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PREFACE

Software reliability is becoming increasingly more important in software engineering.

Software reliability models have been developed to predict or estimate the reliability of

software during its development. There are more than 40 software reliability models in

the open literature, but no one model is best for every case under all circumstances. In

this thesis, six software reliability models: Musa's models, the Jelinski-Moranda model,

the Geol-Okumoto NHPP model, Shooman's model, the Littlewood-Verral model, and

the Bayesian Belief Networks (BBN) model were investigated. Then the BBN model was

analyzed in detail through applying it to predict the reliability of SeqWizard, a software

system developed to process large-scale DNA and protein data.

For the six software reliability models investigated, the following issues were

discussed for each model: a brief history, model classification, software development

phase(s) applied, basic assumptions, data requirements, model form, and application

scope. The six models were also compared from three aspects: factors modeled,

availability of CASE tools, and advantages and disadvantages. These survey results can

be used by practitioners to help make a decision when choosing among software

reliability model(s).

A BBN for the reliability of SeqWizard was constructed through seven steps. The

suitability of this BBN was checked by a set of hypothetical scenarios. The predicted

reliability of SeqWizard was consistent with the reliability report of SeqWizard generated
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by Arizona University, Purdue University, and Oklahoma State University in its beta

testing stage. This indicated the suitability of the reliability BBN constructed in this thesis

and the effectiveness of the BBN model for reliability prediction. In addition to

reliability, the number of faults introduced to SeqWizard, the number of faults found

during testing, and the number of latent faults remained in SeqWizard were also obtained

from the reliability BBN. These predicted results can be used by decision-makers in

software development.
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CHAPTER I

INTRODUCTION

Modern society IS heavily dependent on automated systems to control crucial

functions such as transportation, communication, utilities, and health care [Hansen et a1.

99]. Software errors have caused dramatic and costly problems in recent years. Such

problems include: the Year 2000 problem, the power outage at the AT&T switching

facility in New York City [Pham 95], and the cost of lives (such as overdosed cancer

patients from radiation therapy machines in 1986 and the death of 28 U. S. soldiers in the

1991 Gulf War [Schach 97]).

The need for reliable software increases with the increase in size and complexity of

computer systems. How to get reliable software is one of the biggest questions for

software engineers [Lyu 96]. There are several approaches to address this challenge. One

of them is to select a proper software reliability model to predict or estimate the

reliability of software during its development. A software reliability model specifies the

general fonn of dependency of the failure process on the principal factors that affect it

[Lyu 96]. The objectives of a software reliability model are to evaluate software

quantitatively; to provide development status, test status, and schedule status; and to

monitor the reliability perfomlance in software reliability engineering [Neufelder 93].
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A good software reliability model should have several important characteristics

[Musa et a1. 90]: it should give good predictions of future failure behavior and compute

useful quantities, it should be simple and widely applicable, and it should be based on

sound assumptions.

More than 40 software reliability models can be found in the open literature. But no

one model is best for every case under all circumstances. Because it is difficult to model

the interaction of the following three factors [Lyu 96]:

1) Human Factors: During either software development or software operation, humans

are involved. There are different combinations of all aspects of human beings: novice or

expert, hate-mode or love-mode, absent-minded or single-minded, etc. [Samadzadeh and

Edwards 88] [Sommerville 97].

2) Diversity of Software Elements: Reusing existing software plays a key role in software

engineering productivity, especially in the past two decades. Software reuse can be

fulfilled at different levels such as object-code level, subroutine library level (executable

code level), source code level, or component and package level [Zand and Samadzadeh

94]. Software reuse may introduce complexity into software system if great care is not

taken. The "black box" nature of reusable software may make it hard to evaluate the

reliability of the whole software system precisely.

3) Uncertain nature of software failure patterns: Software failure is known after it

happens. People know that it may happen some time but do not know exactly when and

how it will happen until it happens. It is hard to model the failure pattern because of this

future knowledge requirement [Fenton and Neil 99].
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As a result, practitioners are left with the following questions at the decision making

step. Should we spend extra effort to apply a software reliability model to estimate the

reliability of our software system? Which software reliability model(s) should we apply

to our software system? When should we apply a software reliability model to our

software system? Is there a proper automated CASE tool available for the software

reliability model we need?

Typically. software reliability models are either compared based on mathematical

analysis [Lyu 96] [Neufelder 93J or evaluated based on the availability of test data

[Fenton and Neil 99] [Pharo 95]. However, this thesis research took a different approach.

This research provided a detailed survey of some current and popular software reliability

models. Also. the Bayesian Belief Networks (BBN) model was analyzed through

applying it to predict the reliability of SeqWizard, a software system developed by the

author in the OSU Bioinforrnatics Lab to process large scale DNA and protein data.

The rest of this thesis is organized as follows. An overview of some software

reliability models is given in Chapter II. A survey of six current and popular software

reliability models is provided in Chapter III. The analysis of the Bayesian Belief

Networks (BBN) model is given in Chapter IV. A summary and suggested future work

are given in Chapter V.
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CHAPTER II

OVERVIEW OF SOFTWARE RELIABILITY MODELS

More than 40 software reliability models can be found in the open literature. These

models can be classified differently based on various criteria. In this thesis, software

reliability models were classified into three families: 1) traditional models, 2)

combination models, and 3) Bayesian models, based on the type of factors and the

magnitude of each factor regarding defect prediction. The descriptions of three model

families are given in the following three subsections. Traditional models are described in

Section 2.1, combination models in Section 2.2, and Bayesian models in Section 2.3.

2.1 Traditional Model.s

The traditional software reliability models look at the impact of each fault as being of

same magnitude regarding software reliahility. Software reliability is changed when a

fault is discovered and fixed. The main advantage of the models in this category is their

simplicity. They can be easily applied if the behavior of software meets the basic

assumptions. Some models have been implemented as part of CASE tools for automated

applications [Lyu 96]. This family includes the following reliability models.
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• Execution Time Model. This model uses actual execution time of software in the

modeling process. Time between failures is expressed in terms of CPU time rather than

elapsed calendar time. Execution time is considered more reflective of actual stress

induced on software [Musa et al. 87]. Examples include Musa's Basic model and Musa's

Logarithmic model [Musa et al. 90].

• Failure Rate Model. This model uses per-fault failure rate or mean time to failure

(MTTF) in the modeling process. This model form assumes an exponential failure

intensity function for software errors. Examples include the Jelinski-Moranda model and

the Schick-Wolverton model [Dhillon 87].

• Reliability Growth Model. This model measures and predicts the improvement of

reliability through debugging process. A growth function is used to represent this

progress. The independent variables of the growth function can be time, number of test

cases, or testing stages. The dependent variables can be reliability, failure rate, or

cumulative number of errors detected [Pham 95]. Example models include the Duane

growth model, the Weibull growth model [Dhillon 87], and the nonhomogeneous Poisson

process (NHPP) models such as the Geol-Okumoto model and the (delayed) S-shape

growth model [Liang and Trivedi 99].

• Markov Model. This model models the number of remaining faults as a stochastic

counting process. When a continuous-time discrete-state Markov chain is adapted, the

state of the process is the number of remaining faults, and the time between fai lures is the

sojourning time from one state to another. If we assume that the failure rate of a program

is proportional to the number of remaining faults, the linear death process and the linear

birth-and-death process are two models readily available. The former assumes that the

5



remaining errors are monotonically nonincreasing, whereas the latter allows faults to be

introduced during debugging. Examples include linear death with perfect debugging

(Shooman's model), linear death with imperfect debugging, and nonstationary linear

death with perfect debugging [Lyu 96] .

• Program Structure Model. This model views a program as a reliability network. A node

represents a module or a subroutine, and the directed arc represents the program

execution sequence among modules. By estimating the reliability of each node and

assuming that the failure at each node is independent, we can approach the reliability of a

program as a reliability network problem. Examples include the Littlewood Markov

structure model and Cheung's user-oriented Markov model [Dhillon 87] .

• Input Space Model. This model enumerates all sets of inputs for a computer program

and detennines the probability distribution of input states or the operatio1lal profile.

Reliability is defined as the number of successful runs over the total number of runs.

Examples include the Nelson model and the Shooman decomposition model [Dhillon 87].

Generally, input space models have little practical use because of their theoretical

inclination [Dhillon 87].

2.2 Combination Models

The combination software reliability models are constructed from different

combination of traditional models. The traditional models here are called component

models of the combination model. Combination models look at the impact of each defect

as being of different magnitude regarding software reliability. The difference is
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detennined by the definition of the combination of different traditional models. The main

advantage of the models in this family is their wider application range than that of the

component models (traditional models). This family includes the Equally-Weighted

Linear Combination Model (ELC), the Median-Oriented Linear Combination Model

(MLC), the Unequally-Weighted Linear Combination Model (ULC), and the

Dynamically-Weighted Linear Combination Model (DLC). These models were

developed and tested by Michael Lyu and Allen Nikora with promising results [Lyu and

Nikora 92].

The component models (the basic building blocks) are the Goel-Okumoto Model

(GO), the Musa-Okumoto Model (MO), and the Littlewood-Verrall Model (LV). The

selection of these component models is based on the facts that: 1) GO, MO, and LV are

widely used and judged to perform well; 2) GO, MO, and LV represent different

categories of models; and most importantly, 3) the predictive biases of GO, MO, and LV

tend to be canceled when combined (GO tends to be optimistic, LV tends to be

pessimistic, and MO might go either way) [Lyu and Nikora 92]. The descriptions of ELC,

MLC, ULC, and DLC follow .

• Equally-Weighted Linear Combination Model (ELC). This model is formed by

assuming that the three component models GO, MO, and LV have a constant equal

weight. The arithmetic average of three component models' predictions is taken as the

ELC model prediction. That is, p(ELC) = 1/3 p(GO) + 1/3 p(MO) + 1/3 p(LV). There are

two major purposes for developing this model. One is to reduce the risk of relying on an

individual model (traditional model) that may generate grossly inaccurate prediction. The

7
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other is to retain the simplicity of using the individual traditional models [Lyu and Nikora

92].

• Median-Oriented Linear Combination Model (MLC). In this model, the median of the

predictions of all component models is the prediction of the MLC model. That is,

p(MLC) = median(p(GO), p(MO), p(LV». The justification for this model is that the

choice of the median might be more moderate than the mean in some cases. It can better

tolerate an erroneous prediction that is far away from the others [Lyu and Nikora 92].

