
IlmenuText.RemoveMenu(O, MF_BYPOSITION);
Ilreturn pMenuPopup->DetachO;
pMenuPopup->TrackPopupMenu(TPM_LEFTALIGN ITPM_LEFTBlITTON,

point.x, point.y,
AfxGetMainWndO, NULL);

86

....

}
COLORREF CProjectView: :GetColorRef(UINT nID}
{

ASSERT(olD >= ID_COLORO);
ASSERT(nID <= ID_COLOR15);
CPalette* pPal = CPalette::FromHandJe(

(HPALEITE) GetStockObject(
DEFAULT_PALETTE));

ASSERT(pPaJ != NULL);
PALETTEENTRY pe;
it(pPal->GetPaletteEntries(s_ColorMap[nlD-lD_COLORO], 1, &pe) != 0)
{

return RGB(pe.peRed, pe.peGreen, pe.peBlue);
}
else
{

TRACEl("Unable to find palette color entry for ID=%d\n", nID);
return ::GetSysColor(COLOR_WINDOWTEXT);

void CProjectView::OnColor(UINT olD)
{

l*m_crColor = GetColorRef(nID);
CDC dcScreen;
dcScreen.Attach(: :GetDC(NULL»;
dcScreen.SetTextColor(m3rColor);*1

void CProjectView::OnUpdateColor(CCmdUI *pCmdUI)
{

static void ScaleLogFont(LPLOGFONT plf, const CDC& dcFrom, const CDC& dcTo)
II helper to scale log font member from one DC to another!

plt->lfHeight = MulDiv(plf->ltHeight,
dcTo.GetDeviceCaps(LOGPIXELSY), dcFrom.GetDeviceCaps(LOGPlXELSY»;

plf->ltWidth = MulDiv(plf->lfWidth,
dcTo.GetDeviceCaps(LOGPrXELSX), dcFrom.GetDeviceCaps(LOGPIXELSX»;

void CProjectView: :OnFormatSetprinterfontO
{

CWaitCursor wait;
CFont* pFont = GetPrinterFontO;
LOGFONTlf;
LPLOGFONT plf = NULL;
if (pFont != NULL)
{

pFont->GetObject(sizeof(LOGFONT), &If);
plf= &If;

87

/I magic to get printer dialog that would be used if we were printing!
CPrintDialog dlgPrint(FALSE);
if (!AfxGetAppO->GetPrinterDeviceDefaults(&dlgPrint.m_pd»
(

AfxMessageBox(IDP_ERR_GET_DEVICE_DEFAULTS);
return;

}
wait.RestoreO;
HDC hdcPrint =dlgPrint.CreatePrinterDC();
if (hdcPrint = NULL)
{

AfxMessageBox(IDP_ERR_GET_PRINTER_DC);
return;

CDC dcScreen;
dcScreen.Attach(::GetDC(NULL»;
CDC dcPrint;
dcPrint.Attach(hdcPrint);

if (plf != NULL)
{

II need to map initial logfont to screen metries.
::ScaleLogFont(plf, dcPrint. deSereen);

}
CFontDialog dlg(plf, CF_PRINTERFONTS, &dcPrint);
if (dlg.DoModalO == IDOK)
{

/1 map the resulting logfont back to printer metries.
If =dlg.m_lf;
::ScaleLogFont(&lf, dcScreen. dcPrint);

SetPrinterFont(NULL);
m_fontPrint.DeleteObject();
if (m_fontPrint.CreatcFontIndirect(&If»
{

SetPrinterFont(&m_fontPrint);
m_IfDetprintFont = If;

}
::ReleaseDC(NULL. dcScreen.DetachO);

void CProjectView::OnInsertCharcountO
(

CString str;
str.LoadString(lDS_COUNT_CHAR);

CEdit &edit = GetEditCtrlO;
int lines =edit.GetLineCountO;

TCHAR *charcnt;
charcnt =(TCHAR*) malloc(lOO*sizeof(TCHAR»;

88

int count = 0;
for(int i=O; i<lines; i++)
{

edit.GetLine(i, charcnt, 1(0);
if(vfDBCS)
{

for(count; *charcnt; charcnt++}// = MyCharNext(charcnt»
{
if«*charcnt != -51) && (*charcnt != -3) && (*charcnt != -Ill))
{

if(IsDBCSLeadByte(*charcnt})
charcnt++;

++count;

}
else
{
for(count; (*charcnt); charcnt++)

{
if«*charcnt != -51} && (*charcnt != -3)
&& (*charcnt != -I j I))
++count;

}
/lint nlen = GetBufferLengthO;

TCHAR buf[64];
wsprintf(buf. str, count);
AfxMessageBox((LPCTSTR)(buf});

char* CProjectView: :MyCharNext(char* pszStr)
(

BYTE bRange = 0;
while«bRange < 12) && (vbLBRange[bRange] != NULL»
{

if«*pszStr >= vbLBRange[bRange]) &&
(*pszStr <= vbLBRange[bRange + I]))
return (pszStr + 2); IIskip two bytes

bRange+= 2;
}
return (pszStr + 1);

/I SetTabStops.cpp : implementation file
/I

#include "stdafx.h"
#include "Project.h"
#include "SetTabStops.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#Undef THIS_FILE

89

static char THIS_FILE[] = _FILE_;
#endif

CSetTabStops::CSetTabStops(CWnd* pParent /*=NULL*f)
: CDialog(CSetTabStops::IDD, pParent)

