
BUILDING FAST AND EFFICIENT DATABASE

APPLICAnONS FOR THE WEB

By

XINXUEYUAN

Bachelor of Civil Engineering

Beijing Polytechnic University

Beijing, China

1990

Submitted to the Faculty of the
Graduate College ofthe

Oklahoma State University
in partial Fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 2000

BUILDING FAST AND EFFICIENT DATABASE

APPLICATIONS FOR THE WEB

Thesis Approved:

D hhesis Advisor

JI

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to my thesis advisor, Dr. 1. Terry

Nutter, for her intelligent supervision, constructive guidance, constant inspiration, and

valuable time she has given me throughout this study. My sincere gratitude extends to

Dr. John P. Chandler and Dr. George E. Hedrick for all the help and support they have

given to me; their guidance, encouragement, assistance, and friendship are invaluable.

I would like to give my respectful thanks to my parents, Mrs. Shuying Zhao and

Mr. Shixian Yuan, for all the love and support they have given me throughout my life. [

would like to sincerely thank my two older brothers for their love, encouragement,

support and confidence they have contributed to me.

FinalIy, I would like to thank all the faculty of the Department of Computer

Science for their support during my two and half year study here.

III

TABLE OF CONTENTS

Chapter Page

I INTRODUCTION 1

II LITERATURE REVIEW 5

Client-Server Technology 5

World Wide Web 6

Database and DBMS 8

SQL 8

Web Database Publishing Technology and Development Strategies 9

III roBC ARCHITECTURE AND WORKING MODELS 17

JDBC Architecture 17

JDBC Working Models 25

IV APPLICATION DESIGN, IMPLEMENTATION AND RESULTS 29

Computing Architecture Design 29

JDBC Components Design 31

Implementation Details 37

Results 47

VI CONCLUSION AND FUTURE WORK. 58

Conclusion 58

IV

Future Work 58

REFERENCE 59

\.

Table

LIST OF TABLES

Page

1. Some JDBC Types Mapped to Database-specific SQL Types 20

2. Classes injava.sql Package 22

3. Relations and Their Attributes in Northwind Database 36

4. System Environment 38

5. Mapping of Access and Java Data Type, and the get Methods .45

\'l

Figure

LIST OF FIGURES

Page

1. Database Access Through CGI Approach 12

2. Database Access Through ODBC Approach 14

3. Database Access Through IDBC Approach 15

4. Two-tier IDBC Model 25

5. Three-tier IDBC Model 26

6. JFC Use in Internet-based Three-tier JDBC Approach 2X

7. Computing Models for Application-land Application-II 30

8. E-R Diagram for Northwind Database 37

9. IDS Server Directory Hierarchy 38

10. Importing IDBC Driver Classes in Application-I 39

11. Importing IDBC Driver Classes in Application-II 39

12. Syntax of Connection URL for IDS IDBC Driver 40

13. Establishing a Connection in Application-I 41

14. Establishing a Connection in Application-II. .41

15. Creating and Executing JDBC Statements 43

16. Retrieving Results from the Query 44

17. Creating a PreparedStaternent 45

VI1

Figure Page

18. Setting and Executing a PreparedStatement 46

19. Closing the Connection .47

20. Welcome Window of the GUI 47

21. Menu Items in Connection M.enu 48

22. Dialog Box for Choosing the Data Source 49

23. Connection Completion Dialog Box , .49

24. Options in Query Menu 50

25. Result of a Run-time Query 50

26. Results of Four Pre-defined Queries 51

27. Record View of Customer Table 51

28. Scan View of Customer Table 52

29. The Items in Utilities Menu 52

30. Inserting Records into the Order Table 53

31. Importing Data from "shippeLdat" into the Shipper table 53

32. Three Look and Feel Choices in Options Menu 54

33. Using Java Look and Feel. 54

34. Using Motif Look and Feel 55

35. Using Window Look and Feel 55

36. Contents in About Menu Item 56

37. User Interface of the Application-II 56

38. A Run-time Query and the Results 57

VIII

CHAPTER I

INTRODUCTION

Database Management Systems (DBMSs) and database models evolved out of an

increasing need for manipulations of huge collections of information that could be not be

managed by simple file-processing techniques [12]. In their infancy, access to databases

through DBMSs was a simple matter. The DBMS lived on the same machine as the

database; that one machine was also used for all access, achieved for the most part

directly through the DBMS, with some residual reliance on custom software for specific

kinds of reports, etc [4]. As computers evolved from stand-alone systems to cooperating

groups of smaller machines, and as databases became large enough to spread over

multiple machines, the one-machine-one-program (DBMS) model gave way to a client

server model, in which the data resided on one system that might or might not host the

DBMS, but access came through other systems. The client-server model was based on the

concept of dedicated Local Area Networks (LANs), consisting mostly of compatible

hardware platforms running dedicated client software on the machines used for access,

and server software on those used for DBMSs management [26]. To make it easier for

people, especially those without extensive training in programming and computer

science, to work efficiently with databases, much effort has been given to develop server

side applications to form user-friendly interfaces with those DBMSs [25]. But today,

even that model is becoming obsolete. Hardware ages so quickly that such dedicated

LANs with all their machines would have to be replaced every couple of years to keep

L

up; and client and server software changes just about as quickly. More seriously, in tenus

of computational environment models, today, the people who need access to a single

database don't necessarily work together in the kind of proximity assumed by LANs. The

invention of Internet technology overcame these limitations and yields a much more

powerful Internet-based client-server model [38]. The heart of Internet technology is the

World Wide Web (Web), that allows users on one computer to access information or

resources through the worldwide network [1]. Hence, on the client side, this model makes

it possible for users to access DBMSs from anywhere in the world, using any kind of

platfonn that can access the Internet. Moreover, with the use of Web browsers, there is no

need for each user to install dedicated client-side software which, most of the time, is

licensed. On the server side, with the use ofInternet-oriented Java technology, this model

makes server software platform-independent, and provides more flexibility, extensibility,

and portability [20].

It is not an easy task to implement the client-server model based on the Internet.

Web database applications should execute quickly, provide as much infonnation as

possible, and have a very user-friendly interface. On the other side, the providers and

designers should utilize an approach that makes it easy to design and to develop such

applications, provides an efficient way to extend and reuse the available code, and brings

more advanced functionality [11][21]. Currently, there are many approaches to

developing Internet-based web database applications. The three dominant solutions are

the Common Gateway Interface (CGI) approach, the Open Database Connectivity

(ODBC) approach, and the Java Database Connectivity (JDBC) approach [20][36]. The

CGI approach is a legacy approach that uses CGI as the standard protocol to

2

communicate between a CGI application and a web server, and uses the CGI application

to access back-end databases [26]. This approach has been used in many earlier Web

database applications, but performance suffers. Each time a browser sends a request, a

new CGI process must be loaded, and must initiate a new database connection.]f a large

number of users hit the site, repeatedly loading CGI applications for each request may

dramatically degrade performance [7]. Thus, recent applications have investigated new

approaches. The ODBC approach uses OOSC as an Application Programming Interface

(API) for database interacting, and uses another API to communicate with the Web server

[21]. The API use overcomes the efficiency limitation of the CGI approach by generating

new threads for each new request. In addition, by inserting the driver manager between

the application program and the DBMS driver, OnBC API lets each application access

different data sources. ODBC approach is well established and is currently a very widely

used solution [30]. But it has one severe drawback for developing Internet-based cross

platform applications. OnBC API uses a C interface, so that reusing the available code

becomes an issue, and applications that will run on multiple platforms must recompile or

even regenerate the code [15].

The JDBC approach is a pure-Java solution, and solves the platfonn-dependency

problem with the OOBC approach. It uses IDBC, a pure-Java API introduced by Sun

Microsystems, in place of OOBC API. IDBC API remains the basic design features of

ODBC API [15J. It is very efficient and also enables one application to access databases

through DBMSs. Moreover, the internet-oriented nature of Java makes pure-Java

applications platform-independent. Java is also very easy to use while providing many

advanced and powerful features [34]. Therefore, IDBC approach is the best choice for

3

publishing databases over the Web.

The obj ectives of this thesis are to design and develop a general strategy for

implementing the JDBC approach. This strategy utilizes the three-tier client-server model

over the Internet and uses Java Foundation Classes (JFC) API for Graphical User

Interface (QUI) design; and to design and build two integrated applications to illustrate

this strategy. This task started from architectures and techniques that were developed to

facilitate flexible and powerful access to databases using dedicated client machines with

dedicated software over dedicated LANs, and extends those architecture and techniques

to perform the same functions for any potential client machine anywhere in the world,

assuming nothing except a modem, internet access, and a Java-enabled Web browser.

The thesis is organized as follows,

• Chapter 1: Introduction

• Chapter 2: Literature Review

• Chapter 3: JDBC Architecture and JDBC Working Models

• Chapter 4:. Application Design, Implementation and Results

• Chapter 5: Conclusion and Future Work

4

CHAPTER II

LITERATURE REVIEW

2.1 Client-Server Technology

Currently, the dominant architecture for distributed computing is the client-server

model, made possible by a combination of powerful computer hardware and reliable, fast,

relatively low-cost communications technology [44]. Under the client-server model, each

application consists of two parts: the Client that initiates communication and requests

information, and the Server that responds and services information requests [35].

