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CHAPTER 1

INTRODUCTION

P. syringae is a necrogenic bacterial plant pathogen that causes

economically important diseases of plants in many parts of the world. The typical

disease symptoms induced by P. syringae include leaf spots, blights, and galls

(Alfano and Collmer, 1996). The species P. syringae is subdivided into pathovars

(pathogenic variants, pvs.), which vary in host specificity. The pathogenesis of P.

syringae in susceptible host plants involves prolonged bacterial multiplication,

dissemination to surrounding tissues, and production of macroscopic symptoms

characteristic of the disease. During the incompatible interaction with resistant

host plants, P. syringae elicits a plant defense reaction known as the

hypersensitive response (HR). The plant cells in contact with the pathogen

become rapidly necrotic, which restricts the multiplication and spread of the

pathogen and results in host resistance. Although phytopathogenic bacteria are

diverse in their taxonomy and pathology, they all contain hypersensitive response

and pathogenicity (hrp) genes that enable them to elicit the HR in resistant plants

or to cause disease in susceptible host plants (Lindgren, 1997). In addition to the

hrp gene cluster, a variety of virulence factors including extracellular

polysaccharides (EPS), phytotoxins and cell wall degrading enzymes contribute
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to the full expression of symptoms (Alfano and CoUmer, 1996). EPS are

carbohydrate polymers produced by a large variety of bacteria, including many

plant pathogens. EPS is an important virulence factor in Ralstonia

(Pseudomonas) solanacearum, Erwinia amylovora, and Pantoea (Erw;n;a)

stewart;; (Denny, 1995).

Prior to infection, P. syringae commonly exists as an epiphyte and resides

on the surface of healthy plants (Beattie and Lindow, 1995). A major role of

epiphytic bacterial populations is to serve as a reservoir for the potentially

phytopathogenic bacteria to gain entrance into plants. The bacteria are then able

to initiate interactions with the plant that result in either disease or the HR.

However, the leaf surface is a harsh environment subject to desiccation stress,

temperature extremes, and both UV and visible light irradiation. The ability of

bacteria to establish or maintain populations on leaf surfaces is critical for a

subsequent successful infection. Several traits developed by phytopathogens

have been proposed to improve epiphytic fitness of phytopathogenic bacteria,

including EPS production, UV tolerance, and osmotolerance (Beattie and Lindow,

1995).

P. syringae pathovars generally produce two well-characterized EPS

molecules: levan (a polymer of fructofuranoses) and alginate, a copolymer of 0

acetylated ~-1,4 linked D-mannuronic acid and its C-5 epimer, L-guluronic acid

(Gross and Rudolph, 1987). Previous studies implied that alginate may contribute

to virulence in P. syringae (Fett et aI., 1986; Osman et aI., 1986); however, the

role of alginate in pathogenesis has not been critically assessed using a genetic

..
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approach. In the present study, an alginate-defective (Alg-) mutant was

generated in P. syringae pv. syringae strain 3525, which causes bacterial brown

spot on beans. The involvement of alginate in the virulence and epiphytic fitness

of this pathogen was investigated.



CHAPTER 2

LITERATURE REVIEW

Pseudomonas syringae: biology and pathogenesis

Pseudomonas syringae is a necrogenic, Gram-negative plant pathogen. P.

syringae shows an excellent ability to survive harsh environmental conditions on

leaf surfaces and develop or maintain a high population size on plants prior to

infection. The survival of epiphytic bacteria under adverse environmental

conditions on the leaf surface may be achieved either by avoidance or tolerance

of environmental stress (Beattie and Lindow, 1994; 1995). Epiphytic bacteria

may occupy sites such as the depressions between cells, substomatal cavities,

or the base of trichomes, which provide protection against direct exposure to UV

radiation or desiccation. Epiphytic bacteria have also developed adaptive

mechanisms, including the production of extracellular polysaccharides (EPS),

tolerance to UV irradiation, motility, and plant hormone production, which are

traits that increase tolerance to environmental stress (Andersen et aI., 1998;

Beattie and Lindow, 1994; 1995; Brandl and Lindow, 1998; Poplawsky and

Chun, 1998).

4
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When conditions are favorable, P. syringae invades plant hosts through

wounds, stomata, and natural openings, colonizes the intercellular spaces and

causes typical disease symptoms including leaf spots and blights (Alfano and

Collmer, 1996). Strains of P. syringae are subdivided into pathovars (pathogenic

variants, pvs.) based on host specificity. When P. syringae encounters nonhost

or resistant host plants, the hypersensitive response (HR) is elicited. The HR is a

plant defense reaction characterized by rapid, programmed death of plant cells

in contact with the pathogen, which localizes the pathogen in the initial infection

site. In contrast, the pathogenesis of P. syringae in compatible host plants

involves prolonged bacterial multiplication, dissemination to surrounding tissues,

and production of macroscopic symptoms characteristic of the disease. The

ability of phytopathogenic bacteria to elicit the HR in resistant plants or to cause

disease in susceptible host plants depends upon the hrp (bypersensitive

response and Qathogenicity) genes (Gollmer, 1998; Lindgren, 1997; Willis et aI.,

1991). In addition to hrp gene products, a variety of virulence factors including

EPS, phytotoxins and cell wall degrading enzymes contribute to the full

expression of symptoms (Alfano and Gollmer, 1996).

Biological role of extracellular polysaccharides

Extracellular polysaccharides are carbohydrate polymers that are

produced by a large variety of bacteria, including many plant pathogens. EPS

may be secreted into the extracellular milieu of the bacterial cell to form a loose

extracellular slime or remain closely associated with the cell wall as a capsular

---
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layer (Whitfield, 1988). EPS can consist of homopolymeric sugars, or

heteropolymers composed of a complex mixture of sugars in precise, repeating

subunits, which can carry a variety of noncarbohydrate substituents such as

acetate, pyruvate, hydroxybutyrate and succinate (Leigh, 1992). Among the most

common bacterial homopolysaccharides are alginate (2 and/or 3 O-acetylated, ~

1,4-linked polymannuronic acid) and levan (~-2,6-D-fructofuranan). One of the

most important commercial heteropolysaccharides is xanthan gum, which

consists of a B-1,4-linked D-glucose backbone with trisaccharide side chains

(Jansson et aI., 1975).

EPS plays multiple roles in protecting free-living bacteria from a variety of

environmental stresses and also functions in the pathogenesis of human, animal

and plant pathogens (Whitfield, 1988; Leigh, 1992). Because of their hydrophilic

and anionic properties, EPS polymers may modify the physical and chemical

environment around the bacterial cells to a more favorable environment for

growth and survival. Furthermore, EPS polymers help bacteria to absorb water

(preventing desiccation), accumulate minerals and nutrients, and shield the

bacteria against hydrophobic and toxic macromolecules (Denny, 1995; Rudolph,

1994).
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Characterization of extracellular polysaccharides in

several important phytopathogens

EPS production, particularly its role in pathogenesis as shown through

transposon mutagenesis, has been extensively studied in Ralstonia

(Pseudomonas) soJanacearum (Cook and Sequeira, 1991; Denny et aL, 1988;

Denny and Baek 1991; Kao et aL, 1992), Erwinia amylovora (Bernhard et aL,

1993; Geier and Geider, 1993; Geider et aI., 1993; Gross et aI., 1992), Pantoea

(Erwinia) stewart;; (Bernhard et aI., 1996; Coplin et aI., 1990, 1992a,b; Dolph et

aI., 1988) and Xanthomonas campestris (Katzen et aI., 1998; Pierce et aI., 1993;

Ramirez et aI., 1988). EPS is generally considered to be an important virulence

factor in pathogenesis by aiding bacterial adhesion to inert and living surfaces,

which minimizes morphological contact of the bacteria with plant cells and

reduces the host defense reaction. EPS may also enhance colonization of plant

surfaces, prolong water-soaked symptoms in susceptible plant tissue, and inhibit

bacterial agglutination in plant hosts (Denny, 1995).

Ra/stonia solanacearum

R. soJanacearum is a wilt-inducing pathogen that colonizes the xylem

vessels of host plants. Tn5 inactivation of the eps operon to create EPS deficient

mutants indicated that the acidic EPS is a necessary wilt-inducing factor of R.

soJanacearum. Despite their ability to multiply in the inoculated site, eps mutants

produce little if any acidic EPS in pJanta and are greatly reduced in virulence on
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tomato, tobacco and eggplant (Denny and Baek 1991; Denny et aI., 1988; Kao et

aL, 1992).

Erwinia amvlovora and Pantoea stewartii

Both E. amylovora and P. stewartii are necrogenic, wilt-inducing

pathogens. E. amylovora produces at least three types of EPS: (1) levan, (2) a

poorly characterized low molecular weight glucan, and (3) an acidic EPS called

amylovoran. Levan-deficient mutants of E. amylovora were created by Tn5

mutagenesis of the levansucrase gene and showed delayed development of

necrotic symptoms, indicating that levan synthesis may play an important role for

multiplication of the pathogen in planta (Geier and Geider, 1993). Amylovoran

defective mutants, created by transposon mutagenesis of the ams genes in E.

amylovora, were nonpathogenic, and both necrosis and bacterial multiplication

were inhibited in vivo (Geider et aL, 1993; Gross et aL, 1992).

P. stewartii synthesizes an EPS called stewartan. P. stewartii multiplies in

the intercellular spaces of corn leaves, producing both water-soaked lesions and

systemic wilting. Transposon mutagenesis of the cps genes showed that

stewartan is involved in pathogenicity probably by aiding bacterial movement

within the xylem, although the initial multiplication of the pathogen within corn

leaves was not affected (Coplin et aL, 1990, 1992a,b; Dolph et aL, 1988).

