A GENETIC ALGORITHM FOR THE
TRAVELING SALESMAN

PROBLEM

By
JIMING WU

Bachelor of Science
Nanjing Agricultural University
Nanjing, People’s Republic of China
1982

Master of Science
Nanjing Agricultural University
Nanjing, People’s Republic of China
1986

Doctor of Philosophy
Oklahoma State University
Stillwater, Oklahoma
1997

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
May, 2000

A GENETIC ALGORITHM FOR THE
TRAVELING SALESMAN

PROBLEM

Thesis Approved:

hesis Advisor

O Chadlon,
U \
/""'C’.?// i (‘{'I/? /5/ e C /

L4

7 Dean of the Graduate College

ACKNOWLEDGMENTS

I sincerely appreciate my major advisor, Dr. Jacques E. LaFrance for his excellent
supervision, patient guidance and encouragement throughout the course of this study and
my graduate training. Sincere appreciation is extended to the members of my advisory
committee, Dr. John P. Chandler and Dr. G. E. Hedrick for their guidance, wise
comments and suggestions in this study.

Further thanks to Oklahoma State University, Department of Computer Science,
for providing the Teaching Assistantship and necessary facilities and resources.

Final thanks to my mother, Jingxian for giving me the unending encouragement
and support, and to my wife, Li, my son. Yijun and my older brother and sister for their

patience, encouragement, and many sacrifices throughout my graduate studies.

m

TABLE OF CONTENTS
Chapter Page

i INTRODUCTION

1.1 TSP Formulation. ..o 5
12 Application 0L Then TSP v o nm st shsn it ses ns st deremys 7
1.3 Henkisties APPIOACheS cocoiusimmast i se T vt 8
L]l Niermehic ALSORTII .osmammm ammms s s e 8
1.3.2 Tabu Search........ooooiii i 9
1.3.3 Simulated ANNEAlINE. rsremmmeasosemnnssmpmrnsn s nee 10
1.3.4: Neural MetwWorks . v ssmaimd sasasive 10
L4 APOFOOIRANION. « oo simniines s s e aa vl A s o G ati 11
1.4.] . Approxanialion AlZotithin oo ssurecommsammmn v sss e 11
1.5 Genetic Algorithm and Evolution Programs... 13
. GENETIC ALGORITHM ANALYSIS AND METHODS............... 17
2.1 Principle of Genetic Algorithm...............ooo 17
2.2 Modilfied GA TOF TP s oissnenantnmmnsonstssinmns s smnnnin sns s ins 19
2:2.1 Fitness Function Definiltion. e mvansivimssisiis 19
2.2.2 Representationof ENcoding........ocvmuincieiinvmminiisnas s 19
2:2.3 ‘Crossover Operator Modification. ..cusssmmmm sesasse smsame 20
2.2.4 Mutation Operator Modification..................oooii 21
2.2.5 Selection Specificalion...........oce vveriririeiieenraneinr.ns 22
2.3 Oher ConSTHEAIION: wiveiwasii v s s S A 22
2.4 Coding and Run EnVITONMIENT. ..o iuieiswimsssmissumimssacise 23

1. RESULTS AND ANALYSIS. .. oottt eieere s eeeneenes e 24

3:1 Genetic Algorith Performiance. ... iviurmmss amia s i 24
il Crossover PErCeNMaEE. «omsmsscsssswsas s s s wansms 5545 24
3.1.2 Mutation Percentage.coooovevirienieniiiiiiaiiinienn 24
3.1.3 PopUlatiON SIZE. ... 0o s cmmmsomismssemmenmomsmmsonnssssnssnmsss i 25
31l GRmeraliON. s e s o i e S N GG B e s 25
1.5 Nuthber 0F Cill . cuzuvismmsnmnmsmimssisnrsme s n s 20
3.2 Comparison of the run time among Genetic, Bell Lab and

MST AIZOTithms ...oviviiiit e e e 26

Chapter
3.3 Comparison of Three algorithms using TSBLB data......... 27
A% COBCIUSION: .- - e mmremepensmssasnsnb bt s Bt d At e as b nepamssase sammanreasss 29
RETFETONCES s sosnivisnisins i N st S8 A 5 7K A AN 38

Table

L.

LIST OF TABLES

PSP ORI ATTOTIE. s o scsraisissnmsin s s s o e S A o S S S

Comparison of solutions among three algorithms using TSPLIB data ..

Vi

LIST OF FIGURES

Figure Page
1 Traditional CrosSOVer OPeralOr.iue it 18
2 Production of illegal offspring for TSP.....i.cuivimmiiniiisocss v 20
3 Genetic Algorithm performance on different crossover percentage. ... 30
4 Genetic Algorithm performance on different mutation percentage. 30
5 Genetic Algorithm performance on different population size............. 31
6 Genetic Algorithm computing improvement on different population

BRI st st s B 5 S R AR 31
7 Genetic Algorithm run time on different population size.................. 32
8 Traveling path length comparison with and without re-initialization of

POPUIAtIOn ... s airassn R S S T SR 32
9 Improvement comparison with and without re-initialization of

population............. T R D T T 33
10 Genetic Algorithm performance on different number of cities............ 33
I Genetic Algorithm computing improvement on different number of

OIINCE - s e R S T R s S T 34
12 Bell Lab, Genetic and Minimum Spanning Tree algorithms

performance on different number of Cities.oooiiiiiiiiiin 34
13 Relationship between the number of cities and run time.................. 35
14 Comparison of improvement for Bell Lab, Genetic and MST

ALZOTIRMIS. - .o 35
15 Optimal solution on 52 cities problem (7542).........cooviiiiiiiiinnnn. 36

Figure
16
17

18

LIST OF FIGURES

Solution of 52 cities problem with Genetic Algorithm (8168)....... ...

Solution of 52 cities problem with Bell Lab Algorithm (7625)...... . .

Solution of 52 cities problem with MST Algorithm (9490)..

APPENDIX

Crossover Function Code List... i,

vili

Page
36
37

37

43

A Genetic Algorithm for The
Traveling Salesman

Problem

ABSTRACT

This paper uses a modified Genetic Algorithm (GA) to attack the Traveling Salesman
Problem (TSP). Instead of using a traditional GA, Greedy-Crossover, swap mutation and
[:shelman’s selection method are employed o solve the TSP. The effects of the
crossover percentage, mutation rate, population size and number ol generations on the
final solutions are evaluated. The run time of GA. Bell Labs, and Minimum Spanning
Tree (MST) Algorithms are compared. Preliminary results indicate that increasing the
crossover percentage can improve the linal result while mutation does not show the
helpful effect in improving the solution. The results become better as population size
cnlarges in this system (100-1000). Additionally, the relationship between run time and
population size is linear. Re-initialization ol the population can prevent the population
[rom convergence but does not improve the solution. The run time of GA is better than

that of MST but worse than that of the Bell [Labs Algorithm.