The client-server model has become the central idea of network computing, based

on Local Area Networks (LANs) or the Internet. A client-server system generally

contains three layers: user interface, business logic, and data sources [44]. The business

logic is implemented by business objects, the data access logic and other services specific

to data are implemented in a separated layer called the data service layer, and the user

interface is implemented to make it easier for users to access the system [35].

The client-server technology has progressed from the traditional two-tier model to

the three-tier model. Most business applications being developed today use the three-tier

model [35]. In a traditional two-tier model, business logic and user interface layers are

implemented on the client side, and the clients talk directly with the servers, in which

data sources are located (44]. In a three-tier model, a middle tier is added between the

clients and the data servers, and the business logic layer is moved from the clients into

the middle tier. In practice, clients send requests to the middle tier through the user

'i

interface, then the business logic on the middle tier handles these commands,

communicates with the data sources, and finally sends results back to the clients [35][42].

The three-tier model has many advantages over the two-tier model. First, the

three-tier model is very powerful and flexible. The developer can change the underlying

data services without changing the client application. Moreover, the developer can

change the business logic that is implemented at the middle tier without affecting the

client or the server. Second, this model is more scaleable, as the developer can add more

power at the business logic or database server level without touching the client

application. Third, the application server acts as a sort of "funnel" by maintaining a few

database connections while servicing a much larger number of clients, thus greatly

improving system performance. Finally, managing access to critical back-end data

resources from the middle tier increases security [38][44].

The disadvantage of three-tier applications is that they are more difficult to build

than two-tier applications. The obstacle is that, unlike the visually-oriented development

of two-tier applications, an integrated development environment is difficult to use for the

three-tier model and much more hand-coding is required [44].

2.2 World Wide Web

The World Wide Web, or WWW.cameintobeingintheearly1990s.Itis

currently the most powerful and flexible Internet-based computer network that allows

users on one computer to access information or resources stored on another through the

world-wide network. The Web operates on a client-server model. Users run Web client

browser software to contact a Web server and request information or resources. The

6

computer on which the infonnation or resources reside uses Web server software to

locate and send requested material back to the Web browser [1][21].

The three primitive sets of rules specified by WWW designers for creating,

publishing, and finding documents are URL (Uniform Resource Locator), HTTP

(Hypertext Transfer Protocol), and HTML (Hypertext Makeup Language) [9]. A URL is

the address of the resource to be retrieved from a Web server. It tells the browser what

document to fetch, exactly where to find it on a specific server somewhere on the

Internet, and what access protocol to use. HTTP is the protocol that governs transfer of

information between the Web server and the Web browser. Information or documents on

the Web reside in different Web "pages." Pages may contain text, graphics, multimedia,

and any other kinds of Internet resources, and are connected to each other using hypertext

links that allow a user to move from any page to any other page. HTML is the mark-up

language that is used to create Web pages. HTML defines the display format of a Web

page and enables hypertext links to be embedded in the page [1] [9].

The World Wide Web evolves at a very rapid pace, and many new technologies

have been applied to it. Now users can not only visit Web pages, but also run programs

that reside on remote computers rather than on the user's local computer, and two

computers can interact with each other in a variety of complex ways [1]. One very

important and useful application on the Web is Web database publication, which offers

providers a powerful way to organize and maintain databases, and offers large numbers

of remote users an efficient way to access databases [26][38].

7

2.3 Database and DBMS

"A database is a collection of related data" [10]. A database management system

(DBMS) is a set of programs to handle all access to the database. With large amounts of

data stored and protected by it, the DBMS provides a single user or multiple concurrent

users facilities for defining, constructing and manipulating databases [10][12].

There are many ways to classify DBMSs. The most commonly used criterion is

the data model. The data model is a set of data abstraction concepts that are used to

describe data, data relationships, and consistency constraints [10][12]. Relational DBMSs

(RDBMSs), based on the relational data model, are the predominant systems among

present-day DBMSs. A relational database consists of a collection of tables that contain

columns and rows, a set of rules that define relationships among the tables, and

Structured Query Language (SQL), which provides mechanisms for manipulating data in

the database and specifying security constraints [10][12]. Almost all widely used

commercial DBMSs, including Oracle, Microsoft SQL Server, and Microsoft Access, are

RDBMSs.

Other criteri.a used to classify DBMSs include the number of users, the number of

sites, the cost of the DBMS, etc. For example, Oracle is a multiple-user RDBMS, while

Microsoft Access is a desktop system supporting only one user at a time [10][12].

2.4 SQL

SQL, which stands for Structured Query Language, is an industry standard

language to access and manipulate relational databases. The first SQL standard, SQL-86,

was accepted as a standard by the American National Standards Institute (ANSI) and the

8

International Standards Organization (ISO) in 1986. The extended standard SQL-89 was

published in 1989, and the current version ofth.e ANSI/ISO standard is SQL-92 [12].

The components ofSQL, based on the 1989 and 1992 standards, are [10][12]:

• Data Definition Language (DDL): the SQL DDL includes commands to

create, alter, and drop the tables that fonn the structure of a relational

database, and to specify data constraints - rules that table rows and columns

must follow.

• Data Manipulation Language (DML): the SQL DML includes commands to

retrieve and change data in the database. The four most common commands

are INSERT, SELECT, UPDATE and DELETE.

• Data Control Language (DCL): the SQL DCL includes commands to control

security and specify rights to access, alter, and manage all or selected parts of

a database.

Because the SQL-92 standard is much larger than its predecessor SQL-89, and

has a very wide scope specifying a very large number of features, it is broken into three

levels: SQL-92 Entry Level, SQL-92 Intermediate Level and Full SQL-92 [40]. Today,

nearly all major DBMSs support SQL-92 Entry Level. JDBC specification requires that a

vendor's lDBC implementation must support at least SQL-92 Entry Level [49].

2.5 Web Database Publishing
Technologies and Development Strategies

Though SQL is well suited to manipulate databases, it is poorly suited to develop

applications, and programmers use it primarily as a means of communicating directly

with databases. As more companies and users connect to the Internet, and with the

growing number of applications, especially in the business world, that are tightly linked

to databases, Web database publishing technology has begun to dominate traditional SQL

programming [21][30].

A typical Web database publishing system consists of four key components: the

application, the Web browser, the Web server and the database driver [21]. The

application sends out requests, the Web browser provides the user interface, the database

driver works as an information store, and the Web server connects the Web browser and

the database driver.

There are several advantages to providing database applications through the Web

[21][26][30][36][41]:

• Allowing a huge number of Internet-connected users to access the database.

• Offering a standardized user interface to all potential users.

• Offering platfonn-independent applications.

• Providing high transaction volumes (permitted by HTTP).

• Providing the ability to display multimedia data.

• Offering simple, low-cost application development.

• Providing an easy and powerful way to organize and maintain information for

database providers.

• Providing an efficient and low-cost way to access the database for database

users.

10

-

Currently, many technologies support developing Web database applications

[20][41]. The author briefly describes three leading solutions here.

2.5.1 The CGI Approach

CGI (Common Gateway Interface) is a standard protocol for interfacing external

applications with information servers, such as HTTP or Web servers. It sets up a

standardized means of communicating between a CGI application and a Web server. A

CGI application, also called a script, lets Web users access databases, and lets

applications get information from forms that people fill out online. CGI applications can

be written in virtually any programming language; the most commonly used are Perl

(Practical Extraction and Reporting Language), C, and C++ [7][21].

When a user clicks on a "submit" button from a Web browser to post a form or

send a request, HTTP uses the specific URL to locate a Web server. The server uses CGr

to pass the request or form and its parameters to the CGr application. Then the CGr

application executes the corresponding code to communicate with the back-end DBMS,

and returns the results in HTML format to the server using CGl; the server sends the

results back to the user's browser [21). Figure 2-1 shows database access through the CGr

approach.

In the early stage, the CGI approach was widely used for developing interactive

Web applications. It works on both two-tier and three-tier client-server models, but in

most cases it is very slow and cumbersome [26][38]. Every time a Web browser sends a

request, the Web server triggers the CGI application, which must be loaded to execute the

11

request, then tenninates. Repeatedly loading large CGI applications for every request

consumes time and resources, and adds overhead to the Web server, especially when

many users request data at about the same time. Thus, the CGI approach provides a poor

solution for complex applications [7][[20J.

HTTP Request CGI Calls

Web .. Web ... CGI.. ..
Browser ... Server Application....

HTML Results HTML Results A~

--
Database

Figure 2-1 Database Access Through CGI Approach

2.5.2 The ODBC Approach

ODBC (Open Database Connectivity) was first created by Microsoft Corporation

In 1992, as an API (Application Programming Interface) for accessing databases. The

ODBC architecture has four major components or layers [30J [36]:

• Application: the user application calls ODSC functions to send SQL

statements to the data source. It can be written in one of many programming

languages, such as C, or C++.

• Driver Manager: this is a DLL (Dynamic Link Library) that provides access to

12

individual ODBe function calls. It may also load driver DLLs and check

ODBe function calls.

• Driver: the driver processes OOBe function calls. It connects to a data source

on command from the user application, sends SQL statements to the data

source, and returns results back to the application. Drivers are often

developed by DBMS vendors.

• Data Source: the data source consists of the DBMS and any data stores the

user application defines.

