
MODIFIED B+ TREE TECHNIQUE IN THE DATA
WAREHOUSE ENVIRONMENT

By

ZHENGRONG YI

Bachelor of Science

Habin Industrial University

Habin, P.R.China

1991

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
In partial fulfillment of
The requirements for

The Degree of
MASTER OF SCIENCE

December, 2000

MODIFIED B+ TREE TECHNIQUE IN" THE DATA
WAREHOUSE ENVIRONMENT

Thesis Approved:

11

ACKNOWLEDGEMENTS

I sincerely thank my thesis advisor, Dr. J. Terry Nutter, for her inteUigent

supervision, constructive guidance, warm encouragement, and valuable time she has

given me toward the completion of my thesis. My sincere appreciation extends to Dr. J.

Chandler and Dr. Jing Peng for serving on my committee; their guidance,

encouragement, assistance, and friendship are invaluable.

I would like to give my special thanks to my wife, Liying Zhang, for her love,

encouragement, patience, and understanding throughout my study at Oklahoma State

University. My respectful thanks go to my parents for their love and encouragement.

Finally, I would like to thank all the faculty of the Department of Computer

Science for their support during my studying here.

jii

TABLE OF CONTENTS

Chapter Page

ABSTRACT 1

I INTRODUCTION 2

Data Warehouse 2

Index Structure 3

Organization 4

II. LITERATURE REVIEW 5

Existing Techniques 5

Value-List Indexes 5

B-Tree Indexes 5

Bitmap Indexes 6

Projection index 7

Bit-Sliced Indexes 7

Join Indexes 7

Analysis of the Simple Bitmap and Regular B+ Tree Index 8

Ill. MODIFIED B+ TREE INDEX 10

Desirable properties of the indexing techniques for DWH 10

Modi fi cd B+ Tree Index Constructi ng step 12

Examples 13

iv

Chapter Page

How the modified B+ tree works 14

Modified B+ Tree Join Index for Star Schema '" 15

IV. SIMULATION 18

Benchmark APB-l 18

Tables: Fact table & Dimensional Table 18

Query performance of the Modified b+ tree and Traditional B+ Tree 20

Query Processing Plan 21

Simulation Result 23

The Advantages and Disadvantages of the Modified B+ Tree 24

V. CONCLUSION AND FUfURE WORK 26

Conclusion 26

Future Work 26

REFERENCE 27

APPENDIXES 28

APPENDIX A Code for checking the cardinality of the data file 28

APPENDIX B Fact table simulation code 30

APPENDIX C Code for comparing query perfonnance 41

APPENDIX D Simulation main program for indexing technique in Data

Warehouse 52

APPENDIX E Simulation Program execution Result.. 59

v

Table

LIST OF TABLES

Page

1. Query Processing Plan table for Query 1 21

2. Query Processing Plan table for Query 2 22

Yl

Figure

LIST OF FIGURES

Page

1. Create the sorted projection table 12

2. A Sorted projection table 13

3. Create the B+ tree index on the structure of the projection table 13

4. Customer Table 16

5. Dimensional Table 19

6. Dimensional Table Chart 19

7. Simulation Result Chart 23

vii

Abstract

Fast query response time is one of the most important measures for the data

warehouse (DWH) environment. Indexing is one key to achieving this objective.

Indexing techniques in the relational database area have existed for decades. Many good

techniques have been developed, including B trees, hash functions, and others. But the

differences between the DWH environment and traditional relational database systems

require new or modified techniques because the existing indexing techniques are

inadequate for online analytical processing (OLAP) or decision support system (DSS)

applications. This thesis presents a modified B+ tree technique in order to support OLAP

applications. The proposed technique has the advantages of both B+ tree and bitmap

techniques and solves the space problem of the simple bitmap index and the cooperation

problem of traditional B+ trees. Performance of the proposed indexing technique is

compared to that of the traditional B+ trees by simulations based on the APB-I

benchmark

1

Chapter 1

Introduction

Online Transaction Processing and Online Analytical Processing

In the past, the primary focus of database systems has been online transaction

processing COLTP). However, modem environments call for sophisticated systems that

serve online analytical processing (OLAP) to support management needs in the decision

making process, known as decision support systems (DSS) processing. The purpose of

OLAP is to turn large amounts of data into valuable, accessible business infonnation.

OLAP and OLTP applications have sufficiently different characteristics that modem

systems typically separate OLTP completely from OLAP. Current database technology

has evolved to satisfy the requirements of OLTP, but not OLAP systems. Data that

support OLAP have to be stored in very large, specialized repositories (over 100GB

databases), called data warehouses.

Data Warehouse

A data warehouse (DWH) is a structure that contains the data and process managers

that make large-scale infonnation available so that users can make better and faster

decisions. It brings large volumes of data obtained from OLTP together with legacy

operational systems. Typically, the data warehouse is maintained separately from the

organization's operational databases. Characteristics of the data in a DWH include:

• large volume (billions of records),

• effectively static nature (no update, inse11, or delete operations -- only append

operation needed), and

2

• historical data with time parameters.

There are two distinct categories of DWH [CD96]:

1. Multidimensional OLAP (MOLAP) server-based implementations. and

2. Relational OLAP (ROLAP) server-based implementations.

Both have advantages and disadvantages. a discussion of the tradeoffs can be found in on

[CD96].

The data in a warehouse is typically modeled multidimensionally. Complex and

iterative queries such as "What are the ten fastest-growing products this year versus last

year. and what are their contribution to total sales?" are very common in DSS. Complex

queries of this kind could take several hours or days to process because of the immense

volume of data involved. Therefore, one critical aspect of DSS involves improving the

speed of processing these queries.

Index Structure

Index structures allow fast random access to records in a file. An index works in

much the same way as a catalog in a library. That is, if we are looking for a book on a

particular subject, we search the subject catalog alphabetically to locate the subject's

entries without checking every card to find the one we want. Database systems use many

indexing methods. Each improves query processing for target sets of situations or

infonnation.

For the most part, OLAP queries are grouped by varying combinations of columns

known as dimensions. These groupings of columns fonn data cube queries [GBLP96].

The dimensional combinations that define data cube queries are known in advance, so

3

that sets of summary tables can be created to support evaluating an expected set of

queries efficiently [AAD+96, HRU96]. However, DSS also involves another kind of

OLAP queries, which cannot be identified in advance. Instead, systems must filter rows

dynamically using selection criteria that are not pre-computed in dimension tables. Hence

it is important to develop sophisticated, complex indexing methods to provide adequate

performance not only for pre-planned queries but also for unplanned queries through

inexpensive index updating. The objective is fast response to both anticipated and novel

queries. Other techniques can also improve query processing in data warehousing. These

techniques include optimization techniques, memory management, pre-computation of

summarized data, and predefined access paths. All of these can provide important

benefits, both alone and in combination with each other. The focus of the current work

targets indexing methods for improved Relational OLAP.

Organization of the thesis

Chapter 2 discusses existing techniques and analyzes the use of simple bitmap and

standard B+ tree indexes in DWH environments. Chapter 3 presents a new modification

of B+ tree indexing that shares the advantages of bitmap approaches. In Chapter 4, that

new approach is evaluated through simulations of a DWH environment and application of

perfonnance measures. Finally Chapter 5 presents the conclusions of the current work,

and indicates new lines of research that it opens.

4

Chapter 2.

Existing Techniques

• Value-list indexes

• Projection indexes

• Bit-Sliced indexes

• Join indexes

Value-List Indexes

Value-list indexes are traditionally implemented in one of two ways. The B+ tree

implementation has been popularly used by many RDBMS. By contrast, the bitmap

approach has often been used in DWHs since it dramatically reduces disk I/O by using

Boolean operations performed in memory.

B-tree Indexes

B-tree indexes reference each row individually using a Bow Identifier (RID) that

specifies the row's disk position. Each distinct key value entry in the B-tree contains a

sequence of RIDs known as an RID-list. When this technique is used to index attributes

with a small range of discrete values (e.g., gender), most values are associated with many

RIDs, and the efficiency of the B-tree suffers. This deficiency becomes even more critical

in data warehouse systems, making bitmap indexes more suitable in this situation.

5

Bitmap Indexes [OD97]

By contrast to the use of RID-lists in B-trees, bitmap indexes associate key values

with bitmaps, in which each bit corresponds to a possible RID. A mapping function

converts the bit position to an actual RID. A bitmap for value v of attribute A is a bitmap

vector, each of whose bit positions corresponds to a row of the table T. The bit is on (has

the value 1) just in case the corresponding row has value v for attribute A; otherwise the

bit is off (has value 0). Hence, bitmap indexes provide the same functionality as regular

indexes, but do so using a different, more efficient internal representation. If the number

of distinct key values is small, bitmaps are very space efficient. This indexing technique

was first introduced in model 204 [One87].

Bitmap indexes are an alternative for representing an RID-list in a Value-List index.

They are simple to represent, use space more efficiently than RID-lists when the number

of different key values for the index is small, and are more CPU-efficient. Bitmap

indexing improves complex query performance because of the speed of bit-wise

operations such as ANDs, DRs, and NOTs applied to bitmap index columns.

Encoded Bitmaps [WB97] modify the standard bitmap index approach to provide

greater storage efficiency and better performance for range searches under certain

circumstances. However, the modified technique introduces trade-offs and uncertainty for

encoded bitmap indexes. One such trade-off involves the overhead of encoding and of

searching the mapping table. In addition, bitmap encoding can be difficult to maintain

when an attribute field undergoes domain expansion.