• Unequally-Weighted Linear Combination Model (ULC). This model follows the idea of

MLC. The prediction of ULC mainly relies on the component model that gives median

performance. Unlike MLC, which ignores the results of the other two component models,

ULC takes into account the prediction of the model that gives an optimistic result and the

one that gives a pessimistic result. But the optimistic and pessimistic predictions will

make small contributions to the final prediction. For example, p(ULC) = 1/100 + 8/10 M

+ 1II 0 P, where 0 represents an optimistic prediction, P denotes a pessimistic prediction,

and M is the median prediction [Lyu and Nikora 92].

• Dynamically-Weighted Linear Combination Model (DLC). In this model, it is assumed

that the applicability of any individual model may change during testing process. The

weights of the component models will therefore change [Lyu and Nikora 92].

2.3 Bayesian Models

The Bayesian models take the viewpoint that software reliability should increase lfno

failure occurs while software is observed. This indicates the growing confidence in
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software by user. Reliability is the reflection of both the number of faults that have been

detected and the amount of failure-free operation. Bayesian models reflect the belief that

different faults have different impacts on software reliability. For instance, given a

software system, when most, if not all, of the faults are clustered in a rarely executed

component, we can still consider that the reliability of this software system is potentially

high. The main advantage of the models in this family is their wide application scope.

The Bayesian's family includes the following reliability models.

• Bayesian General Model: This model takes the viewpoint that it is more important to

look at the behavior of software than to estimate the number of faults in it. It assumes that

failure rate is a random process with regard to failures occurred. It also assumes a prior

distribution of failure rate. This prior distribution reflects the viewpoint that one should

incorporate past information in estimating reliability statistics for the present and for the

future. Examples of this model type include the Littlewood-Verrall model, Kypatisi' s

Bayesian nonhomogeneous Poisson process model, and Liu's Bayesian geometric model

[Lyu 96].

• Bayesian Belief Networks (BBN) Model: A BBN is used to model uncertainty in a

problem domain in which both the quantitative and qualitative techniques are employed.

It is also known as Belief Networks, Causal Probability Networks, Causal Nets,

Graphical Probability Networks, Probability Cause-Effect Models, and Probabilistic

Influence Diagrams. The basic idea of a BBN is that a problem is modeled as a set of

nodes i.nterconnected by a set of directed arcs to form a network. Each node in the

network represents a particular occurrence or condition, called a variable. The arcs

indicate the causal effect of the variables on each other. Each node contains a set of states

9
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of the random variable it represents and a conditional probability table (cpt). The cpt of a

node contains probabilities of the node being in a specific state, given the states of its

parents. The probabilities in the CPT indicate the strength of link between nodes. These

probabilities are used to calculate the probability distribution of all nodes in a BBN when

new evidence is entered. Actually a BBN is a directed acyclic graph (DAG). This

structure prevents circular logic because the arcs represent causal relationships between

nodes. In practice, this stmcture prevents the algorithm from getting into an infinite loop

or deadlock. When a BBN is established, all the arcs are seeded with the initial estimation

of probabilities. When new evidence is provided, the network automatically updates the

probabilities of all arcs. Recalculation of all the probabilities continues to propagate

across the network, fine-tuning the accuracy of all probabilities. This ability to revise the

probability of an event, based on the new evidence and the old status, is the main

advantage of the BBN [Ziv and Richardson 97] [Yu et a!. 99].

10
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CHAPTER III

A SURVEY OF SOME SOFTWARE RELIABILITY MODELS

The purpose of this survey is to provide infonnation for practitioners to choose proper

software reliability models. Six currcnt and popular software reliability models are

investigated in Section 3.1. Comparisons of six models are given in Section 3.2.

3.1 Investigation of Six Software Reliability Models

In this section, six current and popular software reliability models were investigated.

These models included Musa's models, the Jelinski-Moranda model, the Geol-Okumoto

NHPP model, Shooman's model (these four models belong to the traditional model

family), the Littlewood-Verral model, and the Bayesian Belief Networks (BBN) model

(these two models belong to the Bayesian model family). Since combination models were

still under development, no model was selected from this model family for detailed

investigation.

The selection of the above models was based on their applicability and thcir

representative effects. Musa's models "have had the widest distribution among the

software reliability models" [Lyu 96]. The Jelinski-Moranda model "has the most articles
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written on it in the literatures on software reliability because of its sound theoretical

foundation" [Lyu 96]. The Geol-Okumoto NHPP model "has strong influence on

software reliability modeling" [Liang and Trivedi 99]. It is one of the practical models

that model real situations thoroughly and provide meaningful results [Lyu 96].

Shooman's model represents the Markov model type, which is considered as "a general

way to model software failure process" [Pham 95]. The Littlewood-Verral model is the

software reliability model recommended by the American Institute of Aeronautics and

Astronautics (AIAA) as recommended practice standard (AIAA 93) [Lyu 96]. The

Bayesian Belief Networks (BBN) model has attracted much recent attention in diagnostic

and predictive analysis and it has been considered a powerful tool for reasoning under

uncertainty [Fenton and Neil 99].

For each selected software reliability model, the following issues were discussed: 1) a

brief history, 2) model classification, 3) software development phase(s) applied, 4) basic

assumptions, 5) data requirements, 6) model fonn, and 7) application scope. Also, some

comments on the successes/failures of each model were included. The rest of this section

was organized according to these issues.

Following two formulas were used in each model.

Fonnula 1: R(t) = exp [- flo /-'(z) dz]

Formula 2: MTTF = Jooo R(t) dt

where R(t) is software reliability at time t, A(t) isfailure intensity function or hazard rate,

and MTTF is mean time to failure. For each model described below, the failure intensity

function, A(t), was given. The R(t) and MTTF for each model can be obtained by

Formula 1 and Formula 2, respectively.

12
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3.1.1 Musa's Models

3.1.1.1 Brief History

Musa's models were created and developed by John Musa of AT&T Bell

Laboratories with his colleagues in 1970's. There are two types of Musa's model. One is

Musa's Basic model and the other is Musa's Logarithmic model [Musa et al. 90].

3.1.1.2 Model Classification

Both Musa's Basic and Logarithmic models are execution time models In the

traditional model family.

3.1. 1.3 Software Development Phase(s) Applied

Musa's models can be applied in unit test phase in the software life cycle.

3.1.1.4 Basic Assumptions

Musa's models model software reliability under the following basic assumptions.

(1) Cumulative number of failures by time t follows a Poisson process.

(2) There are a finite number of total errors estimated in software. This number is not

necessarily fixed.

(3) Errors are rectified before software test continues.

(4) Hazard rate for a single fault is constant.

(5) Failure rate is proportional to residual software errors.

3.1.1.5 Data Requirements

Musa's models reqUIre actual execution time that software fails or elapsed time

between failures.

13



3.1.1.6 Model Form

The failure intensity function, A(t), for Musa's Basic model is given as follows.

A(t) = Ao exp ( - Po x t )

where t is execution time, Ao is initial failure intensity at the start of execution, Po = A.oJvo.

and Vo is total number of failures that would occur in infinite time.

The failure intensity function, A(t), for Musa' s Logarithmic model is given as follows.

A(t) = An / (leI) 0 t + 1)

where t is execution time, Ao is initial failure intensity at the start of execution, and e is

failure intensity decay parameter.

3.1.1.7 Application Scope

Musa suggested that the choice of the two models in any given application depends

on several factors as summarized in Table I.

Table I. Factors for the Choice Between Musa's Basic
and Logarithmic Models [Musa et a!. 90]

Purpose of application Basic Model Logarithmic Model

Studi.es or predictions before execution X

Studying effects of software engineering

technology (through study of faults) X

Program size changing continually and

substantially X

Highly nonuniform operational profile X

Early predictive validity important X

14
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3.1.1.8 Comments

Musa's models have been applied in many diverse fields. They have several

advantages: their predicting results are generally satisfactory, they are simple and easy to

understand, they are thoroughly developed, their parameters have a clear physical

interpretation, and they can handle dynamic systems [Musa et al. 90].

3.1.2 The Jelinski-Moranda Model

3.1.2.1 Brief History

The Jelinski-Moranda model was created and developed by Paul L. Jelinski and Z.

Moranda in 1972 [Dhillon 87].

3.1.2.2 Model Classification

The Jelinski-Moranda model is a failure rate model in the traditional model family.

:U .2.3 Software Development Phase(s) Applied

The Jelinski-Moranda model can be applied in test phase in the software life cycle.

3.1 .2.4 Basic Assumptions

The Jelinski-Moranda model models software reliability under the following basic

assumptions.

(1) There are a constant number of lines of code.

(2) The operational profile of software is consistent.

(3) Every fault has the same chance to be encountered during software operation.

(4) Fault detection rate remains constant over intervals between fault occurrences.

(5) Fault detection rate is proportional to current fault content of software.

15



-

(6) Each detected error is corrected without delay.

(7) Failures are independent.

3.1.2.5 Data Requirements

Data required for using the Jelinski-Moranda model are elapsed time between failures

or the actual times that software fails.

3.1.2.6 Model Form

The failure intensity function, A(t), is given by the following formula.

where C is a constant of proportionality, E j is number of initial software errors, and tj is

time between detection of the jth and (j - l)th software errors. With the aid of maximum

likelihood estimation method, the values of parameters E j and C can be estimated as

follows.

k k k
IlI(E j -(j-l))=kItj II (Ej-(j-l»tj
j=l j=l j=l

k

C = k / I ( Ej - U-1 » tj
j=1

where k is number of intervals to detect software errors and t I, t2, ... , tj are sampling

intervals of time between successive software errors [Dhillon 87].

3.1.2.7 Application Scope

Nowadays the Jelinski-Moranda model is not being used directly. But variants

developed from it are widely used [Dhillon 87].

3.1.2.8 Comments

The Jelinski-Moranda model is one of the earliest models developed. The importance

of this model is mainly in setting a framework in this modeling area [Lyu 96].
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3.1.3 The Geol-Okumoto NHPP Model

3.1.3.1 Brief History

The Geo1-0kumoto NHPP model was proposed and developed by Amrit Goel and

Kazu Okumoto in 1979 [Liang and Trivedi 99]. The (delayed) S-shaped NHPP IS a

variant of this model developed by Yamada in 1982 [Lyu 96].

3.1.3.2 Model Classification

The Geol-Okumoto NHPP model is a reliability growth model in the traditional

model family.

3.1.3.3 Software Development Phase(s) Applied

The Geol-Okumoto NHPP model can be applied in pre-release phases in the software

life cycle.