The ODBe approach is well-established, and is currently a very widely used

approach. Most applications using the ODBe approach today work on the three-tier

model [20][30]. In a three-tier model over the Internet, the ODSe approach uses OOBe

API for database interacting, and uses other APls to communicate with the Web server

l30]. The API use overcomes the efficiency limitation of eGI approach by generating

new threads for each new request. In addition, by inserting the driver manager between

the application program and the DBMS driver, OOBe API lets each application access

different data sources. Figure 2-2 shows database access through the ODBe approach

using an Internet-based three-tier client-server model.

Using ODBe approach raises serious concerns. ODBe API uses a e interface.

This makes it very difficult to write a program that will run on multiple platforms, and

thus makes it very difficult to reuse the available code in other applications running on

different platforms without modification [20][30].

13

Web Browser

~

HTTP Request HTML Results

I Web Server

API Calls
.~

Request Results

"
Application Server

ODBC Application I
.~

ODBC Calls "IF ODBC Calls

Driver Manager

~ ~ .~

F F , ...
Driver A Driver B Driver C ...

... ~~ ..
~ -. ,.- """ """
Database A Database B Database C ...

-- .-' -- .-'

Figure 2-2 Database Access Through ODBC Approach

2.5.3 The IDBC Approach

JDBC (Java Database Connectivity), first developed by Sun Microsystems Inc.

and its partner companies in March 1996, is a standard Java™ API [or connecting to

relational databases and executing SQL statements [30]. Since JDBC builds on ODBC, it

retains the basic design features of ODBC. Like ODBC, IDBC architecture consists of

four layers: IDBC application, IDBC driver manager, IDBC driver, and data source [39].

14

Today, most complex Web database publishing systems using the IDBC approach

adopt the three-tier client-server models, that gives them more scalability, flexibility, and

security [44]. Figure 2-3 shows database access through the IDBC approach In an

Internet-based three-tier model, which is similar to the ODBC approach [20].

Web Browser

HTTP Request
A..

HTML Results
"

Web Server

Java API Calls
u.

Request Results
,Ir

Application Server

IDBC Application I

IDBC Calls JDBC Calls

Driver Manager

.. ~ .. A~

, ,. ,,.
...

Driver A Driver B Driver C ...

-- ,- ,-

Database A Database B Database C ...
--

Figure 2-3 Database Access Through JDBC Approach

Unlike the ODSC approach, the JDBC approach uses pure-Java APIs. Based on a

three-tier model over the Internet, it uses IDBC API to communicate with the back-end

I."

DBMSs, and uses other Java APIs to communicate with the Web server [39]. Java is a

powerful but simple object-oriented programming language. Java source code is

compiled into an architecture-neutral byte-code, and at run-time, this byte-code can be

interpreted by the Java Virtual Machine (JVM) on any Java-enabled operating system.

Since virtually all modern web browsers are Java-enabled, Java is platform-independent

[34]. This means that the same IDBC-enabled Java application can run on different

platforms, and access all of the major RDBMSs, without even being recompiled [39].

Another advantage of the IDBC approach is that IDBC was designed to be very

compact and simple. Hence the JDBC mechanisms are easy to understand and use, while

allowing advanced features and capacities where required [39].

16

CHAPTER III

JDBC ARCHITECTURE AND WORKING MODELS

This chapter consists of two sections. Section one introduces the JDBC

architecture, including JDBC components, roBC driver types, SQL conformance, the

JDBC API, scenarios of use, and roBC security considerations. Section two describes

two-tier and three-tier JDBC working models, and presents the dedicated strategy for

implementing the roBC approach.

3.1 roBC Architecture

3.1.1 JDBC Components

Like ODBC, roBC architecture consists of four components: the roBC

application, JDBC driver manager, roBC driver and data source [39].

• JDBC Application: this is the user application which calls JDBC APl to

interact with the data source. It is coded in the Java language.

• Java Driver Manager: this is the backbone of the JDBC architecture. It keeps

track of available drivers and handles establishing a connection between a

data source and the appropriate JDBC driver. This management layer of JDBC

lets an application communicate easily and efficiently with di fferent data

sources through different types of JDBC drivers.

• roBC Driver: the JDBC driver processes JDBC function calls to a data source

on command from the user application. It sends SQL statements to the data

17

source, and returns results to the application. Drivers are oft n developed by

the DBMS vendors. CUlTently, there are four types of IDBC drivers.

• Data Source: the data source consists of any DBMS and any kind of data

stores the user application defines.

3.1.2 IDBC Driver Types

IDBC drivers fit into one of four categories [30]:

• IDBC-ODBC Bridge Driver: this driver maps IDBC function calls to ODBC

calls, and thus provides JDBC access via most ODBC drivers. This bridge is

provided by Javasoft, and gives IDBC the capability to access almost all

DBMSs, as ODBC drivers are widely available. This driver requires loading

some binary code on each client machine.

• Native-API Partly-Java Driver: this kind of driver converts IDBC calls into

calls on the client API for Oracle, DB2 or other major DBMSs. Like the

previous bridge driver, this style of driver also requires loading binary code on

each client machine.

• Net-Protocol All-Java Driver: this kind of driver translates IDBC calls into a

DBMS-independent net protocol. This protocol is then translated to a DBMS

protocol by a dedicated server that works as a middleware to connect its all

Java client to many different databases. This server and the specific protocol

are developed by IDBe driver vendors.

• Native-Protocol All-Java Driver: this driver translates IDBC calls directly into

the network protocol used by DBMSs. Since many of these protocols are

18

proprietary, this kind of driver is primarily developed by database vendors.

Because drivers in categories 3 and 4 are implemented in pure-Java, they can

offer all the advantages of Java. Hence it appears likely that eventually they will be the

preferred ways to access databases from IDBC [2][30].

3.1.3 SQL Conformance

Structured Query Language (SQL) is the industrial standard language for

accessing DBMSs. However, there are two major areas of difficulty when developing

IDBC applications. First, different DBMSs support significantly different versions of

SQL. Second, although most DBMSs support some subset of one of the SQL standards,

they may not conform to the most advanced SQL syntax or semantics as defined by the

latest standard (4]. For example, Oracle supports stored procedures, but Microsoft Access

does not.

To deal with the first problem, JDBC defines a set of generic SQL type identifiers

to represent the most commonly used SQL data types [15][30]. By mapping IDBC types

to database-specific SQL types, and vice versa, programmers can develop applications

for transferring data between the application using Java types and a database using

specific SQL types, without having to be concerned about the exact SQL type name used

by the target database. Table 3.1 shows the mapping between some IDBC types and

database-specific SQL types used in four major DBMSs (15].

19

mBCType Oracle IBMDB2 MS Access

Bit N/A N/A N/A
Integer Integer Integer Integer
Real Real N/A Real
Float Float Float Float
Double Double Precision Double Precision Double
Numeric Numeric Numeric N/A
Decimal Decimal Decimal N/A
Char Char Char Char
VARCHAR(n) VARCHAR(n) VARCHAR(n) VARCHAR(n)

n <= 2000 n <= 255 n <=255
Binary N/A Char for Bit Data Binary
Date date Date Date
Time Date Time Time

Table 3.1 Some mBC Types Mapped to Database-specific SQL Types

mBC provides three mechanisms to deal with the second problem [15][30]. First,

mBC allows any SQL query string to be passed to the DBMS driver. If the SQL

functionality is available in that DBMS, correct results will be returned; oth rwise, an

error message will be sent back. Second, JDBC provides escape clauses. These clauses

signal the driver that the code within them should be handled differently for different

DBMSs. For complicated applications, JDBC also provides descriptive information about

DBMSs, so that applications can be developed to meet the requirements and capabilities

of different DBMSs, without risking receiving errors. In the mBC specification, it is

required that, for SQL conformance, a vendor's JDBC driver must support at least ANSI

SQL-2 Entry Level, so that users can rely on a standard level of JDBC functionality.

20

3.1.4 IDBe API

The IDBC API is a standard SQL database access interface. It provides Java

applications with a uniform interface to most databases, and provides an industrial

standard base on which high level tools and interfaces can be built. IDBC API is now

part of the Java Enterprise APIs and is included in the Java Development Kit (JDK). The

current version of IDBC API is the JDBC 2.0 API, included in the IDK 1.2 release [49].

The JDBC 2.0 API consists of two components. The first component, termed the

IDBC 2.0 Core API, is implemented in the java.sql package, and contains all the basic

interfaces. The second component, termed the IDBC 2.0 Standard Extension, is

implemented in the javax.sql package, and extends the functionality of the JDBC API

from a client-side API to a server-side API [49]. This thesis restricts its attention to the

IDBC 2.0 Core API.

The java.sql package contains all the IDBC interfaces and classes that are needed

to implement the JDBC functionality for accessing databases (see Table 3.2) [49].

21

Functionality Type

Driver

Connection

Statements

ResultSet

Error/Warning

New Built-in SQL Types

SQL Reference

SQL-Java Type Mapping

MetaData

Date/Time

Miscellaneous

Class

java.sql.Driver
java.sql.DriverManager
java.sql.PropertyInfo

j ava.sql.Connection

java.sq1.Statement
java.sqI.PreparedStatement
java.sql.CallableStatement

java.sql.ResultSet

java.sq1.SQLException
java.sql.BatchUpdateException
java.sq1.Warning

java.sq1.Array
java.sql.Blob
java.sql.Clob
java.sql.Struct

java.sql.Ref

java.sql.SQLData
java.sql.SQLInput
java.sql.SQLOutput

java.sql.DatabaseMetaData
java.sqI.ResultSetMetaData

java.sql.Date
java.sql.Time
java.sql.TimeStamp

java.sql.Types
java.sql.DataTruncation

Table 3.2 Classes injava.sql Package

22

&

3.1.5 Scenarios of Use

In the standard JDBC specification, JDBC designers present three common

scenarios for JDBC use to develop database applications: Java applets, Java standalone

applications and three-tier access [26][49].

