
INVESTIGATING THE RELATIONSHIP BETWEEN

TIIREADS AND PROGRAM SLICES

By

ABDUNNASSAR USMAN

. Bachelor of Technology

Government Engineering College, Trichur

University of Calicut

Kerala, India

1996

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December 2000

INVESTIGATING THE RELATIONSHIP BETWEEN

THREADS AND PROGRAM SUCES

Thesis Approved:

Thesis Advisor

II'

ii

PREFACE

A program slice is a sequence of instructions through a program that is capable of

reproducing part of the program's behavior. A static slice can be a reuse component.

Slicing exposes the control and data dependencies that affect portions of interest in a

given program.

A thread is a sequence of program execution. Data flow and control flow characterize

a thread; and data and control dependencies hold a thread together as a cohesive unit.

Threads can be reuse candidates (as in concurrent object-oriented programming).

A relationship between threads and program slices seems to emerge when their

concepts are juxtaposed. This study was an investigation to verify and validate the

relationship. It examined research fundamentally relevant to the concepts of threads and

program slices, and tabulated similarities on several points of comparison.

The concept of a dynamic slice is comparable to that of a thread of computation.

S~ices can be parallelly executable entities. Discernible commonalities were observed

when the concepts of threads and program slices were juxtaposed from a reuse

perspective. Traditional parallelization techniques and slicing were observed to be

homologous.

111

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my graduate advisor, Dr. Mansur

H. Samadzadeh for his supervision and guidance through the duration of this research,

and for his keen interest in my progress. I thank him for suggesting the topic for research

and for his invaluable input along the way.

I would also like to thank Drs. G. E. Hedrick and Blayne E. Mayfield for serving

on my thesis committee. I am greatly indebted to Dr. J. D. Carlson of the Biosystems and

Agricultural Engineering Department for employing me for over two years, during which

time I was extended generous financial support and uncommon good will.

My parents have stood by me through a rather long stay here at Oklahoma State

University. I immensely appreciate their patience and understanding.

iv

Chapter

TABLE OF CONTENTS

Page

I INTRODUCTION 1

II PROGRAM SLICES......... 3

2.1 Static Slices................. 3
2.2 Dynanric Slices........ 4
2.3 Conditioned Slices...... 5
2.4 Applications of Program Slices. 6
2.5 Tools Based on Slicing.......... 7

ill TlfREADS.. 8

3.1 Notions of Threads 8
3.1.1 Thread of a Computation 9
3.1.2 Thread of a Process 9
3.1.3 Thread in Multi-Threaded Programming 11

3.2 Threads as Parallelly Executable Entities 12
3.3 Benefits of Threads L3
3.4 Parallelization of Sequential Programs 13
3.5 Parallelization Tools and Programming Aids 14

IV nJXTAPOSITION 15

V SUMMARY, CONCLUSION, AND FUTURE WORK L9

5.1 Summary and Conclusion 19
5.2 Future Work 20

REFERENCES 22

APPENDICES 27

APPENDIX A - GLOSSARY 28

APPENDIX B - TRADEMARK INFORMATION 31

v

Chapter Page

APPENDIX C - EXAMPLES OF PROGRAM SUCES 32

APPENDIX D - AN EXAMPLE ON THREADING SLICES 39

VI

LIST OF FIGURES

R~ p.

1. Static Slice 4

2. Execution Trace "....... 5

3. Dynamic Slice 6

4. Typical Memory Arrangement of CIUNIX Process 10

5. Example Prognun 32

6. Static Slice 33

7. Execution Trace 33

8. Dynamic Slice 34

9. Example Program 35

10. Static Slice 36

11. Conditioned Slice 36

12. Dynamic Slice 37

13. Quasi-Static Slice 37

14. Simultaneous Dynamic Slice 38

15. Example Sequential Program 40

16. Multithreaded Equivalent of Sequential Program 41

17. Output of Sequential and Multithreaded Programs 42

18. Dynamic Slice 43

vii

It

Figure Page

19. Dynamic Slice 43

20. Dynamic Slice 43

21. Dynamic Slice 44

22. Dynamic Slice 44

Vlll

LIST OF TABLES

Table Page

I. Juxtaposition of Threads and Program Slices 16

IX

CHAPTER I

INTRODUCTION

• l • I

A program slice is a sequence of instructions through a program that is capable of

reproducing part of the program's behavior. Slicing deletes from consideration those

statements in the program that are irrelevant to a computation or a set of computations of

interest. A thread is a sequence of program execution.

Since the inception of the idea of program slicing, the plausibility of its application to

parallelizing program execution has been suggested by some prominent researchers in the

area, e.g., Mark Weiser [Weiser 84] stated the following.

Because slices execute independently, they are suitable for parallel execution on
multiprocessors without synchronization or shared memory. ... Parallel
execution of slices might be particularly appropriate for distributed systems,
where shared memory is impossible and synchronization requires excessive
handshaking.

Agrawal, in his 1991 Ph.D. dissertation [Agrawal 91], hints at the conceptual

similarity of program slices to threads, as follows:

Conceptually a program may be considered as a collection of threads, each
computing a value of a program variable. Several threads may compute values of
the same variable. Portions of these threads may overlap one another. The more
complex the control structure of the program, the more complex the
intermingling of these threads. Static program slicing isolates all possible threads
computing a particular variable. Dynamic slicing, on the other hand, isolates the
unique thread computing the variable for the gi ven inputs.

1

Both threads and program slices can be viewed in terms of computations through a

program. The thesis takes a look at the relationship between threads and program slices

as reusable software units [Samadzadeh and Zand 99] [Zand and Samadzadeh 95]. It

examines research fundamentally relevant to the concepts of threads and program slices,

and tabulates similarities on several points of comparison.

The rest of the thesis is organized as follows. Chapter II presents a brief overview of

program slices. Chapter ill discusses the concept of threads. Information on threads and

program slices are juxtaposed, in Chapter IV, to bring out their similarities. Chapter V

makes concluding remarks and identifies directions for future inquiry.

2

CHAPTERll

PROGRAM SLICES

Program slicing [Binkley and Gallagher 96] [Tip 94] involves operations on source

code that isolate part of the behavior of a program when viewed from a point with in the

program. The process yields a relevant subset of program statements, referred to as a

program slice. Slices are computed with respect to a slicing criterion. Program slicing has

been broadly classified as static or dynamic based on the slicing criterion. Conditioned

slicing attempts at providing for a more general slicing model.

Dependence analysis fonns the core of program slicing. Slicing uses tenns, concepts

and techniques from program dependence theory [Korel and Rilling 98]. Directed graphs

that capture data dependence and control dependence relationships are used in most

slicing algorithms as intennediate program representations.

2.1 Static Slices

Static slicing refers to slicing methods that preserve the behavior of the program for

all possible executions. A static slice consists of the subset of program statements that

affect a set of variables at a particular location in the program for all input combinations.

In other words, input values are not considered in computing the slice. The static slicing

3

criterion consists of a pair <\I; p>, where V is the set of variables of interest and p is the

point of interest in the program. A sample program and its static slice is shown tin Figure

1 (example taken from [Tip 94]). t •

Much of program slicing literature, to date, focuses on slicing sequential programs.

Cheng [Cheng 93] [Cheng 97] and Krinke [Krinke 98] detail static slicing of threaded

programs and suggest modified intermediate program representations. Zhao et al. [Zhao

et aI. 96] describe static slicing of concurrent object-oriented programs. Dwyeret al.

[Dwyer and Ratcliff 99] [Dwyer et al. 99] and Ratcliff et al. [Ratcliff et aI. 99] present

static slicing of multi-threaded Java programs, and formalize some notions of program

dependence in this context.