3.1.3.4 Basic Assumptions

The Geol-Okumoto NHPP model models software reliability under the following

basic assumptions.

(1) Cumulative number of failures by time t follows a Poisson process.

(2) Number of faults detected in each time interval is independent for any finite

collection of time intervals.

(3) Defects are repaired immediately when they are discovered.

(4) Defect repair is perfect. That is, no new defect is introduced during test.

(5) No new code is added to software during test.

(6) Each unit of execution time during test is equally likely to find a defect if the

same code is executed at the same time.

~.
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3.1.3.5 Data Requirements

The Geol-Okumoto NHPP model requires number of faults counted in each test time

interval and the completion time of each period the software is under observation.

3.1.3.6 Model Form

The mean value function Il(t) is given by following formula.

where t is failure occurrence time, a is expected total number of faults to be eventually

detected, and b is a positive constant.

The failure intensity function, A(t), which is the derivative of Il(t), is obtained as

follows.

A(t) = a b e'bt

where a is expected total number of faults to be eventually detected, b is a positive

constant, and t is failure occurrence time.

3.1.3.7 Application Scope

The Gcol-Okumoto NHPP model can be used to determine an optimal release time

for software.

3.1.3.8 Comments

Goel and Okumoto also adapted this model to use time of fault occurrences instead of

fault counts. Optimal release time was determined based on the cost of finding and fixing

a fault in the testing environment versus the operational environment. The (delayed) S-

shaped NHPP variant has heen successfully applied in several applications [Liang and

Trivedi 99].
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3.1.4 Shooman's Model

3.1.4.1 BriefHistory

Shooman's model was created and developed by Martin Shooman of the New York

Polytechnic Institute in 1972 [Neufelder 93].

3.1.4.2 Model Classification

Shooman's model is a Markov model in the traditional model family.

3.1 .4.3 Software Development Phase(s) Applied

Shooman's model can be used in system integration test phase in the software life

cycle.

3.1.4.4 Basic Assumptions

Shooman's model models software reliability under the following basic assumptions.

(1) Total number of machine instructions remains constant.

(2) Total number of software errors decreases directly as errors are rectified.

(3) No new errors are introduced during the debugging process.

(4) Residual errors are given by subtracting cumulative errors rectified from total

number of errors initially presented.

(5) Hazard function is proportional to remaining number of errors.

3.1.4.5 Data Requirements

Data required for using Shooman's model are total number of machine instructions in

software, execution time of software in a given time period, and total number of errors

during a given time period.
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3.1.4.6 Model Form

The failure intensity function, t...(t), is defined by the following formula.

where t is execution time, a. is a proportionality constant, y is debugging time since the

beginning of system integration, and Et(y) is total number of errors remaining in software

at time y. Et(y) is given as follows.

where Eli is total number of initial errors at time y = 0, which can be approximated using

MTTF, 1m, and Ecu(Y). 1m is total number of machine language instructions in software.

Ecu(Y) is cumulative number of software errors in the time interval [O,y]. ex is given by

following formula.

a. = 8 I (t Et(y))

where 8 is total number of errors during debugging period of [O,y], t is execution time of

software corresponding to debugging period of[O,y], and El(y) is given above.

3.1.4.7 Application Scope

Shooman's model can be used for any software development as long as the process

meets the Markov chai n.

3.1.4.8 Comments

It has been shown that Shooman's model is more effective if used later in the

software life cycle. The main reason for this is that earlier in development, particularly

during debugging and unit test, error rate will probably be increasing over time, in which

case Shooman's model cannot be applied [Neufelder 93].

20

L



-

3.1.5 The Littlewood-Verrall Model

3.1.5.1 Brief History

The Littlewood-Verrall model was created and developed by B. Littlewood and J. L.

Verrall in the 1970's [Lyu 96].

3.1.5.2 Model Classification

The Littlewood-Verrall model is a Bayesian general model in the Bayesian model

family.

3.1.5.3 Software Development Phase(s) Applied

The Littlewood-Verrall model can be applied m test and release phases III the

software life cycle.

3.1.5.4 Basic Assumptions

The Littlewood-Verrall model models software reliability under the following basic

assumptions.

(1) Successive execution times between failures are independent with parameter ~

that is related to historical data.

(2) Function \jI{i) is an increasing function of programmers' quality and task's

difficulty. A good programmer would have a more rapidly increasing function

than a poor one.

(3) Software is operated in the same manner as expected. That is, software is not

frequently used under extreme situations.

3.1.5.5 Data Requirements

The Littlewood-Verrall model requires time between failure occurrences.
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3.1.5.6 Model Form

The model form of the Littlewood-Verrall model varies based on the definition of S, a

parameter relating to historical data. and \V(i), a function indicating programmers' quality

and system's complexity. There are two basic fonns: linear fonn and quadratic form.

In the linear fonn, the failure intensity function, A(t), is given as follows.

A(t) = (a - I) / (~02 + 2 Pl t (a _ 1))1/2

where t is failure occurrence time, a, Po. and PI are positive constants related to sand

In the quadratic form, the failure intensity function, ACt), is given as follows.

where t is failure occurrence time, VI = (a - 1)113 I (18 PI)1/3 and V2 = 4 Po3
/ (9 (a _ 1)2 PI).

Here a, ~o. and ~1 are positive constants related to Sand tV(i).

3.1.5.7 Application Scope

The Littlewood-Verrall model is now widely applied in software reliability estimation

and prediction. Successful applications of this model alone, or combinations of this

model with other models, show that thc Littlewood-Vcrrall model is effective to estimate

the reliability of software after its completion and before its release [Fenton and Neil 99].

3.1.5.8 Comments

The main characteristic 0 f the Li ttlewood-Verrall model series is that fault correction

process allows the probability that software could be less reliable than before. That is, the

new version of software may be either better or worse than its predecessor. Due to this

uncertainty. the model fonn of the Littlewood-Verrall model becomes very complicated

but flexible [Lyu 96].
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3.1.6 The Bayesian BehefNetworks (BBN) Model

3.1.6.1 Brief History

Bayes' theorem, the underlying theory of BBN, was developed by Thomas Bayes in

the 18th century [Lauritzen and Spiegelhalter 88]. It was seldom used in computer science

before the 1980's. The success of applying recent algorithms and software tools made it

possible to build and execute realistic models. Bayesian Behef Networks (BBN) model

has attracted much recent attention as a possible solution to the problems of decision

support under uncertainty [Cowell et al. 99] [Fenton and Neil 99].

3.1.6.2 Model Classification

The Bayesian Belief Networks (BBN) model is in the Bayesian model family.

3.1.6.3 Software Development Phase(s) Applied

The BBN model can be applied in all phases In the software life cycle. Defect

prediction can be explained in two stages [Fenton and Neil 99]. The first stage covers the

phases of requirement analysis, specification development, design, and implementation.

The second stage covers the phases of test and pre-release.

3.1.6.4 Basic Assumptions

The Bayesian Belief Networks (BBN) model models software reliability under the

following assumptions.

(1) Software defects are not directly caused by program complexity alone.

(2) Causal factors for the presence of defects in software include: a) difficulty of

problem; b) complexity of designed solution; c) programmer/analyst skills; and d)

design methods and procedure applied.
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3.1.6.5 Data Requirements

All data in the software life cycle can be useful for this model.

3.1.6.6 Model Form

A BBN is defined as a triple (N, E, P), where N is a set of nodes, E ~ N x N a set of

edges, and P a set of probabilities [Cowell et a1. 99]. Each node in N is labeled by a

random variable Vi, where 1 ~ j ~ IN I.Each node Vj has a set of states associated with it.

The states of a node can be Boolean values, discrete labels, discrete numbers, intervals, or

continuous values. Each directed edge ei = < Si, ti > E E indicates causal influence from

source node Sj (parent node) to target node tj (child node). For each node ti, the strengths

of causal influences from its parent Sj are quantified by a conditional probability

distribution p(tj ISi), specified in an m x n matrix where m is the number of states of ti,

and n is the number of states of Sj. This m x n matrix is called the conditional probability

table (CPT) of node fi. Each Pi E P is the conditional probability of a node being in a

specific state given the states of its parents. If a node has no parents, its probability is

unconditional. Its CPT is actually a uniform probability distribution if not specified

otherwise. For each node in a BBN, the sum of probabilities of all states should be 1. This

indicates that the BBN model is subject to the standard axiom of probability theory.

3.1.6.7 Application Scope

A BBN is generally applied to problems when there is uncertainty in the data or in the

knowledge about the domain. It has been applied to problems that require diagnosis of

problems from a variety of input data. BBN is generally used in: medical diagnostic

systems such as MUNIN (a medical reasoning system); analysis in the natural, biological,

and social sciences; real-time weapons scheduling; computer processor (Intel) fault
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diagnosis; complex machinery monitoring system such as jet engines, electronic power

generator, and copy machines; trouble-shooting mechanisms such as the help wizard in

Microsoft Office [Hansen et al. 99]. BBN is also used in expert systems [Cowell et al.

99]. In software engineering, BBNs have been applied to estimate uncertainties in

software testing and maintenance [Ziv and Richardson 97], to analyze the dependability

of safety-critical software systems [Bouissou et al. 99], to predict software quality [Neil

and Fenton 96], and to support decision-making during software development [Fenton

and Neil 99]. BBN seems to have potential to combine different approaches of defect

prediction into a single model.

3.1.6.8 Comments

A BBN represents a complete probabilistic model of the system. This is due to the

fact that the joint probability distribution of any elementary system can be derived using

the local conditional probability distributions and network topology [Cowell et al. 99].

Figure 1 is an example of the joint of subsystems. In Figure 1, system 1 and system 2 are

joined together through the common node "#faults". After the joint, the probability of

each node in Figure I (c) will be updated accordingly. The updating will be propagated

over the network to ensure the accuracy of the probability of each node in the whole

network [Cowell et al. 99]. This property suggests the use of BBN models for evaluating

different components in complicated software systems.
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Figure 1. The Joint of Subsystems: (a) system 1, (b) system 2,
and (c) thejoint of system I and system 2

The advantages of using BBN are summarized below.

(1) Specifying complex relationships using conditional probability statements.

(2) Using 'what-if?' analysis and forecasting the effects of process changes.

(3) Easy understanding of seemingly contradictory reasoning via graphical fonnat.

(4) Explicit modeling 'ignorance' and uncertainty in estimates.

(5) Using subjectively or objectively derived probability distributions.