II{ {AFX_DATA_INIT(CSetTabStops)
m_nTabStops = 0;
m_Unit= 2;
II} }AFX_DATA_INIT

void CSetTabStops: :DoDataExchange(CDataExchange* pDX)
{

CDiaJog::DoDataExchange(pDX);
II{ {AFX_DATA_MAP(CSetTabStops)
DDX_Text(pDX, IDC_EDIT_TAB, ffi_nTabStops);
DDV_MinMaxUlnt(pDX, ill_nTabStops, 1,2(0);
DDX_Radio(pDX, IDe_RADIO_INCH, ill_Unit);
/1} }AFX_DATA_MAP

BEGIN_MESSAGE_MAP(CSetTabStops, CDialog)
II{ (AFX_MSG_MAP(CSetTabStops)
II} }AFX_MSG_MAP

END_MESSAGE_MAPO

////////////////////////////////1/111I////1/1///11I////11I////////////////11/
II CSetTabStops message handlers

BOOL CSetTabStops: :OnInitDialogO
{

CDialog::OnlnitDialogO;
/I m_nTabStops = 4;
// InvalidateO;

return TRUE; /I return TRUE unless you set the focus to a control
// EXCEPTION: OCX Property Pages should return FALSE

)
#if !defined(AFX_ADDRESSDLG_H_882DFA31_1793_11 D4_9E 17_006008AFEE67_INCLUDED_)
#define AFX_ADDRESSDLG_H_882DFA31_1793_llD4_9E17_006008AFEE67_INCLUDED_

#if _MSC_VER > 1000
#pragrna once
#endif // _MSC_VER > 1000
// AddressDJg.h : header file

class CAddressDlg : public CDialog
{
// Construction
private:

UINf amastates[6];
UINf chsprovinces[6];

public:
static CComboBox* ffi_pComboState;

90

static CComboBox* m_pComboCountry;
public:

CAddressDlg(CWnd* pParent =NULL); /I standard constructor

// Dialog Data
III (AFJCDATA(CAddressDlg)
enum { IDD = IDD_ADDRESS };
CComboBox m_comboState;
CComboBox m30mboCty;
CString m_strCty;
CString m_strState;
CString m_strAdr1;
CString m_strAdr2;
CString m_strZip;
/1} }AFX_DATA

// Overrides
/I ClassWizard generated virtual function overrides
/I{ (AFX_VIRTUAL(CAddressDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); 1/ DDXlDDV support
/I} }AFX_VIRTUAL

1/ Implementation
protected:

// Generated message map functions
lit (AFX_MSG(CAddressDlg)
virtual BOOL OnlnitDialogO;
/II} AFX_MSG
DECLARE_MESSAGE_MAP()

};

/I{ {AF)CINSERT_LOCATION}}
/I Microsoft Visual C++ will insert additional declarations immediately before the previous line.

#endif //
!defined(AFX_ADDRESSDLG_H_882DFA31_179LI1D4_9E17_OO6008AFEE67_INCLUDED_)
#if
!defined(AFX_DATETIMEDLG_H_DlAE6AAS_1702_IID4_9EI5_006008AFEE67_INCLUDED_)
#define AFX_DATETIMEDLG_H_D 1AE6AAS_1702_1 1D4_9E15_006008AFEE67_INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif /I _MSC_VER > 1000
// DateTimeDlg.h : header file
1/

#include "MyDialog.h"
///////11I11I1//1/1I11I//////11///////////11/11I//11//////////////////1/1//1/
/I CDateTimeDlg dialog

class CDateTimeDlg : public CMyDialog
{
// Construction

9J

public:
CDateTirneDlg(CWnd* pParent = NULL); 1/ standard constructor

// Attributes
static SYSTEMTIME m_time;
static LCID ID_id;
static CListBox* ID_pListBox;
static BOOL CALLBACK DateFmtEnumProc(LPTSTR IpszFormatString);
static BOOL CALLBACK TimeFmtEnumProc(LPTSTR IpszFormatString);

// Dialog Data
//{ (AFX_DATA(CDateTimeDlg)
enum {IDD =IDD_DATETIMEDLG };
CListBox ID_listbox;
CString m_selection;
/1} ~AFX_DATA

1/ Overrides
1/ ClassWizard generated virtual function overrides
//{ (AFX_VIRTUAL(CDateTimeDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDXlDDV support
/1} }AFX_VIRTUAL

// Implementation
protected:

static const DWORD ID_nHelpIDs[J;
virtual const DWORD* GetHelpIDsO {return ffi_nHelpIDs;}

// Generated message map functions
I/{ (AFX_MSG(CDateTimeDlg)
virtual BOOL OnlnitDialogO;
afx_msg void OnDblclkDatetimeListO;
//} }AFX_MSG
DECLARE_MESSAGE_MAPO

};

//{ {AFX_INSERT_LOCATION}}
/I Microsoft Visual C++ will insert additional declarations immediately before the previous line.

#endif //
!defined(AFX._DATETIMEDLG_H_D IAE6AA5_1702_1 ID4_9E15_006008AFEE67_INCLUDED-J
#if!defined(AFX_GOLINEDLG_H_129BI510_184C_IlD4_9E18_006008AFEE67_INCLUDED_)
#define AFX_GOLINEDLG_H_129B151O_184C_IID4_9EI8_006008AFEE67_INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
1/ GoLineDlg.h : header file
/I

//1/1/1/11/1/1///////////1/11///11/1/1/1//1/1//1/1/1////11//1/1/////1/11/111/
/I CGoLineDlg dialog

92

class CGoLineDlg : public CDialog
{
// Construction
public:

CGoLineDlg(CWnd* pParent =NULL); // standard constructor

// Dialog Data
//{{ABCDATA(CGoLineDIg)
enum { IOD = IOD_GOLINE_DIALOG };
int m_nLine;
II} }AFX_DATA

// Overrides
// ClassWizard generated virtual function overrides
IiI {ABCVIRTUAL(CGoLineDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDXlDDV support
/1} }AFX_VIRTUAL

// Implementation
protected:

// Generated message map functions
IiI {AFX_MSG(CGoLineDlg)
virtual void OnCanceJO;
/1} }AFX_MSG
DECLARE_MESSAGE_MAPO

);

//1 {AFX_INSERT_LOCATlON}}
// Microsoft Visual C++ will insert additional declarations immediately before the previous line.

