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A Genetic Algorithm for The

Traveling Salesman

Problem

ABSTRACT

This paper uses a modified Genetic Algorithm (GA) to attack th Traveling Salesman

Problem (TSP). Instead of using a traditional GA, Greedy-Crossover, swap mutation and

Eshelman's selection method are employed to solve the TSP. The effects of the

crossover percentage, mutation rate, population size and number or generations on the

tinal solutions are evaluated. The run time of GA, Bell Labs, and Minimum Spanning

Tree (MST) Algorithms are compared. Preliminary results indicate that increasing the

crossover percentage can improve the lina] result whi Ie mutation does not show the

helpful effect in improving the solution. The results become hetter as population sil'.e

enlarges in this system (100-1000). Addi tionally, the relationshi p hetween run ti mc and

population size is Iincar. Re-i ni tial ization 0 r the population can prevent the populatioll

from convergence but does not improve the solution. The run time or(jA is better than

that of MST but worse than that 0 f the Bell Labs Algorithm



Chapter I

Introduction

If a ale man starts from hi hom and needs to visit eery cit on his territory list

exactly one time and then return home. he could randomly pick a path or tour that

covered each city. However, if the salesman want to save time and energy he \ ill tr to

fi Ild the shortest tour so that he can vi it each city once and return home. Thl.: shortest

path for the trip can be obtained by adding up the distances Jor eaeh possible path and

comparing them. However as the number of cities to be visited increases, the time

required to calculate the shortest path increa es as well. The problem of d termining the

shortest tour has been named the traveling salesman problem (TSP), and is considered

one of the classic optimization problems.

The traveling salesman problem has been the subject or mathematicians' interest

since 1759 (I.awler cl al.. 19R5). [n 1856. [lamilton had devdoped his "!cosiall

Calculus" ror graph theory and marketed the Icosian Game. where the aim was to linish a

[IJmiltoniall cycle using numbered pegs and a playing board. [n 19JO. Menger

mentioned the "messenger problem" referring to the problem of linding the shortest

r lami [tonian path. The term "traveling salesman prohlem" may have heen used lor the

lirst time in 1931 or 1932 when A. W. Tucker heard the term from I[assler Whitney 01'

Princeton niversity (Lawler ct aI., 1(85).

/\ graph is dclined as a finite set of vertices, some pairs of which are connected hy

edges li.e .. the G=(V. F) notutionl. /\ directed graph (or digraph) is a grarh where a
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direction is specifi d for each of the dg in th graph. c 1 in a graph i th n

defined a a et of ertice of th graph f; r which it i po ibl to rna from erte to

vertex along edge ofthe graph. All rtices ar ncount red exactly one , and th

nding vertex is th ame as the beginning ertex. If a c c1e contains all of th ertice

of the graph, it is ref rred to as Hamiltonian. Thus, the traveling 'alesman probhll ma

be described a the problem of di covering a Hanliltonian c de ith the shortest I ngth.

When calculating length, it is assum d that the weights of the edges used to calculate the

length are nonnegative.

Th traveling alesman problem i generally classified as a combinatorial

optimization problem. The problem size n equates the number or cities to be visited.

Since each city is to be visited only one time, the number of possible tours that can be

taken is (n-l)! while the original city is given. ow, if the number of cities to be

considered is ·mall. each of the possible paths may be easily checked. However. as the

number of city increases. th number or possible solutions becomcs very large. For

example. irthc salesman must visit 6 cities, there arc only 5! -= 120 rossihlc tours.

However. if the numbcr orcities is increased to 30. the number orpossihle solutions

increases to exceed 8.841 x 1030 Thus, solutions tor finding the shortest tour length

without checking each and every possible path must be employed ir a solution is ever to

be found lor larger scale traveling salesman problems.

The ultimate goal ofTSP research is to tind a solution algorithm that gives an

ortimal solution in a time that has a polynomial variation with the size n orthc prohlem.

The be t that researchers have been able to achieve. however, is to solve it in a time that
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vane exponentially with n. Ther ar ev raj approach for I ing the difficult

problems. One approach is to a sume that th re i no guarant e that an optimal oluti n

wi II be found in a reasonable amount of time, but th re i till an attempt to find th

optimal solution and a great deal of tim i spent finding it. nother approach is to use

an approximation. where time and optimality are traded off. and an approximate solution

is accepted. However- when evaluating algorithms Cor the solution of the TSP. some t pc

of criteria must be developed for comparisons (Lawler el aI., 1985)

rhe problem is said to be polynomial (P) if an algorithm can olve the problem in

a time that increases polynomially with the size n ofthe problem. There also exists a

class of problems that can be tested in polynomial time as to whether or not a

hypothetical solution to the problem is correct. Problems that can he solved using non­

deterministic algorithms are said to be non-deterministic polynomial or NP (Carmen et

at.. 1990). finally. there is a NP-complete class of problems. They are considered to he

equivalent to each other in the sense so that iI' a solution to one kind or P-complete

prohlem were 10 he l(lund. solutions to all of'them could be round, Thus. a problem is

called NP-complck irevery problem in NP is polyno111ially reducihle to it. Ilowever,

LhelT are ways or approximating the solutions to these problems with some specifications.