(6) Forecasting with missing data.
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3.2 Comparisons of Six Software Reliability Models

In this section, Musa's models, the Jelinski-Moranda model, the Geol-Okumoto

NHPP model, Shooman's model, the Littlewood-Verral model, and the Bayesian Belief

Networks (BBN) model are compared from three aspects. The comparison from the

aspect of factors modeled is given in Section 3.2.1, the comparison from the aspect of

availability of CASE tools is given in Section 3.2.2, and the comparison from the aspect

of advantages and disadvantages is given in Section 3.2.3.

3.2.1 Comparison of Factors Modeled

Software reliability models specify the general form of dependency of the failure

process on the principal factors that affect it in order to predict or estimate software

reliability [Lyu 96]. Such factors are involved in fault introduction, fault removal, and

operational environment. In the software life cycle, fault introduction may happen in

requirement analysis phase, specification development phase, design phase, or

implementation phase. In addition, fault introduction may happen due to problem

complexity. Fault removal happens in test phase. Operational environment refers to

proper/improper usage of software or the consistency of software operational profile.

Since no standard is available, different software reliability models model various

factors [Fenton et al. 99]. Factors modeled by a software reliability model detennine its

reliability measurement type: reliability prediction, reliability estimation, or reliability
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prediction and estimation. The measurement type is very important to practitioners.

Factors modeled by six software reliability models are compared in Table II.

Table II. Factors Modeled by Six Software Reliability Models
(JM -- Jelinski-Moranda, GO - Geol-Okumoto, LV - Littlewood-Verral)

Problem Software Software Software Operational

complexity developers solution testers profile

Musa's Execution Competence

Models time, of testers

number of

failures
-

TheJM LOC, Competence Consistency

Model failure rate of testers

The GO Number of Competence

NHPP faults, times of testers

Model software fail
I

Shoo- Number of Competence

man's machine of testers

Model instructions,

execution

time, total

errors

The LV Difficulty of Programmers' Time Effort of Consistency

Model task competence between testers

failures

The Complexity Experience Estimation Experience Consistency

BBN of problem and effort of oflatent and effort of

Model analysts, faults testers

specifiers,

designers, and

programmers
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Table II showed that Musa's models, the Jelinski-Moranda model, the Geol-Okumoto

NHPP model, and Shooman's model model two kinds of factors: 1) software failure data

obtained in test and operation phases, and 2) the competence of software testers. From

software reliability measurement point of view, these models mainly focus on software

reliability estimation. The Littlewood-Verral model and the BBN model model factors in

each phase of software life cycle when failure data mayor may not available. From

software reliability measurement point of view, the Littlewood-VerraJ model and the

BBN model focus on both software reliability prediction and estimation.

3.2.2 Comparison of Availability of CASE Tools

After software reliability model(s) are chosen for specific purposes, one of the many

decisions is the choice of a CASE tool. In this section, the following software reliability

CASE tools were investigated: AT&T Software Reliability Toolkit (AT&T SR Toolkit)

[Lyu 96], Statistical Modeling and Estimation of Reliability Function for Software

(SMERFS) [Musa et al. 90], Software Reliability Program (SoRel) [Lyu 96], Computer-

Aided Software Reliability Estimation (CASRE) [Lyu 96], Statistical Reliability

Modeling Program (SRMP) [Neufelder 93], Economic Stop Testing Model (ESTM)

[Musa et al. 90], the GOEL tool [Neufelder 93], the HUGIN tool [Hugin 90], and the

Norsys tool [Norsys 95]. The availability of CASE tools for six models is compared in

Table Ill.
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Table m. Availability of CASE Tools for the Six Models
(JM - Jelinski-Moranda, GO - Geol-Okumoto, LV - Littlewood-Verral)

Musa's TheJM The GONHPP Shooman's The LV TheBBN

Models Model Model Model Model Model

AT&T SR X

Toolkit

SMERFS X X X X

SoRel X X

CASRE X I X X X X

SRMP X X X X X

ESTM X

GEOL X

HUGIN X

Norsys X

For each CASE tool in Table Ill, the supplier of the tool, original release time,

hardware requirement, operating systems requirement, memory size requirement, user

interface, and current price are provided in Table IV (abbreviations in this table are given

in the Glossary).
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Table TV. Comparison of Software Reliability CASE Tools

Supplier Original Hard- Operating Size User Current

release ware system interface pnce

AT&T AT&T 1991 Any UNIX, 120 Command $60

SR Bell platform MS/DOS K -driven

Toolkit Lab.

SME- NSWC 1983 DEC DEC 256 Menu- $59.95

RFS VAX, VMS, K driven

fBMPC MS-DOS

3.0

SoRel LAAS 1991 Macinto Macintosh 200 Command Free

sh II K or Menu-

driven

CASRE NASA 1995 IBM PC MS-DOS 8MB Menu- $136

5.0 driven

SRMP RSC 1988 IBM PC MS-DOS 500 Command $5000

Ltd. 3.0 K -driven

ESTM Bellcore 1987 Sun, HP, UNIX Not Integrated Call

Dec Avai system Bellcore

Worksta lable

-tion

GEOL DACS 1987 IBM PC MS-DOS 256 Menu- $50

2.11 driven

HUGIN HUGIN 1990 lliM PC Windows 10 GUI $3000-

Expert 95 or MB $25000

higher

Norsys Norsys 1995 IBM PC Windows 12 GUT $1000-

95 or MB $2500

higher
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3.2.3 Comparison of Advantages and Disadvantages

The advantages and disadvantages of six models are compared in Table V.

Table V. Advantages and Disadvantages of the Six Models
(JM - Jelinski-Maranda, GO - Geol-Okumoto, LV - Littlewood-Verral)

Advantages Disadvantages

Musa's Simple and easy to understand; clear Limited application scope; some

Models physical interpretation of assumptions are too simple; some

parameters; low cost to implement; causal factors are not modeled;

several CASE tools are available cannot handle uncertainty

TheJM Simple and easy to understand; Limited application scope; some

Model sound theoretical foundation; low assumptions are too simple; some

cost to implement; several CASE causal factors are not modeled;

tools are available cannot handle uncertainty

The GO Simple and easy to understand; low Limited application scope; some

NHPP cost to implement; many CASE assumptions are too simple; some

Model tools are available causal factors are not modeled;

cannot handle uncertainty

Shoo- Simple and easy to understand; low Limited application scope; some

man's cost to implement assumptions are too simple; some

Model causal factors arc not modeled;

cannot handle uncertainty; few

CASE tools are available

The LV Wide application scope; models Complex model form; <.lose not

Model most causal factors; practical give a clear solution to handle

assumptions; considers uncertainty; uncertainty; difficult to implement

several CASE tools arc available
._.._-

The BBN Wide application scope; models Complex model form; difficult to

Model most causal factors; practical implement; few CASE tools are

assumptions; can handle uncertainty available
------ --_..-
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CHAPTER IV

AN ANALYSIS OF THE BAYESIAN BELIEF NETWORKS MODEL
BY APPLYING IT TO ScqWizard

A Bayesian Belief Network (BBN) enables users to model and reason about

uncertainty. It has the advantage of combining an intuitive visual representation (a

directed acyclic graph or DAG) with a sound mathematical basis (probability theory such

as conditional probability and Bayes' theorem) [Pearl 97].

Conditional probability is defined as follows.

peA IB) = peA, B) / PCB)

where peA I B) is the probability that event A happens under the condition that event B is

known, peA, B) is the probability that events A and B happen at the same time, and P(B)

is the probability that event B happens.

Bayes' theorem is given as follows.

peA IB) = PCB IA) x peA) / PCB)

where P(A i B) is called posterior belief of event A given event B, peA) and PCB) are

called prior belief of event A and probability of event B, respectively, and PCB I A) is

called the likelihood that event B will occur if event A is true.

The importance of Bayes' theorem is that it connects two different probabilities peA I

B) and PCB IA). In peA I B), B is evidence and A is uncertain. In PCB I A), A is evidence
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and B is uncertain. Bayes' theorem propagates the effects of evidence through a network

of variables in all directions [Lauritzen and Spiegelhalter 88]. This propagation ability

with other features makes BBN a powerful tool in diagnostic and predictive analysis

[Cowell et a1. 99].

In this chapter, the BBN software reliability model was used to predict the reliability

of the SeqWizard software. The SERENE 1.0 Demo tool [SERENE 90] was used for

BBN construction and probability computation.

This chapter is organized as follows. A brief introduction to SeqWizard is provided in

Section 4.1. The analysis of the reliability BBN model for SeqWizard is given in Section

4.2. A discussion of this analysis is given in Section 4.3.

4.1 Introduction to SeqWizard

SeqWizard is a software system developed by the author in the OSU Bioinforrnatics

Lab to automatically process large-scale DNA and protein data.

SeqWizard software contains three major components: SeqProcessor, SeqAnalyzer,

and SeqDatabase. Seq Processor processes DNA or protei n sequence data. SeqAnalyzer

analyzes the similarity of two or more DNA or protein sequences. SeqDatabase generates

relational databases for users. Users can communicate with the SeqWizard software

system from web based graphical user interfaces.

SeqWizard provides following key functionality: 1) searching and browsing from

within the working group or from the outside world; 2) processing large-scale DNA or

protein sequence data and generating relational databases; 3) functionally classifying
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DNA or protein sequences based on their similarities with the DNA or protein sequences

that have known functions.

4.2 The Analysis of the Reliabllity BBN Model for SeqWizard

This analysis included seven steps: 1) identifying the key entities in SeqWlzard, 2)

determining the key attributes of the entities relating to reliability, 3) grouping together

related attributes, 4) determining appropriate idioms for each group of attributes, 5)

defining the conditional probability table for each node in each idiom, 6) building the

complete reliability BBN for SeqWizard, and 7) predicting the reliability of SeqWizard.

The rest of this section is organized according to these steps. In Section 4.2.1,

identification of the key entities in SeqWizard is provided. In Section 4.2.2,

determination of the key attributes relating to reliability is given. In Section 4.2.3, related

attributes are group~d together in order to choose a proper idiom. In Section 4.2.4, an

appropriate idiom is detemlined for each group of attributes. Ln Section 4.2.5, the

conditional probability table for each node in each idiom is defined. In Section 4.2.6, all

the idioms arc joined together to build a complete reliability BBN for SeqWizard. Finally

in Section 4.2.7, the reliability of Scq Wizard is predicted.