1 input (n) ; 1 input (n) ;
2 i .- 1; 2 i .- 1;
3 sum . - 0; 4 prod .- 1;
4 prod . - 1; 5 while i <= n do
5 while i <= n do begin

begin 7 prod .- prod * i;
6 sum . - sum + i; 8 i .- i + 1;
7 prod . - prod * i; end;
8 i := i + 1; 10 output (prod) ;

end;
9 output (sum) ;
10 output (prod) ;

a. A sample program b. Static slice
Figure 1. A sample program, and its static slice corresponding to slicing criterion <V, p>,

where V ={prod} and p =10

2.2 Dynamic Slices

Dynamic slicing refers to a family of program slicing methods that use run-time

information in the computation of a slice [Korel and Rilling 98]. A dynamic slice consists

of the subset of statements in a program that affect a set of variables at a point of interest

4

in the program when the program is executed with a specific set of input values. A

dynamic slicing criterion specifies a set of variables of interest V, a point of interest p in

the program, and a set of input values 1. The concept of an execution trace is central to

dynamic slicing. Figure 3 gives an example of executable and non-executable dynamic

slices of the program in Figure 2 (examples from [Korel and Rilling 98). The idea of

dynamic slicing has also been applied to distributed programs [Cheng 93] [Duesterwald

et al. 92] [Korel and Ferguson 92]. "

1 input (n, a) ; . 1(1) input (n, a)
2 max := a[1] ; 2 (2) max .- a [1] ;
3 min . - a [1] ; 3 (3) min .- a [1];
4 i . - 2 ; 4(4) i := 2;
5 s := 0; 5(5) s .- 0;
6 while i <= n do 6(6) i <= n

begin 7(7) max < a [i]
7 if max < a[i] then 8(8) max . - a[i] ;

begin 9(9) s· := max;
8 max .- a [i] ; 10(10) min > a [i]
9 s . - max; 13(11) output (s) ;

end; 14(12) i := i + 2 ;
10 if min > a(i] then 6 (13) i <= n

begin 15(14) output (max, min)
11 min .- a(i] ;
12 s . - min;

end;
13 output (s) ;
14 i .- i + 2;

end;
15 output (max, min)

a. A sample program b. Execution trace
Figure 2. A sample program, and its execution trace for input n=3, a=(1,2,3)

2.3 Conditioned Slices

A dynamic slicing criterion specifies a specific computation corresponding to a

single initial state (i.e. a single set of input values). A static slicing criterion, on the other

hand, specifies no initial state, and hence implies the set of all possible initial states.

5

Conditioned slicing [Canfora et aL 98)' encompasses both notions by providing for a

generalized slicing criterion. A conditioned slice is extracted by specifying a static slicing

criterion together with a set of initial states that meet a particular condition. The condition

is specified as a first order logic fonnula on a subset of input variables. The notion of a

quasi-static slice has been defined to accommodate partial initial state specification in the

slicing criterion. Simultaneous dynamic slicing is perfonned with respect to a slicing

criterion that specifies a finite set of initial states. Conditioned slicing subsumes both

these notions as well. The increased flexibility in specification of the slicing criterion

translates to increased control of refinement in decomposition.

1 input (n, a) ; 1 input (n, a) ;
2 max .- a [1] ; 2 max .- a [1] ;
4 i . - 2; 4 i . - 2 ;
6 while i <= n do 6 while i <= n do

I
)begin begin

7 if max < a [i) then 7 if max < a[i) then
begin begin

8 max .- a [i) ; 8 max .- ali] ;
end; end;

14 i .- i + 2 ; end;
end; 15 output (max, min)

15 output (max, min)

a. Executable b. Non-executable
Figure 3. Executable and non-ex.ecutable dynamic slices of program in Figure 2 for the

slicing criterion given by <1, V, p>, where 1 = (n=3, a=(1,2,3)}, V = {max} and
p=15

2.4 Applications of Program Slicing

Slicing has several applications. It was introduced as a debugging technique [Weiser

82]. It has been used in software maintenance and regression testing. Slicing has been

used as a component in applications that involve restructuring, re-engineering,

6

comprehension, [Binkley and Gallagher 96] [Tip 94] and reuse [Cimitile 95a] [Cimitile

95b]. Lakhotia and Deprez describe a method of restructuring programs into small

cohesive functions, using slicing [Lakhotia and Deprez 98]. Slicing has been used in

deriving ADTs from FORTRAN programs [Liu and Ellis 93]. It has found use as an

objective basis for cohesion measurement and in software validation. Weiser suggests the

use of static slicing for parallel execution in distributed systems [Weiser 83] [Weiser 84].

Static slicing has been used as a component in constructing finite-state models of

sequential. and threaded' software systems [Dwyer and Hatcliff 99] [Dwyer et al. 99]

[Hatcliff et al. 99]. Dynamic slicing has been used for software debugging, software

maintenance, program comprehension and software testing [Korel and RiJling 98].

2.5 Tools Based on Slicing

Tools based on program slicing have largely been built as research prototypes in

academia. Commercial availability of such tools is in its incipient stages. CodeSurfer is a

commercially available program analysis and understanding tool, from GrammaTech,

based on static slicing [GrarnmaTech 00]. Currently, it supports programs written in C.

Unravel is a prototype static slicing tool from National Institute of Standards and

Technology [Unravel 00]. Spyder is a prototype dynamic slicing based debugging tool

developed in the early 90s at Purdue University [Spyder 00]. Samadzadeh and

Wichaipanitch [Samadzadeh and Wichaipanitch 93] detail the implementation of an

interactive debugging tool for C based on dynamic slicing. Sarnadzadeh and Hsiao

[Samadzadeh and Hsiao 93] describe the implementation of a paranel program slicer.

7

CHAPTERID

THREADS

A thread is an independent sequence of program execution. When threads are

executed concurrently and share resources (memory, I/O stream, etc.), control of access

becomes an issue; synchronization mechanisms are employed to try and prevent known

concurrency problems. Section 3.1 lays out- the variety in notions of threads relevant to

this study and sets the stage for 100lOng at threads by their common denominator, i.e., as

paralleUy executable entities, in Section 3.2. Parallelization of a sequential program

involves operations on the program that identifies and extracts potential parallelism;

Section 3.3 briefly highlights some observations in this context. Section 3.4 samples

parallelization tools and programming aids.

3.1 Notions of Threads

A thread is a unit of program execution. Notions of a thread differ in shades

contextually. References to the term thread in the following conceptual settings are

relevant to this discussion: Thread of a Computation, Thread of a Process, and Thread in

Multi-threaded Programming.

8

3.1.1 Thread of a Computation

A dynamic execution sequence with respect to source text is referred to as a thread.

Ravi Sethi [Sethi 89] explains:

A dynamic computation can be visualized as a thread laid down by the flow of
control through the static program text. Imagine program points appearing before
the first instruction, between any two adjacent instructions, and after the last
instruction. The thread of a computation consists of the sequence of program
points that are reached as control flows through the program text.

Sebesta refers to it as a thread ofcontrol. He notes [Sebesta 99]:

One useful technique for visualizing the flow of execution through a program is
to imagine a thread laid on the statements of the source text of the program.
Every statement reached on a particular execution is covered by the thread
representing that execution. Visually following the thread through the source
program traces the execution flow through the executable version of the
program. A thread of control in a program is the sequence of program points
reached as control flows through the program.

3.1.2 Thread of a Process

A thread is a sequence of execution in the context of a process. A process is a

program in execution. In the UNIX environment a C program in execution is composed

of the following parts [Stevens 93J:

Text segment: contains machine instructions executed by the CPU.

Initialized data segment: contains global variables specifically initialized in the

program.

Uninitialized data segment: contains uninitialized global variables in the program.

9

Stack: each function call involves pushing on to the stack, some information required

to continue the normal execution sequence of the program after the control is returned

to the caller. The called function also allocates space on the stack for its automatic

and temporary variables.