Interestingly, amylovoran production restored virulence to P. stewartii cps

mutants, but E. amyJovora ams mutants that produced stewartan remained

avirulent or weakly virulent (Bernhard et aL, 1993; 1996).
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Xan~omonascampesms

X. campestris is a necrogenic pathogen that causes leaf spot and blight

diseases in many different plant species. All X. campestris pathovars make an

EPS called xanthan gum. Infrared spectral analysis showed that the xanthan

gum produced by X. c. pv. campestris may have a role in virulence (Ramirez et

aI., 1988). However, the cotton pathogen X. c. pv. malvacearum produced equal

amounts of xanthan per bacterium during the first 48 h in isogenic susceptible

and resistant cultivars, suggesting that host resistance does not interfere with

EPS production and that EPS production does not interfere with host resistance

(Pierce et ai, 1993). Recently. Katzen et al. (1998) assigned biochemical

functions to xanthan gum gene products. Although xanthan gum was not

essential for plant virulence, alterations in the later stages of xanthan

biosynthesis reduced the aggressiveness of X. campestris.

Alginate biosynthesis and regulation in Pseudomonas aeruginosa

Alginic acids (alginate) constitute a group of structurally related

homopolysaccharides composed of a linear backbone of ~-1 ,4-linked, partially

acetyrated D-mannuron,ic acid and its C5-epimer, L-guluronic acid (Fig. 1). Brown

algae are the major source of alginate for a wide variety of commercial products

such as gelling, stabilizing, and thickening agents. The pharmaceutical and

biotechnology industries also use alginate in the administration of drugs, in tissue

transplantation, and as a material for dental impressions (Rehm and Valla,

c
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1997). The major difference between bacterial and algal alginate is the presence

of a-acetyl groups in bacterial alginate (Gacesa, 1998).

P. aeruginosa is a well-studied human pathogen that infects the lungs of

cystic fibrosis patients and produces an alginate capsule that protects the

pathogen from the host immune system, antibiotic treatment, and desiccation

(Govan and Deretic, 1996; Shankar et aI., 1995). Alginate is an important

virulence factor ot P. aeruginosa, and its biosynthesis and regulation have been

extensively explored in this species (Chitnis and Ohman, 1993; Darzins and

Chakrabarty, 1984; Deretic et aI., 1993; Shankar et aI., 1995).

The alginate biosynthetic pathway is shown in Fig. 2 (Govan and Deretic,

1996; Shankar et aI., 1995). The starting point for alginate biosynthesis is

fructose 6-phosphate. Fructose 6-phosphate is converted into mannose 6

phosphate via phosphomannose isomerase (PMI; encoded by algA) (Darzins et

al., 1991). Mannose-6-phosphate is then converted to mannose-1-phosphate

via phosphomannomutase (PMM; encoded by a/gC) (Coyne et aI., 1994).

Conversion of mannose-1-phosphate to GDP-mannose is catalyzed by GOp·

mannose pyrophosphorylase (GMP; also encoded by algA). The conversion of

GDP-mannose into the GOP-mannuronate monomer via GDP-mannose

dehydrogenase (GMO; encoded by a/gO) is a dedicated step in the biosynthesis

of alginate (Deretic et aI., 1987; May and Chakrabarty, 1994). GDP-mannuronate

residues are then polymerized, epimerized and acetylated to form mature

alginate. Two putative membrane proteins, Alg8 and Alg44 are thought to be

involved in the polymerization of GDP-mannuronate monomers to a
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polymannuronate polymer (Maharaj et aI., 1993). AlgX(Alg60) is also thought to

have a role in alginate polymerization by facilitating the transfer of an acetyl

group from acetyl-CoA to a transacetylase, the product of the algF gene

(Franklin and Ohman, 1993; Monday and Schiller, 1996). The algi and algJ gene

products are also required for alginate acetylation (Franklin and Ohman, 1996).

Another alginate modifying enzyme, the epimerase encoded by algG, catalyzes

the epimerization of the mannuronate residues at the C5 position, thus

introducing guluronate residues into polymannuronate (Franklin et aI., 1994). The

ratio of mannuronate to guluronate residues may control the rheological

properties of alginate. A newly identified protein, AlgK, may also be involved in

the polymerization of mannuronate to alginate (Jain and Ohman, 1998).

Secretion of alginate may be facilitated by a pore-forming protein encoded by

algE (Rehm et al., 1994). Alginate degradation is catalyzed by alginate lyase,

which is encoded by algL, a gene located in the same operon as the alginate

biosynthetic genes (Schiller et aI., 1993).

The alginate biosynthetic and regulatory genes are clustered at four

locations in the P. aeruginosa chromosome (Fig. 3) (Gacesa, 1998; May and

Chakrabarty, 1994). Most of the alginate structural genes, algO, alg8, alg44,

algK, algE, algG, algX, algL, algi, algJ, algF and algA (listed in the order of

transcription) are located at 34 min. The major promoter in this cluster is the algD

promoter, which is thought to transcribe the entire alginate biosynthetic gene

cluster as an operon (Chitnis and Ohman, 1993). The only structural gene

located outside of this gene cluster is a/ge, which is located at 10 min (Fig. 3).
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The expression of the alginate biosynthesis genes in most

pseudomonads, including P. aeruginosa, is normally silent, but can be expressed

under certain environmental conditions, including high osmolarity, nutrient

starvation, or exposure to oxidative stress (Berry et aL, 1989; Mathee et aL,

1999). The genetic conversion from the nonmucoid to mucoid form of P.

aeruginosa is controlled by five genes, including algT (algU) , mucA (alg5) , mucB

(algN) , mucC (algM) , and mucO (algllV) , which are located at 68 min on the

chromosome. The alternative sigma factor encoded by algT plays a key role in

activating alginate biosynthesis by initiating transcription at the algO, algT and

a/gRt promoters (Hershberger, et aL, 1995; Schurr et aL, 1995; Wozniak and

Ohman 1994). The mucA, mucB, mucC, and mucO gene products are regulators

of AlgT, and muc mutations result in the overproduction of alginate (Boucher et

aI., 1996 and 1997; Schurr et aI., 1996; Xie et aL, 1996). Four additional

regulatory genes a19B, algR1 (algR) , algR2 (algO) , and algR3 (algp) , which are

located at 13 and 10 min in the chromosome, function as auxiliary regulators of

mucoidy and modulate the product:ion of alginate (Govan and Deretic, 1996;

Gacesa, 1998). AlgR1 functions as a response regulator member of the two

component signal transduction system and activates algO transcription in

conjunction with algT. Additional auxiliary genes are also required for algO

expression and have been. described elsewhere (Gacesa, 1998; Ohman et aL,

1996).
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Alginate and pathogenesis in P. syringae

Pathovars of P. syringae generally produce loose slime layers of alginate

and levan. When grown on media with excess sucrose, many P. syringae

pathovars produce levan in vivo. However, studies on EPS polymers produced

by several phytopathogenic P. syringae pathovars (pv. phaseolicola, syringae,

tomato and lachrymans) showed that only alginate was produced by bacterial

pathogens in water-soaked lesions, whereas no levan was produced in planta

(Fett and Dunn, 1989). Furthermore, Osman et al. (1986) demonstrated that P.

syringae pv. glycinea produced alginate in susceptible soybean cultivars, but did

not produce significant levels of alginate in resistant cultivars. In a similar study,

Gross and Rudolph (1987) reported that the more virulent race 2 isolates of P.

syringae pv. phaseolicola produced higher amounts of alginate than race 1

isolates both in planta and in vitro. These results imply that alginate may have

an important role in both pathogenesis and the development of water-soaked

lesions in planta. However, it is important to note that the role of alginate in

pathogenesis has not been critically evaluated using a genetic approach.

Several reports indicate that the biosynthetic route to alginate in P.

syringae is similar to that established for P. aeruginosa. DNA homologous to

several essential alginate genes of P. aeruginosa has been found in several

pathovars of P. syringae (Fialho et aI., 1990; FeU et al. 1992). Penaloza

Vazquez et al. (1997) cloned the alginate structural gene cluster from P. syringae

pv. syringae FF5. The arrangement of the structural gene cluster was virtually
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identical to that previously described for P. aeruginosa. Complementation

analyses, however, indicated that the structural gene clusters in P. aeruginosa

and P. syringae were not functionally interchangeable when expressed from their

native promoters. This result suggests that the regulation and transcriptional

activation of alginate biosynthesis is different in the two species. Singh et al.