4.2.1 Identifying Key Entities in SeqWizard

Entities are things or events of interest. Tn SeqWizard, there are three types of entities:

resource cntities, process entities, and product entities. Resource entities include software
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designers, programmers, and testers. Process entities include the problem identification,

requirement analysis, specification development, design process, coding process, and

testing process of SeqWizard. Here we mainly focus on design process, coding process,

and testing process. Product entity is the SeqWizard software. The SeqWizard software

consists of the design generated, the code produced, the programmer's guide, the user's

manual, and the test report.

The relationships among entities of SeqWizard are shown in Figure 2.
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Specification
development

Requirement
analysis

Problem
identification

Programmers
Proficiency
Experience
Effort

Programmer's guide
Clarity
Completeness
Understandability

Design process
CASE tools used
Formal or informal method applied
Total time spent

Design generated
Understandability
Completeness
Cohesion and coupling

Coding process
CASE tools used
Total time spent
Number of design defects discovered
Number of coding defects introduced
Number features missed

Code produc~d

Size (KLOC)
Complexity
Internal documents
Maintainability
Number latent faults
Reliability

Testing process
Test tools used
Test method applied
Total time spent

Test report
Mean time to failure
Number of defects found
(per KLOC)

Coding standard
Clarity
Practicality
Ease of use

User's manual
Clarity
Completeness
Understandability

Figure 2. Relationships Among Entities(o: resource;D : process; 0 : product)
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4.2.2 Detennining Key Attributes Relating to Reliability

Attributes are properties of entities. In SeqWizard, the key entities were identified in

Section 4.2.1. In this section, the key attributes of each entity relating to reliability are

detennined and listed in Table VI.

Table VI. Key Attributes in SeqWizard Relating to Reliability

Entity Entity Key attributes Description of key attributes in

type relating to SeqWizard

reliabi lity

Resource Designers Experience About five years of design

expenence

Effort 30% of the total development time*

Programmers Experience 1-2 years of programming

experIence

Effort 50% of the total development time

Testers Experience 1-3 years of testing experience

Effort 20% of the total development time

Process Design Design quality

Coding Coding accuracy

Testing Testing accuracy

Product SeqWizard Reliability Attribute to be predicted

Number of latent 60 crucial faults were found in

faults per KLOC** SeqWizard during testing

Operational profile Changed clearly but not dramatically

Problem 25 KLOC* * in SeqWizard

complexity

*Total development time - time includes design, coding, and testing

**KLOC - thousand lines of code
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For resource entities in Table VI, Designers' Experience is the ability to select design

methods, CASE tools, and design strategies. Design Effort is the time spent on design.

Designers' Experience and Effort directly influence design quality. Programmers'

Experience is the ability to program defensively and the ability to improve code

testability. Programmers' Effort is the time spent on coding. Programmers' Experience

and Effort directly influence coding accuracy. Testers' Experience is the ability to make

test plan, to select test strategies, and to choose test cases. Testers' Effort is the time spent

on testing. Testers' Experience and Effort directly influence testing accuracy.

For process entities in Table VI, Design quality is the completeness and accuracy of

mapping a real world problem to a software design. Software faults are actually design

faults [Lyu 96]. Design faults are usually hard to visualize, detect, and correct. Coding

accuracy is the correctness of mapping a software design to a software solution. Testing

accuracy indicates number of crucial faults found in software. Design quality, coding

accuracy, and testing accuracy are directly related to number of latent faults in software.

For product entity in Table vr, Reliability is the attribute to be predicted for

SeqWizard. Reliability is defined as the probability of failure-free operations. Number of

latent faults per KLOC is the direct source of software failure. Operational profile is a set

of operations and the frequency of each operation specified for software. During software

operation, if the operational profile is changed, software reliability will change. Problem

complexity is an attribute that influence design quality and testing accuracy. The more

complex the problem is, the harder it is for software designers to catch all its features.

The more complex the problem is, the harder it is for testers to find defects in software.
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4.2.3 Grouping Together Related Attributes

The key attributes listed m Table VI are grouped together III Table VII with

rationales.

Table VII. Grouping Related Attributes

Group Attributes in group Rationale for grouping

1 Reliability The fewer the number of latent faults are and

#latent faults per KLOC the more consistent the operational profile is,

Operational profile the higher will the reliability be.

2 #latent faults per KLOC The #latent faults per KLOe equals #faults

#faults introduced per KLOC introduced per KLOC minus #faults found

#faults found per KLOC and fixed per KLOC.

3 #faults found per KLOC The more #faults introduced in software and

#faults introduced per KLOC the higher the testing accuracy, the more

Testing accuracy likely it is to find faults in software.

4 #faults introduced per KLOC The higher the design quality, the fewer

Design quality design faults are introduced. The higher the

Coding accuracy coding accuracy, the fewer coding bugs.

5 Design quality The more experience designers have and the

Design experience more effort spent, the higher the design

Design effort quality. The more complex the problem, the

Problem complexity harder for designers to capture all its features.

6 Coding accuracy The more experience programmers have and

Coding experience the more effort spent on coding, the fewer

Coding effort bugs are introduced into the code.

7 Testing accuracy The more experience testers have and the

Testing experience more effort spent, the more likely to find

Testing effort crucial bugs. The more complex the problem

Problem complexity is, the harder it is to find defects in software.
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In Table VII, related attributes are grouped together in order to detennine an

appropriate idiom for each group in the next section. Each attribute listed in Table VII

would correspond to a node in the BBN. Some attributes are grouped into several groups

because they play various roles in different group. Another reason was that different

idioms can be joined together by these common attributes.

4.2.4 Detennining Idioms

Different attributes in SeqWizard were grouped together in Section 4.2.3. In this

section, an appropriate idiom is detennined for each group of attributes. An introduction

to idioms and how to choose appropriate idioms is given in Section 4.2.4.1.

Dctennination of an appropriate idiom for each group of attributes is given in Section

4.2.4.2.

4.2.4.1. What are Idioms and How to Choose Appropriate Idioms?

Idioms are generally applicable building blocks for constructing BBNs [Neil et al.

99]. Idioms specify the relationships among nodes. The main purpose of using idioms is

that idioms act as a library of patterns for BBN development. Using idioms emphasizes

reuse. Five categories of idioms had been identified based on generic uncertain reasoning

[Neil et a1. 99]. These five categories of idioms are described below.

• The Definition/Synthesis Idiom. This idiom models the synthesis or combination

of many nodes into one node for the purpose of organizing the BBN. It also
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models the deterministic or uncertain definition between variables. This idiom

emphasizes definitional reasoning such as "what something is".

• The Cause-Consequence Idiom. This idiom models the uncertainty of an

uncertain causal process with observable consequences. This idiom emphasizes

production and transformation of something.

• The Measurement Idiom. This idiom models the uncertainty about the accuracy

of a measurement instrument. This idiom emphasizes reasoning based on

observations.

• The Induction Idiom. This idiom models the uncertainty related to inductive

reasoning based on population of similar or exchangeable members. This idiom

emphasizes statistical and analogical reasoning using historical data.

• The Reconciliation Idiom. This idiom models the reconciliation of results from

competing measurement or prediction systems.

The flowchart in Figure 3 shows how to choose appropriate idioms.
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Figure 3. Choosing the Right Idiom [Neil et al. 99]

4.2.4.2 Determining an Appropriate Idiom for Each Group of Attributes

In this section, an appropriate idiom is determined for each group of attributes In

Table VII.

For Group 1, the Measurement idiom was determined because software "Reliability"

is measured (estimated or predicted) through "#Iatent fault per KLOC" in software and
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the consistency of software "Operational profile". The instantiation of this idiom, called

reliability idiom, is given in Figure 4.

Reliability

Figure 4. The Reliability Idiom

For Group 2, the Definition/Synthesis idiom was detennined because "#latent faults

per KLOC" is equal to "#faults introduced per KLOC" minus "#faults found per KLOC".

The instantiation of this idiom, called latent faults idiom, is given in Figure 5.

#Iatent faults
per KLOC

#faults introduced
per KLOC

Figure 5. The Latent Faults Idiom

For Group 3, the Measurement idiom was detennined SInce "#faults found per

KLOC" is measured through "#faults introduced per KLOC" during software

development and "Testing accuracy" during software testing process. The instantiation of

this idiom, called faults found idiom, is given in Figure 6.
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#faults
introduced
ner KLOC

Figure 6. The Faults Found Idiom

For Group 4, the Measurement idiom was determined because "#faults introduced per

KLOC" is measured through "Design quality" and "Coding accuracy" during software

development. The higher the design quality is and the more accurate the coding process

is, the less number of faults are introduced in software. The instantiation of this idiom,

called faults introduced idiom, is given in Figure 7.

~.

Design quality Coding accuracy

Figure 7. The Faults Introduced Idiom

For Group 5, the Definition/Synthesis idiom was detennined since "Design quality" is

defined by "Design experience", "Design effort", and "Problem complexity". The

instantiation of this idiom, called design quality idiom, is shown in Figure 8.
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Design
experience

Figure 8. The Design Quality Idiom

For Group 6, the Definition/Synthesis idiom was detennined because "Coding

accuracy" is defined by "Coding experience" and "Coding effort". The instantiation of

this idiom, called coding accuracy idiom, is given in Figure 9.

Figure 9. The Coding Accuracy Idiom

For Group 7, the Definition/Synthesis idiom was detennined smce "Testing

accuracy" is defined by "Testing experience", "Testing effort", and "Problem

complexity". The instantiation of this idiom, called testing accuracy idiom, is given in

Figure 10.
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Testing accuracy

Figure 10. The Testing Accuracy Idiom

4.2.5 Defining Conditional Probability Tables (CPTs)

Seven idioms were determined in Section 4.2.4. A conditional probability table (CPT)

for each node of the seven idioms is defined in this section. The SERENE 1.0 Demo tool

was used to obtain all the CPTs. When defining a CPT, if a node had no parents, its

probability is unconditional. The CPT for this node was a uniform distribution of

probabilities over all the states of this node if the probabi lities were not specified

otherwise. That is, each state took a probability of lIn, where n is the number of states of

the node. If a node had parents, its probability was conditional probability.

The SERENE 1.0 Demo tool provides two options for conditional probability

specification: one is "Manually Specified Distributions", and the other is "Function

Expressions". The option "Manually Specified Distributions" means that users need to

assign each probability in the CPT manually based on historical data or expert

knowledge. The option "Function Expressions" means that users need to supply an

expression to indicate the relationship among the parent node(s) and the child node first,

then the tool calculates the probabilities and defines the CPT for the child node based on
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the given expression and its parents' CPTs. Choosing an expression is based on historical

data or expert knowledge. The expressions available in the SERENE 1.0 Demo tool

include: constant values, arithmetic ftmctions, Boolean functions, discrete distribution

functions, and continuous distribution functions. The algorithms for calculating

probabilities and defining CPT were given by Cowell et al. [Cowell et al. 99].