Heap: space for dynamic memory allocation is provisioned from the heap.

high address

,bwaddress

SJack
~--r--

or

•.~ __ 1 ___
heap

uninitialized data

imlializ9d daJa

TQXJ Segm9r1J

I command-line arguments and
environment variables

f initialized to zero by execor
'rI read from program file by exec

.!.

Figure 4. Typical memory arrangement of a CIUNIX process

The logical arrangement of memory for the process could be represented as shown in

Figure 4 [Stevens 93].

Program Counter, register values, and I/O streams constitute part of the other

information relevant to the state of a process. A traditional UNIX process has a single

thread of execution. Stevens [Stevens 98] observes that in a multi-threaded process, all

threads share process instructions in the text segment, most data, open files, signal

handlers and signal dispositions, current working directory, and user and group Ids. But

they have their own thread ro, set of registers (program counter, stack pointer, etc.), stack

10

(fOT local variables and return addresses), errno, signal mask, and priority. Lewis and

Berg {Lewis and Berg 96] comment about the concept of a thread within a process. as

follows: • I

A thread is an abstract concept that comprises everything a computer does in
executing a traditional program. It is the program state that gets scheduled on a
CPU, it is the thing that does the work. If a process comprises data. code. kernel
state and a set of CPU registers, then a thread is embodied in the contents of
those registers - the program counter, the general registers, the stack pointer.
etc., and the stack. A thread, viewed at an instant of time, is the state of the
computation.

The kernel schedules lightweight processes (LWPs). Each process has at least one LWP.

Threads are scheduled by binding them to LWPs in either a one-to-one. a many-to-one, or

a many-to-many fashion. Solaris [Lewis and Berg 96] uses a two-level model, which uses

a variation of the many-to-many model with the ability to specifically do a one-to-one

binding request. Windows NT [Custer 93] uses the one-to-one model. It does not have a

concept of LWPs distinct from that of threads. Threads are kernel-schedulable entities in

Windows NT [Custer 93].

3.1.3 Thread in Multi-Threaded Programming

, A thread is a unit of abstraction of a program in multi-threaded programming

paradigm [Lewis and Berg 96] [Pharo and Garg 96] [Kleiman et a1. 96] [Northrup 96].

Multi-threaded programming is a concurrent programming methodology that gives users

the ability to write programs which exploit subprogram-level concurrency [Sebesta 99]

within the shared-memory context of a process. Its power is equivalent to programming

with multiple processes using shared memory; but thread creation and manipulation

] 1

within a process have significantly lesser overhead. Concurrency in accessing shared

resources cause issues of synchronization. Sebesta observes that Htwo of the primary

•
facilities that concurrent languages must provide are mutually exclusive access to shared

•
data structures (competition synchronization) and cooperation among tasks" [Sebesta 99J,

To aid synchronization, language constructs like semaphores, mutexes, monitors, and

condition variables are provided, either as a built-in feature of a language (e.g., multi-

threaded programming support in Java and Ada 95) or as extensions through language-

specific bindings to thread libraries (e.g., multi-threaded programming support for CtC++

and PASCAL). Thread creation and manipulation facilities are also provided in similar

fashion.

3.2 Threads as Parallelly Executable Entities

Typically, the term Hmulti-threaded program" refers to programs that correspond to a

single process with concurrent threads of execution using shared memory. Distributed

programs (programs implemented as communicating concurrent processes) have multiple

threads of execution, which are synchronized by message passing. In general, threads can

be . viewed as parallelly executable entities. Krinke uses the tenns, threaded and

concurrent, interchangeably when he discusses slicing of threaded programs [Krinke 98].

Anderson et at. [Anderson et al. 97] describe this general concept of threads, and list the

different models for organization of threads and address spaces.

12

33 Benefits of Threads I IT

Execution efficiency in a multi-processor environment is perhaps the most prominent

advantage in using concurrent threads of execution. Multiple threads perfonning

independent tasks with localized interactions can increase the responsiveness of

programs. Concurrent programming uses threads as an abstraction paradigm. Reducing.
the complexity of writing large programs by breaking it into smaller interacting

independent units is a major motivation behind the development of concurrent

programming [Pham and Garg 96]. The encapsulation provided by a process, the

facilities for inter-process communication, and the mechanisms for specifying

hierarchical relationship make processes naturally SUited for implementation of object-

oriented design. Objects can be implemented using concurrent processes [Sommerville

00].

3.4 Parallelization of Sequential Programs

Dependence analysis is used in parallelizing compilers to detect and extract potential

parallelism, and usually serves as the first step in the parallelization process [Wolfe 96b].

In many algorithms, there exists intrinsic parallelism that can be detected and used quite

easily. The fonn of parallelism in such cases is referred to as trivial parallelism [Lewis

and EI-Rewini 92]. A supervisor/worker model [Lewis and EI-Rewini 92] [Pham and

Garg 96] or a divide-and-conquer approach is generally sufficient to exploit trivial

parallelism. But, finding and exploiting parallelism in general is much more difficult.

Much of the research effort in parallelizing sequential programs is focussed on the

problem of parallelization of loops. In sequential programs there could be potential

13

parallelism in branches and functions/procedures, but extraction of parallelism from

loops holds the greatest promise for high performance [Lewis and EI-Rewini 92] [Wolfe

96a). There are limitations to a whoUy static analysis approach to parallelization, e.g.,

when dealing with loops that possess inter-iteration dependencies [Rauchwerger and

Padua 95]. Speculative multithreading [Akkary and Driscoll 98] [Kazi and Lilja 98]

[Marcuello et aI. 98] [Oplinger et al. 99] [Rauchwerger et aI. 95] [Rauchwerger and

Padua 95] aims at relieving such limitations through run-time parallelization, using

control and data dependence speculations in executing threads.

I,

3.5 Parallelization Tools and Programming Aids

Concurrent Pascal and Concurrent C are examples of traditional concurrent

programming languages. Concurrent programming support (multiple processes and/or

multiple threads) is also available as a built-in feature of languages such as Ada 95 and

Java, or as extensions to existing languages such as C and Pascal.

Much progress has been made in the area of Automatic ParaIlelization. Polaris is a

compiler development tool, developed at the University of Illinois at Urbana-Champaign,

that automatically parallelizes Fortran 77 programs, for execution on shared-memory

multiprocessors [Padua et al. 00]. The SUlF compiler is an infrastructure for

collaborative research in optimizing and parallelizing compilers developed by the

Stanford Compiler Group as part of the National Compiler Infrastructure project [Lam

and Hennessy 00].

14

CHAPTERN

JUXTAPOSITION

Selected observations about threads and program slices have been placed side-by-

side in Table I, in an effort to bring out their similarities. Our focus here is on reuse. It

becomes apparent that there exists a good intersection in the concepts of threads and

program slices.

15

II,

RSlices f:Threads and Pd inflf selTable 1. J - ---

JUXTAPOSITION PROGRAM SLICES THREADS
POINT

Direct Reuse Scenario Slicing has been used for identifying reusable Reuse of concurrent code is a major aim of concurrent
functions. It has been used in strategies for object-oriented programming.
extracting components for reuse.

Cohesion Slices have been used as a measure of cohesion. Independence in execution characterizes a thread as a
Slicing has been used to restructure programs into cohesive entity. Good use of threads must make sure
cohesive functions. that threads have highly localized interaction with

other threads.
Comprehension Slicing is especially suited for isolating focus on a Abstraction for better comprehension is motivation

program behavior of interest. also for concurrent programming.
Decomposition Slices are composed of a subset of statements in a Concurrent programmmg IS a paradigm for

program. It reduces problems of program size by decomposing programming problems. Reducing the
allowing focus of attention on a subcomputation complexity of writing large programs by breaking it
corresponding to a slicing criterion. into smaller interacting independent units is a major

motivation behind the development of concurrent
programming.