Thus, arbitrarily similar solutions may be obtained. The approach is to use

approximation algorithms that will tind "ncar-optimal" tours.

In order to evaluate the performance or various algorithms I()r "solving" the TSP,

a common method of comparison is necessary To compare the results or various

heuristics. arbitrarily large TSP's with known optimal solutions may be used. However,
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generating the e "testable" T P instance

task.

a ver difficult and computationall complex

Fraclal construction have been used to generate in tance of the tra eling

sale man problem with known optimal solution. ince the optimal tour for these TSP

instances are known. this will allow the testing, evaluation, and comparison orvariolls

heuristics based on their performance for large TSP instances (Moscato and orman.

1994).

1.1 TSP Formulations

There are several TSP formulations and they are usuall) symmetric. For any two

citics. numbered A and B, the distance from !\ to B is the same as that Ji'om l3 to 1\. We

need not to distinguish between a tour and its reverse path. The symmctric formulation is

de1ined as given the complete graph C=( V. £) to find a shortcst Hamiltonian tour in (j

I\n asymmetric I()rmulation occurs when the length of traveling rrom city i to city) is nol

necessarily the same as that of traveling li'om cityj to city i. The asymmetric case can he

trans!ormed and solved as a symmetric TSP (Gerhard, 1(1)1)

Ihe other formulations an; listeu in TJhil; I. In reJlity, they arc modilications or

the general TS P.

Table I. rsp rorl11ulatiuns

Description Solution

The Mulli-salesmen Selecting a suhset of the salesmen. Transl()fJllCd to a
Prohlem assigning tours. unu ensuring that each svmmctric

city is visited only once \'lith the TSP(Cierhard,
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mi nil11lll11 total cost 1991 )

Graphical TSP Seeking the shortest Eulerian cycle in Transformed 10 a
the graph G. Finding a closed path thaI symmetric TSf>
requires the shortest possible path length (Gerhard, 1991)
for which the salesman visits each city

The Bottleneck TS P Finding a tour where the longest edge is 'olved as a
as short as possible s 'quence orT 'Ps

(Gerhard, 19(1)

The Prize Collecting Minimizing a cycle in G containing the
TSP node Vo such that the sum 0 r the edge

weights of the cyc Ie minus the sum of
the benefits of the nodes of the cycle

The Vehicle Routing Finding the minimal number of vehicles Similar as mulli-
TSP needed to visit each of the locations salesmcn probk:m

The Eucl idean TS Finding the shortest tour through a I'SP for a smaller
Selection Problem subset k of the cities, k<n set of cities

Circulant TSP Finding a minimum weight Hamillonian Complexity of this
cycle in a weighted graph with a problem is not
ei rculant distance matrix known

Chinese Postman finding the shortest c1llsed walk in (i I':quivak:nl to the
Prohlem containing all edges at Il'ast once (i.L: .. (iraphical '["SP

cities may be visited multiple times) form ulalion

On-line TSr Minimizing distance traveled or Solutions lhat are
cOll1pletion lime. All oCthe inputs may computed from
not be known in advance past events

The Angular-Metric Finding the tour which minimizes lhe Related to lhe
Tsr total angle cost tor the tour cycle-cover

prohlcm

TIll.' Rural Postman Finding the shortest closed walk. in Ci ('hinesc postman
Prohlelll containing all edgcs in I: (I'. L) problem i (' F I·

Maximum Latency Finding the lour that maximizes the
Tsr latency I(i). Latency is lhe distance

traveled hefore lirst visiting city PI
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Minimum Latency Finding th tour that minimize the
Problem latenc I( i). Latency is the distance

traveled before first visiting city PI. That
is to minimize the average time that a
city waits to be visited

Eulerian Tour Problem Finding the shortest tour in Eulerian solved in
polynomial time

Hamiltonian Cycle Deciding if G contains a Hamiltonian Solving a
TSP cycle. A Hamiltonian cycle exists irand symmetric

only if the shortest Hamiltonian cycle in T. P(n=[VI)
Kn has length n

Bipartite TSP Finding the optimal bipartite tour
starting and ending at a designated blue
vertex s and visiting all vertices. A tour
is bipartite if every pair of adjacent
vertices in it have different colors

Remote TSP Finding a subset P or V of cardlnalit. k
such that the cost of the minimum TSP
tour on GI Pl is maximized

The Geometric Finding the shortest tour that intersects A general ized the
Covering Salesman all of the neighborhoods(mayhe overlap) Euclidean TSP
Problem and returns home

The Tree and Tour Finding a tour I'or which the travel and ;\ minimum weight
('o\'cr TSP purchase eosts arc minimized tree and closed

walk, P-hard

K-templatc TSP Processing jobs without interruption on O(n log n)
a single machine. K unique templates
availahle for LIse

Exact TSP Finding a path or a given exact length NP-hard

1.2 Applications of the TSP

The traveling salesman problem is an important computational model lor II v,lricty

or'reasons While the experiment that sends the poor salesman on various routes mayor

mav not be valid, this does not constitute an application that applies to everyday lite.
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However. the concept behind the T P form a major ompon nt f more mplicat d

models. uch a routing a t1eet f v hide tor pickups and d Ii eri . r m r

the sort of problem that a nit d Parcel er ice ( P ) d pot might 01 n a dail basi.

