
DEVELOPMENT AND RESEARCH ON INTELUGENT

MOBILE ROBOT SYSTEM

By

FENGMING YANG

Bachelor of Engineering

Southeast University

Nanjing, China

July, 1993

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

May, 2000

DEVELOPMENT AND RESEARCH ON INTELLIGENT
MOBILE ROBOT SYSTEM

Thesis Approved:

Dean of the Graduate College

~.e.'~­

LJ~ B. e~

ii

ACKNOWLEDGMENTS

I would like to sincerely thank my advisor Dr. Gary Yen for his enthusiastic support,

constructive guidance, encouragement, as well as friendship throughout the time of

acquaintance. I also want to thank Dr. Soderstrand and Dr. Johnson for being my

committee members.

I would like to express gratitude to Phung Meesad, who is currently a PHD student in

EE, for discussing with me on knowledge representation and fuzzy logic system parts

of the research. My sincere appreciation also extends to Travis Hickey for his

precious advices on my thesis.

;' I wish to express my appreciation to Dr. Soderstrand for lending us parts of their

hardware. And give thanks to ECEN lab technician Lee Clark for helping us improve

the lighting condition of the system.

I thank my parents for their encourage and understanding. I thank my elder brother

for his constant guidance and faith in me. Finally, appreciation is extended to my

wife for her love and patience.

iii

TABLE OF CONTENTS

PART 1. DEVELOPMENT OF THE INTELLIGENT ROBOT SYSTEM 1

Chapter 1 System Introduction 2
\.\ Hardware Parts 2
\.2 Software Parts 6

Chapter 2 Computer Vision in Intelligent Robot System 8
2.\ Video Capture 8
2.2 Image Processing \0
2.3 Pattern Recognition 18
2. 4 Real Detection Effect 20

Chapter 3 Lighting Problems 22
3.1 Lighting Techniques 23
3.2 Brightness 23
3.3 Nearest Neighborhood Method to Solve the Lighting Problem 25

Chapter 4 Serial Communication and Distributed Computing 30
4.1 Serial Communication 30
4.2 Distributed Computing 32

Chapter 5 System Evaluation and Research Perspectives 37
5.1 Difficulties in Real Time Robot System Research 37
5.2 Possible Researches 38
5.3 An Introduction to the Windows Interface 38

PART 2. LITERATURE REVIEWS AND PROPOSED RESEARCH 41

Chapter 6 Knowledge Representation 42
6.1 Rule-Based Representation 42
6.2 Frame-Based Representation 44
6.3 Object Oriented Programming 44

Chapter 7 An Introduction to Reinforcement Learning 46
7.1 What is Reinforcement Leaming 46
7.2 Q-Leaming 46

PART 3. EXPERIMENTAL RESULTS 51

Chapter 8 Fuzzy Behavior Controller 52
8.1 Task Description 52
8.2 Why Fuzzy Logic System is Needed 53
8.3 Fuzzy Behavior Controller 54
8.4 Experimental Result 58

ill

Chapter 9 Knowledge Representation in Intelligent Robot System 59
9.1 Frame Knowledge Representation in Robots Playing Soccer Game 59
9.2 Behavior-Based System 60
9.3 Finite State Machine lmplementation 61

Chapter 10 Robot Learning in Intelligent Robot System 62

Chapter 11 Summary and Future Work 65
11.1 Summary and Contributions 65
11.2 Future Work 66

References 68

v

LIST OF TABLES

Table 3.1 Nearest Neighborhood Method to Solve the Illumination Problem 27
Table 4.1 Operation of The CAsynSocket Class 35
Table 4.2 Overridable Notification Functions of the CAsyncSocket Class 36
Table 7.1 Value Table of Q learning 49
Table 10.1 Robot learning 63
Table 10.2 Robot Learning Result 64

vi

LIST OF FIGURES

Fig. 1.1 Intelligent Robot System 3
Fig. 1.2 A Robot 3
Fig. 1.3 Hat of a Robot 4
Fig. 1.4 A Playground with 3 Robots and a Ball on it 5
Fig. 2.1 Video Capture Device Architecture 8
Fig. 2.2 Color Settings 11
Fig. 2.3 Binary Dilation with a Mask of 3 12
Fig. 2.4 Binary Erosion 13
Fig. 2.5 Opening Operation 13
Fig. 2.6 Convex Set 14
Fig. 2.7 Convex Processing 15
Fig. 2.8 Component Labeling 16
Fig. 2.9 Pseudo Code for the Recursive Algorithm 16
Fig. 2.10 Pseudo Code for the Sequential Algorithm 17
Fig. 2.11 Size Filtering 18
Fig. 2.12 Real Detection Effect 20
Fig. 3.1 The RGB Intensities of a Pixel 24
Fig. 3.2 Increase the Brightness 24
Fig. 3.3 Over-lighting Causes Saturation of Red and Green Intensities 25
Fig. 3.4 Algorithm to Minimize lighting Effect 26
Fig. 3.5 Real Image Detection Effect 29
Fig. 5.1 The GUI Interface ofIntelligent Robot System 39
Fig. 7.1 The Standard Reinforcement-learning Model. 46
Fig. 7.2 Q-Iearning Algorithm 47
Fig. 7.3 A Grid World 48
Fig. 7.4 An Optimal Policy in the Grid World 48
Fig. 8.1 Diagram of Robot Moving from A to B 52
Fig. 8.2 The Input-output Diagram 54
Fig. 8.3 Membership Functions for Input Variable Distance 55
Fig. 8.4 Membership Functions for the Input Variable Angle 55
Fig. 8.5 Membership Functions for the Output Variable Speed 56
Fig. 8.6 Membership Functions for the Output Variable Turning Speed 56
Fig. 8.7 Rules of the Fuzzy System 57
Fig. 8.8 A Trajectory Record of Robot Moving to Position 58
Fig. 9.1 A Hierarchical Architecture of Robot Behaviors 60
Fig. 10.1 State Set and Action Set of Robot Learning to Shoot 62

vii

Part 1. Development of the Intelligent Robot System

2

Chapter 1 System Introduction

In artificial intelligence research J numerous ideas on learning paradigm were

proposed. If we conduct a literature search using "machine learning" or

"reinforcement learning" as keywords, we can get hundreds of hits. HoweverJ most

of these ideas were implemented only by simulation at most. In artificial intelligence

research, there is a big distance between theoretical possibility and real-world

practice mainly due to the limit of available experiment testbeds. Theoretically,

human can land on the Mars easily. However, billions of dollars have spent yet we

haven't touched a rock on the Mars. In order to learn riding a bicycle, we need to

have a bicycle. This inspired our effort to develop a real robot system for theoretical

validation and experimental demonstration.

Robots playing soccer is a very good environment to engage in many different

artificial intelligence research topicsJ such as robot learning, robots cooperation J and

knowledge transferring. Therefore we bought a set of equipment and developed a

research platform 00 it.

1.1 Hardware Parts

Fig. 1.1 shows the system composition. The system consists of some robots, a

playground on which robots can move around, a video camera which is used to

monitor the activities of robots on the playground, two computers, two vision boards

which are plugged in the computers, a wireless transmitter and a ball. The output of

the video camera is split into two branches; each of them is connected to a vision

board, which is plugged in a computer. The wireless transmitter is connected to a

serial port of the computer. It is used to control the movement of robots by sending

orders to them.

3

This system was originally designed for robots playing soccer. People call it

"MIROSOT". There is a world wide competition held annually. In the competition,

different teams of robots come from around the world to play against each other.

The equipments we bought meet the requirements of the competition. We can use it

to take part in the competition and also use it for research purpose. We mainly use it

for research.

In the following, we'll introduce the devices one by one briefly.

Robots

(a) (b)

Fig. 1.2 A Robot

(c)

4

A picture of a robot is shown in Fig. 1.2. Fig. 1.2(a) shows the bird's view. Fig. 1.2(b)

is the side view. Fig. 1.2(c) is the bird's view of the robot with a hat on it. Each robot

has two wheels, left wheel and right wheel. They are independent of each other and

can be controlled by the program separately. The speed of each wheel is scaled from

-127 to +127. When the speed is negabve, the robot will move backward.

i Forward
Direction

Robot
Color

Fig. 1.3 Hat of a Robot

Team
Color

Each robot has a different colored hat to identify it. A picture of a robot hat is shown

in Fig. 1.3. On the hat, there are two different colored squares. We call the color of

the right lower square the team color. The team color of two or three robots can be

same, which means they belong to the same playing side. The color of the left upper

square is called robot color. Different robot in the same team should have different

robot color to identify itself. Robot color is used to identify the specific robot. The

material for the hat should not be light reflecting. The surface of the hat should not

be very smooth to avoid reflecting. The forward movement direction of a robot is

also shown in the figure.

Playground

The playground is painted to black. The surrounding borders are painted to white.

The surface of the playground also should not be light reflecting. A picture of the

playground is displayed in Fig 1.4.

5

Fig. 1.4 A Playground with 3 Robots and a Ball on it

CCO camera

The CCD Camera is made by Samsung. Its model number is SAC410NDX. It can

output NTSC standard signal.

Vision board

The vision board should provide Microsoft windows programming driver. It provides

full resolution of 640x480 dimension or 320x240 half dimension in 24-bit RGB

format.

Computers

The two computers are connected together through the internetworking hub using

TCP/IP protocol. One computer acts as master mode. It takes care of principal

processing tasks. The other computer works as slave mode. It is mainly used to do

6

some supplementary work such as recording video. We'll discuss distributed

computing later.

Wireless transmitter

It is connected to one serial port of the computer to send wireless signal to robots.

At present, the signal transmission is one way. Computers cannot accept data from

robots.

We purchased the equipment (except the computers) from Micro Adventure Inc.,

(Korea).