The rest of this section is organized as follows. In Section 4.2.5.1, the CPTs for all

nodes of the reliability idiom are defined. In Section 4.2.5.2, the CPTs for all nodes of the

latent faults idiom are defined. In Section 4.2.5.3, the CPTs for all nodes of the faults

found idiom are defined. In Section 4.2.5.4, the CPTs for all nodes of the faults

introduced idiom are defined. In Section 4.2.5.5, the ePTs for all nodes of the design

quality idiom are defined. In Section 4.2.5.6, the CPTs for all nodes of the coding

accuracy idiom are defined. In Section 4.2.5.7, the CPTs for all nodes of the testing

accuracy idiom are defined.

4.2.5.1 CPTs for the Reliability Idiom

In the reliability idiom (Figure 4), there are three nodes, "#Iatent faults per KLOC",

"Operational profile", and "Reliability".

The node "#latent faults per KLOC" was defined to have 1°discrete states: 0, 1, 2, 3,

4, 5, 6, 7, 8, 9. The states represented software defect density (#defects/KLOC) as

published [Neil and Fenton 96]. The node "#latent faults per KLOC" had no parents in

the reliability idiom. Its CPT was uniform probability distribution. Each state took a

probability of 0.1 as shown in Figure 11.
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Figure 11. The CPT for "#latent faults per KLOC" in the Reliability Idiom

In order to be simple, five states were defined for the node "Operational profile".

These five states were five continuous intervals: [1,2], [2,3], [3,4], [4,5], and [5,inf]. Here

"inf' represents the last value in the last interval to foHow the convention of the SERENE

1.0 Demo tool. All the "inf' in this thesis has the same meaning. The consistency of

suftware operational profile was indicated by the changes of software operations. Interval

[1,2] represented slightest changes or highest consistency of software operational profile.

Interval [5,inf] represented most dramatic changes or lowest consistency of software

operational profile. The node "Operational profile" had no parents. Its CPT was uniform

probability distribution, Each state took a probability of 0.2 as given in Figure 12.

';'( Monitoring operational profile

. r J1,2J
r J2,3J
r J3,4J
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o
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0.2

0.2

0.2

0.2

Figure 12. The CPT for "Operational profile"
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The node "Reliability" was defined to have five continuous states: [5,6], [6,7]. [7,8],

[8,9], and [9,inf]. The values in each state represented software reliability - probability of

failure-free operations, from 50% to 100%. The node "Reliability" had two parents:

"#latent faults per KLOC" and "Operational profile". Its probability was the conditional

probability P("Reliability" I "#latent faults per KLOC", "Operational profile"). The CPT

for the node "Reliability" was defined manually, based on the historical data provided in

[Neil and Fenton 96] and the understanding of the relationships among software

reliability, number of latent faults, and software operational profile by people in OSU

Bioinfonnatics lab. This CPT was given in Table VIll.

The particular values specified in the CPT of the node "Reliability" (Table VIII)

reflected our belief that the less the "#latent faults per KLOC" is and the higher the

consistency of software "Operational profile" is, the higher the "Reliability" of software

is. The more the "#latent faults per KLOC" is and the less the consistency of software

"Operational profile" is, the lower the "Reliability" of the software is. But "#latent faults

per KLOC" had more impact on software reliability than the consistency of "Operational

profile".
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Table VID. The CPT for "Reliabi lity"

#latent faults I Operational profile Reliability
I

[6,7] [7,8] [8,9] [9,inf][S,6]

0 [1,2] 0 0 0 0 1
[2,3] 0 0 0 0 1
[3,4] 0 0 0 0 1
[4,S] 0 0 0 0 1
[S,inf] 0 0 0 0 1

1 [1,2] 0 0 0 0 1
[2,3] 0 0 0 0 I
[3,4] 0 0 0 0 I
[4,5] 0 0 0 0.1 0.9
[S,inf] 0 0 0.1 0.1 0.8

2 [1,2] 0 0 0 0 1
[2,3] 0 0 0 0 1
[3,4] 0 0 0 0.1 0.9
[4,S] 0 0 0.1 0.1 0.8
[5,infl 0 0.1 0.1 0.1 0.7

--_.

3 (l,2] 0 0 0 0 I
[2,3J 0 0 0 0.1 0.9
[3,4] 0 0 0.1 0.1 0.8
[4,5] 0 0.1 0.1 0.1 0.7
[S,infl 0.1 0.1 0.1 0.1 0.6

4 [1,2] 0 0 0 0.1 0.9
[2,3] 0 0 0.1 0.1 0.8
[3,4] 0 0.1 0,1 0.1 0.7
[4,S] 0.1 0.1 0.1 0.1 0.6

I r5,infl 0.1 0.1 0.1 0.2 0.5
5 [1,2J 0 0 0,1 0.1 0.8

[2,3] 0 0.1 0.1 0.1 0.7
[3,4] 0.1 0.1 0.1 0.1 0.6
[4,S] 0.1 0.1 0.1 0.2 O.S
[S,infl 0.1 0.1 0.2 0.2 0.4

6 [1,2] 0 0.1 0.1 0.1 0,7
[2,3] 0,1 0.1 0.1 0.1 0.6
[3,4] 0.1 0.1 0.1 0.2 0.5
[4,SJ 0.1 0.1 0.2 0.2 0.4
is,inf] 0.1 0.2 0.2 0.2 0.3

7 [1,2] 0.1 0.1 0.1 0.1 0.6
[2,3] 0.1 0.1 0.2 0.2 0.4
[3,4] 0.2 0.2 0.2 0.2 0.2
[4,5] 0.3 0.2 0.2 0.2 0.1
is,inll 0.3 0.3 0.2 0.2 0

8 [1,2] 0.1 0.1 0.1 0.2 O.S
[2,3] 0.1 0.1 0.2 0.2 0.4
[3,4] 0.1 0.2 0.2 0.2 0.2
[4,5] 0.3 0.3 0.3 0.1 0
[5,inf] 0.5 0.3 0.2 0 0

9 [1,2 ] 0.1 0.1 0.2 0.2 0.4
[2,3] 0.2 0.2 0.2 0.2 0.2
[3,4] 0.4 0.3 0.2 0.1 0
[4,5] 0.6 0.2 0.2 0 0
f5,inf] 0.8 0.1 0.1 0 0
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4.2.5.2 CPTs for the Latent Faults Idiom

In the latent faults idiom (Figure 5), there are three nodes, "#faults introduced per

KLOC", "#faults found per KLOC", and "#latent faults per KLOC".

All three nodes were defined to have the same states as the node "#Iatent faults per

.KLOC" in Section 4.2.5.1. The CPTs for the nodes "#faults introduced per KLOC" and

"#faults found per KLOC" were both uniform probability distributions. Each state took a

probability of 0.1.

The node "#latent faults per KLOC" had two parents: "#faults introduced per KLOC"

and "#faults found per KLOC". Its probability was the conditional probability P("#Iatent

faults per KLOC" I "#faults introduced per KLOC", "#faults found per KLOC"). The

CPT for the node "#latent faults per KLOC" (Figure 13) was obtained from the SERENE

1.0 Demo tool by supplying the following function.

CI = Max (0, C2 - C3)

where Cl represented "#latent faults per KLOC", C2 represented "#faults introduced per

KLOC", and C3 represented "#faults found per KLOC".
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o
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Figure 13. The CPT for "#latent faults per KLOC" in the Latent Faults Idiom
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In Figure 13, the probability of 0 latent fault was 55%, the probabilities of 1-9 latent

faults decreased from 9% to 1% with 1% interval.

4.2.5.3 CPTs for the Faults Found Idiom

In the faults found idiom (Figure 6), there are three nodes, "#faults introduced per

KLOC", "Testing accuracy" and "#faults found per LOC".

The node "#faults introduced per KLOC" had exactly the same states and CPT as it in

the latent faults idiom in Section 4.2.5.2.

The node "Testing accuracy" was defined to have ten continuous states: [0,1], [1,2],

[2,3], [3,4], [4,5], [5,6], [6,7], [7,8], [8,9], and [9,int]. Interval [0,1] represented the

lowest testing accuracy. Interval [9,int] represented the highest testing accuracy. The

CPT for the node "Testing accuracy" was unifonn probability distribution. Each state

took a probability of 0.1.

The node "#faults found per KLOC" had the same states as it in the latent faults

idiom in Section 4.2.5.2. The node "#faults found per KLOC" had two parents: "#faults

introduced per KLOC" and "Testing accuracy". Its probability was the conditional

probability P("#faults found per KLOC" I "#faults introduced per KLOC", "Testing

accuracy"). The CPT for the node "#faults found per KLOC" (Figure 14) was obtained

from the SERENE 1.0 Demo tool by supplying the following function.

Cl = Binomial (C2, C31l 0)

where C 1 represented "#faults found per KLOC" , C2 represented "#faults introduced per

KLOC", and C3 represented "Testing accuracy". "Testing accuracy"1l 0 is the probability

of finding faults in software. When testing accuracy was very high (in state (9,infJ), the
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value of "Testing accuracy"/1 0, or the probability of finding faults would be close to 1.

When testing accuracy was very low (in state [0,1 D, the value of "Testing accuracy"/l 0,

or the probability of finding faults would be close to O.

.' ;'. Monitoring ttfauUs found

P (1:tfaults found)~-==~--:o:---=-=~:-c-
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0.1934639
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8.51 2623E -02

6.511 329E -02

4. 835365E-02

3. 362622E -02

1.987483E -02

7. 395739E -03

o

Figure 14. The CPT for "#faults found per KLOC"

In Figure 14, the probability of 0 fault found was 29%, the probability of 1 fault

found was 19%, the probability of 2 faults found was 14%, and the probability of 3 faults

found was 11 %. The probabilities of 4-8 faults found decreased from 8.5% to 2.0% with

about 2% interval. The probability of9 faults found was 0.7%.

4.2.5.4 CPTs for the Faults Introduced Idiom

In the faults introduced idiom (Figure 7), there are three nodes, "Design quality",

"Coding accuracy", and "#faults introduced per KLOC".