It can also b used to mod I a numb r ofprobl m that do not eem to b r lat d (Wilson.

and Pawley. I988).

While the TSP is an interesting problem to addre s. the amount or research that

has heen and is currently being done to try to tind an optimal (or nearl optimal solution)

i. motivated by more than mathematical curiosity. As mentioned abov • there arc a

number of real world problems that may be formulated a a type ofTSP. The t pical

applications of the traveling salesman problem include computer wiring. cutting

wall paper. job sequencing and scheduli ng in a manufacturing plant. and c lusteri ng 0 r data

arrays et al. (Wilson and Pawley 19RR).

l.~ Heuristic Approaches

Ilcuristics fe)t· solving the traveling salesman prohlem arc methods wherehy the

optimal solution to the TSP is sought. While the usc or heuristics may not he guaranteed

to lind th optimal solution at all, or at least not in real time. a large numher of'them will

lind the optimal solution lor at least certain cases or the traveling salesman prohlem

I.J.1 Memeti.c Algorithms

Mcmctic Algorithms arc a population-based approach for heuristic search in

optimization prohlems. These algorithms have shown that they arc orders or magnitude

l~lstcr than traditional Genetic Algorithms Ie)!' ccrtain prohlem domains. I~asically. thcy



combine local earch heuri tic with ro r operator . F r thi r n, om

researchers have viewed them a Hybrid G n tic 19orithm (a h brid b t en a local

search and aero sover operator). ince th are rno t uitabl f r distribut d rnputing

system (including het rog neous sy terns. such a tho e compo ed b networks of

workstations), and parallel computer systems. they have been referred to as Parallcl

Genetic Algorithms.

The first use of the term Memetic Algorithms in computing literatur' appeared in

19R9 (Moscato and orman, 1(89). This paper c1iscu ses a heuristic which uses

Simulated Annealing for a local search with a competitive and cooperati e game bet cen

agents, interspersed with the use of crossover operators.

This method is gaining wide acceptance, especially in well-known combinatorial

optimization problems where many instances have been solved to optimality and where

other metaheuristics have failed. An open research issue is whether features of the

chosen representation choscn has led to characteristics o!' the ohjeclivc I"um.:tions which

arc dlicienLly exploited by a memetic approach (Moscato and Michael. 19(2).

1.3.2 Tabu Search

Standard search heuristics tart with a lour, and in order to optimize the tour, they

exchange a number of edges in the current tour with edges in the "neighborhoods" 01"

those being considered. but not in the current lour. fter the edges arc exchanged, the

operation is cvaluatcd by measuring the decrease in tour length. However, these standard

search ahwrithms have limited ohtainable pcdormance, due to the size of the
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neighborhood. The tabu earch method. a ugg st d b.. Zacharia en and Dam mark

edges as "tabu" v hen they have b en recently vi ited or are imilar to recently i it d

solutions. and edges ar exchanged for the b t r c nt choice cho en from the tabu pace

(Hertz et al.. 1997).

\.3.3 Simulated Annealing

When simulated annealing algorithms are applied to the traveling salesman

rroblem (Davis. 1987). a sequence of tours is constructed. Each step 01" the sequence is

obtained by moving to a different tour (notneeessarily a close one). Martin et a!' (199\).

hOVo,iever. the simulated annealing and local search heuristics can be combined so that a

local optimum will be explored. This heuristic will produce large, global changes, thus

overcoming local minima. The results show that the modified simulated annealing is able

to solve large TSP instances to optimality (Aarts et al.. 1997)

\.3A cunal ctwnrks

Onc possible solution ror the traveling salesman problem (TSP) is to apply

gradicnt-lypc neural networks (iloplieid Nets). Ilowevcr. Iloplieid Nels (liN) are

gencrally limited to very small rsp instances. usually arounu 10 cities (Naphade und

luzun. 19(5). Thus. the general H formulation is not scalcable to practical sized

TSP·s. In neural optimization, it is essential that valid solutions be stahle lixed points lll"

the dYnamics: otherwise. lhe network wilillot convef!2.C to these solutiolls anu cannot. ~

possihly lind them. Ikhzad Kamgar-Parsi and 11chroO/. Kamgar-Parsi prove thut the

originailloplield- LlI1K (I IT) rormulation urthe rraveling Salesman I'roblem is lluwcd_
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in that none of the alid tour ar table fixed points in th infinite gain limit

(Zurada, I992). Wh n the n uron gain is finite, alid t ur b com onl marginal!

stable. This helps explain th rath r poor p rformance of the HT formulation in finding

valid solutions. Behzad Kamgar-Parsi and Behrooz Kamgar-Par i al 0 anal ze th

stability of everal modified HT formulation. and how that olne are indeed correct and

effective. The implication of this work is not that the Hopfield network is an inf riar

alternative for solving combinatorial optimizations. On the contrary, it shows that

dynamical stability analysis is a tool that can help the Hopficld network realize its rull

potenttal by identifying l1aws in a heuristic 1ormulation ( aphade and Tuzun. 19(5).

1.4 Approximation Algorithms

As oppo ed to heuristics which try to l'ind the optimal solution to the traveling

sale 'man problem, approximation algorithms tind olutions that are close enough Lo the

optimal solution. The amount of time required to tind these approximate solutions can

often be predicted.