1.2 Software Parts

The software of the system is partitioned into the software on the robot and the main

control software on the computers. The software on the robot is programmed using

Assembler for the 89C52 microprocessor in the robot. The software on the computer

is programmed using Visual C++ for Windows.

Since the software on the robot mainly receives orders from the computer and drives

the motors to move around. We don't need to modify it. In addition software also

comes with the equipment for the computer. It was programmed using VC 1.52. But

most functions are not working. We need to ameliorate it entirely.

The video camera captures the video images, and sends them to the computer. The

computer needs to perform image processing, pattern recognition, apply some

algorithms to output orders by the wireless transmitter to control robots. Therefore,

the main tasks of the development are divided into the following parts:

• Computer Vision, which includes video capture, image processing, and pattern

recognition;

• Serial communication and distributed computing; and

• GUI Windows interface.

In the following chapters of Part One, we'll discuss them one by one.

7

8

Chapter 2 Computer Vision in Intelligent Robot System

2.1 Video Capture

The vision board supports NTSC (USA) standards. Before we can use it on the PC, we

should install a driver that comes with the board to support Microsoft Windows

programming. Microsoft divides the architecture of Video capture device into four

different logical channels: external in, video in, video out, and external out. The

destination or source of each channel is the frame buffer that is part of the video-

capture hardware [7]. The video capture device architecture is shown in Fig.2.1.

Monitor

Video
Overlay I

Frame Buffer

CPU

Fig. 2.1 Video Capture Device Architecture

The video capture channel (External In) is a source of video information placed in the

frame buffer. The video source might be a video camera, video player, or television

-
9

tuner. The format of both the incoming signal and the data placed in the frame

buffer is controlled by the video capture hardware.

The video capture device can display the frame buffer data by using the video

display channel (External Out). In practice, this could be displayed a second monitor

or a video overlay device.

The device driver and application will use the video in channel (Video In) to transfer

the video data to application-supplied buffers.

The device driver and application can play captured data by using the video out

channel (Video Out) to transfer data back into the frame buffer. Playback through

this channel might be to review a sequence just captured or to play data from a file.

A capture driver can implement two methods for viewing an incoming video stream:

preview mode and overlay mode. In overlay mode, video is displayed using hardware

overlay. Using an overlay does not require CPU resources. In preview mode, frames

are transferred from the capture hardware to system memory and then displayed in

the capture window using GDI functions. The preview mode consumes substantial

CPU resources.

In Microsoft Windows Visual Studio, there is a class AVIcap. We can use this class to

program the video capture device. AVIcap provides a flexible interface for

applications. It has two different callback functions for programmer to program the

video data.

1. Stream Callback: AVICap calls this procedure during streaming capture when a

video buffer is filled. The capture window calls the callback function before writing

the captured frame to disk. This allows applications to modify the frame if desired.

-
10

2. Frame Callback: AVICap calls this procedure when the capture window captures

preview frames. The capture window calls the callback function before displaying

preview frames. This allows an application to modify the frame if desired.

In our application, we used both stream callback and frame callback modes.

2.2 Image Processing

The video images are captured in 24-bit bitmap mode. Each 3-byte triplet in the

bitmap array represents the relative intensities of blue, green, and red, respectively,

for a pixel.

Currently, there are various image-processing techniques. Each of them can achieve

a different effect. What we want to do is for the computer to identify different objects

and their respective locations. This is actually a kind of machine vision or computer

vision. For our purposes, we only apply the techniques relevant to realize machine

vision. Usually I we need the following steps to realize computer vision:

• Color setting;

• Thresholding;

• Dilation and erosion;

• Convex processing;

• Component labeling;

• Size filtering;

• Center calculation; and

• Pattern recognition.

2.2.1 Color setting

Color setting is to designate the color ranges of different objects. Simply put, it is to

identify "who is who". Color setting is a very important procedure in machine vision.

11

If color setting is not appropriate, we may misidentify an object, or confuse an object

with another. To do color setting, we use mouse to point to an object on the video

screen and circle an area as large as we can on the object. The color settings for this

object will be the ranges from minimum RGB values to maximum RGB values in this

area. Fig. 2.2 shows an example of color settings. By color setting, we define the

color ranges of different objects. They act as the threshold values for thresholding in

the next step.

Ball Color Home Team Color Robot 1 Color

I
Robot 2 Color

2.2.2 Thresholding

Fig. 2.2 Color Settings

Thresholding is a kind of pixel operation. It is a method to convert color images or

gray scale images into binary images. Binary image can represent the shape of the

object better.

When a new frame of image comes, we find the entry point of the image data. We

then apply each pixel of data to the color setting ranges. If this pixel falls into the

range of a specific object, we classify it this specific object.

After thresholding, the color images are converted into binary images.

2.2.3 Dilation and Erosion

Dilation and erosion are two kinds of neighborhood operations on binary images.

They work on the form or the shape of objects. Dilation operator can be expressed

as:

R R

G~n = V V M Ic,l A Gm-Ic,n-I~G E9 M
k=-R/=-R

12

(2,1)

Where" V" and" A" denotes the logical or and and operation, respectively. They

correspond to the binary ":En and "nil operations... E9 " denotes the binary convolution

operation. The subscript (k,l) of matrices M and G are referred to as the pixel of

kth row and Ith column. The binary image pixel in G is updated into G' by

convolving with a symmetric 2R +1x 2R + I mask M .

What does this operation achieve? Let us assume that all the coefficients of the mask

are set to 'one'. If one or more object pixels, I.e., 'ones' are within the mask, the

result of the operation will be one; otherwise it is zero. Hence, the object will be

dilated. Small holes or cracks will be filled and the contour line will become

smoother, as shown in Fig.2.3.

(a) Original image (b) Dilation of (a)

Fig. 2.3 Binary Dilation with a Mask of 3

Erosion has the opposite effect as dilation. In order to erode the object, we dilate the

background by

R II

G~n = V V M Ie,l 1\ Gm-le,n-/~GeM
k=-R/=-R

(2.2)

Where "0" denotes the dilation operation. Other symbols are the same as the

dilation operation.

13

The result is only one if the mask is completely within the object. In this way, the

object is eroded. Objects smaller than the mask will completely disappear, objects

connected only by a small bridge will become disconnected, as shown in Fig. 2.4.

(a) Original image (b) Erosion of (a)

Fig. 2.4 Binary Erosion

The erosion operation is useful to filter out small objects. However it shows the

disadvantage that all the remaining objects shrink in size. We can avoid this effect by

dilation of the image after erosion with the same structure element. This combination

of operations is called an opening operation.

Go M =(GeM)ffi M

where 0 denotes the opening operation .

(2.3)

.-~ .•-._.r-.-p-rr-~·"'·--rT'Tr·-H-·-PT'-Tl'
'-H+!·-H-··t···-··,·+t·t···· ";-'-f h· _'-~-t-i-t..
~t-'·'- ·,·t-· • H H···t· ""-'j+rt- -f-!-' -t-H......... .,.. ·t-... · + ... t· . ·•· ..·f -t- -.-.. • ..
H++,~'.~.t..!+tt.t.'-ht~- . '. .. + .J
•·•· .. ·.·t... ·..+t++t·.·..·...· ·..·.·tt· ..'t. -.. ' - . -1
H·t-h+··l··...t-t-. td '.1·+!·!JdJ -Iftrl't-···-t..·+- -'·H-H-d-·-· +1- .n···tt ·1-~t-l
f, ·+-t, -'-t-H+t,·!·t'd" -r' - '+1' .j. '. 'j- ,j'-t·
~.+ ,+.+,.- ·.·t··.·.· ' .+ ·.·.·t· -to
f H-H-"H-++ t+ -t-d·d.•.•.t-j +':+f-ffitt it· ..·,··-t.......,.!......-.-...........,..... +l-++t"t· .. -.-\
t±ti:i't·tt:t-.: ~ -' :t-j:tm: - -.ttl
it-hi' ..d- .•.t- .• ,. 1·++ +1"1
•.1'.•.•. -"'.-.-1'+.- -- ".,.-+ .• '.....(
}·!'f++-t·+·t-,"t+ ·tl~·+t:!'-;+ + .;
LttHiTlf! ,·tttttq:p·-!•.tttt..... 1. . =rr:r.T1l.•.•ili
H·~++-+++++++·f+,++·t .·f+H-+++·t+f·l +.!
u=tw~+rt;:!t.ttrt-··t-t·t·rt ;:.t+Uffi1

.
t
: '. t.1

~ t,+..........."+~trt...+- ... •·...·...t. :1'."j
~++++++-++++t++++-4·+++·f-++t+.·! . "f·.·.
rnt!···t-t:H+t:u~t:tt~++H:;mE·:··!·. :fJ:ZJ
;-'-+-H:±±±+r~·W:1"'r+i+t~ ++, 1-1·';';
~+t·t·tm . +·+~t+~t+H·t" T -,·t-t·1
t·tt:t1:ttt!~+tt:t:!t.t::u:t::w:~1;:wj
i...r -.- +-+ +-+- ~
, ..:.._ .:._ _.:...;...:....:. ..:. ..:_L.:. ..:. ~ ..:. •.:. ...:. ..:..:..l..,;. ..:...J..;. . .:. .:._;