(1992) found that sodium chloride and ethanol stimulated alginate production in

most fluorescent pseudomonads, indicating that osmolarity and dehydration are

general signals for alginate production. However, Kidambi et al. (1995) showed

that copper was a signal for alginate production in P. syringae but not in P.

aeruginosa. It is possible that some of the signals for alginate production in P.

syringae are plant-induced since the bacteria are only slightly mucoid in vitro but

are known to produce alginate in p/anta. More recently, Fakhr et al. (1999)

cloned and characterized the gene encoding AlgR1 from P. syringae. Although

AlgR1 and the flanking region were highly homologous to P. aeruginosa, AlgR1

was not required for transcription of a/gO in P. syringae. Further analysis

revealed that the a/gO promoter region in P. syringae (Psa/gO) diverged

significantly from the a/gO promoter in P. aeruginosa, and Psa/gO lacked the

consensus sequence recognized by AlgR 1. Recognition sites for integration host

factor and the cyclic AMP receptor bindi!ng protein, which are known to be

involved in the transcriptional activation of a/gO in P. aeruginosa, were also

missing in Psa/gO. The differential regulation of alginate gene expression in P.

aeruginosa and P. syringe and the marked divergence in their a/gO promoter

regions probably reflects their adaptation to plant and human hosts, respectively.
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Similar results were also observed in the transcriptional regulation of a/gT, which

encodes the alternate sigma factor, a 22 (Keith and Bender, 1999). Heat shock

and osmotic stress were common stimuli for a/gT activation in both P. syringae

and P. aeruginosa. But H20 2 and copper sulfate, compounds frequently

encountered by the pathogen during colonization of plant tissue, may serve as

unique signals for a/gTactivation in P. syringae.
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Fig. 1. Structure of alginate. The alginate monomers ~-D-mannuronate (M) and
a-L-guluronate (G) are assembled into (1-4)-linked blocks of continuous
mannuronate residues (M-blocks), guluronate residues (G-blocks), or alternating
residues (MG-blocks). Normally, bacterial alginates are O-acetylated at the 2
and/or 3 positions of the mannuronate residues.
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Fructose-6-phosphate

~ Phosphomannose Isomerase (algA)

Mannose-6-phosphate

~ Phosphomannomulase (a/ge)

Mannose-1-phosphate

GTP:i
. GDP-Mannose Pyrophosphorylase (algA)

ppl

GDP-Mannose

2NAD(P):i
GDP-Mannose Dehydrogenase (algO)

2NAD(P)H

GDP-Mannuronate

~ Polymerase (algB,alg44,algX,algK)

Polymannuronate - - - - - - - -~
Lyase (a/gL)

1Acetylase (algF,algl,algJ)

C-S Epimerase (algG)

Degradat ion

Mature alginate --------~(alg£)
Secretion

Fig. 2. The biosynthesis of alginate by Pseudomonas aeruginosa. Fructose 6
phosphate obtained from the metabolic pool is converted to GDP-mannuronic
acid, which provides mannuronate residues for polymerization. Occasionally
guluronate residues are incorporated into alginate chain via epimerization of
mannuronate residues by the AlgG protein. Mannuronic acid residues of bacterial
alginates are partially O-acetylated by the gene products of algF algi, and algJ.
Secretion of mature alginate is aided by the AlgE protein.
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IalgAl IalgFtl alg; II algi IIalgL II algXllalgGllalgEl1 algKI!alg4411 algsllalgDI

34 min

----,

~~~~~

ImucDI!muccllmucBllmucAllalgTI

68 min 13min

~~~~~

lalgCI lalgZIIalgR111algR211algR31

10min

Fig. 3. Organization of the alginate gene clusters in Pseudomonas aeruginosa.
The alginate genes are clustered at four locations in the P. aeruginosa
chromosome. Except for the algC gene, which is located at 10 min, all of the
known alginate structural genes are located at 34 min. The regulatory genes map
at 10 min and 13 min, and the genes responsible for the genotypic switch to
alginate production are located at 68 min. The arrows above the genes represent
the direction of translation.
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CHAPTER 3

INVOLVEMENT OF THE EXTRACELLULAR POLYSACCHARIDE ALGINATE

IN THE VIRULENCE AND EPIPHYTIC FITNESS OF

PSEUDOMONAS SYRINGAE

Abstract

Alginate, a copolymer of Q-acetylated ~-1 ,4 linked D-mannuronic acid and L

guluronic acid, has been reported to function in the virulence of P. syringae,

although genetic studies to test this hypothesis have not been previously

undertaken. In the present study, we used a genetic approach to evaluate the role

of alginate in the pathogenicity of Pseudomonas syringae pv. syringae 3525, which

causes bacterial brown spot on beans. Alginate biosynthesis in strain 3525 was

disrupted by recombining Tn5 into afgL, which encodes alginate lyase, resulting in

3525.L. Alginate production in 3525. L was restored by the introduction of pSK2 or

pAD4033 which contains the alginate biosynthetic gene cluster from P. syringae pv.

syringae FF5 or the algA gene from P. aeruginosa, respectively. The role of alginate

in the epiphytic fitness of strain 3525 was assessed by monitoring the populations

of 3525 and 3525.L on tomato, which is not a host for this pathogen.

19
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The mutant 3525.L was significantly impaired in its ability to colonize tomato leaves

as compared to 3525, indicating that alginate functions in the survival of strain 3525

on leaf surfaces. The contribution of alginate to the virulence of strain 3525 was

evaluated by comparing the population dynamics and symptom development of

3525 and 3525.L in bean leaves. Although 3525.L retained the ability to form

lesions on bean leaves, symptoms were less severe and the population was

significantly reduced in comparison to 3525. These results indicate that alginate

contributes to the virulence of P. syringae pv. syringae 3525, perhaps by facilitating

colonization or dissemination of the bacterium in pJanta.

Introduction

Exopolysaccharide (EPS) molecules are carbohydrate polymers produced by

bacteria, which are either secreted into the growth media, form a loosely associated

extracellular slime, or remain closely attached to cells as a capsule layer (Whitfield,

1988). EPSs provide a selective advantage to bacteria and have multiple functions

including the absorption of water, the accumulation of minerals and nutrients, and

protection from hydrophobic and toxic macromolecules (Denny, 1995; Rudolph et

aI., 1994). The virulence of numerous phytopathogenic bacteria including RaJstonia

(Pseudomonas) soJanacearum, Erwinia amy/ovora, Pantoea stewartii and

Xanthomonas campestris has been correlated with their ability to produce EPS

polymers in p/anta (Dolph et aI., 1988; Geier and Geider, 1993; Kao et aI., 1992;

Katzen et aI., 1998; Saile et aI., 1997). However, the role of EPS in the virulence
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of Pseudomonas syringae has not been assessed using a genetic approach. P.

syringae pathovars generally produce two EPS molecules: levan (a fructofuranan)

and alginate, a copolymer of D-acetylated (3-1,4 linked D-mannuronic acid and its

C-5 epimer, L-guluronic acid (Fett et aI., 1986; Gross and Rudolph, 1987). When

grown on media with excess sucrose, many P. syringae pathovars produce levan

(Hettwer et aI., 1998). However, studies on the EPS molecules produced by P.

syringae in planta indicated that alginate was the major exopolysaccharide

produced in water-soaked lesions (Fett and Dunn, 1989; Rudolph et aI., 1989).

Furthermore, a positive correlation between the virulence of P. syringae and the

quantity of alginate produced in planta has been demonstrated (Gross and Rudolph,

1987; Osman et aI., 1986).

Several reports indicate that the biosynthetic route to alginate in P. syringae

is similar to that established for Pseudomonas aeruginosa (Fialho et aI., 1990; Fett

et aI., 1992; Penaloza-Vazquez et aI., 1997). Alginate biosynthesis has been

extensively studied in P. aeruginosa where it functions as a major virulence factor

in strains infecting the lungs of cystic fibrosis (CF) patients (Pier, 1998). Alginate

protects P. aeruginosa from the host immune system, antibiotic treatment, and

desiccation (Shankar et al., 1995). In P. aeruginosa, genes that encode the

biosynthesis and regulation of al.ginate map to four chromosomal locations. With

the exception of a/ge, which is located at 10 min, the genes encoding alginate

biosynthesis are clustered within an 18-kb region located at 34 min (Gacesa, 1998;

Rehm and Valla, 1997). Structural genes that have been characterized in this region

include: algA, encoding a bifunctional enzyme which functions as a

J:
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phosphomannose isomerase and a GDP-mannose pyrophosphorylase (PMI-GMP)

(Shinabarger et aI., 1991); algG, which encodes a C-5 epimerase (Chitnis and

Ohman, 1990); algF, algi. and algJ, genes involved in acetylation of the alginate

polymer (Franklin and Ohman, 1993; 1996; Shinabarger et al., 1993); and algD,

which encodes GDP-mannose dehydrog:enase (Deretic et aI., 1987). This region

also contains algE and algK, which encode proteins with putative roles in polymer

export and polymerization, respectively (Aarons et aI., 1997; Chu et aI., 1991; Jain

et aI., 1998), and algL, a gene encoding alginate lyase (Boyd et aI., 1993; Schiller

et aI., 1993). Other genes which map within this region include alg44, algB, and

algX(Maharaj et aI., 1993; Monday and Schiller, 1996); however, the functional role

of the proteins encoded by these genes remains unclear. Chitnis and Ohman (1993)

postulated that the alginate biosynthetic gene cluster in P. aeruginosa is organized

as an operon with transcription initiating at the algO promoter.

Penaloza-Vazquez et al. (1997) cloned and characterized the alginate

biosynthetic gene cluster from P. syringae pv. syringae FF5. The arrangement of

the alginate biosynthetic gene cluster in P. syringae FF5 was virtually identical to

that described for P. aeruginosa. However, the regulation and signals for

transcriptional activation of alginate biosynthesis differed in the two species,

presumably because of their adaptation to plant and animal hosts, respectively

(Kidambi et aI., 1995; Penaloza-Vazquez et aI., 1997).

P. syringae pv. syringae FF5 was originally isolated from ornamental pear

trees showing the extensive necrosis associated with bacterial blight symptoms

(Sundin and Bender, 1993). algL, which encodes alginate lyase, was previously

J...
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inactivated by Tn5 in strain FF5 to produce the Alg- mutant, FF5.31 (Penaloza-

Vazquez et al., 1997). Because the assays required to reproduce bacterial blight

symptoms on pear seedlings were difficult and time-consuming, we searched for a

host plant more amenable to virulence testing. Therefore, the present study

describes experiments with a different strain of P. syringae pv. syringae; strain 3525

produces bacterial brown spot of beans and is much more amenable to in planta

studies. In the present study, we constructed an alginate-defective (Alg) mutant of

P. syringae pv. syringae strain 3525, which causes bacterial brown spot on beans.

The involvement of alginate in the pathogenicity of 3525 was evaluated by

comparing the population dynamics and symptom development of the wild-type and

Alg- mutant on bean leaves. The role of alginate in the epiphytic fitness of 3525 was

assessed by comparing populations of the wild-type and Alg- mutant on tomato,

which is not a host of strain 3525. Our results provide the first genetic evidence that

alginate functions in the virulence and epiphytic fitness of P. syringae.