6

Projection Index [OD97]

The main purpose of projection indexes is to reduce the cost of querying a particular

attribute field. The basic idea of a projection index on a column C is as follows. For a

column C of a table T, all column values are duplicated. This index is comparable to

vertical partitioning. Projection indexes work faster than other techniques when only the

column values are desired as opposed to the table rows themselves, because the actual

tuples of the fact table need not be accessed at all. Projection indexes are implemented in

Sybase IQ.

Bit-Sliced Indexes [OD97]

Bit-Sliced Indexes are based on the same essential approach as encoded bitmap

indexes, except that bit-sliced indexes do not need the mapping table. Instead the index

encodes the numeric values on its own bit representations.

The Bit-Sliced Index on the C column of table T is the set of all bitmaps Bi, such that

bit n of bitmap Bi is set to D (n, i), where, D (n, i) is the value of the ith bit from the right

of column C in row n (where the rightmost bit is treated as bit 0 rather than bit 1).

Each individual bitmap Bi is called a Bit-Slice of the column. A Bit-Sliced Index

(called Bit-Wise Indexing in Sybase IQ [Ren97]) stores a set of "Bitmap slices" which

are orthogonal to the data held in a Projection index.

Join Indexes [OG95]

A join index is not a fundamental index type. The technique can be used with many

types of indexes, including bitmap or B+ tree indexes. [OG95] proposed what it calls

7

f
multi-table joins through bitmapped join indices. A join index is the result of creating an

index from more than one table on ajoin attribute based on predefined joins.

Precalculating such indexes avoids computing the actual join at query processing time.

Join indexes can be view as a fully pre-computed join or a materialized view. See [OG95]

for variations in implementing join indexes. However, a single update in one of the joined

tables would require updating all join indexes that involve that table. Join indexes have

been implemented in Sybase IQ and Oracle 7.3 [Orl96].

Analysis of Simple Bitmap and Traditional B+ Tree indexes

Traditional B+ tree indexes are the most widely used technique in relational database

systems; simple bitmap indexes are a new and popular indexing technique for low

cardinality data in data warehouses.

Both indexes have advantages. Traditional B+ trees are dense indexes in the form of

disk-resident trees. Their search time complexity is log B(N), where B is the number of

entries in each node, and N is total number of tuples. Because memory sizes were small,

and the price was high, B+ trees were originally developed from a disk-oriented

perspective. Since B+ trees can reduce disk I/O during search, they are very suitable for

large volumes of high cardinality data. A good B+ tree should look very fat and short.

Although building B+ trees is moderately complex, search time is reduced dramatically.

These characteristics have made B+ trees popular for regular DBMSs. On the other hand,

the simplicity of the bitmap index makes it suitable for the DWH environment. Because

of its simple format. it is easy to implement. and no disk TlO is needed if lhe hilmap can

8

be held in memory. Therefore, for modern computers, high speed bit operations and

parallelism can be used to accelerate query processing.

However, both techniques also have drawbacks. Simple bitmap indexing is good for

low cardinality data, but not for high cardinality data. The space requirement is N*L bits

where L is the number of rows and N is the number of distinct values of the index fields.

Normally, as N grows in the fact table, L becomes huge, resulting in a very high value of

the product of Nand L. While the traditional B tree is good for high cardinality data in

conventional databases, it is not suitable for DWH systems. Furthermore, because it is

implemented as a dense index, a regular B-tree would not be small enough to fit in

memory.

In response to the shortcoming of these two techniques, this paper proposed a

modified B+ tree index. The proposed technique not only solves the simple bitmap's

space problem for high cardinality data, but also retains the computational efficiency of

bitmap indexes. The primary goal is to create a bitmap vector dynamically in the least

possible time from a modified B+ tree according to certain query conditions.

A modified B+ tree index should be:

• specially designed for high cardinality data, (low cardinality data would be better

implemented in simple bitmap formaL);

• easily manipulated in combination with other bitmaps (cooperative), and able to

generate bitmaps dynamically during query processing in a short time; and

• small enough to be stored in memory, which suggests that it should be a sparse

index, as opposed to the dense index of regular B+ trees.

9

Chapter 3

Modifi·ed B+ Tree Index

Desirable properties of indexing techniques for DWHs

Before evaluating indexing techniques, and before proposing a given technique, the

characteristics of DWHs must be evaluated to establish the most important aspects of an

indexing system for DWH.

A good indexing technique for DWH should:

• Fit in main memory.

Accessing and retrieving millions of records from different tables requires large

amounts of time due to the amount of disk I/O needed. Search time decreases if

the index is kept in memory, or at least in the disk cache, so that disk I/O would

not be necessary until the relevant records were finally retrieved.

• Take advantage of the characteristics of the DWHs

DWH indexes need not work well in regular databases (e.g., bitmap). Since the

data in DWHs has characteristics different from that in conventional databases,

we can customize the indexing technique for DWHs. In the DWH environment,

no insert or update operations are peIfonned on the fact table, although

occasionally some of the oldest data will be purged as out-of-date (for instance

some companies only keep data within the past 5 years). New tuples will only be

appended to the end of the fact table, giving freedom to design an index that only

takes append operations into account (no insert, and no update operation.) For

10

•

-

example, if insertion were allowed for the fact table, bitmap indexes would be

extremely hard to maintain.

Cooperate readily with other indexing techniques.

A good indexing technique for DWH should be able to cooperate with other

indexing techniques as well. Otherwise, general efficiency will be lost because of

the probability of different indexing methods being used on different tables. For

example, bitmap indexes are very fast for low cardinality data, while regular B+

tree indexes are suited for high cardinality data. However, there is no way for a

regular B+ tree to work with bitmap vectors. A bitmap can be developed under

some conditions, but a lot of data must be scanned and retrieved from the disk in

order to do this. So cooperation is also critical to establish whether an indexing

technique is efficient in broad DWH context.

• Give priority to time complexity over space complexity.

Although the degree of wasted space in simple bitmap index for high cardinality

data cannot be tolerated, in general, the time cost of complex query management

with B+ tree indexes is more important. We need to consider time-space trade

offs carefully in evaluating.

11

A modified B+ tree index on a tale T for field F is constructed in two steps:

1. Create a sorted projection table (F, RID) by projecting out the field F of each row

with its RID to a projection table. The projections are then sorted based on the

value of F; duplicates should be kept.

2. Construct a modified B+ tree on the projection table, in which the first value of F

on each disk physical block is indexed. The leaf node of this B+ tree contains

these values with pointers to the associated blocks.

The following example illustrates the process of creating the modified B+ tree

index. Suppose we want to construct a modified B+ tree on field "First Name" for

the table in Figure 1.

RowID First Name Gender Major Age
1 David M MIS 23
2 Alan M CS 25
3 Carol M EE 31
4 Barbara F LIS 24
5 David M l\.1E 18
6 Amanda F IE 30
7 Barbara F MIS 19
8 Alan M IE 21
* * * * *

Figure I

11

Step1- Create the sorted projection table

The sorted projection table is given in Figure 2:

Name RowID
Alan 2
Alan 8

* *
Amanda 6

* *
Barbara 4
Barbara 7

* *
Carol 3

* *
David 1
David 5

Figure 2

The actual structure on the disk of the projection table is give in Figure 3:

B Alan 2
L Alan 8
0 *
C *
K Amanda 6
1 *

* I

- I

B Barbara 4 Zhang 438201 -
1 Barbara 7 * B

* ... LC
((* •

I< David eee *
(

2 '. ... I<
l'

-

Figure 3

STEP 2 - Create the B+ tree index on the structure of the projection table

13

The modified B+ tree index is created according to the first value of each block;

there should be N leaf nodes where N is the total number of the blocks used in the

projection table. In this example, the left-most leaf node should be Alan with a pointer to

block #1; the second leaf node should be Barbara with a pointer to hlock #2; the right

most leaf node is Zhang, pointing to block #N.

How the modified B+ tree works

The following query illustrates how the modified B+ tree index works.

Query: Find all the people in Computer Science with a name like JO*

whose gender is male.

Solution:

• Gender and Department have bitmap vectors representing Male and

Computer Science that are already loaded memory.

• Generate a bitmap vector for the condition <name like "JO*">. First,

generate a blank bitmap vector (with all bits 0) at the length of the number of

rows in the table. Search the modified B+ tree index for field 'name', which

is already in the memory, and look for: N1-- the leftmost block of entry for

JO* (e.g., IN*), and N2-the rightmost block of entry for JO*(e.g., IP*).

Then read in all the blocks between Nl and N2, scan all the name entries,

and set the corresponding bit to 1 if it is "10*".

• Finally, perform an "AND" operation on the three bitmap vectors, Name,

Gender and Department. The bit positions with 1 in the result vector point to

the rows that need to be retrieved as the result.

14

-

The projection table is important in modified B+ tree indexes. The projection table is

sorted and organized by sequential blocks and associates each value with the RID in the

fact table. It inherits the advantages of the projection index, and the RID is used to create

the bitmap vector at run time.

Insertion can cause problems, because the projection table RIDs must be re

organized. Fortunately, we don't need to worry about that because of the static attributes

of data in DWHs. New data only get appended to the fact table periodically; the newly

appended rows can be indexed by our modified B+ tree easily and will not affect the rows

that have already been indexed. Only when deletion is perfonned, does the entire index

have to be reconstructed, but this only happens at infrequent intervals (for instance, when

the DWH manager wants to purge old records).

Modified B+ Tree Join index for the Star Schema

The Star Schema model consists of a fact table in the center with many dimensional

tables associated with it. Join operations happen frequently between the fact table and

these dimensions. Our modified B+ tree index has another advantage for constructing the

join index between the fact table and dimensional tables.