Fig. 2.5 Opening Operation

~TTL1Ti.nlTn.;i.;.:~l.n.Uiljl.iJ1fH.'J
t... -••• ·1 •••• I· ... ····t "1++ .t t. j1} t· ++ +'!' t-; +;·.·t+++;-tt .'. + . + + ·f,. . i).••- .• - .. - ...·t·..·· t· -.. t ...- .
H!ttt.-PTt+t-.l!'f.·t~H· t JJ +1Hun•.•-•...- .••.• +..... 1+-... . i· .If.~+H-H++it H+HH j, t t+ fltl., JH
81t·. t t"'r r·t "! t rr' t· t tft t "l f1-++Ht1·1-r- -t-t·, t-t-", - t ~.. ·f-H-!·t·'!.. .•. . - .• ~ ••. -.... .•
'+H-'·.- 'M' '- -j+t· .mUH-i-iit t·-.
.....:ttt:...+·zn. .-. t '...; ..
f···..,·t'·+ +-+-t +f#~f +l flt±ttd t : : . .:r .: ::
rtrndHt. , "'HI:! .HH
.+t r·t·r d"'!' ·t H··'· 1.-. i'It '1 t-o<~-t1:tf! _.. - :t -..-tit· -jt' '1 j
~-ITl: l -t .. :t- : t 1: : ',: tr,
H··f •.rmI+t·1 +- ···t-t.+-+ t·t:

1
!4t !. t t, it·. '-""'!' .•.•. t· .•.. • t· - I t 'H' . -t·1 t • t <

~·H-··t-+·tH++1······· t+·f·U·Hl'.r!.+t <t!1+1:t:r -11: :t:rt: . :+: .ftft:rqtrrtt:tJ
~·++,++·t.+.+ ·,·t·t-+ .•.;-..,,- .•.4···t++·t-i·+ +.~
~ ...- , t·'· -t. t·....... ·t "1 -.. ·f·,· ~
~.;.,.;..;._":""'O'.J. . .:.J_..:._ ..._.L..:..;....:....... . .i.. .J..J. .l. .i.-.:...4.;. ..L.:... j

14

The opening sieves out objects that are smaller than the structure element, but

avoids a general shrinking of the size. It is also an ideal operation to remove lines

with a diameter that is smaller than the diameter of the structure el'ement.

In contrast, dilation enlarges objects and closes small holes and cracks. General

enlargement of the objects by the size of the structure element can be reversed by a

following erosion. This combination of operation is called a closing operation.

O.M =(GEBM)0M (2.4)

Where • denotes the closing operation

For our purposes, both openning operation and closing operation are useful. Closing

operation is helpful for us to find the integral shape of objects. openning operation Is

helpful for us to remove the effect of white lines of the playground that are mis­

detected by the computer.

If we use both in our intelligent robot system, we should use closing operation first in

order to retrieve the integral shape of objects as good as possible. Then use the

opening operation to remove the mis-detected white lines of the playground.

However, it would increase the computational complexity requirement. At this

moment, we only use the closing operation.

2.2.4 Convex Processing

B

(a) A convex set (b) A non-convex set

Fig. 2.6 Convex Set

In mathematics, if any two points in a set can be connected via a straight line that

remains in the set, we call this set convex set. Fig. 2.5 (a) shows a convex set. Fig.

-
15

2.5(b) shows a non-convex set. In our intelligent robot system, the shapes of the

robot team color, robot color, and ball, are all convex. We can use this character to

improve our image processing effect.

In the dilation and erosion technique we discuss in the last subsection, if the holes or

empty units in the binary images are too big, we couldn't fill in them even if we used

dilation and erosion. But obviously, these holes in the center of the binary image

belong to the object. By using this convex processing, we can fill in these holes.

In detail, for any detected component, we can find and record the four corners

values of the binary image, i.e., upper left, upper right, lower left, and lower right

values. We then label any pixels inside thesis 4 corners to this object. Fig. 2.7 shows

the convex processing operation.

(a) Original image

2.2.5 Component Labeling

(b) after convex processing

Fig. 2.7 Convex Processing

A component is the smallest connected unit. In order for two points belong to a

component, they have to be connected. If two points are not connected, they belong

to different components. A component can be considered as an object in our image

processing. In order to determine the size, shape of the object, we need to label the

component a same mark. This is called component labeling. Component labeling is a

very important process in computer vision. By labeling different component with

-
16

different marks, we can distinguish different objects of the same kind. Fig. 2.8 shows

the component labeling operation. (This picture is copied from the Micro Adventure

Company's on-line documents.)

(a)

1 L
l IZ. z.

Il. Z I~

~

':1
:J .:II • I"

do • .. .
III '. Ie. II

I- .. .
(b)

Fig. 2.8 Component Labeling

Basically, there are two commonly used component labeling algorithm: recursive

algorithm and sequential algorithm.

Recursive component labeling algorithm

1. Scan the image to find an unlabeled unity valued pixel and assign it a new label L.

2. Recursively assign a label L to all its unity-valued neighbors.

3. Stop if there are no more unlabeled unity vallued pixels or.

4. Go to step 1.

The pseudo code for the recursive algorithm is listed below:

Label(r,c)

Store(r,c,L);

If p[rHc-1] is 1 and unlabeled, label(r, c-1);

If p[r][c+1] is 1 and unlabeled, label(r, c-1);

If p[r-1Hc] is 1 and unlabeled, label(r-1, c);

If p[r+1][c] is 1 and unlabeledl label(r+1, c);

Fig. 2.9 Pseudo Code for the Recursive Algorithm

-
17

The advantage of recursive algorithm is simple and effective. The disadvantage is it

needs a large stack space since the function recursively calls itself. We need reserve

and commit a large stack space when executing the algorithm.

Sequential component labeling algorithm

1. Scan the image from left to right and top to bottom.

2. If the pixel is unity valued, then

(a) If only one of its upper or left neighbors has a label, then copy the label.

(b) If both have the same label, then copy the same label.

(c) If both have different labels, then copy the upper pixel's label and enter the

labels in an equivalence table as equivalent labels.

(d) Otherwise assign a new label to this pixel and enter this label in the

equivalence table.

3. If there are more pixels to consider, then go to step 2.

4. Find the lowest label for each equivalent set in the equivalence table.

5. Scan the picture. Replace each label by the lowest label in its equivalent set.

The pseudo code for step 2 in the sequential algorithm is shown below.

K=l;

If p[r][c]=l {

if (p[r-l][c]= 1 && p[r][c-1]=O)

if (p[r-l][c]=O && p[r][c-l]=l)

if (p[r-1][c]=1 && p[r)[c-l]=l)

if (p[r-l][c]=O && p[r][c-1]=O) {

label[r][c]=k; k=k+l;}

label [r][c) =Iabel[r-l] [c];

label[r][c] =Iabel[r] [c-1];

label[r] [c] =Iabel [r][c-1];

Fig. 2.10 Pseudo Code for the Sequential Algorithm

2.2.6 Size Filtering

-
18

Size filtering can effectively remove noise after component labeling. If objects of

interest have sizes greater than T, all components below T are removed by changing

the corresponding pixels' value to O.

Both size filtering and erosion can remove noise. Erosion can remove some thi,n lines

even if the sizes of the lines are greater than T, while size filtering can't. Size

filtering can remove small objects that fill a whole mask of erosion, while erosion

won't work in this case. Fig. 2.11 shows the size filtering operation. (This picture is

also copied from Micro-Adventure Company's on-line documents.)

(a)

~,
r .
l _
, .

-+

~
I

~ ~

I It
~

l

.1J
I i j

(b)

I

I I

2.3 Pattern Recognition

Object size and position

Fig. 2.11 Size Filtering

After all of the above steps, we finally come to decide where are the objects and

what are they. To decide the location of an object, we need to find the size of the

object first.

To decide the size of an object, we simply add all the pixels of the binary image

together.

m n

A = LLB[i,j]
1=1 j=1

(2.5)

-
19

Where A is the size of the object, and B[] denotes the binary 1 or 0 of a pixel for the

binary image. The position of the object is the center of the image area.

n m

IIjB(i,j]
.=1 ./=1x =---'----

A

n m

I IiB[i,}]
- 1=1 j=lY =--'------

A

Pattern recognition

(2.6)

(2.7)

Since there are only limited number of objects running under simple environment,

pattern recognition is relatively simple in our robot intelligent system. We don't need

to use such complex technique as Kalman filter to implement it. We simply take the

detected largest object that falls into the color setting of the ball as the ball. The

detected largest object that falls into of the color settings of a robot is the specific

robot. Its team color is the closest team color to it. By the robot color position and

team color position, we can detect the position of the robot [X R' YR] and current

faci ng direction [8] of the robot by

(2.8)

(2.9)

(2.10)

Where X R is the X position of the robot, YR is the Y position of the robot, 0 is the

angle of robot facing direction, X RC is the X position of the robot color center, YRC is

the Y position of the robot color center, X HC is the X position of the robot home

color center, YHC is the Y position of the robot home color center.

-
20

2.4 Real Detection Effect

(a)

c=J Home Rma. 1
c=JHomeRdJot2
c=J Home Robot 3
_ Opponn TMIll

~---~RMge---~1

r \lltdeArea r. BlUldedArllll

(b)

Fig. 2.12 Real Detection Effect

Shown in Fig. 2.12(a) is a copy of real video image. There are three robots on the

playground. They all have the same team color. And each of them has a different

21

robot color to identify it. Located in the middle of the three robots is a red colored

ball. Shown in Fig. 2.12(b) is the corresponding computer vision output. The right

side column of the picture shows the color settings for different objects. The left side

bigger square shows the whole field of video image. And the smaller square shows

the bounded area that means we only detect and recognize the objects in this area.

We can see from the picture that all objects of three robots and the ball are correctly

identified. Their positions corresponds exactly the same positions as the video image.

The detected objects are drawn as the same colors as their color settings. The lower

parts of the picture 2.12(b) are some capture choices for doing experiment.

-
22

Chapter 3 Lighting Problems

After all these image processing techniques, the unstable illumination caused by

uneven light shedding has to be resolved.

The effect of computer-detected objects is easily affected by the illumination

(brightness). When the brightness changes, the output signal from the CCD camera

will change. Correspondingly the RGB output values from the vision board will also

vary. Therefore it affects the target detection process. The video image is

significantly different if you turn on a lamp even far from the playground from

leaving the lamp off. It can be quite different when a person is standing aside the

playground from nobody is standing there.