Chapter 1

Introduction

[T a salesman starts from his home and needs to visit every city on his territory list
exactly one time and then return home. he could randomly pick a path or tour that
covered each city. However, if the salesman wants to save time and energy he will try to
find the shortest tour so that he can visit each city once and return home. The shortest
path for the trip can be obtained by adding up the distances for cach possible path and
comparing them. However, as the number ol cities to be visited increases, the time
required to calculate the shortest path increases as well. The problem of determining the
shortest tour has been named the traveling salesman problem (1SP), and is considered

one of the classic optimization problems.

The traveling salesman problem has been the subject of mathematicians™ interest
since 1759 (Lawler et al.. 1985). In 1856, IHamilton had developed his "lcosian
Calculus” for graph theory and marketed the Teosian Game. where the aim was (o linish a
[Tamiltonian evele using numbered pegs and a playing board. In 1930. Menger
mentioned the "messenger problem” referring to the problem of [inding the shortest
[MHamiltonian path. The term "traveling salesman problem™ may have been used lor the
first time in 1931 or 1932 when A.W. Tucker heard the term from Hassler Whitney ol

Princeton University (Lawler et al., 1985).

A graph is defined as a finite set of vertices. some pairs of which arc connected by

edges [i.c.. the G=(V.) notation]. A directed graph (or digraph) is a graph where a

)

direction is specified for each of the edges in the graph. A cycle in a graph is then
defined as a set of vertices of the graph for which 1t 1s possible to move from vertex to
vertex along edges of the graph. All vertices are encountered exactly once. and the
ending vertex is the same as the beginning vertex. If'a cycle contains all of the vertices
of the graph. it is referred to as Hamiltonian. Thus. the traveling salesman problem may
be described as the problem of discovering a Hamiltonian cycle with the shortest length.
When calculating length, it is assumed that the weights of the edges used to calculate the

length are nonnegative.

The traveling salesman problem is generally classified as a combinatorial
optimization problem. The problem size n equates the number ol cities 1o be visited.
Since each city is to be visited only one time. the number of possible tours that can be
taken is (n-1)! while the original city is given. Now, if the number of cities to be
considered is small. each of the possible paths may be easily checked. However, as the
number of city ncreases. the number of possible solutions becomes very large. Tor
example. 1l the salesman must visit 6 cities. there are only 5! = 120 possible tours.
However. il the number of cities is increased to 30, the number of possible solutions
increases 1o exceed 8.841 x 10."" Thus. solutions for finding the shortest tour length
without checking each and every possible path must be employed il a solution is ever to

be tound for larger scale traveling salesman problems.

I'he ultimate goal of TSP research is to find a solution algorithm that gives an
optimal solution in a time that has a polynomial variation with the size a ol the problem.

The best that researchers have been able to achieve. however. is to solve it in a time that

tod

varies exponentially with n. There are several approaches for solving the difficult
problems. One approach is to assume that there is no guarantee that an optimal solution
will be found in a reasonable amount of time. but there is still an attempt to find the
optimal solution and a great deal of time 1s spent finding it. Another approach is to use
an approximation. where time and optimality are traded off. and an approximate solution
is accepted. However. when evaluating algorithms for the solution of the TSP. some type

of criteria must be developed for comparisons (Lawler ct al.. 1985)

I'he problem is said to be polynomial (P) if an algorithm can solve the problem n
a time that increases polynomially with the size # of the problem. There also exists a
class of problems that can be tested in polynomial time as to whether or not a
hypothetical solution to the problem is correct. Problems that can be solved using non-
deterministic algorithms are said to be non-deterministic polynomial or NP (Cormen et
al.. 1990). Finally. there 1s a NP-complete class of problems. They are considered to he
cquivalent to each other in the sense so that it'a solution to one kind ol NP-complete
problem were 1o be found. solutions to all of them could be found. Thus. a problem is
called NP-complete il every problem in NP is polynomially reducible o it However,
there are ways ol approximating the solutions to these problems with some spectfications.
Thus. arbitrarily similar solutions may be obtained. The approach is to usc

approximation algorithms that will find "near-optimal” tours.

In order to evaluate the performance ol various algorithms for "solving™ the TSP,
a common method of comparison is necessary. To compare the results of various

heuristics. arbitrarily large TSP's with known optimal solutions may be used. However,

generating these "testable” TSP instances is a very difficult and computationally complex

task.

I'ractal constructions have been used to generate instances of the traveling
salesman problem with known optimal solutions. Since the optimal tours for these TSP
Instances are known. this will allow the testing. evaluation. and comparison of various
heuristics based on their performance for large TSP instances (Moscato and Norman.

1994).

1.1 TSP Formulations

There are several TSP formulations and they are usually symmetric. For any two
cities. numbered A and B, the distance from A to B is the same as that from B to A. We
need not to distinguish between a tour and its reverse path. ‘The symmetric formulation is
defined as given the complete graph G=(V,) to find a shortest Hamiltonian tour in (.
An asymmetric formulation occurs when the Tength of traveling [rom city 7 (o ¢ity 7 is nol
necessarily the same as that of traveling from city / to city 7. The asymmetric case can be

transtormed and solved as a symmetric TSP (Gerhard, 1991).

I'he other formulations are listed in Table 1. In reality. they are modifications ol

the general TSP,

Table I, ISP formulations

Description Solution
The Multi-salesmen Selecting a subsct of the salesmen. Transtormed 1o a
Problem assigning tours. and ensuring that cach symmetric
i city is visited only once with the I SP(Gerhard.,

N

minimum total cost

1991)

Graphical TSP

Seeking the shortest Eulerian cycle in
the graph G. Finding a closed path that
requires the shortest possible path length
for which the salesman visits cach city

Transtformed to a
symmetric TSP
(Gerhard. 1991)

T'he Bottleneck TSP

IFinding a tour where the longest edge is
as short as possible

Solved as a
sequence ol TSPs
(Gerhard. 1991)

The Prize Collecting
I'Sp

Minimizing a cycle in G containing the
node v such that the sum of the edge
weights of the cycle minus the sum of
the benetits of the nodes of the cycle

The Vehicle Routing
TSP

I'inding the minimal number of vehicles
needed to visit each of the locations

Similar as multi-
sulesmen problem

The Luclidean TS
Selection Problem

IFinding the shortest tour through a
subsel k ol the cities, k<n

ISP fora smaller
set ol cilies

Circulant TSP

Finding a minimum weight Hamiltonian
cycle in a weighted graph with a
circulant distance matrix

Complexity of this
problem is not
known

Chinese Postman
Problem

I'inding the shortest closed walk in G
containing all edges at least once (i.c..
cities may be visited multiple times)

Fquivalent to the
Giraphical ‘TSP
formulation

On-line TSP

Minimizing distance traveled or
completion time. All of the inputs may
not be known in advance

Solutions that are
computed from
past evenlts

The Angular-Metric
1sp

Finding the tour which minimizes the
total angle cost for the tour

Related to the
cvele-cover
problem

I'he Rural Postman
Problem

Finding the shortest closed walk in G
containing all edges n I (1. 19

Chinese postman
problemil I- I

Maximum Latency
TSP

Finding the tour that maximizes the
latency I(1). Latency is the distance
traveled before irst visiting city py

4}

Minimum Latency
Problem

Finding the tour that minimizes the
lateney I(1). Latency is the distance
traveled before first visiting city p;. That
1s to minimize the average time that a
city waits to be visited