The projection table used by modified B+ tree provides benefits, not only for

indexing the fact table, but also for join indexes for the various dimensional tables. The

following example illustrates the concept.

Suppose that a modified B+ tree index has already been created on the Name field of

the fact tahle. This allows a projection tahle, named PI, to he crc<lled on the N<lme

attribute from the fact table. A query condition like "Customer.name = Fact.name and

15

-

Customer.age = 18) would be common in a DWH; the join operation on "Name" will

happen frequently. A join index would be well suited here. We can construct ajoin index

from the projection table Pi. The simplest way is to add a field "Join Block" to the

dimension table named Customer table as in Figure 4.

In the Customer table, the "Join Block" field points to the block in which the value

of the Name field for that row resides on the projection table PI. For example, "Cindy"

first appears in block 8 of the fact table (all the other rows with name "Cindy" in the fact

table should be next to each other after the first "Cindy," because the projection table PI

is sorted), so the Join Block field of the row with the name "Cindy" in the Customer

points to block #8 of projection table PI.

Dimension table Customer Projection table for Fact table on Customer

1230910 B
3193810 L
• 0

• • c
• • K
Cindy 2341032 #
Cindy 6315211 8
• •

B • •
L • Greg 24134120

Zheng 20892012 • B
0 * *

.. L
C * •

• 0*K John 512096716 C
* *# • K

* * • #
2 * * • • 8
0 2

9 6

1

Figure 4

*
*

Name

Zhan
Bob

Cind
John

Ore

16

-

The example above illustrates how the projection table can be used by a dimensional

table as the basis for creating a join index. The join index can also be constructed in the

fonnat of the modified B+ tree index instead of adding a "Join block" field to each row.

The leaf nodes of this tree contain each distinct attribute value and the block number. The

difference between this modified B+ tree join index and the modified B+ tree index for

the fact table is that the join index actually maps the block according to the different

absolute values, while the B+ tree for the fact tables maps only the first value in each

block. For example, suppose we have a field entitled "Name" with values "Alan,

Amanda, John, Josh ... ". A modified B+ join index has leaf nodes with all the values,

"Alan", "Amanda", "John", "Josh", etc. But the modified B+ index for the fact table has

leaf nodes with only the values of the first entry in each block of the projection table. For

example, it may have only "Alan" and "John", without "Amanda" and "Josh"; it may

also have "Alan", twice in the index if there are many rows with the name of "Alan" in

the fact table. In fact, we use the join index as the index for the fact table, so we don't

need to create two index.es (for instance, if each distinct value in the fact table appears

many times). As long as the actual space used by the modified B+ tree is not too large,

these two trees are for different purposes, and it is not critical to discard one of them.

17

-

Chapter 4

Simulation

This study evaluated indexing techniques using Benchmark APB-l proposed by the

OLAP council [Bu196]. The advantage of the APB-l is that it measures the performance

of the database server. It models the DWH using Star Schema, in which multiple table

joins are very common among the ten queries. The benchmark simulates a realistic OLAP

business situation.

Tables needed

Fact tables: Measure

Dimensional table: Product, Customer, and Time.

Since the Channel and Scenario dimensions have no other attributes and are low

cardinality, they are entered into the Measure table as two fields.

The APB-1 benchmark data come in several different forms, depending on the

cardinality and size of the data involved. These studies chose the minimum value, which

corresponds to a 50 megabyte fact table.

The procedure to evaluate space needs for indexing is as follows. First, the program

checks the cardinality of each field for every table. That information is used to derive the

space needed to construct a modified B+ tree index and simple bitmap index for these

three dimensions.

Fact table: total records No. is 1377000

�-=p::..:r:....:o....::d.:.-u.:.-ct:.....-------~lc-c-us-t....:...o....:...m-e-r-------I-c-h_a_n_n_e_l _

Dimensional Table Simple Bitmap Regular B+ Tree Modified B+ Tree
Index Index Index

Product 20 giga bytes .-

18

-

Dimensional Table

Product

Channel

Customer

Bitmap Joined Index

20 giga bytes

11 mega bytes

2 giga bytes

Figw-e 5

Modified B+ Tree Joined Index

400 mega bytes

400 mega bytes

400 mega bytes

Figure 6

From Figure 5 and Figure 6, we can see that the modified B+ tree index uses about

the same amount of disk space for all 3 dimensions. The reason is that most of the space

consumed by indexing is for construction of the projection table. The actual B+ tree uses

only a small amount of the disk space because it is a sparse index. This small B+ tree

resides in memory to reduce the time for searching an entry. Furthermore, using simple

bitmap index to create a 20 Gigabyte index for the join index on product is not possible.

The cardinality of the Product is 10,000, Cuslomer is 1,000, anu Channel is 7 in lhis

simulation.

19

-

Because the space complexity of the modified B+ tree index does not depend on the

cardinality of the field it indexes, it solves the space waste problem of the simple bitmap

indexing technique.

Query performance of the Modified B+ tree and Traditional B+ tree

The query perfonnance of the modified B+ tree index was also compared with

conventional B+ tree indexing. For each query, a simulation was perfonned 1,000 times

and the average processing time for the queries was determined, based on [Hua95].

Query 1:
parameter 1 =?product
parameter 2 =?customer
parameter 3 = ?channel
parameter 4 =?time

get UNITS, DOLLARS, PRICE
by SCENARIO = "ACTUAL"
by PRODUCT =<children(?product» option suppress null
by CUSTOMER = <children(?customer» option suppress null
by CHANNEL =<?channel>
by TIME =<children(?time»

Query 3:
parameter 1 =?product
parameter 2 = ?customer

get UNITS, DOLLARS, COST, INVENTORY
by SCENARIO = "ACTUAL"
by PRODUCT = <?product>
by CUSTOMER =<children(?customer»
by CHANNEL =attribute ("level", "TOP")
by TIME = "9501" through "9606"

20

-

Query Processing Plan for Query 1

Proposed Method Re2Ular 8+ Tree method
Assumption: Bitmap vectors for Scenario Assumption: Regular B+ tree index. on
and Channel already in memory. Modified (Product, Customer, Time, Channel,
B+ tree index for fact table and Join index Scenario). And Three dimensions have the
for Product, Time and Customer. regular B+ tree index. in its dimensional
1. Allocate memory for four blank bitmap key.

vectors for Product, Customer and 1. Allocate memory for the search key
Time dimension, and one for the final array combinations of (Product,
result bitmap. Each bitmap is of the Customer, Time. Channel, Scenario).
length L, where L is the number of 2. Go to Dimensional tables Product,
rows in the Fact table Customer and Time, find all the

2. Go to Dimensional tables Product, children for each of them, combine
Customer and Time, find all the them to get the search Key values.
children of the parameters for each of 3. Use these search key values to search in
them, according to the Modified B+ the regular B+ tree for the fact table.
tree Join index; set the associated bit 4. Retrieve the corresponding rows for
positions to 1 in these three bitmap output.
vectors.

3. After dynamically generating these
three bitmap vectors for Product, * Search of the regular B+ tree involves
Customer and Time, fonn the logical disk I/O.
AND of those vectors together with the
bitmaps for Channel and Time to
produce the result vector.

4. According to the bit 1 in the final result
bitmap, retrieve and output the result.

21

-

Query Processing Plan for Query 3

Proposed Method Regular B+ Tree method
Assumption: Bitmap vectors for Scenario Assumption: Regular B+ tree index on
and Channel already in memory. Modified (Product, Customer, Time, Channel,
B+ tree index and Join index for Product, Scenario). And Three dimensions have the
Time and Customer. regular B+ tree index in its dimensional
1. Allocate memory of four blank bitmap key.

vectors for Product, Customer and 1. Allocate memory for the search key
Time dimension, and one for the final array Combinations of (Product,
result bitmap. Each bitmap is of the Customer, Time. Channel, Scenario).
length L. 2. Go to Dimensional table Customer,

2. Go to Dimensional tables Product, find all the values of the children,
Customer and Time, find the Product combi ne them with the product,
and set the Product bitmap (It only has channel, scenario and time("950 I" to
one Product). Search the modified B+ "9606") to get the search Key values.
tree time index for fact table, generate 3. Use these search key values to search
the time bitmap corresponding to in the regular B+ tree for the fact table.
"950 I" to "9606". Search one- 4. Retrieve the existed correspondent
dimensional table Customer for all the rows for output.
chi Idren and set up the Customer
Vector.

3. AND these five bitmap vectors * Search of the regular B+ tree involves
together to get the final result bitmap. disk I/O.

4. According to the bit 1 in the final
result bitmap, retrieve and output the
result.

::'2

Simulation Result

Figure 7 illustrates the average processing time for one thousand trials of each query.

Traditional B+ Tree

Modified B+ Tree

Query 1

221,646 ms

25,889 ms

Query 3

9,970 ms

5,250 IDS

Figure 7

The most important difference between query 1 and query 3 is that in query 1, three

dimension tables (Product, Customer and Time) need to be retrieved in order to find all

the children of a certain value. But in query 3, time is given, as is product. Only one

dimension table, "Customer," must be evaluated. Query 1 has the join operation on all

three dimensions tables, but query 3 only joins with "Customer," which is not a very big

table.

Also, the foundations of these two queries differ in size. Query 1 has tens of

thousands of combinations of values from three dimensions, but Query3 only relates to

23

-

several hundred. So the disk I/O used by the regular B+ tree searching is limited in query

3.

For the above two reasons, query 1 shows a much greater difference in processing

time between the two indexing methods than query 3 does. Query 1 represents queries in

DWHs better, since it is complicated, accesses more tables, and combines more values

than query 3.