Restructuring Slicing has been used for restructuring of programs Restructuring sequential programs into threaded
into cohesive functions. It has been applied to the equivalents is a major research area.
problem of salvaging useful components from
software systems that are deemed to be beyond
repair.

0'1

....
-.I

Subprogram A slice is a subset of lines in a program. Slicing Threads in multi-threaded programming are
abstraction enables focus on a subcomputation that is relevant subprograms executable in parallel. Run-time

to a slicing criterion. Slicing has been used to create parallelization schemes use successive iterations of
cohesive subprograms (functions). loops as concurrent threads.

Object-orientation Slicing of object oriented programs has been Objects can be implemented using concurrent
studied. Object-orientation using slices relevant to a processes. Concurrent object-oriented programming
data structure looks plausible. We could not find aims at combining the benefits of both concurrent
any direct reference to this in slicing literature, code and object-oriented programming.
however slicing has been used in deriving ADTs
from FORTRAN programs.

Uncertainty Uncertainty is not directly obvious in a slice. But, Speculative multithreading involves parallel execution
(he notion of a static slice corresponds to all of successive loop iterations using control and data
computation that may affect a given behavior of dependence speculations.
interest. This involves a certain notion of
uncertainty, which could be exploited.

Formalism General and application-specific formalism in the A thread is an abstract concept that stretches across
notion of a slice exists. Formalism exists in the softwarelhardware interface. Formalism exists in
program representations, dependence notions, and program representations, dependence analysis,
techniques for slicing. But the notion of a program transformations, etc., and in the form of language
slice is quite flexible owing to its psychological constructs for concurrent programming and
basis. It could be applied to programs at any level softwarelhardware implementation support for
of abstraction - e.g., high-level, assembly, or multiple threads.
machine code. There is also room for new
application-specific notions of slices.

Dependence Analysis At the core of slicing. Major part in detecting potential parallelism in
programs.

Timing Timing is not inherent to slices. But a notion of Execution has some notion of timing inherent to it. A
timing emerges when computations corresponding thread is a sequence of execution. Timing relative to
to slices (especially in executable slices) are other threads is also highly relevant.
considered.

.....
00

Run-time infOlIDation Dynamic. slicing uses run-time information for Speculative multithreading uses run-time information
computing slices. for parallelizing loops.

Slicing threads Some work has been done in this area. N/A
Threading slices Weiser suggested threading of slices in distributed

N/A applications where shared memory is unavailable. Not
much has been done, since then, in using program
slices for automatic parallelization of programs.

\..

CHAPTER V

SUMMARY, CONCLUSION, AND FUTURE WORK

5.1 Summary and Conclusion

The concept of a dynamic slice is comparable to that of a thread of computation

\

[Agrawal 91]. Weiser demonstrated that static slices can be parallelly executable entities

[Weiser 83] [Weiser 84]. In this thesis we presented brief overviews of program slices

and threads, and juxtaposed their concepts from a reuse perspective. It was observed that
" .

there are discernible commonalities in their concepts.

Program slices were introduced with verification, in 1979, as a natural psychological

process in abstracting programs [Weiser 79]. Programmers use this while debugging

[Weiser 82]. It fundamentally asks the questions: "Given a behavior of interest at a point

of observation what set of predecessors affect it?" (as in a backward slice) or "What set

of successors are affected by the behavior at a point of observation?" (as in a forward

slice). The process of parallelizing programs fundamentally asks the same questions to

detect and extract potential parallelism. In this sense threads and program slices are

homologous.

In the foreword to the Information and Software Technology (Special Issue on

Program Slicing) [Weiser 98], Weiser reiterates the psychological underpinnings of

19

slices, re-advocates research into the use of the notion of program slices for parallelizing

Programs, and suggests slices as an abstraction paradigm in programmi,ng languages. The

results from the juxtaposition of the concepts of threads and program slices, presented

here, lead us to look with increased conijdence in these directions.

5.2 Future Work

The increased confidence in the relationship between threads and program slices is

not without qualification. Does program slicing really show promise in parallelizing

sequential programs? Weiser seems to be the only one who has pursued this direction. In

evaluating Weiser's claim one is led to ask:

1. What kinds of programs has Weiser (or others) parallelized using program slicing?

2. A closely related question is, What kinds of sequential programs have multithreaded

equivalents? Or, looking at the same question in the reverse direction, What kinds of

multithreaded programs can have completely sequential equivalents?

Program slicing seems to be of no use for parallelization of loops, which is the major

focus of parallelization efforts on sequential programs. But program slicing has been

successfully used in the process of decomposing programs into cohesive functions.

Divide-and-conquer solutions are inherently parallelizable and it is likely that program

slicing is effective in isolating parallelizable segments from such programs. If static slices

of a given program are computed with respect to each of its output variables at the last

line of the program, each slice can be delegated to a "worker" process and their results

can be managed by a "supervisor" process.

20

An empirical study of a wide range of programs (both sequential and multithreaded)

and their slices is necessary to decide conclusively on the relationship between threads

and program slices. The non-availability of adequate and dependable program slicing

tools is a major obstacle at this time. Experimental inquiries into the relationship could be

made at several levels. Two of the basic exploratory queries that could be asked are listed

below:

1. Can slices of a program be an indicator of its threadability? In other words, can slices

of a program indicate whether it can or cannot be implemented using multiple

threads?

2. Do certain types of program.s produce slices that display a common property when

seen in relation to threads? Could this property of the slices not be a means of

classifying programs?

Techniques used in program slicing and those used in program parallelization seem to

have considerable region of intersection. A detailed comparative study of the techniques

can give greater insight into their relationship.

Program slicing is a maturing research area. On the other hand, threads, as concurrent

sequences of execution, have been studied for over three decades. As program slicing

research progresses it is possible that more similarities would emerge between program

slices and threads. There is good flexibility in the definition of a program slice and some

interesting new notions of program slices are being introduced.

21

REFERENCES

[Agrawal 91] H. Agrawal, ''Towards Automatic Debugging of Computer Programs,"
Ph.D. Dissertation, Department of Computer Sciences, Purdue University, West
Lafayette, IN, 1991.

[Akkary and Driscoll 98] H. Akkary and M. A. Driscoll, "A Dynamic Multithreading
Processor," Proceedings of the 31st Annual ACM/lEEE International Symposium
on Microarchitecture (MICRO 31), pp. 226-236, Dallas, TX, December 1998.

[Anderson et al. 97] T. Anderson, B. Bershad, E. Lazowska, and H. Levy, ''Thread
Management for Shared-Memory Multiprocessors," In The Computer Science and
Engineering Handbook, Edited by: Allen B. Tucker, pp. 1665-1676, CRC Press,
Boca Raton, FL, 1997.

[Binkley and Gallager 96] D. W. Binkley and K. B. Gallager, "Program Slicing," In
Advances in Computers, Vol. 43, Edited by: Marvin Zelkowitz, pp, 1-50, Academic
Press, San Diego, CA, 1996.

[Confora et aI. 98] G. Canfora, A. Cimitile, A. De Lucia, "Conditioned Program Slicing,"
In Information and Software Technology, Vol. 40, No. 11-12, pp. 595-607,
November 1998.

[Cheng 93] J. Cheng, "Slicing Concurrent Programs," Proceedings of the First
International Workshop on Automated and Algorithmic Debugging, Lecture Notes
in Computer Science, Vol. 749, pp. 232-245, Springer, Berlin, Germany, 1993.

[Cheng 97] J. Cheng, "Dependence Analysis of Parallel and Distributed Programs and Its
Applications," Proceedings of the International Conference on Advances in
Parallel and Distributed Computing, pp. 370-377, Shanghai, China, March 1997.