Fulerian Tour Problem

Finding the shortest tour in Eulerian

solved in
polynomial time

Hamiltoman Cyvcle
TSP

Deciding it G contains a Hamiltonian
cvele. A Hamiltonan cvele exists il and
only if the shortest Hamiltonian cycle in
K, has length n

Solving a
symmetric
TSP(n=|V])

Bipartite TSP

Finding the optimal bipartite tour
starting and ending at a designated blue
vertex s and visiting all vertices. A tour
1s bipartite if every pair of adjacent
vertices in it have different colors

Remote TSP

Finding a subset I’ of V of cardinality k
such that the cost of the minimum [SP
tour on G| P| i1s maximized

The Geometric
Covering Salesman
Problem

Finding the shortest tour that intersects
all of the neighborhoods(maybe overlap)
and returns home

A generalized the
Fuclidean TSP

I'he Tree and Tour
Cover TSP

IFinding a tour for which the travel and
purchase costs are minimized

A mimimum weight
tree and closed

walk. NP-hard

K-template TSP

Processing jobs without interruption on
a single machine. K unique templates
available for use

O(n log n)

I'xact ISP

Finding a path ol a given exact length

NI>-hard

1.2 Applications of the TSP

I'he traveling salesman problem is an important computational model for a varicty

ol reasons. While the experiment that sends the poor salesman on various routes may or

may not be valid. this does not constitute an application that applies to everyday life.

However. the concept behind the TSP forms a major component ot more complicated

models. such as routing a fleet of vehicles for pickups and deliveries. or more concretely.
the sort of problem that a United Parcel Service (UPS) depot might solve on a daily basis.
It can also be used to model a number of problems that do not seem to be related (Wilson.

and Pawley.1988).

While the TSP is an imteresting problem to address. the amount of research that
has been and 1s currently being done to try to find an optimal (or nearly optimal solution)
is motivated by more than mathematical curiosity. As mentioned above, there are a
number of real world problems that may be formulated as a type ot TSP. The typical
applications of the traveling salesman problem include computer wiring. cutting
wallpaper. job sequencing and scheduling in a manuftacturing plant. and clustering ol data

arrays ctal. (Wilson and Pawley 1988).

1.3 Heuristic Approaches

[euristics for solving the traveling salesman problem are methods whereby the
optimal solution to the TSP is sought. While the use ol heuristics may not be guaranteed
to find the optimal solution at all. or at least not in real time. a large number of them will

[ind the optimal solution for at least certain cases ol the traveling salesman problem

1.3.1 Memetic Algorithms

Memetic Algorithms are a population-based approach lor heuristic search in
aptimization problems. These algorithms have shown that they are orders ol magnitude

[aster than traditional Genetic Algorithms for certain problem domains. Basically. they

combine local search heuristics with crossover operators. For this reason. some
researchers have viewed them as Hybrid Genetic Algorithms (a hybrid between a local
search and a crossover operator). Since they are most suitable for distributed computing
systems (including heterogeneous systems. such as those composed by networks of
workstations). and parallel computer systems. they have been referred to as Parallel

Genetic Algorithms.

The first use of the term Memetic Algorithms in computing literature appeared in
1989 (Moscato and Norman. 1989). This paper discusses a heuristic which usces
Simulated Annealing for a local search with a competitive and cooperative game between

agents. interspersed with the use of crossover operators.

This method is gaining wide acceptance. especially in well-known combinatorial
optimization problems where many instances have been solved to optimality and where
other metaheuristics have failed. An open research issue is whether features of the
chosen representation chosen has led to characteristics of the objective Tunetions which

are clticiently exploited by a memetice approach (Moscato and Michael. 1992),
1.3.2 Tabu Search

Standard search heuristics start with a tour. and in order to optimize the tour. they
exchange a number of edges in the current tour with edges in the "neighborhoods™ of
those being considered. but not in the current tour. Atfter the edges arc exchanged. the
operation is evaluated by measuring the decrease in tour length. However. these standard

search algorithms have limited obtainable performance. due to the size of the

neighborhood. The tabu search method. as suggested by Zachariasen and Dam marks
edges as "tabu" when they have been recently visited or are similar to recently visited
solutions. and edges are exchanged for the best recent choice chosen from the tabu space

(Hertz et al.. 1997).
1.3.3 Simulated Annealing

When simulated annealing algorithms are applied to the traveling salesman
problem (Davis. 1987). a sequence ol tours is constructed. Frach step of the sequence is
obtained by moving to a different tour (not necessarily a close one). Martin et al. (1991).
however. the simulated annealing and local scarch heuristics can be combined so that a
local optimum will be explored. This heuristic will produce large, global changes. thus
overcoming local minima. The results show that the modified simulated annealing is able

to solve large TSP instances to optimality (Aarts et al.. 1997)
1.3.4 Neural Networks

One possible solution for the traveling salesman problem (1SP) is to apply
oradient-type neural networks (Hoplield Nets). THowever., Toplield Nets (1IN) are
oenerally limited to very small TSP instances, usually around 10 cities (Naphade and
| uzun. 1995). Thus. the general HN [ormulation is not scaleable to practical sized
TSPs. In neural optimization. it is essential that valid solutions be stabie fixed points of
the dynamics: otherwise. the network will not converge to these solutions and cannot
possibly find them. Behzad Kamgar-Parsi and Behrooz Kamgar-Parsi prove that the

original Hopfield- Fank (1IT) formulation ol the Fraveling Salesman Problen 1s awed.

10

in that none of the valid tours are stable fixed points in the infinite gain limit
(Zurada.1992). When the neuron gain is finite, valid tours become only marginally
stable. This helps explain the rather poor performance of the HT formulation in finding
valid solutions. Behzad Kamgar-Parsi and Behrooz Kamgar-Parsi also analyze the
stability of several modified HT formulations. and show that some are indeed correct and
effective. The implication of this work is not that the Hopfield network is an mferior
alternative for solving combinatorial optimizations. On the contrary. it shows that
dynamical stability analysis is a tool that can help the Hoptield network realize its Tull

potential by identifving (laws in a heuristic formulation (Naphade and Tuzun, 1995).

1.4 Approximation Algorithms

As opposed to heuristics which try to find the optimal solution to the traveling
salesman problem. approximation algorithms find solutions that are close enough to the
optimal solution. The amount of time required to find these approximate solutions can

often be predicted.

1.4.1 Approximation Algorithms

Since itis often impractical or impossible to [ind the optimal solution to a TSP, 1t
is desirable 1o find solutions that are close to optimal with algorithms that run in

polynomial time.

['here are two popular algorithms that approximate the optimal tour within a
auaranteed multiple of the optimal. These algorithms only work if the problem satisfics

the Iriangle Inequality. The Triange Inequality is Dy = Dy + Dy meaning that the

=

shortest path between two nodes is directly between them. This may not be true in some
instances. For example. a direct flight from Birmingham to Indianapolis may be more
expensive than a flight from Birmingham to Chicago plus a flight from Chicago to

Indianapolis.