#endif //
!defined(AFX_GOLINEDLG_H_129B 151 0_1 84C_l1 D4_9E 18_006008AFEE67_INCLUD D_)
// MainFrm.h : interface of the CMainFrame class
//
11///11///1//11/////11////////////1/1///////////11////////////11//////////1//

#if !defined(AFX_MAINFRM_H_DlAE6A7D_1702_11D4_9E15_006008AFEE67_INCLUDED_)
#define AFX_MAINFRM_H_D IAE6A7D_1702_11D4_9EI5_006008AFEE67_INCLUDED_

#iCMSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CMainFrame: public CFrameWnd
{

protected: // create from serialization only
CMainFrame{);
DECLARE_DYNCREATE(CMainFrame)

/I Attributes
public:

9~

// Operations
public:

/I Overrides
/I ClassWizard generated virtual function overrides
I/{ (ABCVIRTUAL(CMainFrame)
virtual BaaL PreCreateWindow(CREATESTRUCT& cs);
II} }ABCVIRTUAL

1/ Implementation
public:

virtual-CMainFrameO;
#ifdef _DEBUG

virtual void AssertValidO const;
virtual void Dump(CDumpContext& dc) canst;

#endif

protected: /I control bar embedded members
CStatusBar m_wndStatusBar;
CToolBar m_wndToolBar;
CToolBar m_wodClrBar;

1/ Generated message map functions
protected:

/I{ {AFX_MSG(CMainFrame)
afx_msg int OnCreate(LPCREATESTRUCT IpCreateStruct);

/I NOTE - the ClassWizard will add and remove member functions here.
/I DO NOT EDIT what you see in these blocks of generated code!

I/l}AFX_MSG
DECLARE_MESSAGE_MAP()

};

111111/1/111/1111//1//1///1//111///11111/1//1//1/11//11111111/111////1/1/1//1

/I{ {AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately before the previous line.

#endif 1/
!defined(AFX_MAlNFRM_H_DlAE6A7D_1702_1lD4_9E15_006008AFEE67_INCLUDED_}
#ifndef _MYDIALOG_H
#define _MYDIALOG_H

#if _MSC_VER > 1000
#pragma once
#endif /I _MSC_VER > 1000
// MyDialog.h : header file
//

/11///////1////111/111//111///111/11/111//1//1/11/11/11/1/1/1//1/////11///111
// CMyDialog dialog

class CMyDialog : public CDialog
{
// Construction
public:

CMyDialogO;

94

CMyDialog(LPCTSTR IpszTemplateName. CWnd* pParentWnd =NULL);
CMyDialog(UINT nIOTemplate, CWnd* pParentWnd = NULL);

1/ Overrides
1/ ClassWizard generated virtual function overrides
I/{ (AFX_VIRTUAL(CMyOialog)
protected:
virtual void OoOataExchange(COataExchange* pOX); 1/ OOXIDOV support
I/llAFX_VIRTUAL

II Implementation
protected:

virtual const DWORD* GetHelpIDsO = 0;
II Generated message map functions
III (AFX_MSG(CMyDialog)
virtual BOOL OnInitDialog0;
II} }AFX_MSG
afx_msg LONG OnHelp(UlNT wParam, LONG lParam);
afx_msg LONG OnHelpContextMenu(UlNT wParam, LONG lParam);
DECLARE_MESSAGE_MAPO

l;

#endif
#if
!defined(AFX_MYSPLASHWND_H_6DB02731_172C_IID4_9E16_006008AFEE67_INCLUDED_)
#define AFX_MYSPLASHWND_H_6DB02731_172C_IID4_9E16_006008AFEE67_INCLUOEO_

#if _MSC_VER > 1000
#pragma once
#endif II_MSC_VER > 1000
II MySplashWnd.h : header file
II

1111111111/11I1111/1/111//11//11///1111111I//1/1/111111111111/1111111/11111/1
II CMySplashWnd dialog

class CMySplashWnd : public COialog

I
II Construction
public:

CMySplashWnd(CWnd* pParent = NULL); 1/ standard constructor
BOOL Creatc(CWnd* pParent);

II Dialog Data
III {AFX_DATA(CMySplashWnd)
enum { IDO = IDD_SPLASH };

/1 NOTE: the ClassWizard will add data members here
I/} }AFX_DATA

II Overrides
/1 ClassWizard generated virtual function overrides
III (AFX_VlRTUAL(CMySplashWnd)
protected:
virtual void OoDataExchange(CDataExchange* pOX); /1 DDXJDOV support

95

II} }AFX_VIRTUAL

1/ Implementation
protected:

1/ Generated message map functions
I/{ {AFX_MSG(CMySplashWnd)
virtual BOOL OnInitDialogO;
I/} }AFX_MSG
DECLARE_MESSAGE_MAP()

};

I/{ {AFX_INSERT_LOCATION}}
1/ Microsoft Visual C++ will insert additional declarations immediately before the previous line.