Advantages and Disadvantages of the Modified B+ Tree Index

Advantages:

• The index is relatively small, and fits in main memory. The modified B+ tree only

indexes the first row of each block in the projection table, so it is a sparse index.

The size of this B+ tree ranges from one to several megabytes, so it can be read

into memory when the system initializes. The time to search this tree is very small

because no disk I/O is needed.

• The cooperation problem (compared with the regular B+ tree) is solved. Space

use is optimized (compared with the simple bitmap index for high cardinality

data).

• The number of disk I/O for the range search is reduced, because the sorted

projection table supports high-speed range search bitmap vector created at run

time.

• It is easy to maintain for appended data, which frequently appears in the fact

tahle.

24

Disadvantages:

-

•

•

The projection table needs space. If the projected fields occupy a large portion of

the size of each tuple, for example 20%, the projection table would be 20% of the

size of the fact table.

It is not easy to initially construct or reconstruct the projection table and the index

since this is very time consuming (i.e., project, sort and generate the B+ tree).

25

)

!

-

Chapter 5

Conclusion and Future Work

Different indexing techniques are suitable for different situations, depending on the

data quantity, data cardinality and common query requirements. However, the situation of

the DWH requires that traditional indexing techniques be modified to suit very large data

sets and complex query processing. The modified B+ tree indexing technique seems to be

suited for the DWH environment because it combines the benefits of both B+ tree and

bitmap indexing techniques. Several different indexes can be constructed for the same

field to accommodate different query needs. Also the ability to work well with different

kinds of index is essential when many different indexing techniques are working

together. Finally, the goal of indexing is to speed up query processing, especially the

complex iterative queries that commonly occur in the DWH environment. Modified B+

tree indexes have been shown to meet these needs.

However, more research needs to be done. First, B+ trees normally do not reside in

main memory. Although we can bring the modified B+ tree into memory, the

representation of the tree in main memory should be considered. A sorted array or linked

list may be a good memory structure. Last, simulation needs to be done in more detail,

not only to compare modified B+ tree indexing with regular B+ tree indexing, but also to

compare it with other indexing techniques for high cardinality data (like encoded bitmap

indexing).

26

\"
)",.
)

i
)

-

References

[GRLP96] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh, Data Cube: A relational
aggregation operator generalizing group-by, cross-tabs and sub-totals., In
Proc. of the 12th Int'l Conference on Data Engineering, pages 152-159, 1996.

[BS961 C.J. Bontempo, C.M. Saracco, Accelerating Indexed Searching, Database
Programming and Design, pages120-130, July 1996.

[BuI96] D. Bulos. The APB-l benchmark, The OLAP Council benchmark, April
1996, http://www.olapcouncil.org/researchlbmarkly.htm.

[CD96] S. Chaudhuri and U. Dayal, Decision Support, Data Warehousing and OLAP,
1996 VLDB Tutorial, Bombay, India.

[Ren971 M. Rennhackkamp, Sybase Warehousing, DBMS, August 1997

[HRU96] V. Harinarayan, A. Rajaraman, and J.D. Ullman, Implementing Data Cube
Efficiently, In Proceedings of the 1990 ACM SIGMOD International
Conference on Management of Data, pages 135-148, Jun. 1996.

[WB971 M.e. Wu, A. Buchmann, Encoded Bitmap Indexing for Data Warehouses,
DVS1, Computer Science Department, Technische University, 1997

[Hua95] J. Huang, Recovery Techniques in real-time main memory database, Ph.D
Dissertation, Page 150, University of Oklahoma, pages 89,1995.

[AAD+96] S. Agarwal, R. Agarwal, P.M. Deshpande, A. Gupta, J.F. Naughton, R.
Ramakrishnan, and S. Sarawagi, On the computation ofmultidimensional
aggregates., In Proc. of the 22nd Int'l Conference on Very Large Databases,
pages 506-521, Mumbai (Bombay), India, Sept. 1996.

[OG95] P. O'Neil and G. Graefe, Multi-Table joins through Bitmapped join indices,
SIGMOD Record, Vol. 24, No.3, pages 68,Sep. 1995

[OQ97] P. O'Neil, and D. Quass, Improved Query Performance with Variant Indexes,
SIGMOD Conf., Tucson, Arizona, pages 11O,May 1997.

[01'1961 R. J. Orli Database-Updates to the Bestiary, 1996, by KTSMET Company.

27

-

APPENDIX A Code for checking the cardinality of the data file

#include <stdio.h>
#include <stdlib.h>
#define MAXIUM 1024*1024
char unique[MAXIUM] [24];
long num = 0;

void main(int argc, char *argv[])
{

char Cname[32];
char str[1024];
FILE *fp;
int begin =0;
int length = 0;
int lineno =0;
long total_lines =0;

printf("'o'o**'0");
printf ("* Check written by Zhengrong Yi *\n");
printf ("* *\n");
printf ("* Purpose: To check the cardinality of the datafile *\n");
printf ("* *\n");
printf ("* *\n");
printf ("* *\n");
printf **\n\n\n");

if (argc != 4){
printf("Syntax. Error: check <filename> <begin> <length>\n");
exit(-I);

}
strcpy(Cname,argv[1]);
begin =atoi(argv[2]);
begin--;
length = atoi(argv[3]);
if (length> 24){

printf("Can't handle string length more than 24!\n");

fp = fopen(Cname, "r");
if (fp == NULL){

prinlf("Can't open the file: %sl!!\n",l'-name);
exit(-2);

28

....

______________________________1~

-

printf("Beginning to Check the cardinality for file:%s,
begins from %d of length %d\n",Cname,begin,length);

while (fgets(str,l024,fp) != NULL){
total_lines ++;
if (mygets(str,begin,length) == 1){

if«num%100) == 0){
printf("Has found %d unique string!\n",num);

}

num++;
if(num > MAXIUM){

printf("Already exceeds the maxmum number can handle!\n");
exit(-3);

}

}
printf("Result of Checking the cardinality for file:%s,

begins from %d of length %d\n" ,Cname,begin,length);
printf("Total %d unique strings!\n",num);
printf("Total %d lines in this file!\n",totaLlines);
fclose(fp);

int mygets(char *str,int begin,int length)
{

char temp[24];
long i;
int found = I;
for (i = 0; i < length ;i++){

temp[i] = str[i+begin];
}
temp[length] = 0;
for (i = 0; i <num ; i++){

if (strcmp(temp,unique[i])==OH
found = 0;
break;

}
if (found == 1 H

strcpy(unique[num],temp);
}
return found;

29

~....
I...,
1
~

2
)...
)

-

APPENDIXB

#include <stdio.h>
#include <stdlib.h>

FACT TABIE SIMULATION CODE

/I Struct for field;

1/ field name;
II the Cardinality

II Maximum number of tuples in the table that has one certain

struct field
{
char Cname[24];
long card;
long max_no;

value;
long min_no; II Minimum number of tuples that has one certain value:
long average_no; /I if not equals 0, means the number of a certain value is fixed
int length; /I the length of the field, in bits
struct field *nexCfield; /I point to the next field

) ;

struct table{
struct field *first; II the first field of the table
int no; /1 total no of the fields in the table
char table_name[32];
long tuple_no;

};

void prinCtable(struct table *table);
int initialize_tablesO;
void fill_field(struct field *target,char * name, long card, long max,

long min, long aver, int length, struct field * next);

30

:"...
I,.
I

t
)

I

#include <stdio.h>
#include <stdlib.h>
#include "table.h"

extern struct table *Fact;
extern struct table *Customer;
extern struct table *Product;
extern struct table *Time;
extern struct table *Inventory;

int initialize_tablesO
(

struct field *field,*tmp;

printfC Initializing all the tables, please waiL !\n\n\n");

/* THE FOLLOWING INITIALIZE THE FACT TABLE FOR SIM.ULATION*/

Fact = (struct table *) malloc (sizeof(struct table »;
if (Fact = NULL)(

printf("Can not allocate enough memory!\n");
return -1;

}
field = (struct field*) malloc (sizeof(struct field»;
if (field = NULL)(

printf("Can~ allocate enough memory 1\n");
return -I:

}
tmp =(struct field*) malloc (sizeof(struct field»;
if (tmp == NULL)(

printf("Can't allocate enough memory !'nt1);
return -1;

}
Fact->first =field;
Fact->no = 6;
Fact->tuple_no = 1377000;
strcpy(Fact->table_name, "Fact Table");

fill_field(field,"CUSTOMER",900, 100000,10000,0, 12*g,tmp);

field =tmp;
tmp =(struct field*) malloc (sizcof(struct field»:

31

....

...

-

if (tmp == NULL)(
printf("Can't allocate enough memory !\n");
return -1;

}
fill_field(field,"PRODUCT",9000, ,OOסס10 ;(OO,0,12*8,tmpסס1

field =tmp;
tmp = (struct field*) malloc (sizeof(struct field»;
if (tmp = NULL)(

printf("Can't allocate enough memory !\n");
return -1;

}
filLfield(field,ICHANNEL",9,500000,200000,0,12*8,tmp);

field =tmp;
- tmp =(struct field*) malloc (sizeof(struct field»;

if (tmp == NULL)(
printf("Can't allocate enough memory !\n");
return -1;

}
fiILfield(field,"TIME",17,500000,200000,O,12*8,tmp);

field =tmp;
tmp = (struct field*) malloc (sizeof(struct field»;
if (tmp == NULL){

printf("Can't allocate enough memory !\n");
return -1;

}
fill_fieJd(field,"SCENARIO",3,O,O,4000000,1O*8,tmp);

field =tmp;
tmp =(struct field*) malloc (sizeof(struct field»;
if (tmp == NULL){

printf("Can't allocate enough memory !\n");
return -1;

}
filLfield(field,"UNIT_SALES",10000,500000,200000,O,1O*8,tmp);

field =tmp;

32

)....