In order to get a better detection performance, we need to adjust the lighting

conditions carefully so that the brightness is evenly distributed at different areas of

the playground, and make effort to keep it stable. We also need to do the color

setting carefully. Often we need to try several times before we can achieve an ideal

output. And probably we need to set the color ranges every time we do experiment.

To set up a better environment for the experiment, we changed the screen of lights

on the room. We installed two extra lamps on the frame of the playground. All these

were to stabilize the illumination. Unfortunately all this hadn't ameliorate much. In

addition, when visitors stand around to watch the demo, the illumination will affect

the detection more or less. It becomes compelling to figure out a method to

minimize the effect of lighting. As a result, we propose a method based on a least

approximation error to solve it. First of all, we need first to discuss some lighting

techniques and what is brightness, and how it affects the detection performance.

-
23

3.1 Lighting Techniques

There are two basic lighting techniques: front-lighting and back-lighting. Front­

lighting is to put the lighting sources in front of the object. Back-lighting is to put the

lighting sources behind the object. Front-lighting is also divided into omni-directional

illumination and directional illumination. Omni-directional illumination provides a

uniform, omni-directional illumination that can eliminate shadows on the objects

within the scene. Directional illumination can highlight surface texture. This

technique is often used for special purposes [1]. Back-lighting is often used to

analyze the shape of the object. As a result, the omni-direction front-lighting

technique is applied to the intelligent robot system.

3.2 Brightness

Changing the illumination causes changing the brightness of the image. Brightness is

the pixel intensity value stored in the image array. It is like signals' DC component in

electrical engineering. Decreasing brightness can be thought of as the simple

subtraction of a constant from all pixel intensity values stored in the image array.

The brightness can also be increased by adding a constant. In general, the

brightness modification operation can be expressed as

P'= A+ P (3.1)

Where P' is the pixel value after enhancement, P is the pixel value before

enhancement, and A is the enhancement factor (constant)

In our robot system, the image is represented using 24-bit Bitmap. Every 8 bits

represents the intensities of red, green and blue. The red, green and blue intensity

has a range of 0 to 255. 0 is the value when the illumination is totally vanished or

the color intensity is not present in the image. 255 is the value when the brightness

-
2.4

is so strong that saturation occurs, or the color intensity prevails overwhelming in

the image. Fig. 3.1 shows the brightness value of RGB for a pixel in the usual case.

255, saturation
255

-

o

r-

Red Green

n
Blue

......

Fig. 3.1 The RGB Intensities of a Pixel

When the brightness increases, the RGB intensities all increase the same value (Fig.

3.2).

255

o

~~ 255, saturation

r-

-

r-

......
Red Green Blue

Fig. 3.2 Increase the Brightness

When the brightness increases more, saturations of red and green occur (Fig. 3.3).

When the brightness increases even more, saturations of all red, green and blue

could occur. This doesn't mean the object will change color when the illumination

changes. It is because the CCO camera will always output 1 when the illumination is

too strong. This actually causes over-lighting problem. In this case, the computer

cannot detect the differences of different colored objects. A good illumination should

avoid any saturation of red, green, and blue.

25

255

o

..~
255, saturation

-

.....
Red Green Blue

Fig. 3.3 Over-lighting Causes Saturation of Red and Green Intensities

3.3 Nearest Neighborhood Method to Solve the Lighting Problem

To some extent, the lighting unsteadiness problem is inevitable. If we put too much

effort to build a more idea environment, it would be fortune costing and would not be

practicable. So I thought about how to solve this problem by software or algorithm.

Human and animals can identify an object even if the lighting experiences some

appreciable change. On one side, they do this by adjusting the pupils of the eyes.

On the other hand, human eyes identify an object by comparing it with their

background. If the lighting of the objects changes, the lighting of the background

also changes accordingly. For example, a red colored object is placed in a green

environment. It is still red compared to its environment even if the illumination

becomes stronger or weaker.

The essential problem in our system is, when the illumination changes, the

brightness of the image changes. A pixel originally falls into the thresholding ranges

may no longer falls into the thresholding ranges. This causes a mis-identify problem.

Our approach to solve this problem is that, if the lighting condition changes, fox

example, the illumination becomes weaker, the background lighting intensity also

decrease. Although the object color no longer falls into the thresholding ranges, it is

26

still closer to this object's thresholding values of than the background and other

objects. So it occurred to me that we should also mark a background dark color

thresholding ranges and the background white color thresholding ranges. Instead of

using the ranges of color settings of objects, we adopt the weighted average of a

color setting range as the thresholding value. By doing this, a range such as 51 to 86

is represented as a value such as 70. We then calculate the distances of the RGB

value of the pixel from each of these thresholding values. We add the RGB distances

of each pixel together. And we classify the pixel to the object that has the minimum

distance sum of all the objects (it includes background dark color and background

white color of the playground.). A pseudo code to implement this is shown in Fig.

3.4.

MINC5UM=INFINITE;

INDEX=O;

FOR 1=1; 1< NUMBER_OF_OBJECTS; 1++

{

D_R=AB50LUTE VALUE (RED - RED_RANGE[I]);

D_G=AB50LUTE VALUE (GREEN - GREEN_RANGE[I]);

D_B=AB50LUTE VALUE (BLUE - BLUE_RANGLE[I]);

DIS=D_R+D_G+O_B;

IF 015< MINC5UM {

MINCSUM=OI5; INDEX=I;

}

}

OBJECT = INDEX;

Fig. 3.4 Algorithm to Minimize Lighting Effect

-
27

By applying this algorithm, the detection effects were significantly improved. Not

only can we detected a more accurate shape of the object, but also, the effect of the

light imbalance is minimized. It was found there was little if not at all whether a

person standing aside the playground or not.

Later, I found that using squared sum of the color distance errors should be more

reasonable, because square maximizes effect of bigger distance of a specific RGB

value. We tried this. It did get better results.

Table 3.1 Nearest Neighborhood Method to Solve the Illumination Problem

If we divide the sum of the squared distance errors by 3, we'll have the Nearest

Candidate Home Team Robot 1 Robot 2 Background Background
Objects Color Color Color Dark Color White Color
Object

~ I ~
Color

Settings

RGB 75 151 181 10246 122 150 238 250 49 5765 203 209 215
values

Candidate
Pixel

Pixel RGB 6022688
Values
Color 15 75 93 50 20 34 90 12 162 11 16923 143 17 127

Distances

Squared
Sum of 14499 4056 34488 29211 36867
Color

Distances

Classified
Object

..

Neighborhood Method (NNM). It means we always select the object that has the

least mean distance. In mathematics, it can be represented as:

(3.1)

Where C is the classified object, 0 is the candidate objects, V is the intensity RGB

value of a pixel, V(l) is the red intensity of the pixel, V(2) is the green intensity of

28

the pixel, V(3) corresponds to the blue intensity of the pixel, and Vr is the

correspondingly thresholding values for one object. For anyone pixel, we calculate

the distances of its RGB from the thresholding values of an object, square it, and

calculate the mean value. We then calculate the mean values for all candidate

objects. The classified object C would be the one that has the minimum mean

square value. Shown in Table 3.1 is an example of using NNM to solve the

illumination problem.

Shown in Fig. 3.5 is a picture of the detected objects.

In comparison with Fig.2.9, the effect in this figure is much improved. The shapes

detected are more accurate approximation of real objects. Furthermore, in Fig.2.9,

the color settings were carefully designated and the lighting was adjusted to its best

effect, it was the best performance we could get before we used the LMS method. If

we moved the robot or the ball from one corner to another corner, we were not sure

we still could get the same good result. Comparably, the effect of Fig.3.4 is the usual

performance we can achieve after we used the fuzzyfication method. There is almost

no more difference whether a person or several persons are standing besides the

playground.

(a)

(b)

Fig. 3.5 Real Image Detection Effect

29

30

Chapter 4 Serial Communication and Distributed Computing

4.1 Serial Communication

In our system, the orders to the robot are sent to the wireless transmitter through

the serial communication port of the computer. Serial communication in Win32 has

significant difference from serial communication in Win16. Here we talk it briefly.

Reading from and writing to communications ports in Win32 is very similar to file

input/output (I/O) in Win32. In fact, the functions that accomplish file I/O are the

same functions used for serial I/O. I/O in Win32 can be accomplished in two ways:

overlapped or non-overlapped [5].

Non-overlapped I/O is the traditional form of I/O, where an operation is requested

and is assumed to be complete when the function returns. In the case of overlapped

I/O, the system may return to the caller immediately even when an operation is not

yet finished and will signal the caller when the operation completes. The program

may use the time between the I/O request and its completion to perform some

"background" work.

4.1.1 Non-overlapped I/O

Non-overlapped I/O is very straightforward, though it has limitations. An operation

takes place while the calling thread is blocked. Once the operation is complete, the

function returns and the thread can continue its work. This type of I/O is useful for

multithreaded applications because while one thread is blocked on an I/O operation,

other threads can still perform work. It is the responsibility of the application to

serialize access to the port correctly. If one thread is blocked waiting for its I/O

operation to complete, all other threads that subsequently call a communications API

will be blocked until the original operation completes. For instance, if one thread

-
31

were waiting for a ReadFile function to return, any other thread that issued a

WriteFile function would be blocked.

One of the many factors to consider when choosing between non-overlapped and

overlapped operations is portability. Overlapped operation is not a good choice

because most operating systems do not support it. Most operating systems support

some form of multithreading, however, multithreaded nonoverlapped I/O may be the

best choice for portability reason.

4.1.2 Overlapped I/O

Overlapped I/O is not as straightforward as nonoverlapped I/O, but allows more

flexibility and efficiency. A port open for overlapped operations allows multiple

threads to do I/O operations at the same time and perform other work while the

operations are pending. Furthermore, the behavior of overlapped operations allows a

single thread to issue many different requests and do work in the background while

the operations are pending.