[Cimitile et a1. 95a] A. Cimitile, A. De Lucia, and M, Munro, "Identifying Reusahle
Functions Using Specification Driven Program Slicing: A Case Study,"
Proceedings of the IEEE International Conference on Software Maintenance
(ICSM'95), pp. 124-133, Opio (Nice), France, October 1995.

[Cimitile et a1. 95b] A. Cimitile, A. De Lucia, and M, Munro, "Qualifying Reusable
Functions Using Symbolic Execution," Proceedings of the 2nd Working Conference
on Reverse Engineering, pp. 178-187, Toronto, Canada, July 1995.

22

[Custer 93] H. Custer, Inside Windows NT, Microsoft Press, Redmond, WA, 1993.

[Duesterwald et aI. 92] E. Duesterwald, R. Gupta, and M. Soffa, "Distributed Slicing and
Partial Re-execution for Distributed Programs," Proceedings of the Fifth Workshop
on Languages and Compilers for Parallel Computing, pp. 329-337, New Haven,
CT, August 1992.

[Dwyer and Hatcliff 99] M. B. Dwyer and J. Hatcliff, "Slicing Software for Model
Construction," Proceedings of the ACM Workshop on Partial Evaluation and
Semantics-based Program Manipulation, pp. 105-118, San Antonio, TX, January
1999.

[Dwyer et al. 99] M. B. Dwyer, J. C. Corbett, J. Hatcliff, S. Sokolowski, and H. Zheng,
"Slicing Multi-threaded Java Programs: A Case Study," Technical Report 99-7,
Department of Computing and Information Sciences, Kansas State University,
Manhattan, KS, 1999.

[GrammaTech 00] GrammaTech CodeSurfer Software Analysis and Understanding Tool,
http://www.grammatech.comlproducts/codesutfer!codesutfecindex.htmI. access
date: April 13, 2000.

[Hatcliff et al. 99] J. Ratcliff, J. C. Corbett, M. B. Dwyer, S. Sokolowski, and H. Zheng,
"A Formal Study of Slicing for Multi-threaded Programs with JVM Concurrency
Primitives," Proceedings of the International Symposium on Static Analysis
(SAS'99), pp. 1-18, Venice, Italy, September 1999.

[Kazi and Lilja 98] I. H. Kazi and D. J. Lilja, "Coarse-Grained Speculative Ex.ecution in
Shared-Memory Multiprocessors," Proceedings of the 1998 International
Conference on Supercomputing (lCS'98), pp. 93-100, Melbourne, Australia, July
1998.

[Kleiman et al. 96] S. Kleiman, D. Shah, and B. Smaalders, Programming with Threads,
SunSoft Press! Prentice Hall PTR, Mountain View, CA, 1996.

[Korel and Ferguson 92] B. Korel and R. Ferguson, "Dynamic Slicing of Distributed
Programs," Applied Mathematics and Computer Science Journal, Vol. 2, No.2, pp.
199-215, December 1992.

[Korel and Rilling 98] B. Korel and J. Rilling, "Dynamic Program Slicing Methods,"
Information and Software Technolo/?y, Vol. 40, No. 11-12, pp. 647-659, November
1998.

[Krinke 98] J. Krinke, "Static Slicing of Threaded Programs," Proceedings of the ACM
SIGPlANISIGSOFT Workshop on Program Analysis for Software Tools and
Engineering (PASTE'98), pp. 35-42, Montreal, Canada, June 1998.

23

[Lakhotia and Deprez 98} A. Lakhotia and J. Deprez, "Restructuring Programs by
Tucking Statements into Functions," Infonnation and Software Technology, VoL
40, No. 11-12, pp. 677-689, November 1998.

[Lam and Hennessy 00] M. S. Lam and J. L. Hennessy, The Stanford SUIF Compiler
Group Page, http://suif.stanford.edu, access date: April 13, 2000.

[Lewis and EI-Rewini 92] T. G. Lewis and H. EI-Rewini. Introduction to Parallel
Computing, Prentice-Hall, Englewood Cliffs, NJ, 1992.

[Lewis and Berg 96] B. Lewis and D. J. Berg, Threads Primer, Prentice-Hall. Upper
Saddle River, NJ, 1996.

[Liu and Ellis 93] L. Liu and R. Ellis, "An Approach to Eliminating COMMON Blocks
and Deriving ADTs from FORTRAN Programs," Technical Report, University of
Westminster, UK, Febru.ary 1993.

[Marcuello et al. 98] P. Marcuello, A. Gonzalez, and J.' Tubella, "Speculative
Multithreaded Processors," Proceedings of the 1998 International Conference on
Supercomputing (ICS'98), pp. 77-84, Melbourne, Australia, July 1998.

[Northrup 96] C. J. Northru.p, Programming with Unix Threads, John Wiley & Sons, Inc.,
New York, NY, 1996.

[Oplinger et aI. 99] J. T. Oplinger, D. L. Heine, and M. S. Lam, "In Search of Speculative
Thread-Level Parallelism," Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques (PACT'99), Newport Beach,
CA, October 1999.

[Padua et aI. 00] D. A. Padua, 1. Torrellas, and R. Eigenmann, Polaris Project Home
Page, http://polaris.cs.uiuc.edulpolaris/polaris.html, access date: April 13, 2000.

[Pharo and Garg 96] T. Q. Pharo and P. K. Garg, Multithreaded Programming with
. Windows NT, Prentice-Hall PTR, Upper Saddle River, NJ, 1996.

[Rauchwerger et a1. 95] L. Rauchwerger, N. M. Amato, and D. A. Padua, "Run-Time
Methods for Parallelizing Partially Parallel Loops," Proceedings of the 9'h ACM
International Conference on Supercomputing (ICS'95), pp. 137-146, Barcelona,
Spain, July 1995.

[Rauchwerger and Padua 95] L. Rauchwerger and D. A. Padua, "The LRPD Test:
Speculative Run-Time Parallelization of Loops with Privatization and Reduction
Parallelization," Proceedings of the ACM SIGPLAN'95 Conference on
Programming Language Design and Implementation (PLDI), pp. 218-232, La Jolla,
CA, June 1995.

24

[Samadzadeh and Hsiao 93] M. H. Samadzadeh and Ting-Huan Hsiao, "An Interactive
Parallel Program Slicer for the Hypercube," Proceedings of the Twelfth Annual
IEEE International Phoenix Conference on €omputers and Communication
(IPCCCY3), pp. 66-72, Tempe, Arizona, March 1993.

[Samadzadeh and Wichaipanitch 93] M. H. Samadzadeh and W. Wichaipanitch, "An
Interactive Debugging Tool for C Based on Dynamic Slicing and Dicing,"
Proceedings of the Twenty-First Annual ACM Computer Science Conference
(CSC'93), pp. 30-37, Edited by~ Stan C. Kwasny and John F. Buck, fudianapolis,
Indiana, February 1993.

[Samadzadeh and Zand 99] M. H. Samadzadeh and M. K. Zand, "Software 'Houses," In
Encyclopedia of Electrical and Electronics Engineering, Edited by: John O.
Webster, Vol. 19, pp. 473-483, John Wiley & Sons, mc., New York, NY, 1999.

[Sebesta 99] R. W. Sebesta, Concepts of Programming Languages, Fourth Edition,
Addison Wesley Longman, Inc., Reading, MA, 1999.

[Sethi 89] R. Sethi, Programming Languages, Addison-Wesley Publishing Company,
Reading, MA, 1989.

[Sommerville 00] I. Sommerville, Software Engineering, Sixth Edition, Addison-Wesley
Publishing Company, Reading, MA, 2000.

[Spyder 00] Spyder Debugger Project Page, http://www.cerias.purdue.edu/homes/spaf/
spyder.html, access date: April13, 2000.

[Stevens 93] R. W. Stevens, Advanced Programming in the UNIX Environment,
Addison-Wesley Publishing Company, Reading, MA, 1993.