~
I...
I

)

1..
..

-

/

fiILfield(field,"DOLLAR_SALES",20000,500000,200000,0,10*8,NULL);

/* THE FOLLOWING INITIALIZE THE DIMENSION TABLE PRODUCT FOR
SIMULATION */

Product =(stmct table *) malloc (sizeof(stmet table »;
if (product == NULL){

printf("Can't allocate enough memory !\n");
return -I;

field = (struct field*) malloc (sizeof(stmet field»;
if (field == NULL){

printf("Can't allocate enough memory !\n");
return -1;

}
tmp =(struet field*) malIoe (sizeof(stmct field»;
if (tmp == NULL){

printf("Can't allocate enough memory !\n");
return -1;

}
Produet->first =field;
Product->no =3;
Product->tuple_no = 10000;
strepy(Produet->table_name, "Product Dimension Table");
fiILfield(field,"MEMBER",lOOOO,0,0,1,12*8,tmp);

field =tmp;
tmp =(stmet field*) malloe (sizeof(stmct field»;
if (tmp == NULL){

printf("Can't allocate enough memory 1\n");
return -1;

}
fill_field(field,"PARENT",1001,1000, 1,0,12*8,tmp);

field = tmp;
fill_field(field,"LEVEL",7 ,9000,1 ,0,7*8,NULL);

33

~......

?
I..
I

.
"
J..

-

/

/* THE FOLLOWING INITIALIZE THE DIMENSION TABLE CUSTOMER FOR
SIMULATION */

Customer = (stmet table *) malloe (sizeof(struct table »;
if (Customer = NULL){

printf("Can't allocate enough memory !\n");
return -I;

}
field = (stmet field*) malloc (sizeof(struct field));
if (field == NULL){

printf("Can't allocate enough memory !\n");
return -1;

}
tmp = (struet field*) malloe (sizeof(struet field);
if (tmp = NULL){

printf("Can't allocate enough memory!\n");
return -1;

Customer->first = field;
Customer->no = 3;
Customer->tuple_no = 1000;
strepy(Customer->table_name, "Customer Dimension Table");
fiILfield(field,"MEMBER",1000,0,0,1,12*8,tmp);

field = tmp;
tmp = (struct field*) maUoe (sizeof(struet field»;
if (tmp == NULL){

printf("Can't allocate enough memory!\n");
return -1;

}
fill_field(field,"PARENT",101,IOO,1O,0,12*8,tmp);

field = tmp;
fill_field(field,"LEVEL",2,900,1,0,7*8,NULL);

/* THE FOLLOWING INITIALIZE THE DIMENSION TABLE TIME FOR
STh1ULATION */

Time=(struet table *) malloe (sizeof(struet table »:
if (Time == NULL){

printf("Can't allocate enough memory!\n");
return -1;

34

•..
..

;)
'"I...
I

i .
~
:t:'1,

/

}
field = (struet field*) rnalloc (sizeof(struet field»;
if (field = NULL){

printf("Can't allocate enough memory!\n");
return -1;

}
tmp = (struet field*) malloe (sizeof(struet field»;
if (tmp = NULL){

printf("Can't allocate enough memory!\n");
return -1;

}
Time->first = field;
Tirne->no = 3;
Time->tuple_no = 34;
strepy(Time->table_name, "Time Dimension Table");
filljield(field,"MEMBER" ,34,0,0,1 ,12*8,tmp);

field = trnp;
tmp = (struet field*) malloe (sizeof(struet field»;
if (tmp = NULL){

printf("Can't allocate enough memory!\n");
return -1;

}
fill_field(field,"PARENT",9,0,O,4,12*8,tmp);

field = tmp;
fill_field(field, "LEVEL",3,1,4,0, 12*8,NULL);

/* THE FOLLOWING INITIALIZE THE DIMENSION TABLE INVENTORY FOR
SIMULATION */

Inventory=(struct table *) maUoe (sizeof(struct table »;
if (Time == NULL){

printf("Can't allocate enough rnernory!\n");
return -1;

}
field =(struet field*') malloe (sizeof(strucl field»:
if (field == NULL){

printf("Can't allocate enough memory!\n");

35

;)..
....
~

: ..
•'I
)

~:

iJ.,
J
.. I

-

/

return -1~

}
tmp =(struct field*) malloc (sizeof(struet field»~
if (tmp == NULL){

printf("Can't allocate enough memory!\n")~

return -1;

}
Inventory->first =field;
Inventory->no ;:: 19;
Inventory->tuple_no = 243000~

strcpy(Inventory->table_name, "Inventory Dimension Table");
fill_field(field, "CUSTOMER",900,0,0,270, 12*8,tmp);

field =tmp;
tmp =(struet field*) malloe (sizeof(struct field»;
if (tmp = NULL){

printf("Can't allocate enough memory!\n");
return -1;

}
fill_field(field,"PRODUCT" ,9000,0,0,27, 12*8,tmp):

field =tmp;
tmp =(struet field*) malloe (sizeof(struct field»;
if (tmp == NULL){

printf("Can't allocate enough memory!\n");
return -1;

}
fi ll_field(field,"INVENT199501",27,0,0,9000, 10*S,tmp);
field =tmp;
tmp = (struet field*) malloe (sizeof(struet field»;
if (tmp =;:: NULL){

printf("Can't allocate enough memory!\n");
return -1;

}
filljield(field,"INVENTI99502",27,O,0,9000,10*S,tmp);
field;:: tmp;
tmp;:: (struct field*) maUoe (sizeof(struet field»;
if (tmp = NULL){

printf("Can't allocate enough memory!\n");
return -I;

36

),

...
"..
I'.~.
":r..,
•~

-

}
fill_field(field, IIINVENT199503 II ,27,0,0,9000,1O*8,tmp);
field =tmp;
tmp =(struct field*) malloc (sizeof(struct field»~
if (tmp = NULL)(

printf("Can't allocate enough memory!\n")~

return -1;

}
filLfield(field,"INVENT199504",27,0,0,9000,10*8,tmp);
field = tmp;
tmp = (stmct field*) malloc (sizeof(stmct field»;
if (tmp == NULL)(

printf("Can't allocate enough memory!\n");
return -1;

}
filLfield(field,"INVENT 199505" ,27,0,0,9000,10*8 ,tmp);
field =tmp;
tmp = (struct field*) malloc (sizeof(struct field»~
if (tmp == NULL){

printf("Can't allocate enough memory!\n");
return -1;

}
fill_field(field,"INVENT199506" ,27,0,0,9000, 10*8,tmp);
field = tmp~

tmp = (stmct field*) malloc (sizeof(stmct field»;
if (tmp == NULL)(

printf("Can't allocate enough memory!\n lt
);

return -1;

}
fill_field(field,"INVENT199507" ,27 ,0,0,9000,10*8,tmp);
field = tmp;
tmp = (stmct field*) malloc (sizeof(stmct field»;
if (tmp = NULL){

printf("Can't allocate enough memory!\n");
return -1;

}
fill_field(field,"INVENT199508",27,0,O,9000,10*8,tmp);
field =tmp;
tmp =(struct field"') malJoc (sizcof(struct field»;
if (tmp == NULL){

printf("Can't allocate enough memory!\n");

37

...

·I
"-~. ,

,
~

•·

return -1;

}
fiILfield(field, "INVENT199509",27,0,0,9000,10*8,trnp);
field = trnp;
trnp = (struct field*) rnalloc (sizeof(struct field»;
if (trnp = NULL)(

printf("Can't allocate enough rnernory!\n");
return -1;

}
filLfield(field,"INVENT199510",27,0,0,9000,10*8,trnp);
field =trnp;
trnp = (struct field*) malloc (sizeof(struct field»;
if (trnp == NULL)(

printf("Can't allocate enough rnernory!\n");
return -1;

}
filLfield(field,"INVENT1995 11",27,0,0,9ooo,1O*8,tmp);
field =trnp;
trnp =(struct field*) rnalloc (sizeof(struct field»;
if (trnp = NULL){

printf("Can't allocate enough memory!\n");
return -1;

}
fiILfield(field,"INVENT 199512",27,0,0,9000, lO*8,trnp);
field = tmp;
trnp = (struct field*) rnalloe (sizeof(struct field»;
if (trnp == NULL)(

printf("Can't allocate enough memory!\n");
return -1;

}
fill_field(field,"INVENT199601",27,0,0,9000,10* 8,tmp);
field = trnp;
tmp =(struct field*) malloc (sizeof(struct field»;
if (trnp == NULL){

printf("Can't allocate enough rnemory!\n");
return -1;

}
fiIUieJd(field," INVENT 199602" ,27,0,0,9000, 10'~8,lmp):
field =trnp;
trnp =(struct field*) rnalloe (sizeof(struct field»;

38

"
"

'.