In both single-threaded and multithreaded applications, some synchronization must

take place between issuing requests and processing the results. One thread will have

to be blocked until the result of an operation is available. The advantage is that

overlapped I/O allows a thread to do some work between the time of the request and

its completion. If no work can be done, then the only case for overlapped I/O is that

it allows for better user responsiveness.

An overlapped I/O operation has two parts: the creation of the operation and the

detection of its completion. Creating the operation entails setting up an

OVERLAPPED structure, creating a manual-reset event for synchronization, and

calling the appropriate function (ReadFile or WriteFile). The I/O operation mayor

may not be completed immediately. It is an error for an application to assume that a

request for an overlapped operation always yields an overlapped operation. If an

32

operation is completed immediately, an application needs to be ready to continue

processing normally. The second part of an overlapped operation is to detect its

completion. Detecting completion of the operation involves waiting for the event

handle, checking the overlapped result, and then handling the data. The reason that

there is more work involved with an overlapped operation is that there are more

points of failure. If a non-overlapped operation fails, the function just returns an

error-return result. If an overlapped operation fails, it can fail in the creation of the

operation or while the operation is pending. You may also have a time-out of the

operation or a time-out waiting for the signal that the operation is complete.

In our robot system, we use overlapped I/O operation. The thread sends the data to

the I/O port buffer, then returns immediately to process other tasks.

4.2 Distributed Computing

4.2.1 The Needs for Distributed Computing

As shown, robots intelligent control system is a real time control system. The stream

video is captured and sent to the computer to do image processing, pattern

recognition, algorithm evaluation and orders transmitting. Both the image processing

and control a~gorithm evaluation are time consuming.

When we are doing experiments, we need to observe how the robots are behaving.

We can't capture all the phenomena at one time when we are doing real time

experiments. Besides the battery of the robot may deplete. The experiment is

expensive. We can't repeat an experiment for many times easily. It is to our

advantage to record the experiment (video) for later analysis. If we use the same

computer to do the video recording work, it would definitely slow down the

processi ng significantly.

33

Distributed computing is a good alternative to solve this question.

4.2.2 Implementation Possibility

Windows 95 includes several mechanisms that support distributed computing.

Typically, distributed computing means that a computing task is divided into two

parts. The first part runs on the client computer and requires minimal resources. The

other part of the process runs on the server and requires -large amounts of data,

number crunching, or specialized hardware.

Another type of distributed computing spreads the work among multiple computers.

For example, one computer can work on a complex analytical problem that would

take a month to solve. But with distributed computing, 50 computers could work on

the same analytical problem simultaneously and solve it in less than a day.

In both cases, a connection between computers at a process-to-process level allows

data to flow in both directions. Windows 95 includes the following inter-process

communication (IPC) mechanisms to support distributed computing: Windows

Sockets, Remote Procedure Calls (RPC), NetBIOS, named pipes, and mailslots. We'll

only use Winsock for our purposes. For other mechanisms, please refer to Microsoft

Online Documentation[6].

4.2.3 Windows Sockets

Windows Sockets is a Windows implementation of the widely used U.c. Berkeley

Sockets API, the de facto standard for accessing datagram and session services over

TCP/IP [6]. Non-NetBIOS applications must be written to the Sockets interface to

access Microsoft TCP/IP protocols. Applications written to the Sockets interface

include FTP and SNMP. In Windows 95, sockets support is also extended to IPX/SPX.

34

Windows Sockets in Windows 95 is a protocol-independent networking API tailored

for use by programmers using the Windows family of products. Windows Sockets is a

public specification that aims to do the following:

1. Provide a familiar networking API to programmers using Windows or UNIX,

2. Offer binary compatibility between heterogeneous Windows-based TCP/IP stack

and utility vendors, and

3. Support both connection-oriented and connectionless protocols

In TCP/IP, the internetworking address is the IP address of the workstation and the

software process address is the port number. Source and destination IP address and

port numbers are fields in the TCP/IP packet structure.

Class CAsyncSocket provides an object-oriented abstraction for programmers who

want to use Windows Sockets in conjunction with MFC (Microsoft Fundamental

Class). The main functions for using Winsock programming are listed below [22].

Table 4.1 Operations ofthe CAsyncSocket Class

IAcceDt IAccepts a connection on the socket.

IAsyncSelect Requests event notification for the socket.

IBind Associates a local address with the socket.

IClose ICloses the socket.

IConnect Establishes a connection to a peer socket.

IJOCtl IControls the mode of the socket.

IListen
Establishes a socket to listen for incoming connection

requests.

IRe~ive IReceives data from the socket.

IReceiveFrom Receives a datagram and stores the source address.

ISend ISends data to a connected socket.

ISendTo
-

Sends data to a specific destination.

IShutDown
--

Disables Send and/or Receive calls on the socket.

35

Table 4.2 Overridable Notification Functions of the CAsync$ocket Class

36

lonAccept Notifies a listening socket that it can accept pending

connection requests by calling Accept.

lonClose Notifies a socket that the socket connected to it has

closed.

OnConnect Notifies a connecting socket that the connection attempt

is complete, whether successFully or in error.

OnOutOfBandData Notifies a receiving socket that there is out-oF-band data

to be read on the socket, usually an urgent message.

OnReceive Notifies a listening socket that there is data to be

retrieved by calling Receive.

IQnSeng Notifies a socket that it can send data by calling Send.

- -- -

37

Chapter 5 System Evaluation and Research Perspectives

By detecting the positions of objects, the computer provides a feedback to the

robots. It can tell what is the current state of each robot, and the state of the ball. It

also provides a way to monitor the performance of a robot behavior. This lays the

basis for research.

5.1 Difficulties in Real Time Robot System Research

However, there are some difficulties on conducting experiments with real time robot

system.

1. Real time data collection & processing, real time control

The image processing and robots control are real time. If our program breaks down,

or we just pause the program to debug some problems, since the robots may be still

running, we may lose control of the robots. This may cause damage of robots.

2. Difficult to embed algorithms into the program

Since the program is coded using Visual C++, compared to Matlab, it is more difficult

to embed algorithms in the program. Matlab provides numerous math functions and

array operations etc. Unfortunately, we have to program the functions ourselves.

3. Difficult to do numerous and repetitive experiments

In order to do repetitive experiments, we may need to restore the states before

another trial. In our system, we need to put the robot(s) back exactly the same

position as last time or even the same facing direction. This is often exhausting and

frustrating.

4. Hardware failure

38

Long time running and occasional collision with the borders may cause the robots to

fail. To some extent, we can't afford to do experiment again and again in fear of

robots' failure.

Robots consume DC power provided by a battery. A fully charged battery can only

support a robot to run for 20 minutes or less. A robot would consume notable power

even when it is standing by due to hardware design defect. This is another kind of

hardware limitation.

5.2 Possible Researches

Despite these difficulties discussed above, we can deploy the system to do many

interesting researches and experiments. We may have three robots playing soccer

against three robots, and to research on cooperation among intelligent agents. We

may train two robots to push a heavy box to a destination following a designated

curve. This is another kind of cooperation research. We may have one robot playing

soccer to research on robot learning.

Our program embedded all needed interfaces appropriate for these researches. All

we need to do is adding modular algorithms to the existing applications.

5.3 An Introduction to the Windows Interface

Pasted in Fig. 5.1 is a snapshot of our Windows interface of the research platform.

39

R.....uHtII _

r HOIINamel
r. IPAda-.hi--39.--78-.""78......-'82"-

Comed)_ ~~

JSeiecl "" ordeI here! ~

2

Sir'" SeIllclion SaYe Slaies I ~ ~
STRATEGY 1 • Tins III: 00 \

Coriim T-I c..:eI T_ I r s_Video

RdJot~

r Kick Left (.' c~:-;-;:R~'7":1_

I
r Guard Left r GUllfd A9lt

r Robot2

r Robot3

...-----A~~:aIianI...,....-::-:----::-.",

ISOCCER S-MIROSOT

,----CWeri Robot~m.....n.llI!l..rib!t.....--:::I ..

Rl: Ide R2: Ide R3: Ide Game Begin I Reael Game I

r16.56.41 02121100 n.:

Fig. 5.1 The GUI Interface of Intelligent Robot System

The left upper part of the interface is the video camera window. It is used to observe

the activities of robots and the ball on the spot. The right upper "Applications" combo

box is used to select different applications based on this platform. It currently has

MIROSOT, PUSHING BOX, and SMALL MIROSOT application items. When a different

item is selected, a specific dialog will replace the dialog on the lower part of the

interface. Currently shown is the SMALL MIROSOT application. Below the

"Applications" combo box is the "Color Settings". The designated color settings are

shown here. "BC" means the color of the ball. "HT" denotes the home team color.

"Rl ", "R2", "R3" correspond to the colors of robot 1, robot 2, and robot 3

respectively. "OT" means the opponent's team color. "BD" indicates the background

dark color of the playground. "BW" represents the background white color, i.e. the

40

white lines in the playground. The "Remote Host" square below the "Color Settings"

implements distributed computing. We can connect to the other computer either by

referring its name or by its IP address. After the connection is setup, we can send

orders to control the other computer. "Frame Rate" scroll bar is used to adjust the

speed of video capturing. Docked below the menu bar are some tool bar boxes. They

have the functions of "save configuration file", "open a configuration file", "test

robot", "set color" I "test color", etc.

Part 2. Literature Reviews and Proposed Research

41

42

Chapter 6 Knowledge Representation

There are different kinds of knowledge representation techniques: rule-based

representation, frame-based representation, multiple context representation, model­

based representation, and blackboard representation [13]. Rule-based

representation and frame-based representation are two most widely used

techniques. We also used rule-based representation and frame-based representation

in our intelligent robot system for playing soccer. Next we'll talk briefly about these

two techniques. Please refer to related books for other knowledge representation

techniques [13].