A Java applet is a Java program that is included in web documents such as HTML

pages. When the user uses a Java-enabled browser to view a document that contains an

applet, the applet's code is downloaded over the net and then executed by the Java Virtual

Machine (JVM) on the local system. By their nature, applets seem to provide a good

solution for developing Internet/Intranet database applications. However, using applets

raises several concerns. One is security. By default, applets are severely constrained in

the operations they are allowed to perform. In particular, downloaded applets may not

access local files or make network connections to other hosts. Another concern is

performance. To be executed, applets must be downloaded to the client's local system.

For low-bandwidth Internet connections, download time may severely degrade

application performance. Hence, applets are well suited for presenting friendly user

interfaces, but are poorly suited to host business logic, such as JDBC functionality.

JDBC API can also be used in Java standalone applications installed and executed

on client machines. In this case, the applications are trusted, and allowed to access local

files, open network connections, etc., just like normal Java applications. The most

common use of Java applications is within Intranets, but they can also access databases

through the Internet.

One big limitation with the two scenarios above is that they are based on the

classic two-tier client-server model, in which the clients communicate directly with the

23

back-end DBMSs, and thus applications are platform-dependent and vendor-specific, and

are difficult to deploy, maintain, and upgrade. Hence, JDBC designers recommend the

third scenario: three-tier access, that overcomes this limitation [49]. In this case, only user

interfaces are presented on the client side, business logic and functionality of the

applications is located and operated on the server-side. Three-tier access is based on the

three-tier client-server model, and is best suited for IDBC-enabled Web database

applications. The two-tier and three-tier client-server models are discussed in section 3.2.

3.1.6 JDBC Security Considerations

IDBC-enabled Web database applications are pure-Java applications. They should

follow the standard Java security model that has been evolving since the inception of Java

technology. The original model provided by JDK 1.0 is the Sandbox model [16].

According to this model, local Java applications have full access to vital system

resources, while downloaded Java applets can only access limited resources. A Security

Manager class determines which resource access is allowed.

JDK 1.1 introduced the concept of signed applets [16]. Like local applications,

correctly digitally-signed applets are trusted by end systems, and have full access to local

system resources.

In the Java 2 platform, the security model changed dramatically. By introducing

the Access Control List (ACL) mechanism, the new model eliminated the built-in

concept that all local applications, servlets, and signed applets are trusted. Instead, all

Java applications are subject to the same security control [16][31]. When code is loaded,

it is assigned permissions based on the external configurable security policy file. Each

24

•
I,

•
~

pennission grants a specific level of access to a particular system resource; code can only

access the resources that are granted to it. By using pennissions and an access control

policy file, this ACL architecture allows fine-grained, highly configurable and extensible

access control. In addition, the ACL model is fully backward-compatible, so that th

Security Manager mechanism is still supported.

3.2 IDBC Working Model

IDBC can be used in both two-tier and three-tier models. In the traditional two-

tier model, a front-end client runs the Java applet or Java application, which employs

IDBC API and talks directly to the back-end database server. The client's commands or

requests are delivered to the server, and the results or requested infonnation are sent back

to the client. The data source may be located on another machine to which the client is

connected via a network. Figure 3.. 1 illustrates the two-tier architecture for database

access using IDBe.

Client Server

I User Interface I ,-- -......
'-- ----+ t IDBC Calls

I Business Logic:::: ... DBMS

Figure 3.1 Two-tier IDBC Model

The two-tier application is easy to build, but has a number of limitations. First, the

client must be configured to include a driver for each type of datahase being accessed.

25

This restricts flexibility and choice of DBMS for application, and can be costly, since

such drivers usually carry a license fee. Second, the number of active clients is limited.

This limitation results from the server maintaining a connection via "keep-alive"

messages with each client, even when no work is being done. The munber of open

connections to the database server affects system performance. Finally, the two-tier

architecture provides limited flexibility in moving program functionality from one server

to another without manually regenerating procedural code on each client. The two-tier

application is platform- and vendor-specific, and is difficult to deploy, maintain and

upgrade. Hence, the JDBC approach based on the two-tier model is a poor solution.

The three-tier model overcomes the limitations with the two-tier model. In this

model, the client no longer communicates directly with the DBMS. Instead, a middle tier

is added between the client and the data server. The middle tier functions as an

application server, moving the business logic from the client into the middle tier. In

practice, the client sends requests to the application server through the user interface; the

business logic handles these commands and then sends them as lOBC calls to the data

source. The data source processes the commands and sends the results back to the

application server, which then sends them to the client (See Figure 3.2) [16].

Client Application Server Server
I ,.-- :::

IDBC Calls "-

IUser Interface I 1 B' L'""" DBMSI'" 1 usmess OglC I'"'" ...

'-

Figure 3.2 Three-tier IDBC Model

26

!~,

The three-tier model bas many advantages over the two-tier model. First, the

three-tier model is very powerful and flexible. The developer can change the underlying

database services witbout changing the client application. Moreover, the developer can

change the business logic that is implemented at the application server without affecting

the client or database server. Second, this model is more scaleable, as the developer can

add more power at the business logic or database server level without touching the client

application. Third, the application server acts as a sort of "funnel" by maintaining a few

database connections while servicing a much larger number of clients, thus greatly

improving system performance. Finally, managing access to critical back-end data

resources from the middle tier increases security. For instance, clients outside of a

firewall can access an application server without compromising the security of the data

sources the application uses.

The disadvantage of three-tier applications is that they are more difficult to build

than two-tier applications. The obstacle is that, unlike the visually-oriented development

of two-tier applications, an integrated development environment is di fficult to use for the

three-tier model and much more hand-coding is required.

Today, many enterprise database apphcations have used the Internet-based three-

tier model, allowing users to access DBMSs from literally anywhere in the world. In this

case, Graphical User Interface (GUI) design has become increasing central. Web

database applications should provide very user-friendly interfaces to make it easier for

people, especially those without extensive training in programming and computer

science, to work effectively with the back-end DBMSs. In this thesis, the author designs

and develops a general strategy for implementing the JDBC approach, as shown in Figure

27

,.

I'

3.3. This strategy utilizes the three-tier client-server model and uses Java Foundation

Classes (JFC) API for Graphical User Interface (Gill) design. The author designs and

builds two applications to illustrate this strategy, as discussed in next chapter.

Database Server

Client Machine (Gill)

Application Server
(Business Logic)

Java Applets
(JFC API)

TTP calls n,

r

Server Applications
(Java)

IDBC API

J~

ary protocol

C -.....

DBMS

H

DBMS-propriet

Figure 3.3 JFC Use in Internet-based Three-tier JDBC Approach

28

CHAPTER IV

APPLICATIONS DESIGN,

IMPLEMENTATION AND RESULTS

To illustrate the strategy that the author presented in Chapter III, the author

designed and developed two applications. This chapter introduces in detail the

applications' computing architecture design together with JFC features, JDBC component

design, implementation details, and results.

4.1 Computing Architecture Design

In this thesis, the author designed and developed two applications. Application J is

a JDBC-enabled database application running on the Windows operating system;

Application II is an JDBC-enabled database application launched by a Web browser.

Both applications adopt the three-tier client-server model. As described In

Chapter III, the client contains only the user interface. In application I, the client can be

any MS-DOS system; in Application II, the client is a web browser. For both

applications, the server houses the data source, and the middle tier contains the business

logic. The middle tier resides on IDS Servers; the data sources are implemented on

Microsoft Access 97.

In the three-tier model, the client sends commands to a middle tier of services,

which passes processed requests to the data source server, The data source processes the

commands and sends the results back to the middle tier, which then returns them to the

29

client. For simplicity, the author adopted a personal computer configuration in which all

three tiers run on the same machine. Figure 4.1 depicts these two models.

Machine A

Business Logic 14--'-----~

r--------------------

MS-DOS Client

User Interface
I,,,,,,,

---------------- 1

IDS Server

r------------------,
I ,
I ,
I ,
I ,

:MS Access Server'
I
I

JDBC Calls:
Data Source

I
I
I
I
I,
I,,
1- _

Application-I Computing Model

IDS Server

r--------------------~,
I
I
I

Web Browser :,,
I
I

User Interface
Web

Serve

usmess : JDBC Calls,

Logic

r-----------------.,,,
I

MS Access Server:
I
I
I
I
I
I

Data Source :
I,,,,,
I

I,
, I
1- ~

Application-II Computing Model

Figure 4.1 Computing Models for Application-I and Application-II

30

The IDS Server is an Internet database access server that lets developers create

web database applications that communicate with back-end DBMSs. It can also serve as a

database access server in a distributed application on a network. The IDS Server supports

access to all OOBC-compliant databases, as well as native Oracle, Sybase and several

other major databases, through their respective client Application Programming

Interfaces (APIs). The IDS Server has been implemented on Windows 95/98, Windows

NT, Solaris, and Linux [18].

Aside from providing high performance database access, an IDS Server can also

serve as a web server. Hence, a single IDS Server can host and deploy an entire database

enabled application system, as it does in application II [18].