The nodes "Design quality" and "Coding accuracy" were defined to have five

continuous states: [0,1], [1,2], [2,3], [3,4], and [4,inf]. Interval [0,1] represented very

poor desi gn quality or very low coding accuracy. Interval [4,inf] represented very high
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design quality or very high coding accuracy. The CPTs for the nodes "Design quality"

and "Coding accuracy" were both unifonn probability distributions. Each state took a

probability of 0.2.

The node "#faults introduced per KLOC" had the same states as it in the faults found

idiom in Section 4.2.5.3. The node "#faults introduced per KLOC" had two parents:

"Design quality" and "Coding accuracy". Its probability was the conditional probability

P("#faults introduced per KLOC" I "Design quality", "Coding accuracy"). The CPT for

the node "#faults introduced per KLOC" (Figure 15) was obtained from the SERENE 1.0

Demo tool by supplying the following function.

C1 = 6*(1/C2) + 4*(l/C3)

where Cl represented "#faults introduced per KLOC", C2 represented "Design quality",

and C3 represented "Coding accuracy".

. -;.' MonilOling "faulls introduced

P ("faults introduced)

6.1 03669E -03 I
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Figure 15. The CPT for "#faults introduced per KLOC"
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In Figure 15, the probability of °or 1 fault introduced was 0.6%, respectively, the

probability of 2 faults introduced was 4%, the probability of 3 faults introduced was 10%,

the probabilities of 4 faults introduced was 15%, the probability of 5 faults introduced

was 17%, the probability of 6 faults introduced was 13%, the probability of 7 faults

introduced was 10%, the probability of 8 faults introduced was 15%, and the probability

of9 faults introduced was 16%.

4.2.5.5 ePIs for the Design Quality Idiom

In the design quality idiom (Figure 8), there are four nodes, "Design experience",

"Design effort", "Problem complexity", and "Design quality".

The nodes "Design experience" and "Design effort" were both defined to have five

continuous states: [0,1], [1,2], [2,3], [3,4], and [4,inf]. For the node "Design experience",

years of design were used to indicate the levels of different design experience. Interval

[0,1] represented the least design experience. Interval [4,int] represented the richest

design experience. For the node "Design effort", the percentage of total software

development time (including design, coding, and testing phases) was used to indicate

di fferent design efforts. Interval [0,1] represented the least design effort. Interval [4,inf]

represented the highest design effort.

The node "Problem complexity" was defined to have five continuous states: [1,21,

[2,3], [3,4], [4,5], and [5,inf]. For "Problem complexity", lines of codes (LOC) in

software were used to indicate different levels of problem complexity. Since LOC cannot

be 0, intervals started from 1. Interval [1,2] represented the most di fficult problem.

Interval [5,inf] represented the easiest problem.
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The CPTs for the nodes "Design experience", "Design effort", and "Problem

complexity" were all uniform probability distributions. Each state took a probability of

0.2.

The node "Design quality" took the same states as it in the faults introduced idiom in

Section 4.2.5.4. The node "Design quality" had three parents: "Design experience",

"Design effort", and "Problem complexity". Its probability was the conditional

probability P("Design Quality" I "Design experience", "Design effort", "Problem

complexity"). The CPT for "Design quality" (Figure 16) was obtained from the SERENE

1.0 Demo tool by supplying the following function.

Cl = 2/4*C2 + l/4*C3 + l/4*C4

where C1 represented "Design quality", C2 represented "Design experience", C3

represented "Design effort", and C4 represented "Problem complexity".
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Figure 16. The CPT for "Design quality"

In Figure 16, the probabil ity of design quality at very Jow level (state [0,1]) was 2%,

the probability of design quality at low level (state [1,2]) was 21%, the probability of

design quality at medium level (state [2,3]) was 41 %, the probability of design quality at
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high level (state [3,4]) was 32%, and the probability of design quality at very high level

was 4%.

4.2.5.6 CPTs for the Coding Accuracy Idiom

In the coding accuracy idiom (Figure 9), there are three nodes, "Coding experience",

"Coding effort", and "Coding accuracy".

The nodes "Coding experience" and "Coding effort" were both defined to have five

continuous states: [0,1], [1,2], [2,3], [3,4], and [4,inf]. For the nodes "Coding experience"

and "Coding effort", the interpretation of intervals was the same as for the nodes "Design

experience" and "Design effort" in Section 4.2.5.5. The CPTs for the nodes "Coding

experience" and "Coding effort" were both uniform probability distributions. Each state

took a probability of 0.2.

The node "Coding accuracy" took the same states as it did in the faults introduced

idiom in Section 4.2.5.4. The node "Coding accuracy" had two parents: "Coding

experience" and "Coding effort". Its probability was the conditional probability

P("Coding accuracy" I "Coding experience", "Coding effort"). The CPT for the node

"Coding accuracy" (Figure 17) was obtained from the SERENE 1.0 Demo tool by

supplying the follow function.

Cl = 2/3*C2 + 1I3*C3

where Cl represented "Coding accuracy", C2 represented "Coding experience", and C3

represented "Coding effort".
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.; Monitoring coding accuracy
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Figure 17. The CPT for "Coding accuracy"

In Figure 17, the probability of coding accuracy at very low level (state [0,1]) was

9%, the probability of coding accuracy at low level (state [1,2]) was 27%, the probability

of coding accuracy at medium level (state [2,3]) was 33%, the probability of coding

accuracy at high level (state [3,4]) was 27%, and the probability of coding accuracy at

very high level was 4%.

4.2.5.7 CPTs for the Testing Accuracy Idiom

In the testing accuracy idiom (Figure 10), there are four nodes, "Testing experience",

"Testing effort", "Problem complexity", and "Testing accuracy".

The nodl;s "Testing experience" and "Testing effort" were both defined to have ten

continuous states: [0,1], [1,2], [2,3], [3,4], [4,5], [5,6], [6,7], [7,8], [8,9], and [9,inf]. For

the node "Testing experience", years of testing were used to indicate the different levels

of testing experience. Interval [0,1] represented the least testing experience. Interval

[9,inf] represented the richest testing experience. For the node "Testing effort", the

percentage of total software development time was used to indicate different testing

effort. Interval [0,1] represented the least testing effort. Interval [9,inf] represented the

highest testing effort. The CPTs for the nodes "Testing experience" and "Testing effort"
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were both uniform probability distributions. Each state took a probability of 0.1. For the

node "Problem complexity", the intervals and the CPT were the same as intervals and

CPT for "Problem complexity" in Section 4.2.5.5.

The node "Testing accuracy" took the same states as in the faults found idiom in

Section 4.2.5.3. The node "Testing accuracy" had three parents: "Testing experience",

"Testing effort", and "Problem complexity". Its probability was the conditional

probability P("Testing accuracy" I "Testing experience", "Testing effort", "Problem

complexity"). The CPT for the node "Testing Accuracy" (Figure 18) was obtained from

the SERENE 1.0 Demo tool by supplying the following function.

Cl = 6/10*C2 + 3110*C3 + 1/10*C4

where C1 represented ''Testing Accuracy", C2 represented "Testing experience", C3

represented "Testing effort", and C4 represented "Problem complexity".

. -;', Monitoring testing accuracy
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Figure 18. The CPT for "Testing accuracy"

In Figure 18, the probability of testing accuracy at very low level (states [0,1] and

[1,2]) was 8%, the probability of testing accuracy at low level (states [2,3] [3.4]) was
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28%, the probability oftesting accuracy at medium level (states [4,5] and [5,6]) was 34%,

the probability of testing accuracy at high level (states [6,7] and [7,8]) was 26%, and the

probability of testing accuracy at very high level (states [8,9] and [9,inf]) was 4%.

4.2.6. Building Complete Reliability BBN

In Section 4.2.4, seven idioms were detennined. In Section 4.2.5, the CPTs for each

node of the seven idioms were defined. An idiom with the CPT of each of its nodes

defined is called a BBN module. In different BBN modules, nodes with the same name

and the same states are called common node of these BBN modules. Different BBN

modules can be joined together through common nodes. If no common node exists in two

BBN modules, a virtual common node can be introduced to join the two BBN modules.

In this section, seven BBN modules were joined together by common nodes. The

complete BBN is given in Figure 19.

In Figure 19, the seven BBN modules are joined together by double arrows. Double

arrows connected the common node in two BBN modules and indicated the direction of

joining of each two BBN modules. After the joint of seven BBN modules, the

probabilities in the CPT of each node in the complete BBN would be revised by a process

called compilation. The algorithms for compilation were given by Cowell et al. [Cowell

et a1. 99]. After the compilation, the complete BBN will be ready to make predictions.
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Figure 19. The Complete Reliability BBN for SeqWizard
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4.2.7 Predicting Reliability

The complete reliability BBN for SeqWizard was given in Section 4.2.6. In this

section, the reliability BBN is used to predict the reliability of SeqWizard. A set of

hypothetical data was also entered to the reliability BBN to check its suitability before

predicting the reliability of SeqWizard. Checking the suitability of the reliability BBN is

gIven m Section 4.2.7.1. Predicting the reliability of SeqWizard is given in Section

4.2.7.2.

4.2.7.1 Checking the Suitability ofthe Reliability BBN

In this section, the worst case scenario (Figure 20), the average case scenario (Figure

21), and the best case scenario (Figure 22) are generated to check the suitability of the

reliability BBN. For each case, the hypothetical data were entered to the corresponding

nodes in the reliability BBN, then the probability in each state of the node "Reliability"

was observed after a process called propagation. The algorithms for propagation were

given by Cowell et al. [Cowell et al. 99J.

As defined before, the node "Reliability" had five states: [5,6], [6,7], [7,8], [8,9], and

[9,inf]. These states represented software reliability - probability of failure-free

operations, from 50% to 100%. Informally, these states could be interpreted as "Very

Low". "Low". "Medium", "High", and "Very High" reliability, respectively.
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Figure 22. The Best Case Scenario of the Reliability BBN for SeqWizard
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The worst case: the problem was very complex, designers had little design experience

and spent little effort on designing, programmers had little coding experience and spent

little effort on coding, testers had little experience and spent little effort on testing, and

the operational profile of software changed dramatically. In this case (Figure 20), there

would be a 1% probability that the software would execute with very high reliability, a

3% probability with high reliability, a 15% probability with medium reliability, a 19%

probability with low reliability, and a 62% probability with very low reliability. That is,

most of the time, about half of the total runs of software would fail.