' ..
j~
I
I

•

-

/

if (tmp = NULL){
printf("Can't allocate enough memory!\n")~

return -1;

}
filCfield(field, "INVENT199603",27,0,0,9000,10* 8,tmp)~

field = tmp~

tmp = (struct field*) malloc (sizeof(struct field»);
if (tmp = NULL){

printf("Can't allocate enough memory!\n")~

return -1;

}
fill_field(field,"INVENT199604",27,0,0,9000,10*8,tmp)~

field = tmp;
fill_field(field, "INVENT199605" ,27,0,0,9000, 10*8,NULL);

/*********** Testing ****************/

prinCtable(Fact);
prinCtable(Product);
prinCtable(Customer)~

prinCtable(Time)~

princtable(Inventory);

return 0;

void fil1_field(struct field *target,char * name, long card, long max,
long min, long aver, int length, struct field * next){

strcpy(target->Cname,name);
target->card = card;
target->max_no= max;
target->min_no = min;
target->average_no = aver;
target->length =length;
target->next_field = next;

void prinCtable(struct table *table)
{

39

""",

"..
ia
I
I
I

-

,-

int i ;
struct field *field;
field = table->first;

printf("table structure of [%s]\nlf,table->table_name);
]?r1ntf("-- \n lf);

]?rintf(IfName Cardinality Length Max Min Average\n");
printf("---\n");
for(i =0; i < table->no ; i++){

printf("%-20s%-20d%-7d%-12d%-11d%-lOd\n",field->Cname,field->card,
field->length

,field->max_no,field->rnin_no,field->average_no);
field =field->nexCfield;
if (field = NULL)

break;
}
printf(1f---\n ");
printf("Enter to continue!\n");
getcharO;

40

II

..-. ,
...

-

APPENDIXC

#include <stdio.h>
#include <stdlib.h>

Code for comparing Query performance

double retrieve_data (long total_entry);
long gecrandom(1ong min, long max);
void queryl_execute(int run_times);
double allocate_bitmap(long length);
double and_bitmap(long length,int no);
long get_random_tuple_no(struct table *table, char *attrib);
double scanbitmap(long length);
double join_child(long faccave_no);
double alIo_memo_bt(long no, struct table *table, char *attrib);
double seCmemo_bt(long no, struct table *table, char *attrib);

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "parameter.h"
#include "table.h"
#include "query.h"

/
extern struct table *Fact;
extern struct table *Customer;
extern struct table *Product;
extern struct table *Time;
extern struct table *Inventory;

long gecrandom(long min, long max)
{
long ran;
double rate;

ran = randO;

41

.'.

-

rate = (double)(ran)/(double)(RAND_MAX);
ran = min + (max-min)*rate;
return ran;
}

double allocate_bitmap(long length) II simulation function for allocating Bitmap
memory
{ /I Input: no. of tuples in a table Output: time needed

return ((double)(length/(IO_PAGE_SIZE*8» * (double)(ALLO_RELA_TIME»;
}

double and_bitmap(long length,int no) II simulation function for And Bitmap vectors
{ II Input: no. of tuples in a table Output: time needed

II no. of bitmaps needs to AND
double access_time;
double operation_time;

access_time = 2*(((double)(length)/(double)(32))*(double)(MEMO_ACCE_TIME»;
operation_time = «double)(length)/(double)(2»*(lICPU);
return (no*(access_time+operation_time»;
}

void queryl_execute(int run_times)
{

/***************************************
Query 1: get UNITS,DOLLARS,PROCE

by SCENRIO = "ACTULA"
by PRODUCT = <children(?product»
by CUSTOMER = <children(?customer»
by CHANNEL = <?channel>

by TIME = <children(?time»
***************************************/

double totaLbtree=O.O ;
double totaLbitmap=O.O ;
double all_btree=O.O ;
double all_bitmap=O.O ;

long produccno;
long customer_no;
long time_no;

42

...

I
/

long faccproduccno;
long facccustomecno;
long facCtime_no;
long total_entry;

int i,j;

srand(time(NULL»; /I setup random generator
printf("\nBeginning a simulation for query 1...\n");

for (j = 0; j < run_times; j++)(
printf("\rRunning for No.%i times",j+ 1);

total_bitmap = 0.0; II reset the time counter for each round
totaLbtree = 0.0;

totaLbtree += (double)(INIT_TRAN); II time to initialize the transaction
total_bitmap += (double)(INIT_TRAN);

1* Query processing introduction for our schema
Suppose that channel bitmap(cardinality of 3) has already in the memory,
the same to the SCENARIO
Need to create 5 bitmaps for Product, Customer and Time joined from
three dimension tables Product,Customer and Time, after then, these 5 bitmaps
will be AND together to get the result

*1

/I setup some random parameter for both methods here
produccno = geCrandom_tuple_no(Product,"PARENT");
customecno = get_random_tuple_no(Customer, "PARENT");
time_no = gecrandom_tuple_no(Time, "PARENT");

faccproducCno = gecrandom_tuple_no(Fact,"PRODUCT");
facccustomecno = gecrandom_tuple_no(Fact, "CUSTOMER");
facCtime_no = geCrandom_tuple_no(Fact, "TIME");

II First allocate 3 bitmaps in memory for Time, Product,
II and Customer

total_bitmap += allocate_bitmap(Fact->tuplc_no);
total_bitmap += allocate_bitmap(Fact->tuple_no);
total_bitmap += allocatc_biLmap(fact-;:"luplc_l1o);

II Join from Product Dimension

43

I
I

total_bitmap +== scanbitmap(Product->tuple_no);
for (i == 0; i < produccno ; i++){

total_bitmap +== join_child(facCproduccno);
}
// Join from Customer Dimension
total_bitmap +== scanbitmap(Customer->tuple_no);
for (i == 0; i < customer_no; i++){

totaLbitmap +== join_child(facccustomer_no);
}
// Join from Time Dimension
total_bitmap +== scanbitmap(Time->tuple_no);
for (i == 0; i < time_no; i++){

total_bitmap += join_child(facCtime_no);

// At last, And the bitmaps together
total_bitmap +== and_bitmap(Fact->tuple_no, 5);
// Finalize time
total_bitmap +== OUTP_TRAN;

/* Query processing introduction for B+ Tree method
First find the product,time and customer childen values
from the dimensional table PRODUCT,TIME and CUSTOMER, then
join these values together with Channel and scenarios as
the key values, search the B+ tree for the fact table,
and get the result
*/

/1 First allocate memory for Time, Product channel children values
total_btree+== allo_memo_bt(product_no, Product, "MEMBER");
total_btree+== alIo_memo_bt(customecno, Customer, "MEMBER");
total_btree+== alIo_memo_bt(time_no, Time, "MEMBER");

// get the children from the Product
total_btree+== SEARCH_BT;
totaLbtree+== secmemo_bt(produccno, Product, "MEMBER");

/1 get the children from the Time
total_btree+== SEARCH_BT;
total_btree+== seCmemo_bt(time_no, Time, "MEMBER");

/1 get the children from the Customer
total_btrcc+= SEARCI-LBT;
total_btree+= secmemo_bt(customecno, Customer, "MEMBER");

44

f
I

/I combine the values to a key
/I First allocate the memory
totaCbtree+= ALLO_RELA_TIME *((double)(60) *

(double)(product_no*time_no*customer_no) I((double)(10_PAGE_SIZE»);
Iisecond, move in these key vales;
total_btree+= ((double)(producCno*time_no*customecno)*36)/((double)(2» *

(lICPU);

/I Search these key values in the B Tree
1*

total_entry = «produccno*time_no*customecno)/AVEG_SELE)* IO_PAGE_SIZE

totaLbtree +=
«double)(total_entry)1AVEG_MOVE)*(SEEK_TIME+LATE_TIME);

totaCbtree += (double)(total_entry)/«double)(2»*(lICPU);
*1

total_entry = produccno*time_no*customecno :
total_btree += (double)(total_entry)*SEARCH_BT;

II Finalize time
totaLbtree += OUfP_TRAN;

/1 make up the time of retrieve the actual data from the disk
total_btree += retrieve_data (total_entry/AVEG_SELE);
total_bitmap += retrieve_data (totaCentrylAVEG_SELE);
all_bitmap += total_bitmap;
a11_btree += total_btree;
printf("** OURS: %f ms!** B+ TREES: %f

IDS" ,(total_bitmap/lOOO),(totaLbtree/lOOO»;

printf("\n\nAverage running time for Query 1 using our method is %f
ms !\n" ,(all_bitmap/(run_times*1000»);
printf(" Average running time for Query 1 using B+ Tree method is %f

ms!\n",(all_btree/(run_times* 1000»);

45

void query3_execute(int run_times)
{

/***************************************
Query 3: get UNITS,DOLLARS,PRICE

by SCENRlO = "ACTULA"
by PRODUCT = <?product>
by CUSTOMER = <children(?customer»
by CHANNEL = attribute("level","TOP")
by TIME ="9501" thru "9606"

***************************************/

double total_btree=O.O ;
double total_bitmap=O.O ;
double alLbtree=O.O ;
double all_bitmap=O.O ;

long custornecno;
long totaCentry;
long facccustomecno;

int i,j;

srand(time(NULL»; // setup random generator
printf("\nBeginning a simulation fo query 1...\n");

for (j = 0; j < run_times; j++){
printf("\rRunning for No.%i times",j+l);

total_bitmap =0.0; II reset the time counter for each round
total_btree = 0.0;

totaLbtree += (double)(INIT_TRAN); // time to initialize the transaction
total_bitmap += (double)(INIT_TRAN);

/* Query processing introduction for our schema
Suppose that channel bitmap(cardinality of 3) has already in the memory
the same to the SCENARIO
Need to create 3 bitmaps for Product, Customer and Time ,after then, these 5

bitmaps
will be AND together to get the result, the product and the customer bitmap will

AND
to get the combination to retrieve the data from the Inventory table

*/

46

II setup some random parameter for both methods here
customer_TIo == get_random_tuple_no(Customer, "PARENT");
facccustomecno == geCrandom_tuple_no(Fact, "CUSTOMER");