Both applications use the IDS Server 3.1.1 Evaluation Version, which is available

for free public download, and which supports JDBC 2.0 API [18].

4.2 JOBC Component Design

4.2.1 Graphical User Interface

Graphical User Interface (Gill) design has become increasingly central to Web

database applications. To make it easier for people, especially those without extensive

training in programming and computer science, to work effectively with the back-end

OBMSs, Web database applications should provide very user-friendly interfaces. Today,

a number of software products and tools on the market help developers implement user

friendly interfaces. In application I, the author employed a new yet very robust Java

technology, Java Foundation Classes (JFC), to design and implement the GUI.

Early in Java's history, the Abstract Window Toolkit (AWT) fulfilled a key role in

31

a

GUI design for Java applications. It provides developers with a rudimentary library for

building graphical components and services, and offers two important features for all

Java applets and applications [6][23]:

• 100% portability for any Java technology-enabled platform from a single set

of source code;

• native look and feel on different deployment platforms by using each Java

component class to "wrap" the native implementation or peer (IDK refers to

this as the "Peer Model").

However, AWT has several weaknesses. It provides only very basic components,

functionality and services. This makes it very difficult to develop modem large-scale and

commercial-grade applications using AWT. In addition, AWT's peer model is too

restrictive in rendering and event handling. As a consequence, it is difficult to extend or

override different aspects of the component (5][23].

In Feb. 1998, Sun Microsystems, Inc. released the first shipping version of the

Java Foundation Classes (JFC) software, which is available for free download [7]. JFC

consists of a comprehensive set of pre-built GUl components and foundation services for

100% pure Java development. It is a superset of AWT, and is fully AWT-compatible.

JFC extends the AWT component set by adding a comprehensive set of lightweight and

peerless components. These 100% pure Java components provide developers with

enormous flexibility and the ability to customize the look and feel of JFC-based

applications. In addition, JFC delivers sophisticated foundation services such as Java

2D™ API, Pluggable Look and Feel, accessibility features for people with disabilities,

and many other services. JFC's rich toolkit of components and services offers developers

32

---,.-------------------------

great functionality, portability and extensibility [17].

The latest version of JFC, JFC 1.1, contains the following features [5]:

• Swing Components

• Pluggable Look and Feel Support

• Delegation Event Model

• Accessibility API

• Java 2D™ API (Java 2 platfonn only)

• Drag and Drop Support (Java 2 platfonn only)

Application 1's GUT uses the fiTst three JFC features. At the heart of JFC is a

broad set of basic high-level GUI components (code-named "Swing"), including buttons,

menus, tool bars, trees and tables. Unlike AWT components, Swing components are

implemented without native code. These lightweight components have no platfonn

restrictions, giving them more functionality than AWT components. For instance, Swing

buttons can display images and don't have to be rectangular, while AWT buttons can

only display text and must be rectangular. In addition, all the Swing components are

JavaBeans components. JavaBeans is the Java component architecture standard that

allows developers to create components and expose their capabilities in a consistent,

standardized manner. Hence, it is very easy for developers to bring in other JavaBeans

GUI components to enhance their JFC applications [5][22].

Another key feature used in application I is the JFC Pluggable Look and Feel

option. Because of limitations of the peer model, AWT components necessarily share the

33

look and feel of the native platform. Using the lightweight, peerless lFe components and

the pluggable look and feel feature, developers can create applications that have the look

and feel of a user's native desktop for Windows, Solaris or Macintosh machines. In

addition, they can create their own Java-based look and feel as a cross-platform solution

[5][22]. In application I, the author implemented three look and feel patterns to give

application users the ability to switch the application's GUI from one look and feel to

another at runtime without restart.

AWT uses a very simple event model implemented through the Component class.

Any class that handles events must trace its ancestry back to the Component class [23].

This requires complex if-then-else conditional logic at the top level to determine which

object triggers an event. This technique is not scalable, and is ill-suited to high

perfonnance distributed applications. In application I, the author used the JFC Delegation

Event Model, that overcomes this limitation [5]. With this model, events are identified by

their class, and are propagated or delegated from an event Source to an event Listener.

Any object interested in a particular event can become a listener and deal with the event

without passing it to the super event handler. Hence, this model provides an elegant yet

powerful way to develop large scale applications by providing a clean separation between

the GUI and the business logic.

Although JFC has many advanced and modern features for GUI design, no effort

has been given to employ JFC features in lOCB-enabled Web database applications.

Thus, through application I, the author illustrates this improvement.

In application II, a simple web page using Hyper-Text Markup Language

(HTML) technology provides the GUT. HTML is widely used in web applications GUI

34

design and is described in Chapter II.

4.2.2 JDBC Driver

Both applications use the IDS mBC Driver from IDS Server 3.1.1 Evaluation

Version to communicate with the data source. The IDS IDBC Driver is a compact,

efficient, high-performance type-3 IDBC driver [18].

As illustrated in Chapter III, there are four types of mBC Driver. Type 1 and type

2 drivers rely partially or completely on native binary modules. As a result, drivers of

these types are poor choices for web database applications over the Internet. Type 3 and

type 4 drivers are written in pure Java code and are truly platform-independent. Both can

be distributed via web servers or installed as local Java packages in any client computers.

The IDS mBC driver consists of several Java packages [18].

• ids.sql package: contains all of the IDS software Java classes that implement

the JDBC API. This package is suitable for JDK 1.1, IDK 1.2, and browsers

with compatible Java VM.

• j 102.sql package: suitable for web browsers with JDK 1.0.2.

• ids.ss! and ids.security packages: the secure socket layer and cryptography

packages for Secure IDBC, an important feature provided by the IDS Server

that uses state-of-the-art cryptography technology to protect the data

exchanged between the IDS JDBC driver and the IDS server against malicious

attacks.

• j 102.ss1 and j 102.security packages: the counterparts of ids.ssl and ids.security

packages for JDK 1.0.2 browsers.

35

4.2.3 Data Source

Both application use the orthwind database as the data source. The Northwind

database comes with Microsoft Access 97 as a sample database. It has eight relations or

tables as shown in Table 4.1.

Relation

Categories

Customer

Employees

Order Details

Order

Products

Shippers
Suppliers

Attributes

CategoriesID, CategoryName, Description,
Picture
CustomerID, CompanyName, ContactName,
ContactTitle, Address, City, Region,
PostalCode, Country, Phone, Fax
EmployeeID, LastName, FirstName, Title,
TitleOfCourtesy, BirthDate, HireDate,
Address, City, Region, PostalCode,
Country, HomePhone, Extension, Photo,
Notes, ReportsTo
OrderID, ProductID, UnitPrice,
Quantity, Discount
OrderID, CustomerID, EmployeeID, OrderDate,
RequiredDate, ShippedDate, ShipVia, Freight,
ShipName, ShipAddress, ShipCity, ShipRegion,
ShipPostalCode, ShipCountry
ProductID, ProductName, SupplierID,
CategoryID, QuantityPerUnit, UnitPrice,
UnitslnStock, UnitsOnOrder, ReorderLevel,
Discontinued
ShipperID, CompanyName, Phone
SupplierID, CompanyName, ContactName,
ContactTitle, Address, City, Region,
PostalCode, Country, Phone, Fax, HomePage

Table 4.1 Relations and Their Attributes in Northwind Database

Figure 4.2 Shows an Entity-Relationship (E-R) diagram for the Northwind

database. The database system may reject any operation that violates the referential

36

integrity constraints, greatly reducing the likelihood of database corruption.

IDShM1o d ID

I
Employees

I
Customer

1 1

EmployeeID M M CustomerID
Orders

, Ii

1M
r er ipper

11

Order Detail Shippers

M

ProductID 1
Products

SupplierID M M CategoryID

1 1

Suppliers Categories

Figure 4.2 E-R Diagram for Northwind Database

4.3 Implementation Details

4.3.1 System Environment

Table 4.2 gives system requirements for the applications. Among the required

software, Java 2 platform, Standard Edition, v 1.2.2 and the IDS Server 3.1.1 Evaluation

Version can be downloaded free from Sun Microsystems and IDS Software, respectively.

37

• OS/Platform - Win32/Intel (Windows 95/98/NT)
Hardware

• RAM - 16 MB minimum, 64 MB memory recommended

• Java 1M 2 platform, Standard Edition, v1.2.2

• IDS Server Evaluation Version, v3.] .1
Software

• Microsoft Access 97 System

• JDK 1.0.2-Compatible Web Browser

Table 4.2 System Environments

4.3.2 IDS Server and IDS lDBC Driver Set Up

On Windows, the IDS Server is distributed in a single self-extracting file, that

creates the directory hierarchy in Figure 4.3. The directory "IDSServer\c1asses\ids"

contains the IDS JDBC driver for JDK 1.1 and JDK 1.2; "IDSServer\c1asses\j 102'

contains the driver for JDK 1.0 [18].

IDSServer
Cache

$' .
. ~J

cgi
classes

ids

;

$

net
..... security

sql
ssl

B- j102
math
net
security
sql
$$1

File
i'" examples

g.. wwwroot
$.. classes

.. examples
..... images

jdbc
r-' images
Logs
Security

Figure 4.3 IDS Server Directory Hierarchy

38

4.3.3 IDBC API Implementations

I. Importing the IDBC Driver Classes for Use

For any database application to use the IDS IDBC driver, the pure-Java IDS

IDBC driver classes should be imported into the beginning of the program. Figure 4.4

and Figure 4.5 show the line of code in the beginning of both application I and

application II.

import ids.sql.*;

Figure 4.4 Importing IDBC Driver Classes in Application-I

import j 102.sql.*;

Figure 4.5 Importing mBC Driver Classes in Application-II

2. Establishing a Connection

All JDBC operations begin with the creation of a connection with the DBMS the

application needs to access. There are two steps to do this: to set up a Connection URL

and to make a connection by the JOBC driver using this URL.