I'he first algorithm (Kruskal. 1956: Prim.1957) generates the Fulerian tour of the
graph formed by having two edges for each edge in the Minimum Spanning Tree (MST).
['he tour is constructed by removing the nodes from the Eulerian tour after they have
already appeared in the tour. This tour is guaranteed to be less than or equal to twice the

weight of MST. and the weight of MST is less than the weight of the optimal tour.

Christon's algorithm (Christon. 1976)). the second algorithm. is very similar to
this. Instead of doubling the edges of MST. it adds the edges of the least matching of the
odd weighted nodes to the edges of MST. It then derives the approximate tour from the
ulerian tour. It has the best known theoretical performance. with a guarantee of being

within 3/2 of the optimal tour.

Although these algorithms have guaranteed performances. other algorithms can
usually perform better with similar running time. A standard approach to generating
cood tours is to start with a tour T. and make some changes to produce 1", which has a
shorter length than T. A heuristic which uses this approach and produces good results is
the k-opt. The k-opt replaces k edges with other k-edges so that the resulting tour 15
shorter. The k edges replaced can be chosen pseudo-randomly. or all possible k-tuples of
edges can be tried (Lin. 1956: Lin and Kernighan. 1973: Hochbaum and Goldschmidt.

1997).

1.5 Genetic Algorithms and Evolutionary Programs

['he genetie algorithm (Whitley and Mathias. 1992) is a model of machine
learning which derives its behavior from a metaphor of the processes of evolution in
nature. This is done by creating within a machine of a population of individuals
represented by chromosomes: in essence. it is a set of character strings that are analogous
(0 the base-4 chromosomes that seen in human DNA. The individuals in the population

then go through a process of evolution.

| he processes of evolution in nature seem Lo boil down to different individuals
competing for resources in the environment: some are better competitors than others.
Those individuals that are better competitors are more likely to survive and propagate
their genetic material. In nature. sexual reproduction allows the creation of genctically
different offspring that are still ot the same general species. At the molecular level.
chromosomes exchange "chunks" of genetic information and then separate. This is the
recombination operation. which is generally reterred 1o as crossover because of the way

that genetic material crosses over from one chromosome to another (Doolittle. 1987).

I'he crossover operation happens in an environment where the selection ol who
acts Lo mate is a function of the fitness ol the individual (i.c.. how good the individual 15
at competing in its environment). Some genetic algorithms use a simple function ol the
[1tness measure to select which individuals undergo genetic operations such as crossover
or asexual reproduction (the propagation of genetic material unaltered). Other
mmplementations use a model in which certain randomly selected individuals in a

subgroup compete and the fittest is selected. The two processes that contribute to

evolution the most are crossover and fitness based selection-reproduction. As it turns
out. there is mathematical proof to indicate that the process of fitness proportionate

reproduction is. in fact. nearly optimal in some sense (Whitley and Dzubera. 1994)

Therefore. in practice. this genetic model of computation may be implemented by
having arrays of bits or characters represent the chromosomes (Louis, 1993). Simple bit
manipulation operations allow the implementation of crossover. mutation and other
operations. Although a substantial amount of research has been performed on variable-
length strings and other structures. the majority ol work with genetic algorithms is

focused on fixed-length character strings.

When the genetic algorithm is implemented. it is usually done in a manner that
involves the following cycle: Evaluate the fitness of all of the individuals in the
population (Whitley and Dzubera. 1994). Create a new population by performing
operations such as crossover. fitness-proportionate reproduction and mutation on the
individuals whose litness has just been measured. Discard the old population and iterate
using the new population. One iteration of this loop 1s referred to as a gencration. The
[irst generation (generation 0) of this process operates on a population ol randomly
cenerated individuals. FFrom there on. the genetic operations. in coneert with the fitness

measure. operate to improve the population.

[n contrast. evolutionary programming. originally conceived by Lawrence in 1960
(Moscato and Norman.1989:1992). is a stochastic optimization strategy similar (o
senetic algorithms that instead. places emphasis on the behavioral linkage between

parents and their offspring.

For evolutionary programming there is an underlying assumption that a fitness
landscape can be characterized in terms of variables, and that there is an optimum
solution (or multiple optima) in terms of those variables. For example, it one were trying
to find the shortest path in a traveling salesman problem. cach solution would be a path.
[he length of the path could be expressed as a number. which would serve as the
solution’s fitness. The fitness landscape for this problem could be characterized as a
hypersurface proportional to the path lengths in a space of possible paths. The goal
would be to find the globally shortest path in that space. or more practically, to find short

tours very quickly (Moscato and Norman, 1989).

I'he basic evolutionary program method involves three steps which are repeated until
a threshold for the number of iterations is exceeded or until an adequate solution 1s

obtained:

1. Choose an initial population of trial solutions at random. The number of solutions
i a population is highly relevant o the speed ol optimization. but no definite
answers are avatlable as to how many solutions are appropriate (other than 1)

and how many solutions are just wastetul.

2. Lach solution is replicated into a new population. Each of these offspring are
mutated according 1o a distribution of mutation types. ranging [rom minor (o
extreme with a continuum of mutation types between. The severity of mutation 15
judged on the basis of the functional change imposed on the parents.

%

I-ach olfspring solution is assessed by computing its fitness. Typically. a

stochastic tournament is held to determine N solutions to be retained for the
population of solutions. although this is occasionally performed deterministically.
There is no requirement that the population size be held constant or that only a

single offspring be generated from each parent.

The first efforts to find nearly optimal solutions to TSPs by using GA are those of
Goldberg using Partial Mapped Crossover (Goldberg. 1985) and Grelenstette using
Cireedy Crossover (Grefenstette., 1985). Davis, Smith, Suh and Van Guceht also tried to
solve TSPs with various crossover operators (Davis, 1985: Smith, 1985: Suh. 1985). In
this thesis. | compare the performance of a genetic algorithm with a Minimum Spanning
I'ree (Prime. 1957) and Bell-Labs (Lin. 1965, Lin and Kernighan, 1973) algorithm using
ISPLIB Data (Reinelt.1996) and randomly generated data to initialize tours or

mdividuals.

K§)

Chapter 11

Genetic Algorithm Analysis and Methods

2.1 Principle of Genetic Algorithms (GA)

I'he basic principles of GA were first designed by John Holland (Holland.
1975.1992). A genetic algorithm works with a populaton ol individual strings
(chromosomes). each representing a possible solution to a given problem. Lach
chromosome is assigned a [itness value according to the result of the fitness function.
[ighly (it chromosomes are given more opportunities to reproduce and the offspring

share teatures taken [rom their parents.