II First allocate 4 bitmaps in memory for Time, Product,
II Customer and the result of AND operation on Customer and Product

totaCbitmap +== allocate_bitmap(Fact->tuple_no);
total_bitmap +== allocate_bitmap(Fact->tuple_no);
total_bitmap +== allocate_bitmap(Fact->tuple_no);

II Join from Product Dimension
total_bitmap +== SEARCH_BT;

II Join from Customer Dimension
total_bitmap +== join_child(l);

for (i == 0; i < customecno ; i++){
total_bitmap +== join_child(facccustomer_no);

}
II Join from Time Dimension

total_bitmap +== 17* scanbitmap(Time->tuple_no);

II And the bitmaps Product and Customertogether
total_bitmap +== and_bitmap(Fact->tuple_no, 2);

II And with the rest bitmaps together
total_bitmap += and_bitmap(Fact->tuple_no, 2);

total_entry == 17*customer_no ;

II create the dynamic bitmap on Inventory
totaLbitmap +== totaLentry * SEARCH_BT;

II Finalize time

totaLbitmap +== retireve_data (totaLentrylAVEG_SELE);
lotaLbitmap += rctircve_data (tolal_entry/AVEG_SELE);
totaLbitmap +== OUTP_TRAN;

47

::

1* Query processing introduction for B+ Tree method
First find the customer childen values
from the dimensional table CUSTOMER, then
join these values together with Channel and scenarios as
the key values, search the B+ tree for the fact table,
and get the result
*1

II First allocate memory for Time, Product channel children values
total_btree+= allo_memo_bt(customecno, Customer, "MEMBER");

II get the children from the Customer
total_btree+= SEARCH_BT;
total_btree+= set_memo_bt(customecno, Customer, "MEMBER");

II combine the values to a key
II First allocate the memory
total_btree+= ALLO_RELA_TIME *((double)(60) * (double)(l7*customecno)

I((double)(10_PAGE_SIZE»));
//second, move in these key vales;
total_btree+= «doubJe)(l7*customecno)*36)/«double)(2» * (l/CPU);

II Search these key values in the B Tree
totaLbtree += (double)(total_entry)*SEARCH_BT;

II Finalize time
total_btree += retrieve_data (total_entrylAVEG_SELE);
totaLbtree += retrieve_data (total_entrylAVEG_SELE);
total_btree += OUTP_TRAN;

1/ make up the time of retrieve the actual data from the disk
totaCbtree += retrieve_data (total_entry/AVEG_SELE);
all_bitmap += total_bitmap;
all_btree += total_btree;
printf("** OURS: %f ms!** B+ TREES: %f

ms" ,(total_bitmapllOOO),(total_btree/1000»;

printf("\n\nAverage running time for Query 1 using our method is %f
ms !\n",(all_bitmap/(run_times* 1000»);

printf("Average running time for Query 1 using B+ Tree method is %f
ms !\n",(all_btree/(run_times* 1000»);

}

48

double secmemo_bt(long no, struet table *table, char *attrib)
{

int i;
stIDet field *field;
int found = 0;
double time=O;

field = table->first;
fore i = 0; i < table->no ; i++){

if (strcmp(field->Cname,attrib) == O){
found =1;
break;

}
field = field->next3ield;
if (field == NULL)

break;
}

if (found == 1){
time+= (field->length*no/32) *(l/CPU);

}
else {

beep(3);
printf("Error: Can 'r find the attribute of %s of table %s\n",

attrib,table->table_name);
exit(-I);

}
return time;

double allo_memo_bt(long no, struet table *table, char *attrib)
{

int i;
struet field *field;
int found = 0;
double time=O;

field = table->first;
fore i = 0; i < table->no ; i++){

if (stremp(field->Cname,attrib) == 0){
found = 1;
hreak;

}
field = field->nexCfield;

49

if (field == NULL)
break;

if (found == 1)(
time+= ALLO_RELA_TlME *((double)(field->length/8) * no

1«double)(IO_PAGE_SIZE)))~

}
else {

beep(3);
printf("Error: Can't find the attribute of %s of table %s\n",

attrib,table->table_name);
exit(-1);

return time;

long getJandoffi_tuple_no(struct table *table, char *attrib)
{

int i;
long no=O;
struct field *field;
int found = 0;

field = table->first;
for(i = 0; i < table->no ; i++){

if (strcmp(field->Cname,attrib) == a)(
found = 1;
break;

}
field = field->nexcfield;
if (field == NULL)

break;

if (found == 1){
if (field->average_no == a)

no = gecrandom(field->min_no, field->max_no);
else no = field->average_no;

}
else {

beep(3);
printf("Error: Can't find the attribute of %s of table %s\n",

attrib,table->table_name);

50

exit(-I);

return no;

double join_child(long faccave_no)
{

double t=O;

t+=SEARCH_BT;
t+=(double)(faccave_nol2)*(double)(l/CPU);
return t;

}
double scanbitmap(long length)
{

return («double)(length)/16.0)*
«double)(MEMO_ACCE_TIME)+(double)(1/(2*CPU»»;
}

double retrieve_data (long totaLentry)
{

double tt ;

tt += SEEK_TIME;
tt += LATE_TIME;
tt += totaLentry * TRAN_PAGE_TIME ;
return tt;

}

51

APPENDIX D Simulation Program for Indexing Techniques in Data Warehouse

#include <stdio.h>
#include <stdlib.h>

#define CPU 140.0 II CPU Power of 140M HZ
#define SEEK_TIME 10000.0 /I Average Seek time
#define ALLO_RELA_TIME 5.0 1/ AllocatelRelease a main memory page time
#define INIT_TRAN 100.0 /I Average Initialization time of a transaction
#define OUTP_TRAN 100.0 1/ Average Output time of a transaction
#define IO_PAGE_SIZE 23476 /I Page size bytes
#define MEMO_ACCE_TIME 0.18// main memory access time per word
#define TRAN_PAGE_TIME 64.0 II time to transfer 1 data page
#define LATE_TIME 5560.01/ Latency time
#define AVEG_MOVE 100000.01/ assume lOOk bytes needs 1 MOVE of head
#define ROW_ill 32 // Row ill size, 4 Bytes
#define SEARCH_BT 10.0 II Average search time for a memory resident B tree
#define AVEG_SELE 50 /1 1150 of selection results 1 page lIO

1**
* Simulation Program for Indexing Techniques in DataWarehouse *
* *
* !,nstructor: Dr. Terry Nutter
* Student:Zhengrong Yi

*
* Fall 1999

*
*

*
*

***/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "table.h"
#include "parameter.h"
#include "query.h"

void welcome_msgO; 1/ Function that prints out the welcome message
void exit_msgO; // Function that prints out the exit message
Int gct_sclcctionO;
int gecruntimesO;
int beep(int times);

52

int mygetintO;
int mygetcharO;
void underconstructionO;

int run_times=O;
struct table *Fact;
struct table *Customer;
struct table *Product;
struct table *Time;
struct table *Inventory;

void mainO
{

int selection;
int out =0; II Tag for exit the program

welcome_ffisgO;
initialize_tablesO;

while (1){

selection = get_selectionO;
if ((selection == 1) II (selection == L)){

out =1;
}
if (out == 1)

break;
run_times =get_runtimesO;
switch(selection){

case 'a';
case 'A';

printf ("\n\nYou have select Automatic Execution of queries for %d
times\n",run_times);

underconstructionO;
break;

case b';
case 'B';

printf ("\n\nYou have select Execution of queries 1 for %d
times\n" ,run_times);

query l_execute(run_ri mes);
break;

case 'c':

53

case 'C':
printf ("\n\nYou have select Execution of queries 2 for %d

times\n" ,run_times);
underconstructionO;
break;

case'd':
case D':

printf ("\n\nYou have select Execution of queries 3 for %d
times\n" ,run_times);

query3_execute(run_times);
break;

case 'e':
case E':

printf ("\n\nYou have select Execution of queries 4 for %d
times\n",run_times);

underconstructionO;
break;

case 'f':
case F:

printf ("\n\nYou have select Execution of queries 5 for %d
times\n",run_times);

underconstructionO:
break;

case 'g';
case 'G':

printf ("\n\nYou have select Execution of queries 6 for %d
times\n",run_times);

/ underconstructionO;
break;

case h';
case H':

printf ("\n\nYou have select Execution of queries 7 for %d
times\n" ,run_times);

underconstructionO;
break;

case'i':
case 1':

printf ("\n\nYou have select Execution of queries 8 for %d
times\n",run_times);

underconstruction0;
break;

case J':
case '1':

printf ("\n\nYou have. elect Execution of queries 9 for 7<·d
times\n" ,run_times);

underconstructionO;

54

break;
case 'k':
case '[(':

printf ("\n\nYou have select Execution of queries 10 for %d
times\n" ,run_times);

underconstructionO;
break;

case 1':
case 1....':

out = 1;
break;

default:
beep(3);
printf("Wrong selection\n");
break;

}
exicmsgO;

void welcome_msgO

*\n");
*\n");

*\n");
*\n");

printf("\n**
*\n");

printf("* Simulation Program for Indexing Techniques in DataWarehouse *\n");
printf("* *\n");
printf("* Instructor: Dr.Terry Nutter
printf("* Student: Zhengrong Yi
printf("*
printf("* Fall 1999

printf("***\
nil);

printf("Press Enter to continue!\n");
getcharO;
printf("\n\n\n\n\n\n\n\n\n");

void exit_msgO

55

*\n");
*\n");
*\n");