1.4.1 Approximation Algorithms

Since it is oncil impractical or impossible to lind the optimal solution to a TSP. it

is desirable to lind solutions Lhat arc close to opLimal with algorithms Ihat run in

polynomial time.

I'here are two popular algorithms that approximate the ortimal tour within a

guaranteed multiple orthe optimal. These algorithms only work irthe problem satisli<.:s

the IriangJc 1nclluulity. The Triangc In<.:quality is Dj(= I)jk + [hi. m<.:aning that the

I I



shorte t path between t a nodes i dir tl b t nth m. Thi rna n t b true in am

instances. For example. a direct flight from Binningham to Indianapolis may be more

expensive than a flight from Birmingham to Chicago plus a flight from Chicago to

Indianapo lis.

The first algorithm (KruskaL 1956; Prim.1957) g nerate the t:ulerian tour ofth

graph formed by having two edges for each edge in the Minimum Spanning Tree (MST).

The tour icon tmcted by removing the node from the Eulerian tour after they ha e

already appeared in the tour. Thi tour is guarant ed to be less than or equal to twice the

weight or MST. and the weight of MST is less than the weight or the ortimal tour.

Chri ton' algorithm (Christon. 1976)), the econd algorithm, is very similarto

this. Instead of doubling the edges of MST. it adds the edges of the least matching of the

odd weighted nodes to the edges of MST. It then derives the approximate tour from the

Eulerian tour It has the best known theoretical performance, with a guarantee of hein '

\vithin 3/2 orthe optimal tour.

Although these algorithms have guaranteed rer!()rmanccs. othcr algorithms can

lIsually perrorm better with similar running time. A standard approach to generating

good tours is to start with a tour T, and make some changes to produce '1", which has a

shorter length than T. A heuristic which uses this approach and produces good results is

the k-opt. The k-opt replaces k edges with other k-edgcs so that the resulting tour is

shorter. The k edges replaced can be chosen pseudo-randomly, or all possible k-turlcs or

edges can be tried (Lin. ISl56: Lin and Kernighan. 1973: I-Iochbaum and Goldschmidt,

ISlSl7).
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1.5 Genetic Algorithms and Evolutionary Programs

The genetic algorithm (Whitley and Mathias. 1992) is a model of machine

learning which derives its behavior from a metaphor of tile processes of evolution in

nature. This is done by creating within a machine of a population of indi idual

represented by chromosomes: in essence. it is a set of character strings that are analogous

to the base-4 chromosomes that seen in human D A. The individuals in the population

lhen go through a process of evolution.

Ihe processes of evolution in nature seem to boil down to difICrcnt individuals

(ompctlllg for resources in the environment: some are better competitors than others.

Those individuals that are better competitors are more likely to. urvive and propagate

their genetic material. In nature. sexual reproduction allow' the creation of genetically

difterent offspring that are still of the same general species. At the molecular level.

chromosomes exchange "chunks" of genetic information and then separate. This is the

recombination operation. which is generally reterred to as crossover hecause of the way

that genetic material crosses over from one chromosome to another (Doolittle. 19X7).

I'he crossover operation happens in an environment where the selection of who

gets to mate is a function oCthe fitness of the individual (i.e. how good the individual is

~t competing in its environment). Some genclie algorithms usc a simple ('unction 01' the

litncss measure to select which individuals undergo genetic operations such as crossover

or asexual reproduction (the propagation of genetic material unaltered). Other

Implementations LIse a model in which certain randomly selected individuals in a

subgroup compete and the fitlest is sclected. The two processes that contribute to

13



evolution the most ar cro 0 r and tim s ba d s Ie ti n-r pr ducti n. it turns

out. there is mathematical proof to indicate that th proc of fitn s pr portionat

reproduction j • in fact, nearly optimal in ome s n e ( hit! and Dzub ra. 1994)

Therefore. in practice. this genetic model of computation may be impl ~mented h

having array of bits or characters repre ent the chromosomes (Louis, 1993). Simple bit

manipulation operations allow the implementation oC cro over, mutation and other

operation. !\lthough a 'ubstantial amount of research has been performed on variablc­

I 'ngth . trings and other structures, the majority of work with genetic algorithms is

tocused on fixed-length character strings.

When the genetic algorithm is implemented, it is usually done in a manner that

involves the following cycle: Evaluate the Jitness of all of the individuals in the

population (Whitley and Dzubera. 1994). Create a new population by performing

operations uch as crossover. titness-proportionate reproduction and mutation on the

individuals whose litl1l:ss has just been measured. Discard the old population and iterate

using the new population. Onc iteration of this loop is referred to as a generation. The

lirst gencration (generation 0) of'this process operates on a population of randomly

generated individuals. From there Oil. the genetic operations. in concert with the litness

measure. oper<.lLe to Improve the population.

In contrast. evolutionary programming. originally conceived by Lawrence in 1l)60

(Moscato and 1 orman.1989: 1992 ). is a slochaslic optimization strategy similar to

genetic algorithms that instead. places emphasis on the hehaviorallinkage hetween

parents and their olfspring.