The Connection URL is used by mBC driver to connect to a remote or local

DBMS. Its basic syntax for IDS JDBC Driver is as follows. The syntax complies with the

39

naming convention recommended by the IDBC API and resembles a regular URL.

Jdbc:ids://host_domain:port_number/conn?dbms=odbc&dsn='data source'\

&uid='user id'&pwd='password'&rcs=O&mts=O&ssl=O&share=O

Figure 4.6 Syntax of Connection URL for IDS IDBC Driver

In figure 4.6, the leading ''jdbc:ids:/I'' signifies an IDS IDBC Connection URL

and is mandatory. host_domain and port_number are the IP address and port number of

the installed IDS Server. In the two applications, the IDS Server runs in a stand-alone PC,

the server's IP address is "localhost" or "127.0.0.1", and the port number is 12 by default.

After the port number, the keyword "conn" is the IDBC required identifier for the IDS

Server and is mandatory. The substring that follows the question mark '?' in the syntax is

a parameter list. All parameters are in the "name=value" format separated by an

ampersand '&'. Among the parameters, "dbms" specifies the type of database interface to

be used; the default value is "odbc". The "dsn" parameter specifies the ODBC data source

of the IDBC connection and is mandatory. All other parameters are not mandatory and

are not used in the two applications.

There are two ways to make a connection with the IDS IDBC Driver. First is

through the JDBC DriverManager class by calling the static method getConnection();

application I uses this method. The other way is to create a connection by first

instantiating the Driver class directly, then calling the connect() method of the Driver

40

instance. Application II uses this way. Figure 4.7 and 4.8 show the code fragment used in

two applications.

Connection theConnection;
String databaseURL;

DatabaseURL = "jdbc:ids://localhost: 12/conn?dsn='NorthWind''';
Class.forName("ids.sqI.IDSDriver").newInstance();
TheConnection = DriverManager.getConnection(databaseURL);

Figure 4.7 Establishing a Connection in Application-I

Connection theConnection;
IDSDriver theDriver;
Stirng databaseURL;

DatabaseURL = "jdbc:ids://localhost: 12/conn?dsn='NorthWind"';
TheDriver = new jl02.sqI.IDSDriver();
TheConnection = theDriver.connect(databaseURL, null);

Figure 4.8 Establishing a Connection in Application-II

3. Creating and Executing JOBe Statements

A Statement object sends SQL statements to a database. The IDS JDBC Driver is

implemented in full compliance with the IDBC API Specification, and has additional

features. In the two applicatio.ns, the author only used general JDBC features, including

the Statement object.

Three are three kinds of Statement objects: Statement, PreparedStatement and

41

CallableStatement. The Statement described in this section is used to execute a simple

SQL statement with no parameter. The PreparedStaternent object is suitable for executing

a precompiled SQL statement with or without parameters, and will be described in a later

section. The CallableStatement is used to execute a call to a database stored procedure.

Because Microsoft Access does not support the stored procedure feature,

CallableStatement object is not implemented in the applications.

Once a connection to a particular database is established, that connection can be

used to send SQL statements A Statement object is created with the createStatement

method in Connection class, as seen in Figure 4.10.

After creating the Statement object, the SQL statement that will be sent to the

database is supplied as the argument to one of the "execute" methods on this Statement

object. Two most often used methods are executeQuery and the executeUpdate. The

executeQuery is designed for SQL statements that produce a single result set, such as

SELECT statements. The executeUpdate is used to execute INSERT, UPDATE or

DELETE statements, and SQL Data Definition Language (DOL) statements like

CREATE TABLE or DROP TABLE. Figure 4.9 also shows a sample of executing SQL

statement.

42

Connection theConnection;
Statement theStatement;

. II Established a connection

theStatement = theConnection.createStatement();

String theQuery;
String theUpdate;

theQuery = "SELECT * FROM Employees";
theUpdate = "UPDATE Employees SET LastName = 'Johnston'

WHERE EmployeeID = 10";
theStatement.executeQuery(theQucry);
theStatement.executeUpdate(theUpdate);

Figure 4.9 Creating and Executing JDBC Statements

4. Retrieving Values from an SQL Query

JDBe returns the results of executing an SQL query in a ResultSet object. A

ResultSet object is a table that contains rows that satisfy the conditions of the query.

The data stored in a ResultSet object is retrieved through a set of "get" methods.

Each get method retrieves the data from the various columns of the current row and

converts it to a particular Java data type. The next() method in ResultSet is used to move

to the next row of the ResultSet table, making it the current row. Figure 4.10 gives a

example of how to retrieve results from a query.

43

Connection theConnection;
Statement theStatement;

· II Established a connection

theStatement = theConnection.createStatement();

ResultSet theResultSet;
int theEmployeeID;
String theLastName;

String theQuery = ItSELECT EmployeeID, LastName FROM Employees lt
;

TheResultSet = theStatement.executeQuery(theQuery);

While (theResultSet.next(» {
TheEmployeeID = theResultSet.getInt(ItEmployeeID");
TheLastName = theResultSet.getString("LastName");
System.out.println(theEmployeeID + II : II + theLastName);

}

Figure 4.10 Retrieving Results from the Query

5. Mapping SQL and Java Data Types

For the set of get methods, the JDBC driver attempts to convert the underlying

data to the specific Java Type and then returns a suitable Java Type. Table 4.3 shows a

list of the Microsoft Access 97 data types, their corresponding Java types, and the

corresponding JDBC get methods.

44

Access Type Java Type g t Method

Text String getStringO

Memo String getASCIIStreamO

Number Java.sql.Numeric getNum ricO

YeslNo Boolean getBooleanO

Byte Byte getByteO

Integer Short getShortO

Long Int getIntO

Long Long getLongO

Single Float getFloatO

Double Double getDoubleO

OLE object byte[] getBytesO

Date/Time Java.sql.Date getDateO

Date/Time Java.sql.Time getTimeO

Date/Time Java.sql.Timestamp getTimeStampO
I

Table 4.3 Mapping of Access and Java Data Types, and the get Methods

6. Creating, Setting and Executing PreparedStatements

The PreparedStatement object is primarily used for the execution of dynamic SQL

statements. It allows the application to use the same statement and supply it with differ nt

values each time the statement is executed. A PreparedStatement object is created with

the Connection class prepareStatement() method, as shown in Figure 4.11.

PreparedStatement thePreparedStatement;

. // Established a connection

thePreparedStatement = theConnection.prepareStatement
("UPDATE Employees SET LastName = ? WHERE EmployeeID = ?")

Figure 4.11 Creating a PreparedStatement

45

In Figure 4.12, each question mark (?) is a placeholder for a value that will be

supplied when the statement is executed by the PreparedStatement set methods. After

being supplied the values, most PreparedStatements can be executed by using the

PreparedStatement class executeQuery and executeUpdate methods, these methods are

similar in usc to the two execute methods in Statement class. As an example, the code

fragment in Figure 4.12 sets the two values in Figure 4.11 and executes the above

prepared statement.

II Continue from last example

thePreparedStatement.setString(l, "johnston");
thePreparedStatement.setInt(2, 100);
thePreparedStatement.executeUpdate();

Figure 4.12 Setting and Executing the PreparedStatement

One big advantage of using PreparedStatement object is that the prepared

statements are pre-compiled by the database. When they are executed, the DBMS can just

run the SQL statements without having to compile them first. This results in quicker

response time and lower work loads for the DBMS, especially when very large

statements or statements that are repeated many times are executed.

7. Closing the Connection

When the application is done accessing the data source, it must close the database

connection in order to free a,ny resources associated with the connection. Any open

ResuleSet, Statement, PreparedStatement or other objects being created are closed

automatically. See Figure 4.13.

46

Connection theConnection;

II Established a connection

II After database accessing is done
theConnection.close();

Figure 4.13 Closing the Connection

4.4 Results

4.4.1 Execution of Application I

• Figure 4.14 shows the welcome window of the application I GUI. There are

five menus on this window: Connect, Query, Utilities, Options and Help. If

there is no connection being established between the application and a data

source, the Query and Utilities menu are unselectable.

Figure 4.14 Welcome Window of the GUI

47

• The Connect menu contains three menu items: Open Connection, Close

Connection and Exit, as shown in Figure 4.15. To access a data source, the

user must make a connection to it first. When the user clicks the Open

Connection menu item, a dialog box will show up and enable the user to select

a data source from a drop-down list of available sources. This application only

takes use of one source, the Northwind database, and no user id or password is

required. Figure 4.16 shows this dialog box.

St.... IDS S.-vet V.aion 3. JAVA

Figure 4.15 Menu Items in Connection Menu

In Figure 4.16, when the user clicks the OK button, the IDS JDBC Driver will try

to make a connection to the Nowthwind database. If the connection is

successfully established, a completion message dialog box will pop-up, as shown

in Figure 4.17; otherwise, an error message box appears.

48

• IEU!CT----------------------

ENTER

HlOPlo!