Three operators are emploved in GA. They are selection. crossover and mutation.
Suppose P(7) is the population of chromosomes at generation /. the procedure of a simple

GA s as follows:

i1l Ua | f luat 1 LT
y f |) £ |)
2100 ?(1+1) O i)
Fo3sovel L+ ! 2mbDinatlon

Evaluation of each chromosome determines which is better. based on a fitness
function. Selection is a process in which individual chromosomes are copied according to
their fitness function value. The traditional GA uses a selection where the probability of
selection is proportional to the fitness value (roulette wheel selection): highly [it
individuals have a higher probability of being selected for mating to produce the next
veneration. Recombination includes two operators: crossover and mutation. The
traditional crossover operator randomly chooses a crossover site. cuts chromosomes into
two pieces. and swaps the tails to produce two offspring chromosomes as shown in

following:

A F DEFGHI
i ' 1 o U
ABEC D B g h 3
I ——————
! (8 i i

Fig. 1. Traditional Crossover operator
A mutation is a random change ol the value of a single (gene) bit. The traditional
mutation operator randomly chooses a bit and changes the bit from 1 10 0 or O to | on the

chromosome as presented in the lollowing:

LOTOT0T10T10 - 21010111010

» Mutation site

Betore Mutation After Mutation

2.2 Modified GA for the TSP

['he traditional GA does not fit the TSP since the binary representation can not
distinguish the different cities. urthermore. crossover may produce illegal tour.

Maodification must be made before implementation.
2.2.1 Fitness Function Definition

The evaluation function for the N cities two-dimensional uclidean TSP is the
sum ol the Euclidean distances between every pair of cities in the path. The fitness for the

I'SP. therefore. is defined as the tollowing:
va ; ‘I -|l y
litnesy = Z \‘;(J i) HY—9)
I
Where. x,. 1, are the coordinates ol city . and x,. v, equal to vy, 1y

2.2.2 Representation of Encoding

Some changes must be made to the traditional genetic algorithm to solve TSPs.
Binary chromosomes cannot be used to encode the TSP because the TSP 1s a sequential

problem. A path representation where the cities are listed in the order in which they arc

19

visited is used. Assuming there are 6 cities. numbered 0. 1. 2, 3. 4. 5. and if a salesman
goes from city 3. through city 0. city 1. city 4. city 2. city 5 and returns back to city 3. the
chromosome will be 3. 0. 1. 4.2 and 5. For the N cities TSP. the representation will
initialize the population by randomly assigning 0 to N-1 into N length chromosomes and
cuaranteeing that cach city appears exactly only once on each chromosome. The

chromosome must contain unique genes in order to make sure the tour is legal. as will be

explained.

2.2.3 Crossover Operator Modification

Because of above representation. the traditional crossover and mutation operators
are not suitable for the TSP. The following figure shows how traditional crossover
produces illegal offspring. The first child is illegal becausc city 1 and city 3 appear
twice. while city 0 and city 5 do not appear at all. The same problem exits for the second

child. City 0 and city S appear twice while city 1 and city 3 do not appear,

Before erossover After crossover
123450 (parent 1) 123314
—
205|314 (parent 2) 205450

Crossover sie

ig. 2 Production of illegal offspring for TSPs

I'here are several crossover operators that can be employed for the ISP In the
program implemented for this study. Greedy Crossover is used. which was invented by

Girefenstette (Grefenstette. 1985). Greedy crossover selects the first city of one parent.

"1[)

compares the cities leaving that city in both parents, and chooses the closer one to extend
the tour. If one city has already appeared in the tour, we choose the other city. If both

cities have already appeared, we randomly select a non-selected city.

For example. if we have two parents numbered 1,2, 3. 4. 5. 0and 4. 1. 3. 2. 0. 5.
To generate a child using the second parent as the template. we seleet city 4 (the Orst city
ol our template) as the first city of the child-- 4 * * * *_ Then we find the edges atier city
4 in both parents: (4. 5) and (4. 1) and compare the lengths of these two edges. I the
length between city 4 and city | is shorter. we select city 1 as the next city of child—4. |
%% Then we find the edges after city 1. (1. 2) and (1. 3). If the length between city |
and city 2 1s shorter, we select city 2 as the next city, resulting in4, 1.2 * * *_ Then we
lind the edges after city 2, (2.3) and (2. 0). I the length between city 2 and city 0 is
shorter, we select city 0 as nextcity 4. 1, 2. 0 * *. The edges alter city 0 are (0, 1) and (0.
5). Since city 1 already exists in the child. we select city 5 as the next city. resulting 4. 1.
2.0.5 %, Then the edges alter city 5 are (5. 0) and (5. 4). We cannot select cither one
because both city 4 and city 0 already exist in the child. We select a non-selected city.
which 1s ity 3. Finallv. this procedure produces a legal child numbered 4. 1. 2.0, 5 and
3. The same approach can be applied to the other child. resulting in the child numbered

I.2.0.5. 4 and 3. After crossover. both offspring contain the legal chromosomes.
2.2.4 Mutation Operator Modification

For the same reason. the traditional Mutation operator cannot be used for the ISP
and needs to be modified. For example. if a legal chromosome betore mutation is 1. 2. 3.

4. 5 and 0. a mutation oceurs at site 4 and the gene has been changed form 4 to 5 which

-

generates a new linear chromosome numbered 1, 2. 3. 5. 5 and 0. The new chromosome
is illegal because city 5 appears twice while city 4 disappears. Instead of using the
traditional mutation operator. two genes in one chromosome are selected and swap their
values. Thus. we still have legal chromosomes after mutation. The following figure

shows how the swap works:
<« >
1234502153420

Mutation operator (Swap 2 o S mutation)

2.2.5 Selection Specification

In the traditional roulette wheel selection. the best individual has the highest
probability of survival but does not necessarily survive. In this program, Eshelman’s
method is employed to guarantee that the best individual will always survive in the next
generation (Eshelman. 1991). In this method. it the population size is NN children arce
produced by using the roulette wheel selection and greedy-crossover. Then the N parents
are combined with the N children, these 2N individuals are compared to the averaged

litness value. and the best N individuals are chosen to propagate to the next generation.

2.3 Other Considerations

[n order to test the effect of convergence on the result. the program saves the best
10 individuals and reinitializes the rest of the population in 20 and S0 generations.

Algorithm performance is observed by testing on randomly produced data sets.

I'he Minimum Spanning Iree (Prim. 1957) and Bell Labs (Lin. 1965: Fin and

Kernighan.1973) algorithms are employed to compare the run time among the three

=)

algorithms using randomly produced data sets. These programs use standard TSP
benchmarks whose optimal solutions are known (Reinelt, 1996) to compare the three
algorithms. For all problems. the program uses the same crossover and mutation
probabilities of 0.95 and 0.01 respectively and the number of generations is 500 except as

explained in the figures. All results presented in this paper are averaged overl0 runs.
2.4 Coding and Run Environment

The Program including four classes is coded using C++. The parent class TSP
produces a tour and holds the tour coordinate structure and distance matrix. Bell Lab.,
CGA and MST are children classes that implement the Bell Labs. Genetic, and Minimum
Spanning Tree algorithms, respectively. The program was run on a Pentium 11-300 with

96MB RAM and 150MB virtual memory under Windows NT.