14



For volutionar programming ther is an und rl ing a umption that a fitn ss

landscape can be characterized in term f ariabl , and that th r is an optimum

olution (or multiple optima) in term of tho e variabl s. For xample, if on w r tr II1g

to find th shortest path in a traY ling alesman problem. each solution would be a path.

I"he length of the path could b expre 'ed as II number, which", ould serve as the

solution' fitness. The litness landscape lor this problem could he charact 'rized as a

hypersurface proportional to the path lengths in a space of possible paths. The goal

would be to find the globally shortest path in that space. or more practically, to lind short

tours very quickly (Moscato and Norman, 1989).

I"he basic evolutionary program method involves three steps which are rcpeatecluntil

a threshold for the number of lterations is exceeded or until an adequate solution is

obtained:

J. Choose an initial population of trial solutions at random. The numher of solutions

ill a populutioll is highly rekvant to the speed of optimi/.atioll. hut no delinite

answers arc availahle as to how many solutions arc appropriate (other than ,I)

and how many solutions arc just wastcrul.

I Each solution is replicated into a new population. I~ach of these offspring arc

mutated according to a distribution 01 mutation types, ranging from Illinor to

e.\trcllle with a continuum of mutation types hetween. The severity oflllutation is

.iuJged on the hasis of the functional change imposed on the parents.

) Lach olTspring solution is assessed hy computing its litness. Tyrically. a

15



toeha tie tournament i held to detem1ine olutions to be r tain d for the

population of solution, although this i oeca ionall performed deterministically.

There is no requirement that th population ize be held constant or that onl (.I

single offspring be g nerated from each parent.

The til' t efforts to lind nearly optimal solutions to TSP busing U are those or

Goldberg using Partial Mapped Crossover (Goldberg, 1(85) and Urcrenstctte using

Greedy Crossover (Grcfen tette, 1(85). Davis, Smith, Suh and Van Uucht also tried to

solve TSPs with arious crossover operators (Davis, 1985; Smith, 1985; Suh, 1(85). [n

this thesis, [ compare the performance of a genetic algorithm with a Minimum Spanning

rree (Prime. J(57) and Bell-Labs (Lin. 1965, Lin and Kernighan, 1(73) algorithm using

TSPLIB Data (Reinelt.1996) and randomly generated data to initialize lours or

individuals.
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hapter II

Genetic Algorithm naly and Method

2.1 Principle of Genetic Algorithms (GA)

Ttl ha ic principles of G ere first d'sign d by John Holland (Holland,

19r .1992). A genetic algorithm work' with a populatIOn of indi idual strings

(chromo omes), each representing a po sibk solution to a given problem. Each

chromosome is assigned a Iitne s value according to th result of the litncss function.

I lighly fil chromosomes are given more opportunities to reproduce ancllhc o!'1spring

share tCatures taken from their parents.

Three operators are employed in CiA. They arc selection. l:fossovcr and mutation.

Suppose ru) is the population qf chromosomes at generation i. the procedure of" a simple

(i/\ is as ['o]]ov"s:

';F, I!

J 11 i t j ali =: "= t' ( i

I·>; a1 U a t i~ P ( i. ) '/~vdluat,,= titness

1\lhLJe?(trrrrina t i.,)n r:nncJ~,t ion filJ';(')

doj

.<::; e t~ ( : t P ( i t-l) r- rom P ( j )

l;r0.3S0ver 2(i.+1,

if~, L ~ t j GnP (i 1)

f • 'J. J li r, t f: P ( : ,-] )
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Evaluation of each chromo ome determine hich is better, ba ed on a titness

function. Selection is a proce s in which individual chromosomes are copied according to

their titness function value. The trad.itional G u es a 'election v here the probability of

selection is proportional to the litness value (roulette wheel selection): highly IiI

individual' have a high I' probability of being selected for mating to produce the next

generation. Recombination include two operators: cros over and mutation. The

traditional crossover operator randomly choose' a crossover site, cuts chromosomes into

two pieces. and swaps the tails to producc two offspring chromosomes as shown in

lallowing:

ABC 0 E f G H I

X
abc d e L g h

t
A B C o E f g h 1

abc d e f G H I

Fig. 1. Traditional Crossover opcrator

A mutation is a random change of the valuc 01' a single (gcne) hit. The traditional

mutation operator randomly chooses a bit and changes the bit from I to 0 or 0 to I on the

chromosome as presented in the lallowing
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I 01 0 1 01 0 1 0 --------~ 1 0 I 0 ILL 0 1 0

I-----------.~ Mutation site

Bef(He MUlation

2.2 Modified GA for the TSP

After Mutation

The tradltional (1;\ docs not lit the TSP since the bin8ry representation can not

distinguish the differenl cities. FUrihermorc. crossover m8Y produce illegal tour.

Modification must be made before implementation.

2.2.1 Fitness Function Definition

The evaluation function for the N cities two-dimensional Euclidean TSP is the

sum urthe Euclidean distances between every pair of cities in the path. The litness lor the

TSP. therefore. is defined as the following:

I "

hines.\' ='" (X -X )2 + (y -y )"'L I I-I I 11
, I

Where. XI.,I'1 arc the coordinales of' city i. and XII' YII equal 10 XlI • .I'li

2.2.2 Representation of Encoding

Some changes must be made to the traditional genetic algorithm to solve TSPs.