[Stevens 98] R. W. Stevens, UNIX Network Programming, Vol. 1, Second Edition,
Prentice Hall, Upper Saddle River, NJ, 1998.

[Tip 94] F. Tip, "A Survey of Program Slicing Techniques," Report CS-R9438, Centrum
, voor Wiskunde en Infonnatica (CWI), Amsterdam, Netherlands, 1994.

[Unravel 00] The Unravel Program Slicing Tool, http://www.nist.govlitlldiv897/sqg/
unravel/unravel.html, access date: April 13, 2000.

[Weiser 79] M. Weiser, "Program Slices: Formal, Psychological, and Practical
Investigations of an Automatic Abstraction Method," Ph.D. Thesis, Department of
Computer and Communication Sciences, University of Michigan, Ann Arbor, MI,
1979.

[Weiser 82] M. Weiser, "Programmers Use Slices When Debugging," Communications
ofthe ACM, Vol. 25, No.7, pp. 446-452, July 1982.

25

[Weiser 83] M. Weiser, "Reconstructing Sequential Behavior from ParaUel Behavior
Projections," Information Processing Letters, Vol. 17, No.3, pp. 129-135, October
1983.

[Weiser 84] M. Weiser, "Program Slicing," IEEE Transactions on Software Engineering,
Vol. 10, No.4, pp. 352-357, July 1984.

[Weiser 98] M. Weiser, "Foreword," Information and Software Technology, Vol. 40, No.
11-12, p. 575, November 1998.

[Wichaipanitch 92] Winai Wichaipanitch, "An Interactive Debugging Tool for C Based
on Dynamic Slicing and Dicing," Master of Science Thesis, Computer Science
Department, Oklahoma State University, Stillwater, OK, 1992.

[Wolfe 96a] M. Wolfe, High Performance Compilers for Parallel Computing, Addison­
Wesley Publishing Company, Redwood City, CA, 1996.

[Wolfe 96b] M. Wolfe, "Parallelizing Compilers," ACM Computing Surveys, Vol. 28,
No.1, pp. 261-262, March 19%.

[Zand and Samadzadeh 95] M. K. Zand and M. H. Samadzadeh, "Software Reuse:
Current Status and Trends," Journal of Systems and Software, Editorial for the
Special Issue on Software Reuse, Vol. 30, No.3, pp. 167-170, September 1995.

[Zhao et aI. 96] J. Zhao, J. Cheng, and K. Ushijima, "Static Slicing of Concurrent Object­
Oriented Programs," Proceedings of the 2dh IEEE Annual International Computer
Software and Application Conference, pp.312-320, Seoul, Korea, August 1996.

26

APPENDICES

27

, .

Action

ADT

Conditioned Slicing

Divide-and-Conquer
Approach

Dynamic Slicing

Execution Trace

LWP

APPENDIX A

GLOSSARY

An instance of an instruction in the trajectory for a
specific input in the context of dynamic slicing, e.g.,
action X(p) represents an instance of instruction X at
position p in the trajectory.

Abstract Data Type

Slicing performed by specifying a static slicing criterion
together with a set of initial states elhat meet a particular
condition. The condition is specified as a first order logic
formula on a subset of input variables. A conditioned
slicing criterion is a triple <F'(Vin), V, p>, where:

V is a set of variables of interest,
p is a point of interest in the program,
F(Vin) is a first order logic formula on a subset of the
set of input variables, Vin , specifying a desired condition.

A solution strategy where the algorithm partitions the
problem into independent subproblems, solves the
subproblems recursively, and combines their solutions to
solve the original problem.

Slicing performed by specifying values for each element
in the set of input variables. A dynamic slicing criterion
specifies an initial state along with a static slicing
criterion. See also slicing criterion.

A sequence of actions performed on a particular input in
the context of dynamic slicing. Also referred to as
Trajectory.

Light Weight Process. Kemel-schedulable entity in multi­
level architectures for Multithreaded Programming.

28

Multithreading

Multithreaded

Implementation of solutions incorporating multiple
threads of control. The scenario may involve either
multiple threads and a single address space or multiple
threads and multiple address spaces.

Concurrent; unless the Multithreaded Programming
paradigm is obvious from context.

Multithreaded Programming A programming paradigm characterized by the facilities
for implementing multiple concurrent threads of control in
a single process.

Potential Parallelism

Process

Program Slice

Program Slicing

Quasi-Static Slicing

Simultaneous Dynamic
Slice

Slice

Slicing Criterion

Potential for concurrent execution.

A program in execution.

A subset of program statements obtained by program
slicing on a particular slicing criterion.

A family of techniques involving operations on source
code that isolate part of the behavior of a program when
viewed from a point of interest with in the program.

A slicing technique that allows partial initial state
specification. A quasi-static slicing criterion is a triple <1,
V, p>, where:
V is a set of variables of interest,
p is a point of interest in the program,
I is a subset of the elements in a complete initial state
specification.

Slicing petformed with respect to a slicing criterion that
specifies a finite set of initial states. A slicing criterion for
simultaneous dynamic slicing is a triple <I, V, p>, where:

V is a set of variables of interest,
p is a point of interest in the program,
I is a set of initial states.

See Program Slice.

Specification for a particular behavior of interest while
slicing. It is expressed as a pair <V, p> for static slicing
and a triple <1, V, p> for dynamic slicing, where:

V is a set of variables of interest,
p is a point of interest in the program,

29

/

Speculative Multithreading

Slicing

Static Slicing

SupervisorlWorker
Approach

Thread

Threadability

Thread of Computation

Thread of a Process

Thread in Multithreaded
Programming

Thread Library

Trajectory

Trivial Parallelism

I is a set specifying an initial state.

A run-time parallelization technique that uses control and
data dependence speculations in executing threads.

See Program Slicing

Slicing performed without considering the input. See also
slicing criterion.

A multithreaded solution strategy where the algorithm
divi8es a problem into independent subproblems and
delegates each subproblem to a "worker" under its
"supervision".

In this study we look at a thread in its broadest sense, i.e.,
as parallelly executable sequence of instructions in a
program. Depending on context it may be a thread of
computation, a thread of a process, or a thread in
Multithreaded Programming.

Ability of programs to be written using multiple threads.

A sequence of statements in the source code of a program
that are stepped through while performing a particular
computation.

A sequence of execution in the context of a process.

A unit of abstraction in Multithreaded Programming
paradigm.

Library of routines that constitute the operating system
support for Multithreaded Programming.

See Execution Trace.

Potential parallelism that can be detected and exploited
quite easily.

30

Solaris

UNIX

CodeSurfer

APPENDIXB

TRADEMARK INFORMATION

A registered trademark of Sun Microsystems, Inc.

A registered trademark of The Open Group in the United States
and other countries.

Trademark of GrammaTech, Inc.