Chapter II1I

Results and Analysis

3.1 Genetic Algorithm Performance

The Genetic Algorithm performance is affected by four parameters besides
problem size (number of cities). They are the crossover percentage, mutation percentage.

number ol generations. and population size.
3.1.1 Crossover Percentage

I'igure 3 compares the average performance for dilferent crossover percentages.
The travel path lengths are improved as the crossover percentage increases. The travel
length becomes constant at generation 174 when the crossover percentage is 85 in this
test. However. the travel length approaches the lowest point at the generation 143 while
the crossover percentage is 95, The improvement percentages (result length/original
length *100%;) are 15.9% and 15.3% for the crossover percentages of 85 and 95.

respectively. The improvement percentage is 15.7% for the crossover percentage ol 90,

X. 1.2 Mutation Percentage

While crossover can improve the solutions ol Genetie Algorithm, mutation seems
1o prevent the convergence ol the population although it does not improve the solution
(Figure 4). A mutation is a permanent, inherited change in the structure of a gene (1.¢., a
change in the sequence of travel path). Mutation genes Irequently have deleterious

effects on fitness (Doolittle, 1987). The program’s results indicate a similar trend in

natural mutation in the biological populations. Improvement percentages are 15.2%.
15.4% and 15.8% for the mutation rate of 1%. 2% and 3%. respectively. The travel
lengths reach a constant at generations 123, 129, 137 and 149 for mutation rates of 0%.
1%. 2% and 3%. respectively. in this program. The results indicate that mutation
increases the search time and delays the convergence of population. Mutation affects the
equilibrium of a population, and thereafter. the fitness. This is a common phenomenon in
the natural population.

3.1.3 Population Size

Population size affects Genetic Algorithm performance on both improvement and
generations needed at which the population reaches the best fitness (Figure 5.6). The
solution is improved and the generations required reach the final result increases as the
population size becomes larger. Figure 5 indicates that the result is not changed after 93
gencrations when population size is 100 in this program, and its improvement percentage
15 23.3% (Iigure 6). While population size goes up to 1000, 143 generations are needed
to get the tinal result. The improvement percentage 1s 16.0% at this point. No more
change occurs after 143 generations up to 500 generations.

The relavonship between run time and population size looks like lincar (Figure 7).
and it is statistically significant (R* = 0.9614. P<0.05). The slope is 0.4788 while
ceneration 1s lixed on 500.

3.1.4 Generation

I'he generations needed to approach the final results arc about 150 while

population size. crossover percent and mutation rate are 1000. 95% and 1%. respectively

(Figures 3-5). The figures show that the population is likely to converge and individuals

(]
A

in the population become similar so that no more improvement can be achieved. In order
to test this kind of case. the population is re-initialized as described in 2.3. Figure 8 and
figure 9 indicate that re-initialization of the population does prevent the population from
converging. The convergence of the population that is re-initialized very 20 generations
1s postponed 83 generations as compared to the population that has not been re-
initialized. However. the final results are not improved when compared to the population
that has not been re-initialized in this program (500 generations). On the contrary. the
Inal results from re-initialized population are worse than that of the non-re-initialized
populations.
3.1.5 Number of Cities
Genetic Algorithm performance on different numbers ol cities are shown in

Figure 10 and I'1. As Figure 10 shows. population converges very quickly when the
problem size is small. The population begins to converge at generation 10 when the
number ol cities equals 20, and this results in an improvement percentage ol 50.60%
(Figure 11). When the number of cities 1s 500, the population converges at generation
143, The percentage of improvement reaches 16.0%. Results indicate that the travel path
length is improved as the number ol cities increases.
3.2 Comparison of the Run Time among Genetic, Bell Lab, and MST Algorithms

I“igure 12 shows the run time ol the three algorithms. The relationship between the
run time and the number of cities 1s linear for Bell Lab algorithm (Slope=1.0369.
R*=0.9993). Ilowever. the relationships for Genetic and MST algorithms are not lincar.
IFigure 12 indicates that the Genetic and MST algorithms need a shorter amount of time

to get results when the number of cities is approximately 400. In contrast. the run time

26

increases very quickly when number of cities grows for MST. The run time of the
Genetic algorithm is less than that of MST when number of cities greater than 400.

The log-log plot shown in Figure 13 indicates that the run time of MST is an
approximate value of A*"**"_ and run time of the Genetic Algorithm is about V' "

The improvement percentages of different algorithms show that MST achieved
the best results using randomly produced data sets (8.5%). see Figure 14.
3.3 Comparison of Three Algorithms using TSPLIB Data

Although MST achieves the best results when the data sets are randomly produced.

solutions are not the best when the data sets are not random (Table 2). The Bell Lab
algorithm produces the best solutions for all three data sets. FFor travel path length. GA
results in percentages ol 8%, 36% and 31% longer paths than the best result when the
problem sizes are 52,150 and 318, respectively. MST does not approach the best result
partially due to the different starting points. The starting point is so important for MST
that tinal path lengths will vary dramatically i the starting point is not desirable. In
random data sets. well-distributed points are guaranteed in a two-dimension plane. The

starting point is not as important as it is in non-randomly fixed data sets.

Fable 2. Comparison of solutions among the three algorithms using TSPLIB data

Problem | Best solution GA Bell Lab MS'|
Sive | Distance Distance Yo * Distance Y Distance "
52 i 7542 8168 108 7625 101 9490 125
150 26130 35637 136 32853 126 35952 137
318 42029 55116 131 49521 117 61446 146

T est solution/Best solution = 100%.

Figure 15 shows the optimal solution path of the 52 cities problem. The solution
for the Bell Lab Algorithm is similar to the optimal solution except for the area indicated
by the arrow (Figure 17). One big path crossing occurs in the GA’s solution (Figure 16).
Several path crossings can be observed in the MST solution (Figure 18). The path
crossing is main source of additional length for traveling salesman problem (Pagberg and
Rinaldi. 1987). This also indicates the MST Algorithm gains additional length because

ol path crossings.

Chapter 1V

Conclusions and Future Work

['his paper demonstrates that the Genetic Algorithm can be modified to solve the
Travel Salesman Problem. Increasing the crossover percentage can improve the linal
result while mutation is not helptul in improving the result in this test. The solutions
become better as the population size enlarges in this system (100-1000). In addition. the
relationship between the run time and the population size is linear. Re-initialization of
the population can prevent the population from converging, but it does not improve the
solution in limited population size and generations. The run time of the genetic algorithm
is better than that of the MST. but worse than that of the Bell Lab algorithm.

Although this approach seems [easible. much work remains to be done. The optimal
crossover percentage and the effect of re-inttializing population on solution in the
different number ol cities still remain issues. Furthermore. the elficient schemes to

prevent population [rom convergence to a local minimum need to be considered.

29

Travel path length

Travel path length

50

45

40

35

30

No of generations=500 |
Population size=1000
No. of cities=500

85%
80%
—95%

i

15 30 45 60 75 90 105 120 135 150 165 180

Generation

Fig. 3 Genetic Algorithm performance on different
crossover percentage

50

45

40

35

30 ¢

No. of generations=500
Population size=1000
No of cities=500

m—3%
—_—2%
1%
0%

15 30 45 60 75 90 105 120 135 150 165 180

Generation

Fig. 4 Genetic Algorithm performance on different
mutation percentage

30

Travel path length

50

45

40

35

30

Improvement percentage

No. of cities=500
Crossover Percentage=95%
Mutation rate=1%
—100
200
—400
—3800
1000
0 15 30 45 60 75 80 105 120 135 150
Generation
Fig. 5 Genetic Algorithm performance on different
population size
25
23 Itprovement percentage=Results length/Orignal length* 100%
21
19
17
15
#) 150 300 450 600 750 900 1050

Population size

Fig. 6 Genetic Algorithm computing improvement on
different population size

31

600

500

400

300

200

Run time(sec.)