Binary chromosomes cannot be used to encode the TSP because the TSP is a sequential

problem. A path representation where the cities are listed in the order in which they arc
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vi it diu ed. uming there are 6 citie , number dO, 1,2,3,4, , and if a al man

goe from city 3. tllTough cit O. city I, city 4. cit 2. cit and r turn back t it 3, th

chromo om will be 3. 0, 1,4.2 and 5. For th citi s T P, the r pI' ntation wi II

initialize the population by randomly a signing 0 to -I into I ngth chromo omes and

guaranteeing that each city appears exactly only once on each chromosome. The

chromosome must contain unique genes in order to make 'ure the tour is legal, as will be

explained.

2.2.3 Crossover Operator Modif'ication

Because of above repre 'entation, the traditional crossover and mutation operators

are 110t suitable for the TSr. The following figure shows how traditional crossover

produces illegal offspring, The first child is illegal because city I and city 3 appear

t\.vice. while city 0 and city 5 do not appear at all. The same problem exits ICH the second

child, City () and city:=; appear twice while city I and city 3 <.In not appear.

He/ore cro,\'so \'er

1231450 (parent I )

205 314 (parel1t2)

crossover site

;1jier cmssover

123314

205450

Fig, 2 Production of illegal offspring for TSPs

I'hen: are several crossover operators that can be employed for theTS!', [11 the

program implemented for this study, Greedy Crossover is used. which was invented hy

Grefenstette (Grefenstette. 19R5), Greedy crossover selects the first city of one parent.
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compare the citie leaving that city in both par nt , and ch a th cl er ne to e tend

the tour. If one cit has aJread appeared in the tour, w chao the other cit. If both

ci ties ha e already appeared, we randomly elect a non- el cted cit .

For e, ample, irwe ha e two parents numb red 1,2,3.4.5.0 and 4, I. J. 2. O. 5.

To generate a child using the second parent ;lS the template. v e scle ·t city 4 (the lirst city

orour template) as the tirst cit or-the child-- 4 * * * *. Then we lind the edges after city

4 in both parents: (4. 5) and (4. 1) and compare the lengths 0 r these two edges. (r the

length between city 4 and city 1 is shorter. we select city I as the next city or child . I

* * *. Then we find the edges after city I. (I. 2) and (I. 3). If the length between city I

and city 2 is shorter. we select city 2 as the next city, resulting in 4, 1,2 >I< >I< >1<. Then we

lind the dges after city 2, (2.3) and (2.0). Irthe length between clty 2 and city 0 is

shorter, we select city () as next city 4. 1,2,0 * >1<. The edges after city 0 are (0, I) and (0,

S). Since city I already exists in the child. we select city 5 as the next city, resultlng 4, 1,

2.0, S *. Then the edges alter city S are (5, 0) and (5. 4). We cannot select either one

because both city 4 and city 0 already exist in the child. We select a non-selected city,

which is city:\. Finally. this procedure produces a legal child numhereu4. 1.2,0,5 anu

:\. The same approach can he applied to the other child. resulting in the child numbered

1.2. O. 5.4 and J. After crossover. both om,pring contain the legal chromosomes.

2.2A Mutation Operator Modification

For the same reason. the traditional Mutation operator cannot be used Illr the TSP

and needs to he modified. For example, ira legal chromosome hefore mutation is 1.2.1.

4.5 and O. LI mutation occurs at site 4 LInd the gene has been changed form 4 to 5 which
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generates a new linear chromo orne numb red 1, 2, 3, ,5 and O. 1'h n hromoom

is illegal because city 5 appears twic whil cit 4 disappears. Inst ad ofu ing the

traditional mutation operator. two gene in one chromo om are sleet d aJ1d swap th lr

values. Thus. we till have legal chromo orne after mutation. Th following figure

shows how the swap works:

.. ~

2 3 4 5 0 ----~ 1 5 3 4 2 0

Mutation operator (Swap 2 to 5 mutation)

2.2.5 Selection Specification

In the traditional roulette wheel selection. the best individual has the highest

probability of survival but does not necessarily survive. In thi program, Eshelman's

method is employed to guarantee that the best individual will always survive in the next

generation (Eshelman. 1991). In this method. irthe population si7.e is N. N children are

produced by using the roulette wheel selection and greedy-crossover. Then the N parents

are combined with the N children, these 2N individuals are compared to the averaged

litness value. and the best N individuals arc chosen to propagate to the next generation.

2.3 Othcl' Considerations

In order to test the died of convergence on the result. the program saves the hest

10 individuals and reinitializes the rest of the population in 20 and 50 generations.

i\ Igorithm performance is observed hy testing on randomly produced data sets.

The Minimum Spanning I ree (Prim. 1(57) and Bell Lahs (Lin. 1965: Lin and

Kcrnighan.19TJ) algorithms arc employed to compare the run time among the three
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algorithm using randomly produced data ets. Th e program u e tandard T P

benchmarks whose optimal solutions are known (R in It, 1996) to compar th thr

algorithms. For all probl m , the program uses the arne eros over and mutation

probabilities of 0.95 and 0.0 I resp cti ely and the number of g nerati n is 500 except as

explained in th figures. All results presented in this paper are av raged 0 rIO run.