Materials and Methods

Bacterial strains and plasmids

The plasmids and bacterial strains used in this study are described in Table

1. E. coli cells were grown in Luria-Bertani medium (Miller, 1972) at 37°e, and P.

syringae strains were routinely cultured at 28°e on mannitol-glutamate medium

(MG) (Keane et al. , 1970), MG supplemented with yeast extract at 0.25 gil iter, or

King's medium B (KMB) (King et al. , 1954). Antibiotics were used at the following

J:
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concentrations (J.lglml): ampicillin, 100 for E. coli and 20 for P. syringae; kanamycin,

25; tetracycline, 12.5; streptomycin, 25; and piperacillin, 250.

Recombinant DNA methods

Isolation of plasmid DNA, agarose gel electrophoresis, restriction digests,

Southern blots, PCR, and other DNA manipulations were performed using standard

protocols (Sambrook et aI., 1989). Genomic and plasmid DNA were isolated from

P. syringae as described previously (Crosa and Falkow, 1981; Staskawicz et aI.,

1984). DNA fragments were labeled with digoxigenin with the Genius Labeling and

Detection Kit (Boehringer Mannheim). DNA was prepared for sequencing with the

Plasmid Midi Kit (Qiagen). Oligonucleotide synthesis and automated DNA

sequencing were provided by the Oklahoma State University Recombinant

DNA/Protein Resource Facility.

Construction of an Alg- mutant of P. svringae 3525

The algL::Tn5 insertion in pSK31 was subcloned as a 12-kb EcoRI fragment

in pRK415 to create pJYE12 (Fig. 4B). pJYE12 was mobilized into P. syringae pv.

syringae 3525, and the algL homologue in 3525 was inactivated by homologous

recombination (Bender et aI., 1991), resulting in P. syringae pv. syringae 3525.L.

A 1-kb probe specific for algL was constructed by PCR amplification using pAPE6.2
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(Fig. 4C) as template. Primers for the PCR reaction were: 5'

CCGGAATTCATCGCCAGATGATGTCGCTG (forward primer) and 5'

CCGGAATTCCCCAGTACGAGTGGTTGTTG (reverse primer); the underscored
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bases represent an EcoRI recognition site which facilitated cloning of the PCR

product into pBluescript SK+, resulting in pJYLE1 (Fig. 4D). The 1-kb insert in

pJYLE1 was sequenced and shown to contain DNA homologous to algL from P.

aeruginosa (nucleotides 41-1078 as described in Boyd et aI., 1993).

PCR was also used to confirm the insertion of Tn5 into algL in P. syringae pv.

syringae 3525.L. A 1.1-kb DNA fragment was amplified from genomic DNA of

3525.L with the following oligonucleotide primers: 5'

CCGGAATTCATCGCCAGATGATGTCGCTG and

5' GGTTCCGTTCAGGACGCTAC, which are derived from algL of P. syringae FF5

and the IS50 portion of Tn5, respectively. The amplified fragment was cloned into

pCR2.1, and the 1.I-kb insert was sequenced to confirm the insertion of Tn5 into

algL.

Alginate assay

Selected strains were grown on MG agar (three plates per strain)

supplemented with appropriate antibiotics at 28°C for 36 h. Cells were washed from

each plate and resuspended in 0.9% NaCI. Alginate isolation and quantitation were

performed as described previously (May and Chakrabarty, 1994), and alginic aci!d

from seaweed (Macrocystis pyrifera; Sigma Chemical Co., S1. Louis, Mo.) was used

as a standard. The experiment was repeated twice, and mean values were

expressed as the quantity of alginate produced per milligram of protein.
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Complementation of the Alq- mutant 3525.L

pPSR3, a 220-kb conjugative plasmid which confers constitutive production

of alginate to P. syringae recipients, was used to facilitate the visualization and

quantitation of alginate in vitro. P. syringae pv. syringae strain H12, which harbors

pPSR3, was used as a donor in matings with 3525 and 3525.L. The transfer of

pPSR3 to the two recipient strains was detected by selection for copper resistance

(Cur), a natural marker on pPSR3. In subsequent experiments, pSK2 and pAD4033

were mobilized into the nonmucoid transconjugant 3525.L(pPSR3) using pRK2013

as a helper plasmid.

Evaluation of epiphytic fitness

The epiphytic fitness of 3525 and 3525.L was evaluated on tomato

(Lycopersicon esculentum cv. Glamour). Tomato seedlings were grown tor 3 weeks

in the greenhouse, and care was taken to minimize the wetting of leaves during

daily watering. Bacteria were grown for 36 h on MG agar supplemented with the

appropriate antibiotics and suspended in sterile distilled water. Bacterial inoculum

(106 cfu/ml) was applied to plants with an airbrush (- 8 psi) until leaf surfaces were

uniformly wet. Plants were incubated in a growth chamber at 20-26°C with 40-60%

relative humidity. Random leaf samples (three leaves per time point) were taken

daily from 0 to 9 days after inoculation. Leaves were weighed individually,

transferred to 10 ml 0.01 M potassium phosphate buffer (pH 7.0) and washed for

2 h at 250 rpm. Serial dilutions were plated on MG or MG containing kanamycin

(MGKm) to enumerate colonies of 3525 and 3525.L, respectively. The experiment

];,
•-,
).

••
~'

~
•
;
3

i
i,



I""'"'"

27

was performed three times.

Virulence tests

The virulence of P. syringae pv. syringae 3525 and the Alg- mutant 3525.L

was evaluated on bean (Phaseo/us vulgaris cv. Bush Blue Lake 274). Plants were

grown in the greenhouse for about 2 weeks or until the first trifoliate leaf was fuUy

expanded. Bacteria were cultured for 36 h on MG agar supplemented with the

appropriate antibiotics and then suspended in sterile distilled water. Bacterial

inoculum of 106 cfu/ml was applied by spraying individual plants with an airbrush as

described above. Plants were either inoculated directly and placed in a growth

chamber or incubated in a dew chamber for 24 h before and after inoculation and

subsequently moved to a growth chamber. Inoculated plants were then incubated

for 14 days at 20-26°C with a 12-h photoperiod and 60-80% relative humidity.

In the experiments designed to follow the population dynamics in bean,

random leaf samples were taken at 0 to 14 days after inoculation (three replicates

per time point). Leaves were weighed separately and ground in 10 ml sterile

distilled water using a mortar and pestle. Bacterial counts of 3525 and 3525.L were

determined by plating dilutions of the leaf homogenate onto MG or MGKm,

respectively. Fluorescent colonies were counted after incubating plates for 48 h,

and the experiment was performed three times. Symptoms were evaluated by

determining lesion size and number on individual leaves daily for 7 days after

inoculation. Each strain was tested on a minimum of nine seedlings.

Virulence was also evaluated by infiltrating bean leaves with 3525 or 3525.L.
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Bean plants (approximately 2 weeks old) were incubated in a dew chamber for 24

h before and after inoculation to induce the opening of stomata. Bacterial inoculum

was prepared as described above, and a 1 ml syringe (without a needle) was used

to inject inoculum (106 cfu/ml) into the leaf tissue. Plants were then returned to the

growth chamber and incubated as described above.

Results

Inactivation of algL in P. svringae pv. syringae 3525

Although algL was not required for alginate biosynthesis in P. syringae pv.

syringae FF5, the algL::Tn5 mutant FF5.31 was nonmucoid because of polar effects

on algA, an essential gene for alginate synthesis which maps downstream of algL

(Fig. 4A) (Penaloza-Vazquez et al., 1997). In this study, the algL::Tn5 mutation from

FF5.31 was introduced into P. syringae pv. syringae 3525 on pJYE12 (Fig. 4B) and

exchanged into the 3525 genome by homologous recombination (Bender et aI.,

1991). Genomic DNA was isolated from the wild-type 3525 and several Tcs Kmr

derivatives of 3525, digested with EcoRI, and analyzed by Southern blotting using

the 1.0-kb insert in pJYLE1 (Fig. 40). EcoRI was chosen as a restriction enzyme for

Southern blot analysis because TnS is not digested by this enzyme. The probe

hybridized to 4.4- and 10.1-kb EcoRI fragments in 3525 and the Tcs Kmr derivatives,

respectively (data not shown). These results indicated that the region associated

with algL was located in a 4.4-kb EcoRI fragment in 3525, and this 4.4-kb fragment

was inactivated by TnS (5.7 kb) in the Tcs Kmr derivatives. The algL::TnS mutation
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in 3525.L was further confirmed by peR analysis using primers complimentary to

algL and the 1850 portion of Tn5; sequence analysis of the PCR product confirmed

that Tn5 was located in the coding region of algL in 3525.L.

Complementation studies

Like many P. syringae strains, 3525 is only slightly mucoid when cultured on

MG or KMB medium (Kidambi et ai., 1995). Plasmid pPSR3 is a Cur plasmid that

confers constitutive alginate production to P. syringae, thereby converting recipient

strains to a visibly mucoid phenotype (Kidambi et aI., 1995). When plasmid pPSR3

(Table 2) was introduced into 3525, the transconjugant 3525(pPSR3) was stably

mucoid and produced alginate at levels equivalent to the mucoid donor, H12, from

which pPSR3 was originally isolated (Sundin and Bender, 1993) (Table 2). As

expected, 3525.L remained nonmucoid and produced very little alginate when

pPSR3 was introduced (Table 2); however, 3525.L(pPSR3, pSK2) and

3525. L(pPSR3, pAD4033) were visibly mucoid and produced approximately 50-fold

more alginate than 3525.L(pPSR3) (Table 2). pSK2 and pAD4033 only partially

restored alginate production to 3525.L (Table 2), and similar results were obtained

in complementation experiments with FF5.31, the algL mutant of strain FF5

(Penaloza-Vazquez et aI., 1997). The lack of full complementation by pSK2 and

pAD4033 could be caused by the low copy number of pRK7813 (the cosmid vector

present in pSK2) or the use of the Ptac promoter in pAD4033. Although Ptac is

recognized by P. syringae (Penaloza-Vazquez et al., 1996; 1997), expression of

downstream genes is substantially lower than that obtained with E. coli and might
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explain the lack of full complementation with pAD4033. Alternatively, algL may

have a role in the biosynthesis of alginate by P. syringae, and the TnS insertion in

this gene may prevent full complementation. Furthermore, it is important to note

that algL was required for alginate production in P. aeruginosa FRO (Schiller et aI.,

1993), but not in P. aeruginosa 8830 (Boyd et aI., 1993).