#endif /I
!defined(AFX_MYSPLASHWND_H_6DBD2731_172C_IlD4_9EI6_006008AFEE67_INCLUDED-J
1/ Project.h : main header file for the PROJECT application
1/

#if !defined(AFX]ROJECT_H_DlAE6A79_1702_11D4_9E15_006008AFEE67_INCLUDED-.J
#define AFX]ROJECT_H_D lAE6A79_1702_1 ID4_9E15_006008AFEE67_INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif 1/ _MSC_VER > 1000

#ifndef _AFXWIN_H_
#error include 'stdafx.h' before including this file for PCH

#endif

#include "resource.h" 1/ main symbols
#include "MySplashWnd.h"

11I1/11I1/11111I111/1/11I111/1111/11111111111/11/1/11111/11111/1/111/1/1//11/
/I CProjectApp:

#define PROJ_UINT_CHINESE 936
#define PROJ_UINT_ENGLISH 1252

class CProjectApp : public CWinApp
{
public:

HINSTANCE m_hlnstResDLL;
CProjectAppO;
int localeACP;

private:
DWORD m_dwSplash;
CMySplashWnd m_splash;

1/ Overrides
/I ClassWizard generated virtual function overrides
/I { (AFX_VIRTUAL(CProjectApp)
public:
virtual BOOL InitInstanceO;
virtual BOOL OnIdle(LONG ICount);
virtual int ExitInstanceO;

96

/1} }AFX_VIRTUAL

//Implementation
I/IIAFX_MSG(CProjectApp)
afx_msg void OnAppAboutO;

/I NOTE - the ClassWizard will add and remove member functions here.
/I DO NOT EDIT what you see in these blocks of generated code!

/1} }AFX_MSG
DECLARE_MESSAGE_MAPO

};

111/1//1/1/111/11/11/11/11//111/11/1/1/11/1/1/1/1/11/11I1/111/11/111I11I/////

//1 {AFX_INSERT_LOCATlON}}
// Microsoft Visual C++ will insert additional declarations immediately before the previous line.

#endifll !defined(AFX_PROJECT_H_DlAE6A79_1702_11D4_9EI5_006008AFEE67_INCLUDED_)
/I ProjectDoc.h : interface of the CProjectDoc class
/I

#if !defined(AFX_PROJECTDOC_H_D1AE6A7F_1702_11D4_9EI5_006008AFEE67_INCLUDED_)
#defineAF)CPROJECTDOC_H_DlAE6A7F_1702_1lD4_9E15_006008AFEE67_1NCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif II _MSC_VER > 1000

class CProjectDoc : public CDocument
[
protected: /I create from serialization only

CProjectDocO;
DECLARE_DYNCREATE(CProjectDoc)

// Attributes
public:

// Operations
public:

/1 Overrides
1/ ClassWizard generated virtual function overrides
/I{ {AFX_VIRTUAL(CProjectDoc)
public:
virtual BOOL OnNewDocumentO;
virtual void Serialize(CArchive& ar);
II} }AFX_VIRTUAL

/1 Implementation
public:

virtual -CProjectDocO;
#ifdef _DEBUG

virtual void AssertValidO const;
virtual void Dump(CDumpContext& de) const;

#endif

97

protected:

II Generated message map functions
protected:

II{ (AFX_MSG(CProjectDoc)
1/ NOTE - the ClassWizard will add and remove member functions here.
II DO NOT EDIT what you see in these blocks of generated code!

/I} }ABCMSG

DECLARE_MESSAGE_MAP()
};
I/{ {AFX_INSERT_LOCATION}}

#endif II
!defined(AFX_PROJECTDOC_H_D1AE6A7F_1702_1lD4_9E 15_006008AFEE67_INCLUDED~
II ProjectView.h : interface of the CProjectView dass
II

#if!defined(AFX]ROJECTVIEW_H_DlAE6A81_1702_11D4_9EI5_006008AFEE67_INCLUDED_)
#define AFX_PROJECTVIEW_H_DlAE6A81_1702_llD4_9EI5_006008AFEE67_INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif /I _MSC_VER > 1000

class CGoLineDlg;

class CProjectView : public CEditView
{
private:

BOOL m_bAddress;
CPINFO CPInfo;
BYTE *vbLBRange;
BOOL vtDBCS;

public:
CGoLineDlg* m_pGoLine;
COLORREF m_crColor;

protected: 1/ create from serialization only
CProjectView();
DECLARE_DYNCREATE(CProjectView)

II Attributes
public:

static void InitailizeView();
Ilstatic void TerminateView();
CProjectDoc* GetDocument();
char* MyCharNext(char* pszStr);

/I Operations
public:

II Overrides
1/ ClassWizard generated virtual function overrides
III {AFX_VIRTUAL(CProjectView)
public:

98

virtual void OnDraw(CDC* pDC); /I overridden to draw this view
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
virtual void OnInitialUpdateO;
protected:
virtual BOOL OnPreparePrinting(CPrintInfo* plnfo);
virtual void OnBeginPrinting(CDC* pDC. CPrintInfo* pInfo);
virtual void OnEndPrinting(CDC* pDC, CPrintlnfo* pInfo);
II})AFX_VIRTUAL

II Implementation
public:

virtual-CProjectViewO;
static int s_ColorMap[];
static COLORREF GetColorRef(UINf nID);

#ifdef _DEBUG
virtual void AssertValidO const;
virtual void Dump(CDumpContext& de) const;

#endif

protected:

UINT m_uTimerID; II ==0 when no outstanding

static LOGFONT NEAR m_lfDefFont;
static LOGFONT NEAR ffi_lfDefFontOld;
CFont m_font;

static LOGFONT NEAR ffi_ltDefPrintFont;
static LOGFONT NEAR m_lfDefPrintFontOld;
CFont m_fontPrint;

static UINT m_nDeffabStops;
static UINT m_nDeITabStopsOld;
static BOOL ID_bDefWordWrap;
static BOOL m_bDetwordWrapOld;

UINT m_nPreviewPage;
CTime m_timeHeader;
CTime m_timeFooter;

CString m_strAdrl;
CString m_strAdr2;
CString m_strState;
CString m_strzip;
CString m_strCty;

1/ Generated message map functions
protected:

III (AF)CMSG(CProjectView)
afx_msg void OnlnsertDateandtimeO;
afx_msg void OnChooseFontO;
afx_msg void OnFormatTabstopO;
afx_msg void OnlnsertCountO;
afx_msg void OnFormatAddress();

99

afx_IDsg void OnInsertPasteaddressO;
afx_msg void OnEditGoto();
afx_msg void OnContextMenu(CWnd* pWnd. CPoint point);
afx_msg void OnFormatSetprinterfontO;
afx_msg void OnInsertCharcountO;
/1} }AFX_MSG

afx_msg void OnColor(UlNT nID);
afx_IDsg void OnUpdateColor(CCmdUl* pCmdun;
DECLARE_MESSAGE_MAPO

};

#ifndef _DEBUG // debug version in ProjectView.cpp
inline CProjectDoc* CProjectView::GetDocumentO

I return (CProjectDoc*)rn_pDocument; }
#endif

1/1//1//11/////////////////////////////11/1IIII/1////1/1///II1//11/1//IIIIIJI

/I{ {AFX_INSERT_LOCATION}}
/1 Microsoft Visual C++ will insert additional declarations immediately before the previous line.

100
128

129
129
130

130
131

138

134
135

135
136

137
138

131
132

132
133

133
134

139
140
141
142

143
144
145
146

#endif II
!defined(AFXYROJECTVIEW_H_D1AE6A81_1702_IID4_9EI5_006008AFEE67_INCLUDED-J
//1 {NO_DEPENDENCIES}}
/1 Microsoft Developer Studio generated include file.
/1 Used by Project.rc
II
#define IDD_ABOUTBOX
#define IDR_MAINFRAME
#define IDR_PROJECTYPE
#defineIDS_PROJECT_TITLE
#define IDD_DATETIMEDLG
#define IDS_COUNT_CHAR
#define lDD_SET_TABSTOPS
#define IDS_STATE1
#define IDD_SPLASH
#define IDS_STATE2
#define IDD_ADDRESS
#define IDS_STATE3
#define IDS_STATE4
#define IDD_GOLINE_DIALOG
#define IDS_STATE5
#define IDR_TEXTYOPUP
#define IDS_STATE6
#define IDS_PROVINCE 1
#define IDSYROVINCE2
#define IDR_MYCLR_TOOLBAR
#define IDSYROVINCE3
#define IDSYROVINCE4
#define IDS_PROVINCE5
#define IDSYROVINCE6
#define IDS_AMERICA
#define IDS_CHINA
#define IDS_JAPAN
#define IDS_KOREA

100

147
148
149
150
1000

1001
1002

1003
1004
1005
1006
1007

1008
1009

1011
1012

1013
1014

1015
1016

1017
1018

1019
1020
1021

1023
1024

#define IDS_CANADA
#define IDS_NO_ADDRESS
#define IDS_INVALlD_LINE
#define IDS_BIG_LINENUM
#define IDC_DATETIME_LIST
#define IDC_DATETIME_FORMAT
#define IDC_STATIC_TAB
#define IDC_EDIT_TAB
#define IDC_STATIC_I
#define IDe_STATIC_2
#define IDC_STATIC_3
#define IDC_STATIC_4
#define IDC_STATIC_ADRI
#define IDC_STATIC_ADR2
#define IDC_EDIT_ADRI
#define IDC_EDIT_ADR2
#define IDC_COMBO_SATATE
#define IDC_COMBO_COUNTRY
#define IDC_STATIC_STATE
#define IDe_STATIC_COUNTRY
#define IDC_STATIC_ZIP
#define IDe_EDIT_ZIP
#define IDC_STATIC_GOLINE
#define IDC_EDIT_GOLINE
#define IDe_RADIO_INCH
#define IDe_RADIO_CM
#define IDC_MEASURE_GROUP
#define IDC_RADIO_DEF 1025
#define ID_INSERT_DATEANDTIME 32771
#define ID_FORMAT_BULLETSTYLE 32773
#define ID]ORMAT3ABSTOP 32774
#define ID_CHOOSE_FONT 32775
#define lD_INSERT_COUNTCHARACTERS 32776
#define ID]ORMAT_ADDRESS 32777
#define ID_INSERT]ASTEADDRESS 32778
#define ID_EDIT_GOTO 32780
#define ID_COLORO 32781
#define ID_COLORI 32783
#define ID_COLOR2 32784
#define ID_COLOR3 32785
#define ID_COLOR4 32786
#define ID_COLORS 32787
#define ID_COLOR6 32788
#define ID_COLOR7 32789
#define ID_COLOR8 32790
#define ID_COLOR9 32791
#define ID_COLORI0 32792
#define ID_COLORll 32793
#define ID_COLOR12 32794
#define ID_COLOR13 32795
#define ID_COLORI4 32796
#define ID_COLORI5 32797
#define ID_FORMAT_SETPRINTERFONT 32814
#define ID_FORMAT_PAGESETUP 32815
#define ID_INSERT_CHARCOUNT 32816
#define IDP_ERR_GET_DEVICE_DEFAULTS 61446