The average case: the problem complexity, designers' experience and effort,

programmers' experience and effort, testers' experience and effort, and the consistency of

the software's operational profile were all in their medium level. In this case (Figure 21),

there would be an 86% probability that the software would execute with very high

reliability, a 8% probability with high reliability, a 5% probability with medium

reliability, a 0.9% and 0.1 % probability with low and very low reliability, respectively.

The best case: the problem was not complex, designers had very rich design

experience and spent a lot of effort on designing, programmers had very rich coding

experience and spent a lot of effort on coding, testers had very rich experience and spent

a lot of effort on testing, and the operational profile of software was just as expected. In

this case (Figure 22), there would be a 100% probability that software would execute

with very high reliability.

The results of the worst case scenario, the average case scenario, and the best case

scenario were in accordance with the reliability cost function [Lyu 96]. This indicated

that the reliability BBN constructed was suitable for software reliability prediction.
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4.2.7.2 Predicting the Reliability of SeqWizard

The measurements and observations collected during SeqWizard development (Table

vn were entered in the corresponding nodes in the reliability BBN. The propagation

result is given in Figure 23 below.
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Figure 23. Predicted Reliability of SeqWizard
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In Figure 23, there is a 73.3% probability that SeqWizard would execute with very

high reliability, a 10.5% probability with high reliability, a 7.2% probability with medium

reliability, a 4.5 % probability with low or very low reliability. This result is very close to

the reliability report during the beta testing of SeqWizard, The reliability report was

generated by three testing groups: Arizona University, Purdue University, and Oklahoma

State University.

In addition to the reliability of SeqWizard, the number of faults introduced per KLOC

to SeqWizard, the number of faults found per KLOC in SeqWizard, and the number of

latent faults per KLOC remained in SeqWizard were also obtained from the reliability

BBN. The result is given in Figure 24,
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In Figure 24, in the "Monitoring #faults introduced" window, the probability of 7 or

more faults per KLOC introduced in SeqWizard is more than 76% (26% + 30% + 20%).

In the "Monitoring #faults found" window, the probability of finding 1-3 faults in

SeqWizard is more than 71 % (23%+27%+21 %). In the "Monitoring #latent faults"

window, the probability of 5 or more latent faults per KLOC remained in SeqWizard is

more than 62% (l % + 6% + 14% + 20.5% + 20.5%).

4.3 Discussion

The reliability BBN of SeqWizard was given in Section 4.2. The predicted results of

this reliability BBN in the worst case, the average case, and the best case hypothetical

scenarios were in accordance with the reliability cost function [Lyu 96]. This indicated

that the reliability BBN was suitable for reliability prediction. The predicted reliability of

SeqWizard was consistent with the reliability report (generated by three groups: Arizona

University, Purdue University, and Oklahoma State University) of SeqWizard in its beta

testing stage. This result confirmed the effectiveness ofthe BBN model.

When constructing a BBN, the more states are defined for each node, the more

complex the BBN model is and the higher the precision of the predicted result will he.

T\\'o states, "good" and "poor", were defined for each node of the safety-critical system

BBN [Bouissou et al. 99]. Three states, "High", "Medium", and "Low", were defined for

each node of the software quality BBN [Neil and Fenton 96). In this thesis, five to ten

states were defined for each node of the reliability BBN. These states indicated some

intermediate levels between the two extremes.
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The effectiveness of the BBN model for predictive analysis was confirmed by this

thesis. But constructing a suitable BBN is a complex process. Probably the most difficult

part was defining the conditional probability table (CPT) for each node in the BBN. The

difficulty came from three limitations: 1) no standards available; 2) lack of historical data

(many software systems have been developed and deployed, but few measurements and

observations are available); and 3) uncertain nature of attributes. These limitations are the

major reasons why the BBN model is not widely applied in software engineering [Fenton

and Neil 99]. The other reasons include the fact that the probabilistic explanation of

events is abstract [Cowell et al. 99].
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CHAPTER V

SUMMARY AND FUTURE WORK

5.1 Summary

In this thesis, a survey of six current and popular software reliability models was

provided and one ofthe six models, the BBN model, was analyzed in detail.

For the six software reliability models investigated, the following Issues were

discussed for each model: a brief history, model classification, software development

phase(s) applied, basic assumptions, data requirements, model [ann, and application

scope. The six models were also compared from three aspects: factors modeled,

availability of CASE tools, and advantages and disadvantages. Musa's models, the

Jelinski-Moranda model, the Geol-Okumoto NHPP model, and Shooman's model model

two kinds of factors: 1) software failure data obtained in software test and operation

processes, and 2) competence of software testers. These four models mainly focus on

reliability estimation. The advantages of these four models are their simplicity and low

cost to implement. The disadvantages are: 1) some assumptions are too simple; 2) some

reliability causal factors are not modeled; and 3) they cannot handle uncertainty. The

Littlewood-Verral model and the Bayesian Belief Networks (BBN) model model factors

in each phase of the software life cycle when failure data mayor may not be available.
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These two models focus on reliability prediction and estimation. The advantages of these

two models are: I) they are based on practica' assumptions; 2) they model most reliability

causal factors; and 3) they can handle uncertainty. The disadvantages are their complex

model forms and difficulty in implementation. For all the six models, CASE tools were

also investigated in detail. These survey results can be used by practitioners to help make

a decision when choosing among software reliability models.

The reliability BBN for SeqWizard was constructed through seven steps in order to

analyze it in detail. The suitability of this BBN was checked by a set of hypothetical

scenarios. The predicted reliability of SeqWizard was consistent with the reliabi lity report

of SeqWizard in its beta testing stage. This indicated the suitability of the reliability BBN

constructed in this thesis and the effectiveness of the BBN model. In addition to

reliability, the number of faults introduced to SeqWizard, the number of faults found

during testing, and the number of latent faults remained in SeqWizard were also obtained

from the reliability BBN. These predicted results can be used by decision-makers in

software development. The experience obtained in this analysis can be extended to other

applications of the BBN model. We believe that the BBN model is not just effective for

software reliability prediction and estimation, it is also effective for various decision­

making support in software engineering.

5.2 Future Work

There are more than 40 software reliability models in the open literature. Six of them,

Musa's models, the Jelinski-Moranda model, the Geol-Okumoto NHPP model,
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Shooman's model, the Littlewood-Verral model, and the Bayesian Belief Networks

(BBN) model, were investigated in this thesis. The BBN model has been analyzed in

detail through applying it to predict the reliability of the SeqWizard software. Some other

models need to be investigated and analyzed in detail in order to explore their

effectiveness for software reliability prediction and/or estimation.
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GLOSSARY

AIAA - American Institute of Aeronautics and Astronautics. The nonprofit AIAA is the
principal society and voice serving the aerospace profession. Its primary purpose
is to advance the arts, sciences, and technology of aeronautics and astronautics
and to foster and promote the professionalism of those engaged in these pursuits.

Bellcore - Bell communications and research.

BBN - Bayesian Belief Networks.

CASE -- Computer-Aided Software Engineering. CASE is the use of computer-based
support in software development process.

CASRE - Computer-Aided Software Reliability Engineering. It is an automated software
reliability tool developed by NASA in 1994.

Conditional Probability Table (CPT) - In a Bayesian Belief Network, each node contains
the states of the random variable it represents and a conditional probability table
(cpt). The cpt of a node contains probabilities of the node being in a specific state
given the states of its parents.

DAG - Directed Acyclic Graph.

DACS Data & Analysis Center for Software.

DNA - Deoxyribose Nucleic Acid. A nucleic acid that carries the genetic information in
the cellular organisms and is capable of self-replication and synthesis of RNA
(Ribose Nucleic Acid). DNA consists of two long chains of nucleotides twisted
into a double helix and joined by hydrogen bonds between the complementary
bases adenine(A) and thiarnine(T) or cytosine(C) and guanine(G). The sequence
of nucleotides determines individual hereditary characteristics. A DNA sequence
can be considered as a string of characters A, T, C, and G.

ESTM - Economic Stop Testing Model.

Execution Time - The CPU time that IS actually spent by a computer in executing
software.
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Failure Intensity Function - This function represents the rate of change of the cumulative
failure.

Failure Rate - The probability that a failure per unit time occurs in the interval, say, [t,
t+~t], given that a failure has not occurred before time 1. That is,
Failure Rate = P( t <= T < t+~t I1>t) / L1t

= P( t <= T < t+L1t ) / (~t x P(T>t»
= (F(t+L1t) - F(t» / (M x R(t»

where F(t) is the probability of failure by time t, and R(t) is the reliability function
defined in Chapter 1lI of this report.

GUI - Graphical User Interface.

Hazard Rate - Defined as the limit of the failure rate as the interval size approaches zero,
that is, L1t~O, z(t) = lim(F(t+L1t) - F(t» / (L1t x R(t»
where F(t) is the probability of failure by time t, and R(t) is the reliability function
defined in Chapter III of this report.

Idiom - The basic building block of the Bayesian Belief Networks developed by Fenton
and Neil based on generic uncertain reasoning.

KLOC - Thousand Lines Of Code.

LAAS - Laboratory of Analysis and Architecture of System.

LOC - Lines Of Code.

Mean Time To Failure (MTTF) - The expected time that the next failure will be
observed. Also known as Mean Time Between Failures (MTBF).

MUNIN - MUscle and Nerve Inference Network. A causal probabilistic network
constructed to diagnose muscle and nerve diseases through analysis of
bioelectrical signals from muscle and nerve tissues.

NHPP - NonHomogeneous Poisson Process.

NSWC - Naval Surface Warfare Center.

Operational Profile - A set of operations and the frequency of each operation specified
for software.

RSC Ltd. - Reliability and Statistical Consultants, Ltd.

Software Life Cycle - Software development generally includes eight phases:
requirement establishing, specification analysis, planning, design,
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implementation, integration and system testing, maintenance, and retirement.
These phases are collectively called software life cycle.

Software Reliability - The probability of failure-free software operation for a specified
period of time in a specified environment.

Software Reliability Engineering - The application of statistical techniques to data
collected during system development and operation to specify, predict, estimate,
and assess the reliability of software-based systems.

Software Reliability Model - A software reliability model specifies the general form of
dependency of the failure process on the principal factors that affect it. Such
factors include: fault introduction, fault removal, and the operational environment.

SMERFS - Statistical Modeling and Estimation of Reliability Functions of Software.
SMERFS is an automated software reliability tool developed by Naval Surface
Warfare Center in 1983.

SRMP - Software Reliability Modeling Programs. SRMP is an automated software
reliability tool developed by the Reliability and Statistical Consultants, Ltd.
(England) in 1988.
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