Contribution of alginate to epiphytic fitness

The involvement of alginate in epiphytic fitness was evaluated by monitoring

the epiphytic populations of 3525 and 3525.L on tomato, which is not a host for

strain 3525. Prior to these experiments, both 3525 and 3525.L were shown to grow

similarly in liquid media, indicating that the lack of alginate production in the mutant

did not impair its growth in vitro (data not shown). At 24 h after inoculation, the

population of both 3525 and 3525.L decreased approximately 15-fold to 103 cfu/g

leaf tissue. Thereafter, the epiphytic population of 3525 increased significantly and

was 10 to 15-fold higher than 3525.L throughout the remainder of the sampling

period (Fig. 5A). These results clearly indicate that alginate contributes to the

epiphytic survival of 3525. Interestingly, the population of both the mutant and wild-

type strains followed the same trend for the duration of this experiment, perhaps

because factors other than alginate production contributed to epiphytic survival in

both strains.

Involvement of alginate in virulence

The colonization of 3525 and 3525.L were compared on bean, the natural

-

l;
•

).

),
I

....



31

host of this organism. As in the epiphytic studies, the population of both 3525 and

3525.L decreased significantly 24 h after inoculation (Fig. 58). When brown spot

lesions first became apparent 48 h after 'noculation, the population of 3525

increased dramatically and was significantly higher than the initial inoculum density

(Fig. 58). In contrast, the population of 3525.L remained low and was approximately

1DO-fold lower than strain 3525 throughout most of the sampling period. These

results correlated with a reduction in the symptoms induced by the Alg' mutant.

Lesions induced by 3525 initially had a water-soaked appearance with a necrotic

lesion in the center; the necrosis gradually intensified, and water-soaking was

replaced by chlorotic leaf tissue. Cells surrounding the necrotic lesion collapsed,

possibly because water was withdrawn from the adjacent tissue, and some lesions

coalesced (Fig. 6A). These symptoms are typical of bacterial brown spot on bean

(Fahy and Lloyd, 1983). In contrast, 3525.L induced fewer lesions that did not

coalesce (Fig. 68). When they remained separated, lesions were 1-6 mm in

diameter and lesion sizes were not signilficantly different for 3525 and 3525.L (data

not shown). However, in bean leaves inoculated with 3525, individual lesions often

coalesced (Fig. 6A), resulting in a larger amount of diseased tissue.

Several inoculation methods were used to further evaluate the role of alginate

in symptom development. In one series of experiments, beans were incubated in

a moist chamber for 24 h before and after inoculation and then placed in a growth

chamber. A second group of beans was inoculated without incubation in the moist

chamber and immediately placed in the growth chamber. Plants in the first group

developed more lesions than those in the latter group, regardless of the strain
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inoculated. When plants were incubated in the dew chamber, the average number

of lesions observed per leaf was 124±18 and 52±11 for 3525 and 3525.L,

respectively. However, when plants were not incubated in the dew chamber, lesion

numbers were 11.2±1.6 and 2±0.6 for 3525 and 3525.L, respectively. Regardless

of the inoculation method, the number of lesions induced by 3525.L was lower than

3525, which agrees with the popul-ation studies (Fig. 58).

Bean leaves were also inoculated with 3525 or 3525.L by infiltration. When

3525.L was used as inoculum, the necrotic lesion which developed was limited to

the area selected for infiltration and resemblied a localized hypersensitive reaction

(Fig. 6C, left arrow). In contrast, numerous secondary lesions developed around

the area infiltrated with strain 3525 (Fig. 6C, right arrow). Another brown spot

pathogen, P. syringae pv. syring.ae B728a, produced symptoms similar to strain

3525 when infiltrated into bean leaves (Willis et aI., 1990).

Discussion

Our results suggest that the organization of the alginate biosynthetic gene

clusters in P. syringae strains FF5 and 3525 may be similar. Attempts to mutate the

3525 algL gene using algL::Tn5 from FF5.31 were successful, indicating that the

nucleotides flanking algL in FFS were conserved in 3525, thereby allowing

homologous recombination. In FF5.31 , the algL::Tn5 mutation abolished alginate

production because of the polarity of Tn5 on algA, a gene essential for alginate

production which maps downstream of algL (Penaloza-Vazquez et aI., 1997) (Fig.
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4A). Alginate production was partially restored to FF5.31 by pAD4033, which

contains the P. aeruginosa algA gene under control of the Ptac promoter (Penaloza-

Vazquez et aI., 1997). In the current study, pAD4033 also partially complemented

3525.L for alginate production, thereby indicating that the transcriptional

organization of the alginate gene cluster may be, similar in strains FF5 and 3525.

Although the Alg- mutant 3525.L remained pathogenic on bean, symptom

severity and bacterial multiplication were reduced in comparison to 3525. Several

studies suggest that EPS synthesis can significantly enhance the colonization of

phytopathogenic bacteria. For example, EPS-defective strains of P. stewartii were

reduced in virulence partly because they spread more slowly than the wild-type in

the vascular system of maize plants (Braun, 1990). In a similar study, Saile et al.

(1997) used mutants to show that EPS production increased the dissemination of

R. solanacearum in tomato stem tissue. Our results indicate that alginate production

facilitates the dissemination of P. syringae pv. syringae 3525 in bean leaves. When

the Alg- mutant 3525.L was infiltrated into bean leaves, lesions were restricted to the

inoculation site (Fig. 6C, left arrow). However, numerous secondary lesions

developed around the site where 3525 was infiltrated (Fig. 6C, right arrow), which

indicates that the wild-type bacterium had successfully colonized the intercellular

space of neighboring plant cells. The hydrostatic pressure created by EPS

production in the intercellular spaces of plant hosts may cause plant cells to rupture

and assist in the dissemination of bacteria into areas surrounding the initial infection

site (Leigh and Coplin, 1992).

An interesting parallel between the reaction of humans and plants to microbial
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pathogens is the production of reactive oxygen intermediates (ROI) such as the

superoxide anion (02") and hydrogen peroxide (H20 2) (Van Camp et aL, 1998).

There is a striking correlation between the production of ROI in plant cell cultures

and the outcome of resistance (the HR) or susceptibility. The formation of ROI is

known to be critical for establishing plant disease resistance during the HR.

Consequently, pathogen products which interfere with the toxicity of ROI, such as

alginate, could interfere with plant defense. The proposed functions for alginate in

the lungs of CF patients include: (1) suppression of the oxidative burst in neutrophils

(Jensen et aL, 1990); and (2) a direct role in scavenging ROI species which are

produced by phagocytic cells (Simpson et aL, 1989). Furthermore, the algT gene

product, which encodes an alternate sigma factor required for alginate biosynthesis,

is involved in the expression of genes that determine resistance to ROI. AlgT is

required for the full resistance of P. aeruginosa and P. syringae to toxic oxygen

species (Keith and Bender, 1999; Martin et aI., 1994; Yu et aL, 1995); consequently,

alginate production in pJanta may help P. syringae evade the host defense

response.

The epiphytic fitness of phytopathogenic bacteria can also contribute to

disease severity when a host plant is colonized. Mechanisms which reduce

desiccation stress, such as the formation of microbial biofilms or EPS matrices

(Beattie and Lindow, 1995; Morris et aI., 1998), can significantly increase epiphytic

fitness. In the present study, it was difficult to discriminate between epiphytic and

intercellular colonization in bean plants, the natural host of strain 3525.

Consequently, we evaluated epiphytic survival on tomato, which is not a host for P.
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syringae pv. syringae 3525. The epiphytic population of 3525 on tomato leaves was

ten to fifteen-fold higher than 3525.L, which suggests a role for alginate in epiphytic

fitness. Although the mechanisms which explain how alginate contributes to

epiphytic colonization remain unclear, alginate has been shown to reduce

desiccation stress and assist in the formation of microbial biofilms. Desiccation

stress stimulated alginate synthesis in both P. syringae and P. aeruginosa (DeVault

et aI., 1990; Singh et aI., 1992), thereby increasing resistance to dehydration (Ophir

and Gutnick, 1994). Furthermore, alginate was important in the formation of

biofilms by P. aeruginosa (Boyd and Chakrabarty, 1994); biofilms often play an

important role in the attachment of microbial populations to solid surfaces

(Cammarota and Sant'Anna, 1998). Although it is not clear whether alginate

contributes to biofilm formation on plant surfaces, a role for alginate in attachment

to leaf surfaces remains a viable possibility.

The lesion numbers produced by the wild-type and Alg- mutant were higher

when beans were incubated in the dew chamber as compared to direct inoculation

and incubation in the growth chamber. The high relative humidity in the dew

chamber would facilitate bacterial entry into the plant because stomates would be

induced to open under these conditions. Under more stressful conditions (direct

inoculation and incubation in the growth chamber), fewer bacteria survived

desiccation and were able to enter the plant through natural openings or wounds.

Consequently, the lesion numbers induced by the wild-type and Alg- mutant were

significantly less than those observed on plants incubated in the dew chamber.