6. 1 Rule-Based Representation

Rules are conceptually represented as IF/THEN statements with the logical form:

IF <predicate> THEN <consequent>

Using such statements, knowledge engineers formulate the knowledge they obtain

from the experts into sets of such rules. The inference engine then analyzes and

processes these IF/THEN rules in one of two ways: backward or forward. In

backward-chaining the inference engine works backward from hypothesized

consequence to locate known predictions that would provide support. In forward­

chaining, the inference engine works toward from known predicates to derive as

many consequents as possible [13].

A simple example:

Consider a simple example of a set of rules that relates the type of day and where

one would be.

Rule 1: IF IT IS A SUNNY DAY

AND I DON'T HAVE CLASS

43

Rule 2:

Rule 3:

Rule 4:

Rule 5:

THEN I PLAY TENNIS

IF I PLAY TENNIS

THEN I WOULD BE IN THE TENNIS COURT

IF IF IS A SUNNY DAY

AND I HAVE CLASS

THEN I WOULD BE IN CLASS

IF IT IS A RAIN DAY

AND I HAVE CLASS

THEN I WOULD BE IN CLASS

IF IT IS A RAIN DAY

AND I DON'T HAVE CLASS

THEN I WOULD BE IN THE LIBRARY

**

**

**

**

The star marked lines are the consequents. A backward chaining inference engine

might operate like this: first select a possible hypothesis, I WOULD BE IN THE

LIBRARY, then check whether its predicates are correct. If the predicates are

evaluated to TRUE, then this consequent is as the consequent of the rules. For

forward-chaining inference engine, no hypotheses are provided because the rules are

not used to try to derive the truth of any particular consequent. Rather, they are

used to derive all possible consequents that can be derived from a set of predicates

(actually from a set of values that cause one or more predicates to evaluate to

TRUE).

One thing we need to do when using rule-based knowledge representation is pattern

matching. Inference engines use a pattern-matching algorithm that enables them to

match a new data value with only those rules that reference that data value. Thus,

predictions need be tested only for those rules that might be affected by the new

value.

44

6.2 Frame-Based Representation

Frame-based representation provides a mechanism for structuring certain types of

knowledge in a knowledge base. The types of knowledge that can suitably be

structured using a frame-based organization can range from collections of related

facts, to relationships between such collections, to rule-based and even procedural

representations of knowledge.

A frame can be viewed as a collection of related information about a topic. This

information may be factual or procedural (e.g. data or functions). A frame may be

taken to represent a class of similar objects; other frames, representing subclasses

or specific instances of those objects, can be formed from the initial class frame.

Rule-based and procedural knowledge representation can operate efficiently on

frame-based representation.

The information or fields in the data structure of frame is called attributes, which,

together with their values, form a description of an object. For example, a frame for

a person might include the following attributes:

PERSONAL

Name

Age

Height

Weight

6.3 Object Oriented Programming

Object-oriented programming is a programming paradigm that uses frames and

inheritance to build programs that model the user's perception of the world more

L

45

closed than other types of programs and consequently are more easily adaptable to

small changes in the world. Developing an object-oriented program begins with a

domain analysis that identifies the objects to be modeled and their behavior.

In the object-oriented program the objects are modeled by data structures with

associated procedures. Some of the characteristics typically exhibited by object­

oriented programs are:

· Inheritance - Objects are organized into classes that exhibit similar behavior.

· Encapsulation - Object A communicating with Object B. A is said to be a client of B,

may request services provided by B without knowing how B will perform those

services.

· Polymorphism - The same message may be interpreted differently by different

objects.

We used object-oriented programming Visual C++ to program our intelligent robot

system.

46

Chapter 7 An Introduction to Reinforcement Learning

7. 1 What is Reinforcement Learning

Reinforcement learning. refers to a family of alg.orithms inspired by human and

animal learning[23]. It is about learning what to do, how to make decisions. Its

objective is to discover a policy, i.e. a mapping from states of the environment to

available actions, so as to maximize the average reward per step.

a

Fig. 7.1 The Standard Reinforcement-learning Model.

In the standard reinforcement learning model, an agent is connected to its

environment via perception and action, as depicted in the Fig. 7.1. On each step of

interaction the agent receives an input, i, some indication of the current state, 5, of

the environment; the agent then choose an action, a , to generate as output. The

action changes the state of the environment, and the value of this state transition is

communicated to the agent through a scalar reinforcement signal, r. The agent's

behavior, 8, should choose actions that tend to increase the long-run sum of values

of the reinforcement signal. It can learn to do this over time by trial and error,

guided by a wide variety of algorithms.

7.2 Q-Learning

47

Q-Learning was proposed by Watkins in 1989 [2] . It is an importance breakthrough

in reinforcement learning. It is also the most widely used algorithm in reinforcement

learning. Its simplest form, one step Q-Iearning is defined as:

(7.1)

Where t is the discrete time step, Sf is state at t, a, is action at t, a is step-size

parameter, r is the discount-rate parameter, r'+1 is reward at time step t + 1,

Q(s"aJ is the value of taking a in state s .

Initialize Q(s,a) arbitrarily

Repeat (for each episode):

Initialize s

Repeat (for each step of episode):

Choose afrom s using policy derived from Q(e.g. greedy)

Take action a, observe r,s'

s~sr

Until s is terminal

Fig. 7.2 Q-Iearning Algorithm

The process of Q-Iearning is shown in Fig. 7.2.

Next we will give out an example to show how Q-learning works.

A "grid world" is often used to illustrate reinforcement learning (Fig.7.3). Imagine a

robot initially in cell (2,3). The robot receives input vector (xl, x2) telling it what cell

it is in; it is capable of four actions, n, e, s, w moving the robot one cell up, right,

down, or left, respectively. It is rewarded one negative unit whenever it bumps into

the wallar into the block cells. For example, if the input to the robot is (1,3), and the

robot chooses action w, the next input to the robot is still (1,3) and it receives a

reward of -1. If the robot lands in the cell marked G (for goal), it receives a reward

48

of +10. Let's suppose that whenever the robot lands in the goal cell G and gets its

reward, it finishes an episode. And it is immediately transported out to some random

cell, and the quest for reward continues.

8
7
6

5

4

3 S

2

1

G

1 234 567

Fig. 7.3 A Grid World

A policy for our robot is a specification of what action to take for every one of its

inputs, that is, for every one of the cells in the grid. For example, a component of

such a policy would be" when in cell (3,1), move right." An optimal policy is a policy

that maximizes long-term reward. One way of displaying a policy for our gird-world

robot is by an arrow in each cell indicating the direction the robot should move when

in that cell. An optimal policy in the grid world is shown below:

8 ~ 1 1
7 ~ ~ G ~

6 t t t t
5 t t t t
4 t t t t
3't s t t
2 ~ ~ t t
1 ~ ~ t t

1 2 6 7

Fig. 7.4 An Optimal Policy in the Grid World

The Q-Iearning procedure requires that we maintain a table of Q(x,a) values for all

state-action pairs. In the grid world that we described earlier, such a table would not

be excessively large. We might start with random entries in the table.

49

A portion of such an initial table might be as follows:

Table. 7.1 Value Table of Q Learning

X a Q(x, a) r(x,a)

(2,3) w 7 a
(2,3) n 4 0
(2,3) e 3 0
(2,3) 5 6 0
(1,3} w 4 -1
(1,3) n 5 0
(1,3) e 2 a
(1,3) 5 4 0

Suppose the robot is in cell (2,3). The maximum Q values occurs for a=w, so the

robot moves west to cell (1,3) - receiving no immediate reward. The maximum Q

value in cell (1,3) is 5, and the learning mechanism attempts to make the value of

Q«2,3), w) closer to the discounted value of 5 plus the immediate reward (which was

o in this case). With a learning rate parameter a =0.5 and y=O.9, the Q value of

Q«2,3), w) is adjusted from 7 to 5.75. No other changes are made to the table at

this time step.

The learning problem faced by the agent is to associate specific actions with specific

input patterns. Q learning gradually reinforces those actions that contribute to

positive rewards by increasing the associated Q values. Typically, as in this example,

rewards occur somewhat after the actions that lead to them- hence the phrase

delayed-reinforcement learning. One can imagine that better and better

approximations to the optimal Q values gradually propagate back from states

producing rewards towards all of the other states that the agent frequently visits.

With random Q values to begin, the agent's actions amount to a random walk

through its space of states. Only when this random walk happens to stumble into

rewarding states does Q learning begin to produce Q values that are useful, and

even then, the Q values have to work their way outward from these rewarding

50

states. The general problem of associating rewards with state-action pairs is called

the temporal credit assignment problem - how should credit for a reward be

apportioned to the actions leading up to it? Q learning is, to date, the most

successful technique for temporal credit assignment.

Part 3. Experimental Results

51

52

Chapter 8 Fuzzy Behavior Controller

8.1 Task Description

Moving the robot to some designated position is the most commonly expected

behavior in intelligent robot research system. In order to shoot a ball, the robot

needs to move to right behind the ball before it can shoot. In order to guard, it also

needs to move the position to block the ball. It is also one of the most important

behaviors. We need the robot to stop exactly the designated position, and also the

robot needs to move at a possible high speed. The performance of the relocation

affects heavily the performance of the next behavior.

C

B

o
Robot
facing
directio

Fig. 8.1 Diagram of Robot Moving from A to B

Fig. 8.1 shows a diagram of the robot moving. Suppose the robot is currently at

position A, and it hopes to move to position B. Line CO is robot's current facing

direction. Since the robot can move either forward or backward. We can always find

the angle of robot facing direction line CD and the destination direction AS between

0-90. The robot needs to turn to the right angle while moving.