Figure 4.16 Dialog Box for Choosing the Data Source

W",,,, 'IS,!,i,ipd!ll!,lq,;;uhl!ti.i!

Dec CopIu.... 1_1 7!lOPN

Figure 4.17 Connection Completion Dialog Box

• After setting up the connection, the Query and Utilities menus become

49

available. The QueI)' menu enables the user to query and scan tables in the

Northwind database. Figure 4.18 through 4.22 show the options in the Query

menu and results of several queries and table scans.

x

105_ .. 3 ".1.1

Figure 4.18 Options in Query Menu

Figure 4.19 Result of a Run-time Query

50

C......... yllJose

m III I N 1 17

~~ :~::~ ~ooc ~9 1~~4 -;::~~~7:~;+---~~c;~,;9",;:::i
S rna Michael Au 10 18.. 102UI 1883."
Buch.n!.'!....._ 8'....~ Se II llile4 10 288 e42.2
8 ma Mlch••1 8a 23 1g... 10 :ze.. -eg~.e2

~::=~ :;:-n-- -i-'~,=:>..,~:-:~::'-7:-=:"'~:.'/---:-~ ~='=~"':~=+---':15f;;::.::~:';~~~
Ood.worth Anna ~!..~.1~ 10:255 __]~gO.6
Kl"---RObBrt

W

..Q.~19 1894 10303 1111.8
S mo Mlch••, OCI''''1;':2''''~1"'99"'.=+-- -:~1-=0r:-=219::8~1-·_-'-'.;0"'5~0;;.8:f

:~~~:~:~ ~~~w__ ~I \1p;...,\:';9:"'.~,,_1---;~~~~:~ ._.1 ::~
Kln Robon Doc 18 19... 103.9 \(1.8
Buchan.n Steven 08c2118.. 10358 3"11,88
Buchlnan steven Ole 28 1St.. 103S8 428.4

Owly: Empqooe _lIye-ly(tlllNl

un am Fir am hi r1
UI<
UK
UK
UK
UK
UK
UK
UK
UK
UK
UK
UK
UK---
UK
UK
UK

o
e W.a
:2 Con
e s••r;
.. Del
e Sear
1 B
1 Bovo
1 Seve
:2 Con
2 Con
3 Con
1 8M
9 ge.'

---5 Oral

.(Oal
• Dol

Jan 3 1895
.Jln:Z 19
.Jan:Z 18
Jon 3 19
J.n. 19
Jan" 18
Jan:2 19

Jan 30 19
Jon2 19 --
Jan:Z HI
Jan 9 1$1

Jan 21 19
Jan 2" HI

Jan 9 19

Jan 11 '"
Jan g 19

Bavera a8
Condiments
Condiment.
Condiments
Condiments

Bevera ••
Bl'Y8ra 81i1

SIlVera s.
SlIVIIIra 8S

Bnoaf'8 ••
e8V8ra ••
eevera ••
88Y11ra ••
Severa ••
Severa ••
Severa 811

Figure 4.20 Results of Four Pre-defined Queries

Figure 4.21 Record View of Customer Table

51

ALfKJ Allred. FIJIL•. War1. And.... Sal•• RI r... Oblr, Su. ... elrlln 12208 Oerm
ANATR An.Trulllo An.Truln. Own., """•. d.I toD.F. 05021 t.
ANTON Antonio MO.•. Antonio Mo... Own,r Mat.dlrOI ... MUSco 0 F. 015023co
AROUT Around the ... Thom•• H... SI1•• Rill: ro•. '20 Hlnov.. , London WA.1 lOP UK
BERGS Be' lunds ... ChriStina B... Order AcIml... Ber UW'VI... Lui' 8-1158 22 Bw8dln
BlAUS Blluer Sa•... Hlnnl MODI SII•• Re r... Fo,..llrsrr.. ".nnhelm 68308 a.rmen
BL.ONP Blondll 0... Fr4d'ri u •... Marketln ._. 24 laci K .. S'b1IIlbaur e70DO Franc.
BOUD B6ndo C.... ...rtln 80m... Own., OJ~. ull ... ".d~d 28023 8 .In
aoNAP Bon a' Laurence L .. Owner 1:2 rue eI r••HI. 13008 Frenci
BOTTW Botlo~Ool. .. Eltzabeth L .. AccounUn 23 T.aw. •... T............n Be T2F SM. Clnld.
BSSEY e.. B8V8r1... VIctoria SaleI Re r... FlunUe ... London Ee26NT UK
CACTU Cactus Co... PlIlrlcio 81... Sal.. enl Cerrtto 333 9u8nol AIr... '010 Iv InUne
CENTC Centro co... Fr-ancl8co ... Mark.Un Sierra8 dll ... Ml6Jdco O.F. 05022 IIiImdco
CHOPS ChO au Van Wan Own.r Hau letr.29 B.m 301:::2 Bwttzlr1end
COMMI Com4rclo... Pedro Non... Sa;les Aa;... Av. dOl Lu... 8'0 Plulo SP 05432-043 Brazil
CONSH Con.alldat.. Ellzabelh B... Salet R. r... Birkel 0 ... London Y«1 8LT UK
DRACO Draehenbl... &ten Otilleb Order Adml... WallerwB .. Aachen fi20e& O.rml

ERNSH Ernst Hand... Roland M.... Sal •• Min .. , Kirch aa.... Orlz 8010 AUltria
FAMIA FamiliaAI' ... ArIa Cruz. MarkeUn Rum Or61. 8'0 Paulo SP 05~42-030 Brlzll
FISs.-. FtSSA Flbf Ole 0 ROlli Accountln C/lll4oralz.r dr1d 28034 8 .In
FOUO Folies our Martine Ra... Aallstan18 18. chaus Ulle 59000 Frln,e

Figure 4.22 Scan View of Customer Table

• The Utilities menu gives users the abilities to update any table or import data

into any table ill the Northwind database, as demonstrated 10 Figure 4.23,

Figure 4.24, and Figure 4.25.

Figure 4.23 The Items in Utilities Menu

52

Figure 4.24 Inserting Records into the Order table

.QJoIDW

LOOk n; [c:I_ ~~] [14l] [lit c::JF gg.
.. - ._----

o recordPlnel.cl•••
.

• hlpperlSll

D lableSelecIDlalog.cl•••

D th•• laI1.cl •••

D thOllo.b'.

ID th'lla.ct,••

D thOlII.dIP .-
r"'name: l_hIPper.dal 1:[~.. D
'_"'\lIP« AIIF_(·.') ":-1, 1<-" .l:

v.1.'

Figure 4.25 Importing Data from "shipper.dat" into the Shipper table

53

• The Option menu enables the user to switch the entire application's graphical

user interface from Java look and feel to Motif look and feel, or to Windows

look and feel, as shown in Figure 4.26. Figure 4.27 through Figure 4.29 show

an example of changing a particular Gill's look and feel at run-time.

U-- tt-lIO
'-~_F_

(.J....LaoII ... ,...-_..-_-

Ic--... v 11

Figure 4.26 Three Look and Feel Choices in Options Menu

UK 8 ma Ocl!5 1ee4
UK KIn
UK KIn ou-y: _Ill'C_(t_,
~ Bue

UK KJn --
UK'--f.'KI""n·-- - - Customer.
UK B

UK B
UK B

ontect ,... all•• R. r•••nl.ttve

'DI<030-0074321Phone

UK Bue
UK 8 Custom.. 10 KJ

~~ ~~c eont.ct :i-"~."~.-"""::d;"'.r-.-"'lI
UK 00
UK ~n Addr... .,.O~b==.r:=.:BIr:,5::7::; 4 CII)I
.",UK;:'-__--j:;:= Aaaoon r _ Cod.

Figure 4.27 Using Java Look and Feel

54

,..

Figure 4.28 Using Motif Look and Feel

roduelSol.
U 17.~ ~~

Cull1lOmflnl

Cu_.rID Compony Nomo

Contact Naml Conlocl T1Uo

Md,••• Clly

R.;lon Po.lel Cod.

Pilon. F..

R.cord . 1 of 111

WU&PQUQM I

=.;;.., .JJ,~..«'D[I~Iic...o"-

Figure 4.29 Using Windows Look and Feel

• Help menu contains one item: About, which gives a brief message about the

application. For a later release, more helpful instructions can be added to this

menu. Figure 4.30 the contents in the About item.

55

Figure 4.30 Contents in About Menu Item

4.4.2 Execution ofApplication II

• Figure 4.31 shows the application's user interface, which is a web page

designed by an HTML file. In this application, the IDS JDBC driver

automatically pre-establishes the connection with the Northwind database

when the application is first launched by the web browser.

Online "NorthWind" Dulabase Acces's (JDBC AppJicutil.m)

Thi. applicatio.n lot user. to query, update. or insert table. in ftNorthWind" du.oha_o by
enterina SQL E"t.a~rnfJntdirectly.

BQL: I Commtt

-~~~~~-.:='~-::=~~

Bt:atu.; I ·'!lort;hW.1.nd'· h~ been Conn.ect:ad

Figure 4.31 User Interface of the Application

56

This application provides users the abilities to query and update tables in

Northwind by using SELECT, UPDATE or INSERT SQL statements. Figure 4.32

demonstrates an example of conditionally querying the Customer table.

Online "NorthWind" Database Access (JDBC Application)

ThIs appUcatlolt let lUers to query, updilte, or Insert tables h\ "NarthWlnd" daIabas by
enterlna; SQL statement dlrettly.