*\n");
*\n");

*\n");

'6_ 6) '-. ().'-,_.')
CY_.)'._) '._ '. "-..-'

(\"'-"_A")._..__ '\"'-._

" / / ' "_.. -- -'.-- -- -" .,

(il),-" (li),' «!,-'

printf("\n**
*\n");

printf("*
printf("*
printf("*
printf("*
printf("*
printf("*

printf("***\
nil);

printf("* Goodbye!!!! Thanks for testing this program *\n");

print«"***\
nil);

printf("press Enter to continue!\n");
getcharO;
printf("\n\n\n\n\n\n\n\n\n");

int gecselectionO
{

char usecselection;

while (1){
plintf("+--------------------------------+\n");
printfC"1 QUERY SELECTION l\n");

. tf(" \nil).pnn +--------------------------------+ ,
printf("1 A.---Automatic execution l\n");
printf("1 B.---Execute Query 1 I\n");
printf("1 C.---Execute Query 2 I\n");
printf("1 D.---Execute Query 3 I\n");
printf("1 E.---Execute Query 4 I\n");
printf("1 F.---Execute Query 5 I\n");
printf("1 G.---Execute Query 6 l\n");
printf("1 H.---Execute Query 7 I\n");
printf("1 I.---Execute Query 8 l\n");
printf("1 1.---Execute Query 9 I\n");
printf("l K.---Execute Query 10 I\n");
printf("1 L.---Exit the Program l\n");

. f(" \ ")pnnt +--------------------------------+ n ;
printf("Plcasc cMer your selection: "):
usecselection=mygetcharO;
if «usecselection <= l') && (usecselection >='A'»

56

break;
else {

beep(2);
printf(" O/OC is an Invalid Selection!\n" ,usecselection);

}
}
return user_selection;

int beep(int times)

int i,j;
for (i =0 ; i < times ; i++){

putchar(Ox7);
for (j =O;j < 100000 ;j++);

int get_runtimesO
{

int usectimes;
printf("How many times you want to run the query(queries)? :");
usectimes =mygetintO;
return usectimes;

int mygetintO
{

int it = 0;
int first =0;
char str[80];
while(l){

gets(str);
it =atoi(str);
if (it <=0){

if (first != 0){
beep(4);
printf("\nError input, please reenter a integer number!\n");

}
else first =1;

}
else break:

l

J
return it;

57

--

int mygetcharO
{

int i;
char str[80];
char ch;
int found = 0;
while(I){

gets(str);
for (i =0 ; i < strlen(str) ; i++){

ch = (char)(str[i]);
if ((ch <= 'z') && (ch >='A'»{

found =1;
break;

}
if (found == 0){

beep(4);
printf("\nError input, please reenter a character!\n");

}
else break;

}
return ch;

void underconstructionO
{

pnntf("**\n");
printf("* SORRY *\n");
printf("*The Function you selected is not available at this time!*\n");
printf("* Press Enter to continue! *\n");
printf("************************ **********************************\n ");
getcharO;

S8

APPENDIX E Simulation program Execution result

Script started on Pri Dec 17 12:31:09 1999

Ic/yzhengrlsirn» gcc simulation.c
simulation.c: In function 'main':
simulation.c:921: warning: return type of 'main' is not
'int'
Ic/yzhengrlsim» a.out

* Simulation Program for Indexing Techniques in
DataWarehouse *
*
*
* Instructor: Dr. Nutter
*
* Student: Zhengrong Yi
*
*
*
* Fall 1999
*

Press Enter to continue!

Initializing all the tables, please wait .

59

table structure of [Fact Table]

Name
Min Average

Cardinality Length Max

CUSTOMER 900 96 100000
10000 0
PRODUCT 9000 96 100000
10000 0
CHANNEL 9 96 500000
200000 0
TIME 17 96 500000
200000 0
SCENARIO 3 80 0
0 4000000
UNIT_SALES 10000 80 500000
200000 0

Enter to continue!

table structure of [Product Dimension Table]

Name
Min Average

Cardinality Length Max

MEMBER 10000 96 a
0 1
PARENT 1001 96 1000
1 a
LEVEL 7 56 9000
1 a

Enter to continue!

60

table structure of [Customer Dimension Table]

Name
Min Average

Cardinality Length Max

----------_._--

MEMBER 1000 96 0
0 1
PARENT 101 96 100
10 0
LEVEL 2 56 900
1 0

Enter to continue!

table structure of [Time Dimension Table]

Name
Min Average

Cardinality Length Max

MEMBER 34 96 0
0 1
PARENT 9 96 0
0 4
LEVEL 3 96 1
4 0

Enter to continue!

61

table structure of [Inventory Dimension Table)

Name
Min Average

Cardinality Length Max

CUSTOMER 900 96 a
a 270
PRODUCT 9000 96 a
a 27
INVENT199501 27 80 a
a 9000
INVENT199502 27 80 0
a 9000
INVENT199503 27 80 0
a 9000
INVENT199504 27 80 0
a 9000
INVENT199505 27 80 0
a 9000
INVENT199506 27 80 0
a 9000
INVENT199507 27 80 a
a 9000
INVENT199508 27 80 0
a 9000
INVENII'199509 27 80 a
a 9000
INVENT199510 27 80 0
0 9000
INVENT199511 27 80 0
0 9000
INVENT199512 27 80 a
0 9000
INVENT199601 27 80 a
a 9000
INVENT199602 27 80 a
a 9000
INVENT199603 27 80 0
a 9000
INVENT199604 27 80 a
a 9000
INVENT199605 27 80 0
a 9000

62

Enter to continue!

+--------------------------------+
QUERY SELECTION

+--------------------------------+
A.---Automatic execution
B.---Execute Query 1
C.---Execute Query 2
D.---Execute Query 3
E.---Execute Query 4
F.---Execute Query 5
G.---Execute Query 6
H.---Execute Query 7
I.---Execute Query 8
J.---Execute Query 9
K.---Execute Query 10
L.---Exit the Program

+--------------------------------+
Please enter your selection:

Error input, please reenter a character!

Error input, please reenter a character!
b
How many times you want to run the query(queriess)? :6

You have select Execution of queries 1 for 6 times

Beginning a simulation fa query 1 ...

Running for No.1 times** OURS: 592.286553 ms!** B+ TREES:
1256.964061 ms
Running for No.2 times** OURS: 900.431524 ms!** B+ TREES:
2533.071922 ms
Running for No.3 times** OURS: 814.192995 ms!** B+ TREES:
2705.538750 ms
Running for No.4 times** OURS: 307.566567 ms!** B+ TREES:
274.801763 ms
Running for No.5 times** OURS: 318.355324 ms!** B+ TREES:
542.095812 ms
Running for No.6 tirnes** OURS: 306.629024 ms!** B+ TREES:
623.415893 ms

Average running time for Query 1 using our method is
539.910331 ms!

63

Average running time for Query 1 using B+ Tree method is
1322.648033 ms!

+--------------------------------+
I QUERY SELECTION
+--------------------------------+
I A.---Automatic execution
I B.---Execute Query 1
I C.---Execute Query 2
j D.---Execute Query 3
I E.---Execute Query 4
I F.---Execute Query 5
I G.---Execute Query 6
I H.---Execute Query 7
I I.---Execute Query 8
I J.---Execute Query 9
I K.~--Execute Query 10
I L.---Exit the Program
+--------------------------------+
Please enter your selection: d
How many times you want to run the query(queries)? :3

You have select Execution of queries 3 for 3 times

Beginning a simulation for query 1 ...

Running for No.1 times** OURS: 188.008489 ms! ** B+ TREES:
108.719347 ms
Running for No.2 times** OURS: 177.402560 ms!** B+ TREES:
110.521909 ms
Running for No.3 times** OURS: 168.625996 ms! ** B+ TREES:
101.681527 ms

Average running time for Query 1 using our method is
178.012348 ms!

64

Average running time for Query 1 using B+ Tree method is
106.974261 ms!
+--------------------------------+
I QUERY SELECTION
+--------------------------------+
I A.---Automatic execution
I B.---Execute Query 1
I C.---Execute Query 2
I D.---Execute Query 3
I E.---Execute Query 4
I F.---Execute Query 5
I G.---Execute Query 6
I H.---Execute Query 7
I I.---Execute Query 8
I J.---Execute Query 9
I K.---Execute Query 10
I L.---Exit the Program
+--------------------------------+
Please enter your selection: 1

65

*
*
*
*

(" \ _ I I-I") , , " \

*
*

\ 6 6) . \ ,)

*
*
*
*

1 __ ' _" I

\ \

*
*

(ill I I (li) ((!

* Goodbye!
*

Thanks for testing this program

Press Enter to continue!

Ic/yzhengrlsim» exit
script done on Fri Dec 17 12:32:15 1999

66

l \
;f

VITA

Zhengrong Yi

Candidate for the Degree of

Master of Science

Thesis: MODIFIED B+ TREE TECHNIQUE IN DATA WAREHOUSE
ENVIRONMENT

Major Field: Computer Science

Biographical:

Personal Data: Born in Hubei, China, on February 22, 1969

Education: Graduated from Jinzhou High School, Jinzhou, city, Hubei, and
received the Bachelor's degree in Automation Engineering from Harbin
industrial University China in July, 1991. Completed the requirements of
the Master of Science at Oklahoma State University in December 2000.

Professional Experience: Employed by Earth Products Instruments (HK) Ltd.
Shenzhen, China, as an Engineer, 1992 to 1997; employed by Hipro
Electronics, Inc. Austin, Texas, as a Software Co-Engineer, February 2000
to May 2000.