Usually, when the distance between the robot and its destination is farer, the robot's

moving speed should be higher. When the distance becomes shorter, the speed

53

should slows down so that the robot can stop exactly at the destination. And when

the angle difference is bigger, the turning speed is bigger.

The task is to figure out how to decide the robot forward moving speed and the

turning speed so that it can reach the destination fast and precisely.

8.2 Why Fuzzy logic System is Needed

(8.1)

(8.2)

(8.3)

turnin/? =angle /9, and

speed = forwarding + turning

It is difficult to find a formula for the real robot system. Actually we were using a

formula shown below before we switched to fuzzy system:

forwarding = dis / 4,

Where dis is the distance between the robot and its destination, angle is the angle

difference of robot facing direction and destination direction, speed is the real output

speed of the robot wheel. speed consists of forwarding speed forwarding which is

dis /4 and turning speed turning which is angle/9. From the formula, we can see

that, the forwarding speed is proportional to dis and the turning speed is

proportional to angle.

This formula does work in some range of dis and angle. An important problem is

that when dis becomes very big, the forwarding speed will also become very big and

remain constant correspondingly. The robot will probably thrust forward a distance

before it can turn to the right angle. The resulting trajectory should be very winding.

Effort has been spent trying to find a better formula. For example, I tried to use the

squared root of the dis tan ce. But all these didn't help much. We can't find a formula

to represent the whole complex process.

Due to these reasons, fuzzy logic is a good alternative.

54

8.3 Fuzzy Behavior Controller

robot-destination distance (3)

\,

robot forwarding-speed (3)

9 rules

(mamdani)

MoveToPosition

angle difference (3)
robot turning-speed (3)

System MoveToPosiUon: 2 inputs, 2 outputs, 9 rules

Fig. 8.2 The Input-output Diagram

The input-output diagram is shown in Fig B.2. In our fuzzy system, we have 2 inputs,

2 outputs and 9 rules. The 2 inputs are: distancewhich Is the distance between the

robot current position and destination and angle which is the angle difference

between the robot facing direction and destination direction. The 2 outputs are

forwarding which is robot forward moving speed and turning which is the robot

turning speed. Each of these inputs and outputs has 3 membership functions. The

membership functions of the 4 variables are heuristically shown in Fig. B.3 to Fig. B.6

respectively.

55

60 80 100 120 140

robot-destination distance

180 200

far

160

T

I

/1

midium
r

4020

near

o

o

-o 0.4
41
~
Cl
41
o 0.2

.9- 0.8

.r:.
I/)

CiiE 0.6
41
E

Fig. 8.3 Membership Functions for Input Variable Distance

T

small midium large

I

0.8 I
.9-
.r:.
~
OJ

0.6.0
E
41
E
'0 0.4
OJ
~
Cl
41

o 0.2

/
0

0 10 20 30 40 50 60 70 80 90
angle difference

Fig. 8.4 Membership Functions for the Input Variable Angle

low

0.8
.9-
.r;;

~
(1)

.c 0.6
E
lI)

E-o 0.4
lI)

~
Ol
lI)

Q 0.2

oI-----"'~--

I
midium

.,.
high

56

o 5 10 15 20 25

robot forwarding-speed
30 35 40

Fig. 8.5 Membership Functions for the Output Variable Speed

low
-,.---,-----,-. ----,.- ,. ---,-

midium
r

high

0.8
a.
.r;;

~
lI)

E 0.6
lI)

E-o 0.4
(1)

~
Ol
(1)

o 0.2

o

o 2 4 6 8 10 12

robot turning-s peed

14 16 18 20

Fig. 8.6 Membership Functions for the Output Variable Turning Speed

57

I nulc VIL wei MovL I oF'n:;lh<ln ,.r-1(3
fie tel y:'rew ~

robU-desfii8tlon list«lce =180 erge dffefence =45 robot forwlIrci'lg-speed 33.6 rotld turmg-speed -11.5

I \ [\ I
2 D V SJ
3 I \ V SJ
4 l \ [\ I
5 7 \ V :sJ
6 1 \ V SJ
7 l [\ I
8 • I •9 \ I I 7J

o 40 o 20

Fig. 8.7 Rules of the Fuzzy System

Fig. 8.7 displays all the rules for the fuzzy system. The 9 rules are:

1. If dis is near and angle is small, then forwarding is low and turning is low.

2. If dis is near and angle is medium, then forwarding is low and turning is

medium.

3. If dis is near and angle is large, then forwarding is low and turning is medium.

4. If dis is medium and angle is small, then forwarding is medium and turning is

low.

5. If dis is medium and angle is medium, then forwarding is medium and turning

is medium

6. If dis is medium and angle is large, then forwarding is medium and turning is

medium.

58

7. If dis is far and angle is small, then forwarding is large and turning is small.

8. If dis is far and angle is medium, then forwarding is large and turning is large.

9. If dis is far and angle is large, then forwarding is medium and turning is large.

8.4 Experimental Result

Fig. 8.8 records a trajectory of the robot moving to position using the fuzzy

controller. We can see that the robot successfully reached its destination. When the

distance is far, the robot moving speed is fast (more sparse traces in the figure).

When the distance is near, the speed slow down (mover dense traces in the figure),

so that it can stop precisely at its destination. We can also see that the trajectory is

not very straight. Using more membership functions is believed to improve the

performa nce.

•

Fig. 8.8 A Trajectory Record of Robot Moving to Position

59

Chapter 9 Knowledge Representation in Intelligent Robot

System

Robots playing soccer games are kind of transferring human knowledge to robots.

How to select means of knowledge representation are critical to the game playing in

case of flexibility and expandability.

In the robot soccer game playing, we mainly used frame based knowledge

representation for the attributes of robots and the ball and rule based knowledge

representation for controlling the robots. It is programmed using object-oriented

programming method Visual C++.

9.1 Frame Knowledge Representation in Robots Playing Soccer Game

We define the ball and robots as objects shown below.

BALL

old positions[]; II the trajectory of the movement of the ball

current positions; II where the ball is at this moment

angle; II the moving direction of the ball, it ranges from -pi - pi

speed; II the moving speed of the ball

ROBOT

old positons[]; I I The buffer recording the movement trajectory of the robot

current position; II The current location of the robot

angle; II The current facing direction of the robot

destination positon; II The destination where the robot is moving to

command; II The current order the robot needs to execute.

The game playing is kind of detecting these variables and controlling them using the

control algorithms.

60

9.2 Behavior-Based System

Intelligent Behavior

~

Primitive Intelligent
Behavior

Advanced Behavior

~~

Basic Behavior

•

Hardware

Play soccer, push box, ...

~~

Kick Right Side, Guard Right
Side, (Playing soccer)

~~

Move, Pass, Shoot, Face
I

~~

Move forward, Move backward I
~

Robot: Left Wheel, Right Wheel I
Fig. 9.1 A Hierarchical Architecture of Robot Behaviors

In robots playing soccer, we used behavior-based system. The architecture of

behavior-based system is now generally accepted as an efficient basis for

autonomous mobile robots. Their main principle is the achievement of desired goals

by activating an appropriate sequence of behaviors. As in the OSI 7 layers in

telecommunication, we also divide the robot behavior into a hierarchical architecture.

Each higher layer behavior is implemented by a sequence of lower level behaviors.

The highest layer is intelligent layer, which may be only an assignment to some

robot(s) to do something. Human should only give robots this orders in the future if

robots are in practical use. The lowest layer is hardware layer or physi.cal layer.

61

9.3 Finite State Machine Implementation

The robot control program runs on a PC and is realized as a finite state machine for

the lower layers of the hierarchy.

At the beginning of the development, and the learning proces, there maybe only a

few states. The learning proces involves adding more states to the finite state

machine. More states means more complete consideration and more precise control.

The deciding of the current state and the state transition is affected by the

"situation". These decisive factors of the "situation" are:

· Perceivable obj:ects in the environment of the robot and their suspected or

recognized states. In our system, it may be where is the ball, where and how fast it

is moving.

· The static characteristics of the environment (e.g., as stored in a map), even if they

cannot be perceived by the robot's sensors at the given moment. In our robot

system, it may be the location of the goal.

· The state of the robot.

· The repertoire of available behaviors and the abilities of the robot to change the

present situation in a desired way by executing appropriate behaviors.

· The goal of the robot, i.e. permanent goals (kicking right side, guarding right side)

and transient goals emerging from the actual mission description (destination,

corridor to be used, ...) or directly imposed by the human operator.By using these

mechanisms, we could successfully achieve the game playing.

62

Chapter 10 Robot Learning in Intelligent Robot System

A simple learning of robot is implemented.

51
<>

A3
-

52 <> A2

-

<>
Ai

53

(a) Three shootinQ positions (b) Three shootinQ actions

Fig. 10.1 State Set and Action Set of Robot Learning to Shoot

We train the robot to learn shooting the rig:ht side goal. Fig. 11.1 shows the robot

learns to shoot. We can put the ball on three different locations, 51, 52, and 53 (Fig.

11.1 (a)). Each time the robot is put right behind the ball facing right side. So there

are altogether 3 different states. In each state, there are three shooting actions to

choose from for the robot, Al, A2, and A3 (Fig. 11.1 (b». Shooting action 1 means

the robot's left wheel runs at a higher speed than the right wheel, so that the ball

will be kicked to right forward direction. Shooting action 3 means the robot's right

wheel runs at a higher speed than the left wheel, so that the ball will be kicked to

the left forward direction. Shooting action 2 means both the right and left wheels

move at the same speed, so that the ball will be kicked to ahead. The task for the

robot is to learn which shooting action to use under each different shooting position.

To human, this is trivial. We know exactly how to shoot in each case. What we want

to do is to teach the robot learn by itself.