101

140
32819

1026
101

// Nex.t default values for new objects
/I
#ifdef APSTUDIO_INVOKED
#ifndef APSTUDIO_READONLY_SYMBOLS
#define _APS_3D_CONTROLS 1
#define _APS_NEXT_RESOURCE_VALUE
#define _APS_NEXT_COMMAND_VALUE
#define _APS_NEXT_CONTROL_VALUE
#define _APS_NEXT_SYMED_VALUE
#endif
#endif
#if !defined(AFX_SETTABSTOPS_H_I2E9ED91_l714_1lD4_9E15_006008AFEE67_INCLUDED_)
#define AFX_SEITABSTOPS_H_12E9ED91_1714_llD4_9E15_006008AFEE67_INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
// SetTabStops.h : header file
//

///////////////////////11///1///11////////////////////III/11////////11///1///
// CSetTabStops dialog

class CSetTabStops : public CDialog
{
1/ Construction
public:

CSetTabStops(CWnd* pParent = NULL); 1/ standard constructor

// Dialog Data
//1 {AFX_DATA(CSetTabStops)
enum { IDD = IDD_SET_TABSTOPS };
UINT ffi_nTabStops;
int m_Unit;
/1} }AFX_DATA

1/ Overrides
1/ ClassWizard generated virtual function overrides
/I{ {AFX_VIRTUAL(CSetTabStops)
protected:
virtual void DoDataExchange(CDataExchange* pDX); 1/ DDXlDDV support
/1} }AFX_VIRTUAL

/1 Implementation
protected:

// Generated message map functions
1/1 IAFX_MSG(CSetTabStops)
virtual BOOL OnInitDialog();
//} }AFX_MSG
DECLARE_MESSAGE_MAPO

J;

102

IiI {AFX_INSERT_LOCATION}}
II Microsoft Visual C++ will insert additional declarations immediately before the previous line.

#endif II
!defined(AFX_SETTABSTOPS_H_12E9ED91_1714_IID4_9E15_006008AFEE67_INCLUDED-J
II ResourceDll.cpp : Defines the initialization routines for the DLL.
II

#include "stdafx.h"
#include <afxdllx.h>

#ifdef _DEBUG
#define new DEBUG_NEW
#Undef THIS_FILE
static char THIS_FILE[] = _FILE_;
#endif

static AFX_EXTENSION_MODULE ResourceDllDLL = {NULL, NULL };

extern "e" int APIENTRY
DllMain(HINSTANCE hInstance, DWORD dwReason, LPVOID IpReserved)
{

II Remove this if you use IpReserved
UNREFERENCED]ARAMETER(lpReserved);

if (dwReason = DLL]ROCESS_ATTACH)
{

TRACEO("RESOURCEDLL.DLL Initializing!\n");

II Extension DLL one-time initialization
if (!AfxInitExtensionModule(ResourceDIIDLL, hlnstance»

return 0;
new CDynLinkLibrary{ResourceDllDLL);

}
else if (dwReason = DLL]ROCESS_DETACH)
{

TRACEO("RESOURCEDLL.DLL Terminating!\n");
/1 Terminate the library before destructors are called
AfxTermExtensionModule(ResourceDllDLL);

}
return 1; /I ok

103

APPENDIXC

import java.awt.*;
import java.awt.event.*;
import java.beans. *;
import java.io.*;
import java.net.URL;
import java.util.*;

Code for Java Application

import javax.swing.text.*;
import javax.swing.undo.*;
import javax.swing.event.*;
import javax.swing.*;

class Jthes extends Wanel {

private static ResourceBundle resources;

static {
try {

resources =ResourceBundle.getBundLe("resources.Jthes",
Locale.getDefaultO);

System.out.println(Locale.getDefaultO);
} catch (MissingResourceException rnre) {

System.err.println("resourceslJthes.properties not found ");
System.exit(l);

IthesO {
super(true);

try {
UIManager.setLookAndFeel(UIManager.getCrossPlatformLookAndFeelCIassNameO)

} catch (Exception exc) (
System.err.println("Error loading L&F: " + exc);

setBorder(BorderFactory.createEtchedBorderO);
setLayout(new BorderLayout());

104

editor = createEditor();
editor.setFont(new Font("monospaced", Font.PLAIN, 12»;
editor.getDocumentO·addUndoableEditListener(undoHandler);

commands = new HashtableO;
Action[] actions = getActionsO;
for (int i =0; i < actions.length; i++) (
Action a =actions[i);
commands.put(a.getValue(Aetion.NAME), a);
}

JSerollPane seroBer =new JScrollPaneO;
JViewport port =scroller.getViewportO;
port.add(editor);
try {

String vpFlag =resources.getString("ViewportBackingStore");
Boolean bs = new Boolean(vpFlag);
port.setBackingStoreEnabled(bs .booleanValueO);

} catch (MissingResourceException mre) {
}

menultems = new HashtableO;
menubar =createMenubar();
add("North", menubar);
JPanel panel = new JPanelO;
panel.setLayout(new BorderLayoutO);
panel.add("Center", scroller);
add("Center", panel);
add("South", createStatusbar());
add("South", createStatusbar()};

}

public static void main(String[] args) {
try (
String vers =System.getProperty("java.version");
if (vers.eompareTo(" 1.1.2") < 0) (

System.out.printin("!!!WARNING: Swing must be run with a " +
"1.1.2 or higher version VM' !!");