100

50

150 300 450 600 750 900 1050
Population size

Fig. 7 Genetic Algorithm performance on different
population size

Travel path length
.S B
(S o

[4%]
w

30

No. of
generation=500
Population size=1000
No. of cities=500

Re-ini/20
—— Re-ini/50

= No-ini

25 50 75 100 125 150 176 200 225
Generation

Fig. 8 Travel path length comparison with and without re-
initialization of population

250

Travel path length

Travel path length

40

35

30

25

20

15

10

250

200

150

100

w
o

No. of generation=500
Population size=1000
No. of cities=500

Re-ini/20
——Re-ini/50
= No-re-ini

0 25 S50 75 100 125 150 175 200 225 250

Generatin

Fig. 9 Improvement comparison with and without re-
initialization of population

Population size=1000
No. of crossover percent=95

No. of mutation percent=1
o 15 30 45 60 75 90 105 120 135
. _ Generation _
Fig.10 Genetic Algorithm performance on different number of
cities

33

Run time (sec.)

Improvement percentage

55
50
45
40
35
30
25
20
15
10

600
500
400
300
200

100

Number of cities

Fig.12 Bell Lab.Genetic and Minimum spanning tree
algorithms performance on different number of cities

34

. e |
0 100 200 300 400 500 600
Number of city
Fig. 11 Genetic Algorithm computing improvement on
different number of cities
——Bell Lab
—=— Genetic
——MST
100 200 300 400 500 600

[Log (Run time)

Improvement percentage

2.5

1.5

0.5

55 |

50
45
40
35
30
25
20
15
10

Slope= 1.0166
R = 09386 A
A A
& MST
A Genetic
Slope = 2.5467
R*=0.9867
1 1.3 1.6 1.9 2.2 2.5 2.8
Log (N)
Fig. 13 Relationship between the number of cities (N) and
Run time
& Bell_Lab
—&— Genetic
—e—MST
—
0 100 200 300 400 500 600

Run time (sec.)

Fig.14 Comparison of improvement for Bell Lab .Genetic
Algorithm and MST

1200
1000
800

600 W

400

Y coordinate

200

0 200 400 600 800 1000 1200 1400 1600

X coordinate
Fig.15 Optimal solution on 52 cities problem (7542)

1800

1200 |,

1000
800 |
600

400

Y coordinate

200

0 -
0 200 400 600 800 1000 1200 1400 1600

X coordinate
Fig.16 Solution of 52 cities problem with Genetic Algorithm
(8168)

36

1800

1200

1000

800

600

Y coordinate

400

“

200

0 = |
0 200 400 600 800 1000 1200 1400 1600 1800
X coordinate
Fig. 17 Solution of 52 cities problem with Bell Lab
Algorithm (7625)

1200

1000

800

600

Y coordinate

400

200

0 200 400 600 800 1000 1200 1400 1600 1800

X coordinate

Fig.18 Solution of 52 cities problem with MST Algorithm
(9490)

3]

0.

References

Aarts, E.H.L.. Korst. J.H.M. and Laarhoen, P.J.M. “Simulated annealing™. In Local
Search in Combinatorial Optimization. Aarts, E. and Lenstra, J.K.. Editors, John

Wiley & Sons Ltd. New York, pp. 91-120, 1997.

Cheriton, D. "Finding minimum spanning trees". SIAM J. Computing 5(4):724-

742.1976.

Cormen, T.H., Leiserson, C.E. and Rivest. R.L. Introduction to Algorithms.

McGraw-Hill Book Company, New York, pp. 916-973, 1990.

Davis, L. “Job shop scheduling with genetic algorithms™. In Proceedings of the
Second International Conference on Geneltic Algorithms. Lawrence Eribaum
Associates. Mahwah, NJ. 1985.

Davis, L. Genetic Algorithms and Simulated Annealing. Pittman Press, London, 1987
Doolittle. D. P. Population Genetics Basic Principles. Springer Verlag, New York.
1987.

Eshelman, L.J. “The che adaptive search algorithm: How to have safe search when
engaging in nontraditional genetic recombination™. In Foundations of Genetic

Algorithms-1. Rawlins, G. I. E.. Editor, Morgan Kauffman, pp. 265-283,1991.

Gerhard, R. The Traveling Salesman Computational Solutions for TSP Applications.

Springer Verlag, New York, 1991,

38

10.

L

14.

16.

17.

Goldberg, D. E. and Lingle. R. *Alleles, loci and the traveling salesman problem™. In
Proceedings of the Second International Conference on Genetic Algorithms.

Lawrence Eribaum Associates, Mahwah, NJ. 1985.

Goldberg, D.E. Genetic Algorithins in Search, Optimization, and Machine Learning.

Addison-Wesley, Reading, MA, 1989.

Grefenstette, J.. Gopal, R.. Rosmaita, R. and Gucht, D. “Genetic algorithms for the
traveling salesman problem™. In Proceedings of the Second International Conference

on Genetic Algorithms. Lawrence Eribaum Associates, Mahwah, NJ. 1985.

. Hertz, A.. Taillard, E. and Werra, D. “Tabu Search™. In Local Search in

Combinatorial Optimization. Aarts, L. and Lenstra, J.K.. Editors. John Wiley & Sons

[.td. New York, pp. 121-137, 1997.

. Hochbaum, D.S. and Goldschmidt, O. “K-edge subgraph problems™. Discrete

Applied Math, 74(2): 159-169.1997.

Holland. J.H. Adaptation In Natural and Artificial Systems. The University of

Michigan Press. Ann Arbour, 1975.

. Holland, J. H. Adapration In Natural and Artificial Systems. MIT Press, Combridge.

1992.

Krushal. J.B.Jr. “On the shortest spanning subtree of a graph and the traveling

salesman problem™. Proc. AMS 7:1. pp. 48-38, 1956.

Lawler, E.L.. Lenstra, J.K.. Rinnooy A.H.G. and Shmoys, D.B. Editors, The

39

(B
o

25.

Traveling Salesman Problem. John Wiley & Sons, New York, pp. 1-31,1985.

. Lin. S. “Computer solutions of the traveling salesman problem™. Bell, Svst. Tech. ..

44:2245, 1965.

. Lin. S. and Kernighan, B. “An effective heuristic algorithm for the travelling-

salesman problem™. Operations Research, 21(2):498-516. 1973.

. Louis, S.J. “Genetic algorithms as a computational tool for design™. Ph.D. thesis.

[ndiana University, Indiana University. 1993.

. Martin. O., Otto, S. and Felten, E. “Large-step mark of chains for the traveling

salesman problem™. Complex Systems, 5(3): 299-326., 1991.

. Moscato, P. and Norman M.N.. “On Evolution, Search, Optimization, Genetic

Algorithms and Martial Arts: Towards Memetic Algorithms™. Caltech Concurrent

Computation Program. C3P Report. 1989.