63

After each shooting, we observe the next state of the ball. If the ball moves closer to

the middle point of the goal, we think it enters a state which have a better value. If

farer, we think it enters a worse state. If it scores a goal, we give it a reward of 10,

otherwise O. Since we are doing real robot experiments, sometimes even if the robot

uses the right action, it is possible to miss the goal. In this case, we can get a table

looking like below:

Table 10.1 Robot Learning

State Actions Value Selected Value of New Reward New Value

Action Entered State

51 Al 11 11

A2 12 12

A3 13 * 13 0 12.35

52 Al 11 11

A2 12 12

A3 13 * 13 0 12.35

53 Al 11 11

A2 12 12

A3 13 * 15 0 13.25

There are 3 different states 51, 52 and 53 In the table. Under each state, there are 3

different actions Al, A2 and A3. For each action-state pair, we have a value. We can

initialize the values of states randomly. In this case, we initialize all three states of

the values to 11, 12, and 13 respectively. We evenly distribute the learning for the 3

states and we use greedy policy in the learning. So if the robot is in state 1 in the

first episode, since action 3 has the largest value 13, it will adopt action 3. Obviously

the ball will be kicked away from the goal. The robot enters a worse state. We

assume the value of new state just entered is equal to the value of this state. Using

64

a =0.5 and r =0.9 in equation (8.1), we got a new value of 12.35. The robot is

punished. Under state 2, the robot will also select action 3. Its value is also changed

to 12.35 as a punishment. Only under state 3, the robot adopts action 3. It enters a

better state. We assume it is always larger than 2 of the old value. In the case of 13,

it should be 15. Although the robot selected the correct action, it still missed the

goal. So the reward is O. But it still can learn from entering a better state. Its value

changed to 13.25. If it scored a goal, the new value should change to 18.25 instead.

The robot keeps learning like this. We take each episode as the robot learns once

under each different state.

After 10 episodes, we get,

Table 10.2 Robot Learning Result

State Action Value

51 Al 16.8

A2 10.8

A3 10.6

52 Al 11

A2 25.7

A3 11.7

53 Al 11.0

A2 12.0

A3 38.0

We can see that the robot has converged to the correct decisions, i.e. in state 1, it

always select action 1; in state 2, it always select action 2; in state 3, it always

select action 3.

65

Chapter 11 Summary and Future Work

11.1 Summary and Contributions

In this study, a mobile robot system was developed and prelimary study was

conducted on it. In the system, the activities of robots are monitored by a video

camera. The video camera captures the video images and sends them to the

computer for analysis. The computer accepts every frame of image and uses related

image processing techniques to realize target recognition and target tracking. This

kind of computer vision provides a feedback for the computer to know where the

interested objects are. The computer then uses the information to control the robots

intelligently. Distributed computing is also implemented to facilitate the research.

The contributions of this work are summarized below:

1. Developed intelligent mobile robot system research platform.

Object-oriented programming (OOP) language, Visual C++, was used to program

the system. It is easy to integrate knowledge, and easy to expand. The system

was designed to dedicate to conducting research on it. Considerations were taken

to facilitate experiments, such as computer vision effect monitoring, and video

recording.

2. Solved the lighting problem

Lighting unstableness problem had significantly impacted the quality of robot

performance. Nearest Neighborhood method is used to remedy the problem.

3. Implemented a basic behavior controller using fuzzy logic system.

Fuzzy control is a novel approach to solve some non-linear control problem when

formulas to solve the problems are hard to find. We successfully used fuzzy logic

to implement a basic behavior controller: moving robot to a designated position.

66

4. Realized game-playing by rule-based and frame-based knowledge

representation.

To make robots playing games actually is how to transfer expert's knowledge to

robots. We used rule-based and frame-based knowledge representation to realize

robots playing game.

5. Designed a simple learning process.

In our research, by using Q-Iearning algorithm, we designed a simple real robot

learning experiment: robot learning to shoot. The results show that robots can

learn some simple knowledge by themselves.

11.2 Future Work

This study addresses many issues related to development and research on mobile

robot system. There are several issues that need further investigation and

refinement.

The robot hardware is bought from a Korea company. The price was high. In the

future, we should design and build our own robots ourselves. On one hand, the cost

would drop down. On the other hand, when there are possibly some problems on the

robots, we can fix them by ourselves.

In the development of the platform, complex algorithms were used for image

processing to implement computer vision and for solving the lighting unstableness

problem. The target detection rate is only several frames every second. The control

of robots slows down significantly. Robots can only run at a low speed. Some work

should be conducted to improve the image processing speed by using other possible

algorith ms.

Vision on board and brain on board robot system should be considered as one of the

future developments.

67

In this study, only a simple learning is implemented. In the future, we should

consider more extensive self-learning of robots. We can further design many more

interesting experiments based on this research platform. If we use our imagination, I

believe we can dig a lot out of this platform.

68

References

[1] G. J. Awcock and R. Thomas, Applied Image Processing, McGraw-Hili Inc, New

York, 1996.

[2] Thaddeus J. Kowalski and Leon S. Levy, Rule-Based Programming, Kluwer

Academic Publishers, Boston, 1996.

[3] Shyi-Ming Chen, A knowledge acquisition scheme for rule-based systems,

Computer, Communication, Control and Power Engineering, Proceedings,

TENCON'93., 1993 IEEE Region 10 Conference on, Vol 4, pages: 282-286

[4] Bernad Jahne, Digital Image Processing, Concepts, Algorithms, and Scientific

Applications, Third Edition, Springer, 1995.

[5] Microsoft, Serial Communication in Win32, MSDN online documents.

[6] Microsoft, IPC and Windows 95, MSDN online documents.

[7] Microsoft, Video Capture Driver Architecture, MSDN online documents.

[8] Graefe, V and Bischoff, R, A human interface for an intelligent mobile robot,

Robot and Human Cimmunication, 1997. RO-MAN /97. Proceedings., 6 th IEEE

International Workshop on, 1997, pages: 194-199

[9] Morita, T; Aramaki, S.; Kurono, S.; Kagekawa, K., A knowledge representation

for the communication between robots. Robot and Human Communication, 1993.

Proceedings., 2nd IEEE International Workshop on, pages: 308-313.

[10] Micro Adventure, Documents, Micro Adventure Online documents, 1997.

[11] Mark Beale and Howard Demuth, Fuzzy system toolbox for use with Matlab,

PWS Productivity Tools, 1994.

[12] Wei Chen, Morphological image pyramids for automatic target recognition, PHD

thesis, 1997, Oklahoma State University.

[13] John Walters and Norman R. Nielsen, Crafting knowledge-based systems, A

Wiley-Interscience Publication, John Wiley & Sons, New York, 1988.

69

[14] Jonathan H. Connell and Sridhar Mahadevan, Robot learning, Kluwer Academic

Publishers, Boston, 1993.

[15] Richard S. Sutton and Andrew G. Barto, Reinforcement Learning, The MIT Press,

Cambridge, Massachusetts, London, England, 1998.

[16] Hee Rak Beom, A Sensor-Based Navigation for a Mobile Robot Using Fuzzy Logic

and Reinforcement learning, IEEE transactions on systems, man, and cybernetics,

vol. 25, No.3, March 1995, pages: 464-477.

[17] Sutton, Learning to predict by the methods of temporal differences, Machine

Learning, 1988, Vol 3, pages 9-44.

[18] Mance Harmon, An on-line reinforcement learning tutorial, h :/Iwww-

anw .CS.umass.edu/-mharmon/r1tutorial/tut.html.

[19] Leslie Pack Kaelbling, Rei nforcement learning: A survey,

h :/Iwww.cs.brown.edu/ eo

[20] Roy Turner, Context-sensitive reasoning for autonomous agents and

cooperative distributed problem solving, Department of Computer Science, University

of New Hampshire, Durham, NH03857, USA.

[21] Sendip Sen, Individual Learning of Coordination Knowledge", Department of

Mathematical & Computer Science, University of Tulsa

[22] Microsoft, CAsyncSocket class, MSDN online documents

[23] Valter M. Van Buijtenen, et at, "Adaptive Fuzzy Control of Satellite Attitude by

Reinforcement Learning", IEEE Transactions on Fuzzy Systems, Vol 6, N02, May

1998.

[24] Edmund Durfee, "Distributed Problem Solving and Multi-Agent System:

Comparisons and Examples", EECS Department, University of Michigan, Ann Arbor,

MI 48109

70

[25] Roy Turner, "Context-sensitive Reasoning for Autonomous Agents and

Cooperative Distributed Problem Solving", Department of Computer Science,

University of New Hampshire, Durham, NH03857 USA -,-,rm-,-,-",=.>o.~'-"<..>O.x

[26] Dongil CHO, "Developing a Multi-Agent Model for Distributed Knowledge

Systems", Graduate School of Systems Management, The University of Tsukuba.

Cho@gssm.otsuka.tsukuba.ac.jp

[27] Patrick McDonnell, "A Reinforcement learning Approach to Support Setup

Decisions in Distributed Manufacturing Systems", Industrial and Manufacturing

Engineering, Penn State University, PA 16802

[28] Hagan, et ai, " Neural Network Design", PWS Publishing Co. 95.

[29] Powerpoint presentations for MIROSOT SYSTEM, Micro Adventure Co. Korea.

VITA

Fengming Yang

Candidate for the Degree of

Master of Science

Thesis: DEVELOPMENT AND RESEARCH ON INTELLIGENT MOBILE ROBOT SYSTEM

Major Field: Electrical Engineering

Biographical:

Education: Received Bachelor degree in Electrical Engineering from Southeast
University, Nanjing, China in July 1993; received Master of Engineering
Degree in Electrical Engineering from Tsinghua University, Beijing, China
in July 1996; completed requirements for the Master of Science degree at
Oklahoma State University in May, 2000.

Professional Experience: Senior Software Engineer, Huawei Technologies Co. Ltd,
Shenzhen, China, from September 1996 to June 1998.