The production of EPS polymers by phytopathogenic bacteria has been
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implicated in several symptoms including the wilting induced by vascular pathogens

and the water-soaking associated with foliar pathogens (Denny, 1995). Bacterial

brown spot is a foliar pathogen of bean and water-soaked lesions were apparent

during the onset of disease in leaves inoculated with both 3525 and 3525. L. Since

alginate was not responsible for water-soaking in 3525, we believe alginate has a

more subtle role in brown spot of bean, perhaps by facilitating the dissemination of

the bacterium as noted above. It is important to note that alginate may have a more

obvious role in symptom development in other P. syringae pathovars.
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TABLE 1

BACTERIAL STRAINS AND PLASMIDS

Strain/plasmid Relevant characteristics a

Escherichia coli

Reference b

DH5a

Top10F'

~(JacZYA-argF)u,69

laciq Tc' mcrA MacZ~M15

Sambrook et aI., 1989

Invitrogen

Pseudomonas syringae pv. syringae

FF5 Cus

FF5.31 Cur Km', contains pPSR12, algL::Tn5

H12 Cu', contains pPSR3, stably mucoid

3525 Cus
, nonmucoid, causal agent of brown spot of bean

3525.L Cus Km', algL::Tn5

Sundin and Bender, 1993

Penaloza-Vazquez et (II., 1997

Sundin and Bender, 1993

ICMP

This study

Plasmids

pPSR12

pSK2

pRK2013

pRK415

pRK7813

pBluescript SK+

pCR2.1

pPSR3

pAD4033

pAPE6.2

pJYLE1

pSK31

pJYE12

Cu' Sm', 200 kb, confers constitutive alginate production

to P. syringae pv. syringae FF5

TC', contains alginate biosynthetic cluster from P. syringae

pv. syringae FF5 in pRK7813

Km', helper plasmid

Tcr, RK2-derived cloning vector

Tc', cosmid vector

Apr, ColEI origin, cloning vehicle

Apr Km', 3.9-kb cloning vector

Cu' Sm', 220 kb, confers constitutive alginate production

to P. syringae pv. syringae

Apr, contains algA from P. aeruginosa under Ptac control

in pMMB22

Ap', contains 6.2 EcoRI fragment from pSK2 in

pBluescript SK+

Ap', contains 1.0-kb PCR fragment (including part of algL)

amplified from pAPE6.2 in pBluescript SK+

Te' Km', contains algL::Tn5 from FF5.31 in pRK7813

Tc' Km', contains a 12-kb fragment with algL::Tn5

from pSK31 in pRK415

Kidambi et aI., 1995

Penaloza-Vazquez et aI., 1997

Figurski and Helinski, 1979

Keen et aI., 1988

Jones and Gutterson, 1987

Stratagene

Invitrogen

Sundin and Bender, 1993

Boyd et ai., 1993

Penaloza-Vazquez et aI., 1997

This study

Penaloza-Vazquez et aI., 1997

This stuuy

a. Ap, ampicillin; Cu, copper; Km, kanamycin; Tc, tetracycline; Sm. streptomycin; r, resistant; s, sensilive.

b. ICMP is the International Collection of Microorganisms from Plants, Auckland, New Zealand.
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TABLE 2

ALGINATE PRODUCTION BY DERIVATIVES OF
PSEUDOMONAS SYRINGAE PV. SYRINGAE

Strain

H12(pPSR3)

3525(pPSR3)

3525.L(pPSR3)

3525.L(pPSR3, pSK2)

3525.L(pPSR3, pAD4033)

Alginate production a

(~gJmg of total cellular protein)

10,177 a

12,364 a

128 c

6,149 b

5,359 b

a. Mean values followed by the same letter are not significantly different at
P=0.05 by the Student-Newman-Keuls test.
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Fig. 4. A, Organization of the alginate structural genes in P. syringae pv.
syringae FF5. Abbreviations: A. algA; F, algF; J, algJ; I, alg/; X, algX; G,
algG; 44, alg44; 8, alg8; 0, algo. The horizontal arrow beneath the gene
cluster indicates tile direction of transcription; the Tn5 insertion in algL
abolished alginate production in FF5(pPSR12) due to polar effects on algA
(Penaloza-Vazquez et a/., 1997). B, pJYE12 was constructed by subcloning
the algL::Tn5 insertion in EcoRI fragment #2 into pRK415. Plasmid pJYE12
was then introduced into P. syringae pv. syringae 3525, and algL was
inactivated by homologous recombination, creating 3525. L. C, pAPE6.2
contains EcoRI fragment #2 from pSK2 in pBluescript SK+. This fragment
was used as template in a peR reaction to amplify a 1.0-kb fragment
containing algL. 0, pJYLE1 contains an internal portion (1.0-kb) of algL in
pBluescript SK+.
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Fig. 5. Population of P. syringae pv. syringae 3525 and the Alg- mutant
3525. L on nonhost and host plants. A, Epiphytic population of P. syr;ngae
pv. syringae 3525 and the Al.g- mutant 3525, L on leaves of tomato, which is
not a host for strain 3525, Bacterial populations were determined by washing
leaves in 0,01 M potassium phosphate buffer (pH 7.0) followed by dilution
plating. B, Population dynamics of P. syringae pv. syringae 3525 and the
Alg- mutant 3525.L on bean, which is a host for strain 3525. Bacterial
populations were determined by homogenizing the leaves in sterile distilled
water followed by dilution plating. All experiments were performed three
times with similar results.



A. B. c.

41

Fig. 6. Lesion development on bean leaves inoculated with suspensions
of (A) P. syringae pv. syringae 3525 and (B) the Alg- mutant 3525.L.
Bacterial suspensions of 106 cfu/m I were applied to the first trifoliate
leaves until leaf tissue was uniformly wet. (C) Lesion development (see
arrows) on a bean leaf infiltrated with P. syringae pv. syringae 3525.L (left)
and the wild-type 3525 (right). Bacterial inoculum (106 cfu/ml) was
infiltrated into leaves usi6g a 1 ml syringe without a needle. After
inoculation, all plants were incubated in the growth chamber at 20-26°C
with 60-80% relative humidity and a 12-h photoperiod. Photographs were
taken five days after inoculation.
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APPENDIX A

PSEUDOMONAS SYRINGAE PATHOVARS CAPABLE OF PRODUCING

WATER-SOAKING IN SUSCEPTIBLE HOSTS

Introduction

The phytopathogenic prokaryote Pseudomonas syringae commonly

penetrates plant tissues through natural openings or wounds and induces typical

water-soaking on leaves of susceptible hosts. During pathogenesis, the bacteria

do not enter the host cells, but instead colonize the intercellular spaces of the

plant mesophyll, absorb nutrients from the plant cells, and multiply intercellularly.

This process is often accompanied by secretion of bacterial alginate, a linear

copolymer of ~-1 A-linked, partially acetylated D-mannuronate and L-guluronate,

which is suggested to play an important role for maintenance of a compatible

interaction between pathogenic P. syringae and susceptible hosts.

The objective of this study was to investigate the role of alginate in

producing water-soaked lesions. The first step involved identifying bacterial

strains that produce good water-soaking in leaves of selected host plants. The

pathogenicity of thirty three strains from four P. syringae pathovars (syringae,
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phaseolicola, tomato, and glycinea) were introduced into susceptible bean,

tomato or soybean plants and the development of water-soaked lesions were

evaluated visually.

Materials and Methods

Preparation of bacterial inocula

P. syringae strains were maintained on mannitol-glutamate (MG) or MG

supplemented with yeast extract at 0.25 giL (MGY) agar medium. Prior to plant

inoculations, bacteria were streaked to MGY agar and incubated at 28°C for 24

to 36 h. Bacterial suspensions were made in sterile water and the 00600 was

adjusted to an absorbance of 0.1. This value equals approximately 108 colony

forming units per milliliter (cfu/ml). Bacterial inocula consisted of ten-fold serial

dilutions of this suspension.

Preparation of host plants

Bean (Phaseo/us vulgaris cv. Bush Blue Lake 274), tomato (Lycopersicon

escu/entum cv. Glamour), or soybean seeds (L. L aids Seeds Company,

Madison, WI) were planted in pots and maintained in a growth chamber where

the temperature ranged 20-26°C with a 12-h photoperiod. Young plants with fully

expanded primary leaves (two week-old bean and soybean plants or three week

old tomato plants) were used for inoculations. Bean pods were purchased from

a local grocery store, and pods 10-12 cm in length were inoculated.

og;
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Pathogenicity tests

Pathogenicity tests were performed by localized infiltration or injection of

bacterial suspensions into young plant leaves or pods. Ten-fold bacterial

dilutions starting from 104
- 107 cfu/ml were used to inoculate plant leaves. A 1

ml tuberculin syringe (without a needle) (Becton Dickinson & Co., Rutherford, NJ)

was used to infiltrate inoculum into the lower leaf surface. Leaves infiltrated with

water were used as controls. Plants were then returned to the growth chamber,

where they were inspected daily for the presence or absence of water-soaked

lesions daily for a 7-day period.

Inoculation of bean pods

Prior to inoculation, beans were surface-sterilized by immersion in 10%

sodium hypochlorite (Clorox) for 2 min and rinsed for 10 min in sterile tap water.

20 ~I aliquots of 10-fold dilutions (104
- 107 cfu/ml) were injected just under the

epidermis of bean pods using a 1 ml tuberculin syringe and 22 gauge needle.

Bean pods were then placed in separate compartments within a plastic storage

box, which was surface sterilized and contained moistened sterile paper towels.