. Moscato, P. and Norman M.N.. A 'memetic' approach for the traveling salesman

problem-Implementation of a computational ecology for combinatorial optimization
on message-passing systems™. In Parallel Computing and Transporter Applications.
Valero. M. Onate. E. Jane, M. Larriba and Suarez, B., Editors, 10S Press.

Amsterdam, 1992,

. Naphade. K.S. and Tuzun, D. “Initializing the Hoplield-Tank networks for TSP using

a convex hull: A computational study™. In Proceedings of the Artificial Neural

Networks in Engineering Conference. V.5, pp399-404, St. Louis, 1995

Padberg. M. and Rinaldi, C. "Optimization of a 532-city symmetric traveling

40

26.

29.

31.

‘sl
ol

salesman problem by branch and cut™. Operations Research Letters, 6(1):1-7. 1987.

Prim. R.C. “Shortest connection networks and some generalization™ Bell System

Technical J.. 36:1389-1401. 1957

. Reinelt, G. 7SPLIB. University of Heidelberg. http://www.iwr.uni-

heidelberg.de/iwr/comopt/soft/ TSPLIB9S/TSPLIB.html, 1996.

. Smith, D. *Bin packing with adaptive search™. In Proceedings of the Second

International Conference on Genetic Algorithms. Lawrence Eribaum Associates.,

Mahwah, NJ. 1985.

Suh, J. and Gucht. D.Van. “Incorporating heuristic information into genetic search™.
In Proceedings of the Second International Conference on Genetic Algorithms.

LLawrence Eribaum Associates. Mahwah. NJ, 1985.

. Whitley. D. and Mathias K. “Genetic Operators, the Fitness Landscape and the

Traveling Salesman Problem™. In Parallel Problem Solving from Nature-PPSN 11.

Manner. R. and Manderick. B.. Editors, North Holland-Elsevier, pp. 219-228. 1992,

Whitley. D. and Dzubera, J. *Advance Correlation Analysis of Operators for the
Traveling Salesman Problems™. In Parallel Problem Solving from Nature-PPSN 111
Davidor. Y.. Schwefel, H.P. and Manner, R., Editors, pp. 68-77. Springer-

Verlag,1994

. Wilson, G.V. and Pawley. G.S. “On the stability of the traveling salesman problem

algorithm of Hopfiled and Tank™. Biological Cybernetics, 58:63-70. 1988

. Zurada, J.M. Introduction to artificial neural systems. West Publishing Company.

41

New York. 1992

42

APPENDIX

Crossover Function Code List

/-**iitwioi*i*tt******&*&++&t+i&i*iﬁi*i**itiiiiiitiii*ﬁi**ii+iﬁi*it*ii/

/=
J*
J*
[+
/4
e
Y e
/=
/-
/*

Greedy crossover was suggested by Grefenstte(1985).In "proceedings
of the Second International Conference on Genetic Algorithm".
Lawrence Eribaum Associates,Mahwah, NJ.
This function is created by Jiming Wu,July 10,1899.
parameters: int n--Number of genes on one chromosome

int* AQ and int * BQ--A pair of integer chromosome,

each contains N genes

float *DISTANCE--The distance matrix among genes
return a pointer of array (after crossover)
The function is Free to use.

j*it*i&ii***i**ii&**iiiti**i**t*iitiii*******i&i##&*i#tiii&i&il*iiiﬁii/

int” CGA::greedy crossover (int n,int *AQ,int *BQ, float *DISTANCE)

{

int i, k,1=0,m,loci=0;

int anext; /* next gene in A chromosome */

int bnext; /* next gene in B chromosome */

flocat avalue,bvalue;/* Distances of current gene and next gene */

/* two chromosome pieces.*/

int* check=new int[n]; /*check if genes exist in array*/

int* CQ=new int[n]; /*resulting chromosome for return*/
for{i=0;i<n;i++)/*initialize all genes not exist in chromosome */

check[i]=-1;/*if gene exists in chromosome, then value=0 */
cCOl0]=A0[0]; f*initialize first gene*/

check [AQ[0]]1=0; /*use parent AQ as template*/

do{/* crossover*/
for (k=0;k<n;k++)/*find the same gene in parent B*/
[
1f {(CQ[laci]==BO[k])
break;

forim=0;m<n;m++)/*tind the same gene in parent A*/

43

if (CQ[loci]==AQ[m])

break;

if {(k==n-1)/*if it’'s the last gene,the next is first gene*/
bnext=BQ[0];

else if (k<(n-1))
bnext=BQ[k+1];

if (m==n-1)
anext=AQ[0];

else if (m<(n-1))
anext=AQ[m+1];

1f ((check[bnext]==0) && (check[anext]==0))

{/*if anext and bnext both already exist in CQ */
/*select one doesn't exist in CQ*/
while(check[1]==0)

{

14+;
}
loci++;
CQ[locil=1;
check[l]=0;

¢

else if (check[bnext]==0)/*if bnext exists in array*/

{ /*the next gene is anext*/
loci+t;

CO[loci]|=anext;
checklanext|=0;

}

else if (checklanext]|==0)/*1f anext exists in array*/

{ /*the next gene 1s bnext*/
loci++;

CQlloci]=bneaxt;
check|[bnext|=0;

}

else/*if both not ezist in array*/

{ /*select shorter one */
avalue=DISTANTE[AQ[m]] [anext]:
bvalue=DISTANCE RO k]] [bnextl;

1f (avaluexbuvalue)

else

}
lwhile(loci<n=1);
delete check;

return CQ;

locik+;
CQ[loci]=bnext:

check[bnext]=0;

loci++;
CQ[loci)=anext;

check[anext]=0;

45

VITA

JIMING WU
Candidate for the Degree of
Master of Science
Thesis: A GENETIC ALGORITHM FOR THE TRAVELING SALESMAN PROBLEM
Major Field: Computer Science
Biographical:

Personal Data: Born in Wuxi, Jiangsu, People’s Republic of China, February, 17, 1960,
the son of Xiji Wu and Jingxian.

Education: Graduated from Xian High School, Wuxi, Jiangsu, People’s Republic of
China, July, 1976, received Bachelor of Agronomy Degree from Nanjing
Agricultural University, Nanjing, People’s Republic of China in July, 1982;
received Master of Science Degree in Plant Breeding and Genetics from Nanjing
Agricultural University, Nanjing, People’s Republic of China in January, 1986,
received Doctor of Philosophy Degree in Crop Science from Oklahoma State
University, Stillwater, Oklahoma in December, 1997. Completed requirements for
the Master of Computer Science at Oklahoma State University, Stillwater,
Oklahoma, in May, 2000.

Professional Experience: Assistant professor, Department of Agronomy, Nanjing
Agricultural University, Nanjing, People’s Republic of China, January, 1986
Lecturer, Department of Agronomy, Nanjing Agricultural University, Nanjing,
People’s Republic of China, June, 1987. Assistant Director and Researcher,
Wheat Breeding Institute, Nanjing Agricultural University, Nanjing, People’s
Republic of China, January, 1990 Research assistant, Department of Agronomy,
Oklahoma State University, August, 1994 to September, 1997. Teaching
Assistant, Department of Computer Science, Oklahoma State University, 1999