31

APPENDIXC

EXAMPLES OF PROGRAM SLICES

C.l Example Set I

integer;

array[l .. 10] of integer;
/* MaxData = 5 */

/* Data = (3,5,5.2,2) */

var
MaxData, Count
Sum, Avg real;
Data, CountNumber

begin
1 read (MaxData, Data);
2 Count:= 1;
3 Sum:= 0;
4 while Count <= MaxData do

begin
/* count occurrences of number */

5 if Data [Count] = 1 then
6 CountNumber[l] = CountNumber[l] + 1;
7 if Data [Count] = 2 then
8 CountNumber[2] = CountNumber[2] + 1;
9 if Data [Count] = 3 then
10 CountNumber[3] = CountNumber[3] + 1;
11 if Data [Count] = 4 then
12 CountNumber[4] = CountNumber[4] + 1;
13 if Data [Count] = 5 then
14 CountNumber[5] = CountNumber[5] + 1;

/* computing the sum */
16 Sum:= Sum + Data[Count];
17 Count:= Count + 1;

end
/* Compute average */

18 Avg := Sum / MaxData;
19 write (CountNumber, Sum. Avg};
end.

Figure 5. Program to compute number of occurrences and to calculate the sum and
average of a set of numbers, the size of the set and its elements are provided as
input [Wichaipanitch 92]

32

begin
1 read (MaxData, Data);
2 Count := 1;
4 while Count <= MaxData do

begin
5 if Data [Count 1 = 1 then
6 CountNumber[11 = CountNumber[l) + 1;
7 if Data[Countl = 2 then
B CountNumber[21 = CountNumber[21 + 1;
9 if Data [Count) = 3 then
10 CountNumber[31 = CountNumber[31 + 1;
11 if Data[Count) = 4 then
12 CountNumber(4) = CountNumber[41 + I:
13 if Data [Count) = 5 then
14 CountNumber[51 = CountNumber[5) + 1:
17 Count:= Count + 1;

end
19 write (CountNumber, Sum, Avg);
end.

Figure 6. Static Slice computed based on variable CountNumber in line 19 of the
program in Figure 5 [Wichaipanitch 92]

1(1) read (MaxData, Data):
2(2) Count := I:
3 (3) Sum : = 0;
4(4) Count <= MaxData
9(5) Data [Count] = 3
10(6) CountNumber[31 = CountNumber[31 + 1;
16(7) Sum := Sum + Data[Count);
17(8) Count := Count + 1;
4(9) Count <= MaxData
13(10) Data[Countj ~ S
14(11) CountNumber[51 = CountNumber[5] + 1;
16(12) Sum := Sum + Data [Countl ;
17 (13) Count := Count + 1;
4(14) Count <= MaxData
18(15) Avg := Sum / MaxData;
19(16) write (CountNumber, Sum, Avg);

Figure 7. Execution trace of the program in Figure 5 on input data MaxData =2, Data
=(3,5) [Wichaipanitch 92]

33

begin
1 read (MaxData, Data);
2 Count := 1;
4 while Count <= MaxData do

begin
9 if Data[Count] = 3 then
10 CountNumber[3] = CountNumber[3] + 1;
13 if Data[Count] = 5 then
14 CountNumber[5] = CountNumber[5] + 1;
17 Count:= Count + 1;

end
19 write(CountNumber, Sum, Avg);
end.

Figure 8. Dynamic Slice computed for input set {MaxData = 2, Data = (3.5)} based
on variable CountNwnber in line 19 of the program in Figure 5
[Wichaipanitch 92]

34

C.2 Example Set n

The following examples have been taken from [Canfora et a1. 98]. Figure 9 lists a
program that takes inputs n, testO, and a sequence of n integers, computes integers
possum, posprod. negsum. and negprod, and outputs the greatest sum and the greatest
product.

possum accumulates the sum of positive numbers.
negsum accumulates the sum of absolute values of negative numbers.
posprod accumulates the product of positive numbers.
negprod accumulates the product of absolute values of the negative numbers.

Whenever an input a is zero, the greatest sum and the greatest product are reset if the
value of testO is not zero.

possum, negsum, sum, prod:

possum += a:
posprod *= a; }

else if (a < 0) {
negsum -= a:
negprod *= (-a):

else if (testO) {
if (possum >= negsum)

possum 0:
else negsum = 0:
if (posprod >= negprod)

posprod = I:
else negprod = 1: }

main() {
int a, testO, n, i, posprod, negprod,
scanf ("%d", &testO): scanf ("%d", &n):
i = posprod = negprod = 1;
possum = negsum = 0:
while (i <= n) {

scanf ("%d", &a);
if (a > 0) {

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 i++; }
22 if (possum >= negsum)
23 sum = possum;
24 else sum = negsum:
25 if (posprod >= negprod)
26 prod = posprod;
27 else prod = negprod; }
28 printf ("%d \n", sum}:
29 printf("%d \n", prod): }

Figure 9. A program that computes the integers possum, posprod, negsum, and negprod,

and outputs the greatest sum and the greatest product

35

main() {
int a, testO, n, i, possum, negsum, sum;
scanf("%d", &testO); scanf("%d", &n)i
i = posprod = negprod = 1;
possum = negsum = 0;
while (i <= n) {

scanf{"%d", &a);
if (a > 0) {

negsum)
0;
0;

possum += a;
else if (a < 0)

negsum -= a;
else if (testO) {

if (possum >=
possum =

else negsum =

1
2
3
4
5
6
7
8
9
11
12
14
15
16
17
21 i++; }
22 if (possum >= negsum)
23 sum = possum;
24 else sum = negsum;
28 printf{"%d \n", sum);

Figure 10. Static slice of the program in Figure 9 for slicing criterion <lr:p>, where V =
{sum} andp = 28

1 main () (
2 int a, testO, n, i, possum, negsum, sum;
3 scanf{"%d", &testO); scanf("%d", &n);
4 i = posprod = negprod = 1;
5 possum = negsum = 0;
6 while (i <= n) {
7 scanf("%d", &a);
8 if (a > 0) {
9 possum += a;
21 i++; }
22 if (possum >= negsum)
23 sum = possum;
28 printf ("%d \n", sum);

Figure 11. Conditioned slice of the program in Figure 9 for slicing criterion <.F(Vin), V,
p>, where V ={sum}, p =28, and F(Vin) =(Vi, l~i~n, ai>O)

36

1 main () {
2 int a, testO, n, i, possum, negsum, sum;
3 scanf (n%d", &testO); scanf ("%d", &n);
4 i = posprod = negprod = 1;
5 possum = negsum = Oi
6 while (i <= n) {
7 scanf("%d", &a)i

8 if (a > 0) {
9 possum += ai
21 i++; }
22 if (possum >= negsum)
23 sum = possum;
28 printf (lI%d \n", sum);

Figure 12. Dynamic slice of the program in Figure 9 for slicing criterion <1, V, p>, where
1= {(testO,O), (n,2), (al,O) (a2,2)}, V = {sum}, and p = 28

possum += ai
else if (a < 0) {

negsum -= a;

main () {
int a, testO, n, i, possum, negsum, Sumi
scanf ("%d", &testO); scanf ("%d", &n) i

i = posprod = negprod = 1;
possum = negsum = 0;
while (i <= n) {

scanf ("%d", &a);
if (a > 0) {

1
2
3
4
5
6
7
8
9
11
12
21 iHi }
22 if (possum >= negsum)
23 sum = possum;
24 else sum = negsum;
28 printf("%d \n", sum);

Figure 13. Quasi-static slice of the program in Figure 9 for slicing criterion <1, V, p>,
where 1= {(testO,D)}, V ={sum}, and p =28

37

negsum)
Q;

main() {
int a, testO, n, i, possum, negsum, sum;
scanf("%d", &testO); scanf("%d", &n);
i = posprod = negprod = 1;
possum = negsum = 0;
while (i <= n) {

scanf ("%d", &a);
if {a > 0) {

possum += a;
else if (a < 0) {

else if (testO) {
if (possum >=

possum =

1
2
3
4
5
6
7
8
9
11
14
15
16
21 i++ j }

22 if (possum >= negsum)
23 sum = possum;
28 printf("%d \n", sum);

Figure 14. A Simultaneous dynamic slice of the program in Figure 9 for slicing criterion
<1, V, p>, where V ={sum}, p =28, I = {h h}, I} = {(testO,O), (n,2), (al,O),
(a2,2)}, J.z = {(testO,l), (n,2), (a"O), (82,2)}

38

APPENDIXD

AN EXAMPLE ON THREADING SLICES

Figure 15 shows a C language implementation of the program in Figure 5. A
multithreaded equivalent of the program is shown in Figures 16a and 16b. The function
Read simulates the reading of input to the program. The two programs have identical
output for the same input, as shown in Figure 17 for the input data set MaxData =5, Data
= (3,5,5,2,2).