}
JFrame frame =new JFrameO;
frame.setTitie(resources.getString("Titie"»;

frame.setBackground(Color.lightGray);
frame.getContentPaneO.setLayout(new BorderLayout();
frame.getContentPaneO.add("Center", new Jthes());
frame.addWindowListener(new AppCloserO);
frame.paekO;
frame.setSize(500, 600);

frame.showO;
} catch (Throwable t) (

System.out.printin("uncaught exception: " + t);
t.printStackTraceO;

}
public Action[] getActionsO (
eturn TextAction.augmentList(editor.getActionsO. defaultActions);
}

105

protected ITextComponent createEditorO {
etum new JTextAreaO;
}

protected ITextComponent getEditorO {
return editor;

}

protected static final class AppCloser extends WtndowAdapter {
public void windowClosing(WindowEvent e) {

System.exit(D);
}

}

protected Frame getFrameO {
for (Container p = getParentO; p != null; p = p.getParent()) {

if (p instanceof Frame) {
if (p instanceof Frame) (

return (Frame) p;
}

}
return null;

}

protected JMenuItem createMenultem(String cmd) (
JMenultem mi = new JMenultem(getResourceString(cmd + labeISuffix»;

URL urI =getResource(cmd + imageSuffix);
if (uri != null) {

mi.setHorizontaITextPosition(JButton.RIGHT);
II mi.setIcon(new ImageIcon(url»;

}
String astr =getResourceString(cmd + actionSuffix);
if (astr == null) {

astr = cmd;
}
mi.setActionCommand(astr);
Action a = getAction(astr);
if (a != null) (

mi.addActionListener(a);
a.addPropertyChangeListener(createActionChangeListener(mi» ;
mi.setEnabled(a.isEnabledO);

} else (
mi.setEnabled(false);

}
menultems.put(cmd, mi);
return mi;

protected JMenultem getMenultern(Strimg cmd) (
protected JMenultem getMenultem(String cmd) (
return (JMenultem) menultems.get(crnd);

}

protected Action getAction(String cmd} {
return (Action) commands.get(cmdJ;

)

106

protected String gelResourceString(String nm) {
String str;
try (

str =resources.getString(nm);
} catch (MissingResourceException mre) {

str =null;
}
return str;

}

protected URL getResource(String key) {
String name =getResourceString(key);
if (name != null) (

URL uri = this.getCIassO.gelResource(name);
return urI;

return null;
}

protected Container getToolbarO {
return toolbar;

}

protected JMenuBar getMenubarO {
return menubar;

}

protected JButton createToolbarButton(String key) (
URL urI =gelResource(key + imageSuffix);

JButton b = new JButton(new ImageIcon(url» {
public float getAlignmentYO { return 0.5f; }

};
b.setRequestFocusEnabled(false) ;
b.setMargin(new Insets(1.1 ,1,1 »;

String astr =getResourceString(key + actionSuffix);
if (astr == null) (

astr =key;
}
Action a =getAction(astr);
if (a != null) {

b.setActionCommand(astr);
b.addActionListener(a);

} else {
b.setEnabled(false);

String tip =getResourceString(key + tipSuffix.);
if (tip != null) {

b.setTooITipText(tip) ;

return b;
}

protected String[) tokenize(String input) {
Vector y =new VectorO;

107

...

StringTokenizer t =new StringTokenizer(input);
String cmd[];

while (t.hasMoreTokens())
v.addElement(1.nextTokenO);

cmd =new String[v.sizeOJ;
for (int i = 0; i < cmd.length; i++)

cmd[i] =(String) v.elementAt(i);

retWll cmd;
}

protected JMenuBar createMenubarO {
JMenuItem mi;
JMenuBar mb =new JMenuBarO;

String[] menuKeys = tokenize(getResourceString("menubar"»;
for (int i = 0; i < menuKeys.length; i++) {

JMenu m =createMenu(menuKeys[i]);
JMenu m = createMenu(menuKeys[i]);
if (m != null) {

mb.add(m);
}

I
return mb;

}

protected JMenu createMenu(String key) I
String[] itemKeys = tokenize(getResourceString(key»;
JMenu menu =new JMenu(getResourceString(key + "Label"»;
for (int i =0; i < itemKeys.length; i++) {

if (itemKeys[i].equals(" -"» {
menu.addSeparatorO;
I else {

JMenultem mi = createMenuItem(iternKeys[i]);
menu.add(mi);

I

return menu;
}

protected PropertyChangeListener createActionChangeListener(JMenultem b)
retWll new ActionChangedListener(b);

I

private class ActionChangedListener implements PropertyChangeListener {
JMenultem menuItem;

ActionChangedListener(JMenultem mil {
superO;
this.menuItem = mi.;

}
public void propertyChange(PropertyChangeEvent e) {

String propertyName = e.getPropertyNameO;
if (e.getPropertyNameO.equals(Action.NAME» {

String text =(String) e.getNewValueO;
menultem.setText(text);

108

} else if (propertyName.equals("enabled"» (
Boolean enabledState = (Boolean) e.getNewValueO;
menuItem.setEnabled(enabledState.booleanValueO);

private JTextComponent editor;
private Hashtable commands;
private Hashtable menultems;
private JMenuBar menubar;
private IToolBar toolbar;
private JComponent status;
private JFrame elementTreeFrame;
protected ElementTreePanel elementTreePanel;

protected FileDialog fileDialog;
protected UndoableEditListener undoHandler =new UndoHandlerO;
protected UndoManager undo = new UndoManagerO;
public static final String imageSuffix ="Image";
public static final String labelSuffix ="Label";

public static final String actionSuffix ="Action";

public static final String tipSuffix = "Tooltip";
public static final String openAction = "open";
public static final String newAction ="new";
public static final String saveAction = "save";
public static final String exitAction = "exit";
public static final String showElementTreeAction ="showElementTree";

class UndoHandler implements UndoableEditListener (

public void undoableEditHappened(UndoableEditEvent e) {
undo.addEdit(e.getEditO);
undoAction.updateO;
redoAction.updateO;