2.4 Coding and Run Environment

The Program including four classes is coded using C++. The parent class TSP

produces a tour and holds the tour coordinate structure and distance matrix. Bell_Lab,

eGA and MST are children classes that implement the Bell Labs, Genetic, and Minimum

Spanning Tree algorithms, respectively. The program was run on a Pentium 11-300 with

96MB RAM and 150MB virtual memory under Windows T.
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Chapter III

Results and Analy

3.1 Genetic Algorithm Performance

The Genetic Algorithm performance is affected by four parameters besides

problem ize (number of cities). They are the cro sover percentage, mutation percentage,

number 01' generations. and population size.

3.1.1 Crossover Percentage

I:igure 3 compares the average performance for different crossover percentages.

Thc travel path lengths are improved as the crossover percentage increases. The travel

length becomes constant at generation 174 when the crossover percentage is 85 in this

test. However. the travel length approaches the lowest point at the generation 143 while

the crossover percentage is 95. The improvement pen.:entages (result length/original

length * I00%) arc 15.9% and 15.3<X, lor the crossover percentages of" 85 and 95.

respectively. The improvement percentage is 15.7% lor the crossover percentage of"90 .

.~.1.2 Mutation t>crcenta~e

While crossover can improw the solutions of" (ienetic Algorithm, mutation seems

to prevent the convergence or the population although it docs not improve the solution

(Figure 4). A mutation is a permanent, inherited change in the structure ora gene (i.e., <l

change in the sequence of travel path). Mutation genes frequently have deleterious

eftccts on fitness (Doolittle. 1987). The program's results indicate a similar lrem.! in
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natural mutation in the biologi al population . Improv m nt p r ntage are I .2%.

1'-.4% and 15.8% for the mutation rate of 1%. 2% and 3%, re p ti h tra I

lengths reach a can tant at g nerations 123, 129, 1 7 and 149 for mutati n rat f 0%,

1%,2% and 3%. respectively, in thi program. The r ult indicat that mutati n

increases the search time and delay the conv rg nee of population. Mutation at!' ts the

equilibrium of a population, and thereafter. th titn . This is a common phenom non In

the natural population.

3.1.3 Population Size

Population size affects Genetic Algorithm performance on both improvement and

generations needed at which the population reaches the best fitness (Figure 5,6). The

solution is improved and the generatlOns required reach the tinal result increases as the

population size becomes larger. Figure 5 indicates that the result is not changed after 91

generations when population size is 100 in this program, and its improvement percentage

is 23.3% (Figure 6). While population size goes up to 1000. 143 generations arc needed

to get the linal result. Th improvement perccntage is 16.()(Yo at this point. No more

change occurs aftcr 143 generations up to 500 generations.

The relalionship between run time and population size looks like linear Wigun: 7),

and it is statistically significant (R2
= 0.9614. P<0.05). The slope is 0.4788 while

generation is fixed on 500.

3.1.4 Generation

The generations needed to approach the final results arc about ISO whi Ie

population size. crossover percent and mutation rate are 1000.95% and I%, respectively

(Figures 3-5). The tigures show that the population is likely to converge and individuals
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in the population become similar 0 that no mol' impro m nt an b a hi d. [n ord I'

to t st thi kind of ca e, the population ire-initialized a de cribed in 2.3. igure 8 and

figure 9 indicate that r -initialization of the population does pI' nt the populati n from

converging. The convergence of the population that i re-initializ d v ry 20 g n rations

is postponed 83 generations as compared to the population that has not been re­

initialized. However, th final results are not improved when compared to the population

that has not been re-initialized in this program (500 generations). On the contrar , the

tinal I' suits ii'om re-initialized population arc worse than that of the non-re-initialized

populations.

3.1.5 Number of Cities

Genetic Algorithm pertormance on different numbers of cities are shown in

Figure J 0 and II. As Figure 10 show', population converges very quickly when the

problem size is small. The population begins to converge at generation 10 when the

number of cities equals 20, and this results in an improvemem percentage of 50RX,

(Figure II). When the number of cities is 500, the population converges at generation

143. The percentage or improvement reaches 16.0%. Results indicate that the travd path

length is improvcd as the number of cities increases.

3.2 Comparison of the Run Time amon~Genetic, Bell Lab, and MST Algorithms

Figure 12 shows the run time of' the three algorithms. The relationship betwecn the

run timc and the numhcr of cities is linear for Bell Lab algorithm (Slope=I.036lJ.

rt~=0.99lJ3). I[owever, the rclationships for Genetic and MST algorithms arc not lil1l;ar.

I:igure 12 indicates that the Genetic and MST algorithms nced a shorter amount or time

to gel rcsults when the numher of' cities is arrroximatcly 400. In conlrast. the run time
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1ncr as ery quickl when number f iti gr w f r T. Th run tim f th

Genetic algorithm i Ie than that of h n numb r of citi gr at r than 40

The log-log plot shown in Figure 13 indicat that th run tim of M T i an

approximate value of 25467, and run time ofth Gen tic Igorithm i about I' 0841.

The impro ment perc ntag of diff rent algorithms how that 'T achi d

the be t re ults using randomly produced data set (8.5%), e Figur 14.