Inoculated pods were incubated in a growth chamber at 24°C with a 12-h

photoperiod and monitored for symptom development daily for 7 days.
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Results

P. syringae pv. syringae strains capable of producing water-soaked lesions in

bean pods

No water-soaked lesions were observed when bean leaves were

inoculated with P. syringae pv. syringae strains 3525, 886-37, 4916, 88S32-5,

886-17, 8728a, or NPS3136. Instead, necrotic lesions were observed with these

seven strains. Therefore, we tested the ability of these strains to produce water

soaked lesions in bean pods. Water-soaked lesions were produced by all strains

in bean pods with the exception of NPS3136, a lemA mutant of 8728a; this strain

produced flat, brown, dry lesions in the inoculated area.

The results of using different concentrations of inoculum indicated that 106

cfu/ml of P. syringae pv. syringae commonly induced the best water-soaked

lesions in bean pods. Strains 3525, 4916, and 886-17 induced sunken, brown,

water-soaked lesions in bean pods, and the symptoms were confined to the

inoculated area. 8728a induced sunken, dark brown, water-soaked lesions in

bean pods, and the lesions spread slightly after inoculation. 88S32-5 and 886

37 induced sunken, green, water-soaked, spreading lesions in bean pods.

Controls (water-inoculated pods) showed no water-soaking or necrosis.
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P. svringae pv. phaseolicola strains capable of producing water-soaked lesions

in bean leaves

Among the 17 strains of P. syringae pv. phaseolicola tested, nine strains

(1448A, 501, 508, 524, 528, 461, 482, G-50, and M2/0) produced water-soaked

lesions in bean leaves. The optimum inoculum level was about 105 cfu/ml. Dark

green, translucent, water-soaked lesions were observed 5 days after inoculation,

and lesions remained water-soaked for 4 d before turning necrotic. When the

inoculum density was greater than 105 cfu/ml, water-soaked spots were

confluent and became necrotic sooner. Eight other P. syringae pv. phaseolicola

strains (6/0, F2, 106/1, 52, 539, 106/1/8, NPS3121, and HB4) produced dry,

necrotic lesions without water-soaking.

P. syringae pv. tomato strains capable of producing water-soaked lesions in

tomato leaves

Among five P. syringae pv. tomato strains tested, two (PT17 and OK-1)

produced water-soaked lesions in tomato leaves, while three others (DC3000,

4325 and SC-5) produced dry, necrotic lesions. When the inoculum density was

approximately 104 cfu/ml, both PT17 and OK-1 induced dark green, water

soaked lesions 3 days after inoculation, and the water-soaked lesions persisted

for 4 d and then turned necrotic. When the inoculum density was higher than 105

cfu/ml, water-soaking occurred earlier (2 d after inoculation), and lesions became

necrotic faster (1 d later). P. syringae pv. tomato DC3000, 4325 and SC-5 failed

to produce water-soaked lesions in the inoculated area.
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P. syrinqae pv. glycinea strains do not produce water-soaked 'lesions in soybean

leaves

None of the four P. syringae pv. glycinea strains tested (PG4180, 4182,

5562, race 4) produced water-soaked lesions under the experimental conditions

utilized in this study.

Discussion

When studying the interaction between phytopathogens and host plants, it

is necessary to use a standardized amount of inoculum since inoculum levels

either too high or low will lead to erroneous conclusions. This study showed that

104 cfu/ml (P. syringae pv. tomato), 10Scfu/ml (P. syringae pv. phaseolicola) and

106 cfu/ml (P. syringae pv. syringae) were the most suitable bacterial

concentrations for obtaining water-soaked lesions in tomato leaves, bean leaves

and bean pods, respectively. When the bacterial concentration was too high,

transient water-soaking was observed in the susceptible host, and the lesions

quickly became necrotic. When the bacterial concentration was too low,

symptoms did not appear probably because the bacteria did not successfully

colonize the plant.

The results showed that P. syringae pv. phaseolicola strains 1448A, 501,

508, 524, 528, 461, 482, G-50, M2IO, and P. syringae pv. tomato strai,ns OK-1

and PT17 are excellent pathogens for producing water-soaked lesions in host

plants. P. syringae pv. syringae strains 3525, 8728a, 886-37, 4916, 886-17, and
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88832-5 induced water-soaked lesions in bean pods but not in bean leaves.

However, it is important to mention that the humidity of the growth chamber

varied when these experiments were performed, and some might actually induce

water-soaked lesions if the proper humidity was provided. For example, P.

syringae pv. syringae 3525, which produced water-soaked lesions in bean pods

but not in bean leaves in the current study, induced water-soaked lesions in bean

leaves when the relative humidity was 60-80% (see Chapter 3).



APPENDIX B

EXPRESSION OF PSALGO::UIOATRANSCRIPTIONAL FUSIONS IN

PSEUDOMONAS SYRINGAE PV. SYRINGAE 3525

Introduction

Our previous results showed that alginate contributes significantly to the

epiphytic survival and virulence of Pseudomonas syringae pv. syringae 3525. To

further investigate alginate gene expression during epiphytic growth and

pathogenesis, a system to monitor alginate gene expression in planta is needed.

Analysis of promoter activity in plants has been extensively studied using the

Escherichia coli uidA gene encoding ~-glucuronidase (GUS). The uidA gene is a

popular reporter gene because most plants and many bacteria do not contain

endogenous ~-glucuronidase activity (Jefferson et aI., 1987; Wilson et aI., 1992).

Two algD::uidA transcriptional fusions were constructed in our lab: (1) pSK3,

which contains a 1.0-kb fragment of the alg0 promoter from P. syringae pv.

syringae FF5(pPSR12) in pRG960sd (Penaloza-Vazquez et aI., 1997), and (2)

pAPDP, which contains a 2.7-kb fragment of the algD promoter from

FF5(pPSR12) in pBBR.GUS (Fakhr et aI., 1999). Both plasmids pRG960sd and
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pBBR.GUS are promoter probe vectors that can be used to generate

transcriptional fusions between a promoter of interest and a promoterless

glucuronidase gene (Penaloza-Vazquez et aI., 1998; Van den Eede et aI., 1992).

Transcription in both pSK3 and pAPDP proceeds through the a/gO promoter and

into the ~-glucuronidase gene. Thus, a/gO gene expression can be detected by

measuring GUS activity quantitatively by fluorometric analysis.

P. syringae FF5(pPSR12) was originally isolated from ornamental pear

trees showing the extensive necrosis associated with bacterial blight symptoms

(Sundin and Bender, 1993). Because it is very difficult and time consuming to

reproduce bacterial blight symptoms on pear seedlings, the two a/gO::uidA

promoter fusions from P. syringae FF5(pPSR12) were conjugated into P.

syringae 3525, a bean pathogen that is more amenable to in p/anta studies. In

the present study, the in vitro regulation of PsalgO::uidA transcriptional fusions in

P. syringae 3525 was investigated.

Materials and Methods

Bacterial strains and media

The bacterial strains and plasmids used in this study are listed in Table 3.

P. syringae 3525 was maintained at 28°C on King's medium B, mannitol

glutamate medium (MG) or MG supplemented with yeast extract at 0.25 g/Iiter

(MGY). E. coli strains were grown on Luria-Bertani (LB) medium at 37°C.
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Antibiotics were added to the media at the following concentrations (~glml):

ampicillin, 20; chloramphenicol, 25; spectinomycin 25; and streptomycin, 25.

Molecular biology techniques

Plasmid DNA was isolated by alkaline lysis, and agarose gel

electrophoresis was performed using standard methods (Sambrook et aI., 1989).

Plasmid clones were mobilized into P. syringae 3525 using a triparental mating

procedu re with pRK2013 as a helper plasmid (Bender et aI., 1991).

GUS assay

Transcriptional activity was qualitatively assayed by spotting 1 j.11 of

bacterial suspensions (00600=0.1) onto MG agar medium amended with the

appropriate antibiotics and 20 J.lg of X-Gluc (5-bromo-4-chloro-3-indolyl

glucuronide) per ml; the plates were then incubated at 28°C for 20 to 48 h. For

quantitative assays, bacterial strains were grown on MG agar supplemented with

antibiotics for 36 h at 28°C. The bacteria were then suspended in MG broth to an

00600=0.1 and incubated at 250 rpm for 36 h. Promoter activity was determined

by fluorometric analysis of GUS as described previously (Palmer et aI., 1997).

Fluorescence was monitored by excitation at 365 nm and emission at 455 nm

with a Fluoroscan II version 4.0 microplate reader (ICN Biomedicals, Inc., Costa

Mesa, Calif.) in 96-well microtiter plates. The protein content in cell Iysates was

determined using the BioRad protein assay kit (BioRad, Hercules, CA) as

recommended by the manufacturer. GUS activity was expressed in units per mg
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of protein, with 1 U equivalent to 1 nmol of methylumbelliferone formed per min.

Values presented for GUS activity represent the average of three replicates per

experiment.

The kinetics of algO transcriptional activity in P. syringae 3525(pSK3) was

evaluated by preparing fresh bacterial suspensions (00600=0.1) in MGY broth as

described above. Bacteria were incubated at 28°G at 250 rpm, and aliquots of

cells were removed at 1, 4, 8, 16, 24, 30, and 36 h and evaluated for

transcriptional activity by glucuronidase assays.

For evaluation of algO expression in response to osmotic stress, fresh

bacterial suspensions (00600=0.1) in MGY broth were prepared as described

above and incubated at 28°G, 250 rpm for 4 h or until the 00600=0.3. NaGI or

sorbitol was added to the bacterial cultures at the following final concentrations:

NaGI (0, 0.1, 0.15, 0.2, 0.3, 0.4 M) or sorbitol (0, 0.1, 0.3, 0.6, 0.9, 1.2 M).

Cultures were returned to the incubator and sampled at different times for

promoter activity by fluorometric analysis.

The effect of yeast extract on algO transcription was also investigated.