9QL. : select Cu~toraerID, CompanyNAme from Cu.tOJnl!!ra , Commit

CU3tome~ID CompanyNaMe

FlCl
IlA,TR

ANTON
OUT

BERGS

BLAUS
8LOHP
BOLIO
BOHkP
BOT'IM

~fred3 rutterk~te

Ana Truj~~o Emp~redado~ y heLado8
Anconio Moreno Taquer~a

Around the Horn
Berglunds snabbk~p

B~auer See De~katessen

B~onde~ pere ec ~~l.s

B61.ido Com~das prepar.de~

Bon app'
Botcam-Dol.l.ar Markets

--

Status: I Done.

Figure 4.32 a Run-time Query and the Results

57

CHAPTER V

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis, the author examined the JDBC approach, including its general work

models, IDBC API features, and JFC API features. On this basis, the author designed and

developed a general strategy for implementing the IDBC approach. This utilizes the

three-tier client-server model over the Internet and uses JFC API for GUI design.

The work reported here indicates that, most of the advantages of JDBC come

from its pure-Java API design and its ODBC-like features. The strategy presented for

implementing the IDBC approach provides developers a very powerful and efficient way

to design and develop fast and efficient enterprise database applications, and makes it

easier and efficient for users to access databases through DBMSs from anywhere in the

world. Advanced features of JFC API, such as lightweight Swing components, Pluggable

Look and Feel, and Delegation Event Models features, make JFC API well suited to

design and implement GUls for IDBC-enabled Web database applications, providing

more functionality, portability, and extensibility.

5.2 Future Work

To explore more JDBC features, the two applications can be extended along the

following directions:

1. More advanced IDBC features and functionality can be added to the two

58

applications, such as implementing stored procedures and transaction

management to strengthen them.

2. These two applications do not glve any consideration for granting users

role/privilege or for maintaining the concurrency and consistency of the

database. The applications succeed with single-user desktop DBMSs like

Microsoft Access. However, these advanced features are necessary to access

full-scale, multi-user DBMSs such as Oracle.

3. Application I's GUI can be improved by using more Swing components.

59

REFERENCE

1 Ben-Natan, Ron. Objects on the Web, McGraw-Hill Companies, 1997.

2 Callahan, Tim. "So you want a Stand-alone Database." Java Developer's Journal,
Vol. 3 (12), December, 1998.

3 Callaway, R. Dustin. Inside Servlets, Addison-Wesley Longman, Inc., 1999.

4 Carroll, Erin and Wilson, Andrew. "Database Programming with JDBC." Web
Techniques, October, 1996.

5 Czernik, Thomas and Kamp, Rolf. "Self-contained Client Applets Using Swing."
Java Developer's Journal, Vol. 5 (6), June, 2000.

6 Darby, Chod. "Applet and Servlet Communication." Java Developer's Journal, Vol. 3
(9), September, 1998.

7 Darby, Chod. "Migrating COl Scripts to Java Servlets." Java Developer's Journal,
Vol. 3 (1), January, 1998.

8 Darby, Chod. "Developing 3-tier Database Applications with Java Servlets." Java
Developer's Journal, Vol. 3 (2), February, 1998.

9 Daniel, Minoli. Internet & Intranet Engineering, McGraw-Hill, Inc., 1997.

10 Date, C. J. An Introduction to Database System (Volume 0, Addison-Wesley
Publishing Company, Inc., 1990.

11 Davis, Judy. "Extended Relational DBMSs : The Technology, Part I." DBMS, June,
1996.

12 Elmasri, Ramez & Navathe, B. Sharnkant. Fundamentals of Database Systems, the
Benjamin/Cummings Publishing Company, Inc., 1989.

13 Flanagan, David, Fraley, Jim, Crawford, William and Magnusson, Kris. Java
Enterprise In a Nutshell, O'Reilly & Associates, Inc., 1999.

14 Haecke, Van, Bernard. JDBC™: Java™ database Connectivity, IDO Books
Worldwide, Inc., 1997.

60

15 Hamilton, Graham, Cattell, Rick and Fisher, Maydene. mBC™ Database Access
with Java, Addison-Wesley, 1997.

16 Heiser, Jay. "Java Security Mechanisms." Java Developer's Journal, Vol. 2 (3),
March, 1997.

17 Horstmann, S. Cay and Cornell, Gary. Core Java 2 (Volume IT - Advanced Features),
Sun Microsystems, Inc., 2000.

18 IDS Server User's Guide, IDS Server Inc., February, 2000.

19 Karimi, Jahangir. <LA software Design Technique for Client-server Applications."
Concurrency Practice and Experience, Vol. 11 (1), January, 1999.

20 Lai, Siet-Leng and Lim, Joo Hwee. "Web Database Publishing." Java Developer's
Journal, Vol. 2 (7), July, 1997.

21 Lang, Curt and Chow, Jeff. Database Publishing on the Web & Intranets, the Coriolis
Group, Inc., 1996.

22 Ledru, Pascal. "Designing a Web Browser." Java Developer's Journal, Vol. 4 (4),
April, 1999.

23 Levy, Elie. "Extending the AWT." Java Developer's Journal, Vol. 2 (7), July, 1997.

24 Levy, R. Michael. "Web Programming in Guide." Concurrency Practice and
Experience, Vol. 28 (15), December, 1998.

25 Lewis, G. Ted. "Where is Client/Server Software Headed?" IEEE Computer, Vol. 28
(4), April, 1995.

26 Martinez-Campos, Fernando. "Bigger Than a Database." Database Programming and
Design, April, 1997.

27 Matthew, D. Siple. The Complete Guide to Java Database Programming, McGraw
Hill, Inc., 1998.

28 McCarty, Bill. SOL Database Programming with Java, the Conolis Group, Inc., 1998.

29 McClintock, Colleen. <LImplementing Business Rules." Java Developer's Journal,
Vol. 5 (7), July, 2000.

30 Nance, Barry. "Data Access Via ODBC and IDBC." Network Computing, January,
1997.

31 Neville, Patrick Sean. "Mastering Java Security Policies and Permissions." Java
Developer's Journal, Vol. 5 (1), January, 2000.

6l

,

32 Orfali, Robert and Harkey, Dan. Client/Server Programming with Java and COREA,
John Wiley & Sons, Inc., 1997.

33 Orfali, Robert, Harkey, Dan and Edwards, Jeri. The Essential Client/Server Survival
Guide, John Wiley & Sons, Inc., 1996.

34 Piemont, Claudia. "Business Use Cases for Java." Java Developer's Journal, Vol. 2
(1), January, 1997.

35 Robertson, Bruce. "Driving Applications on the Network." Network Computing,
January, 1996.

36 Rodley, John. Developing Database for the Web & Intranets, the Coriolis Group, Inc.,
1997.

37 Roman, Ed. Mastering Enterprise JavaBeans™ and the Java™ 2 Platfonn, Enterprise
Edition, John Wiley & Sons, Inc., 1999.

38 Sagar, Ajit. "Splitting Tiers." Java Developer's Journal, Vol. 4 (12), December, 1999.

39 Shah, Rawn. "Integrating Databases with Java via JDBC." JavaWorld, May, 1995.

40 Silberschatz, Abraham, Korth, F. Henry and Sudarshan, S. Database System
Concepts, McGraw-Hill, Inc., 1997.

41 Spitzer, Tom. "Web Database Innovations." DBMS, August, 1997.

42 Tait, Barry. "Separating Presentation from Business Logic." Java Developer's
Journal, Vol. 5 (7), July, 2000.

43 Thimbleby, Harold. "A Critique of Java." Software Practice and Experience, Vol. 29
(5), april, 1999.

44 Thompson, Charles. "A Scout's Guide to Three-tier Architecture." Database
Programming and Design, August, 1997.

45 Venners, Bill. "Designing with Interfaces." JavaWorld, December, 1998.

46 Venugopal, Sesh. "Cross-database Portability with JDBC." Java Developer's Journal,
Vol. 5 (1), January, 2000.

47 Viescas, L. John, Running Microsoft Access 97, Microsoft Press, 1997.

48 Whiting, Bill, Morgan, Bryan and Perkins, Jeff. Teach Yourself ODBC in 21 Days,
SAMS Publishing, 1996.

49 White, Seth and Hapner, Mark. JDBC™ 2.0 API Specification, Sun Microsystems
Inc., May, 1998.

62

50 Zielinski. Krzyszto. "Improving Scalability of Event-driven Distributed Objects
Architectures." Software Practice and Experience, Vol. 30 (13), June, 2000.

63

VITA

Xinxue Yuan

Candidate for the Degree of

Master of Science

Thesis: BUlLDING FAST AND EFFICIENT DATABASE APPLICATIONS FOR THE
WEB

Major Field: Computer Science

Biographical:

Personal Data: Born in Beijing, China on July 29, 1967, the third son of Shixian
Yuan and Shuying Zhao

Education: Graduated from the Civil Engineering Department ofBeijing
Polytechnic University (China) in June, 1990, and received the Bachelor's
degree of Civil Engineering. Completed the requirements of the Master of
Science at Oklahoma State University in December, 2000.

Professional Experience: Employed by Highway Planning and Design Institute,
Department of Transportation, Beijing, China, as a Civil Engineer, 1990 to
1997; employed by United Airlines, IL, USA, as a Programmer Analyst,
November 1999 to present