3.3 Comparison of Three Algorithms using TSPLIB Data

Although MST achieves the best results when the data sets are randoml produced.

solutions arc not the best when the data sets arc not random Cfable 2). The Bell Lah

algorithm produces the be t solutions for aJlthree data sets. For trav 'I path length. (JA

results in percentages or 8%,36% and 31 % longer paths than the best result when the

problem sizes arc 52,150 and 318. respectively. MST does not approach the best result

partially due to the eli fferent starting points. The starting point is so important for MST

that final path lengths \\'lIl vary dramaticully iI'the starting poinl is not tksirahle. In

random data sets, wd I-d istri hutcel poi nts arc guaran teed ina two-di Illensi on plane. The

starting point is not as important as it is in non-randomly lixed data sets.

Tahle 2. Comparison or solutions among the three algorithms using TSPUn tlata

Prohlem Best solution (jA Ikll Lah MST

Size Distance Distance (Ytl* Distance % Distance ')I"

52 7542 XI68 lOX 7625 1() I 9490 12)

150 26130 35637 136 32853 126 35952 1}7

318 42029 55116 131 49521 117 61446 146

*Test solution/Best solution x 100'Yo.

27



Figure 15 show the optimal olution path of the 2 citi s problem. The solution

for the Bell Lab Algorithm i imilar to the optimal olution exc pt for th ar a indicated

by the arrow (Figur 17). One big path crossing occur in the G 's solution (Figure 16).

Several path ero ing can be observed in the M T solution (Figure 18). The path

crossing is main some of additional length for tra eling salesman problem (Pagberg and

Rillaldt. 1987). This also indicates the MST Algorithm gains additional length because

of path eros ings.
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Chapter IV

Conclusions and Future Work

This paper demonstrates that the Genetic Algorithm can be modified to solve the

Travel Salesman Problem. Increasing the crossover percentage can improve the final

result while mutation is not helpful in irnproving the result in this test. The solutions

become betler as the population size enlarges in this system ( 100- J000). In addition. the

relationship between the run time and the population size is linear. Re-initializatioll of

lhe population can prevent the population from converging. hut it does not improve the

solution in limited population size and generations. The run time of the genetic algorithm

is better than that of the MST. but worse than that or the Bell Lab algorithm.

Although this approach seems feasible. much work remains to he done. The optimal

crossover percentage and the effect of re-initializing population on sol ution in the

eli rrcrent number or cities still remain issues Furthermore. the dlicient schcllles to

prevent population from convergence to a localminimulll need to he considcred.
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PPE DI

Crosso r Function Code List

/*****************************************************.***************/

1* Greedy crossover was suggested by Grefenstte(1985) .In "proceedings

1* of the econd International Conference on Genetic Algorithm".

1* Lawrence Eribaum Associates/Mahwah, NJ.

1* This function is created by Jiming Wu/July 10,1999.

I parameters: int n--Number of genes on one chromosome

1* int* AQ and int * BQ--A pair of integer chromosome,

I~ each contains N genes

1* float *DISTANCE--The distance matrix among genes

1* return a pointer of array (after crossover)

1* The function is Free to use.

/*********************************************************************/

into CGA: :greedy crossover(lnt n,int *AQ,int *BQ,float *DISTANCE)

int i, k,I=O,m,loci=O;

int anext; 1* next gene in A chromosome *1

int bnext; 1* next gene in B chromosome *1

float avalue,bvalue;l* Distances of current gene and next gene *1

1* two chromosome pieces.*1

int* check=new int[n]; I*check if genes exist in array*1

into CQ=new int[n]; I'resulting chromosome for return*1

for(i=O;i<n;i++)/*initialize all gen s not exist in chromosome '1

check[i]=-l;l*if gene exists in chromosome,' then value=O *1

CQ[O]=AQ[O);

heck[AQ[O) )=0;

I"initialize first gene*1

I"use parent AQ as template*1

do{/* crossover*1

for(k=O;k<n;k++)/*fin the same gene in parent B*I

if (CQ(10 i]==BO[k])

break;

for(m=O;m<n;m++)/*find the same gene in parent A"I
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if (CQ(loci)==AQ(m))

break;

if (k==n-l)/*if it's the last gene, the next is first gene*1

bnext=B (0];

else if (k«n-l))

bnext=BQ(k+l];

if (m==n-l)

anext=AQ[O] ;

else if (m«n-l))

anext=AQ[m+l);

if ((check[bnext)==O) && (check(anext)==O))

{/*if anext and bnext both already exist in C *1

I*select one doesn't exist in Q*I

while(check[l]==O)

1++;

loci++;

CQ [10 i) =1;

check[l]=O;

else if(check[bnext]==O)/*if bn xt exists in array*1

I*the next gene is anext*1

loci++;

CQllo i]=anexl;

check[anext]-O;

else if(check[an-xtj==O)/*if anext exists in rray'l

I'the next gene is bnext"l

loci++;

CQ[loci]=bnext;

check[bnext]=O;

else/*if both not exist in array*1

I*select shorter one *1

avalue=DIS,"!'p.tlCE[AQ(m]] [anext);

bvalue=DISTAtlCEf!:YJ.[J.:J J [bnext];
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else

}while(loci<n-l);

delete check;

return CQ;

loci++;

C [loci]=bnext;

check(bnext]=O;

loci++;

CQ(loci]=anext;

check(anext]=O;
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