}
}

class StatusBar extends JComponent {

public StatusBarO f
superO;
setLayout(new BoxLayout(this, BoxLayout.X_AXIS»;

public void paint(Graphics g) {
super.paint(g);

private UndoAction undoAction = new UndoActionO;
private RedoAction redoAction = new RedoActjonO;

109

private Action[) defaultActions = {
new NewActiooO,
new OpenActionO,
new ExitActionO.
new ShowElementTreeActionO,

undoAction,
redoAction

};

class UndoAction extends AbstractAction {
public UndoActionO {

super("Undo");
setEnabled(false);

public void actionPerformed(ActionEvent e) {
try {

undo.undoO;
I catch (CannotUndoException ex) {

System.out.println("Unable to undo: " + ex);
ex.printStackTraceO;

}
}
updateO;
redoAction.updateO;

protected void update() {
if(undo.canUndo(» {

setEnabled(true);
putValue(Action.NAME, undo.getUndoPresentationNameO);

I
else {

setEnabJed(false);
putVaJue(Action.NAME. "Undo");

I
}

)

class RedoAction extends AbstractAction {
public RedoActionO {

super("Redo");
setEnabled(false);

public void actionPerformed(ActionEvent e) {
try {

undo.redoO;
} catch (CannotRedoException ex) {

System.out.println("Unable to redo: .. + ex);
ex.printStackTraceO;

}
updateO;
undoAction.update();

110

protected void updateO (
if(undo.canRedo(» (

setEnabled(true);
putValue(Action.NAME, undo.getRedoPresentationNameO);

}
else {

setEnabled(false);
putValue(Action.NAME, "Redo");

}
}

}

class OpenAction extends NewAction {

OpenActionO (
super(openAction);

public void actionPerformed(ActionEvent e) {
Frame frame =getFrameO;
if (fileDialog = null) (

tileDialog = new FileDialog(frame);
}
fileDialog.setMode(FileDialog.LOAD);
fileDialog.showO;

String file =fileDialog.getFileO;
if (file = null) {

return;
}
String directory =fileDialog.getDirectory();
File f =new File(directory, file);
if (f.exists()) (

Document oldDoc =gelEditorO.getDocumentO;
if(oldDoc != null)

oldDoc.removeUndoableEditListener(undoHandler);
if (elementTreePanel != null) {

elementTreePanel.setEditor(null);
}
getEditorO.setDocumentlnew PlainDocumentO);
frame.setTitle(file);
Thread loader = new FileLoader(f, editor.getDocument
loader.start();

}
}

}

class NewAction extends AbstractAction {

NewActionO (
super(newAction);

NewAction(String nm) (
super(nm);

111

public void actionPerformed(ActionEvent e) {
Document oldDoc = getEditorO.getDocumentO;
if(oldDoc != null)
oldDoc.removeUndoableEditListener(undoHandler);
getEditorO.setDocument(new PlainDocumentO);
getEditorO.getDocumentO.addUndoableEditListener(undoHandler);
revalidateO;

}
}

class ExitAction extends AbstractAction {

ExitActionO {
super(exitAction) ;

public void actionPerformed(ActionEvent e) {
System.exit(O);

}
class ShowElementTreeAction extends AbstractAction {

ShowElementTreeActionO {
super(showElementTreeAction);

ShowElementTreeAction(String nm) {
super(nm);

public void actionPerformed(ActionEvent e) {
if(elementTreeFrame == nul\) {
1/ Create a frame containing an instance of
1/ ElementTreePanel.
try {

String title =resources.getString
("ElementTreeFrameTitle");

elementTreeFrame =new JFrame(title);
} catch (MissingResourceException mre) {

elementTreeFrame = new JFrameO;

elementTreeFrame.addWindowListener(new WindowAdapterO {
public void windowClosing(WindowEvent weeee) {

elementTreeFrame.setVisible(false);
}

});
Container fContentPane = elementTreeFrame.getContentPaneO;

fContentPane.setLayout(new BorderLayoutO);
elementTreePanel =new ElementTreePanel(getEditor());
fContentPane.add(elementTreePanel);
elementTreeFrame.packO;

}
elementTreeFrame.showO;

112

}
}

113

v'TfA

Candidare for the Degree of

~,; INIEF...l:VA11ONAJ fZATION Al"\:'D LOCAUZ,~.TION FOR C~'ESE
SOFIWi\F..E

~~D-~ Rr..;rn; ~~ Hm;~~ China 00 Octot--~ Hi~ 1910, mesoc~ son of
BiilTh~ft'lmztgmg <rnd Sbilmg Peng

Ecfucation:- GradUated from rhe Chemical Engi-rf(..->er1ng Department of Hunan
University (China) in July, 1991, and received the Bachelor's degree of
Chemical Engineering. Completed the requirements of the Master of
Science at Oklahoma State University in July 2000.

Professional Experience: Employed by KaiDi Chemical (HK) Ltd. Shenzhen,
China, as a Chemical Engineer, 1991 to 1997; employed by Sterling
Software San Rafael, CA, as a Software Co-Engineer, July 1999 to
December 1999; employed by Oklahoma State University, Department of
Computer Science, as a Research Assistant, March L999 to July 1999, and
January 2000 to May 2000.