Figure 18 shows the dynamic slice of the program in Figure 5 for the slicing criterion
(x, {CountNumber[I]}, 19), where x =(MaxData, Data) =(2, (3, 5» and is identical to
the dynamic slice obtained based on {CountNumber[2]} and {CountNumber[4]} for this
particular value of x. The dynamic slice corresponding to slicing criterion (x,
{CountNumber[3]}, 19) shown in Figure 19, has structural similarity with that for
criterion (x, {CountNumber[5]}, 19) shown in Figure 20. Figures 21 and 22 show the
slices for (x, {Sum}, 19) and (x, {Avg}, 19), respectively.

It is obvious that the program selected here is amenable to multithreading. Can it be
determined by looking at the slices of the program in Figure 5, as shown in Figures 6, 8,
18, 19, 20, 21, and 22, that it is multithread-able? If yes, can a multi-threaded equivalent
of the program be constructed algorithmically from the slices? Would the techniques
developed for this program be generic enough to be applied to similar programs? Do
slices of other classes of programs show useful patterns that could be exploited for
multithreading? Would alternative means of representation of slices in relation to the
program - for instance, a modified PDG - help in better understanding and/or in
extra~ting their relationship with threads? These are some of the basic steps in the
sequence of fundamental questions that need to be addressed.

39

#include <stdio.h>

/* variable declartions - global */
int MaxData, Count;
float Sum, Avg;
int Data[lO], CountNumber[lO];

/* read function definition */
Read (int *maxData, int *data)
{

data[l] 3;
data[2] 5;
data[3] 5;
data[4] 2;
data[5] 2;
*maxData = 5;

/* write function definition */
Write (int *countNumber, float sum, float avg)
{

int i;

for (i = 1; i <= MaxData; i++)
printf("CountNumber[%d]: %d\n", i, countNumber[i]);

printf ("Sum: %f\n", sum);
printf("Avg: %f\n", avg);

}

/* program body */
main()
{

Read (&MaxData, Data) ;

Count = 1;
Sum = 0;
while Count <= MaxData
{

if (Data [Count] -- 1)

CountNumber[l] = CountNumber[l] + 1 ;
if (Data [Count] -- 2)

CountNumber[2] = CountNumber[2] + 1;
if (Data [Count] -- 3)

CountNumber[3] = CountNumber[3] + 1;
if (Data [Count] -- 4)

CountNumber[4] = CountNumber[4] + 1;

if (Data [Count] -- 5)

CountNumber[5] = CountNumber[5] + 1 ;

Sum = Sum + Data [Countj ;
Count = Count + 1;

Avg = Sum / MaxData;
Write(CountNumber, Sum, Avg);

Figure 15. C language equivalent of the program in Figure 5 for input MaxData =5,
Data =(3,5,5,2,2).

40

#include <thread.h>
#include <stdio.h>
#include <unistd.h>

/* variable declartions - global */
int MaxData, Count;
float Sum, Avg;
int Data[10], CountNumber[10];

/* Count Number of index */
void *CntNumber(void *arg)
{

int ind;
static i = 0;

ind = (int) arg;

:
I

,

if (Data [Count]
CountNumber[ind]

ind)
Count.Number[ind] + 1;

thr_exi t ((void *) 0);

/* read function definition */
Read(int *maxData, int *data)
{

data [1] 3;
data[2] 5;
data [3] 5;
data[4] = 2;
data[5] = 2;
*maxData = 5;

/* write function definition */
Write(int *countNumber, float sum, float avg)
{

int i;

for (i = 1; i <= MaxData; i++)
. printf("CountNumber[%d]: %d\n", i, countNumber[i]);

printf("Sum: %f\n", sum);
printf("Avg: %f\n", avg);

/* program body */
main()
{

thread_t *tidArray;

Figure 16a. Multithreaded equivalent of the program in Figure 15 (continued in Figure
16b).

41

int error = 0;
int numpaths;
int index;
void *status = NULL;

Read (&MaxData, Data);
Count = 1;
Sum = 0;
while (Count <= MaxData)
{

/* create thread for counting */
for (index = 1; index <= 5; index ++ l
{

thr_create(NULL, 0, CntNumber, (void *)index, 0,
&tidArray[index)) ;

/* join all threads */
for (index = 1; index <= 5; index ++)
{

status = NULL;
error = thr_join(tidArray(index), NULL, &status);
if (! error && status != NULL)
{

}

Sum Sum + Data [Count) ;
Count = Count + 1;

Avg = Sum / MaxData;
Write (CountNumber, Sum, Avg);
thr_exit{(void *)0);

Figure 16b. Multithreaded equivalent of the program in Figure 15 (continued from Figure
16a).

CountNurnber[l): 0
CountNumber[2): 2
CountNumber[3): 1
CountNumber[4]: 0
CountNumber[5]: 2
Sum: 17.000000
Avg: 3.400000

Figure 17. Output of programs in Figure 15 and Figure 16

42

begin
19 Write (CountNumber, Sum, Avg);
end.

Figure 18. A dynamic slice based on variable CountNumber [1] in line 19 of the
program in Figure 5

begin
1 read (MaxData , Data);
2 Count := 1;
4 while Count <= MaxData do

begin
9 if Data [Count] = 3 then
10 CountNumber[3] = CountNurnber[3) + 1;
17 Count:= Count + 1;

end
19 write(CountNurnber, Sum, Avg);
end

Figure 19. A dynamic slice based on variable Coun tNurnber [3] in line 19 of the
program in Figure 5

begin
1 read (MaxData, Data);
2 Count := 1;
4 while Count <= MaxData do

begin
13 if Data [Count] = 5 then
14 CountNurnber[5] = CountNumber[5] + 1;
17 Count:= Count + 1;

end
19 write (CountNumber, Sum, Avg);
end.

Figure 20. A dynamic slice based on variable CountNurnber [5] in line 19 of the
program in Figure 5

43

begin
1 read (MaxData, Data);
2 Count:= 1;
3 Sum:= 0;
4 while Count <= MaxData do

begin
16 Sum:= Sum + Data[Count];
17 Count:= count + 1;

end
19 write (CountNurnber, Sum, Avg);
end.

Figure 21. A dynamic slice based on variable Sum in line 19 of the program in Figure 5.

begin
1 read (MaxData, Data);
2 Count := 1;
3 Sum: = 0;
4 while Count <= MaxData do

begin
16 Sum:= Sum + Data [Count] ;
17 Count:= count + 1;

end
18 Avg := Sum / MaxData;
19 write (CountNurnber, Sum, Avg);
end.

Figure 22. A dynamic slice based on variable Avg in line 19 of the program in Figure 5.

44

VITA~

Abdunnassar Usman

Candidate for the Degree of

Master of Science

Thesis: INVESTIGATING THE RELATIONSHIP BETWEEN TIIREADS AND
PROGRAM SLICES

Major Field: Computer Science

Biographical:
Personal Data: Born in Chavakkad, Kerala, India, June 21, 1974, son of

Theruvath Veliyancode Usman and Zuhara Usman.

Education: Graduated from the Indian High School, Dubai, United Arab
Emirates, in May 1991; received Bachelor of Technology in Electronics
and Communication Engineering from Government Engineering College,
Trichur, under the University of Calicut, Kerala, India, in September 1996;
completed the requirements for Master of Science in Computer Science at
the Computer Science Department of Oklahoma State Uni versity in
December 2000.

Experience: Employed by Biosystems and Agricultural Engineering Department,
Oklahoma State University, as a Research Assistant / Programming
Specialist from May 1997 to December 1999; employed by Computer
Science Department, Oklahoma State University, as a Graduate Teaching
Assistant from June 2000 to July 2000.