Strains were incubated on MG agar for 36 h and suspended to 00600=0.1 in MG

broth amended with yeast extract (0%, 0.025%, 0.05%, 0.1 %, 0.2%, 0.4%,

0.8%). Cultures were then incubated at 28°C, 250 rpm. Transcriptional activity

was evaluated as described above.
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Results and Discussion

The two Psa/gD:: uidA transcriptional fusions, pSK3 and pAPDP, and the

vector controls (pRG960sd and pBBR.GUS) were introduced into P. syringae

3525. Colonies of 3525(pSK3) turned blue on medium containing X-Glue,

indicating that the a/gO promoter was active in vitro. As expected, the vector

control 3525(pRG960sd) remained colorless on X-Glue medium. Interestingly,

the Psa/gO::uidA transcriptional fusion in 3525{pAPDP) was inactive, while the

vector control 3525(pBBR.GUS) showed very low activity. These results were

consistent with quantitative analysis of PsalgO::uidA transcriptional activity in MG

broth (Table 4). Therefore, 3525(pSK3) was chosen for subsequent experiments.

Time course experiments with 3525(pSK3) showed that a/gO

transcriptional activity increased steadily, reaching a concentration of 810 U of

GUS/mg protein at 36 h (Fig. 7). GUS activity in 3525(pRG960sd) remained low

(40-105 U) throughout the sampling period (Fig. 7).

When expressed in P. syringae FF5(pPSR12), the Psa/gO::uidA

transcriptional fusion was activated by both NaCI and sorbitol, indicating that the

alginate genes were activated in response to increased osmotic stress

(Penaloza-Vazquez et aI., 1997). Similar results were obtained in P. aeruginosa

and several other fluorescent pseudomonads (Berry et aI., 1989; Singh et aI.,

1992). However, when the PsalgO::uidA transcriptional fusion pSK3 was

introduced into P. syringae 3525 and exposed to different NaCI concentrations

and monitored at different times (0.3, 0.6, 1, 2, 4, 6, 9, 18 h), no stimulation of
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GUS activity was observed (data not shown). Fig. 8 shows GUS activity .in

3525(pSK3) at 6 h after the addition of different amounts of NaCI. Sorbitol also

failed to stimulate the PsalgD.:uidA fusion in P. syringae 3525 (Fig. 9).

Alginate production in P. aeruginosa increased during nutritional starvation

in vitro (Terry et aI., 1992). In the present study, the effect of nutritional

supplementation (yeast extract) on a/gO transcription in 3525(pSK3) was

investigated. Our results showed that the addition of yeast extract did not inhibit

Psa/gO transcription (Fig. 10).

We also investigated whether the regulation of algO transcriptional activity

was masked by the high basal level of a/gO transcriptional activity in P. syringae

3525(pSK3). Therefore, GUS activity of P. syringae 3525 harboring pAPDP was

also tested for transcriptional activity in response to NaCI and sorbitol. No

significant increase in algO transcription occurred in response to osmotic stress

in 3525(pAPDP) (Fig. 11 and Fig. 12).

In summary, when the Psa/gO::uidA transcript'ional fusion was expressed

in P. syringae 3525, there was no stimulation by osmotic stress or starvation as

observed in P. syringae FF5 (Penaloza-Vazquez et aI., 1997). These results

indicate that the PsalgO::uidA transcriptional fusion from FF5 is not suitable for

monitoring alginate gene expression in strain 3525. Fakhr et al. (1999) showed

that algi'nate gene expression in P. syringae FF5 and P. aeruginosa is regulated

differentially, and the a/gO promoter region in P. syringae FF5 (Psa/gO) diverged

significantly from the a/gO promoter in P. aeruginosa. The present results

indicate that the a/gO promoter is differentially regulated in different strains of P.
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syringae. It would be worthwhile to compare the sequence of the a/gO promoter

regions in P. syringae strain 3525 and FF5.
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TABLE 3

BACTERIAL STRAINS AND PLASMIDS USED IN THIS STUDY

Strain or plasmid

E. coli DH5a

P. syringae 3525

3525(pRG960sd)

3525(pSK3)

3525(pBBR.GUS)

3525(pAPDP)

pRG960sd

pSK3

pBBR.GUS

pAPDP

Relevant characteristics

Amp', nonmucoid

Amp' Sm' Sp', nonmucoid

Amp' Sm' Sp', nonmucoid

Amp' Cm', nonmucoid

Amp' Cm', nonmucoid

Sm' Sp', contains promoterless uidA with start

codon and Shine-Dalgarno sequence

Sm' Sp', contains a 1.0-kb fragment from PsalgD in

pRG960sd in the transcriptionally active orientation

Cm', 6.6-kb promoter probe vector containing uidA

in pBBR1MCS

Cm', 7.4-kb contains PsalgD as a 2.7-kb Hindlll

EcoRV fragment in pBBR.GUS

Reference

Sambrook et ai, 1989

ICMpa

This study

This study

This study

This study

Van den Eede at aI., 1992

Penaloza-Vazquez et aI., 1997

Penaloza-Vazquez et aI., 1998

Penaloza-Vazquez et aI., 1997

a. ICMP is the International Collection of Microorganisms from Plants, Auckland, New ZealanrL
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TABLE 4

IN VITRO GUS ACTIVITY OF P. SYRINGAE3525 CONTAINING DIFFERENT
PSALGD::UIDATRANSCRIPTIONAL FUSIONS

Strain

3525(pSK3)

3525(pRG960sd)

3525(pAPDP)

3525(pBBR.GUS)

Mean GUS activity (U/mg protein)a

662 a

17 c

38 c

143 b

Plate assal

+++

+

a. Mean values followed by the same letter are not significantly different at
P=O.05 using the Student-Newman-Keuls test.

b. +++ blue; + slightly blue; - colorless.
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APPENDIXC

SEQUENCE ANALYSIS OF ALGA FROM SEVERAL DIFFERENT

PATHOVARS OF PSEUDOMONAS SYRINGAE

Introd'uction

Phosphomannose isomerase - GDP-mannose pyrophosphorylase (PMI

GMP) is a bifunctional enzyme encoded by the algA gene. PMI-GMP catalyses

the first and third steps in the alginate biosynthetic pathway and is essential for

alginate biosynthesis in P. aeruginosa (May and Chakrabarty, 1994; Shinabarger

et aI., 1991) and P. syringae (Penaloza-Vazquez et aI., 1997). Penaloza

Vazquez et al. showed that the algA homolog in P. syringae FF5 was 74%

identical to algA from P. aeruginosa, and algA was functionally interchangeable

between the two species when expressed from the Ptac promoter. In the present

study, a O.87-kb algA fragment was cloned by PCR from several strains of P.

syringae (pv. phaseolicola 1448A, pv. syringae 8728a, and pv. tomato PT17).

Sequence analysis revealed a conserved, unique EcoRI site within the algA gene

that would be useful for insertion mutagenesis.
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Materials and Methods

Bacterial strains and plasmids

The bacterial strains used in this study were Escherichia coli Top10F'

(Invitrogen), P. syringae pv. phaseolicola 1448A (from A. Vivian), pv. syringae

B728a (from K. Willis), and pv. tomato PT17 (C. Bender). Cloning vector pCR2.1

was purchased from Invitrogen.

Molecular biology techniques

Plasmid DNA isolations, agarose gel electrophoresis, and restriction

digestions were performed using standard protocols (Sambrook et aI., 1989).

Chromosomal DNA ·from P. syringae was extracted as described previously

(Staskawicz et aI., 1984). Primers for the PCR reaction were: 5'

GAGAAACACCATGATTCCAG (forward primer) and 5'

TTACCGTTGGCGTCCTTTG (reverse primer), which are derived from algA of P.

syringae FF5. Amplification was performed ;n a MJ Research thermal cycler

(PTC-100). Chromosomal DNA (250 ng) from P. syringae was used as template,

and reactions contained Taq polymerase (2.5 U), 1.25 mM of each dNTP, 0.5 lAM

of each oligonucleotide primer, and 50 mM MgCI2 . peR reactions consisted of a

30-cycle program with a 45 s denaturation at 94°C, a 30 s annealing at 50°C, and

a 60 s elongation at 72°C. PCA products were cloned using the TA Cloning Kit

(Invitrogen) according to the manufacturer's recommendations. DNA was

prepared for sequencing using the Plasmid Midi Kit (Qiagen). Oligonucleotide
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synthesis and automated DNA sequencing were provided by the Oklahoma State

University Recombinant DNA/Protein Resource Facility. Sequence data was

assembled and homology searches were executed using MacVector Version 4.5

(IBI) and the BLAST network service at NCBI. Multiple sequence alignments

were performed using the BCM Search Launcher network service at Baylor

College of Medicine.

Results and Discussion

PCR products of the expected size (0.87 kb) were cloned into pCR2.1 and

sequenced with the M13 forward and reverse primers. The algA sequence from

P. syringae pv. phaseolicola 1448A, pv. syringae B728a, and pv. tomato PT17

were highly homologous to each other (91-93% nucleotide identity) and shared

about 78% nucleotide identity to algA from P. aeruginosa (nucleotides 30-902 as

described in Darzins et aI., 1986). A conserved EcoRI site was found in all three

algA sequences from P. syringae, and was located at nucleotides 586-591, with

respect to the P. aeruginosa algA coding region (Fig. 13). This site could be used

for insertion of an antibiotic cassette and the development of an algA mutant of

P. syringae.
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Fig. 13. Multiple sequence alignment of algA genes from the following
Pseudomonas strains: P. syringae pv. phaseolicola 1448A, P. syringae pv.
syringae B728A, P. syringae pv. tomato PT17, and P. aeruginosa. Conserved
nucleotides are shaded in black while conserved substitutions are shaded in
gray. "_" is created for the purpose of alignment. The conserved EcoRI site is
marked with a rectangle.
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